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A flexible flowshop, comprised of one or more stages having unrelated parallel 

machines, is investigated in this research. Unrelated parallel machines can perform the 

same function but have different capacity or capability. Since this problem is motivated 

by industry research, dynamic job release times and dynamic machine availability times 

have been considered. Each job considered in this research can have different weight and 

due date. Sequence-dependent setup times of jobs further add to the complexity of the 

research. Machine skipping is yet another innate feature of this research that allows jobs 

to skip one or more stages depending upon customer‟s demand or budgetary constraints. 

The objective of this research is to minimize the sum of the weighted tardiness of all jobs 

released within the planning horizon.  

The research problem is modeled as a mixed (binary) integer-linear programming 

model and is shown to be strictly NP-hard. Being strongly NP-hard, industry size 

problems cannot be solved using an implicit enumeration technique within a reasonable 

computation time. Cognizant of the challenges in solving industry-size problems, we use 

the tabu-search-based heuristic solution algorithm to find optimal/near optimal solutions. 

Five different initial solution finding mechanisms, based on dispatching rules, have been 

developed, to initiate the search. The five initial solution finding mechanisms (IS1-IS5) 

have been used in conjunction with the six tabu-search-based heuristics (TS1-TS6) to 



 
 

 
 

solve the problems in an effective and efficient manner. The applicability of the search 

algorithm on an example problem has been demonstrated. The tabu-search based 

heuristics are tested on seven small problems and the quality of their solutions is 

compared to the optimal solutions obtained by the branch-and-bound technique. The 

evaluations show that the tabu-search based heuristics are capable of obtaining solutions 

of good quality within a much shorter computation time. The best performer among these 

heuristics recorded a percentage deviation of only 2.19%. 

The performance of the tabu-search based heuristics is compared by conducting a 

statistical experiment that is based on a randomized complete block design. Three sizes of 

problem structures ranging from 9 jobs to 55 jobs are used in the experiment. The results 

of the experiment suggest that no IS finding mechanism or TS algorithm contributed to 

identifying a better quality solution (i.e a lower TWT) for all three problem instances (i.e. 

small, medium and large). In other words, no IS finding mechanism or TS algorithm 

could statistically outperform others.  In absence of a distinct outperformer, TS1 with 

short-term memory and fixed TLS are recommended for all problem instances. When 

comparing the efficiency of the search algorithm, the results of the experiment show that 

IS1, which refers to the EDD (earliest due date) method, is recommended as the initial 

solution generation method for small problem sizes. The EDD method is capable of 

obtaining an initial solution that helps the tabu-search based heuristic to get to the final 

solution within a short time. TS1 is recommended as the tabu-search based heuristic for 

large problems, in order to save on time. TS1 is also recommended to solve small and 

medium problem structures in absence of a statistically proven outperformer. 
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A Methodology for Scheduling Jobs in a Flexible Flowshop with 

Sequence Dependent Setup Times and Machine Skipping 

1 INTRODUCTION 
 

Manufacturing firms are persistently discovering ingenious techniques to 

overcome the fierce completion from their counterparts. Conventional manufacturing 

approaches are constantly being replaced by novel practices to improve the overall 

efficiency and effectiveness of the manufacturing system. Various manufacturing firms 

are resorting to scheduling algorithms to help them meet the customer requirements in a 

timely manner, and to reduce their operational costs.  

The two vital components of a scheduling problem are machine configurations 

and job characteristics. Typically, the machine configuration of a manufacturing plant 

consists of either a flow shop or a job shop setting, with single or multiple machines. A 

flow shop setting or a job shop setting may consist of several stages. Typically, in a flow 

shop setting, each stage has only a single machine. If at least one stage of the flow shop 

has more than one machine, it is termed as a flexible flow shop. Characteristically, in a 

flow shop setting, jobs follow a flow line and have exactly one operation on each 

machine. On the other hand, in a job shop setting, jobs do not strictly adhere to a flow 

line.  

The machines in a flexible flow shop environment can be classified into three 

categories: identical parallel machines, uniform parallel machines and unrelated parallel 

machines. In an identical parallel machine system, the processing time of a job is the 

same on all machines. In a uniform parallel machine system, each machine has a unique 

speed factor. The processing time of a job on each machine is determined by its speed 

factor. In unrelated parallel machines, the processing time of a job may differ from one 

machine to the other, depending on machine‟s capacity (low, medium or high). In an 

unrelated parallel machines system, a machine with low capability usually takes more 

time to process a job than a machine with high capability. Unrelated parallel machines 

system is extensively used in the industry because a company may invest in similar 
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machines with different capability to cut down on investment or capital costs or to meet 

the variation in production demand.  

As mentioned earlier, along with machine configurations, job characteristics are 

also an innate component of a scheduling problem. Cheng and Sin (1990) listed five 

characteristics of a job: job processing time, due-date, preemptive sequencing, 

precedence constraints and job release time. The first two characteristics do not require 

much explanation and are relatively easy to understand. The third characteristic 

(preemptive sequencing) refers to the idea of giving a particular job precedence over the 

other, if it is deemed urgent. The fourth characteristic (precedence constraints) 

determines the sequence in which the jobs are supposed to be processed on each machine. 

The fifth characteristic (release time) of jobs refers to the time when a particular job is 

available on a shop floor. A scenario in which one or more jobs are released at different 

times is termed as dynamic job availability. On the other hand, if all the jobs are available 

to be processed at the same time, it is called static job availability. Lodree et al. (2004) 

suggested a scheduling rule for minimizing the number of tardy jobs in a dynamic flow 

shop environment, consisting of m machines. The processing times and due dates of jobs 

were allotted randomly. The research assumed that the availability time of jobs was not 

known in advance and that the jobs arrive randomly to the system.   

Similar to jobs, machines may also have different release times. If machines are 

released at different times, the condition is called dynamic machine availability and if all 

the machines are released at the same time, it is called static machine availability. In an 

industrial environment, jobs compete for limited resources based on customer‟s priority 

and due-date. A job which has a high priority and tight due date must be given preference 

over another job with low priority and loose due date.  A superior scheduling algorithm 

must be capable of providing a sequence of jobs that would not only reduce the 

manufacturing costs, but also meet the customer demand on time.  

Since this research is aimed at solving a problem that is very much prevalent in 

industry, jobs are assumed to have sequence-dependent setup times on machines. Setup 

time may be defined as the time required for changing over from one job to another, on a 

particular machine. If the setup time varies when changing over from one job to another, 
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then the jobs are said to have sequence-dependent setup times. If the setup time remains 

the same for changing over from one job to another, then the jobs are said to have 

sequence-independent setup times. Tasgetiren (2009) investigated the possibilities of 

minimizing the total weighted tardiness of all jobs on a single machine with sequence-

dependent setup times. Pfund et al. (2008) explored the possibilities of scheduling jobs of 

on identical parallel machines with sequence-dependent setup times. The purpose of their 

study was to minimize the weighted tardiness of all the jobs. 

The problem investigated in this thesis is directly motivated by a leading 

manufacturing company. The industrial setting considered in the research problem is that 

of a flexible flowshop with the possibility of machine skipping. A flexible flowshop 

comprises of multiple stages with at least one (or more) stage having more than one 

machine. The scheduling environment considered in this research is assumed to be 

dynamic in job release time as well as machine availability time. The purpose of this 

research is to find an optimal or near optimal schedule that would minimize the weighted 

tardiness of all the jobs. Such an attempt is very much relevant to the industry since 

customer satisfaction is the primary concern of all the firms. A job in this research can be 

viewed as a customer order that has a „strategic weight‟ associated with it. The weight of 

the job reflects its priority, i.e. a job with higher weight receives greater priority. The 

tardiness of a job is evaluated as the difference in completion time and the due date of a 

job. A negative tardiness is considered to be zero and suggests that the job was completed 

before the due date. Weighed tardiness is evaluated by multiplying tardiness of a job by 

its weight.    
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2 LITERATURE REVIEW 

 

 

Production scheduling has been a key area of interest for several researchers over 

the past 50 years. Johnson (1954) was the first one to introduce a systematic approach for 

finding a mechanism that helped in obtaining an optimal solution for a two machine flow 

shop (and also for a special case of three machines). Campbell, Dudek and Smith (CDS) 

(1970) proposed a methodology that was an extension of Johnson‟s Algorithm. CDS 

methodology uses the Johnson‟s algorithm in a heuristic manner whereby several 

schedules are created from which the best is chosen. Nawaz, Enscore, and Ham (1983) 

proposed a new algorithm based on the assumption that the job with greater total 

processing time on all machines should be given priority over jobs with a lower total 

processing time. Unlike the CDS algorithm, the NEH algorithm doesn‟t transform a m-

machine problem into a two machine problem. Instead, it aims at generating a best partial 

solution for the original problem by adding a job in each step, to finally identify the best 

(complete) solution.  

Sriskandarajah and Sethi (1989) proposed a heuristic algorithm for a unique 

flexible flow-shop problem, with only two machine centers. They assumed that each 

machine center had the same number of homogeneous machines. Their research had an 

underlying supposition that the primary operation on each job must initially be performed 

on the first machine, followed by the second. The jobs were processed on any vacant 

machine at the machine center, depending on its availability. Kyparisis and Koulamas 

(2006) also investigated a two-stage flexible flow shop problem with uniform parallel 

machines. The primary purpose of their research was to minimize the makespan of all the 

jobs. 

Taking advantage of branch-and-bound algorithm, Salvador (1973) investigated a 

flexible flow shop problem aimed at minimizing the makespan with no in-process 

buffers. A branch-and-bound algorithm for the general flow shop, with parallel machines, 

was investigated by Hunsucker (1991). This structure became popular by the name of 

hybrid flow shops and included in-process buffers. However, the algorithm was incapable 
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of solving large combinatorial problems, revealing the limitations of mixed integer 

programming algorithms. Ding and Kittichartphayak (1994) developed three different 

heuristic algorithms for minimizing the makespan in a flexible flow line. Their algorithm 

was an extension of the heuristic algorithms used in regular flow shop scheduling 

problems.  

 Jaymohan and Rajendran (2000) explored the relative effectiveness of two approaches to 

schedule jobs in a flexible flow shop environment. The first approach utilized the 

possibility of using different dispatching rules at different stages of the flow shop and the 

second approach utilized the same dispatching rule for all the stages in the flow-shop. 

Both approaches were aimed at minimizing the flow time and tardiness of jobs. The 

authors argue that most dispatching rules for flow shop scheduling assume that the cost of 

holding per unit time is the same for all jobs. The authors further say that it is assumed 

that the cost of tardiness per unit time is the same for all jobs. In other words, it is implied 

that the holding cost of a job is directly proportional to its flowtime, and the tardiness 

cost of a job is directly proportional to its positive lateness. The authors try to overcome 

this deficiency by proposing a couple of dispatching rules, which consider different 

weights or penalties for different jobs. 

Wang (2005) investigated several scholarly articles published on flexible flow 

shop scheduling. The purpose of the research was to review all the solution approaches 

adopted in flexible flow shop scheduling, ranging from optimum to heuristic solutions. 

The article not only presents a detail analysis of all the approaches, but also provides 

suggestions for future research. 

Flexible flow shop scheduling problems have held the interest of researchers 

primarily because of its industrial relevance. Kurz and Askin (2003) investigated 

scheduling of jobs in flexible flow lines with sequence-dependent setup times. They 

explored heuristic approaches including the insertion heuristic, Johnson‟s algorithm for 

two-stage flow shops and its heuristic extensions to m-machine flow shops. Furthermore, 

Kurz and Askin (2004) developed a random keys genetic algorithm for the problem they 

had investigated in (Kurz and Askin, 2003), primarily to evaluate their proposed random 

key genetic algorithm against other heuristics they had proposed earlier. With the 

objective of minimizing the make-span, Zandieh et al. (2006) investigated the same 
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problem and proposed an immune algorithm. They successfully demonstrated that the 

immune algorithm outperformed the random key genetic algorithm proposed by Kurz and 

Askin (2004).  

Allahverdi et al. (2006) completed a survey of all scheduling problems with setup 

times. Naderi, Ruiz, and Zandieh (2009) investigated a flowshop problem with parallel 

machines and sequence dependent setup times where the objective was to minimize the 

makespan. They made an assumption that all jobs need not visit each and every stage, 

meaning that machine skipping was allowed. They introduced a heuristic in the form of a 

dynamic dispatching rule that is based on iterated local search.    

Jungwattanakit et al. (2009) considered a flexible flow shop scheduling problem, 

taking sequence- and machine-dependent setup times into consideration. The study aimed 

at developing a bi-criteria model for minimizing the convex sum of makespan and the 

number of tardy jobs in a static flexible flow shop setting. The authors initially 

formulated a mixed integer programming model to find the optimal solution for an 

industry size problem. But due to large computation time associated with running the 

mixed integer programming model, they suggested other heuristic approaches to obtain a 

quality solution within a reasonable time. The authors primarily used metaheuristic 

algorithms such as simulated annealing (SA), tabu search (TS) and genetic algorithms to 

obtain an optimal or near optimal solution.  

Naderi et al. (2009) considered a flexible flowshop scheduling problem with 

sequence dependent set-up time and job-independent transportation times. The primary 

objective of the research was to minimize the total weighted tardiness. However, they did 

not consider dynamic release of jobs and dynamic machine availability, which are 

commonly prevalent in industry situations. All the machines in a given stage are 

considered to be uniform parallel. Furthermore, machine skipping is not permitted in the 

problem they investigated. They utilize electromagnetic algorithm (EMA) to efficiently 

solve the research problem. EMA is a meta-heuristic algorithm that originated from the 

attraction-repulsion mechanism of the electromagnetism theory. The authors also 

formulated a mixed integer linear programming (MILP) model for optimally solving 

small-sized problem instances. 
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A large number of research efforts have been made in the past based on tardiness 

objectives in a flowshop. To minimize mean tardiness, Kim (1993) modified several 

priority rules including earliest due date (EDD), minimum slack (SLACK), slack per 

remaining work (SRMWK) and modified due date (MDD). The author also demonstrated 

the utilization of tabu search to solve the problem using EDD as initial solution. 

Rajendran (1997) utilized simulated annealing (a probabilistic meta-heuristic search 

algorithm for obtaining global maxima or minima) for a sequence dependent flexible 

flow shop problem to minimize the maximum weighted tardiness and the total weighted 

tardiness.  

Vallada et al. (2008) performed a comprehensive evaluation of heuristics and 

metaheuristics for the m-machine flowshop scheduling problem with the objective of 

minimizing total tardiness. Fourty different heuristics and metaheuristics were 

implemented and their performance was analyzed using same benchmark of instances in 

order to make a fair comparison. The study entails a wide variety of classical priority 

rules as well as most recent metaheuristic algorithms such as tabu search, simulated 

annealing and genetic algorithms. An experimental design approach was used by the 

researchers to carry out the statistical analysis and to validate the effectiveness of the 

different methods tested.  

In the past few years, tabu search has proved to be remarkably successful at 

solving notoriously complex problems of industrial merit. Tabu search was first 

introduced by Glover (1996).  A synopsis of the application of tabu search on production 

scheduling problem was investigated by Barnes et al. (1995). The study listed tabu search 

based applications in a single-machines problem, parallel machines problems, travelling 

salesman problem, flow shop problem, vehicle routing problem, classical job shop 

problem and flexible job-shop problem. Muller et al. (1995) investigated the relevance of 

tabu search in solving identical parallel machine scheduling problem with sequence 

dependent setup times, to minimize the makespan. The algorithm consists of three 

phases: initial assignment, tabu search, and post-optimization procedure.  

Logendran and Subur (2004) utilized the tabu search based heuristics to schedule 

jobs on unrelated parallel machines, with the possibility of job splitting. Their research 

incorporated various tabu search features and led to the development of six different 
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heuristic algorithms. The study showed that the proposed heuristic algorithms were 

capable of solving large complex problems in surprisingly short time. A mathematical 

model for the problem was also developed to demonstrate that the tabu search solutions 

identified were very effective by comparing them to the optimal solutions obtained for 

small problem instances. 

Logendran et al. (2006) suggested a heuristic approach for solving sequence 

dependent group scheduling problems of industrial merit utilizing tabu search. The 

objective of the research was to minimize the makespan required to process all the jobs in 

all the groups that were released on the shop floor. Their research took into consideration 

of problem sizes ranging from small, medium to large, and suggested a methodology for 

solving large problems in an efficient and effective manner. Logendran et al. (2007) 

employed the tabu search based heuristics to schedule jobs on unrelated parallel machines 

with sequence-dependent setup times. They proposed six different search algorithms 

based on tabu search heuristics to minimize the total weighted tardiness. 

  

To summarize, the scheduling environment of this research is dynamic in both job 

release time and machine availability. The objective of the research focuses on finding 

optimal/near-optimal schedule that minimizes the sum of the weighted tardiness of all 

jobs in a flexible flowshop environment. Such an objective is important in many 

industrial applications since on-time delivery is one of the most important factors in 

customer satisfaction. Machine skipping is another important feature in this research. A 

job can skip one or more stages depending upon customer‟s request. Additionally, each 

job has a strategic weight associated with it, which reflects its priority, i.e. job with 

higher priority receives higher weight. 
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3 PROBLEM STATEMENT 

 

This research focuses on scheduling jobs in a flexible flow shop with 

sequence-dependent setup times. Since it is a flexible flow shop scheduling problem, one 

or more stages may have more than one machine. The stage with multiple machines may 

comprise of identical, uniform or unrelated parallel machines. If a stage comprises of 

unrelated parallel machines, not all jobs would be eligible to be processed on all 

machines. The release times of jobs and the availability times of machines are assumed to 

be dynamic. It means that the jobs can be released at any time during the current planning 

horizon, depending upon the customer‟s request or order. Similarly, at the start of the 

current planning horizon, a subset of machines might be unavailable due to processing 

jobs from the previous planning horizon, only to become available at a later time. These 

assumptions are in conjunction with what is typically observed in an industrial setting. 

Machine skipping is an innate feature of this research problem. A job may skip one or 

more stages depending upon customer‟s requirement or budgetary constraints. In other 

words, if a customer deems a particular process as a non value adding activity, he may 

opt not to perform it. The possibility of a job skipping a stage makes this problem even 

more intricate. 

Companies usually associate a project with a unique customer so that they can 

make a clear distinction among customers. The jobs considered in this paper are directly 

associated with a particular project, and that association is an integral part of this 

research. Consequently, a project may consist of one or more jobs, depending upon 

customer requirements. Thus, a project may be considered as a larger entity for 

distinguishing customers and the jobs can be considered as smaller components or 

elemental units associated with a project. Additionally, the jobs within the same project 

may be similar or dissimilar depending upon customer‟s requirements. Therefore, the 

jobs within a project may have an entirely different run time on the same machine. There 

is also a sequence-dependent setup time associated with changing over from one job to 

another, on a particular machine. Similar jobs will have smaller setup times, while 

dissimilar jobs will have larger setup times.  

The objectives of this research are as follows: 
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i. To develop a mathematical model for minimizing the total weighted 

tardiness of jobs which are dynamically released in a flexible flow shop, 

with the possibility of machine skipping. (Note that jobs considered in this 

research have sequence-dependent setup times and the machine 

availability is considered to be dynamic ) 

ii. To develop a scheduling algorithm that would efficiently solve the 

mathematical model considered in (i). 
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4 MODEL DEVELOPMENT 

 

 

4.1 Introduction 

 

 A mixed (binary) integer linear programming model that captures the operational 

constraints of an industrial setting is developed to quantify the effectiveness of the 

proposed solution algorithm. The parameters used in the model such as the number of 

jobs, number of stages, number of machines in a given stage, job release times, machine 

availability times, job weights, job due dates, job run times, sequence-dependent setup 

times, and whether or not a job has an operation in a given stage, are known quantities.  

 Notice that during a planning horizon, a machine may become unavailable due to 

an unanticipated breakdown. It is extremely difficult to predict when the machine might 

break down and how long it will remain unavailable. Moreover, introducing additional 

constraints add to the complexity of an already complex model. Therefore, for the 

purpose of modeling, we assume that during a given planning horizon, a machine remains 

fully functional from the time it becomes available.  

  

4.2 Assumptions 

 

(1) Each job can be processed only once at each stage 

(2) A job may skip one or more stages depending upon customer requirements 

(3) Even though a job may skip one or more stages, it still follows a flow line 

(unidirectional) arrangement 

(4) Cross precedence is not allowed, meaning that a job cannot be at the same time 

both a predecessor and a successor of another job 

(5) Sequence-dependent setup times of jobs are known 

(6) No preemption is allowed  

(7) Each machine can process only one job at a time  
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(8) Not all jobs can be processed on all machines. If a job cannot be processed on a 

machine, it is assumed to have a very large run time on that machine  

 

4.3 Notations: 

         jobs 

        stages 

         number of machines in stage g 

Parameters 

aig  = availability time of  machine i in stage g  

rijg  = run time of job j on machine i in stage g  

wj    = weight assigned to job j  

dj     = due date of job j  

eijg   = release time of job j on machine i in stage g  

sikjg  = setup time for job j, immediately following job k on machine i of stage g  

 (k = 0 means the reference job) 

                 1 if job j can be processed on machine i of stage g 

                 0 otherwise 

                   1 if job j has an operation in stage g 

                   0 otherwise 

 

 

hjg  = 

fijg  = 
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4.4 Mathematical Model 

 

               

  

   

 

   

 

Subject to:  
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4.5 Model Description  

 

 The proposed mathematical model is a mixed (binary) integer-linear 

programming model that entails both real and binary (0/1) integers. The objective 

function of the mathematical model focuses on minimizing the weighted tardiness of all 

jobs released in the current planning horizon. Constraint (1) states that each job should be 

processed only on one machine in a given stage. Constraints (2) ensures that the 

completion time a job on a given machine is at least equal to or greater than the 

machine‟s availability and runtime of that job on the machine, after accounting for the 

sequence dependent set up time. Constraint (3) also ensures that the completion time of a 

job on a given machine in stage 1 is always equal to or greater than the release time of the 

job in stage 1 and the runtime of the job in that stage. Constraint (4) states that the 

completion time of a job on a machine in a given stage is zero, if its operation is not 

performed on that machine. Constraints (5) and (6) jointly ensure that the completion 

time of a job in a given stage is greater than the completion time of the job in previous 
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stage plus the runtime and the sequence-dependent setup time of the job in that stage. 

Constraints (7) and (8) together ensure that two jobs are not processed at the same time 

on a machine in a given stage. Constraint (9) states that a job must be preceded by only 

one job if it has an operation on a particular machine in a given stage. Constraint (10) 

guarantees that a job can only transfer to at most one job if it has an operation on a 

particular machine in a given stage whereas constraint (11) ensures that a job cannot 

transfer to another job if it is not scheduled to be processed on a particular machine of a 

given stage. Constraint (12) ensures that tardiness of a job is greater than or equal to the 

difference between its completion time in the last stage and its due date. Finally, 

constraint (13) guarantees that only positive values for tardiness are considered.  

 

4.6 Computational Complexity of the Research Problem 

  

 Research problems, in the field of optimization, can be characterized in a 

comprehensive manner by using mathematical models. Recent advancements in 

technology have greatly enhanced the processing speed of computer and have 

dramatically increased the speed of optimization solvers. Despite these technological 

advancements, often only small-sized problems can be efficiently solved to optimality by 

using optimization software. 

 The computational complexity for this research problem can be illustrated by 

considering a special case in total weighted tardiness problem. Lenstra et al. (1977) 

proved that scheduling jobs with equal weights on a single-machine is NP-hard in the 

strong sense. Note that scheduling jobs on a single machine with equal weights is a 

special case of unrelated parallel machines with variable weights of jobs. Furthermore, 

scheduling on unrelated parallel machines is a special case of flexible flow shop 

scheduling. We therefore conclude that if the special case of the research problem is 

strongly NP-hard then the original research problem must also be NP-hard in the strong 

sense.  
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 Obtaining a polynomial time solution (by using optimization software) for a NP-

hard problem is very unlikely. As mentioned earlier, only small-sized problems can be 

efficiently solved by using optimization software. Other implicit enumeration methods 

such as branch and bound technique can be used to solve small problem instances in a 

reasonable computational time. But for medium and large problem instances, the branch 

and bound technique will often fail to identify the optimal solution. Even if it identifies 

the optimal solution, the computational time required to solve these problem instances 

can be extremely large. Therefore, we need to develop a solution algorithm for optimally 

or near-optimally solving the medium and small problem instances in an efficient 

manner.  

 In the past, researchers have utilized tabu search-based heuristics to find 

optimal/near optimal solutions for industry-size problems. Barnes et al. (1995) gave an 

overview of the application of tabu search heuristics on problems involving single 

machine, parallel machines, flow shop and job shop. The use of tabu search-based 

heuristics has been successfully demonstrated by Glass et al. (1994), Suresh and 

Chaudhary (1996), and Logendran and Subur (2000) in their research work.  
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5 HEURISTIC ALGORITHM 

 

5.1 Introduction 
 The heuristic algorithm employs Tabu Search, which was first proposed by 

Glover (1986), as the mechanism to explore the solution space. The search space of a 

tabu search is essentially all the solutions (feasible and infeasible) that can be considered 

during the search. Over the past few years, several researchers have utilized tabu search 

as a mechanism to solve large combinatorial optimization problems in practical settings.  

Researchers have used Tabu search heuristics to solve a wide range of problems 

including the traveling salesman problems, scheduling problems, product delivery and 

routing problems, and manufacturing cell design problems. It has been proven that tabu 

search is capable of providing optimal or near optimal solution for complex 

combinatorial problems in an effective manner. Tabu search is superior to other search 

mechanisms primarily because it has the capability of overcoming the limitations of local 

optimality. Tabu search can steer the search mechanism from one solution state to 

another by tactically constraining and releasing the attributes of the search process. This 

is achievable because tabu search employs flexible memory functions that record search 

information of varying time spans.  Intensification and diversification of the search to 

obtain a better solution can be attained by employing long-term memory with minimum 

and maximum frequencies.  

 Further details on tabu search including the genesis, fundamental concepts, 

advanced setting and guiding principle  can be found in Glover (1989, 1990a and 1990b). 

