AN ABSTRACT OF THE THESIS OF

Jordan Michael Pelphrey for the degree of Master of Science in Civil Engineering presented on June 16, 2006.

Title: <u>An Investigation of Oregon Weigh-In-Motion Data for Bridge Rating</u> <u>Implementation and Evaluation.</u>

Abstract approved: Redacted for Privacy Christopher C. Higgins

The LRFR Manual, within commentary Article C6.4.4.2.3, contains provisions for development of site-specific live load factors. In Oregon, truck Weigh-in-Motion (WIM) data were used to develop live load factors for use on state-owned bridges. The factors were calibrated using the same statistical methods that were used in the original development of LRFR. This procedure maintains the nationally accepted structural reliability index for evaluation, even though the resulting state-specific live load factors were smaller than the national standard. The first part of this report describes the jurisdictional and enforcement characteristics in the state, the modifications used to described the alongside truck population based on the unique truck permitting conditions in the state, the WIM data filtering, sorting, and quality

control, as well as the calibration process, and the computed live load factors. Large WIM data sets from four sites were used in the calibration and included different truck volumes, seasonal and directional variations, and WIM data collection windows. Finally, policy implementation for actual use of the factors and future provisions for maintenance of the factors are described.

For bridge rating and evaluation, notional truck models are commonly used to simulate the load effects produced by the truck population. The recently developed Load Resistance and Factor Rating (LRFR) Bridge Evaluation Manual was calibrated based on the 3S2 truck configuration as the notional model. Using GVW as the parameter for establishing live load factors to reflect load effects may not necessarily provide consistent outcomes across all bridge span lengths, indeterminacies, or specific load effects. This is because the load effects are dependent on the distributions of the axle weights, the axle spacing, and the number of axles, in addition to the span geometry and support conditions.

The Oregon Department of Transportation currently uses a suite of 13 rating vehicles for evaluation of their bridge inventory. The load effects for Oregon's bridge rating vehicles have also been calculated for various span lengths and support conditions in the second part of this report. These load effects, both unfactored and factored, were compared with load effects calculated using vehicles from large sets of WIM data. Further, because no established standard of time or

quantity of WIM data has previously been recognized, a separate study was conducted in order to determine an acceptable window of WIM data. The objective of this analysis was to determine if the load effects and the live load factors developed for bridge rating produced by the suite of vehicles envelope load effects produced by an acceptable window of collected vehicle data for a variety of bridge span lengths and types. Observations and suggestions are made based on the results of these analyses. © Copyright by Jordan Michael Pelphrey June 16, 2006 All Rights Reserved

An Investigation of Oregon Weigh-In-Motion Data for Bridge Rating Implementation and Evaluation

by Jordan Michael Pelphrey

A THESIS

submitted to

Oregon State University

in partial fulfillment of the requirements for the degree of

Master of Science

Presented June 16, 2006 Commencement June 2007 Master of Science thesis of Jordan Michael Pelphrey presented on June 16, 2006.

APPROVED:

Redacted for Privacy

Major Professor, representing Civil Engineering

Redacted for Privacy

Head of the Department of Civil, Construction, and Environmental Engineering

Redacted for Privacy

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon State University libraries. My signature below authorizes release of my thesis to any reader upon request.

Redacted for Privacy Jordan Michael Pelphrey, Author

ACKNOWLEDGEMENTS

I would like to acknowledge the following:

- My Heavenly Father for His infinite wisdom and support;
- Dr. Christopher Higgins for giving me this great opportunity;
- Dr. Thomas Miller for his counsel during the duration of the project;
- All other professors who contributed to my growth in structural engineering;
- All of my fellow graduate students who helped me get through many countless hours of studying and conducting research, and for sharing in the wonderful experience of graduate life;
- My fiancée, Meghan Amish, for sharing her love and support through this long process;
- All friends and family for their continuous support;
- And the Oregon Department of Transportation for funding this research.

CONTRIBUTION OF AUTHORS

Dr. Christopher Higgins assisted with the data interpretation and writing of Chapters 2 and 3. Bala Sivakumar assisted with the data implementation and writing of Chapter 2. The Oregon Department of Transportation assisted with the writing of Chapter 2.

TABLE OF CONTENTS

Page
CHAPTER 1: General Introduction1
CHAPTER 2: Site-Specific LRFR Live Load Factors Using Weigh-In-Motion
Data
Abstract
CE Database Subject Headings4
Introduction and Background4
Live Load Factor Methodology and Analysis5
WIM Data Collection Windows
Traffic Volume
Seasonal Variation
WIM Data Cleaning, Filtering, and Weight Table Sorting
Methodology9
Live Load Factor Results16
Significant Findings from Calibration Process17
Discussion of Results
Policy Implementation
Conclusions
References
Appendix A40

TABLE OF CONTENTS (Continued)

Page
CHAPTER 3: Evaluation of Bridge Rating Vehicles Using Weigh-In-Motion
Data
Abstract
CE Database Subject Headings
Introduction46
Background
WIM Data49
Cleaning and Filtering the WIM Data50
WIM Site Selection
Weight Table Sorting Methodology53
Conventional Sort
Modified Sort54
Selecting an Appropriate Window of Data
Calculation of Load Effects59
Oregon-Specific Live Load Factors
Tabular and Graphical Results64
Significant Findings64
Unfactored Load Effects65
Factored Load Effects65

TABLE OF CONTENTS (Continued)

<u>P</u> :	age
Rating Vehicle Summary	.66
HL-93 Loading	.68
Notional Rating Load Vehicles	.68
Conclusions and Recommendations	69
References	.96
Appendix A	98
Appendix B1	12
Appendix C12	28
Appendix D1	36
CHAPTER 4: General Conclusions1:	57
BIBLIOGRAPHY10	61

LIST OF FIGURES

<u>Figure</u> <u>Page</u>
2.1 Maximum loading event for calibration of live load factors
2.2 Map of Oregon WIM sites used in the study27
2.3 Live load factors for WIM sites at different seasons and different WIM
data windows28
3.1 Example of raw WIM output73
3.2 Location of I-5 Booth Ranch NB
3.3 Frequency histogram of the number of axles per vehicle
3.4 Projection plots for various time windows for I-5 Booth Ranch NB75
3.5 Projection plots for various time windows for US 97 Klamath Falls NB76
3.6 Projected GVW values for all time windows for I-5 Booth Ranch NB77
3.7 Projected GVW values for all time windows for US 97 Klamath Falls
NB78
3.8 Shear & moment locations for simple span analysis
3.9 Shear & moment locations for 2-span continuous bridge analysis
3.10 CDF plots for unfactored moment for 100-ft simple span bridge model81
3.11 CDF plots for factored moment for 100-ft simple span bridge model

LIST OF TABLES

<u>Table</u> Page
2.1 ODOT rating vehicle classifications
2.2 Selected WIM sites, locations, and ADTT
2.3 Results of sorting methods for Weight Table classification
2.4 Statistics from controlling WIM data sets used in live load factor
calibration32
2.5 Computed Oregon-specific live load factors for legal loads and LRFR
Table 6-5 values 33
2.6 Computed Oregon-specific live load factors for permit loads and upper
portion of LRFR Table 6-6 values
2.7 Directional influence for live load factors at the I-5 Woodburn NB and SB
sites for January, 2005
2.8 Sensitivity analysis for alongside vehicle variability for select rating
vehicles during summer season (2 Weeks - 1st - 14th)
2.9 ODOT Adaptation of LRFR Table 6-5 Generalized Live-Load Factors for
Legal Loads: γ_L
2.10 ODOT adaptation of upper portion of LRFR Table 6-6 for ODOT
Routine Permits
3.1 Current ODOT rating vehicles
3.2 Information for I-5 Booth Ranch NB
3.3 Number of axles per vehicle per month

LIST OF TABLES (Continued)

Table	Page
3.4 Comparing sorting methods for table classification at I-5 Booth Ranch	
NB for 2005	86
3.5 Maximum projected GVW for varying time windows for I-5 Booth	
Ranch NB	87
3.6 Statistical parameters for varying time windows for I-5 Booth Ranch NB	88
3.7 Maximum projected GVW for varying time windows for US 97	
Klamath Falls NB	89
3.8 Statistical parameters for varying time windows for US 97 Klamath	
Falls NB	90
3.9 Five-year extrapolated load effects for various span types and lengths	91
3.10 Comparison of shear effects between rating and WIM vehicles	92
3.11 Comparison of moment effects between rating and WIM vehicles	93
3.12 Comparison of 2-span continuous load effects between rating and WIM	
vehicles	94
3.13 Factored rating vehicle sufficiency	95

LIST OF APPENDIX FIGURES

Figure Page
A3.1 ODOT legal rating vehicles
A3.2 ODOT continuous trip permit rating vehicles
A3.3 ODOT single trip permit rating vehicles
A3.4 ODOT load rating vehicle descriptions
A3.5 AASHTO notional rating loads (specialized hauling vehicles)103
A3.6 Permit Weight Table 1 [Oregon Motor Carrier]104
A3.7 Permit Weight Table 2 [Oregon Motor Carrier]105
A3.8 Permit Weight Table 3 [Oregon Motor Carrier]106
A3.9 Permit Weight Table 4 [Oregon Motor Carrier]108
A3.10 Permit Weight Table 5 [Oregon Motor Carrier]110
B3.1 Sample error file showing the end of the record produced by the Liger
program113
C3.1 Oregon WIM site data and locations
D3.1 CDF plots for unfactored shear for 50-ft simple span bridge model137
D3.2 CDF plots for factored shear for 50-ft simple span bridge model138
D3.3 CDF plots for unfactored shear for 100-ft simple span bridge model139
D3.4 CDF plots for factored shear for 100-ft simple span bridge model140
D3.5 CDF plots for unfactored shear for 150-ft simple span bridge model141
D3.6 CDF plots for factored shear for 150-ft simple span bridge model142
D3.7 CDF plots for unfactored shear for 200-ft simple span bridge model143

LIST OF APPENDIX FIGURES (Continued)

<u>Figure</u> <u>Page</u>
D3.8 CDF plots for factored shear for 200-ft simple span bridge model144
D3.9 CDF plots for unfactored moment for 50-ft simple span bridge model145
D3.10 CDF plots for factored moment for 50-ft simple span bridge model146
D3.11 CDF plots for unfactored moment for 100-ft simple span bridge model147
D3.12 CDF plots for factored moment for 100-ft simple span bridge model148
D3.13 CDF plots for unfactored moment for 150-ft simple span bridge model149
D3.14 CDF plots for factored moment for 150-ft simple span bridge model150
D3.15 CDF plots for unfactored moment for 200-ft simple span bridge model151
D3.16 CDF plots for factored moment for 200-ft simple span bridge model152
D3.17 CDF plots for unfactored shear for 50-ft 2-span continuous bridge
model153
D3.18 CDF plots for factored shear for 50-ft 2-span continuous bridge model154
D3.19 CDF plots for unfactored negative moment for 50-ft 2-span continuous
bridge model155
D3.20 CDF plots for factored negative moment for 50-ft 2-span continuous bridge
model156

LIST OF APPENDIX TABLES

<u>Table</u>

Page

A2.1 Statistics for I-5 Woodburn NB, June 2005 (2 weeks, 1st - 14th) 41

General Introduction

Oregon allows vehicle loads and configurations on the state highways that are different from many other states. Many of the vehicles are above the federal legal weight limit but are allowed on the highways under permits. Oregon bridge design and rating have relied on national models that are based on data collected in other countries and states. This data may not accurately reflect the loads found in Oregon.

The Oregon Department of Transportation (ODOT) collects data on vehicle weight and axle spacing lengths at WIM scale locations throughout the state. Using this data, analyses were performed to:

- Calculate Oregon-specific live load factors for rating following the methodology in the Manual for Condition Evaluation and Load and Resistance Factor Rating (LRFR) of Highway Bridges;
- Establish an appropriate window of WIM data by extrapolation;
- Evaluate the current ODOT bridge rating vehicles;
- Evaluate the Motor Carrier Transportation Division (MCTD) weight tables;
- Evaluate Oregon's permit classifications.

State-Specific LRFR Live Load Factors Using Weigh-in-Motion Data

Jordan Pelphrey, Christopher Higgins, Bala Sivakumar, Richard L. Groff, Bert H. Hartman, Joseph P. Charbonneau, Jonathan W. Rooper, and Bruce V. Johnson

American Society of Civil Engineers Journal of Bridge Engineering 1801 Alexander Bell Dr. Reston, VA 20191 To be published

State-Specific LRFR Live Load Factors Using Weigh-in-Motion Data

By Jordan Pelphrey¹, Christopher Higgins, M.ASCE², Bala Sivakumar M.ASCE³, Richard L. Groff⁴, Bert H. Hartman⁵, Joseph.P.Charbonneau⁶, Jonathan W. Rooper⁷, and Bruce V. Johnson⁸

Abstract

The LRFR Manual, within commentary Article C6.4.4.2.3, contains provisions for development of site-specific live load factors. In Oregon, truck Weigh-in-Motion (WIM) data were used to develop live load factors for use on state-owned bridges. The factors were calibrated using the same statistical methods that were used in the original development of LRFR. This procedure maintains the nationally accepted structural reliability index for evaluation, even though the resulting state-specific live load factors were smaller than the national standard. This paper describes the jurisdictional and enforcement characteristics in the state, the modifications used to described the alongside truck population based on the unique truck permitting conditions in the state, the WIM data filtering, sorting, and quality control, as well as the calibration process, and the computed live load factors. Large WIM data sets from four sites were used in the calibration and included different truck volumes,

¹Graduate Research Assistant, ²Associate Professor, Dept. of Civil Engineering, Oregon State University, Corvallis, OR 97331.

³Chief Engineer, Lichtenstein Consulting Engineers, Inc., 45 Eisenhower Drive, Paramus, NJ 07652.

⁴Senior Load Rating Engineer, ⁵Interim Bridge Program Managing Engineer, ⁶Local Agency Load Rating Engineer, ⁷Load Rater, ⁸State Bridge Engineer, Bridge Section, Oregon Department of Transportation. 355 Capitol Street NE, Salem, OR 97301.

seasonal and directional variations, and WIM data collection windows. Finally policy implementation for actual use of the factors and future provisions for maintenance of the factors are described.

CE Database subject headings: load factors, bridges, bridge loads, ratings

Introduction and Background

Transportation agencies are beginning to transition from the American Association of State Highway Officials (AASHTO) Manual for Condition Evaluation of Bridges (1994) to the AASHTO Load and Resistance Factored Rating (LRFR) Specifications (2003) for bridge rating and evaluation. The LRFR Specifications extend the limit states design philosophy from AASHTO Load and Resistance Factor Design (LRFD) (2004) to evaluation of existing bridges. Employing structural reliability principles, the Specifications provide the flexibility to provide uniform target safety levels by reducing uncertainty (Minervino et al. 2004) and further provide a means of incorporating advancements in analysis methods, load models, and material and member characterization in the evaluation process. For evaluation of existing bridges, site-specific information can be collected to characterize the local uncertainty, rather than relying on generalized information. One area where it is possible to reduce uncertainty is in the live loads through collection and characterization of site-specific traffic data. The generalized load factors given in the LRFR Specifications are representative of bridges nationwide

with similar traffic volumes. The LRFR Specifications provide procedures for calculating site-specific load factors using truck weight data collected from weighin-motion (WIM) sites that follows the same format used in the derivation of LRFD live load factors. Site-specific load factors are more refined because they are characteristic of a particular bridge site, route, or jurisdiction and reflect the actual truck traffic and likely maximum loadings over the exposure period.

Following the methodology developed in NCHRP Project No. 12-46 (Moses 2001) and incorporated in the LRFR Specifications, live load factors for strength evaluation were developed for state-owned bridges in Oregon using WIM data from sites across the state. Adaptation of the methods was necessary to account for unique characteristics of truck loads and permitting regulations in the state. Live load factors were developed using WIM data from four sites, including state and interstate routes, considering possible seasonal variations, and different WIM data collection windows. This paper describes the analysis methods used to determine the site-specific live load factors based on WIM data, the resulting live load factors, policy implementation, and plans for updating factors in the future.

Live Load Factor Methodology and Analysis

The LRFR Manual provides a procedure for calculating site-specific load factors using truck weight data from WIM sites that follow the format used in the derivation of live load factors contained in the LRFD Specifications. The LRFR

approach is to determine the statistics associated with the 3S2 truck population to characterize the uncertainty associated with the alongside truck. The Ontario truck weight data used in calibration of the LRFR specifications were reasonably matched by a 3S2 truck with a normal distribution and a mean of 68 kips and standard deviation of 18 kips. The weight parameters fit the heaviest one-fifth of the truck weight population and it was assumed that the remaining trucks have no influence on the maximum loading events. The maximum loading event for calibration assumes a legal truck or a permit truck in one lane and a random truck (referred to as the alongside vehicle) in the adjoining lane as illustrated in Fig. 1. Therefore, the load factor applied to the permit vehicle depends on the random alongside truck. Live load factors are higher for spans with higher average daily truck traffic (ADTT) and smaller for heavier permitted vehicles. Live load factors for permit loads are smaller compared with legal load rating values to account for the reduced probability of simultaneous crossing events and also reduced likelihood that a permit truck will be significantly overloaded.

In the LRFD calibration, Nowak (1999) showed that the maximum expected lifetime loading in each lane for two-lane loading is 0.85 times the single lane expected maximum lifetime loading. Therefore, in a two-lane loading situation, the extreme occasional overloads that may be present within the various truck categories are not influential in the calibration of live load factors. This also suggests that data for long periods of time to identify such loads would not be very beneficial for calibration purposes. The key to reliable calibration statistics is the quality and not necessarily the quantity of data.

Significant differences in permitting requirements exist in the State of Oregon, compared to other jurisdictions as illustrated in Table 1. These include a higher legal gross vehicle weight (GVW) of 80,000 lbs compared to the national level of 72,000 lbs, large numbers of CTP vehicles, and extended legal weight CTP vehicles to 105,500 lbs on state highways. As a result, the 3S2 truck population statistics alone may not necessarily characterize the alongside truck variability. Therefore, the alongside truck population in Oregon was taken as consisting of legal trucks (Weight Table 1), Extended Weight Table 2 (105,500 lbs maximum) and 98,000-lb CTP vehicles from Weight Table 3. Inclusion of permitted trucks (the CTPs) in the along-side truck population is a conservative departure from past load factor calibration work, but characteristic of the jurisdiction.

WIM data were used to develop the state-specific live load factors based on the characteristic vehicle population in the state. Three major variables were considered in the selection of WIM data. These included length of the WIM data collection window, truck volume, and seasonal variability. Each is described in additional detail below.

WIM Data Collection Windows

Typically, in practice, two-weeks of WIM data are used to compute site specific live load factors; however no established standard of time or quantity of WIM data has previously been established. To assess the effect of different WIM data collection windows on the corresponding live load factors, three different windows of time were considered in each month: 1) data from the entire month, 2) 2 weeks of data from $1^{st} - 14^{th}$, and 3) 2 weeks of data from $15^{th} - 28^{th}$. Comparisons were made between each of the two-week data windows and further compared with the all-month data windows.

Traffic Volume

There are four highways/interstates of interest in Oregon that collect WIM data. These are Interstate-5, Interstate-84, Oregon State Highway-58, and US Highway-97. From these highways, individual WIM data collection sites were selected based on ADTT volume. The WIM sites chosen are shown in Table 2 and Fig. 2. These sites enabled calculation of live load factors considering different truck volume conditions.

Seasonal Variation

To assess possible variations in the data occurring at different periods of the year, four "seasons" were selected for each WIM site. WIM sites are intended to collect a continuous record of data for vehicles crossing the WIM scales. However, due to local conditions such as roadway construction or hardware or electronics problems, data were not always continuous over an entire month. Therefore, the months selected for analysis were chosen based on availability of complete months of data within each "season." These included: November through January for winter, April for spring, May and June for summer, and October for fall. Some months strayed outside of traditional "seasonal" boundaries, but only when necessary due to noncontinuous data sets. Table 2 lists the specific months from which WIM data were available for each of the sites. Site specific live load factors were computed for each of these timeframes. Data collection for Bend NB did not begin until June, 2005. Therefore, live load factors could not be calculated for spring, but these will be computed as data become available.

WIM data cleaning, filtering, and Weight Table Sorting Methodology

The raw WIM records from each collection site were provided in text format for subsequent data processing. The data were cleaned and filtered to remove records with formatting mistakes, spurious data, and other errors. Error types that were removed in the cleaning process were:

- 1. Record where the GVW value is equal to 0.0.
- 2. Record does not follow the general record pattern; this could be any inconsistency in the time stamp, words out of place from the status quo, incomplete records, etc.
- 3. Records with misplaced characters, such as a letter where a number should be or a number where a letter should be.
- 4. Record where an individual axle is greater than 50 kips.
- 5. Record where the speed is less than 10 mph.
- 6. Record where the speed is greater than 99 mph.

- 7. Record where the length is greater than 200 ft.
- 8. Record where the sum of the axle spacing lengths are greater than the length of the truck.
- 9. Record where the sum of the axle spacing lengths are less than 7 ft.
- 10. Record where the first axle spacing is less than 5 ft.
- 11. Record where the # of axles is greater than 13.
- 12. Record where the GVW is greater than 280 kips.
- 13. Record where any axle spacing is less than 3.4 ft.
- 14. Record which has a GVW +/- the sum of the axle weights by more than 7%.
- 15. Record which has a GVW less than 2.0 kips

Classifying and sorting the WIM data into the appropriate permit weight table classification is a key step in developing site live load factors. Data processing should remove permitted trucks from the WIM data representing the alongside truck population. Two separate sorting methods for the WIM data were investigated and compared. These are defined as "Conventional Sort" and "Modified Sort."

The Conventional Sort method sorts vehicles based on their GVW, axle group weights, and length (GVW + Axle Group Sort). It is the method currently used by the Motor Carrier Transportation Division (MCTD) of ODOT to classify vehicles into Weight Table 1, Weight Table 2, Weight Table 3, Weight Table 4, Weight Table 5, or Table X (the overflow table classification). Permits are issued based on a vehicle's Weight Table classification. This method accounts for the axle weights and spacing in assigning each vehicle to an appropriate Weight Table and assigns more vehicles to higher Weight Tables than the Modified Sort (described subsequently). Proportionately more heavy vehicles that could have been interpreted as "rogue" legal vehicles are assigned to Weight Table 3 and above and are thus considered as legitimate permit vehicles. The sort yields lower coefficients of variation and as seen subsequently yields lower live load factors compared to the Modified Sort. While it is less conservative than the Modified Sort, it is thought to better represent the permitted truck population in Oregon as will be discussed later.

The Modified Sort method sorts vehicles based only on their GVW and rear-tosteer axle length, and it does not account for axle groupings (GVW + Truck Length Sort). The method assigns more vehicles to lower Weight Tables than the Conventional Sort. Proportionately more heavy vehicles that could have been interpreted as legitimate permit vehicles are conservatively assigned to Weight Tables 1 and 2 and are thus considered "rogue" legal vehicles. The sort produces higher coefficients of variation and higher live load factors compared to the Conventional Sort. While it is more conservative, it may unfairly penalize Oregon's regulatory and enforcement policies, than the Conventional Sort.

Oregon has a well established permitting process that contributes to reduced overloads on state highways. These include minimal cost of overweight permits, large numbers of such permits authorized, the ease of access in obtaining them (such as through the Internet), a weight-mile tax that results in lower taxes for loads placed on more axles, development and fostering of the "Trusted Carrier" program which enhances cooperation and load compliance by trucking companies, and the significant enforcement and cost of penalties imposed on vehicles and drivers that are non-compliant. The compliance to weight limits for trucks in Oregon was verified in a study by Strathman and Theisen (2002) that demonstrated there was no statistically significant evidence of overweight truck scale avoidance. Further, there are few detour routes available to skirt scales on the major state highways.

The two different sorting methods were used on the WIM data sets and results are shown in Table 3 for the Weight Table breakdown. The live load factors herein were calculated based on the Conventional Sort method because it better represents the regulatory and enforcement procedures in Oregon. In contrast to some other states where truckers generally know the vehicle GVW but may not know their axle grouping weights, MCTD of ODOT report that Oregon truckers are generally aware of their axle and tandem weights, usually to within 2,000 lbs, which proves beneficial in obtaining a continuous trip permit.

After careful quality control measures and independent checks were performed on the WIM data cleaning, filtering, and sorting routines, statistics were generated based on GVW for the rating truck and the alongside truck using only the top 20% of the truck weight data from each category. This was consistent with the projection of the upper tail of the weight histogram (Nowak 1999; LRFR 2003). Statistical parameters were calculated for the alongside truck population from Weight Tables 1, 2 and CTPs from Weight Table 3. Additionally, statistical parameters were calculated for just the 3S2 truck population. The statistical parameters are reported in Table 4 for the controlling data sets. Using these statistical values, live load factors were determined for each of the ODOT rating vehicles for the different WIM sites, data windows, and seasons.

The LRFR live load factor for rating is given in Equation 39 of NCHRP Report 454, as:

$$\gamma_{\rm L} = 1.8 \frac{W_{\rm T}}{240} \times \frac{72}{\rm W}$$
[1]

where W is the gross weight of vehicle (legal truck or permit truck with units of kips) and W_T is the expected maximum total weight of rating and alongside vehicles, computed as:

$$W_{\rm T} = R_{\rm T} + A_{\rm T}$$

where, R_T is the rating truck and is computed for legal loads as:

$$\mathbf{R}_{\mathrm{T}} = \mathbf{W}^* + \mathbf{t}_{\mathrm{ADTT}} \boldsymbol{\sigma}^*_{3\mathrm{S2}}$$
 [3a]

or for permit loads as:

$$R_{\rm T} = P + t_{\rm ADTT} \sigma^*_{\rm along}$$
^[3b]

where W^* is the mean value of the top 20% of legal trucks taken from the 3S2 population, σ^*_{3S2} is the standard deviation of the top 20% of legal trucks, P is the weight of permit truck, σ^*_{along} is the standard deviation of the top 20% of the alongside trucks. The alongside truck, A_T , is computed as :

$$A_{T} = W_{along}^{*} + t_{ADTT} \sigma_{along}^{*}$$
[4]

where W^*_{along} is the mean of the top 20% of alongside trucks (taken from Weight Tables 1 and 2, as well as CTPs from Weight Table 3 for the Oregon data). In the above expressions, t_{ADTT} is the fractile value corresponding to the number of side-by-side events, N. The number of side-by-side crossings is computed as:

N (legals) = (ADTT) x (365 days/yr) x (Evaluation period) x ($P_{s/s}$) x (% of record) [5a]

N (permits) = (N_P) x (365 days/yr) x (Evaluation period) x (P_{s/s}) [5b]

for legal trucks and permit trucks, respectively, where N_P is the number of observed STP in the WIM data extrapolated over the evaluation period and $P_{s/s}$ is the probability of side-by-side concurrence. LRFD and LRFR calibrations assumed a 1/15 (6.7%) probability of side-by-side events for truck passages. This assumption was based on visual observations and is conservative for most sites. Recent WIM studies completed under NCHRP 12-63 indicate much lower multiple-presence probabilities even for very high ADTT sites. In the NCHRP study, very accurate time stamps were collected and analyzed for WIM sites on I-84 in Idaho and I-75 in Ohio to estimate the number side-by-side events over several days in 2004 and 2005. Results showed maximum side-by-side probability of 3.35% for a three-lane site with >5000 ADTT (Ohio) and 1.37% for a two-lane site with >2500 ADTT (Idaho). These calculated probabilities considered all trucks within a headway separation of 60 feet to constitute a side-by-side event. This larger and more conservative definition of headway separation may produce a higher multiple presence but may have a lower total moment on most spans. The I-5 site in the current study is comparable to the three-lane >5000 ADTT site reported above. For

the calibration purposes, a 1/30 (3.4%) probability of side-by-side events was adopted as being more representative of likely concurrence for the sites in Oregon.

The ADTT values specific to each site were used in calculating the t_{ADTT} statistic and were listed previously in Table 2. The number of permits per day used in calculating the t_{ADTT} statistic was derived from the Conventional Sort method as shown in Table 3. Once the data were sorted according to the ODOT table classification, the number of Weight Table 3 CTP vehicles with 5 axles and GVW less than 99 kips were removed and placed into Weight Table 2, thereby including them as part of the routine traffic stream. The number of permits was then calculated by summing the remaining trucks in Weight Table 3 as well as those in Weight Tables 4, 5, and X, and then dividing by the number of days in the WIM record. This represents the average number of STP vehicles passing the WIM site each day.

Considering a 5 year evaluation period for which the bridge rating would be considered valid the LRFR live load factors were computed for the various sites and an example calculation procedure is shown in the Appendix. The state-specific load factors represent a target beta level corresponding to the Operating level of 2.5.

Live Load Factor Results

The computed live load factors for all sites, for all seasons, and for all ODOT rating vehicles are shown in Fig. 3. The data used for this calibration process included over 930,000 individual WIM records spanning over 4 months of the year and represents significantly more data than was used in the original calibration of the national specifications.

The computed live load factors are intended to replace Table 6-5 and Table 6-6 (upper portion) in the LRFR manual with the Oregon-specific values based on the actual population of trucks on the state highways. Live load factors for ADTT greater than 5000 correspond to the Woodburn NB (I-5) site. Live load factors for ADTT equal to 1500 correspond to the Emigrant Hill WB (I-84) site. Live load factors for ADTT less than 500 correspond to the Lowell WB (OR58) and Bend NB (US97) sites. For each rating vehicle and represented truck traffic volume level, the live-load factors were conservatively chosen as the upper bound of all the factors from each of the four seasons and each of three data sampling periods. These selected live load factors are lower than the values found in the LRFR manual as shown in Tables 5 and 6. ODOT's MCTD issues STPs in large numbers on a routine basis without specific structural review and as a result, they are treated the same as "Routine or Annual" in Table 6 (upper portion of LRFR Table 6-6). Several of the controlling live load factors were shared by more than one season and/or time-frame and illustrates the degree of consistency between data sets over

the period considered. Full data sets, statistics, and details are reported by Pelphrey and Higgins (2006).

Significant Findings from Calibration Process

Significant findings based on results of this calibration process are presented below. These include information on seasonal, directional, and traffic-volume variations between sites, interstate versus non-interstate traffic, and WIM data collection windows.

The variation of live load factors for the different seasons at all four sites can be seen in Fig. 3. I-5 Woodburn NB and US97 Bend NB show very little change from season to season, while OR58 Lowell WB and I-84 Emigrant Hill WB show a slight variation between select seasons. The greatest variation for OR58 is for the Oregon Legal Load (2 Weeks, $1^{st} - 14^{th}$) from a Summer live load factor of 1.12 to a Fall live load factor of 1.25 (12% change). The greatest variation for I-84 is for the STP-4A (2 Weeks, $15^{th} - 28$ th) from a Fall live load factor of 1.18 to a Summer live load factor of 1.32 (13% change). Some of these seasonal variations are attributed to movement of construction equipment and agricultural products in the summer and fall.

To investigate if there were directional influences in the calibrated factors, another site – Woodburn SB for January 2005 – was investigated and compared to its

counterpart, Woodburn NB. The live load factors for Woodburn NB and SB in each WIM data window during January, 2005 are shown in Table 7. The results show that the computed live load factors were not sensitive to the direction of travel. Interstate traffic produced higher ADTT values, which in turn produced higher live load factors. This follows the national trend of higher live load factors for higher ADTT values. Calibration of the live load factors for different ADTT volume sites across the state permits them to be used statewide for both interstate and non-interstate routes on state-owned bridges.

Live load factors were calculated for three different windows of time in each month: 1) All month, 2) 2 weeks $-1^{st} - 14^{th}$, and 3) 2 weeks $-15^{th} - 28^{th}$. This was done to determine if results would change significantly if more WIM data were used to develop the factors. As shown in Fig. 3, there was little difference between the WIM data collection windows. This would suggest that reasonable characterization of the WIM sites (even the lower ADTT volume sites) could be made from any two continuous weeks of data within the month of interest. Here, again it is important to note that high quality data is required and not only a large quantity of data.

A sensitivity analysis was performed to determine how changes in the mean and standard deviation values of the alongside vehicles (Weight Tables 1 and 2, and CTP's < 99 kips from Weight Table 3) affect the live load factors. All four sites

were investigated for the summer season using the first two weeks of data $(1^{st} - 14^{th})$. The analysis determined the magnitude of change required in the alongside vehicle mean and standard deviation to result in the live load factor increasing by 0.05. The two statistical parameters were assessed independent of each other (first, changing only the mean for a live load factor change of 0.05, and then changing only the standard deviation for a live load factor change of 0.05). The results of this analysis are shown in Table 8. As seen in this table, the mean would have to change by about 10% for all sites, and the standard deviation by about 15% on the interstates, and approximately 25% on the state highways.

A sensitivity analysis was also performed for the statistics on the 3S2 population. The live load factor for legal vehicles is the only factor affected by these statistics. Results from this analysis were similar to that observed for the alongside vehicle population, except that the standard deviation would have to be more than twice as large as that for the alongside population. Increasing mean GVW indicates a shift in truck weights while an increase in standard deviation indicates higher dispersion in the data. Changes in these parameters may be caused by changes in policy, compliance, or enforcement, and would indicate a need to recalibrate the load factors.
Discussion of Results

As described earlier, calibration of the LRFR specifications was performed using Ontario vehicle weight data of 1975 which were reasonably described by a 3S2 truck with a normal distribution and a mean of 68 kips and standard deviation of 18 kips for the top 20% of the truck weight population. The corresponding parameters for the Oregon weight data, calibrated using large WIM data sets, had higher mean but reduced standard deviations for the alongside truck population at each of the sites. The parameters indicate that there were significantly more overloads in the Ontario random truck data than are present in the Oregon legal loads or in the truck population grouped as the alongside truck. The maximum loading event for the LRFR calibration of load factors was controlled by the overloaded random trucks. It was shown that even when a permit truck of known weight up to 125 kips crosses the bridge, the expected maximum loading is lower compared with the maximum random legal loading event due to the many overloads in the random traffic (Moses 2001). That is, most routine permits do not affect the critical loading, which was governed by the non-permit overloads. The reduced overloads in the Oregon data explain the reduced site-specific load factors. For example, the LRFR live load factor for legal loads is 1.80 for ADTT \geq 5000, while the Oregon-specific value is 1.40. Similar reductions in live load factors were seen for lower ADTT ranges, as well as for permit vehicles (Oregon's CTP and STP vehicles). These results are the outcome of the regulatory and enforcement environment in Oregon. The permit issuance and regulatory environment encourages the routine operation at abovelegal load levels by means of low-cost continuous trip permits, and inhibit the operation of heavily overloaded "legal" vehicles within the traffic stream. The major factors affecting this condition include low cost and ease of obtaining permits, a weight-mile tax system that encourages loads spread onto more axles, development of the "Trusted Carrier" program that enhances cooperation and load compliance by trucking companies, and significant enforcement and hefty penalties for non-compliance. Previous research showed no statistically significant evidence of overweight truck scale avoidance (Strathman and Theisen 2002). The ability to minimize uncertainties in the truck population through the effective means described above have the effect of reducing the live load factors.

Policy Implementation

The ODOT Bridge Engineering Section plans to implement the AASHTO LRFR Specifications for rating and evaluation of state-owned bridges. The agency expects this implementation will preserve the safety of the traveling public in Oregon and to the greatest extent possible, facilitate the unrestricted movement of freight on Oregon's highways. These stated purposes are best served by assessing the load carrying capacity of Oregon's bridges as accurately as possible, to avoid the unnecessary restriction of freight movements while maintaining the nationally accepted reliability index. The large and diverse WIM data sets used in the live load factor calibration process produced consistent results and allowed establishment of Oregon specific versions of Tables 6-5 and 6-6 in the LRFR Manual. The results are applicable only to bridges on Oregon's state-owned highway system and provide an operational rating condition corresponding to a reliability index of 2.5. Live load factors from the I-5 Woodburn Northbound site (ADTT of 5500) were taken to represent ADTT \geq 5000, and factors from the I-84 Emigrant Hill site (ADTT of 1786) were taken to represent ADTT = 1500. The worst case of the factors from the sites on OR 58 at Lowell (ADTT of 581) and US 97 at Bend (ADTT of 607) was taken as representative of ADTT \leq 500.

The calibrated live load factors described previously were adjusted for use in the ODOT policy implementation. It is recognized that calibrated live load factors in LRFR are merely statistical adjustments to the loads effects to maintain a uniform level of structural reliability and are not traditional amplification load factors, as were used to provide a margin of safety in the AASHTO Standard Design Specifications (2004). However, to assure additional conservatism where the calibration process resulted in very low live load factors, a minimum value of 1.0 was used. Additionally, the statistical calibration process used to compute the live load factors does not provide precision to the 100th decimal place. Therefore, rounding was applied to the live load factors, generally to the next higher 0.05 increment. The final tables for use in Oregon are shown in Tables 9 and 10.

To investigate possible changes in the truck population in the state, at three year intervals starting in 2008 until 2011 and every five years thereafter, ODOT will

review the calibration process using two-week windows of WIM data for each of the same four sites for each season, or will follow nationally accepted protocols that may emerge. If the mean or standard deviation values change enough to cause any live load factor to change by 0.05 or greater, based on the sensitivity analysis study, the Federal Highway Administration will be notified and a complete recalibration of the live load factors will be performed. This is a much more stringent standard of calibration data currency than has been applied to the calibration in the LRFR Manual. In addition to these scheduled reviews, the Oregon-specific live load factors will be reviewed any time a significant statutory or administrative rule change occurs in the vehicle permit regulatory structure (how permits are issued and the fine structure for ticketed overloads) or if a significant change occurs in overweight vehicle enforcement procedures.

In the event that a future review or regulatory change triggers a decision to recalibrate the Oregon-specific live load factors, the calibration procedure will be repeated as described in the above methodology, or in accordance with any nationally accepted protocols that may have been established. The revised Oregon-specific live load factors will be applied to all subsequent load ratings. If the new live load factors are higher (more conservative) than before, ODOT will assess the accumulated body of LRFR load ratings and determine a minimum rating factor threshold to warrant re-rating of bridges. Conservatively, this threshold would be set to match the upper bound percentage increase in the calibrated live load factors

for any rating vehicle. Any bridges that have rating factors below this threshold will have the load ratings updated and load restrictions applied, as required. Additional detail regarding the implementation plans are reported by Groff (2006).

Conclusions

The first ever state-wide calibration of live load factors for LRFR bridge evaluation and rating has been performed. This calibration employed the methodology described in the LRFR Manual commentary Article C6.4.4.2.3 for development of site-specific live load factors. WIM data were used to develop the live load factors for evaluation and rating of state-owned bridges. The factors were calibrated using the same statistical methods used in the original development of the LRFR Specifications. Due to the unique jurisdictional and enforcement characteristics in the state, modifications were used to described the alongside truck population and conservatively included continuous trip permit vehicles in this population. WIM data were filtered, sorted, and checked for quality as part of the calibration process. Using the statistical data from the four WIM sites with different ADTT volume, at different times of the year, and over different WIM data collection windows, live load factors were computed. The Oregon-specific live load factors were smaller than those in the LRFR Specification. The factors were smaller for the lower volume sites and smaller for the heavier permit trucks. The high volume site showed little seasonal variation, was insensitive to direction of travel, and twoweeks of data were sufficient to produce consistent factors. For the lower volume

sites, some seasonal variation was observed with higher load factors during summer and fall due to agricultural and construction transport. In all cases, the largest computed live load factor from each data set was used to describe the WIM site. By employing the procedures used to develop the LRFR Specification, the resulting live load factors maintain the nationally accepted structural reliability index for evaluation, even though the resulting state-specific live load factors were smaller than the national standard. The large WIM data sets used in the statespecific calibration process were significantly larger than that used in the original LRFD or LRFR calibration process. Finally, policy implementation for the Oregonspecific factors included rounding the computed values to the nearest 0.05, set a lower limit of 1.0 for the live load factors, and established provisions for maintenance of the factors into the future.

Figure 2.1: Maximum loading event for calibration of live load factors.

Figure 2.2: Map of Oregon WIM sites used in the study.

Figure 2.3: Live load factors for WIM sites at different seasons and different WIM data windows.

22

Rating Vehicle	hicle Live Load Factor Designation					
Legal Type 3		50				
Legal Type 3S2	Oregon Legal Loads	80				
Legal Type 3-3		80				
OR-CTP-2A	CTP-24.2B	105.5				
OR-CTP-2B	011-2A,2D	105.5				
OR-CTP-3	CTP-3	98				
OR-STP-3	STP-3	120.5				
OR-STP-4A	STP-4A	99				
OR-STP-4B	STP-4B	185				
OR-STP-5A	STP-5A	150.5				
OR-STP-5B	STP-5B	162.5				
OR-STP-5C	STP-5C	258				
OR-STP-5BW	STP-5BW	204				

Table 2.1: ODOT rating vehicle classifications.

		Site		ADTT %	Winter	Spring	Summer	Fall
Corridor	Site Location	Designation	ADTT	of ADT	2005	2005	2005	2005
I-5	Woodburn NB	WBNB	<u>555</u> 0	13%	Jan	Apr	June	Oct
<u>US</u> 97	Bend NB	BNB	607	8%	Dec	-	June	Oct
<u>OR58</u>	Lowell WB	LWB	581	7%	Jan	Apr	June	Oct
I-84	Emigrant Hill WB	EHWB	1786	36%	Nov	Apr	May	Oct

Table 2.2: Selected WIM sites, locations, and ADTT.

	Site_	Sort Method⁺	Table 1	Table 2	Table 3	Table 4	Table 5	Table X	Total Records	CTP from WT3 to WT2 ^{\$}	STP Per Day
Γ	I-5 WBNB	с	124062	13175	1788	44	1	32	139102	477	45
		М	125014	13690	366	29	2	1	139102		
1	US97 BNB	С	9776	411	398	9	0	1	10595	185	7
linte		М	9954	535	105	1	0	0	10595		
5	OR58 I WB	С	15157	469	30	3	0	0	15659	4	1
		М	15164	477	17	1	0	0	15659		
	L84 FHWB	С	43416	2224	72	2	0	0	45714	14	2
		М	43447	2253	14	0	0	0	45714		
	I-5 WBNB	С	136364	13065	1835	57	1	25	151347	609	44
		М	137374	13554	392	21	2	4	151347		
		С	-	-	-	-	-	-	0	-	-
ing		М	-	-	-	-	-	-	0		
Spri	OR58 LWB-	С	17455	433	17	3	0	0	17908	3	4
		М	17460	442	6	0	0	0	17908	_	
	I-84 EHWB	С	37249	3433	7177	73	2	77	48011	3688	121
		М	39846	5964	2191	9	1	0	48011		
		С	143018	13684	4713	89	4	47	161555	1938	97
		M	145524	15001	1004	19	6	1	161555		
		С	15676	763	2304	9	1	20	18773	1616	24
Ter	0097 DND	М	16640	1811	314	7	1	0	18773		
Eng	OP58 LWB	С	24765	954	95	12	1	3	25830	45	2
		М	24813	982	32	3	0	0	25830		
		С	45109	4206	1057	13	0	8	50393	596	16
		М	45450	4563	378	0	0	0	50393	_	
		С	135964	12136	3912	93	14	46	152165	1436	85
		м	137776	13298	1025	47	19	0	152165		
		С	18028	708	304	12	4	11	19067	117	7
=	0397 DND	М	18167	831	60	7	2	0	19067		
ш		С	25235	1278	202	9	1	13	26738	141	3
		М	25388	1309	36	5	0	0	26738		
		С	48426	3084	49	0	0	1	51560	10	
		м	48447	3101	12	0	0	0	51560		

Table 2.3: Results of sorting methods for Weight Table classification.

+: C= Conventional sort, M=Modified Sort \$: CTP from WT3 to WT2 are records of CTP trucks in Weight Table 3 that were moved into Weight Table 2 to be included in the alongside truck population. *: STP per day computed as total number of vehicles in Weight Tables 3 (minus the CTPs moved into Weight Table 2), 4, 5, and X divided by the number of days in the month.

		Site					
Vehicle	Statistic	I-5 WBNB	I-84 EHWB	US97 BNB	OR58 LWB		
Legals (Type 3, 3S2, 3-3)	W	75.06	71.32	76.66	69.17		
	σ_{3S2}	1.98	3.40	1.25	2.93		
	Walong	83.90	80.84	80.78	75.79		
	σ_{along}	9.73	8.53	8.38	8.46		
CTP-3	Walong	84.01	80.82	80.78	75.79		
	σ_{along}	9.85	10.23	8.38	8.46		
CTP-2A CTP-2B	Walong	84.01	80.82	80.78	75.79		
	σ_{along}	9.85	10.23	8.38	8.46		
STP-3	Walong	83.90	80.82	80.78	75.79		
	$\sigma_{ m atong}$	9.73	10.23	8.38	8.46		
STP-4A	Walong	83.90	80.82	80.78	76.11		
	$\sigma_{ m along}$	9.73	10.23	8.38	8.04		
STP-4B	Walong	83.90	80.82	80.78	75.79		
	σ_{along}	9.73	10.23	8.38	8.46		
STP-5A	Walong	83.90	80.82	80.78	75.79		
	σ_{along}	9.73	10.23	8.38	8.46		
STP-5B	Walong	83.90	80.82	80.78	75.79		
	σ_{along}	9.73	10.23	8.38	8.46		
STP-5C	Walong	83.90	80.82	80.78	75.79		
	σ_{along}	9.73	10.23	8.38	8.46		
STP-5BW	Walong	83.90	80.82	80.78	75.79		
	σ _{along}	9.73	10.23	8.38	8.46		

Table 2.4: Statistics from controlling WIM data sets used in live load factor calibration.

 Table 2.5: Computed Oregon-specific live load factors for legal loads and LRFR Table

 6-5 values.

Traffic Volume	Load Factor				
(one direction)	LRFR	Oregon-Specific			
Unknown	1.80	1.40			
ADTT ≥5000	1.80	1.40			
ADTT = 1500	1.67	1.34			
ADTT ≤500	1.51	1.30			

				Live load Factor y by ADTT (one						ection)
Permit Type	Frequency	Loading	DF	Permit Vehicle	> 5	> 5000		1500	< 500	
	Condition	Condition			LRFR	Oregon- Specific	LRFR	Oregon- Specific	LRFR	Oregon- Specific
Continuous	Inlimited	Mix w/traffic	2 or	CTP-2A	1.75	1.36	1.58	1.33	1.45	1.24
Trip (Annual) Crossings r	(other vehicles	more	CTP-2B	1.75	1.36	1.58	1.33	1.45	1.24	
		bridge)	lanes	CTP-3	1.80	1.43	1.63	1.39	1.49	1.29
				STP-3	1.60	1.23	1.46	1.18	1.35	1.11
				STP-4A	1.80	1.38	1.63	1.32	1.49	1.24
	Route-	Mix w/traffic	2 or	STP-4B	1.30	0.99	1.21	0.96	1.14	0.91
Single Trip	Limited	may be on the	more	STP-5A	1.30	1.09	1.21	1.06	1.14	1.00
	Crossings	bridge)	lanes	STP-5B	1.30	1.05	1.21	1.02	1.14	0.97
				STP-5C	1.30	0.86	1.21	0.84	1.14	0.81
				STP-5BW	1.30	0.95	1.21	0.92	1.14	0.88

 Table 2.6: Computed Oregon-specific live load factors for permit loads and upper portion of LRFR Table 6-6 values.

Location	Time-Frame	Legals	CTP-3	CTP- 2A/2B	STP-3	STP-4A	STP-4B	STP- 5A	STP- 5B	STP- 5C	STP- 5BW
I-5 WBNB	All Month	1.40	1.42	1.36	1.21	1.36	0.98	1.08	1.04	0.85	0.94
I-5 WBSB	All Month	1.39	1.42	1.36	1.22	1.37	0.98	1.09	1.05	0.86	0.94
I-5 WBNB	1st - 14th	1.40	1.43	1.36	1.21	1.36	0.98	1.08	1.04	0.86	0.94
I-5 WBSB	1st - 14th	1. <u>3</u> 8	1.42	1.36	1.22	1.37	0.98	1.08	1.04	0.86	0.94
I-5 WBNB	15th - 28th	1.40	1.42	1.36	1.21	1.36	0.98	1.08	1.04	0.85	0.94
I-5 WBSB	<u>15th - 2</u> 8th	1.39	1.43	1.36	1.23	1.38	0.99	1.09	1.05	0.86	0.95

 Table 2.7: Directional influence for live load factors at the I-5 Woodburn NB and SB sites for January, 2005.

		initia de	abon (a ti	cons	ISt Ist	<u></u>		
	Site Info		Original Statistics*		ase W to ease γ∟ ⁄ 0.05	Increase σ to Increase γ_{L} by 0.05		
		w	σ	W	%	σ	%	
		(kips)	(kips)	(kips)	Change	(kips)	Change	
	Legals	02.0	0.7	01.2		44.5	100/	
	$\gamma_{\rm L}$ = 1.40 to 1.45	03.9	9.7	91.3	9%	11.5	18%	
BN	CTP-3	02.0	0.7	02.0	440/	10.0	400/	
5	$\gamma_{\rm L}$ = 1.42 to 1.47	03.9	9.7	93.0	11%	10.9	12%	
-	STP-4A	00.0	0.7	00.4	440/			
1	$\gamma_{\rm L}$ = 1.38 to 1.43	83.9	9.7	93.1	11%	11.0	13%	
	Legals	04.7		00.4			<u> </u>	
m	γ _L = 1.26 to 1.31	01.7	6.5	89.1	9%	8.5	31%	
BN	CTP-3 $\gamma_{L} = 1.23 \text{ to } 1.28$	04.7	0.5					
S97		81.7	6.5	90.8	11%	7.9	21%	
Ĵ	STP-4A	04 7		00.7	4.4.0/	7.0		
1	γ _L = 1.21 to 1.26	01.7	0.0	90.7	11%	7.9	22%	
	Legals	68.2		75.6	440/	0.2	200/	
B	$y_{\rm L} = 1.12$ to 1.17	00.2	0.3	75.0	1170	8.3 32%		
N N	CTP-3	68.2	63	77.2	120/	77	220/	
R58	γ _L = 1.15 to 1.20	00.2	0.5	11.3	13%	1.1	22%	
0	STP-4A	68.2	63	77 4	120/	0.0	200/	
	$\gamma_{\rm L}$ = 1.08 to 1.13	00.2	0.5	11.4	1370	0.2	30%	
	Legals	80.8	85	00 2	0%	10.4		
В	$\gamma_{\rm L} = 1.34$ to 1.39	00.0	0.5	00.2	9%	10.4	22%	
МЧ	CTP-3	80.8	85	80.0	110/	0.0	150/	
84 E	$\gamma_{\rm L} = 1.32$ to 1.37	00.0	0.0	09.9	1170	9.0	15%	
1	STP-4A	80.8	85	00.0	11%	10.0	170/	
	$\gamma_{\rm L}$ = 1.27 to 1.32	00.0	0.0	30.0	1170	10.0	17%	

 Table 2.8: Sensitivity analysis for alongside vehicle variability for select rating vehicles during summer season (2 Weeks - 1st - 14th).

*Statistics derived from WT1, WT2, & CTP's < 99.0k from WT3 (alongside vehicle)

Table 2.9: ODOT Adaptation of LRFR Table 6-5 Generalized Live-Load Factors for Legal Loads: γ_L

	Liveload Factor γ_L by ADTT ^a (one direction) ^b							
Traffic Volume (one direction)	Unknown	≥5000	= 1500	≤500				
Liveload Factor γ_L	1.40	1.40	1.35	1.30				

Notes:

^a Interpolate the Liveload Factor by ADTT values. Liveload Factors from this table should not be used when advanced methods of analysis are employed.

^b If there are two directions of traffic, use only half of the structure ADTT to determine the Liveload Factors.

Permit Type	Frequency	Loading Condition	DFª	Permit Vehicle	by	Liveload ADTT ^b (o	Factor γ_L ne direction	1) [°]
					Unknown	≥5000	= 1500	≤500
Continuous	Unlimited	Mix w/traffic (other	2 or	CTP-2A	1.35	1.35	1.35	1.25
Trip	Crossings	vehicles may be on	more	CTP-2B	1.35	1.35	1.35	1.25
(Annual)		the bridge)	lanes	CTP-3	1.45	1.45	1.40	1.30
	Route	Mix w/traffic (other		STP-3	1.25	1.25	1.20	1.10
			2 or	STP-4A	1.40	1.40	1.35	1.25
	Specific			STP-4B	1.00	1.00	1.00	1.00
Single Trip	Limited	vehicles may be on	more	STP-5A	1.10	1.10	1.05	1.00
	Crossings	the bridge)	lanes	STP-5B	1.05	1.05	1.05	1.00
				STP-5C	1.00	1.00	1.00	1.00
				STP-5BW	1.00	1.00	1.00	1.00

Table 2.10: ODOT adaptation of upper portion of LRFR Table 6-6 for ODOT Routine Permits.

Notes:

^a DF = LRFD Liveload Distribution Factor. When one-lane distribution factor controls for an exterior girder, the built-in Multiple Presence Factor for one lane (1.2) should be divided out of the Distribution Factor.

^b Interpolate the Liveload Factor by ADTT values. Liveload Factors from this table should not be used when advanced methods of analysis are employed.

^c If there are two directions of traffic, use only half of the structure ADTT to determine the Liveload Factors.

^d DF = LRFD Liveload Distribution Factor. When a one-lane Distribution Factor is used, the built-in Multiple Presence Factor for one lane (1.2) should be divided out of the Distribution Factor.

References

- AASHTO (American Association of State Highway Officials), (2002). *Standard Specifications for Highway Bridges*, 17th Edition, AASHTO, Washington, D.C.
- AASHTO LRFD (2004). LRFD Bridge Design Specifications. 3rd Edition, AASHTO, Washington, D.C.
- AASHTO (2003). Manual for Condition Evaluation and Load and Resistance Factor Rating (LRFR) of Highway Bridges, AASHTO, Washington, D.C.
- AASHTO (1994). Manual for Condition Evaluation of Bridges, AASHTO, Washington, D.C.
- Groff, R. (2006). ODOT LRFR Policy Report: Liveload Factors for Use in Load and Resistance Factor Rating (LRFR) of Oregon's State-Owned Bridges, Oregon Department of Transportation, Salem, OR.
- Minervino, C., Sivakumar, B., Moses, F., Mertz, D. and Edberg, W. (2004). "New AASHTO Guide Manual for Load and Resistance Factor Rating of Highway Bridges." ASCE *Journal of Bridge Engineering*, Vol. 9, No. 1, pp 43-54.
- Moses, F. (2001). "Calibration of Load Factors for LRFR Bridge Evaluation." NCHRP Report 454, Transportation Research Board, National Research Council, Washington, D.C.
- Nowak, A.S. (1999). "Calibration of LRFD Bridge Design Code." NCHRP Report 368, Transportation Research Board, National Research Council, Washington, D.C.
- Pelphrey, J. and Higgins, C. (2006). *Calibration of LRFR Live Load Factors for Oregon State-Owned Bridges using Weigh-in-Motion Data*, Kiewit Center for Infrastructure and Transportation Report, Dept. of Civil Engineering, Oregon State University, Corvallis, OR.
- Strathman, J.G. and Theisen, G. (2002). "Weight Enforcement and Evasion: Oregon Case Study." Center for Urban Studies, College of Urban and Public Affairs, Portland State University

APPENDIX A

Appendix A

Example Calculation of Live Load Factors

The following section provides a detailed example for calculating live load factors. Data from the I-5 Woodburn NB site for June 2005 (2 weeks, $1^{st} - 14^{th}$) is used to illustrate the procedure. Live load factors are calculated for Oregon Legal Loads, CTP-2A, CTP-2B, CTP-3, and STP-3. The statistics used in demonstration of the calculation for the live load factors are shown in Table A1.

 Table A2.1: Statistics for I-5 Woodburn NB, June 2005 (2 weeks, 1st - 14th)

	Using the Top 20% of the WIM Record							
Vehicle	Max GVW	Mean W [*]	σ*					
3S2 - Legal	80 K	75.1 ^K	2.0 K					
Alongside Truck	<u>105.5 ^к</u>	83.9 K	9.7 ^K					

1) Load Factor for Oregon Legal Loads.

Using a 1/30 probability of side-by-side events for two legal trucks, a 5 year evaluation period, an ADTT=5550, and taking the top 20% of the record; the number of side-by-side events N:

N = (5550)(365)(5)(1/30)(1/5) = 67,525 $I/N = 1.4809 \times 10^{-5}$ From NCHRP 454, Appendix A: $t_{ADTT} = 4.18$ $R_T = 75.1 + 4.18 \times 2.0$ $= 83.3^{K}$ $A_T = 83.9 + 4.18 \times 9.7$ $= 124.5^{K}$ $W_T = 83.3^{K} + 124.5^{K}$ $= 207.8^{K}$

$$\gamma_{\rm L} = 1.8 \times \frac{207.8}{240} \times \frac{72}{80}$$

= 1.40 \rightarrow This is the controlling value for ADTT \geq 5000

2) Load Factors for Continuous Trip Permits (CTP).

ODOT has estimated that CTPs are about 30% of legal truck traffic on I-5 for determining the number of side-by-side events, N (CTP adjacent to a legal truck).

N = 67525 x 0.30 = 20258 1/N = 4.9364 X10⁻⁵ From NCHRP 454, Appendix A: t_{ADTT} = 3.89 A_T = 83.9 + 3.89X9.7 = 121.8^K a) For 105.5^k CTP (CTP-2A/2B) R_T = 105.5 + 3.89X9.7 = 143.4^K W_T = 143.4^K + 121.8^K = 265.2^K $\gamma_L = 1.8 \times \frac{265.2}{240} \times \frac{72}{105.5}$ = 1.36 → This is the controlling value for ADTT ≥5000 b) For 98^k CTP (CTP-3A) R_T = 98 + 3.89X9.7

$$= 135.9^{K}$$

$$W_{T} = 135.9^{K} + 121.8^{K}$$

$$= 257.7^{K}$$

$$\gamma_{L} = 1.8 \times \frac{257.7}{240} \times \frac{72}{98}$$

= 1.42

3) Load Factor for 120.5 ^K STP-3 (same method for all STP vehicles)

From Table 3, N_P = 97: N = (97)(365)(5)(1/30) = 5901 $1/N = 1.6947 \times 10^{-4}$ From NCHRP 454, Appendix A: $t_{ADTT} = 3.58$ $A_T = 83.9^{K} + 3.58 \times 9.7^{K}$ $= 118.8^{K}$ $R_T = 120.5 + 34.7$ $= 155.4^{K} + 118.8^{K}$ $= 274.1^{K}$ $\gamma_L = 1.8 \times \frac{274.1}{240} \times \frac{72}{120.5}$

= 1.23 \rightarrow This is the controlling value for ADTT \geq 5000

Evaluation of Bridge Rating Vehicles Using Weigh-In-Motion Data

Jordan Pelphrey and Christopher Higgins

American Society of Civil Engineers Journal of Bridge Engineering 1801 Alexander Bell Dr. Reston, VA 20191 To be published

Evaluation of Bridge Rating Vehicles Using Weigh-In-Motion Data

By Jordan Pelphrey¹ and Christopher Higgins, P.E., M.ASCE²

Abstract

For bridge rating and evaluation, notional truck models are commonly used to simulate the load effects produced by the truck population. The recently developed Load Resistance and Factor Rating (LRFR) Bridge Evaluation Manual was calibrated based on the 3S2 truck configuration as the notional model. LRFR also permits development of site-specific live-load factors and provides a methodology for their calculation based on GVW of the local truck population. Using GVW as the parameter for establishing live load factors to reflect load effects may not necessarily provide consistent outcomes across all bridge span lengths, indeterminacies, or specific load effects. This is because the load effects are dependent on the distributions of the axle weights, the axle spacing, and the number of axles, in addition to the span geometry and support conditions.

The Oregon Department of Transportation currently uses a suite of 13 rating vehicles for evaluation of their bridge inventory. Live load factors were developed for this suite of trucks, based on weigh-in-motion (WIM) measured GVW data from sites located across the state. The load effects for Oregon's bridge rating

¹Graduate Research Assistant, ²Associate Professor, Dept. of Civil Engineering, Oregon State University, Corvallis, OR 97331.

vehicles have been calculated for various span lengths and support conditions. These load effects, both unfactored and factored, were compared with load effects calculated using vehicles from large sets of WIM data. Further, because no established standard of time or quantity of WIM data has previously been recognized, a separate study was conducted in order to determine an acceptable window of WIM data. The objective of this analysis was to determine if the load effects and the live load factors developed for bridge rating produced by the suite of vehicles envelope load effects produced by an acceptable window of collected vehicle data for a variety of bridge span lengths and types. Observations and suggestions are made based on the results of these analyses.

CE Database Subject Headings: bridges, analysis, bridge loads, ratings, load factors

Introduction

For bridge rating and evaluation, notional truck models are commonly used to simulate the load effects produced by the truck population. The recently developed Load and Resistance Factor Rating (LRFR) Bridge Evaluation Manual was calibrated based on the 3S2 truck configuration, as the notional model. The LRFR manual also permits development of site-specific live-load factors and provides a methodology for their calculation based on the gross vehicle weight (GVW) of the local truck population. Using GVW as the parameter for establishing live load factors to reflect load effects may not necessarily provide consistent outcomes across all bridge span lengths, indeterminacies, or specific load effects. This is because the load effects are dependent on the distributions of the axle weights, the axle spacing, and the number of axles (Kim *et al.* 1997), in addition to the span geometry and support conditions.

The Oregon Department of Transportation currently uses a suite of 13 rating vehicles for evaluation of their bridge inventory. Recently, live load factors were developed for this suite of trucks, based on weigh-in-motion (WIM) measured GVW data from sites located across the state, as reported in Pelphrey and Higgins (2006). To supplement that study, the load effects for Oregon's bridge rating vehicles have been calculated for various span lengths and support conditions. These load effects, both factored and unfactored, were compared with load effects calculated using vehicles from large sets of WIM data. Further, because no established standard of time or quantity of WIM data has previously been recognized, a separate study was conducted in order to develop recommended WIM data collection windows. The objective of this analysis was to determine if the load effects and the live load factors developed for bridge rating produced by the suite of vehicles envelope load effects produced by an acceptable window of collected vehicle data for a variety of bridge span lengths and types. Observations and suggestions are made based on the results of this analysis.

Background

Oregon allows vehicle loads and configurations on the state highways that are different from many other states. Many of the vehicles are above the federal legal weight limit but are allowed on the highways under permits. Oregon bridge design and rating have relied on national models that are based on data collected in other countries and states. This data may not accurately reflect the loads found in Oregon.