A detailed description of the tabu search mechanism has been presented in the next 

section. Thereafter, five different mechanisms to obtain the initial solution of the research 

problem are presented. The steps associated with the generation of neighborhood have 

also been presented, followed by an example problem that illustrates the application of 

the heuristic algorithm.  
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5.2 Tabu Search Mechanism 

Tabu search mechanism is primarily built on three features (Glover, 1990b): 

1. Tabu search mechanism effectively employs the flexible memory structures to store 

information during the search process. This feature allows the evaluation criteria 

and historical search information to be exploited more comprehensively than by 

rigid memory structures (such as branch-and-bound mechanism) or by memoryless 

systems (such as simulated annealing and other randomized approaches).  

2. A control mechanism that is directed towards the interplay between restricting and 

releasing the constraints during the search process (embodied in the tabu restrictions 

and aspiration criteria).  

3. The combination of memory functions of different time spans, from short term to 

long term, to implement strategies for intensifying and diversifying the search. 

Tabu search is a refined form of a popular heuristic, namely the hill-climbing 

heuristic. The hill-climbing heuristic starts with an initial solution and thereafter, 

depending upon whether the primary objective is minimization or maximization, moves 

progressively in a unidirectional path for identifying a better solution. Since the hill-

climbing heuristic always searches for a better solution, the search terminates whenever a 

local optimum is found, well before exploring the entire search space. In contrast, the 

tabu search overcomes the inherent difficultly of being trapped in the local optimum by 

settling for a solution that is inferior to the previous solution.  

Tabu search requires an initial solution to begin the search. Therefore the initial 

solution can be considered as a matchstick to initiate the search. The initial solution can 

be generated either arbitrarily or systematically. Additionally, the initial solution can 

either be feasible or infeasible. Logendran and Subur (2000) have shown that a quality 

initial solution can lead to the optimal/near-optimal solution much more efficiently. If the 

initial solution is infeasible then the search space is much wider and therefore it takes a 

much longer time to get to an optimal/near optimal solution. On the contrary, a better-

quality initial solution narrows down the search space and hence it speeds up the process 

of identifying the optimal/near optimal solution. We propose five different initial solution 

finding mechanisms that serve as a starting point. These initial solution finding 
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mechanisms have been developed methodically to ensure that the search algorithm 

performs as efficiently as possible. All five initial solution finding mechanisms are 

explained in detail in the next section.  

By perturbing the initial solution, we can go about finding alternate solutions in the 

nearest neighborhood. The neighborhood solutions are evaluated by a performance 

criterion, which in this research is the total weighted tardiness. Each neighborhood 

solution has to pass a tabu-status check in order to be considered as a permissible move. 

The objective of the tabu restriction is to take the search process beyond the points of 

local optimality while ensuring high quality moves at each step. The tabu restrictions are 

stored in a list known as tabu list. The tabu list entails the recently applied moves that are 

necessary to move the search from one solution state to another. The moves are recorded 

exactly in the order in which they are made. A tabu-list has an associated size which 

determines the amount of time a particular tabu move is enforced. The size of the tabu-

list predominantly depends upon size of problems being investigated. This necessitates 

conducting a thorough experimentation to determine an appropriate size of the tabu-list 

for a given research problem.  

The search process is prevented from revisiting the earlier found solution by 

restricting the search to moves that are not tabu. In certain instances, a tabu move may 

result in a solution that is superior to the one found so far. Hence, an aspiration criterion 

is used to offset tabu restrictions. An aspiration criterion is used as a condition that a tabu 

move has to satisfy in order to be released from tabu restriction. For a more detailed 

description please refer to Chapter 5.5.  If a tabu move results in a solution that is better 

than all previously found solution, the tabu restriction can be overridden. Thus an 

aspiration criterion gives a tabu move a second opportunity to be considered during the 

search process. After testing all neighborhood solutions against the tabu status and the 

aspiration criterion, the move that results in the best solution is chosen for future 

perturbation. This move is stored in the candidate list (CL). Before admitting a solution 

into the CL, the solution is checked against all other entries of the CL in order to avoid a 

possible duplication. The entire process is repeated until a criterion to terminate the 

search is satisfied.  
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A search can be concluded by employing one of the several terminating conditions. 

One way to end the search is to set a limit to the size of the IL. In other words, the search 

will terminate when a certain size of the CL is achieved. Another method is to terminate 

the search is to let the entire search process run until a certain number of consecutive 

iterations that do not result in an improvement. Limiting the computational time is yet 

another way of terminating the search process.  

The tabu-list discussed above is the short-term memory component of the tabu 

search. Besides employing short-term memory to execute the search, we can also utilize 

the long-term memory function. The long-term memory can be used to direct the search 

in regions that have been historically found good (intensification process) or in regions 

that were not thoroughly explored previously (diversification process). Relevant 

information regarding the long-term memory is stored in a frequency matrix that keeps 

track of all previous moves.   
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5.3 Initial Solution  

 

The initial solution finding mechanism serves as a matchstick to initiate the 

search. In order for the search to begin, the search algorithm must be provided with an 

initial solution. In the past, researchers have used simple dispatching rules to solve 

problems aimed at minimizing the tardiness. These problems include minimizing the 

weighted tardiness, total tardiness and maximum tardiness. Some of the simple 

dispatching rules used to solve tardiness related problems include Earliest Due Date 

(EDD), Shortest Processing Time (SPT), Minimum Slack (MSLACK) and Slack per 

Remaining Processing Time (S/RPT). While the EDD and SPT dispatching rules are 

time-independent (i.e. the job priority depends upon the job and machine data and it 

remains the same throughout the scheduling horizon), the MSLACK and S/RPT 

dispatching rules are time-dependent (i.e. job priority depends upon the time when 

machines become available after processing a preceding job).  

Simple dispatching rules only use a single attribute to attain its objective. An 

attribute can be defined as a property that belongs to a job or the machine environment 

under consideration such as the job processing time, job due date, job release time, or job 

waiting time. Simple dispatching rules are not readily used in an industrial setting where 

more than one attribute determines a good schedule. Industrial practice often benefits 

from the use of composite dispatching rules to obtain a good schedule. Unlike a simple 

dispatching rule, a composite dispatching rule incorporates several job and machine 

attributes. A composite dispatching rule is a function made up of various attributes and 

some scaling parameters.   

In the past, researchers have proposed several composite dispatching rules for 

various machine environments. Vepsalainen and Morton (1987) proposed a composite 

dispatching rule called apparent tardiness heuristic (ATC) to solve weighted tardiness 

problem on a single machine under the assumption of static job release and static 

machine availability time. ATC is an amalgamation of two simple dispatching heuristics, 
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namely, the weighted shortest processing time (WSPT) and the minimum slack (MS). 

The WSPT is a variation of another simple dispatching heuristic called the shortest 

processing time (SPT). SPT heuristic is used to minimize the mean flow time. Therefore 

WSPT heuristic is used to minimize the weighted mean flow time. The MS heuristic, on 

the other hand, maximizes the minimum lateness in a single machine environment.  

Lee et al. (1997) extended the ATC rule and suggested another composite 

dispatching heuristic called Apparent Tardiness Cost with Setup (ATCS). The ATCS 

heuristic incorporates sequence dependent setup times for solving problems related to 

weighted tardiness, on a single machine with static job releases and static machine 

availability. The ATCS rule utilizes three different simple composite dispatching rules 

namely, the WSPT rule, the MS rule and the Shortest setup time (SST). Few other 

composite dispatching rules include the Dynamic Composite Rule/DCR (Conway et al., 

1967) and the Cost Over Time/COVERT (Carroll, 1965).  

Previous research on tabu search (Logendran and Subur, 2004) has shown that a 

superior quality initial solution may contribute to identifying a better quality final/best 

solution in an efficient manner. Thus we propose five different methods to generate the 

initial solution for the tabu search. These five initial solutions are as follows: Earliest Due 

Date (EDD), Least Flexible Job/Least Flexible Machine (LFJ/LFM), Lowest Weighted 

Tardiness (LWT), Due Date to Weight Ratio (DDW) and Hybrid Critical Ratio (HCR). 

The mechanism for finding each of Initial solution will be presented in detail later. We 

first present the set of notations that will be used throughout the development of the 

algorithm.  

Notations 

i = 1, 2,…, G stages 

k = 1, 2,…,fi machines in stage i 

mki = k
th

 machine of stage i  

NSJ = set of unscheduled jobs 
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p = 1, 2,...,l  (total number of projects) 

 j = 1, 2,…,np number of jobs in project p  

Jjp = job j of project p ( j = 1, 2,…,np; p = 1,2,…,l) 

 

Parameters 

rjpki = run time of job j of project p on k
th

 machine of stage i;  

wjp= weight assigned to job j of project p; 

ejp = release time of job j of project p;  

djp = due date of job j of project p;  

s(j’p’)(jp)ki  = setup time required to change over from job j’ of project p’ to job j of project p 

on k
th

 machine of stage i (where p=p‟ is allowed since the changeover of jobs can occur 

within the same project);  

aki = initial availability time of k
th

 machine of stage i;  

tdjpki = tardiness of job job j of project p on k
th

  machine of stage i;  

tmk*1 = release time of k
th

 machine of stage 1 (after processing a job) 

 

Variables 

CT(Jjp, mki) = Completion time of job j of project p on k
th

 machine of stage i 

ST(Jjp, mki) = Start time of job j of project p on k
th

 machine of stage i 
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5.3.1 Earliest Due Date (EDD) 

 

 IS1 aims at giving the highest priority to the job that has the earliest due date 

(EDD) among the jobs that can be processed on an available machine. If two jobs have 

the same due date, ties are broken in favor of the job that has more weight. If two jobs 

have the same EDD and weight, then ties are broken in favor of the job that has the 

smallest project identification number. If two jobs have the same EDD, weight and same 

project identification number, ties are broken in favor of the job that has the smallest job 

id. The machines are selected in the order of increasing available time (ai). Should there 

be a tie among two or more machines, the machine that has the lowest machine 

identification number is selected. The following steps give a comprehensive illustration 

of the methodology associated in the development of the initial solution based on the 

EDD rule.  

1. Initially, set t = 0 and tmk1 = ak1       f1. Include all jobs in NSJ.  

2. Select the machine/unit (k) that has the minimum tmk1. If there is more than one 

machine with minimum tmk1, break ties by choosing the machine with the smallest 

machine identification number. Let the selected machine be k*. Set t = tmk*1. 

3. Let SJ = the set of job/jobs (belonging to various projects) released at or earlier than t, 

and that can be processed on k* (SJ   NSJ).  

a. If SJ =  , find a job/jobs from NSJ that can be processed on k* and have the 

minimum ejp.  

i. If none of the jobs in NSJ can be processed on k*, exclude k* from 

future consideration. Go to step 6.  

ii. If only one job is found, select this job and assign it to k*. Go to step 4.  

iii. If two or more jobs are found, break ties in favor of job that has the 

earliest due date, followed by highest weight. If the job ties still exist, 

break ties in favor job that has the smallest project identification 

number followed by smallest job identification number. Assign the 

selected job to k*. Go to step 4.  

b. If SJ has only one job, assign the job to k*. Go to step 4.  
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c. If SJ has two or more jobs, break ties in favor of job that has the earliest due 

date followed by highest weight. If the job ties still exist, break ties in favor of  

job that has the smallest project identification number followed by smallest 

job identification number. Assign the selected job to k*. Go to step 4. 

4. Let Jj*p* = the selected job; evaluate the start time and completion time of job using 

the following equations: 

a. If ej*p* is less than or equal to tmk*1, then set ST (Jj*p*,mk*1) = tmk*1  and 

CT(Jj*p*,mk*1) =  ST (Jj*p*,mk*1) + s (j’p’) (j*p*)k*1 + rj* p*k*1.  

b. If ej*p*  is greater than tmk*1, then set ST (Jj*p*,mk*1) = ej*p*. Next evaluate (ej*p* 

- tmk*1). 

i. If (ej*p* - tmk*1) is greater than or equal to s (j’p’) (j*p*)(k*1), then CT(Jj*p*,m 

k*1) =  ST (Jj*p*,m k*1) +  rj* p*k*1. 

ii. If (ej*p* - tmk*1) is less than s (j’p’) (j*p*)(k*1) CT(Jj*p*,mk*1) =  ST 

(Jj*p*,mk*1) + [s (j’p’) (j*p*)k*1 - (ej*p* - tmk*1)] + rj* p*k*1. 

5. Set tmk*1 = CT(Jj*p*,mk*1). Eliminate Jj*p* from NSJ. 

6. If NSJ   , go to step 2.  

The algorithmic procedure in step 4 needs further explanation. The equations in 

step 4 illustrate the evaluation of completion times of jobs in stage 1. Since this research 

problem involves sequence-dependent setup times, we primarily investigate two cases for 

evaluating the completion times of jobs (Step 4 (a) and (b)). The first case, (Step 4 (a), 

assumes that a job is released before a machine is available. In this case, the setup can be 

started only when the machine becomes available. The second case, Step 4 (b), pertains 

to the instance when the machine becomes available before the job. In this case, we can 

perform an anticipatory setup, starting when the machine becomes available, and can 

complete either the entire setup (Step 4 (b)(i)) or partial setup for the job (Step 4 (b)(ii)).  

 

 

. 
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5.3.2 Least Flexible Job and Least Flexible Machine (LFJ/LFM) 

 

 Centeno and Armacost (1997) proposed an algorithm for scheduling jobs on 

parallel machines with dynamic job release time, due dates and different machine 

capabilities. The purpose of their research was to minimize the maximum lateness. 

Lateness of a job is evaluated as the completion time minus the due date. Thus Lateness 

of a job can either be a negative, zero or a positive value. Lateness of a job should not be 

confused with the tardiness of a job. Tardiness of a job can only be zero or positive value. 

Tardiness of a job can never take a negative value.  

 LFJ (least flexible job) can be defined as the job that can be processed on least 

number of machines and LFM (least flexible machine), which can be defined as the 

machine that can process the least number of jobs. The LFJ/LFM approach to IS2 gives 

priority to those jobs that are least flexible and machines that are least capable. If two or 

more jobs are available at the same time, ties are broken in favor of the job that is least 

flexible. If two or more machines are available at the same time, ties are broken in favor 

of the machine that is least flexible. Other tie braking rules for IS2 are similar to that of 

IS1.  

The LFJ rule prevents jobs from being late due to their inflexibility. The LFM 

rule ensures that less capable machines get a fair share of job assignment in comparison 

to more capable machines. The following steps give a comprehensive illustration of the 

methodology associated in the development of the initial solution based on the LFJ/LFM 

rule.  

1. Initially, set t = 0 and tmk1 = ak1       f1. Include all jobs in NSJ.  

2. Check if any ejp ≤ t. If yes, then go to step 4.  

3. Set t = min [ejp] where Jjp   NSJ. 

4. Choose the least flexible job with ejp ≤ t. If two or more jobs are chosen, select the 

job with minimum ejp. If the job ties still exist, break ties in favor of job that has 
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the smallest project identification number followed by smallest job identification 

number. 

5. Let Jj*p* = the selected job. Find the least flexible machine that can process Jj*p* 

and is currently idle. If two or more machines are found, break ties in favor of 

machine with the smallest machine index.  

a. If all the machines that are capable of processing Jj*p* are busy, go to step 

8.  

b. Let the selected machine be k*. Go to step 6.  

6. Evaluate the start time and completion time of job using the following equations: 

a. If ej*p* is less than or equal to tmk*1, then set ST (Jj*p*,mk*1) = tmk*1  and 

CT(Jj*p*,mk*1) =  ST (Jj*p*,mk*1) + s (j’p’) (j*p*)k*1 + rj* p*k*1.  

b. If ej*p*  is greater than tmk*1, then set ST (Jj*p*,mk*1) = ej*p*. Calculate (ej*p* - 

tmk*1). 

i. If (ej*p* - tmk*1) is greater than or equal to s (j’p’) (j*p*)(k*1), then 

CT(Jj*p*,m k*1) =  ST (Jj*p*,m k*1) +  rj* p*k*1. 

ii. If (ej*p* - tmk*1) is less than s (j’p’) (j*p*)(k*1), then CT(Jj*p*,mk*1) =  ST 

(Jj*p*,mk*1) + [s (j’p’) (j*p*)k*1 - (ej*p* - tmk*1)] + rj* p*k*1. 

7. Set tmk*1 = CT(Jj*p*,mk*1) = t. Eliminate Jj*p* from NSJ. Go to step 9.  

8. Set t = min[tmk1]       f1 and k can process Jj*p*; go to step 2.  

9. If NSJ   , go to step 2; otherwise, stop.   
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5.3.3 Lowest Weighted tardiness (LWT) 

 

 For IS3, we use LWT (lowest weighted tardiness) mechanism to commence the 

search. Tardiness for job j of project p on k
th

 machine of stage i (tdjpki) can be evaluated as 

max [0, CT (Jjp, mik) - djp] and weighted tardiness can be evaluated as (tdjpki) wjp.  The tie 

braking rules for machines and jobs are similar to IS1. If two jobs have the same LWT, 

ties are broken in favor of the job that has the smallest project identification number. If 

two or more jobs have same LWT and same project identification number then the ties 

are broken in favor of the job with the smallest job id. The machines are selected in the 

order of increasing available time (ai). Should there be a tie among two or more 

machines, the machine that has the lowest machine identification number is selected. 

 It should be noted that to find the completion time of jobs, we need a schedule 

that would tell us the sequence of jobs on each machine in every stage. We propose a 

mechanism based on Cmax (the maximum completion time (makespan) of all jobs 

released) to come up with a provisional schedule. Although the real Cmax is schedule-

dependent, a thorough estimation scheme has to be developed for accurately estimating 

Cmax that is schedule-independent. Given the job release time, job setup time, job runtime 

and machine availability time, we propose the following equation to estimate the Cmax for 

the i
th

 stage: 

 

 

        

  

 
 
 
 
                                

  
    
   

       

  

 
 
 
 
 

  

   
 
   

  
                  

 

 

  

 

where mj is the total number of machines on which job j can be processed in stage i,        

is the average setup time of job j of project p on k
th

 machine of stage i and   is introduced 

as an adjustment to the average setup time. The need for incorporating   originates from 
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the fact that in reality, a quality schedule would try to changeover from one job to another 

that requires the smallest setup time on a particular machine. Hence considering average 

setup time for jobs in estimating Cmax disregarding  , would not provide an accurate 

estimate of the makespan for the first stage. We further define coefficient of variation 

(CV) for the sequence-dependent setup times for a job on a machine as CV = xs /  where 

s is the sample standard deviation and x  is the mean. In case of setup times being 

sequence independent, the standard deviation of the data points (i.e., the sequence-

dependent setup times of a job on a machine) will be equal to zero, forcing CV to be 

equal to zero. We surmise that a linear relationship holds true between   and CV, and 

suggest the following set of end points for the purpose of interpolation: CV = 0.01 

corresponds to   =.9, and CV = 1.0 corresponds to   = 0.1. 

 The average completion time of a job evaluated for the first stage serves as the 

release time for jobs in the second (following) stage. We propose the following equation 

to estimate the release time of a job in (i+1)
th

 stage: 

 

 

           

                               
  
    
   

       

  
                 

 

 

  

To estimate a reasonable completion time for a particular job in a specific 

stage i (or equivalently the release time of a job in (i+1)
th

 stage), we compare the release 

time of a job in stage i with the machine‟s availability time combined with the average 

setup time of that job on that machine. The rationale to go after the larger of the two 

evaluated numbers originates from the fact that if a job is released before a machine is 

available then the job has to wait until the machine is made available and the setup is 

performed on the machine or vice-versa. Recall that not all of the jobs have operation in 

each and every stage. If such were the case for one or more jobs, the evaluated 

completion time of the job serves as the release time for the next immediate stage, where 
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the job has an operation. Notice that the Cmax increases progressively through stages 1-17. 

Therefore, the following condition holds true: 

                                

When all jobs choose to skip a particular stage,                ; for all other 

stages                .We evaluate the Cmax for stages 1 through 17 and use Cmax 

evaluated for stage 17 to estimate the maximum completion time of all jobs for a given 

problem. The scheduling steps that use the LWT dispatching rule can be documented as 

follows:  

1 Initially, set t = 0 and tmk1 = ak1       f1. Include all jobs in NSJ.  

2 Select the machine/unit (k) that has the minimum tmk1. If there is more than one 

machine with minimum tmk1, break ties by choosing the machine with the 

smallest machine identification number. Let the selected machine be k*. Set t = 

tmk*1. 

3 Let SJ = the set of job/jobs (belonging to various projects) released at or earlier 

than t, and that can be processed on k* (SJ   NSJ).  

a. If SJ =  , find a job/jobs from NSJ that can be processed on k* and have 

the minimum ejp.  

i. If none of the jobs in NSJ can be processed on k*, exclude k* from 

future consideration. Go to step 6.  

ii. If only one job is found, select this job and assign it to k*. Go to 

step 4.  

iii. If two or more jobs are found, break ties in favor of job that has the 

lowest weighted tardiness. If the job ties still exist, break ties in 

favor of job that has the smallest project identification number 

followed by smallest job identification number. Assign the selected 

job to k*. Go to step 4.  

b. If SJ has only one job, assign the job to k*. Go to step 4.  

c. If SJ has two or more jobs, break ties in favor of job that has the lowest 

weighted tardiness. If the job ties still exist, break ties in favor of job that 
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has the smallest project identification number followed by the smallest job 

identification number. Assign the selected job to k*. Go to step 4. 

4 Let Jj*p* = the selected job; Evaluate the start time and completion time of job 

using the following equations: 

a. If ej*p* is less than or equal to tmk*1, then set ST (Jj*p*,mk*1) = tmk*1  and 

CT(Jj*p*,mk*1) =  ST (Jj*p*,mk*1) + s (j’p’) (j*p*)k*1 + rj* p*k*1.  

b. If ej*p*  is greater than tmk*1, then set ST (Jj*p*,mk*1) = ej*p*. Next evaluate 

(ej*p* - tmk*1). 

i. If (ej*p* - tmk*1) is greater than or equal to s (j’p’) (j*p*)(k*1),then 

CT(Jj*p*,m k*1) =  ST (Jj*p*,m k*1) +  rj* p*k*1. 

ii. If (ej*p* - tmk*1) is less than s (j’p’) (j*p*)(k*1), then CT(Jj*p*,mk*1) =  ST 

(Jj*p*,mk*1) + [s (j’p’) (j*p*)k*1 - (ej*p* - tmk*1)] + rj* p*k*1. 

5 Set tmk*1 = CT(Jj*p*,mk*1). Eliminate Jj*p* from NSJ. 

6 If NSJ   , go to step 2.  
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5.3.4 Due Date Weight Ratio (DDW) 

 

 IS4 mechanism initiates jobs to be processed using the due date to weight (DDW) 

ratio. DDW can be defined as djp/wjp. The motive is to expand the ideas presented in IS1. 

IS1 is myopic to the weights assigned to the various jobs released during the planning 

horizon. In IS1, we only dealt with the EDD, (though we took weight into consideration 

for breaking ties) but in IS4 we attempt to combine the EDD factor and the weight 

assigned to a job. The logic behind DDW ratio is that a job that has the earliest due date 

and most weight will have the least DDW and therefore should be given a higher priority 

over other jobs.  

The tie braking rules for machines and jobs are analogous to IS1. IS4 begins with 

prioritizing jobs with the lowest DDW ratio. If two jobs have the same DDW ratio, ties 

are broken in favor of the job that has the smallest project identification number. If two or 

more jobs have same DDW ratio and same project identification number then the ties are 

broken in favor of the job with smallest job id. The machines are selected in the order of 

increasing available time (ai). Should there be a tie among two or more machines, the 

machine that has the lowest machine identification number is selected. 

A method to generate the initial solution is developed based on DDW ratio. The 

steps associated with this method can be documented as follows:  

1. Initially, set t = 0 and tmk1 = ak1       f1. Include all jobs in NSJ.  

2. Select the machine/unit (k) that has the minimum tmk1. If there is more than one 

machine with minimum tmk1, break ties by choosing the machine with the 

smallest machine identification number. Let the selected machine be k*. Set t = 

tmk*1. 

3. Let SJ = the set of job/jobs (belonging to various projects) released at or earlier 

than t, and that can be processed on k* (SJ   NSJ).  

a. If SJ =  , find a job/jobs from NSJ that can be processed on k* and have 

the minimum ejp.  
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i. If none of the jobs in NSJ can be processed on k*, exclude k* from 

future consideration. Go to step 6.  

ii. If only one job is found, select this job and assign it to k*. Go to 

step 4.  

iii. If two or more jobs are found, break ties in favor of job that has the 

smallest due date to weight ratio (DDW). If the job ties still exist, 

break ties in favor of job that has the smallest project identification 

number followed by smallest job identification number. Assign the 

selected job to k*. Go to step 4.  

b. If SJ has only one job, assign the job to k*. Go to step 4.  

c. If SJ has two or more jobs, break ties in favor of job that has the smallest 

due date to weight ratio (DDW). If the job ties still exist, break ties in 

favor of job that has the smallest project identification number followed 

by smallest job identification number. Assign the selected job to k*. Go to 

step 4. 

4. Let Jj*p* = the selected job; Evaluate the start time and completion time of job 

using the following equations: 

a. If ej*p* is less than or equal to tmk*1, then set ST (Jj*p*,mk*1) = tmk*1  and 

CT(Jj*p*,mk*1) =  ST (Jj*p*,mk*1) + s (j’p’) (j*p*)k*1 + rj* p*k*1.  

b. If ej*p*  is greater than tmk*1, then set ST (Jj*p*,mk*1) = ej*p*. Next evaluate 

(ej*p* - tmk*1). 

i. If (ej*p* - tmk*1) is greater than or equal to s (j’p’) (j*p*)(k*1), then 

CT(Jj*p*,m k*1) =  ST (Jj*p*,m k*1) +  rj* p*k*1. 

ii. If (ej*p* - tmk*1) is less than s (j’p’) (j*p*)(k*1) CT(Jj*p*,mk*1) =  ST 

(Jj*p*,mk*1) + [s (j’p’) (j*p*)k*1 - (ej*p* - tmk*1)] + rj* p*k*1. 

5. Set tmk*1 = CT(Jj*p*,mk*1). Eliminate Jj*p* from NSJ. 

6. If NSJ   , go to step 2.  
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5.3.5 Hybrid Critical Ratio (HCR) 

 

  The critical ratio, defined as due date/processing time, has been used for 

due date related objectives in the scheduling literature for a long time. Logendran et. al. 

(2007) suggested a modified version of critical ratio (known as hybrid critical ratio or 

HCR) for problems that involved sequence dependent setup times.  Taking advantage of 

their work, we propose IS5 (which is a refined version of IS4). In IS5, we include the 

sequence-dependent setup time and run time of a job besides due date and weight. The 

hybrid critical ratio is given by {djp/[wjp*( s (j’p’)(jp)ki  + rjpki )]}. The job that has the 

smallest HCR is given preference. The logic behind HCR calculation is similar to the 

DDW ratio. The only difference is that we introduce two new variables in the 

denominator. 

The tie braking rules for jobs are similar to IS1 but instead of using EDD, we use 

the HCR. IS5 begins with prioritizing jobs with the lowest HCR ratio. If two jobs have 

the same HCR ratio, ties are broken in favor of the job that has the smallest project 

identification number. If two or more jobs have the same HCR ratio and same project 

identification number, then the ties are broken in favor of the job with smallest job id. 

The machines are selected in the order of increasing available time (ai). Should there be a 

tie among two or more machines, the machine that has the lowest machine identification 

number is selected. 

A method to generate the initial solution is developed based on HCR ratio. The 

steps associated with this method can be documented as follows:  

1. Initially, set t = 0 and tmk1 = ak1       f1. Include all jobs in NSJ.  

2. Select the machine/unit (k) that has the minimum tmk1. If there is more than one 

machine with minimum tmk1, break ties by choosing the machine with the 

smallest machine identification number. Let the selected machine be k*. Set t = 

tmk*1. 

3. Let SJ = the set of job/jobs (belonging to various projects) released at or earlier 

than t, and that can be processed on k* (SJ   NSJ).  
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a. If SJ =  , find a job/jobs from NSJ that can be processed on k* and have 

the minimum ejp.  

i. If none of the jobs in NSJ can be processed on k*, exclude k* from 

future consideration. Go to step 6.  

ii. If only one job is found, select this job and assign it to k*. Go to 

step 4.  

iii. If two or more jobs are found, break ties in favor of job that has 

smallest hybrid critical ratio (HCR). If the job ties still exist, break 

ties in favor of job that has the smallest project identification 

number followed by smallest job identification number. Assign the 

selected job to k*. Go to step 4.  

b. If SJ has only one job, assign the job to k*. Go to step 4.  

c. If SJ has two or more jobs, break ties in favor of job that has the smallest 

hybrid critical ratio (HCR). If the job ties still exist, break ties in favor of 

job that has the smallest project identification number followed by 

smallest job identification number. Assign the selected job to k*. Go to 

step 4. 

4. Let Jj*p* = the selected job; Evaluate the start time and completion time of job 

using following equations: 

a. If ej*p* is less than or equal to tmk*1, then set ST (Jj*p*,mk*1) = tmk*1  and 

CT(Jj*p*,mk*1) =  ST (Jj*p*,mk*1) + s (j’p’) (j*p*)k*1 + rj* p*k*1.  

b. If ej*p*  is greater than tmk*1, then set ST (Jj*p*,mk*1) = ej*p*. We calculate 

(ej*p* - tmk*1). 

i. If (ej*p* - tmk*1) is greater than or equal to s (j’p’) (j*p*)(k*1), then 

CT(Jj*p*,m k*1) =  ST (Jj*p*,m k*1) +  rj* p*k*1. 

ii. If (ej*p* - tmk*1) is less than s (j’p’) (j*p*)(k*1) CT(Jj*p*,mk*1) =  ST 

(Jj*p*,mk*1) + [s (j’p’) (j*p*)k*1 - (ej*p* - tmk*1)] + rj* p*k*1. 

5. Set tmk*1 = CT(Jj*p*,mk*1). Eliminate Jj*p* from NSJ. 

6. If NSJ   , go to step 2.  
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5.4 Generation of Neighborhood Solutions 

 

The application of tabu search begins with the initial solution as the seed. Two 

methods are developed to generate a set of neighborhood solutions from a seed. The total 

weighted tardiness is evaluated for each of the solutions generated by applying these 

methods. The best solution is then selected as the new seed to generate a new set of 

neighborhood solutions. This process is repeated aat every iteration of tabu search until 

the search is terminated. The performance criteria and the steps related to tabu search 

application are explained in the next section.  

In order to generate a set of neighborhood solutions from a chosen seed, two types 

of move are applied to the seed: Swap moves and insert moves. A swap move is a move 

that interchanges the positions of two jobs that are assigned to the same machines. An 

insert move is a move that inserts a job to any machine except the one that it currently 

occupies. A swap moves allows two jobs from the same or different machines to 

exchange postions. An insert move allows a job to move from one machine to another.  

5.4.1 Swap Move 

 

Let Jj**p** and Jj‟‟p‟‟ be the jobs considered for swap. Jj**p** and Jj‟‟p‟‟ are currently 

scheduled on machine Mk*1 and Mk‟1, respectively.  Let […Jj*p*, Jj**p**, Jj***p***, …] be the 

partial sequence of jobs assigned to Mk*1 and […Jj‟p‟, Jj‟‟p‟‟, Jj‟‟‟p‟‟‟,…] be the partial 

sequence of jobs assigned to Mk‟1.  Jj**p**  and Jj‟‟p‟‟ are allowed to exchange positions if 

both  the following conditions are satisfied:   

1. Jj**p**  can be processed on Mk‟1 and Jj‟‟p‟‟ can be processed on Mk*1. 

2. ej**p** < CT(Jj‟‟p‟‟, Mk‟1) and ej‟‟p‟‟< CT(Jj**p**  , Mk*1). 

 

If Jj**p**  and Jj‟‟p‟‟ satisfied the two conditions, proceed with swapping Jj**p**  and 

Jj‟‟p‟‟.  The start time and completion time of Jj**p**  and Jj‟‟p‟‟ must be revised.  To 

differentiate the current start and completion times from the revised times, a subscript „r‟ 
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is added to the notation such that the revised start time and completion time are denoted 

by STr and CTr, respectively.   

 

a. If ej**p** is less than or equal to tmk’1, then set STr (Jj*p*,mk’1) = tmk’1  and 

CTr(Jj**p**,mk’1) =  STr (Jj**p**,mk’1) + s (j’p’) (j**p**)k’1 + rj** p**k’1.  

b. If ej**p**  is greater than tmk’1, then set ST (Jj**p**,mk’1) = ej**p**. Next evaluate 

(ej**p** - tmk’1). 

i. If (ej**p** - tmk’1) is greater than or equal to s (j’p’) (j**p**)(k’1), then 

CTr(Jj**p**,m k’1) =  STr (Jj**p**,m k’1) +  rj**p**k’1. 

ii. If (ej**p** - tmk’1) is less than s (j’p’) (j**p**)(k’1) CTr(Jj**p**,mk’1) =  ST 

(Jj**p**,mk’1) + [s (j’p’) (j**p**)(k’1)- (ej**p** - tmk’1)] + rj** p**k’1. 

 

5.4.2 Insert Move 

 

 

Let Jj**p** is the job considered for insertion on Mk‟1 and Jj**p** is currently 

scheduled on machine Mk*1.  Let […Jj*p*, Jj**p**, Jj***p***, …] be the partial sequence of 

jobs assigned to Mk*1 and […Jj‟p‟, Jj‟‟p‟‟, Jj‟‟‟p‟‟‟,…] be the partial sequence of jobs assigned 

to Mk‟1.  Jj**p**  is  allowed to be inserted on  Mk‟1 if both  the following conditions are 

satisfied:   

3. Jj**p**  can be processed on Mk‟1 ej**p** < CT(Jj‟‟p‟‟, Mk‟1) and ej‟‟p‟‟< CT(Jj**p**  , Mk*1). 

 

If Jj**p**  satisfies the two conditions, proceed with inserting Jj**p**  on Mk‟1.  The 

start time and completion time of Jj**p**  must be revised.  To differentiate the current 

start and completion times from the revised times, a subscript „r‟ is added to the notation 

such that the revised start time and completion time are denoted by STr and CTr, 

respectively.   
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c. If ej**p** is less than or equal to tmk’1, then set STr (Jj*p*,mk’1) = tmk’1  and 

CTr(Jj**p**,mk’1) =  STr (Jj**p**,mk’1) + s (j’p’) (j**p**)k’1 + rj** p**k’1.  

d. If ej**p**  is greater than tmk’1, then set ST (Jj**p**,mk’1) = ej**p**. Next evaluate 

(ej**p** - tmk’1). 

i. If (ej**p** - tmk’1) is greater than or equal to s (j’p’) (j**p**)(k’1), then 

CTr(Jj**p**,m k’1) =  STr (Jj**p**,m k’1) +  rj**p**k’1. 

If (ej**p** - tmk’1) is less than s (j’p’) (j**p**)(k’1) CTr(Jj**p**,mk’1) =  ST (Jj**p**,mk’1) + [s (j’p’) 

(j**p**)(k’1)- (ej**p** - tmk’1)] + rj**  

 

 

 

5.5 Steps of Tabu Search 

  

 The steps related to the tabu-search mechanism can be documented as follows: 

Step 1: Apply swap and insert moves to the initial solution in order to obtain a set of 

neighborhood solutions. A problem instance with n jobs has   
 
   

  

         
  possible 

combinations of swap moves. Note that the above equation represents any possible 

combination of two jobs. A swap move, however, is applied to a pair of jobs only if they 

satisfy the conditions listed in Section 5.4.1.  

 In applying insert moves, the attempt is to insert jobs to different positions on all 

the machines that have the capability of processing the job. Insert moves are not 

attempted on machines that the job is presently occupying. Suppose that a machine 

currently has k jobs scheduled to be processed. The total number of positions (on that 

particular machine) to insert a job will be k+1, i.e. all the currently occupied positions 

plus the last unoccupied position. Note that all the conditions listed in Section 5.4.2 must 

be satisfied before we can apply the insert move to a job. Applying swap and insert 

moves provide with a set of solutions considered as the neighborhood solution of the 

initial solution.  
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Step 2: Evaluate the total weighted tardiness (TWT) of every solution in the 

neighborhood, obtained as a result of performing swap and insert moves. As mentioned 

before, tardiness of a job is evaluated as Max (0, CTjp - djp) and weighted tardiness is 

evaluated by multiplying the weight of a job and its tardiness.  

Step 3: Select the solution that results in the best (minimum) TWT value. If one or more 

solutions yield the best TWT, choose the first best solution. Apply the move that results 

in the best solution to the initial solution. Then update the following parameters used 

during the search process. 

(1) Tabu List: Tabu list consists of the most recent moves (swap or insert). The move that 

resulted in the best TWT is recorded into the Tabu list. For example, if a swap move 

resulted in the best TWT then record the pair of jobs swapped into the tabu list. This job 

pair is not allowed to exchange positions unless an aspiration criterion is satisfied. All 

such pairs of job that appear in the tabu list (at any given time) indicate that these pairs 

were swapped at some previous iteration during the search process.  

Now suppose that the best solution results after applying an insert move. The tabu 

list records the job index along with the position and the machine occupied by the job, 

before the insert move was applied. The job cannot be inserted back at the same position 

of the same machine unless an aspiration criterion is satisfied. All insert moves recorded 

in the tabu list indicate that a particular job had been inserted at some position on a 

machine in some previous iteration.  

The entries in the tabu list follow the FIFO (first-in-first-out) rule. This means that 

the oldest entry is removed and the new one is inserted into the tabu list whenever the 

tabu list reaches its maximum size. For example, if the size of tabu list is equal to 4 then a 

move will stay in the tabu list for four iterations. The length of time a move remains tabu 

depends on the tabu list size. Tabu list size for a particular problem is determined 

empirically.  

Since tabu list stores the most recent moves applied as the search progresses, it is 

necessary to make the size of tabu list proportional to the total number of possible moves 

(both swap and insert). The number of possible moves increases as we increase the total 
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number of jobs.  Therefore the size of the tabu list is dependent upon the total number of 

jobs.  

Any given problem instance can be categorized as small, medium or large 

problem. If a given problem has 20 or fewer jobs, it is considered as a small problem 

instance. If a given problem has 20 jobs or greater but less than or equal to 40, it is 

considered as a medium problem instance. If a given problem has greater than 40 jobs, it 

is considered to be a large problem instance. Classification of problem instances (into 

small, medium or large) was done only after consulting with experts in a manufacturing 

company where this research can be applied. Based on factual company data and years of 

experience, the experts helped us to classify the problem into small, medium and large 

categories.   

Two different types of tabu list size are considered in this research: fixed tabu list 

size and variable tabu list size. Empirical formulae for determining tabu list size were 

developed after performing detailed experiments for small, medium and large size 

problems. Instead of fixing tabu list sizes arbitrarily, the idea was to conduct a thorough 

experimentation to allow best performing values to be input into the search algorithm 

when problems are solved. For example, to determine the tabu list size for large problem 

instances, we varied the tabu list size from 1 to a large number (say 30) while holding 

other relevant parameters (Iterations without Improvement and Entries into the Index 

List) constant at large values. A particular value that returned the best TWT was noted 

and we constructed empirical equations based on the experimental results.  

Extensive experimentation was performed for each (small medium and large) 

problem structure. The empirical equations use the total number of jobs to determine the 

appropriate parameter value for any given problem structure. We do not use the total 

number of projects in determining the value of parameters even though it is a valuable 

piece of information from an industrial perspective. Note that it is the number of jobs and 

not the number of projects that determine the search space and drive the search algorithm.   

The empirical equations developed after performing the equation may not fit the 

data perfectly. However, the experimentation was detailed enough to ensure that the fit 
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obtained was indeed the best for a given problem structure. Similar experimentation was 

performed in each category (small, medium and large) for other parameters (Entries into 

Index List, Number of iterations without improvement etc) also. Based on the 

experimental results, the following formulae were developed:  

 For fixed tabu list size, use the following formula: 

 

 For fixed tabu list size = .04558x – 1.0177 

 

 For variable tabu list size: 

 Initial size of the tabu list = 0.4426x – 0.7869 

 The Decreased size of the tabu list = -0.0254x
2 

+ 1.1085x – 5.9898 

 The Increased size of the tabu list = 0.0086x
3 

– 0.3838x
2 

+ 6.0924x - 27 

 

where x is the total number of jobs 

 

x,       if x is a real number with a decimal value < 0.5                  

INT(x) = 

x ,       if x is a real number with a decimal value  0.5                          

 

(2) Aspiration Level (AL): Aspiration criterion is the condition a tabu move has to 

satisfy in order to be released from tabu restrictions. Aspiration Level (AL) is set equal to 

the TWT of the initial solution at the beginning of the search process. In subsequent 

iterations, if the TWT of the selected best solution is less than AL then the AL is updated 

to be the TWT of the selected best solution. As mentioned earlier, if a tabu move results 

in TWT that is better than AL, the move is released from tabu restrictions and the 

corresponding schedule is included in the set of solutions considered for selection. 
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(3) Candidate List (CL): Candidate List consists of the best solution selected at each 

iteration whereas Index list entails all the local optima obtained during the search process. 

For a given problem instance, suppose that the initial solution gave a TWT equal to S0. 

The initial solution (S0) is considered to be the first local optimum and therefore it is 

included in the Index List as well as the Candidate List. As mentioned earlier, TWT is 

used as a measure of performance for any given solution. Further suppose that the best 

solution obtained after perturbing S0 is S1. Since S1 is best solution obtained after first 

iteration, it is admitted into the Candidate List. If TWT of S1 is less than TWT of S0 

(S1<S0), S1 will receive a (*), which indicates that it has the potential to become a local 

optimum. Now let S2 be the best solution obtained after perturbing S1. S2 is admitted in 

the Candidate List. If TWT of S1 is less than or equal to TWT of S2 then S1 will receive 

another star. A solution with double stars (**) implies that it is a local optimum and is 

inducted into the Index List. If TWT of S2 is less than TWT of S1, then S2 will receive a 

star suggesting that it has the potential to become the next local optimum. Before 

admitting an entry into the CL, it has to be checked against all previously admitted entries 

to avoid duplication. If a solution already exists in the CL, the next best solution is 

chosen instead.  

(4) Number of iterations without improvement:  The number of iterations without 

improvement (IWOI) is set equal to zero before initiating the search. At subsequent 

iterations, if there is no improvement in the TWT value (i.e. the current TWT is equal or 

larger than the previous TWT), increase the IWOI by 1. The IWOI is reset to zero, if an 

improvement is found in TWT. 

(5) Long term memory (LTM) matrix: The long term memory matrix is used when the 

tabu-search employs long term memory function for exploring the search space. The long 

term memory matrix is a frequency matrix that keeps track of the number of times a 

particular job is processed on a particular machine. The size of the LTM matrix is equal 

to the number of jobs times the number of machines. For example, if a problem instance 

has 10 jobs and 3 machines then the size of the LTM matrix would be 10 by 3 (10 rows 

and 3 columns = 10*3 = 30 cells). Initially, all the entries of the LTM matrix are set equal 

to zero. Note that not all jobs can be processed on all machines (due to machine 
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capability). If a job cannot be processed on a particular machine then the corresponding 

cells will remain empty throughout the search.  

 The LTM-matrix is updated after every iteration. Each cell that corresponds to the 

machine on which a job is processed is increased by 1, after each iteration. The LTM 

matrix provides information regarding the machine that is most or least frequently used 

by a job. We utilize this information to determine the restarting point to intensify and 

diversify the search process.  

Step 4: There are two stopping criterion used to terminate the search: (1) Maximum  

number of iterations without improvement and (2) Maximum entries into the index list. 

Both criteria are dependent upon the size of the problem instance. Extensive 

experimentation was performed to determine the appropriate threshold values for IWOI 

Max and IL Max. IWOI Max and IL max are proportional to the total number of jobs. 

Hence IWOI Max and IL Max increase as the number of jobs increase.  

Step 5: Tabu search employs the intensification and diversification strategies to further 

explore the search space. The intensification of search is carried out using the long term 

memory based on the maximum frequency (LTM-MAX). The diversification of search is 

carried out using the long term memory based on the minimum frequency (LTM-MIN). 

As mentioned earlier, the information pertaining to maximum and minimum frequency is 

stored in the LTM matrix.  

 The LTM search based on maximum frequency directs the search to restart from 

regions that have previously been considered as „good‟. The LTM search based on the 

minimum frequency directs the search to restart from regions that were least or never 

explored. The following paragraph serves as the guideline for using the LTM matrix.  

 For LTM-MAX, job-machine pair with maximum frequency from the frequency matrix is 

selected. Note that if one or more jobs have operation only on one machine (due to 

machine capability) then the cells corresponding to these jobs will have the largest entries 

because the job will always opt to be processed only on that machine (due to the machine 

capability constraint). Fixing such jobs on machines is pointless because they will be 

processed on the assigned machine throughout the search (regardless of whether we fix 
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them to a particular machine or not). Extra precaution needs to be taken while selecting 

the job and machine pair. Only those job-machine pairs must be selected where the job 

(in consideration) can be processed on two or more machines. Once the job-machine pair 

is selected, the job is fixed to the respective machine (based on the LTM frequency 

matrix) throughout the search process until the next restart is invoked. If there is a tie 

maximum frequency, row-wise first best strategy is used to break ties.  

 For LTM-MIN, job-machine pair with minimum frequency from the frequency matrix is 

selected. Meticulous attention is required while selecting the job-machine pair. Note that 

if one or more jobs have no operation on a particular machine (due to machine capability) 

then the cells corresponding to these jobs will have the smallest entries because the job 

will never opt to be processed on that machine. Therefore, we only consider those job-

machine pairs in which the job (in consideration) can be processed on two or more 

machines. After the job-machine pair is selected, fix the job on the respective machine 

until the next restart is invoked. Similar to the LTM-max, use the row-wise first best 

strategy to break ties.  

The job selected from the LTM matrix is referred to as „fixed job‟ and the 

corresponding machine (on which the job is supposed to be „fixed‟ throughout the search) 

is referred as „fixed machine‟. The schedule used to restart the search is derived from the 

initial solution. If „fixed job‟ is already assigned to the „fixed‟ machine in the initial 

solution then the restart solution will be similar to the initial solution. In this scenario, the 

only difference between the initial solution and the restart solution is that the „fixed job‟ 

will not be removed from the „fixed machine‟ until another restart is invoked.  

In case if the „fixed job‟ is not already assigned to the „fixed machine‟ in the 

initial solution, we insert the „fixed job‟ to the fist position of the „fixed machine‟. The 

rationale behind doing so is to address a situation when no jobs are scheduled to be 

processed on the „fixed machine‟. Under this circumstance, scheduling „fixed job‟ on 

„fixed machine‟ will make the „fixed job‟ the first as well as the only job to be processed 

on the „fixed machine‟.  

Using restart as a starting point, repeat Steps 1 through 4. Total number of restarts 

used in this research is assumed to be 2. Logendran and Sonthinen (1997), Logendran and 
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Subur (2000) have previously used two restarts to solve problems of industrial merit. The 

tabu list, Aspiration Level and iterations without improvement must be re-initialized at 

the beginning of each restart.  

Step 6: If short term memory is utilized to commence the search, the entire search should 

be concluded at the end of Step 4. For long-term memory function, the search is 

concluded when the total number of restarts is reached (which is 2 in this case). The best 

solution (minimum TWT) is then chosen from the index list.  

 The entire algorithmic steps are written in C# using Visual Studio.NET platform. 

Visual Studio is an integrated development tool from Microsoft that lets developers to 

create user interfaces for web and windows services. Visual Studio.NET supports several 

different programming languages including C#.NET, VB.NET, C++, PHP and several 

others. The programs are written in the form of function files and are executable from C# 

.NET 2008. A flowchart showing the steps of the tabu search is presented in Figure 5.1.  

 

5.6 Application of Heuristic Algorithm to Example Problem 

 

We illustrate the application of the tabu search heuristic by means of a randomly 

generated sample problem, shown in Table 5.2. The problem comprises of one project 

and the number of jobs within the project is 11. There are a total of 5 jobs that have an 

operation which can be performed on more than one machine is stage 1. The due dates of 

jobs along with weights, release times, runtimes have been presented in Table 5.2. The 

sequence-dependent setup times have been included in the appendix A instead of Table 

5.2 due to space limitations and overwhelming data content.  

The machine availability times are also presented in Table 5.2. Note that among 

the 3 machines in stage 1, M1,1 is available at t = 3, M2,1  is available at t = 8, and M3,1  is 

available at t = 4. Jobs that cannot be processed on certain machines are assumed to have 

a runtime of 0 (e.g. runtime of J1,1 on M3,1 is 0). The five methods described in Section 

5.3 are applied to this example problem to obtain initial solutions.  
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Table 5-1 Problem Structure  

Number of Jobs 11 

Number of stages 17 

Number of machines 19 

 

 

Table 5-2 Example problem with 11 jobs 

 

 

  

P J Wt RT 

 

DD 
 

M1,1 M2,1 M3,1 M1,2 M1,3 M1,4 M1,5 M1,6 M1,7 M1,8 M1.9 M1,10 

     
3 8 4 18 22 30 36 41 48 53 61 64 

        
Runtime of Jobs 

1 1 1 2 1684 45 35 0 0 23 0 0 0 0 0 0 44 

1 2 2 4 520 0 34 0 0 38 41 0 0 0 0 37 0 

1 3 1 4 339 0 0 33 0 41 0 0 0 0 28 24 31 

1 4 3 8 1462 34 0 0 32 41 0 0 0 0 0 0 0 

1 5 3 4 1501 0 41 32 0 0 35 31 0 0 0 0 0 

1 6 2 6 517 0 0 43 0 40 33 0 0 0 0 0 0 

1 7 2 8 388 40 0 45 0 0 35 0 0 0 0 0 28 

1 8 3 7 603 37 0 0 36 25 0 0 0 0 0 0 38 

1 9 2 4 441 0 24 47 39 32 0 0 0 0 0 33 0 

1 10 1 4 819 0 0 46 0 33 0 0 0 32 0 0 0 

1 11 1 4 350 48 0 41 0 27 0 0 0 31 0 38 0 
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a. The following evaluations are obtained by applying the EDD method to the example 

problem: 

 At t = 0, tm1,1 = 3, tm2,1 = 8, tm3,1 = 4. NSJ = [J1,1 , J2,1 , J3,1 , J4,1 , J5,1 , J6,1 , J7,1 

, J8,1 , J9,1 , J10,1 , J11,1 ]. 

 The machine with minimum availability is M1,1 at t = 3. J1, 1 is released at t = 2 

hence it is selected to be processed on M1,1. Anticipatory setup cannot be 

performed since the machine availability is greater than the job release time. 

ST (J1,1 , M1,1) = 3, CT (J1,1 , M1,1) = 3 + 33+ 45 = 81 (where 33 is the change 

over from reference to J1,1 on M1,1 and 45 is the runtime of J1,1 on M1,1 ). NSJ 

= [J2,1 , J3,1 , J4,1 , J5,1 , J6,1 , J7,1 , J8,1 , J9,1 , J10,1 , J11,1 ]. tm1,1 = 81. 

 The next machine with minimum availability is M3,1 at t = 4. SJ = [J3,1 , J5,1 , 

J9,1 , J10,1 , J11,1].  J3,1 is selected since it has the minimum due date. ST (J3,1 , 

M3,1) = 4, CT (J3,1 , M3,1) = 4 + 7 + 33 = 44 (where 7 is the change over from 

reference to J3,1 on M3,1 and 33 is the runtime of J3,1 on M3,1). NSJ = [J2,1 , J4,1 , 

J5,1 , J6,1 , J7,1 , J8,1 , J9,1 , J10,1 , J11,1 ]. tm3,1 = 44. 