The Oregon Department of Transportation (ODOT) collects data on vehicle weight and axle spacing lengths at WIM scale locations throughout the state. Using this data, analyses were performed to establish an appropriate window of WIM data necessary to reasonably extrapolate future loading events, evaluate the current ODOT bridge rating vehicles, the Motor Carrier Transportation Division (MCTD) weight tables, and permit classifications. The current ODOT rating vehicles are shown and illustrated in Table 1. Also shown in Appendix A are the five MCTD weight tables.

Each of the ODOT rating vehicles was previously selected by MCTD to be representative of one the five MCTD weight tables, as shown in the right column of Table 1. There are at least two rating vehicles for each weight table, which attempt to capture the range of load effects produced within the weight tables, although no previous analysis has been performed to validate them.

WIM Data

WIM data is collected at various sites along Oregon's interstate and highway systems. It is the process of collecting vehicle weight and axle configuration while the vehicle is moving (Daniels, 2004). The WIM system is designed to monitor and record individual characteristics for each passing vehicle. These include the date and time, type/class of vehicle as classified by ODOT, lane position, speed, gross vehicle weight, overall length, equivalent single axle load (ESAL) value, total number of axles, overall axle weights, left axle weight, right axle weight, axle spacing lengths relative to each other, and the allowable axle weights according to MCTD's Weight Table 1. Some of the records include additional markings like "TAG_H: 000545968675", which designate that the vehicle is equipped with a transponder for use in Oregon's Green Light (Preclearance) Program (Fifer, 2005). Fig. 1 shows an example of a WIM recorded vehicle event.

There is a \pm 2-3% error rate as a result of the fluctuation of weight distribution due to the vehicle being in motion (Fifer, 2002). This error is most evident for vehicles hauling liquids, livestock, and for log trucks without middle supports (Daniels, 2004).

WIM data are divided up into two types, REALTIME and raw. The analysis herein focuses on the raw data format. Data are recorded continuously to a text file, which

is stored on a hard drive located at the site. This data is retrieved monthly and posted on an ftp server for download.

Cleaning and Filtering the WIM Data

In order to use the raw WIM data, a considerable amount of pre-processing must take place. Once downloaded from the ftp site, the data must be reformatted for use in subsequent analyses and cleaned to remove erroneous records. Two FORTRAN programs were written to accomplish this task: Wingnut and Liger. The Wingnut program formats the data according to a specified fixed-width and stores it to a new file. This program also filters out some of the obvious errors that are encountered. The Liger program cleans the data from Wingnut. It reads the new text file created by the Wingnut program and filters out spurious data. It checks all vehicle records to make sure they contain realistic numerical values (vehicle-specific criteria) and are free from invalid characters (such as letters where numbers should be, etc.). A detailed justification summary of the Liger program, as well as documented quality control checks for processing the WIM data, can be found in Appendix B.

Cleaning and filtering of the raw WIM data were performed to remove the following:

- 1. Record where the gross vehicle weight (GVW) value is equal to 0.0.
- 2. Record does not follow the general record pattern; this could be any inconsistency in the time stamp, words out of place from the status quo, incomplete records, etc.

- 3. Records with misplaced characters, such as a letter where a number should be or a number where a letter should be.
- 4. Record where an individual axle is greater than 50 kips.
- 5. Record where the speed is less than 10 mph.
- 6. Record where the speed is greater than 99 mph.
- 7. Record where the length is greater than 200 ft.
- 8. Record where the sum of the axle spacing lengths are greater than the length of the truck.
- 9. Record where the sum of the axle spacing lengths are less than 7 ft.
- 10. Record where the first axle spacing is less than 5 ft.
- 11. Record where the # of axles is greater than 13.
- 12. Record where the GVW is greater than 280 kips.
- 13. Record where any axle spacing is less than 3.4 ft.
- 14. Record which has a GVW +/- the sum of the axle weights by more than 7%.
- 15. Record which has a GVW less than 2.0 kips.

After both of these programs have been executed on the WIM data file, the results are then used for sorting and analysis.

WIM Site Selection

There are currently five highways/interstates in Oregon which are collecting WIM data: I-5, I-84, OR58, US26, and US97. From these highways, one individual site was selected for load effect analysis – I-5 Booth Ranch NB. The two criteria in choosing this site were the volume of average daily truck traffic (ADTT), and the amount of available continuous raw WIM data. The WIM site chosen is shown circled in Fig. 2. A complete breakdown of the WIM sites located throughout the state can be found in Appendix C.

Previous research has shown that high ADTT sites produce higher live load factors due to the increased likelihood of side-by-side concurrence (Moses 2001, Pelphrey & Higgins 2006). Thus, a site was selected for this analysis that had a relatively high ADTT in order to capture the upper tail of the vehicle population. The I-5 Booth Ranch NB site was selected in part because it matched this criteria. Only I-5 Woodburn NB, I-5 Woodburn SB, and I-84 Cascade Locks EB have higher ADTT values. I-5 Booth Ranch NB was selected over these three sites because of the amount of available continuous raw WIM data, as explained in the next paragraph. The ADTT for I-5 Booth Ranch NB is shown in Table 2, along with other pertinent information (Fifer, 2005).

The site selected for this analysis had a complete and continuous year of raw WIM data. Only one other site, I-5 Ashland NB, contained data for the entire year of 2005. I-5 Booth Ranch NB was selected because the ADTT was greater than that of I-5 Ashland NB (ADTT of 2979). A summary of the measured vehicle traffic mix is presented in Table 3. Figure 3 presents a frequency histogram of the number of axles per vehicle. Data are included for all vehicles captured by the WIM scale at I-5 Booth Ranch NB for each month in 2005. There were a total of 981,226 valid WIM vehicles passing the site over the entire year.

Weight Table Sorting Methodology

Classifying and sorting the WIM data proved to be an important issue. Two separate WIM data sorting methods were investigated and compared to one another. These are the Conventional Sort method and the Modified Sort method.

1. <u>Conventional Sort ("GVW + Axle Group Sort")</u>

- This method sorts vehicles based on their GVW, axle group weights, and length. It is the method currently used by the Oregon Department of Transportation to classify vehicles as Weight Table 1, Weight Table 2, Weight Table 3, Weight Table 4, Weight Table 5, or Table X (the overflow table classification). Permits are issued based on a vehicle's Weight Table classification.
- It accounts for the axle spacing in assigning each vehicle to the appropriate Motor Carrier Transportation Division (MCTD) Weight Table.
- It assigns more vehicles to higher Weight Tables than the Modified Sort (described subsequently) based on the axle weights.
- Proportionately more heavy vehicles that could have been interpreted as "rogue" legal vehicles are assigned to Weight Table 3 and above and are now considered as legitimate permit vehicles.
- It yields lower coefficients of variation compared to the Modified Sort.

- It yields lower live load factors compared to the Modified Sort (Pelphrey & Higgins, 2006).
- It is less conservative, but is thought to better represent the permitted truck population in Oregon, than the Modified Sort.

2. <u>Modified Sort ("GVW + Truck Length Sort")</u>

- This method sorts vehicles based only on their GVW and rear-tosteer axle length, and it does not account for axle groupings.
- Assigns more vehicles to lower Weight Tables than the Conventional Sort.
- Proportionately more heavy vehicles that could have been interpreted as legitimate permit vehicles are conservatively assigned to Weight Tables 1 & 2 and are thus considered "rogue" legal vehicles.
- It yields higher coefficients of variation compared to the Conventional Sort.
- It yields higher live load factors compared to the Conventional Sort (Pelphrey & Higgins, 2006).
- It is more conservative, but may unfairly penalize Oregon's well established, easily and simply available, and inexpensive permitting process, than the Conventional Sort.

Table 4 compares the Weight Table breakdown for each sorting method. The load effect analysis herein is based on the Conventional Sort method because it better represents the permitted truck population in Oregon. In contrast to some other states where truck drivers generally know the vehicle GVW but may not know their axle grouping weights, MCTD and ODOT report that Oregon truckers are generally aware of their axle and tandem weights, usually to within 2,000 lbs, which proves beneficial in obtaining a continuous trip permit (CTP) (Groff, 2006).

By comparing the number of Table X vehicles in the Conventional Sort to those of the Modified Sort, it is apparent that heavy axle groups control this vehicle classification. Because ODOT reviews all Table X vehicles internally by structural analysis, it is unlikely that there are over 800 real Table X vehicles crossing the site. This realization might infer that there are more rogue vehicles in the system than previously anticipated. However, previous data collection at a larger volume site, I-5 Woodburn NB, revealed that there were roughly 450 Table X vehicles by the Conventional Sort method for one year (Pelphrey & Higgins, 2006). The large number of Table X vehicles also might be related to the percent of error associated with the WIM equipment in capturing accurate individual axle weights, and the sensitivity of the weight table classifications to the individual axle groups. Nowak and Ferrand report that the accuracy is \pm 20 percent for axle loads (Nowak and Ferrand, 2004). Another explanation for the large number of Table X vehicles may be a result of not imposing the two Weight Table 1 exceptions in the original sort
routines. The first exception allows two consecutive tandem axles to weigh up to 34,000 pounds each if the minimum axle spacing between tandems is 30 feet or more with a permit, or 36 feet or more without a permit. The second exception allows a group of four axles consisting of a set of tandem axles and two axles spaced nine feet or more apart to have a loaded weight more than 65,000 pounds and up to 70,000 pounds if the minimum axle spacing is 35 feet or more with a permit. The minimum axle spacing refers to the distance between the first and last axle of the group. All vehicles were sorted without regard to these exceptions. Because the Table X vehicles are not represented by a specific rating vehicle, they were compared with the operating level HL-93 configuration of the LRFR manual.

Selecting an Appropriate Window of Data

Typically, in practice, two-weeks of continuous WIM data are used for various types of analysis; however no established standard of time or quantity of WIM data has previously been recognized. For example, as shown by Nowak and Hong 1991, Nowak 1993, LRFD 1994, and Nowak 1999, the live-load model used in the Load Resistance and Factor Design (LRFD) bridge design code was calibrated using roughly 2 weeks of WIM data. Also, as shown in Moses 2001, LRFR 2003, and Minervino and others 2004, the live load factors used in the LRFR bridge rating manual were calibrated using the same 2 weeks of WIM data. Therefore, in order to determine an acceptable window of WIM data, a separate study was conducted. This study investigated the top 20 percent of selected WIM data according to

vehicle GVW with increasing windows of time. A complete year of WIM data for both a high-volume (I-5 Booth Ranch NB, ADTT = 3442) and a low-volume site (US 97 Klamath Falls NB, ADTT = 769) were analyzed. The projection windows for both sites began with June 1st, 2005. The projection periods included 2-day, 7day, 14-day, 30-day, 60-day, 120-day, 1-year, and 5-year extrapolation lengths. For each projection window, the data was plotted as a cumulative distribution function (CDF) (A detailed description of the CDF function is described in the following section, "Load Effect Procedure"). A best fit line was applied to the upper tail of each CDF. Each line was then extrapolated out to the selected projection periods to determine an estimated maximum GVW. Fig. 4 and 5 plot each of the seven projection periods with corresponding extrapolation lines for I-5 Booth Ranch NB and US 97 Klamath Falls NB, respectively. The equations represented by the extrapolation lines are shown on each plot. Projected GVW values were solved for by using these equations. Tables 5 and 6 show the maximum projected GVW values for each projection time window and corresponding statistical parameters, respectively, for I-5 Booth Ranch NB. Tables 7 and 8 show the maximum projected GVW values for each projection time window and corresponding statistical parameters, respectively, for US 97 Klamath Falls NB. Fig. 6 and 7 show the projected GVW values graphically for I-5 Booth Ranch NB and US 97 Klamath Falls NB, respectively.

The results for the high ADTT site, I-5 Booth Ranch NB, show a steady decrease in extrapolated GVW values for increasing time windows, as shown in Table 5. For example, using 2 days of data, the 5-year extrapolation GVW is 349.5 kips, while using 7 days of data, the same extrapolation GVW is 318.2 kips. This trend is the same for all windows of time at this site. The percent change values between each of the adjoining windows of time are also shown in Table 5. The percent change between 2 and 7 days, and 7 and 14 days is greater than or equal to 9%. Then, between 14 and 30 days and following, the percent change decreases to a constant \sim 4-6%. This would suggest that an appropriate window of time for this site for collection of WIM data would be between 14 and 30 days. This criterion was met and exceeded for the load effect portion of this study by using one full year of data. The coefficient of variation for each window of time was a constant 12%, as shown in Table 6.

The results for the low ADTT site, US 97 Klamath Falls NB, generally show a steady decrease in extrapolated GVW values for increasing time windows, as shown in Table 7. Only one time window, the 7 days of data window, does not follow the expected trend. This can be seen more clearly in Fig. 7. The percent change between 2 and 7 days is ~ -25%, and between 7 and 14 days is ~ +25%. The extrapolation values for the 7-day window might show a significant decrease because of the abnormally low standard deviation, which produces a higher slope, as shown in Table 8. The percent change between adjoining windows of time levels

out between 14 and 30 days. This would suggest that an appropriate window of time for this site for analyzing data would be 30 days. This criterion is again met and exceeded for the load effect portion of this report by using one full year of data.

From the results presented, it is recommended that at least 14-30 days of data at a high-volume site be used for WIM data analysis. Low-volume sites typically require longer windows of time to capture load effects represented in the upper tail. Also, as shown above, a low-volume site does not produce the same level of consistency as a high-volume site and when making decisions over an entire network, it is recommended to use the highest volume site.

Calculation of Load Effects

Once the data for each month was cleaned, filtered, and sorted according to the MCTD Weight Table classifications, it was used to compute load effects in a suite of bridges. The maximum shears and moments were computed for each of the 981,226 WIM records at selected locations for specified spans and span lengths. Four simply supported span lengths were analyzed: 50-ft, 100-ft, 150-ft, and 200-ft. For this study, shear values on the simply supported spans were calculated at a distance 4 ft from the support, and moment values were calculated at midspan. These locations were selected to capture the maximum load effects for each span length. Fig. 8 shows the locations of the selected points for the simple span configuration. A two-span continuous bridge model with 50-ft span lengths, typical

of 1950's vintage reinforced concrete deck girder bridges (Higgins *et al.* 2004), was also analyzed. Negative moment was evaluated at the center support, while shear was evaluated at a distance 4-ft to the left of the center support, as shown in Fig. 9.

In order to obtain an accurate projection of the upper tail of the WIM load effect histogram, only the largest 20 percent of all vehicle load effects were considered as the basis for fixing the vehicle load effect spectrum (Moses, 2001). Statistical data are presented in the form of cumulative distribution functions (CDF). This scale is used to present and compare the critical upper tails. The distributions were plotted on normal probability paper (Laman and Nowak, 1993). Two different CDF's were plotted (as shown in the next section, "Graphical Results") on each graph. The first CDF represents the top 20 percent of all vehicles for the entire year. The second CDF represents the top 20 percent of 3S2 vehicles for the entire year. In this study, a 3S2 vehicle was defined in the following way: five-axle vehicle with no specified maximum GVW, with the first axle spacing greater than 5.5 ft, second axle spacing less than 5.5 ft, third axle spacing greater than 5.5 ft, and the fourth axle spacing less than 5.5 ft.

The CDF's were plotted on normal probability paper for moments and shears for each of the span lengths and types. The vertical scale, z, is,

$$z = \Phi^{-1} [F(x)]$$
^[1]

61

where F(x) = cumulative distribution function of x, where x is the moment M or shear V; $\Phi^{-1} =$ inverse of the standard normal distribution function. More information about the inverse of the standard normal distribution function can be found in Nowak 1999, Nowak and Collins 2000, and Haldar and Mahadevan 2000.

Since bridge ratings are typically evaluated at 5-year intervals, a 5-year projection was used. A line of best fit was applied to the tail end of each CDF. Each line was then extrapolated out to the 5-year line to determine the estimated maximum load effect. Let N be the total number of vehicles in time period T. The number of vehicles in the top 20 percent of the record at I-5 Booth Ranch NB for 2005 was 196,247. Because the WIM data represents one year of traffic, the number of vehicles, N, in T = 5 years will be 981,235. The probability level corresponding to N is 1/N, and for N = 981235, it is 1/981235 = 1.02×10^{-8} , which corresponds to z = 4.75 on the vertical scale, as shown on each plot as the upper solid, horizontal line. The same approach was applied for the 3S2 vehicles, with a corresponding z = 4.41, as shown on each plot as the lower solid, horizontal line.

The rating vehicles, along with the HL-93 loading configuration, and AASHTO's four Notional Rating Load (NRL) vehicles, were also analyzed for each of the span configurations. The NRL vehicles were derived from the Federal Highway

Administration's "Specialized Hauling Vehicles", and represent short and heavy Legal vehicles. They were adopted at the 2005 AASHTO Bridge Meeting and will appear as an optional rating load in the 2006 LRFR Interim. Pictograms for the NRL vehicles can be found in Appendix A. Maximum moments and shears were calculated and are represented on each plot as vertical lines. Two plots were created for each span length and load effect: the first with unfactored rating vehicles and the second with factored rating vehicles.

Oregon-Specific Live Load Factors

Following the methodology developed in NCHRP Project No. 12-46 (Moses 2001) and incorporated in the LRFR Specifications, live load factors for strength evaluation were developed for state-owned bridges in Oregon using WIM data. Adaptation of the methods was necessary to account for unique characteristics of truck loads and permitting regulations in the state. Live load factors were developed using WIM data from four sites, including state and interstate routes, considering possible seasonal variations, and different WIM data collection windows (Pelphrey & Higgins, 2006). The computed live load factors represent the two lanes loaded case only. They account for the vehicle under consideration, for example, a Type 3S2 Legal vehicle or any of the vehicles depicted in Table 1, plus a likely alongside vehicle.

The load effects produced by the WIM data were compared to the load effects produced by Oregon's rating vehicles, both factored and unfactored. The factored values were obtained by multiplying the nominal force effect by a corresponding state-specific live load factor, as mentioned above. The live load factors used for the I-5 Booth Ranch NB site conservatively followed the ADTT \geq 5000 category, as reported by Pelphrey & Higgins (2006).

Live load factors were also applied to the HL-93 configuration and to the NRL vehicles. Following the procedures of the LRFR, an operating level factor of 1.35 was applied to the HL-93 configuration (section 6.4.3.2.2 of LRFR, 2003). The same live load factor applied to the legal rating vehicles (Weight Table 1) of 1.40 was used for the NRL vehicles (Groff, 2006).

Maximum load effects corresponding to longer periods of time were calculated by extrapolation of the vehicle WIM data. The CDF representing all of the vehicles was used to calculate extrapolated load effects. These results are compared to the factored HL-93 (operating level) loading configuration, as shown in Table 9. Most of the ratio values are close to 1.0, with the majority exceeding 1.0. The operating level for the HL-93 loading configuration represents the 5-year extrapolation load effects produced by the WIM vehicles reasonably well.

Tabular and Graphical Results

Fig. 10 shows the CDF plot for unfactored moment for the 100-ft simple span bridge model and the corresponding Weight Table breakdown plots. Fig. 11 shows the CDF plot for factored moment for the 100-ft simple span bridge model and the corresponding Weight Table breakdown plots. Plots for both unfactored and factored moments and shears for all span types and lengths are shown in Appendix D.

Table's 10 and 11 show all results for simple span shear and moment, respectively. Table 12 shows the load effects for the two-span continuous model. The columns entitled "Ratio" describe whether or not the load effects for each rating vehicle exceed that of the highest observed WIM vehicle per table classification. A ratio greater than unity denotes that the rating vehicle adequately envelopes the load effect in question. Shaded values denote a ratio value less than 1.0.

Significant Findings

Significant findings based on results of this analysis are presented below. These include comparisons between the load effects produced by each of Oregon's rating vehicles and the load effects produced by the top 20 percent of traffic for a complete year of WIM data at I-5 Booth Ranch NB.

Unfactored Load Effects

Comparison between the unfactored load effects and the WIM data in Table's 10, 11, and 12 reveal further justification for the use of live load factors. The results show that the unfactored rating vehicles did not produce sufficient demand to represent the service level loads of the WIM data. Further, there was a need to include the likelihood of an alongside truck also being present on the bridge. Live load factors account for this condition using a two-lane loaded calibration. The magnitude of the alongside truck in 3S2 equivalents is shown in Table's 10, 11, and 12 as a percent of 3S2 value. For example, a value of 24 percent means the lane with the rating vehicle receives 100 percent of the load effect from the rating vehicle and also gets 24 percent of the maximum load effect from an alongside vehicle in 3S2 equivalents.

Factored Load Effects

The results show that the factored rating vehicles did a relatively good job providing sufficient demands to envelope the load effects of the WIM data. There were only a few factored rating vehicles at select span lengths that did not exceed the corresponding WIM value. Table 13 identifies the factored rating vehicles which were sufficient and insufficient with respect to the WIM data. It was not necessary for all of the rating vehicles within a table classification to eclipse the load effects of the WIM data. Rather, only one of the representative rating vehicles from each of the Weight Tables was needed to exceed the WIM results to be deemed satisfactory. Ratios in Table 13 that are shaded represent rating vehicles that did not envelope the WIM data.

Rating Vehicle Summary

The factored rating vehicles representing Weight Table 1 effectively cover the load effect spectrum produced by the Table 1 WIM vehicles. All load effects for all span lengths are enveloped by at least one of the three representative vehicles. The Type 3S2 and Type 3-3 Legal vehicles provide sufficient capacity for all load effects analyzed, which suggests the Type 3 Legal vehicle could be eliminated. These vehicles were also fairly consistent with regards to the percent of adjacent 3S2 equivalents for the varying span lengths, which suggests a level of uniform reliability.

The factored rating vehicles representing Weight Table 2 effectively cover the load effect spectrum produced by the Table 2 WIM vehicles. The Type CTP-2A and the Type CTP-2B vehicles produce sufficient factored load effects for all span lengths considered. These vehicles were also fairly consistent with regards to the percent of adjacent 3S2 equivalents for the varying span lengths, which suggests a level of uniform reliability.

The factored rating vehicles representing Weight Table 3 effectively cover the load effect spectrum produced by the Table 3 WIM vehicles. The Type CTP-3 and the

Type STP-3 vehicles produce sufficient factored load effects for all spans considered. The STP-3 vehicle is fairly consistent with regards to the percent 3S2 values for varying span lengths, which suggests a level of uniform reliability. However, the CTP-3 is not as consistent. The percent of 3S2 values are higher for the 50-ft and 100-ft simple spans, then decrease for the 150-ft and 200-ft simple spans, as shown in Table's 10 and 11.

The factored rating vehicles representing Weight Table 4 do not effectively cover the load effect spectrum produced by the Table 4 WIM vehicles. The Type STP-4A vehicle is effective for load effects for span lengths of 50 and 100 ft, but not for span lengths of 150 and 200 ft. The Type STP-4B vehicle is not adequate for moments and shears at any span length. As a result, the load effects for the Weight Table 4 WIM vehicles exceed both rating vehicles for span lengths of 150 and 200 ft. The STP-4B vehicle is fairly consistent with regards to the percent 3S2 values for varying span lengths, which suggests a uniform level of reliability. However, the STP-4A is not as consistent. The percent of 3S2 values are higher for the shorter simple spans, and decrease with span length.

The factored rating vehicles representing Weight Table 5 effectively cover the shear spectrum produced by the Table 5 WIM vehicles, but do not effectively cover the moment spectrum for the 50-ft span. At least one of the Table 5 rating vehicles for all other span types and ranges envelop the WIM load effects. These vehicles

are fairly consistent with regards to the percent of 3S2 values for varying span lengths, which suggests a level of uniform reliability. The STP-5BW shows the most consistency, while the STP-5B is the least consistent.

Table X is ODOT's overflow table classification. These are vehicles that fall outside of Weight Table 5, and require axle weight and configuration approval by the ODOT bridge group. Therefore, rating vehicle adequacy does not apply to this classification of vehicles. However, the HL-93 factored at the LRFR operating level exceeded most Table X load effects as described further below.

HL-93 Loading

The operating level HL-93 loading configuration was also compared to the WIM data. It is represented on all CDF plots by a solid vertical line. The factored HL-93 configuration envelopes all exclusion traffic for the surveyed WIM data except for negative moment on the two-span continuous bridge model.

Notional Rating Load Vehicles

The NRL vehicles representing Weight Table 1 effectively cover the load effect spectrum produced by the Table 1 WIM vehicles. All load effects for all span lengths are enveloped by all four representative vehicles, except for the SU4 vehicle for negative moment on the two-span continuous bridge model. However, the implementation of the NRL vehicles as "Legal" vehicles is redundant, as the existing three legal rating vehicles already adequately envelope the WIM load effects. Further, the NRL vehicles produced inconsistent results over the varying span lengths. The current representative AASHTO 3S2 legal vehicle produced more consistent load effects than the NRL vehicles. The percent of adjacent 3S2 load effect values in Table's 10, 11, and 12 vary significantly for the NRL vehicles over the different span lengths and appear to provide nonuniform levels of reliability.

Conclusions and Recommendations

A study was conducted to determine an amount of WIM data needed to extrapolate future loading events for both high and low ADTT volume sites. In a separate study, load effects for ODOT's suite of 13 bridge rating vehicles were calculated for various span lengths and types. These load effects, both factored and unfactored, were compared to the load effects calculated from vehicles in the WIM data. One full year of WIM data was collected, cleaned, filtered, sorted, and analyzed for I-5 Booth Ranch NB, a relatively high-volume ADTT site. The analyses included shear, positive moment, and negative moment values for various span types and lengths. Load effects were plotted as cumulative distribution functions on normal probability paper. Oregon-specific live load factors, developed from previous research, were applied to the lane-load effects for the suite of evaluation vehicles. The analysis presented herein analyzed lane-load effects, and

did not consider component-specific effects. Based on the findings, the following conclusions and recommendations are made:

- For a high ADTT volume site (approximately 3500 ADTT), approximately two weeks of WIM data is needed to adequately extrapolate future upper tail events. For a low ADTT volume site (approximately 500 ADTT), one month of WIM data is needed.
- Additional WIM data should be collected and analyzed. One year of data from two sites was used in this study to project loading events to a five year extrapolation window. As additional data become available, two and five years of collected data should be analyzed and results compared to the rating vehicles, and also to the one-year extrapolation values.
- The factored rating vehicles provided reasonably sufficient demands to envelope the load effects of the WIM data, including that attributed to an adjacent equivalent 3S2 alongside vehicle.
- The contribution of the alongside vehicle in 3S2 equivalents for each of the rating vehicles was presented as a percent of the nominal value to examine the consistency of the reliability between varying span lengths and load effects. Most of the factored rating vehicles produced a fairly uniform level of reliability.
- The Oregon-specific live load factors applied to the rating vehicles adequately enveloped the load effects produced by the WIM data. Some of the rating vehicles that are in current use do not quite produce the same

level of demand compared to some WIM vehicles observed on Oregon's state-owned highways. However, the ratios of the rating vehicle load effect to the WIM vehicle load effect that were below 1.0 were reasonably close to 1.0. Considering the level of uncertainty in WIM axle weight measurements, as well as the calibration process, this difference was minor.

- The Type 3 Legal vehicle could be eliminated from the suite of rating vehicles. Additional research should be conducted to further support this recommendation, as stated in subsequent bullets.
- No immediate changes, such as increases in axle weights or reduction of axle spacing lengths, are necessary for the suite of ODOT rating vehicles.
- The use of the NRL vehicles to represent Table 1 vehicle classification in Oregon is redundant, and need not be incorporated into to the suite of rating vehicles. Further, the NRLs provided nonuniform levels of reliability compared with the current Table 1 representative vehicles.
- Only one WIM site was considered in this study for comparison of load effects. Additional analyses should be conducted for other routes in Oregon, with varying ADTT, directionality, and freight corridors taken into account.
- Additional span types and lengths should be analyzed. This may include three-span, four-span, and five-span continuous models with varying span lengths.
- Load effects at the girder level should be calculated and compared for both the WIM data and the rating vehicles using girder distribution factors.

• The factored HL-93 loading (at the operating level) was found to adequately envelope most Table X loading scenarios.

(834) LA	NE A CLASS 11	GVW 75.4	kips LENGTH	67 ft	
ESAL 3.2	21 SPEED 61 mp	h MAX GVW	80.0 kips wed	Jun 16 00:04	:52.40 2004
AXLE	SEPARATION	LEFT WT	RIGHT WT	TOTAL WT	ALLOWABLE
	(ft)	(kips)	(kips)	(kips)	(kips)
1		5.5	5.5	11.1	13.2
2	16.7	8.4	7.6	16.0	17.0
3	4.6	7.9	7.7	15.6	17.0
4	32.4	8.5	7.5	16.0	17.0
5	4.1	9.1	7.6	16.7	17.0
[OFF]					

Figure 3.1: Example of raw WIM output.

Figure 3.2: Location of I-5 Booth Ranch NB.

Figure 3.3: Frequency histogram of the number of axles per vehicle.

Figure 3.6: Projected GVW values for all time windows for I-5 Booth Ranch NB.

Figure 3.7: Projected GVW values for all time windows for US 97 Klamath Falls NB.

Figure 3.8: Shear & moment locations for simple span analysis.

Figure 3.9: Shear & moment locations for 2-span continuous bridge analysis.

Figure 3.10: CDF plots for unfactored moment for 100-ft simple span bridge model.

Load Group	Rating Vehicle	OSU Designation	# Axles	Length (ft)	GVW (kips)	Representative of MCTD Weight Table:
	Legal Type 3	T1	3	19	50	1
Legal Loads	Legal Type 3S2	T2	5	51	80	1
	Legal Type 3-3	ТЗ	6	54	80	1
Continuous	OR-CTP-2A	T4	8	82	105.5	2
Continuous Trip Permits	OR-CTP-2B	T5	8	75.5	105.5	2
	OR-CTP-3	T6	5	43	98	3
	OR-STP-3	T7	6	70	120.5	3
	OR-STP-4A	Т8	5	39	99	4
Circula Tala	OR-STP-4B	Т9	9	100	185	4
Permits	OR-STP-5A	T10	8	73.5	150.5	5
	OR-STP-5B	T11	8	65	162.5	5
	OR-STP-5C	T12	13	126	258	5
	OR-STP-5BW	T13	9	99	204	5

Table 3.1: Current ODOT rating vehicles.

Table	3.2:	Info	rmation	for	I-5	Booth	Ranch	NB.

Location (MP)	111.07
ADT	12,619
ADTT	3,442
# Lanes	2
# Lanes Instrumented	1
WIM Equipment	Single Load Cell
Date of Last Calibration	Aug 05
Calibration Interval	6 mths. (or as needed)

Month		r <u> </u>	···-		Numt	per of axles						
	2	3	4	5	6	7	8	9	10	11	12	Total
January	1135	7332	1663	54018	4286	5444	2466	38	15	10	1	76408
February	1216	7474	2003	52280	4267	5498	2490	44	11	9	1	75203
March	1652	7999	3074	60582	4878	6595	2950	53	6	6	1	87796
April	1631	7209	3084	57635	4673	6162	2875	53	15	8	10	83355
May	1714	7450	2499	56393	4519	6262	2545	56	10	14	2	81464
June	1926	8509	2967	58283	4693	6835	2703	63	12	14	1	86008
July	1949	9330	3090	55195	4392	6765	2327	64	10	19	3	83144
August	1730	9562	2698	57125	4572	7155	2726	74	14	18	5	85679
September	1687	8737	2223	54232	4228	6788	2442	78	20	16	2	80453
October	1625	7412	1991	57006	4472	6761	2306	69	16	19	5	81682
November	1342	7094	1739	56237	4241	6281	2230	57	7	12	3	70243
December	1325	6404	1621	58617	4415	6167	2065	66	11	10	2	80703
Total	18932	94512	28652	677603	53636	76713	30125	715	147	155	36	981226

Table 3.3: Number of axles per vehicle per month.