 The next machine with minimum availability is M2,1 at t = 8. SJ = [J2,1 , J5,1 , 

J9,1]. J9,1 is selected since it has the minimum due date. ST (J9,1 , M2,1) = 8. CT 

(J9,1 , M2,1) = 8 + 23 + 24 = 55 (where 23 is the change over from reference to 

J9,1 on M2,1). NSJ = [J2,1 , J4,1 , J5,1 , J6,1 , J7,1 , J8,1 , J10,1 , J11,1 ]. tm2,1 = 55. 

 tmi,k = [81, 44, 55]. M3,1 has the minimum tmi,k  and t = 44. SJ = [ J5,1 , J6,1 , J7,1 

, J10,1 , J11,1].  J11,1 is selected since it has the minimum due date. ST (J11,1 , 

M3,1) = 44, CT (J11,1 , M3,1) = 44 + 6 + 41 = 91 (where 6 is the change over 

from J3,1 to J11,1 on M3,1 and 41 is the runtime of J11,1 on M3,1). NSJ = [J2,1 , J4,1 

, J5,1 , J6,1 , J7,1 , J8,1 , J10,1] and tm3,1 = 91. 

 tmi,k = [81, 91, 55]. M2,1 has the minimum tmi,k  and t = 55. SJ = [J2,1 , J5,1]. J2,1 

is selected since it has the minimum due date. ST (J2,1, M2,1) = 55 and CT (J2,1, 

M2,1) = 55 + 23 + 34 = 112 (where 23 is the change over from J9,1 to J2,1 on 

M2,1). NSJ = [J4,1 , J5,1 , J6,1 , J7,1 , J8,1 , J10,1] and tm2,1 = 112. 

 tmi,k = [81, 91, 112]. M1,1 has the minimum tmi,k  and t = 81. SJ = [J4,1 , J7,1 , J8,1 

]. J7,1 is chosen since it has the minimum due date. ST (J7,1, M1,1) = 81 and CT 

(J7,1, M1,1) = 81 + 39 + 40 = 160 (where 39 is the change over from J1,1 to J7,1 
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on M1,1 and 40 is the runtime of J7,1 on M1,1). NSJ = [J4,1 , J5,1 , J6,1 , J8,1 , J10,1] 

and tm1,1 = 160. 

 tmi,k = [160, 91, 112]. M3,1 has the minimum tmi,k  and t = 91. SJ = [ J5,1 , J6,1 , 

J10,1].  J6,1 is selected since it has the minimum due date. ST (J6,1, M3,1) = 91 

and CT (J6,1, M3,1) = 91+ 15 + 43 = 149 (where 15 is the change over from 

J11,1 to J6,1 on M3,1 and 43 is the runtime of J6,1 on M3,1). NSJ = [J4,1 , J5,1 , J8,1 , 

J10,1] and tm3,1 = 149. 

 tmi,k = [160, 149, 112]. M2,1 has the minimum tmi,k  and t = 112. SJ = [J5,1]. 

Since J5,1 is the only job, it is scheduled on M2,1. ST(J5,1, M2,1) = 112 and 

CT(J5,1, M2,1) = 112 + 12 + 41 = 165. NSJ = [J4,1 , J8,1 , J10,1] and tm2,1 = 165. 

 tmi,k = [160, 149, 165]. M3,1 has the minimum tmi,k  and t = 149. SJ = [J10,1]. 

Since J10,1 is the only job, it is scheduled on M3,1. ST (J10,1, M3,1) = 149 and CT 

(J10,1, M3,1) = 149+ 3 + 46 = 198. NSJ = [J4,1 , J8,1] and tm3,1 = 198. 

 tmi,k = [160, 198, 165]. M1,1 has the minimum tmi,k  and t = 160. SJ = [J4,1 , J8,1 

]. J8,1 is chosen since it has the minimum due date. ST (J8,1, M1,1) = 160 and 

CT (J8,1, M1,1) = 160 + 18 + 37 = 215 (where 18 is the change from J7,1 to J8,1 

on M1,1 and 37 is the runtime of J8,1 on M1,1). NSJ = [J4,1] and tm1,1 = 215. 

 tmi,k = [215, 198, 165]. M2,1 has the minimum tmi,k  and t = 165 but since 

remaining unscheduled job [J4,1] cannot be processed on M2,1, it is excluded 

from future consideration.  

 tmi,k = [215, 198]. M3,1 has the minimum tmi,k  and t = 198 but since remaining 

unscheduled job [J4,1] cannot be processed on M3,1, it is excluded from future 

consideration. 

 tmi,k = [215]. M1,1 has the minimum tmi,k  and is the only machine available at t 

= 215. SJ = [J4,1]. Since [J4,1] is the only job, it is scheduled on M1,1. ST (J4,1, 

M1,1) = 215 and CT (J4,1, M1,1) = 215 + 28 + 34 = 277 (where 28 is the change 

from J8,1 to J4,1 on M1,1 and 34 is the runtime of J4,1 on M1,1). tm1,1 = 277. 

 At this time, all jobs have been processed in the first stage and are ready to be 

processed on the second stage. Note that not all jobs are processed in the 

second stage due to machine skipping. J4,1, J8,1 and J9,1 are required to be 

processed on M1,2. M1,2 becomes available at t = 18 and J4,1, J8,1 and J9,1 are 
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released at t = 277, t = 215 and t = 55, respectively. Since J9,1 is released 

earliest, it is the first job to be processed on M1,2 followed by J8,1 and J4,1. The 

start and completion time of jobs can be documented as follows.  

 ST (J9,1 , M1,2) = 55. CT (J9,1 , M1,2) = 55 + 39 = 94 (where 39 is the run time 

of J9,1 on M2,1 ). Anticipatory setup is performed on the machine starting at t = 

25 and finished before the release of the job (t = 55). Note that the changeover 

time required to change from reference to J9,1 on M2,1 is 30.  

 Next, ST (J8,1 , M1,2) = 215. CT (J8,1 , M1,2) = 215 + 36 = 251 (where 36 is the 

run time of J8,1 on M2,1). Anticipatory setup is performed on the machine 

starting at t = 182 and finished before the release of the job (t = 215). Note 

that the changeover time required to change from J9,1 on M2,1 to J8,1 on M2,1 is 

33. 

 M2,1 becomes available at t = 251. J4,1 is the next job required to be processed 

on M2,1. Setup is performed on machine starting t = 251 and completed at time 

279 (changeover from J8,1 on M2,1 to J4,1 on M2,1 is 28). ST (J4,1 , M1,2) = 279. 

CT (J8,1 , M1,2) = 279 + 32 = 309 (where 32 is the run time of J4,1 on M2,1 ). At 

this point, there aren‟t any jobs that require an operation on M1,2.  

 The jobs are processed on stages 3-17 in the similar fashion. The completion 

time of all jobs the end of stage 17 along with their weighted tardiness is 

summarized in Table 5.3. 
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b. The following evaluations are obtained by applying (LFJ/LFM) method to the 

example problem: 

 At t = 0, tm1,1 = 3, tm2,1 = 8, tm3,1 = 4. NSJ = [J1,1 , J2,1 , J3,1 , J4,1 , J5,1 , J6,1 , J7,1 

, J8,1 , J9,1 , J10,1 , J11,1 ]. 

 The machine with minimum availability is M1,1 at t = 3. J1, 1 is released at t = 2 

hence it is selected to be processed on M1,1. Anticipatory setup cannot be 

performed since the machine availability is greater than the job release time. 

ST (J1,1 , M1,1) = 3, CT (J1,1 , M1,1) = 3 + 33+ 45 = 81 (where 33 is the change 

over from reference to J1,1 on M1,1 and 45 is the runtime of J1,1 on M1,1 ). NSJ 

= [J2,1 , J3,1 , J4,1 , J5,1 , J6,1 , J7,1 , J8,1 , J9,1 , J10,1 , J11,1 ]. tm1,1 = 81. 

 The next machine with minimum availability is M3,1 at t = 4. SJ = [J3,1 , J5,1 , 

J9,1 , J10,1 , J11,1].  J10,1 is selected since it is the least flexible job. ST (J10,1 , 

M3,1) = 4, CT (J10,1 , M3,1) = 4 + 9 + 46 = 59 (where 8 is the change over from 

reference to J10,1 on M3,1 and 46 is the runtime of J10,1 on M3,1). NSJ = [J2,1 , J3,1 

, J4,1 , J5,1 , J6,1 , J7,1 , J8,1 , J9,1 , J11,1 ]. tm3,1 = 59. 

 The next machine with minimum availability is M2,1 at t = 8. SJ = [J2,1 , J5,1 , 

J9,1]. J2,1 is selected since it is the least flexible. ST (J2,1 , M2,1) = 8. CT (J2,1 , 

M2,1) = 8 + 17 + 34 = 59 (where 17 is the change over from reference to J2,1 on 

M2,1). NSJ = [J3,1, J4,1 , J5,1 , J6,1 , J7,1 , J8,1 , J9,1 , J11,1 ]. tm2,1 = 59. 

 tmi,k = [81, 59, 59]. Though M2,1 and M3,1 have the same tmi,k  (release time) at t 

= 59, M2,1 is selected because it is less flexible . SJ = [J5,1 , J9,1].  J5,1 is 

selected over J9,1 because both have same flexibility but the former has a 

lower job number. ST (J5,1 , M3,1) = 59, CT (J5,1 , M3,1) = 59 + 39 + 41 = 139 

(where 39 is the change over from J2,1 to J5,1 on M3,1 and 41 is the runtime of 

J5,1 on M3,1). NSJ = [J3,1, J4,1 , J6,1 , J7,1 , J8,1 , J9,1 , J11,1 ] and tm3,1 = 139. 

 tmi,k = [81, 139, 59]. M3,1 has the minimum tmi,k  and t = 59. SJ = [J3,1 , J6,1, J7,1 

,  J11,1]. J6,1 because it is the least flexible job. ST (J6,1, M2,1) = 59 and CT (J6,1, 

M2,1) = 59 + 25 + 43 = 127 (where 25 is the change over from J10,1 to J6,1 on 

M2,1). NSJ = [J3,1, J4,1, J7,1 , J8,1 , J9,1 , J11,1 ] and tm2,1 = 127. 
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 tmi,k = [81, 139, 127]. M1,1 has the minimum tmi,k  and t = 81. SJ = [J4,1 , J8,1 , 

J11,1 ]. Though all three unscheduled jobs have same flexibility, J4,1 is chosen 

because it is has the lowest job number. ST (J4,1, M1,1) = 81 and CT (J4,1, M1,1) 

= 81 + 31 + 34 = 146 (where 31 is the change over from J1,1 to J4,1 on M1,1 and 

34 is the runtime of J4,1 on M1,1). NSJ = [J3,1, J7,1 , J8,1 , J9,1 , J11,1 ] and tm1,1 = 

147. 

 tmi,k = [147, 139, 127]. M3,1 has the minimum tmi,k  and t = 127 and SJ = [J3,1 , 

J7,1 ,  J11,1]. J3,1 is selected since it is least flexible. ST (J3,1, M3,1) = 127 and CT 

(J3,1, M3,1) = 127 +  + 33 = 180 (where 20 is the change over from J6,1 to J3,1 

on M3,1). NSJ = [J7,1 , J8,1 , J9,1 , J11,1 ]  and tm3,1 = 180. 

 tmi,k = [147, 139, 180]. M2,1 has the minimum tmi,k  and t = 139. SJ = [ J9,1 ].  

J9,1 is scheduled to be processed on M2,1 since it is the only remaining job . ST 

(J9,1, M2,1) = 139 and CT (J8,1, M2,1) = 139+ 4 + 24 =  167 where ( 4 is the 

change over from J5,1 to J9,1 on M2,1 and 24 is the runtime of J9,1 on M2,1). NSJ 

= [J7,1 , J8,1 , J11,1 ] and tm2,1 = 175. 

 M2,1 is removed from further consideration since none of the unscheduled jobs 

can be processed on M2,1. 

 tmi,k = [147, 180]. M1,1 has the minimum tmi,k  and t = 147. SJ = [J8,1, J11,1].  

J8,1 is chosen since it is less flexible than J11,1. ST(J8,1, M1,1) = 147 and CT(J8,1, 

M1,1) = 147+ 9 + 37 = 193 (where 9 is the change over from J4,1 to J8,1 on M1,1 

and 37 is the runtime of J11,1 on M1,1). NSJ = [J7,1 , J11,1] and tm1,1 = 193. 

 tmi,k = [193, 180]. M3,1 has the minimum tmi,k  and t = 180. SJ = [J7,1, J10,1]. J7,1 

is selected since it is the only job that can be on M3,1. ST (J7,1, M3,1) = 180 and 

CT (J7,1, M3,1) = 180 + 12 + 45 = 237 (where 12 is the change over from J3,1 to 

J7,1 on M3,1 and 45 is the runtime of J7,1 on M3,1). NSJ = [J10,1] and tm3,1 = 237. 

 tmi,k = [193, 237]. M1,1 has the minimum tmi,k  and t = 193. SJ = [J11,1 ]. J11,1 is 

the only remaining unscheduled job. ST (J11,1, M1,1) = 193 and CT (J4,1, M1,1) = 

193 + 8 + 48 = 249 (where 8 is the change from J8,1 to J11,1 on M1,1 and 48 is 

the runtime of J11,1 on M1,1). NSJ = [Ø]  
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 At this time, all jobs have been processed in the first stage and are ready to be 

processed on the second stage. Note that not all jobs are processed in the 

following stages (stage 2-17) due to machine skipping.  

 The jobs are processed on stages 2-17 in the similar fashion. The completion 

time of all jobs the end of stage 17 along with their weighted tardiness is 

summarized in Table 5.3. 
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c. The following evaluations are obtained by applying IS3 method to the example 

problem: 

 At t = 0, tm1,1 = 3, tm2,1 = 8, tm3,1 = 4. NSJ = [J1,1 , J2,1 , J3,1 , J4,1 , J5,1 , J6,1 , J7,1 

, J8,1 , J9,1 , J10,1 , J11,1 ]. 

 The machine with minimum availability is M1,1 at t = 3. J1, 1 is released at t = 2 

hence it is selected to be processed on M1,1.  Anticipatory setup cannot be 

performed since the machine availability is greater than the job release time. 

ST (J1,1 , M1,1) = 3, CT (J1,1 , M1,1) = 3 + 33+ 45 = 81 (where 33 is the change 

over from reference to J1,1 on M1,1 and 45 is the runtime of J1,1 on M1,1 ). NSJ 

= [J2,1 , J3,1 , J4,1 , J5,1 , J6,1 , J7,1 , J8,1 , J9,1 , J10,1 , J11,1 ]. tm1,1 = 81. 

 The next machine with minimum availability is M3,1 at t = 4. SJ = [J3,1 , J5,1 , 

J9,1 , J10,1 , J11,1].  J5,1 is selected since it has the minimum tardiness. ST (J5,1 , 

M3,1) = 4, CT (J5,1 , M3,1) = 4 + 13 + 41 = 58 (where 13 is the change over 

from reference to J5,1 on M3,1 and 41 is the runtime of J5,1 on M3,1). NSJ = [J2,1 , 

J3,1 , J4,1 , J6,1 , J7,1 , J8,1 , J9,1 , J10,1 , J11,1 ]. tm3,1 = 58. 

 The next machine with minimum availability is M2,1 at t = 8. SJ = [J2,1 , J5,1 , 

J9,1]. J2,1 is selected since it has the minimum tardiness. ST (J2,1 , M2,1) = 8. CT 

(J2,1 , M2,1) = 8 + 17 + 34 = 59 (where 17 is the change over from reference to 

J2,1 on M2,1). NSJ = [J3,1 , J4,1 , J6,1 , J7,1 , J8,1 , J9,1 , J10,1 , J11,1 ]. tm2,1 = 59. 

 tmi,k = [81, 58, 59]. M3,1 has the minimum tmi,k  and t = 58. SJ = [ J3,1 , J6,1 , J7,1 

, J9,1 , J10,1 , J11,1].  J10,1 is selected since it has the minimum tardiness. ST (J10,1 

, M3,1) = 58, CT (J10,1 , M3,1) = 58 + 4 + 46 = 108 (where 4 is the change over 

from J5,1 to J10,1 on M3,1 and 46 is the runtime of J10,1 on M3,1). NSJ = [J3,1 , J4,1 

, J6,1 , J7,1 , J8,1 , J9,1 , J11,1 ] and tm3,1 = 108. 

 tmi,k = [81, 108, 59]. M2,1 has the minimum tmi,k  and t = 59. SJ = [J9,1]. J9,1 is 

selected since it is the only remaining job that can be processed on M2,1. ST 

(J9,1, M2,1) = 59 and CT (J9,1, M2,1) = 59 + 12 + 24 = 95 (where 12 is the 

change over from J2,1 to J9,1 on M2,1).  NSJ = [J3,1 , J4,1 , J6,1 , J7,1 , J8,1 , J11,1 

]and tm2,1 = 95. 
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 tmi,k = [81, 108, 95]. M1,1 has the minimum tmi,k  and t = 81. SJ = [J4,1 , J7,1 , 

J8,1, J11,1 ]. J4,1 is chosen since it has the minimum tardiness. ST (J4,1, M1,1) = 

81 and CT (J4,1, M1,1) = 81 + 31 + 34 = 146 (where 31 is the change over from 

J1,1 to J4,1 on M1,1 and 34 is the runtime of J4,1 on M1,1). NSJ = [J3,1 , J6,1 , J7,1 , 

J8,1 , J11,1 ] and tm1,1 = 146. 

 tmi,k = [146, 108, 95]. M2,1 has the minimum tmi,k  and t = 95. SJ = [ Ø ].  Thus 

M2,1 is not taken into consideration and is removed from the set of available 

machines. 

 tmi,k = [146, 108]. M3,1 has the minimum tmi,k  and t = 108. SJ = [ J3,1 , J6,1 , J7,1 

, J11,1].  J6,1 is selected since it has the minimum tardiness. ST(J6,1, M3,1) = 108 

and CT(J6,1, M3,1) = 108 + 33 + 35 = 176. (where 33 is the changeover from  

J10,1 to J6,1 on M3,1). NSJ = [J3,1 , J7,1 , J8,1 , J11,1 ] and tm,1 = 176 

 tmi,k = [146, 176]. M1,1 has the minimum tmi,k  and t = 146. SJ = [J8,1 , J11,1]. J8,1 

is chosen since it has the minimum tardiness. ST (J8,1, M1,1) = 146 and CT 

(J8,1, M1,1) = 146+ 10 + 37 = 193 (where 10 is the changeover from J4,1 to J8,1 

on M1,1). NSJ = [J3,1 , J7,1 , J11,1] and tm1,1 = 193. 

 tmi,k = [193, 176]. M3,1 has the minimum tmi,k  and t = 176. SJ = [J3,1 , J7,1 , 

J11,1]. J7,1 is chosen since it has the minimum tardiness. ST (J7,1, M3,1) = 176 

and CT (J7,1, M3,1) = 176 + 14 + 45 = 235 (where 14 is the change from J6,1 to 

J7,1 on M3,1 and 45 is the runtime of J7,1 on M3,1). NSJ = [J3,1, J11,1] and tm3,1 = 

235. 

 tmi,k = [193, 235]. M1,1 has the minimum tmi,k  and t = 193.  SJ = [J11,1]. Since 

J11,1 is the only remaining job that can be processed on M1,1, it is scheduled on 

M1,1. ST (J11,1, M1,1) = 193 and CT (J11,1, M1,1) = 193 + 8 + 48 = 249 (where 8 

is the change from J8,1 to J11,1 on M1,1 and 48 is the runtime of J11,1 on M1,1). 

tm1,1 = 249. NSJ = [J3,1]. 

 tmi,k = [249, 235]. M3,1 has the minimum tmi,k and t = 235. SJ = [J3,1]. The only 

job that can be processed on M3,1 is J3,1. Therefore, it is scheduled to be 

processed on M3,1. ST (J3,1, M3,1) = 235 and CT (J3,1, M3,1) = 235 + 6 + 33 = 

274 (where 6 is the change from J6,1 to J3,1 on M3,1 and 33 is the runtime of J3,1 

on M3,1). tm1,1 = 274 and NSJ = [Ø]. 
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 At this time, all jobs have been processed in the first stage and are ready to be 

processed on the second stage. Note that not all jobs are processed in the 

second stage due to machine skipping. J4,1, J8,1 and J9,1 are required to be 

processed on M1,2. M1,2 becomes available at t = 18 and J4,1, J8,1 and J9,1 are 

released at t = 146, t = 193 and t = 95 respectively. Since J9,1 is released 

earliest, it is the first job to be processed on M1,2 followed by J4,1 and J8,1. The 

start and completion time of jobs can be documented as follows.  

 ST (J9,1 , M1,2) = 55. CT (J9,1 , M1,2) = 95 + 39 = 134 (where 39 is the run time 

of J9,1 on M2,1 ) Anticipatory setup is performed on the machine starting at t = 

65 and finished before the release of the job (t = 95). Note that the changeover 

time required to change from reference to J9,1 on M2,1 is 30.  

 M2,1 becomes available at t = 134. J4,1 is the next job required to be processed 

on M2,1. Anticipatory setup is performed on machine starting at t = 134 and 

completed at time 159 (changeover from J9,1 on M2,1 to J4,1 on M2,1 is 25). ST 

(J4,1 , M1,2) = 159. CT (J4,1 , M1,2) = 159 + 32 = 191 (where 32 is the run time 

of J4,1 on M2,1).  

 Next, M2,1 becomes available at t = 191. Anticipatory setup is performed on 

the machine starting at t = 191 and finished at t = 224. Note that the 

changeover time required to change from J4,1 on M2,1 to J8,1 on M2,1 is 33). 

ST(J8,1 , M1,2) = 234. CT(J8,1 , M1,2) = 234 + 36 = 260 (where 36 is the run 

time of J8,1 on M2,1 ). 

 The jobs are processed on stages 3-17 in the similar fashion. The completion 

time of all jobs the end of stage 17 along with their weighted tardiness is 

summarized in Table 5.3. 
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d. The following evaluations are obtained by applying (Due Date/Weight) method to the 

example problem: 

 At t = 0, tm1,1 = 3, tm2,1 = 8, tm3,1 = 4. NSJ = [J1,1 , J2,1 , J3,1 , J4,1 , J5,1 , J6,1 , J7,1 

, J8,1 , J9,1 , J10,1 , J11,1 ]. 

 The machine with minimum availability is M1,1 at t = 3. J1, 1 is released at t = 2 

hence it is selected to be processed on M1,1. Anticipatory setup cannot be 

performed since the machine availability is greater than the job release time. 

ST (J1,1 , M1,1) = 3, CT (J1,1 , M1,1) = 3 + 33+ 45 = 81 (where 33 is the change 

over from reference to J1,1 on M1,1 and 45 is the runtime of J1,1 on M1,1 ). NSJ 

= [J2,1 , J3,1 , J4,1 , J5,1 , J6,1 , J7,1 , J8,1 , J9,1 , J10,1 , J11,1 ]. tm1,1 = 81. 

 The next machine with minimum availability is M3,1 at t = 4. SJ = [J3,1 , J5,1 , 

J9,1 , J10,1 , J11,1].  J9,1 is selected since it has the minimum (due date/weight) 

ratio. ST (J9,1 , M3,1) = 4, CT (J9,1 , M3,1) = 4 + 2 + 47 = 53 (where 2 is the 

change over from reference to J9,1 on M3,1 and 47 is the runtime of J9,1 on 

M3,1). NSJ = [J2,1 , J3,1 , J4,1 , J5,1 , J6,1 , J7,1 , J8,1 , J10,1 , J11,1 ]. tm3,1 = 53. 

 The next machine with minimum availability is M2,1 at t = 8. SJ = [J2,1 , J5,1]. 

J2,1 is selected since it has the minimum (due date/weight). ST (J2,1 , M2,1) = 8. 

CT (J2,1 , M2,1) = 8 + 17 + 34 = 59 (where 17 is the change over from 

reference to J2,1 on M2,1). NSJ = [J3,1, J4,1 , J5,1 , J6,1 , J7,1 , J8,1 , J10,1 , J11,1 ]. 

tm2,1 = 59. 

 tmi,k = [81, 53, 59]. M3,1 has the minimum tmi,k  and t = 53. SJ = [J3,1, J5,1 , J6,1 , 

J7,1 , J10,1 , J11,1].  J7,1 is selected since it has the minimum due date/weight 

ratio. ST (J7,1 , M3,1) = 53, CT (J7,1 , M3,1) = 53 + 16 + 45 = 114 (where 16 is 

the change over from J9,1 to J7,1 on M3,1 and 45 is the runtime of J7,1 on M3,1). 

NSJ = [J3,1, J4,1 , J5,1 , J6,1 , J8,1 , J10,1 , J11,1 ]and tm3,1 = 114. 

 tmi,k = [81, 114, 59]. M2,1 has the minimum tmi,k  and t = 59. SJ = [J5,1]. J5,1 is 

selected since it is the only job that can be processed on M2,1. ST (J5,1, M2,1) = 

59 and CT (J5,1, M2,1) = 59 + 12 + 41 = 112 (where 12 is the change over from 

J2,1 to J5,1 on M2,1). NSJ = [J3,1, J4,1 , J6,1 , J8,1 , J10,1 , J11,1 ] and tm2,1 = 112. 

 tmi,k = [81, 114, 112]. M1,1 has the minimum tmi,k  and t = 81. SJ = [J4,1 , J8,1 , 

J11,1 ]. J8,1 is chosen since it has the minimum due date/weight. ST (J8,1, M1,1) = 
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81 and CT (J8,1, M1,1) = 81 + 29 + 37 = 147 (where 29 is the change over from 

J1,1 to J8,1 on M1,1 and 37 is the runtime of J8,1 on M1,1). NSJ = [J3,1, J4,1 , J6,1 

,J10,1, J11,1] and tm1,1 = 147. 

 tmi,k = [147, 114, 112]. M2,1 has the minimum tmi,k  and t = 112 but since the 

remaining unscheduled jobs cannot be processed on M2,1, they are excluded 

from future consideration. 

 tmi,k = [147, 114]. M3,1 has the minimum tmi,k  and t = 114. SJ = [ J3,1 , J6,1 , 

J10,1 , J11,1].  J6,1 is selected since it has the minimum due date/weight ratio . ST 

(J6,1, M3,1) = 114 and CT (J6,1, M3,1) = 114+ 18 + 43 = 175 where (18 is the 

change over from J7,1 to J6,1 on M3,1 and 43 is the runtime of J6,1 on M3,1). NSJ 

= [J3,1, J4,1 , J10,1, J11,1]and tm3,1 = 175. 

 tmi,k = [147, 175]. M1,1 has the minimum tmi,k  and t = 147. SJ = [J11,1, J4,1].  

J11,1 is chosen since it has the minimum Due Date/weight ratio. ST(J11,1, M1,1) 

= 147 and CT(J11,1, M1,1) = 147 + 8 + 48 = 203 (where 8 is the change over 

from J8,1 to J11,1 on M1,1 and 48 is the runtime of J11,1 on M1,1). NSJ = [J3,1 , J4,1 

, J10,1] and tm1,1 = 203. 

 tmi,k = [203, 175]. M3,1 has the minimum tmi,k  and t = 175. SJ = [J3,1 ,J10,1]. 

Since J3,1 is selected since it has the minimum Due Date/weight ratio and is 

scheduled on M3,1. ST (J3,1, M3,1) = 175 and CT (J3,1, M3,1) = 175 + 20 + 33 = 

228 (where 20 is the change over from J6,1 to J3,1 on M3,1 and 33 is the runtime 

of J3,1 on M3,1). NSJ = [J4,1 , J10,1] and tm3,1 = 228. 

 tmi,k = [203, 228]. M1,1 has the minimum tmi,k  and t = 203. SJ = [J4,1 ]. J4,1 is 

only remaining unscheduled job. ST (J4,1, M1,1) = 203 and CT (J4,1, M1,1) = 203 

+ 4 + 34 = 241 (where 4 is the change from J11,1 to J4,1 on M1,1 and 34 is the 

runtime of J4,1 on M1,1). NSJ = [J10,1] and tm1,1 = 241. 

 tmi,k = [241, 228]. M3,1 has the minimum tmi,k  and t = 228. SJ = [J10,1]. Since 

J10,1 is the only remaining unscheduled job, [J10,1] is scheduled to be processed 

on M3,1. ST (J10,1, M3,1) = 228 and CT (J10,1, M3,1) = 228 + 34 + 46 = 308. NSJ 

= [Ø] and tm3,1 = 308. 

 At this time, all jobs have been processed in the first stage and are ready to be 

processed on the second stage. Note that not all jobs are processed in the 
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second stage due to machine skipping. J4,1, J8,1 and J9,1 are required to be 

processed on M1,2. M1,2 becomes available at t = 18 and J4,1, J8,1 and J9,1 are 

released at t = 241, t = 147 and t = 53 respectively. Since J9,1 is released 

earliest, it is the first job to be processed on M1,2 followed by J8,1 and J4,1. The 

start and completion time of jobs can be documented as follows.  

 ST (J9,1 , M1,2) = 53. CT (J9,1 , M1,2) = 53 + 39 = 92 (where 39 is the run time 

of J9,1 on M2,1 ). Anticipatory setup is performed on the machine starting at t = 

23 and finished before the release of the job (t = 53). Note that the changeover 

time required to change from reference to J9,1 on M2,1 is 30..  

 Next, ST (J8,1 , M1,2) = 147. CT (J8,1 , M1,2) = 147 + 36 = 183 (where 36 is the 

run time of J8,1 on M2,1). Anticipatory setup is performed on the machine 

starting at t = 114 and finished before the release of the job (t = 147). Note 

that the changeover time required to change from J9,1 on M2,1 to J8,1 on M2,1 is 

33. 

 M2,1 becomes available at t = 183. J4,1 is the next job required to be processed 

on M2,1. Anticipatory setup is performed on machine starting at t = 251 and 

completed at time 213 (changeover from J8,1 on M2,1 to J4,1 on M2,1 is 28). ST 

(J4,1 , M1,2) = 241. CT (J8,1 , M1,2) = 241 + 32 = 273 (where 32 is the run time 

of J4,1 on M2,1). At this point, there aren‟t any jobs that require an operation on 

M1,2.  

 The jobs are processed on stages 3-17 in the similar fashion. The completion 

time of all jobs the end of stage 17 along with their weighted tardiness is 

summarized in Table 5.3. 
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e.  The following evaluations are obtained by applying (HCR-Hybrid Critical Ratio) 

method to the example problem: 

 At t = 0, tm1,1 = 3, tm2,1 = 8, tm3,1 = 4. NSJ = [J1,1 , J2,1 , J3,1 , J4,1 , J5,1 , J6,1 , J7,1 

, J8,1 , J9,1 , J10,1 , J11,1 ]. 

 The machine with minimum availability is M1,1 at t = 3. J1, 1 is released at t = 2 

hence it is selected to be processed on M1,1. Anticipatory setup cannot be 

performed since the machine availability is greater than the job release time. 

ST (J1,1 , M1,1) = 3, CT (J1,1 , M1,1) = 3 + 33+ 45 = 81 (where 33 is the change 

over from reference to J1,1 on M1,1 and 45 is the runtime of J1,1 on M1,1 ). NSJ 

= [J2,1 , J3,1 , J4,1 , J5,1 , J6,1 , J7,1 , J8,1 , J9,1 , J10,1 , J11,1 ]. tm1,1 = 81. 

 The next machine with minimum availability is M3,1 at t = 4. SJ = [J3,1 , J5,1 , 

J9,1 , J10,1 , J11,1].  J9,1 is selected since it has the minimum HCR ratio. ST (J9,1 , 

M3,1) = 4, CT (J9,1 , M3,1) = 4 + 2 + 47 = 53 (where 2 is the change over from 

reference to J9,1 on M3,1 and 47 is the runtime of J9,1 on M3,1). NSJ = [J2,1 , J3,1 , 

J4,1 , J5,1 , J6,1 , J7,1 , J8,1 , J10,1 , J11,1 ]. tm3,1 = 53. 

 The next machine with minimum availability is M2,1 at t = 8. SJ = [J2,1 , J5,1]. 

J2,1 is selected since it has the minimum HCR ratio. ST (J2,1 , M2,1) = 8. CT 

(J2,1 , M2,1) = 8 + 17 + 34 = 59 (where 17 is the change over from reference to 

J2,1 on M2,1). NSJ = [J3,1, J4,1 , J5,1 , J6,1 , J7,1 , J8,1 , J10,1 , J11,1 ]. tm2,1 = 59. 

 tmi,k = [81, 53, 59]. M3,1 has the minimum tmi,k  and t = 53. SJ = [J3,1, J5,1 , J6,1 , 

J7,1 , J10,1 , J11,1].  J7,1 is selected since it has the minimum HCR ratio. ST (J7,1 , 

M3,1) = 53, CT (J7,1 , M3,1) = 53 + 16 + 45 = 114 (where 16 is the change over 

from J9,1 to J7,1 on M3,1 and 45 is the runtime of J7,1 on M3,1). NSJ = [J3,1, J4,1 , 

J5,1 , J6,1 , J8,1 , J10,1 , J11,1 ] and tm3,1 = 114. 

 tmi,k = [81, 114, 59]. M2,1 has the minimum tmi,k  and t = 59. SJ = [J5,1]. J5,1 is 

selected since it is the only job that can be processed on M2,1. ST (J5,1, M2,1) = 

59 and CT (J5,1, M2,1) = 59 + 12 + 41 = 112 (where 12 is the change over from 

J2,1 to J5,1 on M2,1). NSJ = [J3,1, J4,1 , J6,1 , J8,1 , J10,1 , J11,1 ] and tm2,1 = 112. 

 tmi,k = [81, 114, 112]. M1,1 has the minimum tmi,k  and t = 81. SJ = [J4,1 , J8,1 , 

J11,1 ]. J8,1 is chosen since it has the minimum HCR ratio. ST (J8,1, M1,1) = 81 
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and CT (J8,1, M1,1) = 81 + 29 + 37 = 147 (where 29 is the change over from 

J1,1 to J8,1 on M1,1 and 37 is the runtime of J8,1 on M1,1). NSJ = [J3,1, J4,1 , J6,1 

,J10,1, J11,1] and tm1,1 = 147. 

 tmi,k = [147, 114, 112]. M2,1 has the minimum tmi,k  and t = 112 but since 

remaining unscheduled jobs cannot be processed on M2,1, it is excluded from 

future consideration. 

 tmi,k = [147, 114]. M3,1 has the minimum tmi,k  and t = 114. SJ = [ J3,1 , J6,1 , 

J10,1 , J11,1].  J6,1 is selected since it has the minimum HCR ratio . ST (J6,1, M3,1) 

= 114 and CT (J6,1, M3,1) = 114+ 18 + 43 = 175 where ( 18 is the change over 

from J7,1 to J6,1 on M3,1 and 43 is the runtime of J6,1 on M3,1). NSJ = [J3,1, J4,1 , 

J10,1, J11,1]and tm3,1 = 175. 

 tmi,k = [147, 175]. M1,1 has the minimum tmi,k  and t = 147. SJ = [J11,1, J4,1].  

J11,1 is chosen since it has the minimum HCR ratio. ST(J11,1, M1,1) = 147 and 

CT(J11,1, M1,1) = 147 + 8 + 48 = 203 (where 8 is the change over from J8,1 to 

J11,1 on M1,1 and 48 is the runtime of J11,1 on M1,1). NSJ = [J3,1 , J4,1 , J10,1] and 

tm1,1 = 203. 

 tmi,k = [203, 175]. M3,1 has the minimum tmi,k  and t = 175. SJ = [J3,1 ,J10,1]. 

Since J3,1 is selected since it has the minimum HCR ratio and is scheduled on 

M3,1. ST (J3,1, M3,1) = 175 and CT (J3,1, M3,1) = 175 + 20 + 33 = 228 (where 20 

is the change over from J6,1 to J3,1 on M3,1 and 33 is the runtime of J3,1 on 

M3,1). NSJ = [J4,1 , J10,1] and tm3,1 = 228. 

 tmi,k = [203, 228]. M1,1 has the minimum tmi,k  and t = 203. SJ = [J4,1 ]. J4,1 is 

the only remaining unscheduled job. ST (J4,1, M1,1) = 203 and CT (J4,1, M1,1) = 

203 + 4 + 34 = 241 (where 4 is the change from J11,1 to J4,1 on M1,1 and 34 is 

the runtime of J4,1 on M1,1). NSJ = [J10,1] and tm1,1 = 241. 

 tmi,k = [241, 228]. M3,1 has the minimum tmi,k  and t = 228. SJ = [J10,1]. Since 

J10,1 is the only remaining unscheduled job, [J10,1] is scheduled to be processed 

on  processed on M3,1. ST (J10,1, M3,1) = 228 and CT (J10,1, M3,1) = 228 + 34 + 

46 = 308. NSJ = [Ø] and tm3,1 = 308. 

 At this time, all jobs have been processed in the first stage and are ready to be 

processed on the second stage. Note that not all jobs are processed in the 
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second stage due to machine skipping. J4,1, J8,1 and J9,1 are required to be 

processed on M1,2. M1,2 becomes available at t = 18 and J4,1, J8,1 and J9,1 are 

released at t = 241, t = 147 and t = 53 respectively. Since J9,1 is released 

earliest, it is the first job to be processed on M1,2 followed by J8,1 and J4,1. The 

start and completion times of jobs can be documented as follows.  

 ST (J9,1 , M1,2) = 53. CT (J9,1 , M1,2) = 53 + 39 = 92 (where 39 is the run time 

of J9,1 on M2,1 ) Anticipatory setup is performed on the machine starting t = 23 

and finished before the release of the job (t = 53). Note that the changeover 

time required to change from reference to J9,1 on M2,1 is 30.  

 Next, ST (J8,1 , M1,2) = 147. CT (J8,1 , M1,2) = 147 + 36 = 183 (where 36 is the 

run time of J8,1 on M2,1). Anticipatory setup is performed on the machine 

starting t = 114 and finished before the release of the job (t = 147). Note that 

the changeover time required to change from J9,1 on M2,1 to J8,1 on M2,1 is 33.. 

 M2,1 becomes available at t = 183. J4,1 is the next job required to be processed 

on M2,1. Anticipatory setup is performed on machine starting at t = 251 and 

completed at time 213 (changeover from J8,1 on M2,1 to J4,1 on M2,1 is 28). ST 

(J4,1 , M1,2) = 241. CT (J8,1 , M1,2) = 241 + 32 = 273 (where 32 is the run time 

of J4,1 on M2,1). At this point, there aren‟t any jobs that require an operation on 

M1,2.  

 The jobs are processed on stages 3-17 in the similar fashion. The completion 

time of all jobs the end of stage 17 along with their weighted tardiness is 

summarized in Table 5.3. 

Table 5.3 shows the summarized initial schedule and weighted tardiness obtained 

by applying the initial solution finding mechanisms. The weighted tardiness (WT) is 

evaluated as a job‟s weight times max [due date – completion time (stage 17), 0]. The 

total WT is the sum of the weighted tardiness of all jobs. With the initial solution in hand, 

the effort to find an optimal/near-optimal solution is continued by applying steps of tabu 

search documented in Section 5.5. The demonstration of the application of tabu search is 

done via using IS4 (DD/weight) and an optimal/near-optimal solution is finally obtained.  
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Table 5-3 Initial solutions of example problem 

Jobs EDD  LFJ/
LFM 

 LWT  DD/Wt ratio HCR  

 CT WT CT WT CT WT CT WT CT WT 

J1,1 288 0 501 0 412 0 368 0 368 0 

J2,1 652 15 454 0 365 0 321 0 321 0 

J3,1 354 0 716 377 820 0 796 2 796 2 

J4,1 883 134 815 0 703 0 911 0 911 0 

J5,1 590 300 385 0 296 354 507 394 507 394 

J6,1 748 0 766 498 654 324 659 284 659 284 

J7,1 538 264 646 516 565 274 585 375 585 375 

J8,1 817 0 880 831 902 0 728 457 728 457 

J9,1 413 462 575 268 603 396 442 500 442 500 

J10,1 696 642 252 0 482 481 986 0 986 0 

J11,1 484 0 833 483 746 897 850 167 850 167 

Total 1817 2973 2726 2179 2179 

CT = Completion time of Job in stage 17, WT = job's weighted tardiness 

 

 

Step 1 & 2: All possible interchange (swap) of two jobs are considered. The swap 

between J1,1 and J2,1 is ruled out as J2,1 cannot be processed on M1,1. A similar situation 

exists for J1,1 and J3,1. The swap between J1,1 and J3,1 is ruled out as J3,1 cannot be 

processed on M1,1 and J1,1 cannot be processed on M3,1. The swap between J1,1 and J4,1 is 

feasible as both are processed on M1,1 and e1,1 < CT (J4,1, M1,1) and e3,1 < CT (J1,1, M1,1). 

Two new scripts namely STS and STR have been introduced for comprehensively 

explaining the search algorithm. STS refers to the start of the setup whereas STR refers to 

the start of the run. Swapping J1,1 and J4,1 results in the following changes on M1,1. STSr 

(J4,1, M1,1) = 3, STRr (J4,1, M1,1) = 22 and CTr (J4,1, M1,1) = 56 whereas  STSr (J1,1, M1,1) = 

159, STRr (J1,1, M1,1) = 191 and CTr (J1,1, M1,1) = 236. Note the subscript „r‟ following 

STS, STR and CT denotes that they are revised.  
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 The swap between J1,1 and J5,1 is ruled out as J5,1 cannot be processed on M1,1. A 

similar situation exists for J1,1 and J6,1 as J6,1 cannot be processed on M1,1. Swap between 

J1,1 and J7,1 is also infeasible because J1,1 cannot be processed on M3,1. The swap between 

J1,1 and J8,1 is feasible as both are processed on M1,1 and e1,1 < CT (J8,1, M1,1) and e8,1 < CT 

(J1,1, M1,1). Swapping J1,1 and J8,1 results in the following changes on M1,1. STSr (J8,1, 

M1,1) = 3, STRr (J8,1, M1,1) = 18 and CTr (J8,1, M1,1) = 55 whereas  STSr (J1,1, M1,1) = 55, 

STRr (J1,1, M1,1) = 60 and CTr (J1,1, M1,1) = 105. Note that according to IS4, J1,1 was the 

first job scheduled on M1,1 and J8,1 was the second. After swapping J1,1 with J8,1, J1,1 

becomes the second job scheduled on M1,1 and J8,1 becomes the first. Note that the time 

taken to change over from J8,1 to J1,1 on M1,1 is just 5 units. This information can be 

located in the setup time matrix provided in the appendix.  

 The swap between J1,1 and J9,1 is ruled out as J9,1 cannot be processed on M1,1. A 

similar situation exists for J1,1 and J10,1 as J10,1 cannot be processed on M1,1. The swap 

between J1,1 and J11,1 is feasible as both are processed on M1,1 and e1,1 < CT (J11,1, M1,1) 

and e11,1 < CT (J1,1, M1,1). Swapping J1,1 and J11,1 results in the following changes on M1,1. 

STSr (J11,1, M1,1) = 3, STRr (J11,1, M1,1) = 35 and CTr (J11,1, M1,1) =  83 whereas  STSr (J1,1, 

M1,1) = 127, STRr (J1,1, M1,1) =132  and CTr (J1,1, M1,1) = 177. The job swapping is 

continued in the same fashion until all feasible swap moves are made. Table 5.4 shows all 

feasible swap moves applied to the initial solution along with their TWT value.  

 

Table 5-4 The neighborhood solutions of initial solution as a result of applying swap and 

insert moves 

Swap Moves 

Swap Jobs TWT Swap Jobs TWT 

J1,1 and J4,1 2148 J5,1 and J9,1 2030 

J1,1 and J8,1 2018 J6,1 and J7,1 2179 

J1,1 and J11,1 1548 J6,1 and J9,1 2197 

J2,1 and J5,1 1988 J6,1 and J10,1 2393 



64 
 

 
 

J3,1 and J6,1 2414 J7,1 and J9,1 1759 

J3,1 and J7,1 2202 J7,1 and J10,1 2678 

J3,1 and J9,1 2202 J7,1 and J11,1 4540 

J3,1 and J10,1 2157 J8,1 and J11,1 2270 

J4,1 and J8,1 2722 J9,1 and J10,1 2591 

J4,1 and J11,1 2307   

   Insert Moves 

Job Machine Position TWT Job Machine Position TWT 

J1,1 M1,1  1309 J7,1 M3,1  2207 

J1,1 M1,1  1952 J7,1 M3,1   

J1,1 M1,1   J9,1 M3,1  1559 

J5,1 M2,1  1851 J9,1 M3,1  1590 

J5,1 M2,1  1935 J9,1 M3,1   

J5,1 M2,1  1928 J11,1 M1,1  2042 

J5,1 M2,1  1732 J11,1 M1,1  1921 

J5,1 M2,1  1654 J11,1 M1,1  1921 

J5,1 M2,1   J11,1 M1,1  2222 

J7,1 M3,1  1514 J11,1 M1,1  2307 

J7,1 M3,1  2371 J11,1 M1,1   

J7,1 M3,1  2136     

 

 Insert moves are now considered. J1,1 can be inserted to other machines as it can 

be processed on more than one machine in stage 1 (J1,1 can be processed on M1,1 and M2,1 

in stage 1). Inserting J1,1 in the first position of M2,1 (i.e. preceding J2,1) is feasible as J1,1 
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can be processed on M2,1 and e1,1 < CT (J2,1, M2,1). The new start and completion times of 

the jobs scheduled on M2,1 are: STSr (J1,1, M2,1) = 8, STRr (J1,1, M2,1) = 34 and CTr (J1,1, 

M2,1) =  69 whereas : STSr (J2,1, M2,1) = 69, STRr (J2,1, M2,1) = 82 and CTr (J2,1, M2,1) = 

116. Note that according to IS4, J2,1 was the first job scheduled on M2,1 followed by J9,1. 

After inserting J1,1 at the first position on M2,1, J2,1 becomes the second job to be 

processed on M2,1 and J5,1 becomes the third job to be processed on M2,1.  

 The next feasible insert move is to insert J1,1 to the second position of M2,1 (i.e 

between J2,1 and J5,1). The new start and completion times of the jobs scheduled on M2,1 

are STSr (J1,1, M2,1) = 59, STRr (J1,1, M2,1) = 66 and CTr (J1,1, M2,1) =  101 whereas : STSr 

(J5,1, M2,1) = 101, STRr (J5,1, M2,1) = 114 and CTr (J5,1, M2,1) = 155. The start and 

completion time of J2,1 remains unchanged (i.e. same as explained in the IS2) because  

J1,1 is inserted to the second position on machine M2,1.  

 Inserting J1,1 to the third (also the last) position of M2,1 (i.e. after J5,1) is the next 

feasible move. The start and completion time of J2,1 and J5,1 on M2,1 remains unaltered. 

According to IS4, only two jobs were scheduled to be processed on M2,1 (J2,1 and J5,1). 

Therefore, inserting J1,1 to the third position of M2,1 doesn‟t alter the start and completion 

times of J2,1 and J5,1. The start and completion times of J1,1 scheduled on M2,1 (i.e. after 

being inserted to the last position) is given as follows: STSr (J1,1, M2,1) = 147, STRr (J1,1, 

M2,1) = 156 and CTr (J1,1, M2,1) = 191. The insert moves are continued in the same fashion 

for all feasible moves. The overall insert moves applied to IS and their total weighted 

tardiness values are shown in Table 5.4.  

Step 3: The minimum TWT is 1309. The move that results in this value is inserting J1,1 at 

the first position of M2,1. The schedule generated by inserting J1,1 at the first position of 

M2,1 would be used as the seed for the next iteration. At this point, the following 

parameters need to be updated:  

(1) Tabu List 

 The primary use of the tabu list is to prevent the search from revisiting previous 

solutions or repeating the previous moves. As mentioned earlier, whenever a move is 
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made, the tabu list is updated by storing the attributes of the move. For example, if a 

swap move results in the best solution, then tabu list records the pair of jobs being 

exchanged and these pairs of jobs are not allowed to exchange positions for the number 

of iterations indicated by the size of the tabu list unless an aspiration criterion is satisfied. 

If the best solution is the result of an insert move, then tabu list records the job index 

along with the position and machine occupied by the job before the move was applied. 

The job is not allowed to be inserted back to this position of the machine for the number 

of iterations indicated by the size of the tabu list unless an aspiration criterion is satisfied. 

In the example problem illustrated above,  J1,1 is inserted at the first position of M2,1 from 

the first position M1,1. Therefore, J1,1 is not allowed to be inserted back on the first 

position of M1,1. As mentioned in section 5.5, two types of tabu list sizes are used: fixed 

tabu list size and variable tabu list size. The tabu list size is evaluated as follows: 

 For fixed tabu list size = .04558x – 1.0177 = 4 

 For variable tabu list size: 

 Initial = 0.4426x – 0.7869 = 4 

 Decrease = -0.0254x
2 

+ 1.1085x – 5.9898 = 3 

 Increase = 0.0086x
3 

– 0.3838x
2 

+ 6.0924x – 27 = 5 

-(2) Aspiration Level (AL)  

 The AL is initially set equal to the TWT of the initial solution, which is 2179. 

Since inserting J1,1 to the first position of M2,1 yields a TWT of 1309, the AL is updated 

to be equal to 1309. If a tabu move in the next iteration results in a TWT that is less than 

1309, the move is released from its tabu restriction.  

(3) Candidate List (CL) and Index List (IL) 

Initially, the initial solution (S0) is admitted to both CL and IL as it is considered 

as a local optimum. As the solution obtained by inserting J1,1 to the first position of M2,1 

(i.e. S1) is selected as the best solution, S1 is admitted into the CL. Since S1 is better than 

S0, S1 receives a star, which means that is has the potential to become a local optimum. 

At this point, the CL has two entries and IL has only one entry:  
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CL: { [J1,1/M1,1, J2,1/M2,1, J1,1/M1,1, J3,1/M3,1, J4,1/M1,1, J5,1/M2,1, J6,1/M3,1, J7,1/M3,1,  

J8,1/M1,1, J9,1/M3,1, J10,1/M3,1, J11,1/M1,1] 

          [J1,1/M2,1, J2,1/M2,1, J1,1/M1,1, J3,1/M3,1, J4,1/M1,1, J5,1/M2,1, J6,1/M3,1, J7,1/M3,1,  

J8,1/M1,1, J9,1/M3,1, J10,1/M3,1, J11,1/M1,1] } 

IL: { [J1,1/M2,1, J2,1/M2,1, J1,1/M1,1, J3,1/M3,1, J4,1/M1,1, J5,1/M2,1, J6,1/M3,1, J7,1/M3,1,  

J8,1/M1,1, J9,1/M3,1, J10,1/M3,1, J11,1/M1,1] 

(4) Number of iterations without improvement (IWOI)  

 Initially, IWOI equals to zero. Since there is an improvement in the TWT, i.e. a 

change from 2179 to 1309, the IWOI remains to be zero.  

(5) Long-term memory (LTM) Matrix 

 As mentioned in Section 5.5, the LTM matrix records the tally of the jobs 

processed on the machines. For this research, we consider LTM matrix consisting of 11 × 

3 cells. Note that only first stage has multiple machines (three to be precise). Stages 2-17 

have only one machine. The tally for jobs corresponding to machines in stages 2-17 will 

always be maximum (since there is only one machine per stage). It is meaningless to fix 

these jobs to the machine since even without doing so the jobs will not be processed on 

other machines throughout the course of the search process. Thus for the purpose of this 

research, we are primarily interested in the 3 machines that belong to stage 1. In this case, 

we consider the LTM matrix consisting of 11 jobs and 3 machines (11 × 3 cells). The 

first iteration obtained by inserting J1,1 at the first position of M2,1 results in the following 

entries in LTM matrix, as presented in Table 5.5. 

Step 4: To terminate the search, two stopping criterions are used: IWOI max and IL max. 

For fixed and variable tabu list, the stopping criteria are evaluated as follows:  

 IWOI = -0.0141x
2 

+ .6741x – 1.8444 = 4 

 IL = 0.0109x
3
 – 0.5065x

2
 + 7.8506x – 35.571 = 4 
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The search is terminated if IWOI max reaches 4 or ILmax reaches 4, whichever comes 

first.  

Table 5-5 Entries into the LTM matrix after perturbing the initial solution 

Job Index M1,1 M2,1 M3,1 

J1,1 0 1 - 

J2,1 - 1 - 

J3,1 - - 1 

J4,1 1 - - 

J5,1 - 1 0 

J6,1 - - 1 

J7,1 0 - 1 

J8,1 1 - - 

J9,1 - 0 1 

J10,1 - - 1 

J11,1 1 - 0 

  

 For variable tabu list size: 

The ITmax and IWOImax are evaluated the same way as in fixed tabu list size. The 

ILmax is used in conjunction with the following steps: 

(i) If there is no improvement in the last  4/3 = 1 iterations with the initial size of 

tabu list, decrease the size of tabu list to the decreased size evaluated in step 3. 



69 
 

 
 

(ii)  If there is no improvement in the last 4/3  = 1 iterations with the decreased 

size of tabu list, increase the size of tabu list to the increased size evaluated in 

step 3. 

(iii)  If there is no improvement in the last  4/3  = 1 iterations with the increased 

size of tabu list, terminate the search. 