Month	Sort Method	Table 1	Table 2	Table 3	Table 4	Table 5	Table X	Total #	
Januarv	Conventional Sort	69731	2553	3993	70	2	59	76409	
	Modified Sort	71370	3701	1331	3	2	1	76406	
February	Conventional Sort	67714	3081	4403	49	2	44	75000	
	Modified Sort	70201	4094	992	6	0	0	/5293	
March	Conventional Sort	76981	3799	6849	83	0	84		
	Modified Sort	80825	5524	1438	7	1	1	0//90	
April	Conventional Sort	70033	3463	9564	135	5	155		
	Modified Sort	73958	6351	3028	14	2	2	83355	
May	Conventional Sort	71914	3497	5894	87	2	70		
	Modified Sort	75156	4991	1310	6	1	0	81404	
June	Conventional Sort	76148	3676	6030	72	1	79		
June	Modified Sort	79577	5211	1212	6	0	0	86006	
July	Conventional Sort	74208	3338	5462	68	1	67	00444	
	Modified Sort	77422	4726	987	6	3	0	03144	
August	Conventional Sort	76208	3909	5414	81	3	64	05070	
	Modified Sort	79343	5330	997	7	2	0	82079	
September	Conventional Sort	71884	3801	4681	39	2	46		
	Modified Sort	74676	5025	744	6	2	0	80453	
October	Conventional Sort	73326	3590	4648	44	4	70		
	Modified Sort	76133	4738	799	10	2	0	81682	
November	Conventional Sort	70988	3373	4760	58	2	62		
	Modified Sort	73735	4601	891	14	1	1	/9243	
December	Conventional Sort	72429	3204	4942	64	0	64		
	Modified Sort	75411	4412	872	6	2	0	80703	

 Table 3.4: Comparing sorting methods for table classification at I-5 Booth

 Ranch NB for 2005.

						Maximu	m Projected	I GVW (k)					
Projection Time	2 Days of Data	0/	7 Days of Data	0/	14 Days of Data		30 Days of Data		60 Days of Data		120 Days of Data		1 Year of Data
Window June 1st - June 2nd	⁷⁶ Change	June 1st - June 7th	% Change	June 1st - June 14th	% Change	June 1st - June 30th	% Change	June 1st - July 30th	% Change	June 1st - Sept 28th	% Change	June 1st - May 31st	
2-Day	179.3						ř				· · · · · · · · · · · · · · · · · · ·	·	<u> </u>
7-Day	214.7	-16%	179.3										
14-Day	233.8	-14%	200.7	-11%	179.3								
30-Day	253.8	-13%	221.1	-9%	200.9	-11%	179.3						
60-Day	271.3	-12%	238.9	-9%	217.1	-4%	209.0	-7%	193.7				
120-Day	288.2	-11%	256.0	-9%	232.7	-4%	223.5	-4%	214.9	-4%	207.3	••••••	
1-Year	314.1	-10%	282.4	-9%	256.6	-4%	245.7	-5%	233.1	-5%	222.5	-7%	207.3
5-Year	349.5	-9%	318.2	-9%	289.3	-5%	276.1	-7%	258.0	-6%	242.8	-8%	223.3

Table 3.5: Maximum projected GVW for varying time windows for I-5 Booth Ranch NB.

*GVW values are calculated using the equation generated from D-plot's line fit.

Equations From D-Plot (all equations are first order equations).

2-Day	y=1.513+0.009409x	x=(y-1.513)/(0.009409)
7-Day	y=1.772+0.009372x	x=(y-1.772)/(0.009372)
14-Day	y=1.776+0.0103x	x=(y-1.776)/(0.0103)
30-Day	y=1.709+0.01106x	x=(y-1.709)/(0.01106)
60-Day	y=1.274+0.01351x	x=(y-1.274)/(0.01351)
120-Day	y=0.7345+0.01655x	x=(y-0.7345)/(0.01655)
1-Year	y=-0.7155+0.02447x	x=(y+0.7155)/(0.02447)

		Projection Time Window									
	2 Days of Data	7 Days of Data	14 Days of Data	30 Days of Data	60 Days of Data	120 Days of Data	1 Year of Data				
	June 1st - June 2nd	June 1st - June 7th	June 1st - June 14th	June 1st - June 30th	June 1st - July 30th	June 1st - Sept 28th	June 1st - May 31st				
Number	1392	3857	7753	17202	33831	65531	196246				
Mean	81.4	80.8	81.0	81.5	81.1	81.3	81.3				
St Dev	10.16	9.63	9.63	9.63	9.54	9.63	9.91				
COV	12%	12%	12%	12%	12%	12%	12%				
y-intercept	1.51	1.77	1.78	1.71	1.27	0.73	-0.72				
Slope	0.0094	0.0094	0.0103	0.0111	0.0135	0.0166	0.0245				

 Table 3.6: Statistical parameters for varying time windows for I-5 Booth Ranch NB.

						Maximu	m Projecte	d GVW (k)				
Projection Time	2 Days of Data	0/	7 Days of Data		14 Days of Data		30 Days of Data		60 Days of Data		120 Days of Data		1 Year of Data
Window Ju Ju	June 1st - June 2nd	% Change	June 1st - June 7th	% Change	June 1st - June 14th	% Change	June 1st - June 30th	% Change	June 1st - July 30th	% Change	June 1st - Sept 28th	% Change	June 1st - May 31st
2-Day	143.7		<u> </u>	••••••••••••••••••••••••••••••••••••••					<u></u>				
7-Day	191.7	-25%	143.7				· · · · ·						· · · · · ·
14-Day	216.3	-25%	162.8	18%	192.4								·
30-Day	242.0	-24%	182.9	24%	226.2	-15%	192.4						
60-Day	264.4	-24%	200.4	24%	248.4	-8%	227.7	-15%	193				
120-Day	285.9	-24%	217.2	24%	269.6	-8%	247.0	-5%	234.7	-15%	199.9		····-·
1-Year	318.7	-24%	242.9	24%	302.0	-8%	276.5	-7%	258.1	-7%	239.3	-16%	199.9
5-Year	363.2	-24%	277.6	25%	345.9	-9%	316.4	-8%	289.8	-8%	265.3	-18%	218.0

Table 3.7: Maximum projected GVW for varying time windows for US 97 Klamath Falls NB.

*GVW values are calculated using the equation generated from D-plot's line fit.

Equations From D-Plot (all equations are first order equations).

2-Day	y=1.726+0.007843x	x=(y-1.726)/(0.007843)
7-Day	y=1.707+0.01016x	x=(y-1.707)/(0.01016)
14-Day	y=1.742+0.008044x	x=(y-1.742)/(0.008044)
30-Day	y=1.736+0.008835x	x=(y-1.736)/(0.008835)
60-Day	y=1.305+0.01112x	x=(y-1.305)/(0.01112)
120-Day	y=0.9161+0.01359x	x=(y-0.9161)/(0.01359)
1-Year	y=-2.169+0.03052x	x=(y+2.169)/(0.03052)

		Projection Time Window										
	2 Days of Data	7 Days of Data	14 Days of Data	30 Days of Data	60 Days of Data	120 Days of Data	1 Year of Data					
	June 1st - June 2nd	June 1st - June 7th	June 1st - June 14th	June 1st - June 30th	June 1st - July 30th	June 1st - Sept 28th	June 1st - May 31st					
Number	460	1286	2535	5608	11032	21428	54986					
Mean	78.3	77.8	77.8	77.7	77.5	77.7	78.2					
St Dev	7.0	6.5	7.7	7.5	7.7	7.7	8.1					
COV	9%	8%	10%	10%	10%	10%	10%					
y-intercept	1.73	1.71	1.74	1.74	1.31	0.92	-2.17					
Slope	0.0078	0.0102	0.0080	0.0088	0.0111	0.0136	0.0305					

 Table 3.8: Statistical parameters for varying time windows for US 97 Klamath Falls NB.

 Decision Transition Transition

	Span	Actual Load Effect	5-YR Projected Load Effect	Factored HL-93	Ratio
Shear (k) - Simple Span	50-ft	79	83	89	1.08
	100-ft	109	121	124	1.03
	150-ft	134	148	150	1.01
	200-ft	151	164	174	1.06
Moment (k-ft) - Simple Span	50-ft	1019	1180	1107	0.94
	100-ft	2869	3007	3132	1.04
	150-ft	4816	5391	5697	1.06
	200-ft	7332	8112	8801	1.08
Cont Span	Shear - 50-ft	91	102	101	0.99
	Neg Moment - 50-ft	744	813	702	0.86

 Table 3.9: Five-year extrapolated load effects for various span types

 and lengths.

Inverse Standard Normal Distribution Function

	Days	# Vehicles	Probability	Inv Nor																		
AII	365	196247	5.096E-06	4.413																		
	1825	981235	1.019E-06	4.750																		
3S2	365	111314	8.984E-06	4.289																		
	1825	556570	1.797E-06	4.634																		
	Tura			50)-ft Span				1	00-ft Sp	an			1	50-ft Sp	an			20	00-ftSp	an	
--------	-----------	------------	------	--------	-----------	-------	------	-------	--------------------	----------	-------	------	-------	--------------------	----------	-------	------	-------	--------	---------	-------	------
	l ype	<i>Y</i> L	v	y∟ x V	WIMV	Ratio	%3S2	v	γ _L x V	WIM V	Ratio	%3S2	v	γ _L x V	wімv	Ratio	%3S2	V	y∟ x V	WIM V	Ratio	%3S2
	3 Legal	1.40	38.6	54.0	44.1	1.22	26%	44.2	61.9	59.6	1.04	4%	46.2	64.7	66.3	0.98	-2%	47.1	66.0	69.6	0.95	-5%
Tab.	3S2 Legal	1.40	37.5	52.5	44.1	1.19	22%	56.7	79.4	59.6	1.33	35%	64.4	90.2	66.3	1.36	37%	68.4	95.7	69.6	1.37	38%
	3-3 Legal	1.40	37.2	52.0	44.1	1.18	21%	57.6	80.6	59.6	1.35	37%	65.0	91.0	66.3	1.37	38%	68.8	96.3	69.6	1.38	39%
b 2	CTP-2A	1.35	39.7	53.5	44.0	1.22	25%	60.9	82.1	67.8	1.21	25%	75.3	101.7	80.2	1.27	33%	82.5	111.3	86.5	1.29	36%
Тa	CTP-2B	1.35	39.0	52.7	44.0	1.20	23%	63.2	85.4	67.8	1.26	31%	75.8	102.4	80.2	1.28	34%	82.0	110.8	86.5	1.28	36%
b 3	CTP-3	1.45	51.1	74.1	54.7	1.36	52%	73.5	106.5	83.5	1.28	41%	81.0	117.4	107.1	1.10	16%	84.7	122.8	120.7	1.02	3%
Тa	STP-3	1.25	46.2	57.7	54.7	1.06	8%	76.1	95.1	83.5	1.14	20%	90.1	112.6	107.1	1.05	9%	96.9	121.2	120.7	1.00	1%
Tab 4	STP-4A	1.40	55.8	78.1	64.0	1.22	38%	76.3	106.8	94.3	1.13	22%	83.2	116.5	124.5	0.94	-12%	86.6	121.3	140.8	0.86	-29%
Tab 4	STP-4B	1.00	60.4	60.4	64.0	0.94	-10%	93.1	93.1	94.3	0.99	-2%	122.3	122.3	124.5	0.98	-3%	137.0	137.0	140.8	0.97	-6%
	STP-5A	1.10	54.8	60.3	66.3	0.91	-16%	91.7	100.8	99.6	1.01	2%	109.5	120.4	133.8	0.90	-21%	118.9	130.8	152.1	0.86	-31%
b 5	STP-5B	1.05	62.9	66.0	66.3	0.99	-1%	105.7	111.0	99.6	1.11	20%	123.4	129.6	133.8	0.97	-7%	132.2	138.8	152.1	0.91	-19%
Ч	STP-5C	1.00	69.0	69.0	66.3	1.04	7%	103.6	103.6	99.6	1.04	7%	144.6	144.6	133.8	1.08	17%	172.9	172.9	152.1	1.14	30%
	STP-5BW	1.00	66.9	66.9	66.3	1.01	1%	106.4	106.4	99.6	1.07	12%	138.8	138.8	133.8	1.04	8%	155.1	155.1	152.1	1.02	4%
Tab x	HL93	1.35	66.2	89.4	78.9	1.13	28%	91.8	124.0	109.4	1.13	26%	111.0	149.9	134.3	1.12	24%	128.6	173.6	151.1	1.15	33%
es	SU4	1.40	42.7	59.7	44.1	1.35	42%	48.3	67.6	59.6	1.14	14%	50.2	70.3	66.3	1.06	6%	51.2	71.6	69.6	1.03	3%
ehicl	SU5	1.40	47.2	66.0	44.1	1.50	59%	54.6	76.4	59.6	1.28	30%	57.0	79.8	66.3	1.20	21%	58.3	81.6	69.6	1.17	18%
RL Vel	SU6	1.40	49.1	68.8	44.1	1.56	66%	59.1	82.7	59.6	1.39	41%	62.3	87.3	66.3	1.32	33%	64.0	89.6	69.6	1.29	29%
Z	SU7	1.40	51.0	71.4	44.1	1.62	73%	63.9	89.5	59.6	1.50	53%	68.3	95.6	66.3	1.44	46%	70.5	98.7	69.6	1.42	42%

Table 3.10: Comparison of shear effects between rating and WIM vehicles.

	Turno				50-ft Sp	an	,		1	00-ft Sp	an			1	50-ft Sp	an			2	00-ft Spa	an	
			м	γ _L x M	WIM M	Ratio	%3S2	м	ƴ∟x M	WIM M	Ratio	%3S2	м	y∟x M	WIM M	Ratio	%3S2	м	γ _L x M	WIM M	Ratio	%3S2
-	3 Legal	1.40	471	659	544	1.21	24%	1096	1534	1493	1.03	3%	1721	2409	2491	0.97	-4%	2345	3283	3489	0.94	-6%
Tab	3S2 Legal	1.40	481	673	544	1.24	27%	1286	1801	1493	1.21	24%	2286	3201	2491	1.29	31%	3287	4601	3489	1.32	34%
_	3-3 Legal	1.40	394	551	544	1.01	2%	1340	1876	1493	1.26	30%	2339	3275	2491	1.31	34%	3340	4676	3489	1.34	36%
b 2	CTP-2A	1.35	491	663	567	1.17	20%	1494	2017	1617	1.25	31%	2790	3766	2910	1.29	37%	4090	5521	4226	1.31	39%
Ta	CTP-2B	1.35	504	680	567	1.20	23%	1250	1688	1617	1.04	6%	2513	3393	2910	1.17	21%	3775	5097	4226	1.21	26%
p 3	CTP-3	1.45	567	822	659	1.25	34%	1722	2497	1866	1.34	49%	2922	4237	3718	1.14	23%	4122	5976	5723	1.04	8%
1 a	STP-3	1.25	588	735	659	1.12	16%	1732	2166	1866	1.16	23%	3207	4009	3718	1.08	13%	4682	5853	5723	1.02	4%
4 4	STP-4A	1.40	617	864	749	1.15	24%	1829	2561	2337	1.10	17%	3042	4259	4279	1.00	-1%	4254	5956	6536	0.91	-18%
19	STP-4B	1.00	698	698	749	0.93	-11%	1966	1966	2337	0.84	-29%	4055	4055	4279	0.95	-10%	6318	6318	6536	0.97	-7%
	STP-5A	1.10	742	817	828	0.99	-2%	2088	2296	2355	0.98	-5%	3938	4331	4776	0.91	-19%	5788	6366	7197	0.88	-25%
ab 5	STP-5B	1.05	766	805	828	0.97	-5%	2565	2693	2355	1.14	26%	4552	4779	4776	1.00	0%	6540	6867	7197	0.95	-10%
۳,	STP-5C	1.00	806	806	828	0.97	-5%	2530	2530	2355	1.07	14%	4645	4645	4776	0.97	-6%	7795	7795	7197	1.08	18%
	STP-5BW	1.00	773	773	828	0.93	-11%	2292	2292	2355	0.97	-5%	4691	4691	4776	0.98	-4%	7241	7241	7197	1.01	1%
Tab x	HL93	1.35	820	1107	1019	1.09	18%	2320	3132	2869	1.09	20%	4220	5697	4816	1.18	39%	6520	8801	7332	1.20	45%
es	SU4	1.40	541	757	544	1.39	44%	1216	1702	1493	1.14	16%	1891	2647	2491	1.06	7%	2565	3592	3489	1.03	3%
/ehicl	SU5	1.40	585	819	544	1.51	57%	1360	1904	1493	1.28	32%	2135	2989	2491	1.20	22%	2910	4074	3489	1.17	18%
L R	SU6	1.40	649	909	544	1.67	76%	1512	2117	1493	1.42	49%	2374	3324	2491	1.33	36%	3236	4531	3489	1.30	32%
2	SU7	1.40	701	982	544	1.81	91%	1664	2329	1493	1.56	65%	2626	3677	2491	1.48	52%	3588	5024	3489	1.44	47%

 Table 3.11: Comparison of moment effects between rating and WIM vehicles.

	Type	V.				2-Sp	an Continu	ious - 5	0-ft Span	s		
	- Jpc		м	γ _L x M	WIM M	Ratio	%3S2	V	ν. × V	WIM V	Ratio	%3S2
_	3 Legal	1.40	214	300	367	0.82	-18%	38.2	53.5	48.0	1.12	15%
Tab.	3S2 Legal	1.40	371	519	367	1.41	41%	38.0	53.2	48.0	1.11	14%
	3-3 Legal	1.40	315	442	367	1.20	20%	39.5	55.3	48.0	1.15	19%
b 2	CTP-2A	1.35	415	560	460	1.22	27%	49.5	66.8	50.4	1.32	43%
Ta	CTP-2B	1.35	432	583	460	1.27	33%	43.9	59.3	50.4	1.18	23%
р 3	CTP-3	1.45	415	602	575	1.05	7%	56.1	81.3	60.1	1.35	56%
Ta	STP-3	1.25	505	631	575	1.10	15%	56.3	70.4	60.1	1.17	27%
b 4	STP-4A	1.40	395	553	659	0.84	-29%	59.9	83.8	70.7	1.19	35%
Та	STP-4B	1.00	628	628	659	0.95	-8%	67.5	67.5	70.7	0.96	-8%
	STP-5A	1.10	648	713	689	1.04	7%	69.1	76.0	74.6	1.02	4%
b 5	STP-5B	1.05	623	655	689	0.95	-9%	79.2	83.1	74.6	1.11	22%
Та	STP-5C	1.00	585	585	689	0.85	-28%	79.0	79.0	74.6	1.06	12%
	STP-5BW	1.00	720	720	689	1.05	8%	74.8	74.8	74.6	1.00	1%
Tab x	HL93	1.35	520	702	744	0.94	-11%	75.0	101.3	90.5	1.12	28%
es	SU4	1.40	240	337	367	0.92	-8%	41.5	58.1	48.0	1.21	27%
ehicl	SU5	1.40	268	375	367	1.02	2%	44.6	62.4	48.0	1.30	38%
> צר	SU6	1.40	296	414	367	1.13	13%	48.2	67.5	48.0	1.41	51%
Z	SU7	1.40	322	451	367	1.23	23%	53.2	74.5	48.0	1.55	70%

 Table 3.12: Comparison of 2-span continuous load effects between rating and WIM vehicles.

	Tuno	50-ft	Span	100-f	t Span	150-f	t Span	200-f	t Span	2-Span (Cont - 50-ft
	туре	γ _L V	γ _L M	YLV	YLM	YLV	YLM	YLV	YLM	γLV	γLM
	3 Legal	1.22	1.21	1.04	1.03	0.98	0.97	0.95	0.94	1.12	0.82
Lab 1	3S2 Legal	1.19	1.24	1.33	1.21	1.36	1.29	1.37	1.32	1.11	1.41
	3-3 Legal	1.18	1.01	1.35	1.26	1.37	1.31	1.38	1.34	1.15	1.20
02	CTP-2A	1.22	1.17	1.21	1.25	1.27	1.29	1.29	1.31	1.32	1.22
Tal	CTP-2B	1.20	1.20	1.26	1.04	1.28	1.17	1.28	1.21	1.18	. 1.27
03	CTP-3	1.36	1.25	1.28	1.34	1.10	1.14	1.02	1.04	1.35	1.05
Tal	STP-3	1.06	1.12	1.14	1.16	1.05	1.08	1.00	1.02	1.17	1.10
04	STP-4A	1.22	1.15	1.13	1.10	0.94	1.00	0.86	0.91	1.19	0.84
Tal	STP-4B	0.94	0.93	0.99	0.84	0.98	0.95	0.97	0.97	0.96	0.95
	STP-5A	0.91	0.99	1.01	0.98	0.90	0.91	0.86	0.88	1.02	1.04
0.5	STP-5B	0.99	0.97	1.11	1.14	0.97	1.00	0.91	0.95	1.11	0.95
Tal	STP-5C	1.04	0.97	1.04	1.07	1.08	0.97	1.14	1.08	1.06	0.85
	STP-5BW	1.01	0.93	1.07	0.97	1.04	0.98	1.02	1.01	1.00	1.05
Tab x	HL93	1.13	1.09	1.13	1.09	1.12	1.18	1.15	1.20	1.12	0.94
cles	SU4	1.35	1.39	1.14	1.14	1.06	1.06	1.03	1.03	1.21	0.92
/ehi	SU5	1.50	1.51	1.28	1.28	1.20	1.20	1.17	1.17	1.30	1.02
5	SU6	1.56	1.67	1.39	1.42	1.32	1.33	1.29	1.30	1.41	1.13
ž	SU7	1.62	1.81	1.50	1.56	1.44	1.48	1.42	1.44	1.55	1.23

Table 3.13: Factored rating vehicle sufficiency.

Shaded boxes depict ratios less than 1.

References

- AASHTO LRFD (2004). LRFD Bridge Design Specifications. 3rd Edition, AASHTO, Washington, D.C.
- AASHTO (2003). Manual for Condition Evaluation and Load and Resistance Factor Rating (LRFR) of Highway Bridges, AASHTO, Washington, D.C.
- Daniels, T. (2004). "Reliability Based Bridge Assessment Using Modified Compression Field Theory and Oregon Specific Truck Loading." MS Thesis, Department of Civil, Construction and Environmental Engineering, Oregon State University.
- Fifer, D. (2002). Oregon Department of Transportation, personal correspondence with T. Daniels at Oregon State University.
- Fifer, D. (2005). Oregon Department of Transportation, E-mail correspondence with J. Pelphrey at Oregon State University.
- Fifer, D. (2006). Oregon Department of Transportation, E-mail correspondence with J. Pelphrey at Oregon State University.
- Groff, R. (2006). Oregon Department of Transportation, E-mail correspondence with J. Pelphrey at Oregon State University.
- Groff, R. (2006b). ODOT LRFR Policy Report: Liveload Factors for Use in Load and Resistance Factor Rating (LRFR) of Oregon's State-Owned Bridges, Oregon Department of Transportation, Salem, OR.
- Haldar, A. and Mahadevan, S. (2000). <u>Probability, Reliability and Statistical</u> <u>Methods in Engineering Design</u>, John Wiley & Sons, Inc., New York
- Higgins, C., Miller, T.H., Rosowsky, D.V., Yim, S.C., Potisuk, T., Daniels, T.K., Nicholas, B.S., Robelo, M.J., Lee, A., and Forrest, R.W. (2004). "Assessment Methodology for Diagonally Cracked Reinforced Concrete Deck Girders." *Report No. FHWA-OR-RD-05-04*, Federal Highway Administration, Washington D.C.
- Kim, S., Sokolik, A.F. and Nowak, A.S. (1997). "Measurement of Truck Load on Bridges in the Detroit, Michigan, Area." Transportation Research Record, No. 1541, pp. 58-63.

- Laman, J.A. and Nowak, A.S. (1993). "Load Model for Bridge System Reliability." *Reliability and Optimization of Structural Systems*, Vol. B-12, North-Holland, pp. 149-156.
- Minervino, C., Sivakumar, B., Moses, F., Mertz, D. and Edberg, W. (2004). "New AASHTO Guide Manual for Load and Resistance Factor Rating of Highway Bridges." ASCE *Journal of Bridge Engineering*, Vol. 9, No. 1, pp 43-54.
- Moses, F. (2001). "Calibration of Load Factors for LRFR Bridge Evaluation." *NCHRP Report 454*, Transportation Research Board, National Research Council, Washington, D.C.
- Nowak, A.S. and Hong, Y-K. (1991). "Bridge Live Load Models." ASCE Journal of Structural Engineering, Vol. 117, No. 9, pp. 2757-2767.
- Nowak, A.S. (1993). "Live Load Model for Highway Bridges." Journal of Structural Safety, Vol. 13, Nos. 1+2, December, pp. 53-66.
- Nowak, A.S. (1999). "Calibration of LRFD Bridge Design Code." *NCHRP Report* 368, Transportation Research Board, National Research Council, Washington, D.C.
- Nowak, A.S. and Collins, K.R. (2000). <u>Reliability of Structures</u>, McGraw-Hill, New York.
- Nowak, A.S. and Ferrand, D.M. (2004). "Truck Load Models for Bridges." Building on the Past, Securing the Future, Proceedings of the 2004 Structures Conference, May 22-26.
- Pelphrey, J. and Higgins, C. (2006). Calibration of LRFR Live Load Factors for Oregon State-Owned Bridges using Weigh-in-Motion Data, Kiewit Center for Infrastructure and Transportation Report, Dept. of Civil Engineering, Oregon State University, Corvallis, OR.
- Strathman, J.G. and Theisen, G. (2002). "Weight Enforcement and Evasion: Oregon Case Study." Center for Urban Studies, College of Urban and Public Affairs, Portland State University.

APPENDIX A

Figure A3.1: ODOT legal rating vehicles.

Figure A3.2: ODOT continuous trip permit rating vehicles.

Figure A3.3: ODOT single trip permit rating vehicles.

101

			Q.V.W	MCTD WEIGHT TABLE	NOTES	Corresponding Tier-1 Truck Designation	Corresponding OS Study Designation
DAD GROUP	TIER-2 LOAD DESIGNATION	TYPE OF LOAD	0.1.11.		Required for NBI reporting in the past, not used in Tier-2.	HS-20	Vehicle 1
1	-	Design Load	72 k	-	requires the time bit of combination loads (below)	-	-
	HL-93 Truck	Design Load	72 k	-	will now be used for NBI reporting. Not used in Tier-1.	-	-
	HL-93 Tandem	Design Load	60 k	-	the construction with 0.640 km lane	-	-
eelgn Loeds	MI - ST Truck + Lana	Design Load Combination (required by LRFR)		-	HL-93 Truck applied with 0.640 k/k lane	-	-
OAD GROUP T 	NI-03 Tandam + 1 ana	Design Load Combination (required by LRFR)		-	HL-93 Tandem applied with 0.040 k/ft lane @		-
	nuese tantant takes	Dealers Load Combination (required by LRFR)	-	-	90%		Vahida 2
	HL-93 Truck Train + Lane		50 k	Weight Table 1	Same as AASHTO Legal Type 3	Type 3	Vahida 3
	Туре 3	Legal Load	80 k	Weight Table 1	Different than standard AASHTO 3S2, which is 72 k.	Type 352	Volice o
	Type 382	Legal Load	00.6	Weight Table 1	Same as AASHTO Legal Type 3-3	Type 3-3	Venicie 4
	Type 3-3	Legal Load	OVK		Train of 2 Legal Type 3-3's @ 75% applied with 0.2 k/ft lane		-
	Type 3-3 Tmin + Legal Lane	Legal Load Combination (required by LRFR)	- Tarsty		load. Not used in Tier-1.	A-12200	-
	Tume 3-3 + Lensi Lens	Legal Load Combination (required by LRFR)		1	only for Spans > 200 ft. Not used in Tier-1.	(Permit 8)	-
	Type or the second	Annual Extended Weight Permit	105.5 k	Weight Table 2	MCTD refers to this as a "Canadian Mule Train"	(Permit 9)	-
egal Loads	Type GTP-20	Annual Extended Weight Permit	106.6 k	Weight Table 2	Contains maximum allowable 4-acte cluster	Permit 1	Vehicle 5
Permit Loads	Туре Стр-дв	Annual Heavy Haul Permit	98 k	Weight Table 3	Heavy Haul that maximizes Weight Table 5	Permit 5	Vehicle 9
The Local	Туре СТР-3	Rivels Tdp Barnit	120.5 k	Weight Table 3	In Tier-1, was used for Local Agency bridges only	Damit 2	Vehicle 6
intinuous Trij Permit Loads	Type STP-3	Single The Permit	99 k	Weight Table 4	In Tier-1, was considered representative of CTP's	Permit 7	Vehicle 11
	Type STP-4A	Single Thp Permit	185 k	Weight Table 4	In Tier-1, was used for Local Agency bridges only	Parmit /	Mahida 10
	Type BTP-4B	Single Trip Permit	150.5 k	Weight Table 6	In Tier-1, was used for Local Agency bridges only	Permit 6	Vetice To
Single Trip	Туре ВТР-БА	Single Trip Permit	162 5 k	Weight Table 6	In Tier-1, was considered representative of Weight Table 4	Permit 3	Venicle /
Permit Loads	Type STP-58	Single Trip Permit	988 k	Weight Table 5	Represents upper range of WT-5, heavy 8-axle group in 38 ft	-	-
	Type BTP-6C	Single Trip Permit	200 K	Weight Table 5 with Bonu	in Tier-1, was considered representative of Weight Table 5	Permit 4	Vehicle 8
	Tyme STP-58W	Single Trip Permit		Weigrics			

OREGON LOAD RATING TRUCKS - Load Rating Tier-2

Shading indicates the loadings to be investigated and reported for ODOT Tier-2 load ratings. The "Type 3-3 + Legal Lane" loading applies only to spans > 200 ft

LIVELOAD LEVELS OF SERVICE - Load Rating Tier-2

TYPE OF LOAD	Max. G.V.W.	WEIGHT TABLE	REPRESENTATIVE RATING TRUCKS
	80 k	Table 1	Types 3, 382, 3-3
Oregon Legal Loads Annual (Continuous Trip) Extended Weight Permit	105.5 k	Table 2 Table 3	Types CTP-2A, CTP-2B Type CTP-3
Annual (Continuous Trip) Heavy Hau Permit Single Trip Permits	228 k 266 k 304 k	Table 3 Table 4 Table 5	Type STP-3 Types STP-4A and STP-4B Types STP-5A, STP-5B, STP-5C, STP-5BW
Constant (moules epecific evaluation)		Beyond Table 5	-

Figure A3.4: ODOT load rating vehicle descriptions.