At this point of the search, both stopping criteria are not met. Thus, the search is 

continued until one of the stopping criteria is met. In this example, the search is 

terminated after 14 iterations. The stopping criterion activated to terminate the search is 

ILmax (i.e. when the number of entries into the IL has reached 4). The results of search 

using the fixed size of tabu list and short-term memory are summarized in Table 5.6.  

 

 

Table 5-6 Results of tabu search applied to the initial solution of the example problem 

Iteration 

No. 
Move applied Entry into the CL TWT 

Entry 

into 

the IL 

 

0 

 

-- 

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , 

J5,1/M2,1 , J6,1/M3,1 , J7,1/M3,1 , J8,1/M1,1 , 

J9,1/M3,1 , J10,1/M3,1 , J11,1/M1,1]** 

 

2179 

 

2179 

 

1 

Insert 

(J1,1,M2,1,P1) 

[J1,1/M2,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , 

J5,1/M2,1 , J6,1/M3,1 , J7,1/M3,1 , J8,1/M1,1 , 

J9,1/M3,1 , J10,1/M3,1 , J11,1/M1,1]* 

 

1309 

 

 

 

2 

Swap 

(J1,1, J5,1) 

[J1,1/M2,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , 

J5,1/M2,1 , J6,1/M3,1 , J7,1/M3,1 , J8,1/M1,1 , 

J9,1/M3,1 , J10,1/M3,1 , J11,1/M1,1]* 

 

923 
 

 

3 

Insert 

(J9,1,M2,1,P1) 

[J1,1/M2,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , 

J5,1/M2,1 , J6,1/M3,1 , J7,1/M3,1 , J8,1/M1,1 , 

J9,1/M2,1 , J10,1/M3,1 , J11,1/M1,1]* 

 

864 
 

 

4 

Insert 

(J1,1,M1,1,P3) 

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , 

J5,1/M2,1 , J6,1/M3,1 , J7,1/M3,1 , J8,1/M1,1 , 

J9,1/M2,1 , J10,1/M3,1 , J11,1/M1,1]** 

 

799 

 

799 

 

5 

Swap 

(J1,1, J4,1) 

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , 

J5,1/M2,1 , J6,1/M3,1 , J7,1/M3,1 , J8,1/M1,1 , 

J9,1/M2,1 , J10,1/M3,1 , J11,1/M1,1] 

 

864 
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6 
Insert 

(J7,1,M1,1,P1) 

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , 

J5,1/M2,1 , J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 , 

J9,1/M2,1 , J10,1/M3,1 , J11,1/M1,1] 

878  

7 
Insert 

(J11,1,M3,1,P3) 

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , 

J5,1/M2,1 , J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 , 

J9,1/M2,1 , J10,1/M3,1 , J11,1/M3,1] 

885  

8 
Insert 

(J5,1,M3,1,P4) 

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , 

J5,1/M3,1 , J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 , 

J9,1/M2,1 , J10,1/M3,1 , J11,1/M3,1]* 

665  

9 
Swap 

(J5,1,J10,1) 

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , 

J5,1/M3,1 , J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 , 

J9,1/M2,1 , J10,1/M3,1 , J11,1/M3,1]* 

580  

10 
Swap 

(J6,1,J3,1) 

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , 

J5,1/M3,1 , J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 , 

J9,1/M2,1 , J10,1/M3,1 , J11,1/M3,1]** 

400 400 

11 
Swap 

(J4,1,J1,1) 

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , 

J5,1/M3,1 , J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 , 

J9,1/M2,1 , J10,1/M3,1 , J11,1/M3,1] 

436  

12 
Insert 

(J9,1,M3,1,P2) 

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , 

J5,1/M3,1 , J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 , 

J9,1/M3,1 , J10,1/M3,1 , J11,1/M3,1] 

496  

13 
Insert 

(J11,1,M1,1,P3) 

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , 

J5,1/M3,1 , J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 , 

J9,1/M3,1 , J10,1/M3,1 , J11,1/M1,1]** 

329 329 

14 
Swap 

(J4,1,J1,1) 

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , 

J5,1/M3,1 , J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 , 

J9,1/M3,1 , J10,1/M3,1 , J11,1/M1,1] 

506  

The CL has 15 entries and the IL has 4 entries. The best solution obtained by short term 

memory function is found at the 13
th

 iteration with a TWT value of 329. The best solution 

is pointing to the following schedule: [J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , J5,1/M3,1 , 

J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 , J9,1/M3,1 , J10,1/M3,1 , J11,1/M1,1]. 

Step 5: At this point, the search can be restarted from a different region of the solution 

space. The restarting point is defined from the LTM matrix. The entries into the LTM 

matrix at the time the search is terminated is shown in Table 5.7. For the maximum 

frequency approach, the cells that have the maximum tally, is chosen. Recall that for 

maximum frequency approach, we only consider jobs that can be processed on multiple 
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machines. Among jobs that can be processed on more than one machine, the cell 

corresponding to J1,1 and M1,1 has the highest tally. Thus, the first restart solution based 

on maximal frequency is generated by fixing J1,1 on M1,1. The first restart solution is 

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , J5,1/M3,1 , J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 , J9,1/M3,1 , 

J10,1/M3,1 , J11,1/M1,1]. The tabu list and IWOI are re-initialized back to zero. The AL is 

reset to the TWT of the restart solution, which is equal to 2179. Repeat Step 1 to Step 4 

using the first restart solution as a new starting point.  

 

 

Table 5-7 Entries into the LTM matrix at the end of the search using the initial solution 

Job Index M1,1 M2,1 M3,1 

J1,1 11 3 - 

J2,1 - 14 - 

J3,1 - - 14 

J4,1 14 - - 

J5,1 - 7 7 

J6,1 - - 14 

J7,1 9 - 5 

J8,1 14 - - 

J9,1 - 9 5 

J10,1 - - 14 

J11,1 8 - 6 

 Based on the LTM-max, the results obtained with the first restart are shown in 

Table 5.8. The underlined job indicates that it is fixed to the machine throughout the first 
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restart. The first restart is terminated after 10 iterations because the entries into the IL 

reached its maximum (4). The best solution obtained from the first LTM-max restart is 

found at the sixth iteration with a TWT value of 599.   

 

 

Table 5-8 Results from the first restart based on maximal frequency 

Iteration 

No. 
Move applied Entry into the CL TWT 

Entry 

into the 

IL 

 

0 

 

-- 

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , 

J5,1/M2,1 , J6,1/M3,1 , J7,1/M3,1 , J8,1/M1,1 , 

J9,1/M3,1 , J10,1/M3,1 , J11,1/M1,1]** 

 

2179 

 

2179 

 

1 

Insert 

(J7,1,M1,1,P1) 

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , 

J5,1/M2,1 , J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 , 

J9,1/M3,1 , J10,1/M3,1 , J11,1/M1,1]* 

 

1514 

 

 

 

2 

Insert 

(J11,1,M3,1,P4) 

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , 

J5,1/M2,1 , J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 , 

J9,1/M3,1 , J10,1/M3,1 , J11,1/M3,1]** 

 

1150 
1150 

 

3 

Swap 

(J3,1, J6,1) 

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , 

J5,1/M2,1 , J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 , 

J9,1/M3,1 , J10,1/M3,1 , J11,1/M3,1] 

 

1178 
 

 

4 

Swap 

(J3,1, J9,1) 

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , 

J5,1/M2,1 , J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 , 

J9,1/M3,1 , J10,1/M3,1 , J11,1/M3,1]* 

 

1011 

 

 

 

5 

Insert 

(J5,1,M3,1,P5) 

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , 

J5,1/M3,1 , J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 , 

J9,1/M3,1 , J10,1/M3,1 , J11,1/M3,1]* 

 

666 
 

6 
Swap 

(J5,1, J10,1) 

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , 

J5,1/M3,1 , J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 , 

J9,1/M3,1 , J10,1/M3,1 , J11,1/M3,1]** 

599 599 

7 
Swap 

(J10,1, J11,1) 

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , 

J5,1/M3,1 , J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 , 

J9,1/M3,1 , J10,1/M3,1 , J11,1/M3,1] 

881  

8 
Insert 

(J7,1,M3,1,P2) 

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , 

J5,1/M3,1 , J6,1/M3,1 , J7,1/M3,1 , J8,1/M1,1 , 

J9,1/M3,1 , J10,1/M3,1 , J11,1/M3,1] 

957  
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9 
Swap 

(J5,1,J11,1) 

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , 

J5,1/M3,1 , J6,1/M3,1 , J7,1/M3,1 , J8,1/M1,1 , 

J9,1/M3,1 , J10,1/M3,1 , J11,1/M3,1]** 

927 927 

10 
Swap 

(J6,1,J3,1) 

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , 

J5,1/M3,1 , J6,1/M3,1 , J7,1/M3,1 , J8,1/M1,1 , 

J9,1/M3,1 , J10,1/M3,1 , J11,1/M3,1] 

1104  

Since the total number of restarts is set equal to 2, the search process is poised to 

begin its second restart. Again, the restarting point is determined by selecting the job-

machine pair with maximum frequency from the LTM matrix. The entries into the LTM 

matrix at the termination of the first restart are shown in Table 5.9. Using the row-wise 

first best strategy, J7,1 is fixed on machine M1,1 because it has the maximum frequency. 

The seed for the second restart is obtained by fixing J7,1 on machine M1,1 in the initial 

solution. Note that in the initial solution, J7,1 is scheduled to be processed on machine 

M3,1. Therefore, J7,1 is removed from M3,1 and inserted at the first position of M1,1. The 

tabu list and IWOI are re-initialized back to zero. Repeat Step 1 to Step 4 using the 

second restart solution as a new starting point.  

Table 5-9 Entries into the LTM matrix at the end of the first restart based on maximum 

frequency 

Job Index M1,1 M2,1 M3,1 

J1,1 21 3 - 

J2,1 - 24 - 

J3,1 - - 24 

J4,1 24 - - 

J5,1 - 11 13 

J6,1 - - 24 

J7,1 16 - 8 

J8,1 24 - - 
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J9,1 - 9 15 

J10,1 - - 24 

J11,1 9 - 15 

The results obtained with the second restart based on maximum frequency are 

shown in Table 5.10. The underlined job indicates that it is fixed to the machine 

throughout the second restart. The second restart is terminated after nine iterations when 

IL entries reach its maximum (4).  

 

 

Table 5-10 Results from the second restart based on maximal frequency 

Iteration 

No. 
Move applied Entry into the CL TWT 

Entry 

into 

the IL 

 

0 

 

-- 

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , 

J5,1/M2,1 , J6,1/M1,1 , J7,1/M3,1 , J8,1/M1,1 , 

J9,1/M3,1 , J10,1/M3,1 , J11,1/M1,1]** 

 

1775 

 

1775 

 

1 

Swap 

(J1,1, J8,1) 

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , 

J5,1/M2,1 , J6,1/M1,1 , J7,1/M3,1 , J8,1/M1,1 , 

J9,1/M3,1 , J10,1/M3,1 , J11,1/M1,1]* 

 

1012 

 

 

 

2 

Insert 

(J5,1,M3,1,P4) 

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , 

J5,1/M3,1 , J6,1/M1,1 , J7,1/M3,1 , J8,1/M1,1 , 

J9,1/M3,1 , J10,1/M3,1 , J11,1/M1,1]** 

 

653 
653 

 

3 

Swap 

(J1,1, J11,1) 

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , 

J5,1/M3,1 , J6,1/M1,1 , J7,1/M3,1 , J8,1/M1,1 , 

J9,1/M3,1 , J10,1/M3,1 , J11,1/M1,1] 

 

714 
 

 

4 

Swap 

(J5,1, J10,1) 

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , 

J5,1/M3,1 , J6,1/M1,1 , J7,1/M3,1 , J8,1/M1,1 , 

J9,1/M3,1 , J10,1/M3,1 , J11,1/M1,1] 

 

714 

 

 

 

5 

Swap 

(J1,1, J4,1) 

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , 

J5,1/M3,1 , J6,1/M1,1 , J7,1/M3,1 , J8,1/M1,1 , 

J9,1/M3,1 , J10,1/M3,1 , J11,1/M1,1]* 

 

587 
 

6 
Insert 

(J9,1,M2,1,P1) 
[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , 

J5,1/M3,1 , J6,1/M1,1 , J7,1/M3,1 , J8,1/M1,1 , 
533 533 
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J9,1/M1,1 , J10,1/M3,1 , J11,1/M1,1]** 

7 
Insert 

(J11,1,M3,1,P3) 

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , 

J5,1/M3,1 , J6,1/M1,1 , J7,1/M3,1 , J8,1/M1,1 , 

J9,1/M1,1 , J10,1/M3,1 , J11,1/M3,1] 

580  

8 
Swap 

(J3,1,J6,1) 

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , 

J5,1/M3,1 , J6,1/M1,1 , J7,1/M3,1 , J8,1/M1,1 , 

J9,1/M1,1 , J10,1/M3,1 , J11,1/M3,1]** 

400 400 

9 
Insert 

(J9,1,M3,1,P2) 

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , 

J5,1/M3,1 , J6,1/M1,1 , J7,1/M3,1 , J8,1/M1,1 , 

J9,1/M3,1 , J10,1/M3,1 , J11,1/M3,1] 

451  

 

Table 5.11 summarizes the best solutions obtained from the initial solution and 

the two restarts using LTM-max. The table shows that the best solutions obtained by two 

restarts are not any better than the best solution obtained by the initial search. The quality 

of the best solutions obtained in the two restarts is actually much inferior than the one 

obtained in the initial search. For this particular problem, the long term memory did not 

improve the quality of solution obtained by the short term memory. There are two 

possible reasons for this. First, the best solution obtained in the initial search is the 

optimal solution. Hence the long term memory was unable to identify a better solution. 

Second, the approach used in the long-term memory function, although is capable of 

directing the search to a different region, is unable to identify a better solution in the new 

region than the one already found with short term memory. We further explore the search 

space by applying the long term memory function.  

 

 

Table 5-11 Summary of results for the entire search process based on LTM-max 

Restart 

Number 
Best solutions obtained TWT 

Initial 
[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , J5,1/M3,1 , J6,1/M3,1 , 

J7,1/M1,1 , J8,1/M1,1 , J9,1/M3,1 , J10,1/M3,1 , J11,1/M1,1] 
329 

First [J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , J5,1/M3,1 , J6,1/M3,1 , 599 
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J7,1/M1,1 , J8,1/M1,1 , J9,1/M3,1 , J10,1/M3,1 , J11,1/M3,1] 

Second 
[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , J5,1/M3,1 , J6,1/M1,1 , 

J7,1/M3,1 , J8,1/M1,1 , J9,1/M1,1 , J10,1/M3,1 , J11,1/M3,1] 
400 

Referring to the LTM matrix at the time of termination of the initial search in 

Table 5.7, the job-machine pair with minimum frequency, which is 3, would be J1,1 on 

M2,1. Therefore, the starting point for the first restart using the minimum frequency will 

be generated from the initial solution by fixing J1,1 on M2,1. In the initial solution, J1,1 is 

processed on M1,1. J1,1 is removed from M1,1 and is inserted into the first position of M2,1. 

This insert move will cause changes in start and completion times of the jobs processed 

on M1,1 and M2,1. The starting point for the first restart using minimum frequency is  

[J1,1/M2,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , J5,1/M2,1 , J6,1/M3,1 , J7,1/M3,1 , J8,1/M1,1 , J9,1/M3,1 , 

J10,1/M3,1 , J11,1/M1,1] with a TWT value of 1309. Using this solution from LTM-min, the 

results obtained with the first restart are shown in Table 5.12. J1,1 on M2,1 is underlined as 

a sign that J1,1 is fixed to M2,1 throughout the first restart. The first restart is terminated 

after seven iterations because entries into the index list reached their maximum (4). The 

best solution from the first restart is obtained at sixth iteration with a TWT of 1052.  

 

 

Table 5-12 Results of first restart based on minimum frequency 

Iteration 

No. 

Move 

applied 
Entry into the CL 

TWT Entry into 

the IL 

 

0 

 

-- 

[J1,1/M2,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , 

J5,1/M2,1 , J6,1/M3,1 , J7,1/M3,1 , J8,1/M1,1 , 

J9,1/M3,1 , J10,1/M3,1 , J11,1/M1,1]** 

 

1309 

 

1309 

 

1 
Insert 

(J5,1,M3,1,P5) 

[J1,1/M2,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , 

J5,1/M3,1 , J6,1/M3,1 , J7,1/M3,1 , J8,1/M1,1 , 

J9,1/M3,1 , J10,1/M3,1 , J11,1/M1,1]** 

 

1072 
1072 

 

 

2 

Swap 

(J5,1, J10,1) 

[J1,1/M2,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , 

J5,1/M3,1 , J6,1/M3,1 , J7,1/M3,1 , J8,1/M1,1 , 

J9,1/M3,1 , J10,1/M3,1 , J11,1/M1,1] 

 

1072 
 

 Swap [J1,1/M2,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , 

J5,1/M3,1 , J6,1/M3,1 , J7,1/M3,1 , J8,1/M1,1 , 
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3 (J3,1, J10,1) J9,1/M3,1 , J10,1/M3,1 , J11,1/M1,1] 1099 

 

4 

Swap 

(J7,1, J11,1) 

[J1,1/M2,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , 

J5,1/M3,1 , J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 , 

J9,1/M3,1 , J10,1/M3,1 , J11,1/M3,1]** 

 

1063 
1063 

 

 

5 

Swap 

(J7,1, J8,1) 

[J1,1/M2,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , 

J5,1/M3,1 , J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 , 

J9,1/M3,1 , J10,1/M3,1 , J11,1/M3,1] 

 

1075 
 

6 
Swap 

(J9,1, J11,1) 

[J1,1/M2,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , 

J5,1/M3,1 , J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 , 

J9,1/M3,1 , J10,1/M3,1 , J11,1/M3,1]** 

1052 1052 

7 
Swap 

(J3,1, J5,1) 

[J1,1/M2,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , 

J5,1/M3,1 , J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 , 

J9,1/M3,1 , J10,1/M3,1 , J11,1/M3,1] 

1088  

 

The second restart based on LTM-min would use the information provided by the 

LTM matrix at the time of termination of the first restart. This matrix is shown in Table 

5.13. The minimum frequency, which is 7, is pointing to J5,1 on M2,1. Thus J5,1 would be 

fixed on M2,1 throughout the second restart. Since J5,1 is processed on M2,1 in the initial 

solution, the starting point for the second restart will be generated from the initial 

solution itself. Using the initial solution, the search is restarted in the similar fashion as in 

LTM-max and the results are shown in Table 5.14.  

 

 

Table 5-13 Entries into the LTM matix at the end of first restart based on minimum 

frequency 

Job Index M1,1 M2,1 M3,1 

J1,1 11 10 - 

J2,1 - 21 - 

J3,1 - - 21 
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J4,1 21 - - 

J5,1 - 7 14 

J6,1 - - 21 

J7,1 13 - 8 

J8,1 21 - - 

J9,1 - 9 12 

J10,1 - - 21 

J11,1 11 - 10 

 

The summary of the best solutions obtained from the initial search and the two 

restarts using LTM-min is shown in Table 5.15. The first restart using LTM-min yields a 

solution that is inferior to the one obtained by the initial search. Therefore the solution 

obtained by the initial search should be optimal/near optimal (since intensification and 

diversification yield inferior solutions). In chapter 6, the optimal solution for this problem 

is found using optimization software (CPLEX) and the results are discussed for various 

small problem instances.  

 

 

Table 5-14 Results of second restart based on minimum frequency 

Iteration 

No. 

Move 

applied 
Entry into the CL 

TWT Entry into 

the IL 

 

0 

 

-- 

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , J5,1/M2,1 , 

J6,1/M3,1 , J7,1/M3,1 , J8,1/M1,1 , J9,1/M3,1 , J10,1/M3,1 

, J11,1/M1,1]** 

 

2179 

 

2179 

 

1 

Insert 

(J1,1,M2,1,P1

) 

[J1,1/M2,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , J5,1/M2,1 

, J6,1/M3,1 , J7,1/M3,1 , J8,1/M1,1 , J9,1/M3,1 , 

J10,1/M3,1 , J11,1/M1,1]* 

 

1309 
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2 

Swap 

(J7,1,J11,1) 

J1,1/M2,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , J5,1/M2,1 , 

J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 , J9,1/M3,1 , 

J10,1/M3,1 , J11,1/M3,1]* 

 

1237 

 

 

3 

Swap 

(J3,1,J10,1) 

[J1,1/M2,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , J5,1/M2,1 

, J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 , J9,1/M3,1 , 

J10,1/M3,1 , J11,1/M3,1]** 

 

1181 
1181 

 

4 

Swap 

(J6,1,J11,1) 

[J1,1/M2,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , J5,1/M2,1 , 

J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 , J9,1/M3,1 , 

J10,1/M3,1 , J11,1/M3,1] 

 

1337 

 

 

 

5 

Swap 

(J7,1,J8,1) 

[J1,1/M2,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , J5,1/M2,1 , 

J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 , J9,1/M3,1 , 

J10,1/M3,1 , J11,1/M3,1]* 

 

1267 

 

6 

Insert 

(J1,1,M1,1,P3

) 

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , J5,1/M2,1 

, J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 , J9,1/M3,1 , 

J10,1/M3,1 , J11,1/M3,1]* 

1173  

7 
Swap 

(J1,1,J4,1) 

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , J5,1/M2,1 

, J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 , J9,1/M3,1 , 

J10,1/M3,1 , J11,1/M3,1]* 

914  

8 

Insert 

(J9,1,M2,1,P1

) 

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , J5,1/M2,1 , 

J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 , J9,1/M2,1 , 

J10,1/M3,1 , J11,1/M3,1]** 

909 909 

9 
Swap 

(J2,1,J9,1) 

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , J5,1/M2,1 

, J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 , J9,1/M2,1 , 

J10,1/M3,1 , J11,1/M3,1] 

921  

10 
Swap 

(J3,1,J10,1) 

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , J5,1/M2,1 

, J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 , J9,1/M2,1 , 

J10,1/M3,1 , J11,1/M3,1] 

979  

11 
Swap 

(J3,1,J6,1) 

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , J5,1/M2,1 

, J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 , J9,1/M2,1 , 

J10,1/M3,1 , J11,1/M3,1]* 

833  

12 
Swap 

(J6,1,J10,1) 

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , J5,1/M2,1 , 

J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 , J9,1/M2,1 , 

J10,1/M3,1 , J11,1/M3,1]** 

579 579 

13 
    Swap 

(J10,1,J11,1) 

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , J5,1/M2,1 , 

J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 , J9,1/M2,1 , 

J10,1/M3,1 , J11,1/M3,1] 

891  
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Table 5-15 Summary of results for the entire search process based on LTM-min 

Restart 

Number 
Best solutions obtained TWT 

Initial  
[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , J5,1/M3,1 , J6,1/M3,1 , J7,1/M1,1 , 

J8,1/M1,1 , J9,1/M3,1 , J10,1/M3,1 , J11,1/M1,1] 
329 

First  
[J1,1/M2,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , J5,1/M3,1 , J6,1/M3,1 , J7,1/M1,1 , 

J8,1/M1,1 , J9,1/M3,1 , J10,1/M3,1 , J11,1/M3,1] 
1052 

Second 
[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , J5,1/M2,1 , J6,1/M3,1 , J7,1/M1,1 , 

J8,1/M1,1 , J9,1/M2,1 , J10,1/M3,1 , J11,1/M3,1] 
579 
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6 THE OPTIMALITY OF TABU-SEARCH BASED HEURISTIC 

ALGORITHM 

 

Demonstrating the efficacy of the proposed heuristic algorithm is an essential component 

of this research. This can be attained by assessing the quality of the final solution 

obtained by the algorithm and the total computation time it takes. The final solution 

evaluated by the heuristic algorithm can easily be assessed if the optimal solution is 

known. If the optimal solution is unknown, we need to compare the solution obtained by 

the heuristic algorithm to a suitable lower bound for the problem that is being 

investigated. The mathematical model developed in Chapter 4 can be used to quantify the 

effectiveness of the search algorithm by optimally solving small problem instances. As 

mentioned earlier, the mathematical model uses the branch-and-bound enumeration 

technique to obtain the optimal solution.  

 The example problem used in Chapter 5 is used again to show how a model can 

be formulated for a given problem instance. Recall there are two sets of binary variables -

      and      . The first variable      receives a value of 1 if job j is assigned to machine 

i of stage g or 0 otherwise. Generally, if each assignment of a job on a machine is 

considered, then there will be a total of         
 
    variables, where n is the total 

number of jobs, G is the total number of stages and mg is the number of machines in a 

given stage. Similarly, there will be a total of         
 
   variables for      and 

       variables for     . Note that      and       are two sets of real variables. Some 

jobs cannot be processed on certain machines due to machine capability of capability.. 

Thus one can exclude the variables that correspond to those assignments. In a real 

problem, therefore, the total number of variables for      and      separately will be less 

than         
 
   and the total number of variables for      will be less than       . 

The second binary variable       receives a value of 1 if job k precedes job j on machine i 

of stage g or 0 otherwise. There are a total of                 
 
    variables for 

      if all machines are assumed to be capable of processing all jobs.  
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 A general model formulation for the example problem could have been developed 

where all eleven jobs could be processed on each machine in all the stages. This would 

have resulted in (11×19 + 5×11×19) = 1254 binary variables. This type of model 

formation is highly undesirable since mathematical models are computationally difficult 

to solve, particularly when they include a large number of binary variables. As we 

increase the number of variables, the computational time required to solve these problem 

instances becomes extremely large. Therefore, we formulate a more restricted (compact) 

model, i.e. a model that only incorporates feasible jobs-to-machine assignments, and 

allows jobs to skip stages. This type of model formulation results in a fewer number of 

variables and constraints. The compact model formulation provides a comprehensive 

insight into the research problem.  

 In order to identify the optimal solution for small problem instances, their 

corresponding formulated model was solved using the branch-and-bound enumeration 

method incorporated in CPLEX 9.0 (IBM, 2009) computer software. CPLEX (also 

referred to as ILOG CPLEX) was developed by Robert E. Bixby of CPLEX Optimization 

Inc. CPLEX Optimization was acquired by ILOG in 1997 and finally ILOG was acquired 

by IBM in 2009. The software was installed and run on an intel Core i3-370, 2.4GHz 

processor with 4 GB RAM. The large amount of time needed to identify the optimal 

solution is partly due to the large number of binary variables  included in the model. 