Figure A3.5: AASHTO notional rating loads (specialized hauling vehicles).

	owing ex	ceptior	ns apply	to the t	able of	weights	shown I	below:					
Exceptio	on 1: TY		cutive tan	dem axle	s may w	eigh up t	34,000 p	ounds ea	ch <u>if:</u>				
Minim	um Axle	Spacing	Require	d	int	erstate l	lighways		N	on-Inter	state Hig	inways	
	30 fe	et or mor	e			Permit R	equired			No Per	mit Requ	lend	
	36 fe	et or mor	e		N	o Permit	Required			No Per	mit Kequ		
Exception	on 2: A ha	group of ive a load	four axle ded weigl	s consisti ht of more	ng of a s than 65	et of tand ,500 pou	lem axles and up	and two a to 70,00	des spac O pounds	ed nine fi if:	eet or mo	vre apart	may
Minir	num Axle	Spacin	a Requir	ed	In	terstate	Highways		N	ion-inter	state Hig	hways	
	35 fe	et or mo	re			Permit R	equired		ļ	No Pe	mit Requ	lired	
	num axie	spacing	is the dist	tance bet	ween the	first and	last axle o	of any grou	up shown	above.			
			Number	of Axles	_		Wheelbase			Number	of Axles		
in Feat*	2	3	4	5	6	Or More	In Feat "	2	3	4	5	6	7 0- Mc
4	34,000	34,000	34,000	34,000	34,000	34,000	31	40,000	59,000	62,500	67,500	73,000	78.5
5	34,000	34,000	34,000	34,000	34,000	34,000	32	40,000	60,000	64.000	68.500	74,000	79,0
6	34,000	34,000	34,000	34,000	34,000	34,000	34	40,000	60,000	64,500	69,000	74,500	80,0
7	34,000	34,000	34,000	34.000	34,000	34,000	35	40,000	60,000	65,500	70,000	75,000	80,0
Over 8	38.000	42,000	42,000	42,000	42,000	42,000	36	40,000	60,000	66,000	70,500	75,500	80,0
9	39,000	42,500	42,500	42,500	42,500	42,500	37	40,000	60,000	66,500	71,000	70,000	80,0
10	40,000	43,500	43,500	43,500	43,500	43,500	38	40,000	60,000	68,000	72,500	77.500	80,0
11	40,000	44,000	44,000	44,000	50 000	50,000	40	40,000	60,000	68,500	73,000	78,000	80,0
12	40,000	45,000	50,500	50,500	50,500	50,500	41	40,000	60,000	69,500	73,500	78,500	80,0
14	40.000	46,500	51,500	51,500	51,500	51,500	42	40,000	60,000	70,000	74,000	79,000	80,0
15	40,000	47,000	52,000	52,000	52,000	52,000	43	40,000	60,000	70,500	75,000	80,000	80.0
16	40,000	48,000	52,500	58,000	58,000	58,000	44	40,000	60,000	72,000	76.000	80,000	80,0
17	40,000	48,500	53,500	58,500	59,000	59,000	46	40.000	60,000	72,500	76,500	80,000	80,0
18	40,000	49,500	54,500	60,000	60,000	60,000	47	40,000	60,000	73,500	77,500	80,000	80,0
20	40,000	51.000	55,500	60,500	66,000	66,000	48	40,000	60,000	74,000	78,000	80,000	80,0
21	40,000	51,500	56,000	61,000	66,500	66,500	49	40,000	60,000	74,500	78,500	80,000	80,0
22	40,000	52,500	56,500	61,500	67,000	67,000	50	40,000	80,000	76,000	80.000	80.000	80.
23	40,000	53,000	57,500	62,500	68,000	74 000	52	40,000	60,000	76,500	80,000	80,000	80,0
24	40,000	54,000	58,500	63,500	69.000	74,500	53	40,000	60,000	77,500	80,000	80,000	80,
26	40.000	55,500	59,500	64,000	69,500	75,000	54	40,000	60,000	78,000	80,000	80,000	80,
27	40,000	56,000	60,000	65,000	70,000	75,500	55	40,000	60,000	78,500	80,000	80,000	80
28	40,000	57,000	60,500	65,500	71,000	76,500	56	40,000	60,000	79,500	80,000	80.000	80.
29	40,000	57,500	61,500	86,000	71,500	77 500	mon	40,000		00,000			
27 28 29 30 The los weight	40,000 40,000 40,000 40,000 aded weig s shown a 0 The 600 20, 234	56,000 57,000 57,500 58,500 sht of any above or e manufa 0 pounda 000 pour	y group o any of the cturer's s per inch nds on ar	65,000 65,500 66,000 66,500 f axles, v e followin side wall t of tire with ty one ax	71,000 71,000 71,500 72,000 9 72,000 9 9 9 9 9 1 9 1 9 1 9 1 9 1 1 9 1 1 9 1 1 9 1 1 9 1 9 1 1 9 1 9 1 1 9 1 1 9 1 1 9 1 1 9 1 1 9 1 1 9 1 1 9 1 1 9 1 1 9 1 1 9 1 1 9 1 1 1 1 1 9 1 1 1 1 1 9 1 9 1 1 1 9 1	76,500 77,000 77,500 r combina but not t	ation of ve	40,000 40,000 hicles sha 300 pound a group o	60,000 60,000 all not exc ls per inc f axles.	79,500 80,000 ceed that	80,000 80,000 specified	80,000 80,000	able

Note exceptions 1 and 2 above.

735-8110 (8-02)

Distance measured to the nearest foot; when exectly 1/2 foot or more, round up to the next larger number.

Figure A3.6: Permit Weight Table 1 [Oregon Motor Carrier].

STK# 300557

MOTOR CARREE TRANSPORTATION 550 CAPTICL ST ME SALEM OR \$7301-2530	DIVISION	PER	MIT WE	IGHT TABLE	
 				·	
WHEELBASE	5 Axles	6 Axles	7 Axles	8 or More Axles	
47	77500	81000	81000	81000	
48	78000	82000	82000	82000	
49	78500	83000	83000	83000	
50	79000	84000	84000	84000	
51	80000	84500	85000	85000	
52	80500	85000	86000	86000	
53	81000	86000	87000	87000	
54	81500	86500	88000	91000	
 55	82500	87000	89000	92000	
56	83000	87500	90000	93000	
57	83500	88000	91000	94000	
58	84000	89000	92000	95000	
59	85000	89500	93000	96000	
60	85500	90000	94000	97000	
61	86000	90500	95000	98000	
62	87000	91000	96000	99000	
63	87500	92000	97000	100000	
64	88000	92500	97500	101000	
_ 65	88500	93000	98000	102000	
66	89000	93500	98500	103000	
67	90000	94000	99000	104000	
68	90000	95000	99500	105000	
69	90000	95500	100000	105500	
70	90000	96000	101000	105500	
71	90000	96500	101500	105500	
72	90000	96500	102000	105500	
73	90000	96500	102500	105500	
74	90000	96500	103000	105500	
75	90000	96500	104000	105500	
76	90000	96500	104500	105500	
77	90000	96500	105000	105500	
78	90000	96500	105500	105500	
See Wel	ght Table 1,	if using less	than five axle	s or 47 feet wheelbase.	

Figure A3.7: Permit Weight Table 2 [Oregon Motor Carrier].

Bundang	7/2	OREGON DEPARTMENT OF TRANSPORTATION MOTOR CARREE TRANSPORTATION DIVISION																	
CENCENCE 1 1	М	550 CA SALEN	PITOL : OR 97	87 NE 301-2530								3	}						
1 3 4 5 4 7 4 9 10 11 10	WHEELBASE		-																
	2 Anica	3 Axles	4 Antion	5 Axies	6 Axim	7 Azlen	e Arden	9 Azlea	10 Axian	11 Avler	12 Arim	13 Arian	14	15 Arlan	16 Avia	17	18	19	30
	4 43,000	43,000	43,000	43,000	43,000	43,000	43,00	43,00	43,000	43,000	43,000	43,000	43,000	43,000	43,000	43,000	43,000	43,000	43,000
1 1 0	<u>5 43,000</u> 5 43,000	43,000	43,000 43,000	43,000	43,000	43,000 43,000	43,000	<u>43,00</u> 43.00	43,000	43,000	<u>43,000</u>	43,000	43,000	43,000	43,000	43,000	43,000	43,000	43,000
Table 1100 TAULY 11000 TAULY 11000 TAULY	7 43,000	43,000	43,000	43,000	43,000	43,000	43,000	43,000	43,000	43,000	43,000	43,000	43,000	43,000	43,000	43,000	43,000	43,000	43,000
14.000 14.000<	OVERSIBU	43,000 T LIKSØ	THAN 6	ner)	43,000	43,000	43,000	43,000	43,000	43,000	43,000	43,000	43.000	43,000	43,000	43,000	43,000	43,000	43,000
0 0.000 0.0	43,000 -	48,000	48,000	48,000	48,000	48,000	48,000	48,000	48,000	48,000	48,000	48,000	48,000	48,000	48,000	48,000	48,000	48,000	48,000
11 14.00 1.000 1.000 1.000 1.000 51.000	10 43,000	50.000	50,000	50,000	50,000	50,000	50,000	50,000	50,000	50,000	80,000	50,000	50,000	50,000	50,000	49,000	49,000	49,000	49,000
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 43,000 1	51,000 53,000	51,000 52,000	51,000	51,000	51,000	51,000	51,000	51,000	51,000	51,000	51,000	51,000	51,000	51,000	51,000	51,000	51,000	\$2,000
11 11.10.00 14.000 <td>13 43,000 5</td> <td>53,000</td> <td>53,000</td> <td>53,000</td> <td>53,000</td> <td>53,000</td> <td>53,000</td> <td>53,000</td> <td>53,000</td> <td>53.000</td> <td>55,000</td> <td>53,000</td> <td>53,000</td> <td>53,000</td> <td>53,000</td> <td>53,000</td> <td>53,000</td> <td>53,000</td> <td>52,000 53,000</td>	13 43,000 5	53,000	53,000	53,000	53,000	53,000	53,000	53,000	53,000	53.000	55,000	53,000	53,000	53,000	53,000	53,000	53,000	53,000	52,000 53,000
18 0.000 54.000 74.000 <th74.000< th=""> <th74.000< th=""></th74.000<></th74.000<>	15 43,000 1	55,000	54,000 55,000	54,000	54,000	54,000	54.000	55,000	55,000	54,000 55.000	54,000 55,000	64,000 65,000	54,000	54,000	54,000	54,000	54,000	54,000	54,000
1 1	16 43,000 5	56,000	56,000	56,000	56,000	56,000	56,000	56,000	56,000	56,000	56,000	56,000	58,000	58,000	56,000	55,000	56,000	56,000	56,000
19 9 4.000 44.00 7	18 43,000 1	58,000	58,000	58,000	58,000	57,000	57,000	57,000	57,000 68,000	87,000 58,000	87,000 58,000	58,000	57,000 56.000	57,000	57,000	57,000 58,000	57,000 58 000	87,000	57,000
	19 43,000 6	54,500 ·	70,800	70,800	70,800	70,800	70,800	70,800	70,800	70,800	70,800	70,800	70,800	70,800	70,800	70,800	70,800	70,800	70,800
21 31<	21 43,000 (54,500	73,200	73,200	73,200	73,200	73,000	73,200	73,200	73,200	73,000	73,000	73,000	73,000	73,000	73,000	73,000	73,000	73,000
	22 43,000 6	54,500 °	74,400	74,400	74,400	74,400	74,400	74,400	74,400	74,400	74,400	74,400	74,400	74,400	74,400	74,400	74,400	74,400	74,400
31 41.000 41.000 71.000	24 43,000 6	54,500	76,800	76,800	76,800	76,800	75,800	75,800	75,600	75,600	75,600	75,600	75,600	75,600	75,600	75,800	75,800	75,600	75,600
	25 43,000 6	54,500	78,000	78,000	78,000	76,000	78,000	78,000	78,000	78,000	78,000	78,000	78,000	78,000	78,000	78,000	78,000	_78,000	_78.000
28 41.000 61.000 81.000	27 43,000 6	54,500	80,400	80,400	80,400	80,400	80,400	80,400	80,400	79,200 80,400	80,400	79,200	79,200 80,400	79,200	79,200 80.400	79,200	79,300	79,200	79,200
31 31<	28 43,000 6	54,500 (54,500 (91, 600	81,600	81,600	81,600	81,600	81,600	81,600	81,600	81,600	81,800	81,600	81,600	81,600	81,600	61,600	81,600	51,600
11 14,200 64,000 64,000	30 43,000 6	54,500 a	4,000	84,000	84,000	84,000	84,000	84,000	84,000	84,000	82,900 84,000	82,800 84,000	82,800 84,000	82,600 84,000	82,800	82,800	82,800 84.000	#2,800	82,800
3 44.000 64.500 84.000	31 43,000 6	54,500 i 54,500 i	16,200 M. 000	85,200	85,200	85,200	85,200	86,200	85,200	85,200	86,200	85,200	\$6,200	85,200	65,200	85,200	85,200	\$5,200	85,200
34 45.000 64.000	33 43,000 6	54,500	6,000	87.800	\$7,800	87,600	87,600	87,600	87,800	87,800	87,800	87,800	85,400	85,400 87,800	85,400 87,600	86,400 87,800	86,400 87,800	86,400	86,400 87,600
31 31 <th< td=""><td>34 43,000 6 35 43,000 6</td><td>54,500 (54,500 (</td><td>56,000 16,000</td><td>86,800</td><td>88,800</td><td>86,800</td><td>86,800</td><td>85,800</td><td>85,800</td><td>88,800</td><td>86,800</td><td>88,800</td><td>85,800</td><td>88,800</td><td>85,800</td><td>88,800</td><td>85,800</td><td>88,800</td><td>86,800</td></th<>	34 43,000 6 35 43,000 6	54,500 (54,500 (56,000 16,000	86,800	88,800	86,800	86,800	85,800	85,800	88,800	86,800	88,800	85,800	88,800	85,800	88,800	85,800	88,800	86,800
77 74.000 94.400 94.400 94.400 94.400 94.400 94.400 94.400 94.400 94.400 94.400 94.400 94.400 94.400 94.400 94.400 94.400 94.400 94.400 94.800	36 43,000 6	H,500 (6,000	91,200	91,200	91,300	91,200	91,200	91,200	91,200	91,200	91,200	91,200	91,200	90,000 91,200	90,000 91,200	90,000	90,000	90,000
36 45:00 91:800	37 43,000 E	14,500 (14,500 (16,000 16,000	92,400 93,600	92,400	92,400	92,400	92,400	93,400	92,400	92,400	92,400	92,400	92,400	92,400	92,400	92,400	92,400	92,400
41 45.000 84.000	39 43,000 6	4,500 8	6,000	94,800	94,800	94,800	94,800	94,800	94,800	94,800	94,800	94,800	94,800	94,800	94,800	94,800	93,800 94,800	93,600 94,600	93,800 94,800
41 41.3000 64.500 86.400 98.400 108.400	40 43,000 6	14,500 8 14,500 8	16,000 16,000	96,000	96,000	96,000	95,000	96,000	96,000	96,000	95,000	96,000	96,000	96,000	96,000	96,000	96,000	96,000	98,000
51 51 500 64,500 64,600 64,600 96,600 96,600 96,600 96,600 96,600 96,600 96,600 96,600 96,600 96,600 96,600 96,600 96,600 96,600 96,600 96,600 96,600 96,600 100,800<	42 43,000 6	4,500	6,000	98,400	98,400	98,400	98,400	96,400	98,400	96,400	98,400	96,400	98,400	98,400	97,200	97,200 98,400	97,300 98,400	97,200 98,400	97,200 98,400
45 45:000 81:000 102:0	43 43,000 6	14,500 8 14,500 8	16,000 16,000	99,600	99,600	99,600 100,800	99,600	99,600	99,600	99,600	99,600	99,600	99,600	98,600	99,600	99,600	99,600	99,600	99,600
49 45,000 84,000 105,200 <t< td=""><td>45 43,000 6</td><td>4,500 8</td><td>8,000</td><td>102,000</td><td>102,000</td><td>102,000</td><td>102,000</td><td>102,000</td><td>102,000</td><td>102,000</td><td>102,000</td><td>102,000</td><td>102,000</td><td>102,000</td><td>102,000</td><td>102,000</td><td>100,800</td><td>100,800</td><td>100,800</td></t<>	45 43,000 6	4,500 8	8,000	102,000	102,000	102,000	102,000	102,000	102,000	102,000	102,000	102,000	102,000	102,000	102,000	102,000	100,800	100,800	100,800
44 45.000 45.00 85.000 105.000	45 43,000 8	4,500 8 4,500 8	8,000	103,200	103,200	103,200	103,200	103,200	103,200	103,200	103,200	103,200	103,200	103,200	103,200	103,200	103,200	103,200	103,200
••••••••••••••••••••••••••••••••••••	48 43,000 8	4,500 8	6,000	106.600	105,800	105,800	106,600	105,000	105,600	105,000	105,800	105,600	105,600	105,600	105,600	105,600	106,600	105,600	104,400
51 45,000 45,000 45,000 45,000 45,000 45,000 45,000 45,000 45,000 45,000 45,000 45,000 45,000 45,000 45,000 106,200 <td>50 43,000 6</td> <td>-,500 g 4,500 g</td> <td>6,000</td> <td>105,800</td> <td>108,000</td> <td>106,800</td> <td>105,800</td> <td>105,800</td> <td>106,800</td> <td>105,800</td> <td>106,800</td> <td>106,800</td> <td>106,800</td> <td>106,800</td> <td>106,800</td> <td>105,800</td> <td>106,800</td> <td>108,800</td> <td>106,800</td>	50 43,000 6	-,500 g 4,500 g	6,000	105,800	108,000	106,800	105,800	105,800	106,800	105,800	106,800	106,800	106,800	106,800	106,800	105,800	106,800	108,800	106,800
43.000 44.500 86.000 107.500 110.400 1	51 43,000 6	4,500 8	6,000	107,500	109,200	109,200	109,200	109,200	109,200	109,300	109,200	109,200	109,200	109,200	109,200	109,200	109,200	109,200	109,200
44 45:00 84:000 112,800 <td< td=""><td>53 43,000 6</td><td>4,500 8</td><td>6,000</td><td>107,500</td><td>111,600</td><td>111,600</td><td>111.600</td><td>110,400</td><td>110,400</td><td>110,400</td><td>110,400</td><td>110,400</td><td>110,400</td><td>110,400</td><td>110,400</td><td>110,400</td><td>110.400</td><td>110,400</td><td>110,400</td></td<>	53 43,000 6	4,500 8	6,000	107,500	111,600	111,600	111.600	110,400	110,400	110,400	110,400	110,400	110,400	110,400	110,400	110,400	110.400	110,400	110,400
643.000 645.000 865.000 117.000 114.000 116.000 <t< td=""><td>54 43,000 84</td><td>4,500 8</td><td>6,000</td><td>107,500</td><td>112,800</td><td>112,800</td><td>112,800</td><td>112,800</td><td>112,800</td><td>112,800</td><td>112,800</td><td>1 12,600</td><td>112,800</td><td>112,800</td><td>112,800</td><td>112,600</td><td>112,800</td><td>112,800</td><td>112,800</td></t<>	54 43,000 84	4,500 8	6,000	107,500	112,800	112,800	112,800	112,800	112,800	112,800	112,800	1 12,600	112,800	112,800	112,800	112,600	112,800	112,800	112,800
57 93.000 94.500 85.000 107.500 116.400 <td< td=""><td>56 43,000 6</td><td>4,500 8</td><td>6.000</td><td>107,500</td><td>115,200</td><td>115,200</td><td>115,200</td><td>115,200</td><td>115,200</td><td>115,200</td><td>114,000</td><td>114,000</td><td>114,000</td><td>114,000</td><td>114,000</td><td>114.000</td><td>114.000</td><td>114,000</td><td>114,000</td></td<>	56 43,000 6	4,500 8	6.000	107,500	115,200	115,200	115,200	115,200	115,200	115,200	114,000	114,000	114,000	114,000	114,000	114.000	114.000	114,000	114,000
643.000 645.000 107.500 117.600 121.200 121.200	57 43,000 64	4,500 a	6,000	107,500	116,400	116,400	116,400	116,400	116,400	116,400	116,400	1 16,400	116,400	116,400	1 16,400	116,400	1 16,400	116,400	116,400
90 43.000 64.500 85.000 107.500 120.000 <td< td=""><td>59 43,000 6</td><td>4,500 8</td><td>6.000</td><td>107,500</td><td>118,800</td><td>1 18,800</td><td>118,800</td><td>118,800</td><td>117,800</td><td>118,800</td><td>117,600</td><td>117,600 118,800 :</td><td>117,600</td><td>117,800</td><td>117,800</td><td>117,600</td><td>117,600</td><td>117,600</td><td>117,600</td></td<>	59 43,000 6	4,500 8	6.000	107,500	118,800	1 18,800	118,800	118,800	117,800	118,800	117,600	117,600 118,800 :	117,600	117,800	117,800	117,600	117,600	117,600	117,600
23 43,000 64,500 86,000 107,500 123,400 124,400 <td< td=""><td>50 43,000 64 61 43,000 A</td><td>4,500 8</td><td>6,000 6,000</td><td>107,500</td><td>120,000</td><td>120,000</td><td>120,000</td><td>120,000</td><td>120,000</td><td>120,000</td><td>120,000</td><td>120,000</td><td>20,000</td><td>120,000</td><td>120,000</td><td>120,000</td><td>120,000</td><td>120,000</td><td>120,000</td></td<>	50 43,000 64 61 43,000 A	4,500 8	6,000 6,000	107,500	120,000	120,000	120,000	120,000	120,000	120,000	120,000	120,000	20,000	120,000	120,000	120,000	120,000	120,000	120,000
SS 43,000 64,500 85,000 107,500 123,600 124,600 124,600 124,600 124,600 124,600 124,600 124,600 124,600 124,600 124,600 124,600 124,600 124,600 124,600 124,600 124,600 124,600 126,000 126,000 126,000 126,000 126,000 126,000 126,000 126,000 126,000 126,000 126,000 126,000 126,000 126,000 127,200	62 43,000 64	4,500 8	8,000	107.500	122,400	122,400	122,400	122,400	122,400	122,400	122,400	121,200 1 122,400 1	121,200	121,200 122,400	121,200	121,200 122,400	121,200	121.200	121.200
83,000 84,500 86,000 107,500 128,000	83 43,000 64 64 43,000 84	4,500 a	8,000 5,000	107,500	123,800	123,600	123,600	123,600	123,600 I 124,800 I	123,600	123,600	123,600	23,600	123,600	23,600	123,600	123,600	123,600	123,600
36 45,000 64,500 86,000 107,500 127,200 <td< td=""><td>5 43,000 54</td><td>4,500 a</td><td>5,000</td><td>107,500</td><td>126,000</td><td>126,000</td><td>126,000</td><td>126,000</td><td>126,000</td><td>126,000</td><td>126,000</td><td>126,000</td><td>26,000</td><td>126,000</td><td>126,000</td><td>124.800</td><td>124,800 : 126,000 :</td><td>124,800</td><td>124,800</td></td<>	5 43,000 54	4,500 a	5,000	107,500	126,000	126,000	126,000	126,000	126,000	126,000	126,000	126,000	26,000	126,000	126,000	124.800	124,800 : 126,000 :	124,800	124,800
38 43,000 64,500 107,500 128,0	56 43,000 64 67 43,000 f4	4,500 a 4,500 A	6.000 : 5.000 :	107,500	127,200	127,200	127,200	127,200	127,200	127,200	127,200	127,200	27,200	27,200	27,200	127.200	127,200	127,200	127,200
99 43,000 84,500 86,000 107,500 130,80	58 43.000 64	4,500 B	6,000	107,500	129,000	129,600	129,600	129,600	129,600	29,600	129,800	129,600) 129,600)	29,600	29,600	28,400	128,400	128,400 (129,600)	128,400	128,400
OISTANCE MEASURED TO THE NEAREST FOOT. WHEN EXACTLY 1/2 FOOT OR MORE, ROUND UP TO THE NEXT LARGER NUMBER EXECUTION OF THE STANCE MEASURED TO THE NEAREST FOOT. WHEN EXACTLY 1/2 FOOT OR MORE, ROUND UP TO THE NEXT LARGER NUMBER EXECUTION OF THE STANCE MEASURED TO THE NEAREST FOOT. WHEN EXACTLY 1/2 FOOT OR MORE, ROUND UP TO THE NEXT LARGER NUMBER EXECUTION OF THE STANCE MEASURED TO THE NEAREST FOOT. WHEN EXACTLY 1/2 FOOT OR MORE, ROUND UP TO THE NEXT LARGER NUMBER EXECUTION OF THE STANCE MEASURED TO THE NEAREST FOOT. WHEN EXACTLY 1/2 FOOT OR MORE, ROUND UP TO THE NEXT LARGER NUMBER	39 43,000 64 70 43,000 A4	1,500 a	6,000 (5.000 (107,500	129,000	130,800	130,800	130,800	130,800	30,800	130,800	130,800	30,800	30,800	30,800	130,800	130,800	130,800	130,800
O DISTANCE MEASURED TO THE NEAREST FOOT. WHEN EXACTLY 12 FOOT OF MORE, ROUND UP TO THE NEXT LARGER NUMBER .											.34,000	134,000 }	32,000	132,000	32,000	132,000	132.000	133,000	133,000
	8112 (10-99)		• •	NSTANCE	MEASUR	ED TO THE	NEARES	FOOT. W	HEN EXAC	TLY 1/2 F	OOT OR N	IORE, ROU	ND UP TO	THE NEXT	LARGER	NUMBER	•	Ci P	# 300559

Figure A3.8: Permit Weight Table 3 [Oregon Motor Carrier].

- [WHE	ELBASE										-									_
1		2	3	4	5	6	7	6		10	11	12	13	14	15	16	17	18	10	30	
		Axies	Axies	Axies	Axies	Axies	Axies	Axies	Axios	Axica	Axles	ı Axles	Axies	Axies	Axice	Anies	Aules	Axles	Azles	Axies	
	71	43,000	64,500	86,000	107,500	129,000	133,200	133,200	133,200	133.200	133,200	133,200	133,200	133,200	133,200	133,200	133.200	133.200	133,200	133,200	
	72	43,000	64,500	86,000	107,500	129,000	134,400	134,400	134,400	134,400	134,400	134,400	134,400	134,400	134.400	134.400	134.400	134 400	154 400	134 400	
1	73	43.000	64.500	86,000	107.500	129,000	135,600	135,600	135,600	135.600	135.600	135.600	135,600	135,600	135 800	135 600	135 600	195 440	100,000	1.54,400	
1	74	43,000	64,500	86,000	107.500	129.000	136.800	136,800	138,800	136.600	138.800	135.800	134 400	134 800	136 600	138 800	190,000	100,000	135,600	135,000	
1	75	43.000	64.500	86,000	107.500	129.000	136.000	156.000	136.000	134.000	134 000	198.000	100,000	199,000	100,000	136,000	130,800	136,800	136,800	136,800	
ł	76	43,000	64 500	84,000	107 500	120.000	1 30 000	130.000	130,000	190,000	100,000	136,000	138,000	138,000	136,000	136,000	136,000	138,000	136,000	138,000	
	77	43,000	64 500		107.500	120,000	130,200	140,200	140,200	138,200	139.200	139,200	139,200	139,200	139,200	139,200	139,300	139,200	139,200	139,200	
Т		40,000		00,000	107,000	120,000	140,400	140,400	140,400	140,400	140,400	140,400	140,400	140,400	140,400	140,400	140,400	140.400	140,400	140,400	
Т	/8	43,000	006,300	86,000	107,800	129,000	141,000	141,600	141,600	141,600	141,600	141,600	141,600	141,600	141,600	141,800	141.600	141.600	141,800	141,600	
Т	79	43,000	64,500	86,000	107,500	129.000	143,800	142,800	142,800	142,800	142,800	142,800	142,800	142,800	142,800	142,800	142,800	142,800	142,800	142,800	
L	80	43,000	64,500	86,000	107,500	129,000	144.000	144,000	144.000	144,000	144,000	144,000	144,000	144,000	144.000	144.000	144.000	144.000	144.000	144.000	
	61	43,000	64,500	86.000	107,500	129.000	145,200	145,200	145,200	145,200	145,200	145.200	145,200	145,200	145,200	145,200	145 200	145 200	145 300	145,000	
	82	43,000	64,500	86,000	107,500	129,000	146.400	146.400	146.400	146.400	146.400	145 400	146 400	148 400	148 400	146 400	148 400	144,400	1	140,200	
	83	43.000	64.500	86.000	107.500	129.000	147.000	147 600	147 800	147 800	147 800	147.000	147.000	147.000	140,400	140,400	140,400	140,400	140,400	146,400	
T	84	43.000	64.500	86.000	107 500	190,000	148 800	148 800	148 800	140,000	148.000	1 40 000	147,000	147,000	147,000	147,000	147,800	147,600	147,600	147,800	
1		43,000	84 500		107 500		140,000	140,000	140,000	140,000	140,000	148,800	146,800	148,800	148,800	146,800	148,800	146,600	146,800	148,800	
ł		48,000			107,300	129,000	130.000	130,000	180,000	130,000	180,000	150,000	150,000	150,000	150,000	150,000	150,000	150.000	150,000	150,000	
		43,000	84,800	80,000	107.800	129,000	150,500	191,300	151,200	151,200	151,200	151.200	151,200	161.200	151,200	151.200	181,200	151,200	151,200	151,200	
T	8/	43,000	64,200	86,000	107,500	129,000	150,500	152,400	152,400	152,400	152,400	152,400	152,400	152,400	152,400	152,400	152,400	152,400	152,400	152,400	
	86	43,000	64,500	86,000	107,500	129,000	150,500	153,600	153,600	153,600	153,600	153,600	153,600	153,600	153,600	153,600	153,600	155.600	153,800	153,600	
	89	43,000	64,500	86,000	107,500	129,000	150,500	154,800	154.800	154,800	154.800	154,800	154,800	154,800	154.800	164.800	154,800	154.800	154.800	154,800	
	- 90	43,000	64,500	86,000	107,500	129.000	150.500	156,000	156,000	156,000	156,000	156,000	156,000	156.000	155,000	156.000	156.000	156.000	155.000	155.000	
ſ	91	43,000	64,500	86,000	107,500	129,000	180,500	157,200	157,200	167.200	157,300	157.200	157.200	157.200	157.200	157.200	167 200	157 300	167.000	100,000	
	92	43,000	64,500	86,000	107,500	129.000	150.500	156.400	155.400	158,400	158 400	158.400	158.400	158 400	158 400	150 400	150 400	100,000	107,200	137,200	
Т	93	43.000	64.500	86.000	107.500	129 000	150 500	159 600	159 600	150 800	150 800	150 000	150 000	100,100	100,400	100,400	108,400	128,900	156,400	158,400	
I.	94	43.000	64 500	86 000	107 500	129.000	150 500	100 000	100.000	100,000	100,000	100,000	100,000	100,000	130,000	198,000	199,000	128,000	126,600	159,800	
L	at	43 000	64,500	86,000	107 500	130,000	150 500	100,000	182 000	100,000	100,000	100,800	100,800	180,800	180,800	160,800	180,800	160,800	160,600	160,800	
H	~~	43 000			107.000		100.000	104.000	104.000	102,000	102.000	1611.000	162,000	162,000	162.000	162,000	162,000	162.000	162.000	162,000	
ł	30 	-3,000	04,000		107,300	149,000	130,500	163,200	163.200	163,200	163,200	163,200	163,200	163,200	163,200	163,200	163,200	163,200	163,200	163,200	
1	97	43,000	04,500	e6,000	107,500	129.000	150,500	164,400	164,400	164,400	164,400	164,400	164,400	164,400	164,400	164.400	164,400	164.400	164.400	164,400	
	98	43,000	64,500	85,000	107,500	129,000	150,500	165,600	165,600	165,600	165,600	165,600	165,600	165,600	165,600	165,600	165,600	166.600	165,600	186.600	
Т	98	43,000	64,500	86,000	107,500	129,000	150,500	166,800	166,800	166,600	166,800	166,800	166,800	166,800	166.800	165,800	166.800	166 800	186.800	185 800	
L	100	43,000	64,500	86,000	107,500	129,000	150,500	166,000	166,000	166,000	166,000	166,000	166.000	166.000	166.000	158.000	166.000	168.000	168.000	168.000	
L	101	43,000 (64,500	86,000	107.500	129,000	150,500	169,200	189,200	169,200	109,200	169,200	169.200	169,200	189,200	169.200	169 200	169 200	160 000	100,000	
I.	102	43,000	64,500	86,000	107,500	129,000	150,500	170,400	170.400	170,400	170.400	170 400	170,400	170 400	170 400	170 400	170 400	170 400	190 400	100,100	
Ł	103	43,000	64,500	86,000	107,500	129,000	150.500	171.600	171.600	171.600	171.600	171.600	171.600	171 800	171 600	171 600	171 600	171 800	170,400	170,400	
L	104	43,000	64,500	86.000	107,500	129,000	150.500	172.000	172.800	172,800	172 800	172.600	172 800	177 800	177 800	100.000	190 000	100.000	171,000	171,000	
Ł	105	43,000	64.500	86,000	107.500	129,000	150,600	172,000	174.000	174.000	174.000	174.000	174.000	174.000	174 000	174.000	174,000	172,000	172,800	172,800	
t	106	43,000	64.500	86,000	107.500	129,000	150.500	172.000	175.200	175.200	175 200	175.200	175 200	176 200	176 200	174,000	174,000	174,000	174,000	174,000	_
L	107	43,000 (94.500 (000.86	107.500	129,000	150,500	172.000	178.400	176 400	176 400	176 400	176 400	176 400	176,200	175,200	175,200	175,200	175,200	175,200	
ł.	106	43,000	54 500	86,000	107 500	129.000	150 500	172 000	177 800	177 800	177 800	170,400	170,400	1/6,400	176,400	170,400	176,400	176,400	176.400	176,400	
Ł	109	43.000	84 500	86,000	107 500	120,000	150 500	173.000	178 800	170.000	100.000	177,000	177,000	177,000	177,000	177,000	177,000	177,800	177,800	177,600	;
Ł	110	43,000 0	54 500	86.000	107 500	100.000		170.000	1104000	170,000	170,800	110,000	178,800	176,800	178,800	174,800	178,800	178,800	178,800	178,800	
F	111	49,000 4	H 500 I		107,500	120.000	150,500	172,000	180,000	180,000	180,000	180,000	180,000	180,000	180,000	180,000	180,000	180,000	180,000	180,000	
L		43,000 0	4 500		107.300	140,000	130,300	172,000	161,200	191.200	181,200	181,200	181.200	181,200	181.200	181,200	181,200	181,200	181,200	181,200	
L		43,000 0	94,000 I	86,000	107,300	129,000	130,800	172,000	182,400	182,400	182,400	182,400	182,400	182,400	182,400	183,400	183,400	182,400	183,400	182,400	i
L	113	43,000 0	94,800 1	86,000	107,500	120,000	150,500	172,000	183,800	183,800	183,600	183,800	183,600	183,600	183,600	183,600	183,600	183,600	183,800	183,600	
L	114	43,000 8	M.500 4	56,000	107,500	129,000	150,500	172,000	184,800	184,800	184,800	164,800	184,800	184,800	184,800	184.800	184,800	164,800	154.800	184.800	
F	115	43,000 0	M,500 8	96,000	107.500	129,000	150,500	172,000	186,000	186,000	186,000	186,000	186,000	186,000	186,000	186,000	186,000	186,000	186,000	186.000	
L	116	43,000 0	H,500 I	96,000	107,500	129,000	150,500	172,000	187.200	187,200	187.200	187.200	187,200	187,200	187,200	187,200	187.200	187.200	187.200	187 200	-
L	117	43,000 6	54,500 1	86,000	107,500	129,000	150,500	172,000	188,400	188.400	186,400	166,400	188,400	188,400	188,400	168,400	188,400	188,400	188,400	188.400	
Ł	118	43,000 €	54,500 A	86,000	107,500	129,000	150,500	172,000	189,600	189,600	199,800	189,600	189,600	189,600	189,600	189.800	189,600	189.600	189.600	189,600	
L	119	43,000 6	H,500 (96,000	107,500	129,000	150,500	172,000	190,800	190,800	190.800	190,800	190.800	190.800	190,800	190,800	190.800	190 800	100 800	100,000	
L	120	43,000 6	H.500 8	96,000	107,500	129,000	150,800	172,000	192.000	192.000	192,000	192,000	192,000	192.000	192.000	192,000	192.000	192 000	192 000	100.000	
	121	43,000 6	H.500 8	96,000	107,500	129,000	50,500	172,000	93,200	193,200	193,200	193,200	193.200	193,200	193 200	193,200	193 200	103 300	108.000	192,000	-
1	122	43,000 6	H.500 8	96,000	107,500	129,000	150,500	173,000	193,500	194.400	194,400	194.400	194.400	194.400	194.400	194 400	104 400	193,200	193.200	180,200	
L	123	43,000 6	H,500 e	96,000	107,500	29.000	50,500	172.000	193,500	195.600	195,600	195,600	195,600	195.600	195 600	195 400	105 600	104,400	194.400	194,400	
	124	43,000 6	4.500	6.000	107.500	129.000	50.500	172.000	103 500	196.000	196.600	104 800	196 800	106 000	100.000	100,000	190,000	190,000	190,000	190,000	
1	125	43.000 6	4.500	16.000	107.500	29.000	50 500	72.000	03 500	198 000	108.000	104 000	100.000	100,000	100,000	190,800	196'900	190,800	190,800	196,800	
۲	126	43.000 4	4.500	6.000	07.500	29.000	50.500	172.000	01 600	199.900	100.000	100 000	100.000	100.000	100.000	198,000	136,000	198,000	198,000	196,000	
L	127	43.000 4	4.500	16.000	107 500	129.000	50 500	172 000	03 644		100.200	100,000	100,200	199,200	194,200	198,200	198,200	198,200	199,200	99,200	1
1	128	43,000 -	4,500 4		07 500	129.000	50 500	72 000	00,000			200,400	200,400	200,400	200,400	200,400	200,400	200,400	200,400 2	200,400	
L	190	40,000 0	H,000 E		07.000	100.000	00,800	174,000	33,500	201,600	201,600	201,600	201,600	201,800	201,600	201,600	201,800	201,600 ;	201,600 2	601,600	
Ł	13.0	-3,000 6	n,500 8	0,000	107,500	129,000)	50.500	172.000	93,500	202.600	202,800	202,800	202,800	202.800	202,800	202,800	202,800	202,800	202,800 2	102,800	
⊢	130	43,000 6	4,500 8	6,000	107,500 1	29,000	50,500	172,000	93,500	204.000	204,000	204,000	204.000 2	204,000	204,000	204,000	204,000	204,000 :	204,000	04.000	- 1
	131	43,000 6	4,500 8	16,000	107.500	129,000	50,500	172,000	93.500	205,200	205,200	206,200	205,200	205,200	205,200	205,200	206,200	205,200	205.200 2	06.200	-
	132	43,000 6	4,500 8	15,000	07,500	129,000 1	50,500	172.000	93,500	206,400	206,400	206,400	206,400 3	206,400	205,400	206,400	206.400	206.400	206 400 2	06 400	
	133	43,000 0	4,500 6	6,000	07,500 1	29,000 1	50.500	172,000 1	93,500	207.600 2	207,600	207,600	207,600 2	207,600	207.600	207.600	207.600	207.600	207 800 2	07 600	- 1
	134 -	43,000 6	4,500 8	6,000	07,500 1	29,000 1	50,500	172,000 1	93,500	208.800 2	005,800	206,800	205.600 2	206.800	206.800	205.800	206.800	208.800 5			
	135	43,000 6	4,500 8	6,000 1	07,500 1	29.000 1	50,500	72,000 1	93,500	210,000 :	10,000	210,000	210.000	10.000	210.000	210.000	210.000	210,000		00,000	
1	136	43,000 6	4,500 8	6,000	07.500 1	29,000	50,500	72,000 1	93,500	211,200 2	11,200	211,200	311,200 1	11,200	211.200	211,200	211 200	211 200 5	111 200 2	11 900	-1
	137	43,000 6	4,500 8	6,000 1	07,500 1	29,000 1	50,500	72,000 1	93,500	112,400 2	12,400	312,400	212,400 1	112,400	212.400	212 400	212 400	212 400 2	117 400 7	12 400	1
ł	136	43,000 6	4,500 8	6,000 1	07,500 1	29,000	50,500	72,000	93,500	13,600 2	113,600	213,600	213,800 2	13,600	213.600	13.600	13,600	113 400 4		13,400	- 1
Ľ	139	43.000 6	4,500 8	6,000 1	07.500 1	29,000 1	50,500 i	72,000	93,500	114,800	14,800	214,800	214,800	14.800	214,800	214.000	14,000	11.000 Z	14 800 2	13,000	- 1
	140	43,000 6	4,500 8	6,000 1	07,500 1	29,000 1	50,500	72,000	93.500	115,000	16,000	216.000	216.000	18.000	216,000	18,000	10,000	ai 1.000 2	14.000 2	14,000	1
	141	43,000 6	4,500 8	6,000 1	07.500 1	29,000 1	50,500 1	72,000	93,500	115.000 1	17,200	217.200	217.200	17.200	217 900	119 000 1			10,000 2	16,000	_
	142	43,000 6	4,500 a	6,000 1	07,500	29,000	50.500	72.000	93.500	15.000	18.400	218 400	218 400 -	18400	18400	110.400	17.200	417.200 2	17,200 2	17,200	I
	143	13,000 B	4,500 8	6,000	07,500	29.000	50,500	72.000	83.500	115,000	19,600	210,000	10,700 2	10,100 2			10,400	18,400 2	14,400 2	18,400	- 1
	144	13.000 A	4.500	6.000 1	07.500	29.000 1	50.500	72.000	93.500	15.000		220 800	220 800 2	190000		118,000 2	18,600	19,600 2	19,600 2	19,800	1
	145	13,000 4	4.500 0	6.000	07.500	292.000 1	50.500	72,000 1	93,500 1	15 000 2	199 000 i		ayu,000 2	40,000 \$	420,800 2	40,600 2	20,000	240,600 2	20,800 2	20,800	1
-	146	13.000 4	4.500	6.000	07.500	39.000 1	50 600	73.000	03 500					22,000 2	424.000	22,000 2	22,000	22,000 2	22.000 2	22,000	
	147	13 000 4	4.500 -	6.000	07 600	19.000	50 500 1	73,000 1			140,200 (223,200 2	23,200 2	43,200 2	43,200 2	23,200 2	23,200 2	23,200 2	23,200 2	23,200	Т
	148	13.000 4	4 500 0	6000 1	07 800 1	20,000 1	50,500 1	70,000 1		10.000 2	644,400	4,400 \$	64,400 2	34,400 3	624,400 2	24,400 2	24,400 1	24,400 2	24,400 2	24,400	
	140	13 000 4-	1,000 0	6.000	07 500 1	20.000 1		70,000 1	-3,800 3	10,000 2	45,000	25,600 2	22,600 2	25,600 2	25,600 2	25,600 2	25,600	225,600 2	25,600 2	25,600	
	150	13.000 -	4 500 0	A 000 -	07 800 1		50,000 I	78,000 1		10,000 2	46,800	r#6,800 2	646,800 2	26,800 2	736,800 2	26,800 2	26,800	226,800 2	26,800 2	25,800	
					07,000 1	1,000 1	94900 1	72,000 1	w3.500 2	10,000 2	28,000	728,000 2	28,000 2	28,000 2	228,000 2	28,000 2	28,000 2	28,000 2	28,000 2	28,000	1
						MC ANIM			-					-							┛
				•						THE LAS	*******Z			WHE OF 1	V THE NED	I LARGE	K NUMBEI	T 🛡 👘			

Figure A3.8 (Continued): Permit Weight Table 3 [Oregon Motor Carrier].

1		OREC MOTO 550 C	ION DEP DR CARR APITOL :	VARTMENT UER TRAM ST NE	OF TRAN	ISPORTAT	non Hon		PE	RM	IT V	VEI	GH.	Т Т/	ABL	.E			
1	2	SALE	M OR 97.	301-2530								4	ŀ						
WH	ELBASE	-									<u> </u>								
	2	3	4	5		7		9	10	11	12	13	14	15	16	17	18	19	20
۰ ا	Axles 43.000	Axie 43.000	Ardena 43.000	Axies () 43.000	Axies 43.000	: Axies 43.000	Axies 43.000	Axies 43.000	Azles 43.000	Axies 43.000	Axles 43.000	Axles 43.000	Axies	Axies	Azles	Axles	Axies	Azias	Attes
5	43,000	43,000	43,000	43,000	43,000	43,000	43,000	43,000	43,000	43,000	43,000	43,000	43,000	43,000	43,000	43,000	43,000	43,000	43,000
67	43,000	43,000	43,000 43,000) 43,000) 43,000	43,000	43,000	43,000	43,000	43,000	43,000	43,000	43.000	43,000	43,000	43,000	43,000	43,000	43,000	43,000
8	43,000	43,000	43,000	43,000	43,000	43,000	43,000	43,000	43,000	43,000	43,000	43,000	43,000	43,000	43,000	43,000	43,000	43,000	43,000
°	/ER 6' (Bi 43.000	57.800	8 THAN 57.600	816")) 57.600	57.600	57.600	57.600	57.600	57.600	67 600	57 800	67.600	57 800	57.80					
	43,000	58,800	58,800	58,800	58,800	58,800	58,800	58,800	58,800	58,800	58,800	58,800	58,800	58,800	58,800	58,800	57,600 58,800	56,800	55,800
10	43,000	60,000	60,000	60,000	80,000	60,000	60,000	60,000	60,000	60,000	60,000	60,000	60,000	60.000	60,000	60,000	80,000	60,000	60,000
12	43,000	62,400	62,400	62,400	62,400	62,400	62,400	62,400	62,400	62,400	62,400	62,400	62,400	61,200	61,200	61,200	61,200	61,200	61,200 62,400
13	43,000	63,600	63,600	63,600	63,600	63,600	63,600	63,600	63,600	63,600	63,600	63,600	63,600	63,600	63,600	63,600	63,800	63,600	63,600
15	43,000	64,500	66,000	66,000	65,000	66,000	66,000	65,000	66,000	66,000	85,000	66,000	66,000	66,000	86,000	66,000	86,000	64,800	64,800 66,000
16	43,000	64.500	67,200	67,200	67,200	67,200	67,200	67,300	67,200	67,200	67,200	67,200	67,200	67,200	\$7,200	87,200	67,200	67,200	67,200
18	43,000	64,500	69,600	69,600	69,600	69,600	69,600	69,600	69,600	69,600	69,600	69,600	69,600	69,600	69,600	66,400	86,400 89,800	88,400	66,400 69,600
19	43,000	64,500 64 500	82,800	82,600	82,800	82,600	82,600	82,600	82,600	82,800	62,600	82,600	82,800	82,600	82,600	82,600	82,600	82,600	82,800
21	43,000	64,500	85,400	85,400	85,400	85,400	85,400	85,400	85,400	85,400	85,400	85,400	85,400	84,000	85,400	84,000	84,000	84,000	84,000
22	43,000	64.500	86,000	86,800	86,800	86,800	85,800	86,800	86,800	86,800	86,800	86,800	85,800	86,800	85,800	86,800	86,800	86,800	85,800
24	43,000	64,500	86,000	89,600	89,800	89,800	89,600	89,600	89,800	88,200	89,600	86,200 89,600	88,200	86,200	88,200	88,200	85,200	86,200	66,200
25	43,000	54,500	86,000	91,000	91,000	91,000	91,000	91,000	91,000	91,000	91,000	91,000	91,000	91,000	91,000	91,000	91,000	91,000	91,000
27	43,000	64,500	85,000	93,800	95,800	93,800	93,800	93,800	93,800	92,400	92,400 93.800	92,400	92,400	92,400	92,400	92,400	92,400	92,400	92,400
28	43,000	64,500	85,000	95,200	95,200	95,300	95,200	95,200	95,200	95,200	95,200	95,200	95,200	96,200	95,200	95,200	85,200	96,200	95,200
30	43,000	64,500 64,500	86,000	96,600	98,000	96,600	96,600	96,600 96,000	96,600 98,000	96,600 98,000	96,600 96,000	96,500	96,600 96,000	96,600	96,800	96,600	96,600	96,600	95,600
31	43,000	64,500	86,000	99,400	99,400	99,400	99,400	99,400	99,400	99,400	99,400	99,400	98,400	99,400	99,400	99,400	99,400	99,400	99,400
33	43,000	64,500	· 86,000	102,200	102,200	102,200	102,200	100,800	100,800	100,800	100,800	100,800	100,800	100,800	100,800	100,800	100,800	100,800	100,800
34	43,000	64.500	85,000	103,600	103,800	103,600	103,600	103,600	103,600	103,600	103,600	103,600	105,600	103,600	103.800	103,600	103,600	103,600	103,600
30	43,000	64,500 64,500	85,000	106,000	105,000	106,000	105,000	105,000	105,000	105,000	105,000	105,000	105,000	105,000	105,000	105,000	105,000	105,000	105,000
37	43,000	64,500	86,000	107,500	107,800	107,800	107,800	107,800	107,800	107,800	107,800	107,800	107,800	107,800	107,800	107,800	107,800	107,800	107,800
38 39	43,000	64,500 64,500	86,000	107,500	109,200	109,300	109,200	109,200	109,200	109,200	109,200	108,200	109,200	109,200	109,300	109,200	109,200	109,200	109,200
40	43,000	64.500	86,000	107,500	112,000	112,000	112,000	112,000	112,000	112,000	112,000	112,000	112,000	112,000	112,000	112,000	112,000	112,000	112,000
41	43,000	64,500 64,500	85,000	107,500	113,400	113,400	113,400	115,400	113,400	113,400	113,400	113,400	113,400	113,400	113,400	113,400	113,400	113,400	113,400
43	43,000	64,500	86,000	107,500	116,200	116,200	116,200	116,200	1 16,200	116,200	116,200	116,200	116,200	116,200	116,200	116,200	116,200	116,200	114,800
44 45	43,000	64,500 64,500	85,000 85.000	107,500	117,600	117,600	117,600	117,600	117,600	117,600	117,600	117,600	117,600	117,600	117,800	117,600	117,600	117,600	117,800
48	43,000	64,500	86,000	107,500	120,400	120,400	120,400	120,400	120,400	120,400	120,400	120,400	120,400	120,400	130,400	119,000	119,000	119,000	119,000
47	43,000	64,500 64,500	85,000 85,000	107,500	121,800	121,800	121,800	121,800	121,800	121,800	121,800	121,800	121,800	121,800	121,800	121,800	121,800	121,800	131,800
49	43,000	84,500	86,000	107.500	124,600	124,600	124,600	124.800	124,800	124,600	124,800	124,600	124,600	123,200	123,200	123,200	123,200	123,200	123,200
<u>50</u> 51	43,000	54,500 54,500	86,000	107,500	126,000	126,000	126,000	126,000	126,000	126,000	126.000	126,000	126,000	126,000	126,000	126,000	126,000	126,000	126,000
52	43,000	54,500	85,000	107,500	128,800	128,800	128,800	128,800	128,800	128,800	128,800	128,800	128,800	128,800	127,400	128,800	127,400	127,400	127,400
53 54	43,000 (54,500 M	85,000	107,500	129,000	130,200	130,200	130,200	130,200	130,200	130,200	130,200	130,200	130,200	130,200	130,200	130,200	130,200	130,200
56	43,000 (54,500	85,000	107,500	129,000	133,000	133,000	133,000	133,000	131,000	131,600	131,800	131,600	131,600	131,600	131,800	151,600	131,600	131,600
56 87	43,000 (54,500	86,000	107,500	129,000	134,400	134,400	134,400	134,400	134,400	134,400	134,400	134,400	134.400	134,400	134,400	134,400	134,400	134,400
58	43,000 6	4,500	86,000	107,500	129.000	136,800	135,800	135,800	135,600	135,600	135,600	135,800	135,800	135,800	135,800	135,800	135,800	135,800	135,800
59 #^	43,000 6	14,500	85,000	107,500	129,000	138,600	138,800	138.600	138,600	138,600	138,600	138,600	138,600	138,600	138,600	138,600	138,800	138,600	138,800
61	43,000 6	4,500	86,000	107,500	129,000	141,400	141,400	141,400	141,400	141,400	143,400	141,400	140,000	140,000	140,000	140,000	140,000	140,000	140,000
62	43,000 6	H,500	86,000	107,500	129,000	142,800	142,800	142,800	142,800	142,800	142,800	142,800	142,800	142,800	142,800	142,800	142,800	142,800	142,800
64	43,000 (H,500	86,000	107,500	129,000	145,600	145,600	145,600	145,600	145,600	145,600	144,200	144,200	144,200	144,200	144,300	144,300	144,300	144,200
65	43,000 (4,500	86,000	107,500	129,000	147,000	147,000	147,000	147,000	147,000	147,000	147,000	147,000	147,000	147,000	147,000	147,000	147,000	147,000
67	43,000 6	H,500	86,000 86,000	107,500	129,000	148,400	148,400	148,400	148,400	148,400	148,400	148,400	148,400	148,400	148,400	148,400	148,400	148,400	148,400
68	43,000 0	4,500	86,000	107,500	129,000	150,500	151,200	151,200	151,200	151,200	151,200	151,200	151,200	151,200	151,200	151,200	151,200	149,800 151,200	149,800
69 70	43,000 6	H,500	86,000	107,500	129,000	150,500	152,600	152,600	152,600	152,600	152,600	152,600	152,600	152,600	152,600	162,600	152,600	152,600	152,600
											101,000	134,000	104,000	104,000	154,000	164,000	164,000	164,000	64.000
735-81	13 (10-99) ,	•	DISTANC	ENEASUR	ED TO TH	E NEARES	T FOOT, 1	NHEN EXA	CTLY 1/2	OOT OR I	IORE, RO	UND UP TO	THENEX	TLANGER				# 3005+0

Figure A3.9: Permit Weight Table 4 [Oregon Motor Carrier].

108

WHEELBA	SE								-										_
2	S Azla	4 Arlan	5 Arlen	6 Axira	7 Axica	8 Arles	9 Avies	10	11	12	13	14	15 Andrea	16	17	18	19	20	
71 43,0	00 64,50	0 86,000	107,500	129,000	150,500	155,400	155,400	155,400	155,400	155,400	155,400	155,400	155,400	155,400	155,400	Addes 155,400	Axles 156.400	Axies 155 400	
72 43.0	64,50	0 86,000	107,500	129,000	150,500	156,800	156,800	156,800	156,800	156,800	156,800	156,800	156,800	156,800	156,800	156,800	156,800	156.800	
73 43,0	64.50	0 66,000	107,500	129,000	150,500	158,200	158,200	158,200	158,200	158,200	158,200	158,200	158,200	158,200	156,200	158,200	156,200	158,200	
74 43.0	00 64,50	0 86,000	0 107,500	128,000	150,500	159,600	159,600	159,600	159,600	159,600	159,600	159,600	159,600	159,600	159,600	159,600	159,800	159,600	
75 43,0	00 64.50	0 86,000	107,500	129,000	150,500	162 400	162 400	161,000	161,000	161,000	161,000	161,000	161,000	161,000	161,000	161,000	161,000	161,000	
77 43.0	00 64,50	0 85,000	107,500	129,000	150,500	163,800	163,800	165,800	163,800	163,800	163,800	163,800	163,400	163,400	163,400	163,600	162,400	162,400	
78 43,0	60 64,50	0 86,000	107,500	129,000	150,500	165,200	165,200	165,200	165,200	165,300	165,200	165,200	165,200	165,200	165,200	165,200	165,200	165,200	
79 43,0	00 64,50	0 86,000	0 107,500	129,000	150,500	166,600	166,600	165,600	166,600	166,600	166,600	186,600	166,600	185,600	166,600	166,600	185,600	166,600	
80 43,0	00 64,50	0 85.000	107,500	129,000	150,500	166,000	166,000	168,000	168,000	168,000	168,000	168,000	168,000	168,000	168,000	168,000	168,000	168,000	
82 43.0	00 64.50	0 86.000	107,500	129,000	150,500	170,800	170,800	170,800	170,800	170,800	170,800	109,400	120 800	109,400	189,400	189,400	169,400	169,400	
83 43,0	00 64,50	0 85,000	107,500	129,000	150,500	172,000	172,200	172,200	172.200	172,200	172.200	172.200	172.200	172.200	172.200	179 300	179,800	170,800	
84 43,0	00 64.50	0 85.000	107,500	129,000	150,500	172,000	173,600	173,600	173,600	173,600	173,600	173,600	173,600	173,600	173,800	173,600	173,600	175,600	
85 43,0	00 64,50	0 86,000	107,500	139,000	150,500	172,000	175,000	175,000	175,000	175,000	175,000	175,000	175,000	175,000	175,000	175,000	175,000	175,000	
87 43.0	00 64,80		107,500	129,000	150,500	172,000	176,400	176,400	176,400	176,400	176,400	176,400	176,400	176,400	176,400	176,400	176,400	176,400	
88 43.0	00 64.50	0 86.000	107,500	129.000	150,500	172.000	179.200	179.200	179,200	179.200	177,800	177,800	177,800	177,800	177,800	177,800	177,800	177,800	
80 43,0	00 64,50	0 85.000	107,500	129,000	150,500	172,000	180,600	180,600	180,600	180,600	180.600	180,600	180,600	lan 600	180,600	180,600	100,000	180,800	
90 43,0	00 64,50	0 86,000	107,500	129,000	150,500	172,000	182,000	182,000	182,000	182,000	182,000	182,000	182,000	182,000	182,000	182,000	182,000	182,000	
91 43,0	00 64,50	0 86,000	107,500	129,000	150,500	172,000	183,400	183,400	183,400	183,400	183,400	183,400	183,400	183,400	183,400	183,400	183,400	183,400	
92 43,0	00 64,50	0 85,000	107,500	129,000	150,500	172,000	184,800	184,800	184,800	184,800	184,800	184,900	184,800	184,800	184,800	184,800	184,800	184,800	
94 43.0	00 64.50	0 85.000	107,500	129,000	150,500	172,000	187,800	187,600	187,600	185,200	185,200	185,200	185,200	186,200	186,200	186,200	186,200	186,200	
95 43,0	00 64,50	0 85,000	107,500	129,000	150,500	172.000	188,000	189,000	189,000	186,000	169,000	100.000	189.000	189,000	189,000	189,000	189,000	187,800	
96 43,0	00 64,50	0 86,000	107,500	129,000	150,500	172,000	190,400	190,400	190,400	190,400	190,400	190,400	190,400	190,400	190,400	190,400	190,400	190,400	-
97 43,0	00 64,50	0 86,000	107,500	129,000	150,500	172,000	191,800	191,800	191,800	191,800	191,800	191,800	191,800	191,800	191,800	191.800	191,800	191,800	
98 43,0	00 64,50		107,500	129,000	150,500	172,000	193,200	193,200	193,200	193,200	193,200	193,200	193,200	193,200	193,200	193,200	193,200	193,200	
100 43.0	00 64,50	0 86,000	107,500	129,000	150,500	172,000	193,500	195,000	194,800	194,600	194,800	194,600	194,600	194,600	194,600	194,600	194,800	194,600	
101 43.0	00 64.50	0 85,000	107,500	129,000	150,500	172,000	193,500	197,400	197,400	197,400	197,400	197,400	197,400	197,400	198,000	195,000	195,000	195,000	
102 43,0	00 64,50	0 85,000	107,500	129,000	150,500	172,000	193,500	198,800	198,800	198,800	196,800	198,800	198,800	198,800	198,800	198,800	195,800	198,800	
103 43,0	00 64,50	0 85,000	107,500	129,000	150,500	172,000	193,500	200,200	200,200	200,200	200,200	200,200	200,200	200,200	200.200	200,200	200,200	200,200	
104 43,0	00 64,50	0 85,000	107,500	129,000	150,500	172,000	193,500	201,600	201,600	201,600	201,600	201,600	201,600	201,600	301,600	201,600	201,600	201,600	
106 43.0	00 84.50	0 85.000	107,500	129,000	150,500	172,000	193,500	203,000	203,000	204.400	203,000	205,000	205,000	203,000	203,000	203,000	203.000	203,000	_
107 43,0	00 64,50	as,000	107,500	129,000	150,500	173.000	193,500	205,800	205,800	205,800	205,800	205,800	205,800	205,800	205,800	205.800	205,800	205,400	
108 43,0	00 64,50	0 85,000	107,500	129,000	150,500	172,000	193,500	207,200	207,200	207,200	207,200	207,200	207,200	207,200	207,200	207,200	207,200	207,200	
109 43,0	00 64,50	0 85,000	107,500	139.000	150,500	172,000	193,500	208,600	208,600	208,600	208,800	208,600	208,600	206,600	208,800	208,600	305,600	205,600	
111 43.0	00 64,50	85,000	107,500	129,000	150,500	172,000	199,500	210,000	210,000	210,000	210,000	210,000	210,000	210,000	210.000	210,000	210,000	210,000	_
112 43,0	00 64,50	0 85,000	107,500	129,000	150,500	172,000	193,500	212.800	212,800	212.800	212.800	212.600	212.800	212,400	212,000	212,400	211,400	211,400	1
113 43,0	00 64.50	0 85,000	107,500	129,000	150,500	172,000	195,500	214,200	214,200	214,200	214,200	214,200	214,200	314,200	214,200	214,200	214,200	214.200	
114 43,0	00 64,50	0 85,000	107,500	129,000	150,500	173,000	193,500	215,000	215,600	215,600	215,600	215,600	215.600	215,600	215,600	215,800	15,600	215,600	
115 43,00	00 64,50	0 85,000	107,500	129,000	150,500	172,000	193,500	215,000	217,000	217,000	217,000	217.000	217,000	217,000	217,000	217,000	217,000	217,000	
117 43.0	00 64,50	86,000	107,500	129,000	150,500	172.000	193,500	215.000	219,800	218,400	219,400	219,800	218,400	318,400	218,400	318,400	218,400	218,400	
118 43,0	00 84,50	86,000	107,500	129,000	150,500	172,000	193,500	215,000	221,200	221,200	221,200	221,200	221.200	221.200	221.200	2219,800	219,800	219,800	
119 43,00	00 64,50	86,000	107,500	129,000	150,500	172,000	193,500	215,000	222.600	222.600	222,600	222,600	222,600	222,600	222,600	222,600	222,600	222,000	
120 43,00	00 64,50	86,000	107,500	129,000	150,500	172,000	193,500	215,000	224,000	324,000	224,000	224,000	224.000	224,000	224,000	224,000	224,000	234,000	
121 43,00	00 64,50 00 64 50	3 84,000	107,500	129,000	150,500	172,000	193,500	215,000	225,400	225,400	225,400	225,400	225,400	225,400	225,400	225,400	225,400	225,400	
123 43,00	00 64,50	85,000	107,500	129,000	150,500	172.000	193,500	215.000	228,200	226,200	228.200	228 200	226,800	228,800	226,800 :	226.600	236,800	226,800	
124 43,00	64,50	86,000	107,500	129,000	150,500	172,000	193,500	215,000	229,800	229,600	229,800	229,600	229,800	229,600	229.600	229.600	129 600	229,600	
125 43,00	64,50	85,000	107,500	129,000	150,500	172,000	195,500	215,000	231,000	231,000	231,000	231,000	231,000	231,000	231,000	331,000	131,000	231,000	
128 43,00	0 64,50	85,000	107,500	129.000	150,500	172,000	193,500	215,000	232,400	232,400	232,400	232,400	232,400	232,400	232,400	232,400	232,400	232,400	
127 43,00	0 64,50	as.000	107,500	129,000	150,500	172,000	193,500	215,000	233,800	233,800 :	233,800	233,800	233,800	233,800	233,800	233,800	233,800	233,800	
129 43,00	0 64,500	85,000	107,500	129,000	150,500	172,000	193.500	215.000	236,500	236,600	236,800	236,200	135,200	236,200	235,200	235,200	235,200	235,200	
130 43,00	64,500	86,000	107,500	129,000	150,500	172,000	193,500	215,000	236,500	236,000	238,000	238,000	238,000	238,000	238.000	238,000	136,000 3	136,600	
131 43,00	64,500	85,000	107,500	129,000	150,500	172,000	193,500	215,000	236,500	239,400	239,400	239,400	239,400	239,400	239,400	239,400	239,400	239,400	
152 43,00	0 64,500	85,000	107,500	129,000	150,500	172,000	193,500	215,000	236,500	240,800	140,800	240,800	240,800	240,800	240,800	140,800	140,800 :	140,800	ľ
134 43 00	0 64,500	85,000	107,500	129,000	150,500	173,000	193,500 :	215,000	236,500	242.200	142,200	242.200	242,200	242,200	242,200	142,200	243,200	142,300	
135 43,00	0 64,500	85,000	107,500	129,000	150,500	172,000	193,500	215,000	236.500	245,000	145.000	245.000	145.000	345,000 : 345,000 :	245,000 3	243,600 ; 245,000 ;	143,000 :	143,600	
136 43,00	0 64,500	85,000	107,500	129,000	150,500	172,000	195,500	215,000	236,500	246,400	246,400	246,400	146,400	248,400	246,400	246,400	246,400 2	46.400	-
137 43,00	64,500	85,000	107,500	129.000	150,500	172.000	93,500	215,000	236,500	247,800	47,800	247,800	47,800	347,800	247,800 2	47.800	47,800	47,800	1
138 43,00	0 84.500	85,000	107,500	129,000	150,500	172,000	193,500	215,000	336,500	249,200	249,200	249,200	149,200	249,200	249,200	149,300	348,300 3	149,200	
140 43,00	0 64,500	85,000	107,500	129,000	150,500	172,000	93,500	15,000 :	236,500	100,000 \$ 262,000 \$	152.000 3	252.000 °	180,800 (162,000 *	130,800 3	250,600 2	150,800 2	150,800 2	150,800	
141 43,00	0 64,500	85,000	107,500	129,000	150.500	172,000	93.500	15,000	236,500	253,400 2	153,400	253,400	153,400	153,400	253,400	153,400	153,400 3	53,400	
142 43,00	0 64,500	85,000	107,500	129,000	150,500	172,000	93,500	15,000	236,500	254,800 2	154,800	254,600	54,800	\$54,800	254,800	54,800	154,800 2	54,800	I
143 43,00	0 54,500	86,000	107,500	129,000	150,500	172,000	93,500	15,000	236,500	256,200 1	\$56,200	256,200	56,200	156,200	156,200 3	156,200 2	156,200 2	56,200	
145 43.00	0 64.500	86,000	107,500	129,000	180,500	172,000	193,500 1 193,500 1	15,000		107,800 2 258,000 *	197,600 3 159,000 4	259,000 2	107,600	157,600	157,600 2	157,000 2	157,600 2	57,800	
146 43.00	0 64,500	86,000	107,500	129,000	150,500	172,000	95,500	15,000	236,500	156,000 2	80,400 1	200,400	60,400	400,400 1	100,000 2	HED. 400	109,000 2	109,000	_
147 43,00	0 64,500	86,000	107,500	129,000	150,500	172,000	93,500	115,000	136,500	156,000	61,800 2	161,800 2	61,800 2	61,800 2	161,800 2	161,800 1	161,800 2	61,800	ł
148 43,00	0 64,500	86,000	107,500	129,000	150,500	172,000	93,500 2	15,000	236,500	258,000 2	63,200 2	263,200 2	63,200 2	163,200	163,200 2	63,200 2	63,200 2	63,200	ł
150 43 00	v 04,500 0 64.500	86,000	107,500	129,000	130,500 1 150 500	173,000 1	193,500	15,000	35,500	158,000 2	64,600	264,600 2	64,600 2	164,800 \$	64,600 2	64,600 2	64,600 2	64,600	
													000,000 2	105,000 \$	105,000 2	105,000 2	108,000 2	66,000	
		•	DISTANCE	MEASUR	ed to the	E NEAREST	r foot. V	THEN EXA	CTLY 1/2	OOT OR N	IORE, ROL	UND UP TO	THE NEX	T LARGER	NUMBER	•			-

Figure A3.9 (Continued): Permit Weight Table 4 [Oregon Motor Carrier].