CPLEX doesn‟t seem to be efficient enough even in solving small problem instances, 

although it uses the branch-and-bound technique, which is an implicit enumeration 

algorithm for solving combinatorial optimization problems.  

 In order to further examine the efficiency of CPLEX, ten problem instances were 

generated and run using CPLEX. These problem instances generated were large enough 

for CPLEX to solve. In other words, the total number of variables that are within the 

capacity of CPLEX 9.0 is 2100000000. The data generated for these problem instances 

used the same procedure as described in Section 7.1 of Chapter 7.  
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Table 6-1 Results of solving the problems implicitly using CPLEX 9.0 

Problem instance Number of Jobs Number of Machines Solution Time (sec) 

1 9 19 537 2080 

2 10 19 1014 2643 

3 10 19 472 4496 

4 12 19 387 3822 

5 12 19 963 5670 

6 14 19 662 9076 

7 16 19 Infeasible 28800 

8 16 19 592 12178 

9 18 19 Infeasible 28800 

10 20 19 Infeasible 28800 

 

 

 

6.1 Comparison Between the Optimal Solution and Solution Obtained by 

the Heuristic Algorithm 

 

With the optimal solution obtained by CPLEX 9.0, the quality of the solution generated 

by the tabu-search based heuristic algorithms can easily be assessed. As described in 

Chapter 5, the search heuristics begin with an initial solution. Five different initial 

solutions were developed, namely: EDD (Earliest Due Date), LFJ/LFM (Least Flexible 

Job/Least Flexible Machine), LWT (Lowest Weighted Tardiness), DDW (Due Date 

Weight Ratio), HCR (Hybrid Critical Ratio). EDD, LFJ/LFM, LWT, DDW and HCR will 

be referred as IS1, IS2, IS3, IS4 and IS5 respectively. The initial solution generated by 

each of these methods is used as a starting point for the tabu-search based heuristic. Tabu 

search has few features that affect its performance as a heuristic algorithm. These features 

include short-term/long-term memory function and fixed/variable size of tabu list. There 

are two different approaches in the application of long-term memory function: the 

maximum frequency and the minimum frequency. The heuristic algorithms developed in 

this research encompass the combinations of these features, as shown in Table 6.2.  
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Table 6-2 Tabu search based heuristic algorithms used in this research 

Types of Heuristic Memory Function Size of Tabu List 

TS1 Short Fixed 

TS2 Long-Max Fixed 

TS3 Long-Min Fixed 

TS4 Short Variable 

TS5 Long-Max Variable 

TS6 Long-Min Variable 

 

 Each initial solution method (IS) is used in combination with each type of tabu-

search heuristics (TS). Thus there are a total of 30 heuristic combinations. Each 

combination is tested on 7 problem instances presented in Table 6.1. The remaining three 

problem instances are not used since CPLEX 9.0 couldn‟t identify the optimal solution 

for them, and thus there is no basis for comparison. The solutions obtained by the 

algorithm are then compared to the corresponding optimal solutions obtained by CPLEX 

9.0. The percentage deviation of the algorithms from the optimal solutions is evaluated 

and reported in Table 6.3. Table 6.4 shows the computation time of each algorithm. The 

computation time presented in the table is the sum of time IS takes to generated the initial 

solution and the time TS takes to complete the search.  

 

 

Table 6-3 Percentage deviation of the solutions obtained by the heuristics for small 

problems 

Problem 
 

TS1 
    

TS2 
   

Instance IS1 IS2 IS3 IS4 IS5 IS1 IS2 IS3 IS4 IS5 

9 Job 3.1 0.6 0.0 3.7 6.2 3.1 3.1 0.0 3.7 2.6 

10 Job 2.6 15.1 26.5 5.3 8.9 2.6 15.1 24.0 3.7 14.4 
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10 Job 0.0 14.7 11.1 0.0 12.4 0.0 0.5 13.4 0.0 7.8 

12 Job 2.9 4.3 7.3 5.3 5.1 2.9 2.4 7.4 8.6 2.9 

12 Job 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

14 Job 6.6 16.8 23.5 4.8 22.8 5.7 14.7 11.3 4.8 3.1 

16 Job 0.7 5.5 7.2 6.6 0.0 3.1 5.5 7.2 0.6 0.0 

Average 2.27 8.14 10.80 3.67 7.91 2.49 5.90 9.04 3.06 4.40 

           
Problem 

 
TS3 

    
TS4 

   
Instance IS1 IS2 IS3 IS4 IS5 IS1 IS2 IS3 IS4 IS5 

9 Job 3.1 3.1 3.7 3.7 5.5 3.1 0.6 0.0 3.7 6.2 

10 Job 2.6 18.2 6.3 3.0 7.3 2.6 15.1 26.5 5.3 8.9 

10 Job 0.0 3.5 14.9 0.0 14.2 0.0 11.3 11.1 0.0 15.1 

12 Job 3.7 1.5 2.7 7.5 8.0 2.9 4.3 9.3 5.3 4.7 

12 Job 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

14 Job 7.2 15.2 10.1 4.8 17.1 6.0 13.2 23.5 4.4 17.8 

16 Job 3.1 6.1 7.2 1.4 2.1 0.7 5.5 8.2 6.6 0.0 

Average 2.81 6.80 6.41 2.91 7.74 2.19 7.14 11.23 3.61 7.53 

           
Problem 

 
TS5 

    
TS6 

   
Instance IS1 IS2 IS3 IS4 IS5 IS1 IS2 IS3 IS4 IS5 

9 Job 3.1 2.1 0.0 3.7 2.6 3.1 3.1 3.7 3.7 5.5 

10 Job 2.6 13.1 18.2 3.7 14.4 2.6 18.2 6.3 4.5 7.3 

10 Job 0.0 1.5 9.1 0.0 7.8 0.0 3.5 14.9 0.0 14.2 

12 Job 2.9 2.4 7.4 6.5 2.9 3.7 1.5 12.4 8.4 8.0 

12 Job 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

14 Job 5.7 14.7 7.1 4.8 3.1 7.2 15.2 20.1 4.8 17.1 

16 Job 3.1 6.9 7.2 0.6 0.0 3.1 6.1 7.2 4.1 2.1 

Average 2.49 5.81 7.00 2.76 4.40 2.81 6.80 9.23 3.64 7.74 

 

 

The average percentage deviation of all heuristic combination is 5.63% with 8 heuristic 

combinations below 3%. From the 30 heuristic combinations, IS1/TS4 appears to be the 

most effective heuristic combination in identifying the optimal solutions. The average 

percentage deviation for IS1/TS4 is 2.19%. The next best performer is IS1/TS1, which 

has an average percentage deviation of 2.27%. Both these heuristic combination use IS1 
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(Earliest Due Date) method as the initial solution generating mechanism, and basic search 

with fixed (TS1) and variable (TS4) tabu list size.   

 

Table 6-4 Computation time of the heuristics for small problems (in seconds) 

Problem 
 

TS1 
    

TS2 
   

Instance IS1 IS2 IS3 IS4 IS5 IS1 IS2 IS3 IS4 IS5 

9 Job 0.025 0.031 0.031 0.034 0.056 0.038 0.065 0.036 0.031 0.073 

10 Job 0.041 0.082 0.065 0.075 0.071 0.033 0.054 0.064 0.082 0.054 

10 Job 0.079 0.074 0.054 0.085 0.067 0.065 0.066 0.054 0.054 0.056 

12 Job 0.038 0.068 0.043 0.067 0.07 0.055 0.032 0.068 0.068 0.056 

12 Job 0.034 0.051 0.045 0.075 0.075 0.068 0.084 0.082 0.048 0.043 

14 Job 0.046 0.049 0.061 0.068 0.087 0.057 0.049 0.067 0.096 0.058 

16 Job 0.114 0.214 0.207 0.156 0.246 0.136 0.215 0.222 0.124 0.250 

Average 0.054 0.081 0.072 0.080 0.096 0.065 0.081 0.085 0.072 0.084 

           
Problem 

 
TS3 

    
TS4 

   
Instance IS1 IS2 IS3 IS4 IS5 IS1 IS2 IS3 IS4 IS5 

9 Job 0.032 0.085 0.049 0.057 0.054 0.030 0.056 0.046 0.056 0.046 

10 Job 0.047 0.049 0.067 0.070 0.020 0.016 0.078 0.033 0.071 0.033 

10 Job 0.088 0.067 0.024 0.066 0.071 0.055 0.036 0.065 0.067 0.065 

12 Job 0.036 0.024 0.066 0.082 0.027 0.047 0.034 0.040 0.066 0.040 

12 Job 0.07 0.064 0.046 0.088 0.056 0.03 0.079 0.08 0.067 .078. 

14 Job 0.034 0.07 0.06 0.068 0.097 0.016 0.081 0.044 0.066 0.078 

16 Job 0.217 0.159 0.221 0.174 0.250 0.188 0.245 0.203 0.185 0.218 

Average 0.075 0.074 0.076 0.086 0.082 0.055 0.087 0.073 0.083 0.080 

           
Problem 

 
TS5 

    
TS6 

   
Instance IS1 IS2 IS3 IS4 IS5 IS1 IS2 IS3 IS4 IS5 

9 Job 0.053 0.046 0.040 0.062 0.046 0.075 0.056 0.046 0.037 0.061 

10 Job 0.088 0.046 0.046 0.062 0.046 0.064 0.071 0.046 0.03 0.096 

10 Job 0.054 0.089 0.046 0.062 0.089 0.070 0.067 0.089 0.016 0.048 

12 Job 0.036 0.04 0.064 0.020 0.04 0.020 0.066 0.040 0.055 0.046 

12 Job 0.016 0.048 0.067 0.078 0.065 0.049 0.072 0.098 0.038 0.059 

14 Job 0.055 0.065 0.058 0.061 0.054 0.055 0.090 0.044 0.061 0.041 

16 Job 0.167 0.265 0.235 0.231 0.300 0.184 0.245 0.222 0.199 0.286 

Average 0.067 0.086 0.079 0.082 0.091 0.074 0.095 0.084 0.062 0.091 
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6.2 The Effectiveness of Tabu-Search Based Heuristics for Medium and 

Large Problems 

  

 The computational complexity of the research problem being investigated has 

already been highlighted in chapter 4. The branch-and-bound enumeration technique can 

solve small problem instances but it is inefficient in finding the optimal solution for 

medium and large problem instances. As the problem structure grows larger, the branch-

and-bound technique often fails to identify the optimal solution. Therefore to quantify the 

effectiveness of the solution algorithm for medium and large problem instances, we need 

to identify a suitable lower bound. However, the problem structure doesn‟t seem to lend 

itself to conveniently identify a lower bound. An alternative approach to evaluate the 

effectiveness of the heuristics for medium and large problem instances is by testing the 

heuristics on carefully constructed problem instances with a known optimal total 

weighted tardiness (TWT) of zero. The effectiveness of the heuristics can then be 

evaluated by measuring the deviation of their total weighted tardiness from the optimum 

solution (which is zero). A problem instance with an optimal TWT of zero can be 

generated using the following procedure:  

1. Generate a problem instance using steps 1 to 9 of the procedure outlined in section 

7.1 of chapter 7.  

2. Randomly assign each job to a machine and record the completion time of jobs at the 

end of the last stage.  

3. Set the due dates of all the jobs equal to their completion time in the last stage.  

For medium and large problem structures, 4 problem instances are generated 

using the above procedure. There are a total of 30 heuristic combinations (5 levels of IS 

and 6 levels of TS) that need to be tested. The actual number of medium and large 

problems tested is 120 (30*4). The combination of IS1-IS5 and TS1-TS6 are applied to 

each problem instance. The values obtained from the heuristic combinations are 

compared to the TWT of the optimal schedule which is zero. Notice that the evaluation of 

the percentage deviation is not possible since it would lead to a division by zero (because 

the optimal solution is zero). In order to overcome this problem, the point of reference, 
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which is the TWT of the optimal schedule, must be a positive value. In order to obtain a 

positive point of reference, the reference point needs to be shifted to a positive value. 

This can be attained by delaying the completion time of jobs in the last stage by one unit 

of time. As a result, the TWT of the optimal solution (which was zero before) will hold 

on to a positive value. This would result in a TWT that is equal to the sum of weights of 

all jobs. This positive TWT (obtained by offsetting the due dates of all jobs by 1) is used 

as the new reference point for evaluating the percentage deviation for the heuristic 

algorithm. Thus the percentage deviation is evaluated as: 

 

                    
                   

               
 * 100%     if TWT > reference point 

                    0                                                    if TWT ≤ reference point 

The results of applying the heuristics to the four medium problem structures are 

presented in Table 6.5. The first seven columns show the TWT obtained by each heuristic 

combination. The last seven columns show the percentage deviation of the TWT obtained 

by each heuristic combination. More than half of the heuristic combinations for the 25 

job problem are able to identify the true optimal TWT of zero. Most of the heuristic 

combinations (across all problems) are able to identify a solution less than the reference 

point.  

 

Table 6-5 Results of applying the heuristics to medium problem structures with zero 

values of TWT 

25 Jobs, 17 Stages, 19 Machines (Reference Point = 48) 

TWT TS1 TS2 TS3 TS4 TS5 TS6 
% 

DEV 
TS1 TS2 TS3 TS4 TS5 TS6 

IS1 0 0 0 0 0 0 IS1 0.00 0.00 0.00 0.00 0.00 0.00 

IS2 0 0 8 0 9 8 IS2 0.00 0.00 0.00 0.00 0.00 0.00 

IS3 0 0 0 0 0 0 IS3 0.00 0.00 0.00 0.00 0.00 0.00 

IS4 0 0 0 0 0 11 IS4 0.00 0.00 0.00 0.00 0.00 0.00 

IS5 0 7 7 0 7 7 IS5 0.00 0.00 0.00 0.00 0.00 0.00 

30 Jobs, 17 Stages, 19 Machines (Reference Point = 70 ) 

Percentage Deviation = 
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TWT TS1 TS2 TS3 TS4 TS5 TS6 
% 

DEV 
TS1 TS2 TS3 TS4 TS5 TS6 

IS1 49 16 16 16 16 16 IS1 0.00 0.00 0.00 0.00 0.00 0.00 

IS2 47 47 47 47 47 47 IS2 0.00 0.00 0.00 0.00 0.00 0.00 

IS3 57 56 56 57 56 56 IS3 0.00 0.00 0.00 0.00 0.00 0.00 

IS4 14 11 11 14 11 11 IS4 0.00 0.00 0.00 0.00 0.00 0.00 

IS5 36 21 18 36 21 18 IS5 0.00 0.00 0.00 0.00 0.00 0.00 

35 Jobs, 17 Stages, 19 Machines (Reference Point = 72) 

TWT TS1 TS2 TS3 TS4 TS5 TS6 
% 

DEV 
TS1 TS2 TS3 TS4 TS5 TS6 

IS1 12 12 27 12 12 27 IS1 0.00 0.00 0.00 0.00 0.00 0.00 

IS2 31 31 31 31 31 31 IS2 0.00 0.00 0.00 0.00 0.00 0.00 

IS3 48 37 90 48 37 90 IS3 0.00 0.00 25.00 0.00 0.00 25.00 

IS4 12 12 27 12 12 27 IS4 0.00 0.00 0.00 0.00 0.00 0.00 

IS5 77 48 73 77 48 73 IS5 6.94 0.00 1.39 6.94 0.00 1.39 

40 Jobs, 17 Stages, 19 Machines (Reference Point = 86) 

TWT TS1 TS2 TS3 TS4 TS5 TS6 
% 

DEV 
TS1 TS2 TS3 TS4 TS5 TS6 

IS1 108 108 119 108 108 119 IS1 25.58 25.58 38.37 25.58 25.58 38.37 

IS2 117 110 110 117 110 110 IS2 36.05 27.91 27.91 36.05 27.91 27.91 

IS3 128 128 128 128 128 128 IS3 48.84 48.84 48.84 48.84 48.84 48.84 

IS4 108 108 119 108 108 119 IS4 25.58 25.58 38.37 25.58 25.58 38.37 

IS5 123 123 112 123 123 112 IS5 43.02 43.02 30.23 43.02 43.02 30.23 

 

 To view the performance of each heuristic combination, the average percentage 

deviation over the four problem instances is evaluated and presented in Table 6.6.  Eight 

heuristic combinations, i.e. IS1/TS1, IS2/TS2, IS1/TS4, IS2/TS5 and IS4/TS1, IS4/TS2, 

IS4/TS4, IS4/TS5 have the same minimum average percentage deviation of 6.40%. The 

percentage deviation averaged over the four problem instances and the 30 heuristic 

combinations is 9.45%. Based on these results, one may surmise that the heuristics are 

sufficiently effective in identifying very good near optimal solutions, if not the optimal 

solutions, for the medium problem structure.  
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Table 6-6 Average percentage deviation of the solutions obtained by the heuristics for 

medium problem structure 

Initial Tabu-Search based heuristics 

Solution TS1 TS2 TS3 TS4 TS5 TS6 

IS1 6.40 6.40 9.59 6.40 6.40 9.59 

IS2 9.01 6.98 6.98 9.01 6.98 6.98 

IS3 12.21 12.21 18.46 12.21 12.21 18.46 

IS4 6.40 6.40 9.59 6.40 6.40 9.59 

IS5 12.49 10.76 7.91 12.49 10.76 7.91 

 

 A similar effort is made to assess the effectiveness of the heuristics in identifying 

optimal solutions for large problem structure. Four problem instances that range from 40 

to 60 jobs were generated using the random generation mechanism. As mentioned before, 

the problems falling between 40 to 60 jobs are considered large. Cognizant of the fact 

that the computational effort to solve the large problems can take anywhere between 45 

minutes to 1 hour and 30 minutes, testing on many problem instances can take up a large 

computational effort. Another important thing to consider is that there are 30 heuristic 

combinations for each problem instance.  For each problem instance, an optimal schedule 

with a TWT of 0 is obtained by setting the due dates equal to the completion times of the 

jobs. All 30 heuristic combinations are applied to each problem instance and the TWT of 

the final solutions is obtained accordingly. The percentage deviation of the final solutions 

is evaluated the same way as in the medium problem structure.  

 The TWT and percentage deviation obtained by each heuristic combinations are 

reported in Table 6.7. For 45 jobs problem and the 60 jobs problem, all 30 heuristic 

combinations identified a TWT less than the reference point. For 50 jobs problem, the 

heuristic combinations involving IS2, IS3 and IS5 are able to identify a final solution less 

than the reference point of 107 where as for the 55 jobs problem, the heuristic 

combinations involving IS1 and IS4 are able to identify a final solution less than the 

reference point of 112.  
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Table 6-7 Results of applying the heuristics to large problem structures with zero values 

of TWT 

45 Jobs, 17 stages, 19 machines (Reference Point = 92) 

TWT TS1 TS2 TS3 TS4 TS5 TS6 % DEV TS1 TS2 TS3 TS4 TS5 TS6 

IS1 53 53 53 53 53 53 IS1 0.0 0.0 0.0 0.0 0.0 0.0 

IS2 41 41 53 41 41 53 IS2 0.0 0.0 0.0 0.0 0.0 0.0 

IS3 48 41 53 48 51 53 IS3 0.0 0.0 0.0 0.0 0.0 0.0 

IS4 70 70 68 70 70 68 IS4 0.0 0.0 0.0 0.0 0.0 0.0 

IS5 68 68 68 68 68 68 IS5 0.0 0.0 0.0 0.0 0.0 0.0 

50 Jobs, 17 stages, 19 machines (Reference Point = 107) 

TWT TS1 TS2 TS3 TS4 TS5 TS6 % DEV TS1 TS2 TS3 TS4 TS5 TS6 

IS1 144 129 150 144 129 150 IS1 34.6 20.6 40.2 34.6 20.6 40.2 

IS2 85 80 77 85 80 77 IS2 0.0 0.0 0.0 0.0 0.0 0.0 

IS3 90 63 93 90 63 93 IS3 0.0 0.0 0.0 0.0 0.0 0.0 

IS4 150 147 153 150 147 153 IS4 40.2 37.4 43.0 40.2 37.4 43.0 

IS5 87 87 87 87 87 87 IS5 0.0 0.0 0.0 0.0 0.0 0.0 

55 Jobs, 17 stages, 19 machines (Reference Point = 112) 

TWT TS1 TS2 TS3 TS4 TS5 TS6 % DEV TS1 TS2 TS3 TS4 TS5 TS6 

IS1 110 93 80 110 93 80 IS1 0.0 0.0 0.0 0.0 0.0 0.0 

IS2 163 128 160 163 128 163 IS2 45.5 14.3 42.9 45.5 14.3 45.5 

IS3 186 186 189 186 186 189 IS3 66.1 66.1 68.8 66.1 66.1 68.8 

IS4 98 98 98 98 98 98 IS4 0.0 0.0 0.0 0.0 0.0 0.0 

IS5 158 132 159 158 132 159 IS5 41.1 17.9 42.0 41.1 17.9 42.0 

60 Jobs, 17 stages, 19 machines (Reference Point = 113) 

TWT TS1 TS2 TS3 TS4 TS5 TS6 % DEV TS1 TS2 TS3 TS4 TS5 TS6 

IS1 57 28 23 57 28 23 IS1 0.0 0.0 0.0 0.0 0.0 0.0 

IS2 31 31 31 31 31 31 IS2 0.0 0.0 0.0 0.0 0.0 0.0 

IS3 68 68 77 68 68 77 IS3 0.0 0.0 0.0 0.0 0.0 0.0 

IS4 57 28 57 57 28 57 IS4 0.0 0.0 0.0 0.0 0.0 0.0 

IS5 76 76 76 76 76 76 IS5 0.0 0.0 0.0 0.0 0.0 0.0 

 

 The average percentage deviation of the solutions obtained by each heuristic 

combination is evaluated over all four-problem instances and summarized in Table 6.8. It 

is apparent from the table that the heuristic combination of IS2/TS2 and IS2/TS5 exhibit 

only 3.57 percentage deviations. Other heuristic combinations IS5/TS2 and IS5/TS5 have 

a percentage deviation less than 5%. IS1/TS2 and IS1/TS5 have an average percentage 
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deviation of only 5.14%. The percentage deviation averaged over the four problems and 

the 30 heuristic combinations is 10.36%. Based on these results, one can conclude that 

the heuristics are very effective in identifying a very good near optimal solution even for 

the large problem instances.  

 

 

Table 6-8 Average percentage deviation of the solutions obtained by the heuristics for 

large problem structure 

Initial Tabu-Search based heuristics 

Solution TS1 TS2 TS3 TS4 TS5 TS6 

IS1 8.64 5.14 10.05 8.64 5.14 10.05 

IS2 11.38 3.57 10.71 11.38 3.57 11.38 

IS3 16.52 16.52 17.19 16.52 16.52 17.19 

IS4 10.05 9.35 10.75 10.05 9.35 10.75 

IS5 10.27 4.46 10.49 10.27 4.46 10.49 
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7 RESULTS AND DISCUSSION 

 

Recall from Chapter 6, the tabu-search based heuristic algorithms proved to be 

highly efficient in comparison to the implicit enumeration technique (namely branch-and-

bound) in solving small problem structures. While the heuristic algorithms take less than 

2 seconds to solve the problem, the branch-and-bound technique embedded in CPLEX 

can take as long as 50 minutes just to solve a small problem structure. Chapter 6 also 

illustrated the efficiency of the tabu search mechanism for problems that cannot be solved 

using the branch-and-bound enumeration technique. Based on those results, the tabu-

search based heuristic algorithms can be conjectured to provide very good/near optimal 

solution, if not optimal, to problem structures with no known optimal solutions. The 

research question is now focused on evaluating the comparative performance of the tabu-

search based heuristics, aided by initial solution generation methods. Precisely, the intent 

of this research is to evaluate the performance of each algorithm as the size of the 

problem structure grows from small to medium and then large.  

The size of a problem structure is determined by the number of jobs, n. The size 

of the problem structures covered in this research is defined as follows:  

Small size: up to 20 jobs 

Medium size: 21-40 jobs 

Large size: 41 or more jobs 

 These sizes are selected based upon the direct feedback from the company for 

which the research was carried out. These sizes are selected to cover a wide variety of 

scheduling problems encountered in industry practice. Wide variety of problems allow us 

to evaluate whether the computation time required to solve them using the algorithm lies 

within reasonable expectations. Most of the small problem structures can be solved in 

less than a second. The medium problem structures require less than 2 seconds to be 

solved. Solving a large problem structure may require as much as 15 seconds. The 

increase in the computation time is due to the increase in complexity of the problem, 

presented in the form of an enlarged search space. The increase in search space causes the 
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algorithm to consider more neighborhood solutions before selecting the best solution and 

then applying the move that results in the best solution. The increase in search space also 

delays the termination of the search as more moves are required before the stopping 

criterion is activated.  

 Note that to comply with the industry requirements, the algorithms were 

developed in C# .NET. The data was read using Microsoft Excel spreadsheet and the 

final results were also stored and displayed using Microsoft Excel spreadsheet. This was 

also done to comply with the industry requirements. Much of the work in the industry is 

done using Microsoft Excel and the easy user interface provided by Microsoft Excel has 

made it really popular over the years. The employees of the company for which this 

research was carried out were also proficient at Microsoft excel. Hence they wanted the 

algorithm to interact with Microsoft Excel (to input data and to display results). However, 

reading data into Microsoft Excel from C# is much more time consuming than reading 

data from other sources (say an SQL database or a text file). Solving a large problem may 

take as long as two hour.  

 For demonstrating the efficiency of the algorithm, only the computation time 

while the algorithm is running is taken into consideration. In other words, the time taken 

to read the data from the excel file is disregarded because had this algorithm been 

developed using text files, the time consumed to read the file would have been 

significantly lower (only a few seconds). C#.NET offers a built-in function that can easily 

verify the time required to run a routine. Therefore, the time required to run each TS 

algorithm can be easily obtained.  

 Once the sizes of the problem structures are established, an experiment can be 

conducted to address the following research issues: 

1. To analyze the performance of the five initial solution generation methods on 

each size of the problem structure. 