1		0RE MOT 550	GON DE OR CAR CAPITOL	PARTMEN RIER TRAI ST NE	IT OF TRA	NSPORTA TION DIVI	TION SION		PERMIT WEIGHT TABLE											
	9Ŀ	SALI	M OR 9	7301-2530					5											
WHE	ELBASE																			
	2	3	4	5	6	7		9	10	11	12	13	14	15	16	17	18	19	20	
Ι.	Axies 43.000	Axies 43.000	Ade	Axies 43.000	Axles 43.000	Axles 3 43.000	Axles 43.000	Axles 43,000	Azles 43.000	Axies	Axies	Axies	Axdee	Attes	Azles	Axles	Azles	Axlee	Azlen	
5	43,000	43.000	43,000	43,000	43.000	43,000	43,000	43,000	43.000	43,000	43.000	43,000	43.000	43,000	43,000	43,000	43,000	43,000	43,000	
7	43,000	43,000	43,000	43,000	43,000 43,000) 43,000) 43,000	43,000 43,000	43,000	43,000	43,000	43,000	43,000	43,000	43,000	43,000	43,000	43,000	43,000	43.000	
8	43.000	43,000	43,000	43,000	43,000	43,000	43,000	43,000	43,000	43.000	43,000	43,000	43.000	43,000	43,000	43,000	43,000	43,000	43,000	
Ĭ	43,000	52,000	52,000	52,000	52,000	52,000	52,000	53.000	53,000	52.000	52,000	52.000	52,000	52.000	52,000	52,000	52.000	52.000	52.000	
9	43,000	58,500	58,500	65,000	88,500	66,500	58,500	58,500	58.500	58,500	58.500	58,500	58,500	58,500	58,500	56,500	58,500	58,500	58.500	
11	43,000	68,200	68,200	66,200	68,200	68,200	68,200	65,200	68,200	68,200	68,200	68,300	68,200	68.000	66,200	65,000	66,200	65,000	66,200	
12	43,000	70,400	70,400	70,400	70.400	70,400	70,400	70,400	70,400	70,400	70.400	70,400	70.400	70,400	70.400	70,400	70.400	70,400	70.400	
14	43,000	72,000	74,800	74,800	74.800	74,800	74,800	74,800	74,800	74,800	74.800	74,800	74,800	74.800	74,800	74,800	74,800	74,800	71,600	
15	43,000	72,000	77,000	77,000	77,000	77,000	77,000	77.000	77,000	77,000	77,000	77,000	77,000	77.000	77.000	77,000	77.000	77,000	77,000	
17	43,000	72,000	61,400	81,400	81,400	61,400	81,400	81.400	81,400	81,400	81,400	81,400	\$1,400	61,400	61,400	61,400	81,400	\$1.400	81.400	
18	43,000	72,000	a3,800 85,800	85,800 85,800	85,600	63,600 85,800	85,800	83,600 85,800	83,600 85,800	63,600 85,800	83,800 85,800	83,800	83,800	63,600 85,800	83,600	\$5,800 85,800	83,600	83,600	83,800	
20	43,000	72,000	88,000	88,000	88,000	86,000	88,000	88,000	88,000	86,000	88,000	88,000	88,000	88,000	88,000	88,000	88,000	88,000	86,000	
22	43,000	72,000	92,400	92,400	92,400	92,400	90,200	90.200	90,200	90,200 92,400	90,200 92,400	90.200 92,400	90,200 92,400	90,200 92,400	90,200 92,400	90,200	90,300	90,200	90,300	
23	43,000	72,000	94,600	94,600	94,600	94,600	94,600	94,600	94,600	94.600	94,600	94,600	94,600	94.800	94,600	94,800	94,800	94,600	94,600	
25	43,000	72,000	96,000	99,000	99,000	_ 99,000	99,000	99,000	99,000	99,000	99,000	99,000	98,800 99,000	95.800 99,000	95,800	95,800	96,800	96,800	95,800	
26 27	43,000	72,000	96,000	101,200	101.200	101,200	101,200	101,200	101.200	101,200	101,200	101,300	101.200	101.200	101,200	101,200	101,200	101,200	101,200	
28	43,000	72,000	96,000	105,600	105,600	105,600	105,600	105,400	105,600	105,400	105,400	105,400	105,400	105,400	105,600	105,400	105,400	105,400	103,400	
29	43,000	72,000	96,000	107,800	107,800	107,800	107,800	107,800	107,800	107,800	107.800	107,800	107,800	107.800	107,800	107.800	107.800	107.800	107.800	
31	43,000	72,000	96,000	113,600	113,600	113,600	113,600	113,600	113.600	113,600	113,600	113,600	110.000	110,000	110,000	110,000	110.000	110,000	110,000	
32 33	43,000	72.000	96,000	115,200	115,200	115,200	115,200	115,200	115,200	115,200	115,200	115,200	115,200	115,200	115,200	115,200	115,200	115.200	115,200	
34	43,000	72,000	96,000	118,400	118,400	118,400	118,400	118,400	118,400	118,400	118,400	118,400	118,400	116,400	118,400	118,400	116,800	116,800	116,800	
35	43,000	72,000	96,000	120.000	121,600	120,000	120,000	120,000	120.000	120.000	120,000	120,000	120,000	120,000	120,000	120,000	120,000	120,000	120,000	
37	43,000	72,000	96,000	120,000	123,200	123,200	123,200	123.200	123,200	123,200	123,200	123,200	123,200	123,200	121.000	121.600	121.600	121,600	121.600	
38 39	43,000	72,000 72,000	95,000	120,000	124,800	124,800	124.800	124,800	124,800	124,800	124,800	124,800	134,800	124,800	124,800	124,800	124,800	124,800	124,800	
40	43,000	72,000	96,000	120,000	128.000	128.000	128,000	128,000	128,000	128,000	128,000	128,000	128,000	128,000	128,000	128,000	128,000	126,000	126,400	
41	43,000	72,000 72,000	96,000	120,000	129,600	129,600	129,600	129,600	129,600	129.600	129,600	129,600	129,600	129,600	129,600	129,800	129,600	129,600	129,600	
43	43,000	72,000	96,000	120,000	132,800	132.800	132,800	132,800	132,800	132,800	132,800	132,800	132,800	132,800	132,800	132,800	131,200	131,200	131,200	
45	43,000	72,000 72,000	96,000	120,000	134,400	134,400	136,000	134,400	134.400	134,400	134,400	134,400	134,400	134,400	134,400	134,400	134,400	134.400	134.400	
46	43,000	72,000	96,000	120,000	137,600	137,600	137.600	137,600	137,600	137.600	137,600	137.600	137.600	137.600	137,600	137.600	137,600	137,600	138,000	
47	43,000	72,000	96,000 96,000	120,000	139,200 140,800	139,200	139,200	139,200	139,200	139,200	139,200	139,200	139,200 140,800	139,200	139,200	139,200	139,200	139,200	139,200	
49 50	43,000 1	72,000	98,000	120,000	142,400	142,400	142,400	142,400	142,400	142,400	142,400	142,400	142,400	142,400	142,400	142,400	142,400	142,400	142,400	
51	43.000	72,000	98,000	120,000	144.000	145,600	145,600	145,600	145,600	144,000 145,600	144.000	144,000	144,000	144,000	144,000	144,000	144.000	144.000	144,000	
52 53	43,000 1	72,000	96,000	120,000	144,000	147.200	147.200	147,200	147,200	147,200	147.200	147,200	147,200	147,200	147,200	147.200	147,200	147,200	147,200	
54	43,000	2.000	98,000	120,000	144,000	150,400	150,400	150,400	150,400	150,400	150,400	148,800	146,800	148,800	145,800	146,800	148,800	148,800	148.800	
_55 56	43,000 1	72,000	95,000	120,000	144,000	153,000	152,000	153,000	153,000	152,000	152,000	152,000	152,000	152,000	152,000	152,000	152,000	152,000	152,000	
57	43,000	2,000	96,000	120,000	144,000	155,200	155,200	155,200	155,200	155,200	155,200	155,200	155,200	155,200	155,200	155,200	155,200	153,600	153,600	
58 50	43,000 7	2,000	96,000 96,000	120,000	144,000	156,800	156,800	156,800	156,800	156,800	156,800	156,800	156,800	156,800	156,800	156,800	156,800	156,800	156,800	
60	43,000 7	2,000	96,000	120,000	144.000	160,000	160,000	160,000	160,000	180,000	160,000	160,000	100,000	160,000	100,000	196,400	100,000	156,400	156,400	
62	43,000 7	2,000	v6,000 96,000	120,000	144,000	161,600	151,800	161.600	161,600	161.600	161.600	161.600	161,600	161,600	161,600	161,600	161,600	161,600	161,600	
63	43,000 7	2,000	96,000	120,000	144,000	164,800	164,800	164,800	164,800	164,800	164,800	164,800	164,800	164.800	164,800	164,800	163,200	163,200	165,200	
65	43,000 7	2.000	HA,000 96,000	120,000	144,000	166,400	155,400	166,400	166,400	166,400	166,400	166,400	166,400	166,400	166,400	165,400	166,400	166,400	105,400	
66 67	43.000 7	2,000	98,000	120,000	144,000	168,000	169,600	169,600	169.600	169.600	169,600	169,600	169,600	169,600	189,600	169,600	169,600	169,600	199,600	
67 68	43.000 7	2,000	#6,000 96,000	120,000	144.000	166,000	171,200	171.200	171,200 172,800	171,200	171,200	171.200	171.200	171,200	171,200	171,200	171,200	171,200	171,200	
69 20	43,000 7	3,000	96,000	120,000	144,000	168,000	174,400	174,400	174,400	74.400	174,400	174,400	174,400	174,400	174,400	174.400	174,800 : 174,400 :	173,800	172,800	
70	-3,000 7	2.000	a, 000	140,000	144,000	168,000	176,000	176,000	176,000	176.000	176,000	176.000	176.000	176,000	176.000	176,000	176.000	176.000	176,000	
35-81	4 (10-99		•	DISTANCE	EMEASUR	ED TO TH	E NEARES	T FOOT. V	HEN EXA	CTLY 1/2 F	OOT OR N	IORE, ROL	IND UP TO	THE NEX	LARGER	NUMBER	•	518	# 300561	

Figure A3.10: Permit Weight Table 5 [Oregon Motor Carrier].

...

WHEELBASE																					
		2 Axles	3 Axica	4 Azlea	5 Axice	6 Azima	7 Azlan	8 Avina	8 A 1 - 1	10	11	12	13	14	15	16	17	18	19	30	
	71	43,000	72,000	98,000	120,000	144,000	168,000	177.800	177.600	177.600	177.600	177.600	177.600	177 800	AX866	177 600	Atles	Axles	Axlee	Ades	
	72	43,000	72,000	95,000	120,000	144,000	168,000	179,200	179,200	179,200	179,200	179,200	179,200	179,200	179.200	179,200	179.200	179 900	179 900	177,800	
	73	43,000	72,000	96,000	120,000	144,000	165,000	180,800	180,800	180,800	180,800	180,800	180,800	180,800	180,800	180,800	180,800	180,800	180.800	180.800	
	74	43,000	72,000	98,000	120,000	144,000	166,000	182,400	182,400	182,400	182,400	182,400	182,400	182,400	182,400	162,400	182,400	182,400	182,400	182,400	
	76	43,000	72.000	96,000	120,000	144,000	166,000	185,000	184,000	184,000	184,000	184,000	184,000	184,000	184,000	184,000	184,000	184,000	184,000	184,000	
	77	43,000	72,000	96,000	120,000	144,000	168,000	187.200	187.200	187.200	187.200	187,200	187 200	187 200	185,900	145,600	185,800	185,800	185,800	185,800	
	78	43,000	72,000	96,000	120,000	144,000	166,000	186,800	168,800	166,800	168,800	166,800	188,800	186,800	188,800	166.800	186,800	187,200	187,200	187,200	
	79	43,000	72,000	96,000	120,000	144.000	168,000	190,400	190,400	190,400	190,400	190,400	190,400	190,400	190,400	190,400	190,400	190,400	190,400	190,400	
\vdash	80	43,000	72,000	96,000	120,000	144,000	166,000	192,000	192,000	192,000	192,000	192,000	192,000	192,000	192,000	192,000	192,000	192,000	193,000	192,000	
	82	43.000	72.000	96.000	120,000	144,000	166,000	192,000	195,000	195,600	195,600	193,600	193,600	193,600	193,600	193,600	193,600	193,600	193,800	193,600	
	83	43,000	72,000	96,000	120,000	144,000	168,000	192,000	196,800	196,800	196,600	195,200	196,200	196,200	196,200	196,200	195,200	195,200	195,200	195,200	
1	84	43,000	72,000	96,000	120,000	144,000	168,000	192,000	198,400	196,400	196,400	198,400	195,400	196,400	196,400	196,400	196,000	196,800	196,800	196,800	
	85	43,000	72,000	96,000	120,000	144,000	166,000	192,000	200,000	200,000	300,000	200,000	200,000	200,000	200,000	200,000	200,000	200,000	200,000	200.000	
	86	43,000	72,000	95,000	120,000	144,000	168,000	192,000	201,600	201,600	901,600	201,800	201,000	201,600	201,800	201,600	201,600	201,600	201,600	201,600	
	88	43.000	72.000	96,000	120,000	144,000	166,000	192,000	203,200	203,200	203,200	203,200	203,200	203,200	203,200	203,200	203,200	203,200	203,200	203,200	
	89	43,000	72,000	96,000	120,000	144,000	166,000	192.000	205,400	206,400	206,400	206,000	205,500	204,800	204,800	204,800	204,800	204,800	204,800	204,800	
	90	43,000	72,000	96,000	120,000	144,000	168,000	192,000	205,000	208,000	206,000	208,000	206,000	208,000	208,000	208,000	208,000	205,000	308,400	205,400	
	91	43,000	72,000	96,000	120,000	144,000	166,000	192,000	209,600	209,600	209,600	209,600	209,600	209,800	209,600	209,600	209,600	208,800	209.600	209.600	
	92	43,000	73,000	96,000	120,000	144,000	168,000	192,000	211,200	211,200	211,200	211,200	211,200	211,200	211,200	211,200	211,200	211,200	211,200	211,200	
1	94	43,000	72.000	95,000	120.000	144,000	166,000	192,000	212,800	212,800	212.800	212,800	212,800	212,800	212,800	212,800	212,800	212,800	312,800	212,800	
	95	43,000	72,000	96,000	120,000	144,000	168,000	192.000	216.000	216.000	216,000	216,000	216,000	214,400	214,400	214,400	214,400	214,400	214,400	214,400	
I	96	63,000 '	72,000	96,000	120,000	144,000	166,000	192,000	216,000	217,800	217,600	217,600	217,600	217.600	217.600	217.600	217 600	217 600	210,000	216,000	
1	97	43,000	72,000	96,000	120,000	144,000	166,000	192,000	218,000	219,200	219,200	219,200	219,200	219,200	219,200	219,200	219,200	219,200	219,200	219.200	
1	96	43,000	72,000	95,000	120,000	144,000	168,000	193,000	216,000	220,800	220,800	220,800	220,800	220,800	220,800	220,800	220,800	220,800	220,800	220,800	
1.	00	13.000	72,000	86.000	120.000	144.000	188,000	192,000	216,000	222,400	222,400	232,400	222,400	222,400	222,400	222,400	222,400	222.400	222,400	222,400	
1	01 4	13,000	72,000	96,000	120,000	144,000	168,000	192,000	216,000	225,600	225.600	225,600	225,600	225,000	225,000	224,000	224,000	224,000	234,000	224,000	
1	02	13,000	72,000	96,000	120,000	144,000	168,000	192,000	216,000	227,200	227,200	227,200	227,200	227,200	227,200	227,200	227,200	225,800 : 227,200 :	227,200	125,000	
1	03 4	13,000	72,000	96,000	120,000	144,000	168,000	192,000	216,000	228,800	228,800	228,800	228,800	228,800	228,800	228,800	228,800	228,800	225,600	228,800	
1 :	04.4	13,000 1	72,000	96,000	120,000	144,000	166,000	192,000	216,000	230,400	230,400	230,400	230,400	230,400	230,400	230,400	230,400	230,400	230,400	230,400	
Hi	06 4	13.000 7	71.000	8.000	120,000	144.000	188,000	192,000	216,000	232,000	232,000	232,000	232,000	232,000	232.000	232,000	232,000	232.000	332,000 :	132,000	
1	07 4	13,000	72,000	88,000	120,000	144,000	168,000	192,000	216,000	235,200	235,200	235.200	235,000	235,000	235,800	235,600	235,800	233,800	233,600 :	133,600	
1	08 4	13,000 1	72,000	96,000	20,000	144,000	165,000	192,000	16,000	236,800	236,800	236,800	235,800	236,800	236,800	236,800	236.800	236,200 2	136,200 2 136,800 2	135,200	
1 !	09 4	13,000 2	72,000	8,000	120,000	144,000	166,000	192,000	215,000	238,400	238,400	238,400	238,400	235,400	238,400	236,400	238,400	238,400	38,400	136,400	
H	11 4	13,000 2	72,000	8,000	120,000 1	144,000	105,000	192,000 :	216,000	240,000	240,000	240,000	240,000	240,000	240,000	240,000	240,000	240,000 2	240,000 2	40,000	
i	12 4	13,000 7	73,000	8,000	20,000	144,000	186.000	192,000	16.000	240.000	243 200	41,000	241,800	241,000	241,800	241,800	241,600	241,600 3	141,800 2	141,800	
1	13 4	13,000 7	72,000 9	8,000	120,000	44,000	166,000	192,000	16,000	240,000	244,800	244,800	244,800	244,800	244.800	244,800	243,200	244,800 2	143,200 2	143,200	
	14 4	13,000 7	2,000	6,000	20,000	144,000	166,000	192,000 3	16,000	240,000	246,400	146,400	246,400	246,400	246,400	248,400	246,400	246,400 2	46,400 3	46.400	
F-	16 4	13,000 7	73,000 1	8,000	20,000	144,000	168.000	199,000 1	18,000	240,000 1	148,000	248,000	248,000	248,000	248,000	248,000	248,000	148.000 2	48,000 2	46,000	
1	17 4	13,000 7	72,000 1	8,000	20,000 1	44,000	166.000	192.000 2	18,000 :	240,000 2	149,800 : 151 200 :	249,800	249,600 :	249,600	249,600	249,600	249,600	249,600 2	49,600 2	49,800	
1 1	18 4	13,000 7	12,000 1	8,000 1	20,000 1	44,000	168,000	192,000 2	116,000	140,000	152,800	52.600	352,800	352,800	252 800 1	252,000	251,200 2	151,200 2	151,200 2	181,300	
1	19 4	3,000 7	2,000 \$	6,000 1	20,000 1	44,000	168,000	192,000 2	16,000 :	240,000 2	54,400	154,400	254,400	254,400	254,400	254,400	254,400	154,400 2	154,400 2	154,400	
1	10 4	3,000 7	2,000 9	8,000 1	20,000 1	44,000	108,000	192,000 2	16,000	240,000 2	56,000 :	56,000	256,000	256,000	258,000	256,000	156,000 2	156,000 2	56,000 2	56,000	
1		3.000 7	2.000 9	8,000 1	20,000 1	44,000	165,000	192,000 2	16,000 ;	240,000 3	57,600	157,600	257,000	257,600	257,600	257,600	257,800 2	157,000 2	57,600 2	57,600	_
12	13 4	3,000 7	2,000 9	6,000	30,000 1	44.000	168,000	192.000 2	16,000	240.000 2	139,200 3	139,200 : 180,800 :	259,200 2	259,200 3	259,200	259,200	159,200 2	59,200 2	59,200 2	59,200	
12	4 4	3,000 7	2.000 9	6,000 1	20,000 1	44,000	168,000	192,000 2	18,000	140,000 2	102,400 2	62,400	262,400	262.400	262,400	100,000 :	180,800 2	180,800 2	80,800 2	80,800	
12	5 4	3,000 7	2,000 9	6,000 1	20,000 1	44,000	68,000	192,000 2	16,000	140 <u>,000</u> 2	64,000 2	64,000	264,000	264,000	264,000	164,000	184,000 2	64.000 2	64.000 2	64.000	
12	64 74	3,000 7	2,000 9	6,000 1 6,000 1	20,000 1	44,000	168,000	92.000 2	16,000 2	140,000 2	64,000 2	66,600	265,600 2	265,600 2	265,600 2	65,600 2	105,000 2	85,600 2	65,600 2	65,600	
12	8 4	3,000 7	1000 9	6.000 1	20.000 1	44,000 1	108,000 1	192,000 2	16,000 3	140,000 2	84,000 2	67,200 :	267,200 2	167,200 2	267,200 1	167,200 2	167,200 2	87,200 2	67,200 2	87,200	
12	9 4	3,000 7	3,000 9	6,000 1	20,000 1	44,000 1	68,000 1	92,000 2	16,000	40.000 2	64.000 2	70.400	270.400 2	270 400 3	170,400 2	108,800 2 20,400 1	108,800 2	66,800 2	66,800 2	88,800	
13	0 4	3,000 7	2,000 9	6,000 1	20,000 1	44,000 1	68,000 1	92,000 2	16,000 2	40,000 2	64,000 2	72,000	272,000 2	173,000 2	172,000 2	72.000 2	72.000 2	72,000 2	70,400 2	70,400	
15	14	3,000 7	2,000 9	6,000 1	20,000 1	44,000	68,000 1	92,000 2	16,000 2	40,000 2	64,000 2	73,600 :	273,600 2	73,800 2	73,800 2	73,800 2	73,600 2	73,800 2	73,600 2	73.600	-
13		3,000 7	2,000 9	6,000 ł	20,000 1	44,000 1	68,000 1	92,000 2	16,000 2	40,000 2	64,000 2	75,200 2	275,200 2	175,200 2	175,200 2	75,200 2	76,200 2	75,200 2	75,200 2	75,200	
13	4 4	3.000 7	1,000 9	5.000 I	20.000 1	44.000 1	68.000 1	92,000 2	16,000 2	40,000 2	84,000 2	76,800 2	176,800 2	176,800 2	78,800 2	76,800 2	76,800 2	75,800 2	76.800 2	76,800	
13	5 4	3,000 7	1,000 9	5,000 1	20,000 1	44,000 1	68,000 1	92,000 2	16,000 2	40,000 2	64,000 2	80,000 2	280,000 2	80.000 2	1/0,400 2	20,400 2	78,400 2	70,400 2	78,400 2	78,400	1
13	6 43	3,000 7	2,000 8	5,000 1	20,000 1	44,000 1	65,000 1	93,000 2	16,000 2	40,000 2	64,000 2	61,600 2	261.600 2	81,800 2	81,600 2	81,600 2	81,600 2	81.600 2	81 600 2	81,000	
12	74	3,000 7	1,000 9	5,000 1	20,000 1	44,000 1	68,000 1	92,000 2	16.000 2	40,000 2	64,000 2	83,200 2	183,200 2	63,200 2	83,200 2	83,200 2	83,200 2	83,200 2	83,200 2	83,200	
13		000 7	1,000 9	5.000 1	20,000 1	44.000 1	68.000 1	92,000 2	16,000 2	40,000 2	64,000 2	84,800 7	184,800 2	84,800 3	84,800 2	84,800 2	84,800 3	84,800 2	84,800 2	84,800	
14	2 42	,000 7	2,000 9	5,000 1	20,000 1	44,000 1	68,000 1	92,006 2	16,000 2	40,000 2	64,000 2	ee, 400 2 88,000 1	100,400 2 186.0nn 1	00,400 2	105,400 2	85,400 2	86,400 3	86,400 2	86.400 2	5,400	- 1
14	4	000 7	1,000 B	8,000 1	20,000 1	44,000 1	68,000 1	92,000 2	16,000 2	40,000 2	64,000 2	68,000 2	89,800 2	69,600 2	89,600 2	89,800 2		89,800 2	00,000 2	10,000	
14	4	000 72	1,000 9	3,000 1	10,000	44,000 1	68,000 1	82,000 2	16,000 2	40,000 2	64.000 2	88,000 2	91,200 2	91,200 2	91,200 2	91,200 2	91.200 2	91,200 2	91,200 2	91,200	1
14	5 42 5 44	,000 72 L000 75	4,000 9 1,000 ~	5,000 19 5,000 19	AU,000 1	44,000 1	88,000 1	92,000 2	16,000 2	40.000 2	64,000 2	86,000 2	92,800 2	92,800 2	92,800 2	92,800 2	92,800 2	92,800 2	2,800 2	12,800	
14	4 4 5	,000 72	1,000 9	5,000 1:	20.000 1	44.000 1	68,000 1	==4,000 2 92,000 *	16,000 2 16,000 1	40,000 2	04,000 2 64,000 -	85,000 2	94,400 2	94,400 2	94,400 2	94,400 2	94,400 2	94,400 2	94,400 2	94,400	
14	3 43	,000 72	,000 9	000 1	10,000 1	44,000 1	88,000 1	92,000 2	16,000 2	40.000 2	64.000 2	30.000 2 30.000 2	97.800 2	97 800 2	97.600 2	97,000 2	98,000 2	96,000 2	88,000 2	96,000	_
14:	43	,000 73	1,000 9i	5,000 1;	140,000 14	44,000 1	65,000 1	92,000 2	16,000 2	40,000 2	54,000 2	88,000 2	99,200 2	99,200 2	99,200 2	=7,000 2 99,200 2	=7,000 2 99,200 2	=7.50025 ==200 ≈	w/,6500 25	s/,600	1
144	43	,000 72	1,000 9	000 12	10,000 14	44,000 1	88,000 1	83,000 2	6,000 2	40,000 2	54,000 2	M,000 3	00,800 3	00,800 3	00,800 3	00,800 3	00,800 3	00,800 3	00.800 3	20,600	
141	- 43 - 43	000 72	1,000 94 1,000 94	1000 12	0,000 14	14,000 1	66,000 li	92,000 2	16,000 2	40,000 2	54.000 2	88,000 3	02,400 3	02,400 3	02,400 3	02,400 5	02,400 3	02,400 3	12,400 M	34,400	
	_							-2,000 2			P4,000 2	a,000 S	04,000 3	04,000 3	04.000 3	04,000 3	04,000 3	04,000 M	04.000 3 4	94,000	- 1
				• 6	ISTANCE	MEASURI	ED TO THE	NEAREST	FOOT. W	HEN EXA	TLY 1/2 F	OOT OF N	AORE, ROL	ND UP TO	THENEX	T LARGER	NUMBER				

Figure A3.10 (Continued): Permit Weight Table 5 [Oregon Motor Carrier].

APPENDIX B

Justification for Liger Filters

In order to obtain the highest quality of data possible, the WIM files need to be cleaned and filtered. The Liger program is the second of two cleaning programs, and its use depends on the output of the first program, Wingnut. Liger checks all vehicle records to make sure they contain realistic numerical values and are free from invalid characters. The Liger program employs 14 different filters, which are covered in more detail herein. An error counter is included for each error category to help point out areas of concern for the WIM files. Each record that contains an error is removed from the file and written to a separate error file, called Liger_Errors.txt. At the end of the error file, the total number of each type of error is displayed. See figure 1 for an error file example.

65 42.0 Mon Jun 28 23:11:25.12 2004 8 17.5 50 4 0.067 4.9 8.3 1.8 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Mon Jun 28 23:28:22.94 2004 13 A Line 325 Error - spacing < 3.4 ft 54 12.9 44.6 43 4 Mon Jun 28 23:28:30.56 2004 8 A Line 325 Error - Spacing < 3.4 ft 51 13.4 32.8 0.019 4.7 5.6 1.9 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13.3 41 4 Mon Jun 28 23:42:24.98 2004 8 A Line 325 Error - Spacing < 3.4 ft 54 15.4 34.6 Mon Jun 28 23:51:13.66 2004 8 A Line 325 Error - Spacing < 3.4 ft 69 10.8 32.7 Truck Count from wingnut output: NO, OF VALID TRUCKS = 38867 NO, OF NULL TRUCKS= 15129 Total no. of valid trucks from Liger = 36265 Total no. of null trucks from Liger = 2602 Error142 Error165 Error177 Error202 Error216 Error229 Error242 Error256 Error269 Error282 Error296 Error309 Error325 Error344

In addition to the Liger_Errors.txt file, another error file is created, called Liger_Special_Errors.txt. This file records errors that require a closer look, such as Error 202, which tosses records where an individual axle is greater than 50 kips.

Figure B3.1: Sample error file showing the end of the record produced by the Liger program.

Each error is named with a number, which corresponds to the actual line in the FORTRAN code where it can be found. However, after numerous revisions to the program, the number and the line of code no longer match.

Invalid Character Filters

The following three filters can be categorized as invalid character filters. These filters check the line for inconsistencies, and are easy to pick out.

Error 142 – Invalid Date

This error checks to see if the date stamp is of ordinary format. For instance, an ordinary date stamp looks like this: Mon Jun 28 23:11:25.12 2004

The 15th character in this statement is a colon (:), and the 25th-27th characters in this statement are the numbers (200). Both of these conditions should be true for each valid record. If not, then the record is tossed, and 1 is added to the Error 142 counter. Having either one of these conditions be false compromises the records' validity, and suggests that other characters might be incorrect also.

Error 165 – Non-Numerical Value

This error checks to see if characters 28 through 222 contain a non-numerical value. This includes all letters and symbols. The exception to this is at character 37, which allows the letters 'A', 'B', and 'C' to pass, which are sometimes used as lane signifiers, as an alternative to '1', '2', and '3'. All programs that are used for

statistics and analysis depend on the cleaned Liger file. That makes this particular error an important one, because future programs can only read numerical input values for characters 28-222.

Error 177 – Decimal Value in Wrong Place

This error checks to see if characters 25 through 49 and 61 through 76 contain a decimal point ('.'). This is a continuation from Error 165 in that it checks two subranges inside of a larger range for misplaced decimal points. During the early phases of the cleaning process, certain data files would crash the program because of this problem.

Vehicle-Specific Filters

The rest of the error filters are specific to the vehicle itself. Some are justified based on physical constraints and others on engineering judgment. Four of the errors are worth a second look and are written to a second error file, named Liger_Special_Errors.txt. These errors are further investigated to see if the data is truly valid or not.

Error 202 – Individual Axle Weight > 50 kips

This error checks to see if a record contains an individual axle weight greater than 50 kips. This value was logically chosen based on how much weight, or pressure, a vehicle's tire can actually withstand. The 50-kip recommendation came from Dr.

Chris Higgins. This error is one of the four that is written to the Liger_Special_Errors.txt file for further investigation. Several of the data files had 40-50 records where individual axles were greater than 50 kips. Upon investigation, these records were deemed bogus and tossed out.

Error 216 - Speed < 10 mph

This error checks to see if the vehicle's speed is less than 10 mph. The speed of 10 mph was recommended by Bala Sivakumar of Lichtenstein Consulting Engineers, Inc. In his experience, vehicles traveling below 10 mph usually provide skewed data because the WIM equipment is not apt to handle such low speeds. Low speeds also imply traffic jams, which the equipment is not set up to handle.

Error 229 - Speed > 99 mph

This error checks to see if the vehicle's speed is greater than 99 mph. This speed was chosen as a cap value because it is highly unlikely that a vehicle, namely a truck, travels over 100 mph. A record with this error is probably bad in the first place and should be tossed. This error is written to the Liger_Special_Errors.txt for further investigation.

Error 242 - Length > 200 ft

This error checks to see if the vehicle's length, both bumper-to-bumper and rear-tosteer axle, is greater than 200 ft. Vehicles usually do not exceed 200 ft in length. The records that do exceed 200 ft are written to the Liger_Special_Errors.txt for further investigation. The need for this filter was a result of several files having bad length data.

Error 256 – *Bumper-to-Bumper Length* + 10 ft < *Rear-to-Steer Axle Length*

This error checks to see if the bumper-to-bumper length of a vehicle, plus 10 ft, is less than the rear-to-steer axle length. This filter is used as in internal check to see if the records are valid and consistent. It is not physically possible for the rear-tosteer axle length to be greater than the bumper-to-bumper length, but calibration problems with the WIM equipment sometimes show this to be true.

According to David Fifer, who is the Oregon Department of Transportation's (ODOT) Intelligent Transportation Systems Specialist, inductance loops are used to measure the overall bumper-to-bumper length – one upstream and one downstream. Each loop is cut into the roadway in a 6ft square. Generally, the distance between the back of the upstream loop (Loop 1) to the front of the downstream loop (Loop 2) is 22.167 ft. Loop 1 starts the whole process as soon as it detects metal, which indicates when a vehicle "event" begins. The event ends when it no longer detects any metal. Loop 2 reacts in the same manner. A speed-distance formula is then used to calculate the "length" of the event. The bumper-to-bumper length accuracy of any event is dependent on when each loop begins and ceases to detect a vehicle.

According to Fifer, ODOT has the ability to dictate the process of when an event begins and ends. Each loop can be individually configured to expand or condense its "capture field." Once they've been properly calibrated, the information is very accurate/reliable. Occasionally though, because of age, traffic volume, condition of the roadway, etc., one or both loops can fall slightly out of calibration, giving longer or shorter length values. When this happens, ODOT reconfigures either or both to the proper level of accuracy. To account for this potential error in calibration, Error 256 adds 10 ft on to the bumper-to-bumper length. The September 2005 data file for La Grande EB has over 21,000 records where the bumper-to-bumper length is less than the rear-to-steer axle length, most being over by 2-5 ft. Once the 10 ft was added in, the number of errors was reduced to below 100.

The individual axle spacing lengths are derived by a combination of single load cell sensors and Dynax axle sensors. When each sensor is "hit" it counts an axle. The same type of speed-distance formula is used to calculate the distance between the axles. The sum of all axle spacing lengths provide the length of a vehicle's wheel base (center hub of the front axle to the center hub of the rear axle), or rear-to-steer axle length.

It seems highly unlikely that the equipment would be out of calibration so much that the difference between the two values would exceed 10 ft. Upon inspection it was noted that the records which did exceed 10ft in difference had inconsistencies making them "bad".

Error 269 – Bumper-to-Bumper Length & Rear-to-Steer Axle Length < 7 ft

This error checks to see if the bumper-to-bumper or rear-to-steer axle lengths are less than 7 ft. This filter was created to toss erroneous records from the file. It was noticed that sometimes the equipment would record incorrect length values. This could result from either of the inductance loops not picking up a correct starting or ending point of a vehicle.

Error 282 – Steer Axle < 5ft

This error checks to see if the steer axle is less than 5 ft from the second axle. Dr. Higgins suggested this value because vehicles cannot physically have a steer tandem. This error occurs on events that end prematurely, before the truck has completed crossing the loops, therefore beginning a new event starting with the tandem of the next trailer. This error is more common with the data that has first been adjusted by the WIM program rather than by the Wingnut program.

Error 296 – Axle # NE 1-13

This error checks to see if the axle number is not equal to 1 through 13. This would suggest an erroneous record, which would be tossed. Oregon does not allow vehicles to have greater than 13 total axles.

Error 309 – *GVW* > 280 *kips*

This error checks to see if the gross vehicle weight (GVW) is greater than 280 kips. Exceeding this value is highly unlikely. Records that are over 280 kips are written to the Liger_Special_Errors.txt for further investigation. This roughly equals 24 kips per axle for a 12 axle vehicle.

Error 325 – Any Axle Spacing < 3.4 ft

This error checks to see if any axle is less than 3.4 ft from the next axle on the vehicle. Tires have limitations on how close they can be spaced to each other before touching. This value is just below 4 ft. The reason 3.4 ft is used instead of 4 ft is to encompass all possible calibration errors that might be present. This is the most common error found in data files that are of the new format (those processed by Wingnut). Vehicles that are below this mark usually have an accompanying error in the original raw record, which looks like this: warning: unax ! According to Fifer, this warning means there was an "unequal axles detected" error. This is the result of the dynax axle sensor picking up only one side of one of the axles (either the left or right) causing an unequal count - 3 on the left side, and 4 on the right. This occasionally happens when a vehicle doesn't hit the sensors square (may be in the process of changing lanes).

Error 344 - GVW > +/-7% of the Sum of the Axle Weights

This error checks to see if the gross vehicle weight value differs from the sum of the axle weights by more than 7%. Like Error 256, this filter is an internal check for consistency within the record itself.

List of Errors

Invalid Character Filters

Error 142 – Invalid Date ((15:15) does not equal ':' and (25:27) does not equal '200')

Error 165 – Non-Numerical Value (char. 28 through 222 contains a non-numerical value)

Error 177 – Decimal Value in Wrong Place

Vehicle-Specific Filters

Error 202 – Individual Axle Weight > 50 kips

- Error 216 Speed < 10 mph
- Error 229 Speed > 99 mph
- Error 242 Length > 200 ft
- Error 256 Bumper-to-Bumper Length + 10 ft < The Sum of the Axle Spacings
- Error 269 Length < 7 ft AND Sum of Axles < 7 ft
- Error $282 1^{st}$ Axle Spacing < 5 ft (steer axle)
- Error 296 Axle # does not Equal 1 13
- Error 309 GVW > 280 kips (check outcome)
- Error 325 Any Axle Spacing < 3.4 ft
- Error 344 GVW > +/-7% of the Sum of the Axle Weights

Quality Control Checks for Processing WIM Data

The method used to clean, filter, and sort the raw WIM data includes the following tasks:

- Obtain raw WIM data from ODOT ftp site.
- Identify format errors in raw WIM data and reformat for subsequent processing (program Wingnut#.exe where # is the current version number).
- Identify WIM record errors (program Liger#.exe where # is the current version number).
- Review error files to ensure reported errors are captured and no records are lost.
- Sort data into weight-table classifications (program Tablesorter#.exe where # is the current version number).
- Filter records containing 3S2 configurations and compiles the T2PCTP and T3MCTP records (program 3S2_Nubs2b).
- Spot check records to ensure proper sort.
- Plot GVW results to look for visual distinctions such as repeated records, spurious outliers, and other inconsistencies. It was observed that the cleaned and sorted records could contain replicate identical records, of which only one was true. This visual scanning of results is still necessary and it is not recommended to use a purely computerized process.
- Import weight-table records into Excel and sort top 20%.

As part of the data evaluation process, a series of quality control checks were performed to verify the accuracy of the data classification performed by OSU. The QC process included the following:

- Verification of WIM data record error identification.
- Verification of raw WIM record transcription to OSU usable format.
- Verification of sorting algorithm for weight-table classification.

All software programs written by OSU that were used for cleaning and sorting the raw WIM data were independently checked. The software programs were verified by creating sample input files for each step of the cleaning and sorting process. These sample input files contained each of the specific error identification types that were to be captured, as well as specific valid WIM records that were of known classification.

1. Raw WIM data are used for input into Wingnut#.exe for initial sorting. Eleven (11) errors are identified and removed by this program. Primarily errors at this stage are format issues. Data with formatting errors are removed and placed in error files. To check the program, a sample input file was made with over 50 entries. Some entries were valid WIM records and others included the specific errors to be found and omitted from the data set at this point. The order of the valid data and known errors were random. The output results from Wingnut# were checked against the errors that were intended. All errors were correctly

identified with the exception of Error 325 which only pertains to the old style WIM files with axle pictograms and as such not included in the sample file.

Error 144 – If line1(N:N+4).EQ.'W 0.0' (TYPE)

Error 184 – If line1(N:N+3).NE.'LANE' (TYPE)

Error 203 – If line1(N:N+4).EQ.'W 0.0' (CLASS)

Error 244 – If line1(N:N+3).NE.'LANE' (CLASS)

Error 253 – If line1(N:N+1).EQ.'TY'.OR.line1(N:N).EQ.'C' is not true

Error 275 – If line2(N:N).EQ.'U'

Error 300 – If line2(N:N).NE.'k' (18-K)

Error 327 – If line2(N:N).NE.'k' (ESAL)

Error 361 – If line3(N:N+3).EQ.'AXLE'.OR.'18-K'.OR.'ESAL'

Error 377 – If line4(N:N+3).EQ.'(ft)'

Error 325 -- If line8(N:N+1).EQ.'Un'

2. The next step in the sorting process is program Liger#.exe. There are 14 errors identified and removed by this program. These are errors that identify outlier data that typically would be an erroneous record. Using the sample input file with specified errors and valid data, all the error types were properly captured and stored in the error files. The only issue that was detected was for speeds greater than 99 mph. The program read only 2 integers and so did not catch those trucks that might be traveling over 100 mph. This was corrected and

subsequently verified. There was no impact on the prior load factor results based on this format specification, particularly as the WIM system already identifies vehicles that are traveling too fast and does not record the data for such cases.

Error 142 – Invalid Date ((15:15) does not equal ':' and (25:27) does not equal '200')

Error 165 – Non-Numerical Value (char. 28 - 222 contains a non-numerical value)

- Error 177 Decimal Value in Wrong Place
- Error 202 Individual Axle Weight > 50 kips
- Error 216 Speed < 10 mph
- Error 229 Speed > 99 mph
- Error 242 Length > 200 ft
- Error 256 Bumper-to-Bumper Length + 10 ft < The Sum of the Axle Spacings
- Error 269 Length < 7 ft AND Sum of Axles < 7 ft
- Error $282 1^{st}$ Axle Spacing < 5 ft (steer axle)

Error 296 – Axle # does not Equal 1 - 13

Error 309 - GVW > 280 kips (check outcome)

- Error 325 Any Axle Spacing < 3.4 ft
- Error 344 GVW > +/-7% of the Sum of the Axle Weights
- 3. The weight-table sort is performed with two FORTRAN programs that use the Liger cleaned WIM data. The data are sorted into the correct ODOT permit weight-table classifications. To verify this program, an input file was made that included 3 trucks from each of the weight tables (Tables 1 through 5). The three record examples for each table classification were taken from the lower, the middle, and the upper range of each table. The data were properly sorted by overall GVW into the correct weight tables.

4. The second program that sorts the cleaned truck data is 3S2_Nubs.exe. This program sorts the Liger data into 3S2's and T2PCTP (Table 2 with continuous trip permit trucks) and T3MCTP (Table 3 without the continuous permit trucks) folders for input into load factor statistics. A day in a month was run in this program to verify that all trucks sorted into 3S2 were 5 axles and met the axle spacing requirements for the 3S2. The spacing used was the default (>5.5'). The program correctly identified the 5 axle vehicles and these were further correctly sorted out into the 3S2 configurations.

Next, the T2PCTP and T3MCTP were verified against the output tables from table sorter. The Table 3 file was sorted by axles and then axle spacing to identify the 3S2 trucks and to verify the final number of these trucks matched those subtracted from the new T3MCTP file and the same number was added to T2PCTP (except for those vehicles with GVW > 80 kips).

The WIM data processing described above relies on specific data formatting. If the format is changed in the future, the programs will need to be updated. Additionally, the permit weight table sort used by OSU is based on the current ODOT permit weight tables: STK#300557 (Permit Weight Table 1), STK#300558 (Permit Weight Table 2), STK#300559 (Permit Weight Table 3), STK#300560 (Permit Weight Table 4), STK#300561 (Permit Weight Table 5). If these permit tables change, then the program Tablesorter will need to be revised accordingly.

To ensure changes can be properly implemented, ODOT should inform OSU of future changes when or if they occur.
APPENDIX C

Interstate 5

Woodburn NB Location (MP) ADT ADTT # Lanes # Lanes Instrumented WIM Equipment Date of Last Calibration Calibration Interval

I-5 (274.15) 41,893 5,550 3 2 Single Load Cell June 05 6 mths. (or as needed)

Woodburn POE SB Location (MP) ADT ADTT # Lanes # Lanes Instrumented WIM Equipment Date of Last Calibration Calibration Interval

I-5 (274.18) 44,748 5,689 3 2 Single Load Cell June 05 6 mths. (or as needed)

Wilbur SB Location (MP) 130.03 ADT 19,244 ADTT 2,602 # Lanes 2 # Lanes Instrumented 2 WIM Equipment Single Load Cell Date of Last Calibration Sept. 05 Calibration Interval 6 mths. (or as needed)

Figure C3.1: Oregon WIM site data and locations.

Booth Ranch NB	
Location (MP)	111.07
ADT	12,619
ADTT	3,442
# Lanes	2
# Lanes Instrumented	1
WIM Equipment	Single Load Cell
Date of Last Calibration	Aug 05
Calibration Interval	6 mths. (or as needed)

Ashland POE NB	
Location (MP)	
ADT	
ADTT	
# Lanes	
# Lanes Instrumented	
WIM Equipment	
Date of Last Calibration	
Calibration Interval	

18.08 11,710 2,979 2 1 Single Load Cell Dec 05 6 mths. (or as needed)

Ashland SB		ma
Location (MP)	18.24	Pour Cascade Locks
ADT	11,776	POE R & Reghtwood Emigrant H& La Grande
ADTT	2,838	Woodburn in gr dr 58 Junioer Buden 44
# Lanes	2	R M Juniper Bulle Foresall Band POE de
# Lanes Instrumented	1	The Band Chin Fory W
WIM Equipment	Single Load Cell	mart ·
Date of Last Calibration	Dec 05	*Booth Ranch
Calibration Interval	6 mths. (or as needed)	50 Automotions 58 Klamath Falls

Interstate 84

Cascade Locks POE EB Location (MP) ADT ADT # Lanes # Lanes Instrumented WIM Equipment Date of Last Calibration Calibration Interval

9,880 4,602 2 1 Single Load Cell Sept 05 6 mths. (or as needed)

44.93

Lanes Instrumented WIM Equipment Date of Last Calibration Calibration Interval

1 Single Load Cell Sept 05 6 mths. (or as needed)

US Highway 97

Juniper Butte SB Location (MP) 108.20 ADT ADTT # Lanes # Lanes Instrumented WIM Equipment Date of Last Calibration Calibration Interval

4,967 935 2 1 Single Load Cell Nov 05 6 mths. (or as needed)

Juniper Butte NB		1
Location (MP)	106.90	Poste Poste Wysh by Umatila POE
ADT	4,792	Woodburn POE W the Wilds Brightwood Emigrant Hill W La Grands
ADTT	882	Waabum a gr
# Lanes	2	Conservation and a server a
# Lanes Instrumented	1	* NS Bend Outs Farry W
WIM Equipment	Single Load Cell	
Date of Last Calibration	Nov 05	Wilson PF
Calibration Interval	6 mths. (or as needed)	
		58 Antiand, Antiand SB Klamath Falls

Bend NB		Ma
Location (MP)	145.50	Point Point Avenue Avenue Avenue Point Poi
ADT	6,943	POE ## #KWS Brightwood Emigrant Half # La Grande
ADTT	607	Woothum is gr 5 gr St Junger Butte Ht
# Lanes	2	RNB Juniper Butto
# Lanes Instrumented	1	t Losed Chin Tany
WIM Equipment	Single Load Cell	
Date of Last Calibration	Oct 05	#doon Rawh
Calibration Interval	6 mths. (or as needed)	
		SG Ashtand, Ashtand SB Klamath Falls Mgr POE Right Falls POE

<u>Klamath Falls SB</u>		The second secon
Location (MP)	271.41	Point Point Point Locks
ADT	3,129	HOLDER HE Bightwood Enigrant HE H La Grande
ADTT	907	Woothers (2) (2)
# Lanes	2	Fail Juniper Batts
# Lanes Instrumented	1	*NB Bend Outs Ferry *
WIM Equipment	Single Load Cell	
Date of Last Calibration	Oct 05	Boon Ranch
Calibration Interval	6 mths. (or as needed)	Y P P
		SD Astrand, Astrand C Romath Falls Mar POE Klamath Falls POE
Klamath Falls POE NB		The second secon
Location (MP)	271.73	Point Concessor Locks
ADT	3,857	POE # # AWB Brightwood Emigrant roll # Lis Grande
ADTT	769	Woodbarn in in S de Stil Amper Butter
# Lanes	2	Well Juniper Butte Farewell Bend POE to
# Lanes Instrumented	1	THE Bend Gits Ferry W
WIM Equipment	Single Load Cell	www.t
Date of Last Calibration	Oct 05	*Booth Ranch

Oct 05

6 mths. (or as needed)

OR Highway 58

Calibration Interval

Lowell WB		
Location (MP)	17.17	Pools POE Lacks Unstate POE
ADT	3,205	POE ## #WE Enightwood Emigrate Hell # La Grande
ADTT	581	Woodburn as ar 3 gr 58 Juniper Butte At
# Lanes	2	TNB Juniper Batte
# Lanes Instrumented	1	The Bend Other Forry T
WIM Equipment	Single Load Cell	met R
Date of Last Calibration	Nov 05	Raco Rano
Calibration Interval	6 mths. (or as needed)	
		S0 Ashtand Ashtand S8 Klemath Falls

Asitiand the POE

Figure C3.1 (Continued): Oregon WIM site data and locations.

US Highway 26

Brightwood EB	
Location (MP)	36.51
ADT	4,761
ADTT	357
# Lanes	2
# Lanes Instrumented	1
WIM Equipment	Single Load Cell
Date of Last Calibration	Sept 05
Calibration Interval	6 mths. (or as needed)

Brightwood WB		Phil Phil
Location (MP)	36.31	Point POE Nyeth I Unutile POE
ADT	4,360	POE # # La Grantwood Emgrant Hall & La Grande
ADTT	787	Woodburn (8 2) g gt 58 Junior Butto 84
# Lanes	2	This Juniper Butto
# Lanes Instrumented	1	W kill Band Okin Farry W
WIM Equipment	Single Load Cell	
Date of Last Calibration	Sept 05	Waven Rench
Calibration Interval	6 mths. (or as needed)	
		SB Ashland, Ashland SB Klamath Falls

APPENDIX D

1. 11. 21

Figure D3.6: CDF plots for factored shear for 150-ft simple span bridge model.

Figure D3.7: CDF plots for unfactored shear for 200-ft simple span bridge model.

Figure D3.9: CDF plots for unfactored moment for 50-ft simple span bridge model.

Figure D3.10: CDF plots for factored moment for 50-ft simple span bridge model.

Inverse Normal Distribution for Moment I-5 Booth Ranch NB - 100-ft Simple Span Top 20% of January 1st - December 31st, 2005

Figure D3.12: CDF plots for factored moment for 100-ft simple span bridge model.

Figure D3.13: CDF plots for unfactored moment for 150-ft simple span bridge model.

Figure D3.14: CDF plots for factored moment for 150-ft simple span bridge model.

model.

model.

General Conclusions

An investigation of Oregon's weigh-in-motion (WIM) data for bridge rating implementation and evaluation has been performed. The first ever state-wide calibration of live load factors for LRFR bridge evaluation and rating, following the LRFR Manual commentary Article C6.4.4.2.3 for development of site-specific live load factors, has been completed. In addition, a study was conducted to determine an amount of WIM data needed to extrapolate future loading events for both high and low ADTT volume sites. In a separate study, load effects for the Oregon Department of Transportation's (ODOT) suite of 13 bridge rating vehicles were calculated for various span lengths and types. These load effects, both factored and unfactored, were compared to the load effects calculated from vehicles in the WIM data. Based on observations of the data and prior research, the following observations and recommendations are presented:

- Using the statistical data from the four WIM sites with different ADTT volume, at different times of the year, and over different WIM data collection windows, live load factors were computed. The Oregon-specific live load factors were smaller than those in the LRFR Specification. The factors were smaller for the lower volume sites and smaller for the heavier permit trucks.
- The high volume site, I-5 Woodburn NB, showed little seasonal variation, was insensitive to direction of travel, and two-weeks of data were sufficient

to produce consistent factors. For the lower volume sites, some seasonal variation was observed with higher load factors during summer and fall due to agricultural and construction transport.

- By employing the procedures used to develop the LRFR Specification, the resulting live load factors maintain the nationally accepted structural reliability index for evaluation, even though the resulting state-specific live load factors were smaller than the national standard.
- Policy implementation for the Oregon-specific factors included rounding the computed values to the nearest 0.05, set a lower limit of 1.0 for the live load factors, and established provisions for maintenance of the factors into the future.
- For a high ADTT volume site (approximately 3500 ADTT), approximately two weeks of WIM data is needed to adequately extrapolate future upper tail events. For a low ADTT volume site (approximately 500 ADTT), one month of WIM data is needed.
- Additional WIM data should be collected and analyzed. One year of data from two sites was used to project loading events to a five year extrapolation window. As additional data become available, two and five years of collected data should be analyzed and results compared to the rating vehicles, and also to the one-year extrapolation values.

- The factored rating vehicles provided reasonably sufficient demands to envelope the load effects of the WIM data, including that attributed to an adjacent equivalent 3S2 alongside vehicle.
- The contribution of the alongside vehicle in 3S2 equivalents for each of the rating vehicles was presented as a percent of the nominal value to examine the consistency of the reliability between varying span lengths and load effects. Most of the factored rating vehicles produced a fairly uniform level of reliability.
- The Oregon-specific live load factors applied to the rating vehicles adequately enveloped the load effects produced by the WIM data. Some of the rating vehicles that are in current use do not quite produce the same level of demand compared to some WIM vehicles observed on Oregon's state-owned highways. However, the ratios of the rating vehicle load effect to the WIM vehicle load effect that were below 1.0 were reasonably close to 1.0. Considering the level of uncertainty in WIM axle weight measurements, as well as the calibration process, this difference was minor.
- The Type 3 Legal vehicle could be eliminated from the suite of rating vehicles. Additional research should be conducted to further support this recommendation, as stated in subsequent bullets.
- No immediate changes, such as increases in axle weights or reduction of axle spacing lengths are necessary for the suite of ODOT rating vehicles.

- The use of the NRL vehicles to represent Table 1 vehicle classification in Oregon is redundant, and need not be incorporated into to the suite of rating vehicles. Further, the NRLs provided nonuniform levels of reliability compared with the current Table 1 representative vehicles.
- Only one WIM site, I-5 Booth Ranch NB, was considered for comparison of load effects. Additional analyses should be conducted which compare load effects for other routes in Oregon, with varying ADTT, directionality, and freight corridors taken into account.
- Additional span types and lengths should be analyzed when comparing load effects. This may include three-span, four-span, and five-span continuous models with varying span lengths.
- Load effects at the girder level should be calculated and compared for both the WIM data and the rating vehicles using girder distribution factors.
- The factored HL-93 loading (at the operating level) was found to adequately envelope most Table X loading scenarios.

Bibliography

- AASHTO (American Association of State Highway Officials), (2002). *Standard Specifications for Highway Bridges*, 17th Edition, AASHTO, Washington, D.C.
- AASHTO LRFD (2004). LRFD Bridge Design Specifications. 3rd Edition, AASHTO, Washington, D.C.
- AASHTO (2003). Manual for Condition Evaluation and Load and Resistance Factor Rating (LRFR) of Highway Bridges, AASHTO, Washington, D.C.
- AASHTO (1994). Manual for Condition Evaluation of Bridges, AASHTO, Washington, D.C.
- Daniels, T. (2004). "Reliability Based Bridge Assessment Using Modified Compression Field Theory and Oregon Specific Truck Loading." MS Thesis, Department of Civil, Construction and Environmental Engineering, Oregon State University.
- Fifer, D. (2002). Oregon Department of Transportation, personal correspondence with T. Daniels at Oregon State University.
- Fifer, D. (2005). Oregon Department of Transportation, E-mail correspondence with J. Pelphrey at Oregon State University.
- Fifer, D. (2006). Oregon Department of Transportation, E-mail correspondence with J. Pelphrey at Oregon State University.
- Groff, R. (2006). Oregon Department of Transportation, E-mail correspondence with J. Pelphrey at Oregon State University.
- Groff, R. (2006b). ODOT LRFR Policy Report: Liveload Factors for Use in Load and Resistance Factor Rating (LRFR) of Oregon's State-Owned Bridges, Oregon Department of Transportation, Salem, OR.
- Haldar, A. and Mahadevan, S. (2000). <u>Probability, Reliability and Statistical</u> <u>Methods in Engineering Design</u>, John Wiley & Sons, Inc., New York
- Higgins, C., Miller, T.H., Rosowsky, D.V., Yim, S.C., Potisuk, T., Daniels, T.K., Nicholas, B.S., Robelo, M.J., Lee, A., and Forrest, R.W. (2004). "Assessment Methodology for Diagonally Cracked Reinforced Concrete Deck Girders."

Report No. FHWA-OR-RD-05-04, Federal Highway Administration, Washington D.C.

- Kim, S., Sokolik, A.F. and Nowak, A.S. (1997). "Measurement of Truck Load on Bridges in the Detroit, Michigan, Area." Transportation Research Record, No. 1541, pp. 58-63.
- Laman, J.A. and Nowak, A.S. (1993). "Load Model for Bridge System Reliability." *Reliability and Optimization of Structural Systems*, Vol. B-12, North-Holland, pp. 149-156.
- Minervino, C., Sivakumar, B., Moses, F., Mertz, D. and Edberg, W. (2004). "New AASHTO Guide Manual for Load and Resistance Factor Rating of Highway Bridges." ASCE *Journal of Bridge Engineering*, Vol. 9, No. 1, pp 43-54.
- Moses, F. (2001). "Calibration of Load Factors for LRFR Bridge Evaluation." *NCHRP Report 454*, Transportation Research Board, National Research Council, Washington, D.C.
- Nowak, A.S. and Hong, Y-K. (1991). "Bridge Live Load Models." ASCE Journal of Structural Engineering, Vol. 117, No. 9, pp. 2757-2767.
- Nowak, A.S. (1993). "Live Load Model for Highway Bridges." Journal of Structural Safety, Vol. 13, Nos. 1+2, December, pp. 53-66.
- Nowak, A.S. (1999). "Calibration of LRFD Bridge Design Code." NCHRP Report 368, Transportation Research Board, National Research Council, Washington, D.C.
- Nowak, A.S. and Collins, K.R. (2000). <u>Reliability of Structures</u>, McGraw-Hill, New York.
- Nowak, A.S. and Ferrand, D.M. (2004). "Truck Load Models for Bridges." Building on the Past, Securing the Future, Proceedings of the 2004 Structures Conference, May 22-26.
- Pelphrey, J. and Higgins, C. (2006). Calibration of LRFR Live Load Factors for Oregon State-Owned Bridges using Weigh-in-Motion Data, Kiewit Center for Infrastructure and Transportation Report, Dept. of Civil Engineering, Oregon State University, Corvallis, OR.

Strathman, J.G. and Theisen, G. (2002). "Weight Enforcement and Evasion: Oregon Case Study." Center for Urban Studies, College of Urban and Public Affairs, Portland State University.