2. To analyze the performance of the six tabu-search based heuristics on each size of 

the problem structure. 
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3. To examine if the performance of the six tabu-search based heuristics is affected 

by the initial solution generation methods used. 
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7.1 Data Generation 

 

 With the exception of the estimation of Cmax, which is the maximum completion 

time (makespan) of all jobs released, we take advantage of the data generation 

methodology proposed by Logendran and Subur (2000). As mentioned earlier, the 

structure of a problem is defined by the total number of jobs. The data used in this 

research, namely the run time of jobs, sequence-dependent setup time for jobs, job release 

time, job weight, job due date, and machine availability are generated using a random 

number generation (?) procedure. The notation for total number of projects is p and total 

number of jobs is n. The methodology for generating each problem instance can be 

documented as follows:  

(1) The total number of projects for a given problem is generated from uniformly 

distributed random numbers over the interval [1, 10]. These random numbers must be 

integers. 

(2) Once the number of projects for a given problem instance is determined, the number 

of jobs within each project is generated from uniformly distributed random numbers 

over the interval [1, 15]. These random numbers must be integers. As the total 

number of jobs considered in this research has the most influence in the scheduling 

algorithm, the classification that we use is based upon the total number of jobs as 

follows: 

 1-20 jobs – small size problem 

 21-40 - medium size problem 

 41 and higher – large size problem 

(3) The machines can be categorized as least, medium or most capable. For the first stage 

(which has three machines), three random numbers are generated from a uniform 

distribution in [1, 10] and the coefficients of machines capability (αi) are calculated as 

follows: the first (αi) is assigned to the first machine. The second (αi) is assigned to 

the second machine and so on. The machine that receives the smallest (αi) represents 
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the most capable machine and the machine with the largest (αi) represents the least 

capable machine. For subsequent stages with one machine each, a uniformly 

distributed random number is generated between [0, 1]. If the random number has a 

value less than or equal to 1/3, then the machine is considered to be most capable. If 

the random number is between 1/3 and 2/3 then the machine is considered to be of 

medium capability and lastly if the random number is greater than 2/3, the machine is 

considered to be least capable. 

(4) If a job is capable of being processed on a machine, then the run time of the job is a 

randomly generated number between [αi + 21] and [αi + 40]. This reasoning is 

justifiable since a highly capable machine (that has a lower αi) will have a lower run 

time for a job than a machine that has medium or lower capability (meaning that the 

machine has a higher αi ) 

(5) The sequence-dependent setup times are generated from a uniform distribution over 

[1, 40]. Using a wide range such as this ensures that a large number of setup times 

generated for the same job on a machine are truly different.  

(6) The release times of jobs are generated from a Poisson process with a mean arrival 

rate of 5 per hour, assuming that the setup and run times are all expressed in minutes. 

A Poisson process can be used to model the arrival of jobs independently of each 

other. A Poisson process was used to generate job release time by Schutten and 

Leussink (1996). These random numbers must take integer values.  

(7) Machine availability times are also generated from a Poisson process with a mean 

arrival rate of 5 per hour. Suresh and Chaudhuri (1996) used Poisson process to 

model the occurrence of machine non-availability. As was the case with release times 

of jobs, the random numbers generated for machine availability must also take integer 

values. Once we have availability times for all machines, we delay the machine 

availability time in stage 2 by cumulative machine availability time in stage 1. The 

rationale behind doing so originates from the fact that at the start of any given 

planning horizon, the machines in the first stage have reference jobs loaded on them. 

The machines should process these reference jobs before processing the jobs from the 

current planning horizon. The ideal thing would be to evaluate the run time and set up 

time of the reference jobs and delay the machine availability by that much time. But 
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our motivation is to solve the problem instance that belongs to the current planning 

horizon rather than grappling with a problem from previous planning horizon (which 

in this case is that represented by the reference job). Therefore without making the 

problem overly complicated, we delay the machine availability time in stage 2 by 

cumulative machine availability time in stage 1. The machine availability for 

following stages (stage 3 to stage 17) is also evaluated by sequentially adding the 

machine availability times.  

(8) The generation of meaningful due dates for the random test problem is by far the most 

challenging than the other algorithmic parameters. The due dates play a vital role in 

the evaluation of the total weighted tardiness of the jobs. In the absence of meaningful 

due dates, the initial solution and the search algorithm will not be effective in 

identifying an optimal or near optimal solution. In the past, researchers have used 

tardiness factor (τ), range factor (R), and Cmax (the maximum completion time 

(makespan) of all jobs released) to generate meaningful due dates. τ is defined as τ = 

1− d / Cmax, where d  is the average due date and Cmax is the estimated makespan. A 

large value of τ indicates tight due dates and a small τ signifies loose due dates.  R 

provides the measure of variability and is defined as R = (dmax – dmin) / Cmax where dmax 

is the largest due date and dmin is the smallest due date. A large value of R ensures that 

the randomly generated due dates are distributed over a wide interval whereas a small 

value of R guarantees due dates within a restricted range. The due dates are generated 

from a composite uniform distribution based on R and τ (refer to Table 7.1 for due 

date classification). With probability τ, the due date is uniformly distributed over the 

interval [ d  – R d , d ] and with probability (1- ), the due date is uniformly distributed 

over the interval [ d , d + (Cmax – d )R]. The evaluation of Cmax is described in Section 

5.3.4.  

Note that all the random numbers are generated from a uniform distribution 

except for job release time and machine availability times, which are generated from a 

Poisson distribution. A uniform distribution has been proven to be appropriate to 

model length or duration of a process whereas a Poisson distribution has been proven 

to be appropriate to model the occurrence of an event at a given point of time.  
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Table 7-1 Due date classification 

 R Degree of tightness Width of range 

0.2 0.2 Loose Narrow 

0.2 0.5 Loose Medium 

0.2 0.8 Loose Wide 

0.5 0.2 Medium Narrow 

0.5 0.5 Medium Medium 

0.5 0.8 Medium Wide 

0.8 0.2 Tight Narrow 

0.8 0.5 Tight Medium 

0.8 0.8 Tight Wide 
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7.2 Design of Experiment  

 

 A multi-factor experimental design is employed to address research questions 1, 2 

and 3. The total weighted tardiness and the total computation time of the algorithms are 

used as a basis for performance measurement. Two factors are used in the experiment, 

they are the initial solution generation methods (IS) and different types of tabu-search 

based heuristics (TS). There are a total of five different levels of IS and six different 

levels of TS.  

 Three different sizes of problem structures were defined in the beginning of this 

chapter. Within each size, there are different structures to consider based upon different 

number of jobs. Within a problem structure, one can generate different problem instances 

(test problems) using the procedure described in section 7.1. All the problems are 

randomly generated and no two problem instances are exactly the same. Thus an 

experiment involving various problem instances and various problem structures will have 

fairly large variability in results. This variation can be reduced by treating each problem 

instance as a block. Blocking the problem instance is necessary to eliminate the influence 

of the differences between the problem instances (caused by random generation of 

problems). Thus, the differences in the performances of the algorithms, if identified, can 

be wholly attributed to the effect of the algorithms and not to the difference between 

problem instances.  

 All 30 (5 levels of IS * 6 levels of TS) combinations of factors are tested in each 

block. At this point, the experimental design looks like a randomized complete block 

design. Randomized complete block design is one of the most widely used experimental 

designs. Blocking can be used to systematically eliminate the effect of nuisance factor on 

the statistical comparisons among treatments. Blocking is an extremely important design 

technique, used extensively in industrial experiments.  

 A completely randomized block design may be defined as a design in which 

treatments are assigned to the experimental units completely at random. The design is 

completely flexible, i.e., any number of treatments and any number of levels (?) per 

treatment may be used. For this research, we are interested in finding out the effect of the 
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two primary factors i.e., IS and TS. As mentioned earlier, IS has 5 different levels and TS 

has 6 different levels. Note that both these factors are of equal interest in this research 

because the IS finding mechanism helps in initiating the search whereas the TS 

mechanism helps in identifying the final solution. Moreover, previous research has 

shown that a quality initial solution may lead to better quality final solution (Logendran 

and Subur, 2004). Therefore, equal importance is given to both of these factors (IS and 

TS) while performing the statistical experimentation. A completely randomized block 

design was used where randomization was performed within each block. The 30 

combination of factors (5 levels of IS and 6 levels of TS) were randomly assigned to the 

problem instances within a block. Blocking was used to account for the variability 

induced by the randomly generated problem instances. 

 A more complex design such as split-plot design was not chosen to conduct the 

experimentation because both the factors (IS and TS) are of equal interest to us. 

Moreover, we were able to completely randomize the order of the runs for all 30 heuristic 

combinations (5 levels of IS and 6 levels of TS). If we had to give more importance to a 

particular factor of interest (say TS) then we could have modeled the experiment as a 

split-plot design rather than a completely randomized block design. But as mentioned 

before, we are equally interested in the effects of both factors. Hence, a completely 

randomized block design was chosen over a split-plot design.  

 The experiment includes all three sizes of problem structures. For small size 

category, three different problem structures are used; they are 9 jobs and 19 machines, 12 

jobs and 19 machines, and 17 jobs and 19 machines. For medium and large size category, 

the types of problem structures are reduced to two. Two problem structures are used for 

medium size category: 25 jobs and 19 machines and 35 jobs and 19 machines. Similarly, 

two problem structures are used for large size category: 45 jobs and 19 machines and 55 

jobs and 19 machines.   This reduction in size is due to the extensive computation time 

required to solve the medium and large problem, as explained in the beginning of the 

chapter.  

 Within each problem structure, 5 problem instances are generated. Each problem 

instance is characterized by the combination of the due date tightness factor (R) and the 
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due date range factor (τ) used to generate the due dates of jobs in the problem. The 

combination of R and τ determines the characteristics of the due dates, as documented in 

Table 5.1. In order to cover different characteristics of due dates, 5 combinations of R 

and τ are selected from Table 5.1. Each combination is used in each problem instance 

(block) as: 

Block 1: τ = 0.2 and R = 0.8, 

Block 2: τ = 0.5 and R = 0.5, 

Block 3: τ = 0.8 and R = 0.2, 

Block 4: τ = 0.2 and R = 0.2, 

Block 5: τ = 0.8 and R = 0.8, 

The five combinations are used consistently over each problem structure. The data 

generated for the experiment using the procedure described in section 7.1 is presented in 

Table D.1-D.3 in Appendix D for all problem structures. The experiment is performed on 

intel Core I3 2.1 GHz machine with 4 GB RAM.  
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7.3 Experimental Results and Analysis 

 

 The results of the experimentation are presented in Table E.1 – Table E.3 of 

Appendix E for small, medium and large problems, respectively. The total weighted 

tardiness presented in the tables refer to the final best solution obtained by a tabu-search 

heuristic (TS) using the initial solution (generated by an initial solution generation 

method (IS)).  The computation time is the total time taken by an initial solution 

generation method and a tabu-search based heuristic to identify the final solution. The 

summary of the results collected for each problem structure is shown in Table 7.1. The 

analysis of results will focus on the total weighted tardiness first and then on the 

computation time. The correlation coefficient for TWT and computation time came out to 

be (-.18). This value suggests that there is no correlation between TWT and computation 

time and therefore, we can perform individual analysis on TWT and computation time.   

 

 As the summary of results only shows the average of the total weighted tardiness 

(TWT), one cannot conclusively say which level of factors yield the minimum TWT. A 

thorough statistical analysis on TWT will help us to determine if a particular level of a 

factor is better than the rest. A preliminary data exploration is essential to examine the 

distribution of TWT, in order to perform a statistical analysis on the TWT. Statistical 

analysis methods such as t-test are very powerful tools if the data is normally distributed. 

Graphical tools such as box plots can be very useful to detect any departure from the 

assumption of normality. The box plots of the TWT for all the levels of IS and all the 

levels of TS are shown in Figure F.1-F.3 of Apendix F for small medium and large 

problem structures, respectively. These box plots are generated by using popular 

statistical analysis package called R version 2.12.0. R is a free software environment for 

statistical computing and graphics. It compiles and runs on a wide variety of UNIX 

platforms, Windows and Mac Operating System.  

 The plots initially show that the data distribution is highly skewed and long tailed, 

which implied departure from normality and equal variance assumption. This is due to 

the large inconsistency between the values of the TWT obtained using different 
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combinations of due date tightness factor () and due date range factor (R). A problem 

with small () and small (R) would tend to yield a relatively small TWT whereas a 

problem with large () and small (R) tend to yield a relatively large value of TWT. Due to 

non-normality of the data distribution and unequal variance, parametric methods such as 

F-test and t-test are not appropriate for analyzing the experimental results.  

 Kruskal-Wallis test is a nonparametric alternative to the usual analysis of 

variance. Kruskal-Wallis can be applied to test the null hypothesis that involves only 

single factor. In this research, we have two factors (IS and TS) with blocking. Therefore 

Kruskal-Wallis test cannot be used as an alternative procedure to the F-test analysis of 

variance. Friedman test is another alternative for the F-test which can be applied for 

analyzing a single factor in a randomized block experiment. Again, we cannot apply the 

Friedman test as we have two factors together with blocking instead of 1 factor with 

blocking. Other non-parametric tests involve signed ANOVA but it is not widely 

accepted in the statistical community therefore it is also ruled out. Moreover, non-

parametric tests fail to predict the interactions correctly (Conover, 1999). Therefore we 

need to keep the analysis in the realm of parametric tests.  

 Notice that problem instances generated using  = 0.2 and R = 0.2 (Block 4) yield 

loose due dates. All search algorithms (TS1-TS6) in conjunction with the initial solution 

generating mechanisms (IS1-IS5) are able to identify a TWT of zero and this is true for 

each problem structure (small, medium and large). A TWT value of zero makes the data 

highly skewed. If we remove Block 4 from the analysis, the box plots show that the data 

is approximately normal with approximately equal variance. A TWT value of zero 

implies that none of the jobs are tardy. In an industrial setting, there would hardly be any 

instance where none of the jobs are tardy. If none of the jobs are tardy, it means that the 

problem is not carefully constructed, meaning not rigorous enough to emulate industrial 

settings. Therefore, Block 4 is eliminated in performing further analysis.  

 After eliminating Block 4, the data becomes approximately normal (though a 

transformation is required). We can now apply a two-way ANOVA with blocking to each 
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problem structure.  Three different hypotheses need to be tested and they can be stated as 

follows: 

Hypothesis 1  

H0: There is no difference in the TWT obtained for the problem instances using the five 

initial solution generation methods (IS).  

H1: At least one of the initial solution generation methods tends to yield a smaller TWT 

than the others.  

Hypothesis 2 

H0: There is no difference in the TWT obtained for the problem instances using the six 

tabu search heuristics (TS).  

H1: At least one of the tabu search heuristics tends to yield a smaller TWT than the 

others. 

Hypothesis 3 

H0: There is no interaction between IS and TS. 

H1: There is interaction between IS and TS.  

The results of the two-way ANOVA with blocking are discussed individually on 

each problem structure. Among the various statistical methods available for comparing 

the effects of a factor at different levels, the least significance difference (LSD) based on 

t-statistic can be regarded as the least conservative, and Tukey-Kramer‟s adjusted P-value 

can be regarded as most conservative method. Since our goal is to truly identify a clear 

difference between the levels of a factor, we select Tukey-Kramer‟s adjusted P-value 

method for the purpose of analysis. Thus, while a particular factor may be deemed as 

significant, the detailed analysis for identifying which factor levels contribute to this 

significance may indeed point to none because of the stringent difference sought by 

Tukey-Kramer‟s adjusted P-value method. In the following sections, the analysis of 

results obtained for each size of problem is presented separately.  
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7.3.1 Small Problem Structures 

 

A preliminary data exploration is carried out in order to perform a statistical 

analysis on TWT for small problem structures. The box plots of the TWT for all levels of 

IS and all levels of TS are shown in Figure F.1 of Appendix F for small problem 

structures. The plots show that the data is highly skewed which implies severe departure 

from normality and unequal variance. To stabilize the spread of the data variance, a 

natural-logarithm data transformation is applied. After the transformation, the TWT has a 

normal shape and the variance is equally spread as shown in Figure F.4 of Appendix F. 

Since the normality assumption for the parametric statistical method is met, an analysis of 

variance (ANOVA) or F-test can be applied to the log-transformed TWT (LOG_TWT).  

The ANOVA result for the TWT on small problem structures has been presented 

in table 7.2. We assume a significance level (α) of 5%, as is commonly done in 

experimental design. The results clearly indicate that neither the initial solution finding 

mechanism (Pr > F = 0.7349 > 5%) nor the Tabu search algorithms (Pr > F = 0.4203 > 

5%) have proven to be significant at 5% significance level. The results also suggest that 

the interaction between IS finding mechanism and TS algorithms is not significant at 5% 

significance level (Pr > F = 1.0000 > 5%). We can infer that no IS finding mechanism or 

TS algorithm has contributed to identifying a better quality solution (i.e. a lower TWT) in 

small size problems.  

 

Table 7-2 Results for small size problems from ANOVA for TWT 

 
Df Sum Sq Mean Sq F value Pr(>F) 

IS 4 0.8730 0.2180 0.5011 0.7349 

TS 5 2.1690 0.4340 0.9957 0.4203 

Block 3 264.7100 88.2370 202.5638 <.0001* 

IS:TS 20 0.7570 0.0380 0.0869 1.0000 

Residuals 327 142.4410 0.4360 
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Table 7-3 Results for small size problems from ANOVA for CT 

 Df Sum Sq  Mean Sq  F value  Pr(>F) 

IS           4 8.2330 2.0581 5.5174 <.0002 * 

TS             5 0.1840 0.0368 0.0988 0.9923 

Block        3 7.8420 2.6140 7.0075 <.0001 * 

IS:TS         20 0.5170 0.0259 0.0694 1.0000 

Residuals    327 121.9790 0.3730   

 

Table 7-4 Differences of least square means for CT of small size problems (IS) 

 diff lwr upr p adj 

IS2-IS1 0.2718 0.0002 0.5433 0.0497 

IS3-IS1 0.3441 0.0726 0.6157 0.0052 

IS4-IS1 0.0494 -0.2222 0.3209 0.9875 

IS5-IS1 0.3608 0.0893 0.6324 0.0028 

IS3-IS2 0.0723 -0.1992 0.3439 0.9493 

IS4-IS2 -0.2224 -0.4939 0.0491 0.1655 

IS5-IS2 0.0890 -0.1825 0.3606 0.8971 

IS4-IS3 -0.2947 -0.5663 -0.0232 0.0258 

IS5-IS3 0.0167 -0.2549 0.2882 0.9998 

IS5-IS4 0.3114 0.0399 0.5830 0.0154 

 

 

Since no significant difference exists between the levels of IS or the levels of the 

TS algorithm based on TWT, we venture into finding if differences exists between the 

levels of IS or levels of TS based on CT. As was the case with TWT for small problem 

structures, initial data exploration for CT reveals that the data is highly skewed with 

unequal variance and spread. A log transformation is applied to normalize the data and 

the box plots have been presented in Figure G.4 of Appendix G. Since the transformed 

data has normal distribution and approximately equal variance, ANOVA can be applied. 

The ANOVA result for the CT on small problem structures has been presented in table 

7.3. The IS finding mechanism (Pr > F = .0002 < 5%) reports to be significant at 5% 
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significance level. On the other hand, the TS algorithm (Pr > F = .9923 > 5%) does not 

report to be significant at 5% significance level. The results also suggest that the 

interaction between IS finding mechanism and TS algorithms is not significant at 5% 

significance level (Pr > F = 1.0000 > 5%).  

Since the IS finding mechanism is significant at 5% significance level, this raises 

an interesting research question as to whether there is a unique IS finding mechanism that 

eventually leads to consuming lower computation time. An extended analysis is 

performed to address that question. Note that the processing speed of the computer 

comprising of 2.4 GHz i3 core processer, 4 GB RAM memory, and Windows 7 operating 

system enable us to evaluate the final answer within a fraction of a second for small 

problem instances. Though the analysis shows the IS finding mechanisms to be 

significant, it should be noted that solving the small problem instances does not even take 

one second (for all IS finding mechanisms and the TS search algorithms). Such is the 

efficacy of the entire search algorithm.  

Table 7.4 summarizes the differences of least square means for CT of small 

problems based on IS finding mechanism. The comparison shows that IS1 (EDD) takes 

less computation time than IS2 (LFJ/LFM), IS3 (LWT) and IS5 (HCR). Table 7.4 also 

suggests that IS4 (DDW Ratio) takes less computation time than IS3 (LWT) and IS5 

(HCR). Note that IS1 prioritizes jobs based on earliest due date whereas IS4 prioritizes 

jobs based on due dates as well as their respective weights. In other words, both IS1 and 

IS4 finding mechanisms prioritize jobs based on their due dates (with IS4 also 

incorporating the weights) hence it is not surprising that both take lower computation 

time simultaneously. However, there is no difference between IS1 (EDD) and IS4 (DDW 

Ratio) based on the least square means for CT as summarized in Table 7.4. Thus, if the 

decision is to be purely based on CT, IS1 (EDD) is the recommended choice since it can 

help save on the computation time over other IS finding mechanisms.  
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7.3.2 Medium Test Problems 

 

Total Weighted Tardiness  

A preliminary data exploration is carried out in order to perform a statistical 

analysis on TWT for medium problem structures. The box plots of the TWT for all levels 

of IS and all levels of TS are shown in Figure F.2 of Appendix F for medium problem 

structures. As was the case with small problem instances, the plots show that the data is 

highly skewed which implies severe departure from normality and unequal variance. To 

stabilize the spread of the data variance, a natural-logarithm data transformation is 

applied. After the transformation, the TWT has a normal shape and the variance is 

equally spread as shown in Figure F.5 of Appendix F. Since the normality assumption for 

the parametric statistical method is met, an analysis of variance (ANOVA) or F-test can 

be applied to the log-transformed TWT (LOG_TWT).  

The ANOVA result for the TWT on medium problem structures has been 

presented in table 7.5. The results clearly suggests that neither the initial solution finding 

mechanism (Pr > F = 0.1101 > 5%) nor the Tabu search algorithms (Pr > F = 0.8431 > 

5%) have proven to be significant at 5% significant level. The results also suggest that the 

interaction between IS finding mechanism and TS algorithms is not significant at 5% 

significance level (Pr > F = 1.0000 > 5%). We can infer that no IS finding mechanism or 

TS algorithm has contributed to identifying a better quality solution (i.e. a lower TWT) in 

medium?? size problems. In the absence of a distinct outperformer, TS1 with short-term 

memory and fixed TLS are recommended for medium problem instances.  

 

Table 7-5 Results for medium size problems from ANOVA for TWT 

 
Df Sum Sq Mean Sq F value Pr(>F) 

IS 4 1.2900 0.3230 1.9093 0.1101 

TS 5 0.3500 0.0690 0.4078 0.8431 

Block 3 499.0800 166.3610 982.8069 < 0.0001 

IS:TS 20 0.4800 0.0240 0.1432 1.0000 
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Residuals 207 35.0400 0.1690 
  

 

Computation Time  

The performance of each level of IS and TS is evaluated based on the 

computation time. Similar to TWT, an initial data exploration is performed on the 

computation time as the second response variable in the experiment. The box plots of 

computation time for medium problem structures are shown in Figure G.2 of Appendix 

G. The plots show that the distribution of computation time is highly skewed and the 

variance of each level of factor (i.e. IS or TS) is not equally spread. This is because some 

levels of IS or TS tend to take computation times that are much higher than the other 

levels. To stabilize the spread of data variance, a natural-logarithm data transformation is 

applied. The distribution of the transformed computation time has a normal shape and the 

variance is equally spread as shown in Figures G.5 of Appendix G. Since the normality 

assumption for parametric statistical methods is met, an analysis of variance (ANOVA) 

or F-test can be applied to the log-transformed computation time (LOG_CT).  

 

 The ANOVA result for the CT on medium problem structures has been presented 

in table 7.7. For medium size problems, the IS finding mechanism does not show any 

evidence of a difference at various levels (Pr > F = .9903 > 5%). However, the TS 

algorithm proves to be significant at 5% significance level (Pr > F = .0143 < 5%). The 

interaction between the IS finding mechanism and TS algorithm is also insignificant (Pr > 

F = 1.0000).  

 Further analysis focused only on the differences between the levels of TS 

algorithm produces no significant difference (Table 7.7) for any one TS algorithm to 

claim superiority of lower CT. As mentioned earlier, the least significance differences are 

evaluated based Tukey-Kramer‟s adjusted P-value, which is the most conservative 

method. Thus, while a particular factor may be deemed as significant, the detailed 

analysis for identifying which levels contribute to this significance may indeed point to 

none because of the stringent difference sought by Tukey-Kramer‟s adjusted P-value 
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method. Though the plots clearly indicate that TS1 and TS4 probably require lower 

computation time than TS2, TS3, TS5 or TS6, the Tukey-Kramer‟s adjusted P-value 

method does not distinctively point out this significance at 5% significance level. In the 

absence of a statistically proven outperformer, TS1 with short-term memory and fixed 

TLS is recommended for large problems.  

  

Table 7-6 Results for medium size problems from ANOVA for CT 

 
Df Sum Sq Mean Sq F value Pr(>F) 

IS 4 0.3960 0.0990 0.0729 0.9903 

TS 5 19.8180 3.9636 2.9215 0.0143 * 

Block 3 2.5790 0.8596 0.6336 0.5942 

IS:TS 20 1.5040 0.0752 0.0554 1.0000 

Residuals 207 280.8390 1.3567 
  

 

Table 7-7 Differences of least square means for CT for medium size problems 

 
diff lwr upr p adj 

TS2-TS1 -0.0669 -0.3315 0.1978 0.9784 

TS3-TS1 -0.0137 -0.2783 0.2510 1.0000 

TS4-TS1 0.0262 -0.2385 0.2908 0.9997 

TS5-TS1 -0.0735 -0.3382 0.1911 0.9674 

TS6-TS1 0.0116 -0.2531 0.2762 1.0000 

TS3-TS2 0.0531 -0.2114 0.3178 0.9924 

TS4-TS2 0.0930 -0.1716 0.3577 0.9138 

TS5-TS2 -0.0067 -0.2713 0.2580 1.0000 

TS6-TS2 0.0785 -0.1862 0.3431 0.9570 

TS4-TS3 0.0398 -0.2248 0.3045 0.9980 

TS5-TS3 -0.0598 -0.3245 0.2048 0.9869 

TS6-TS3 0.0253 -0.2394 0.2899 0.9998 

TS5-TS4 -0.0997 -0.3643 0.1649 0.8875 

TS6-TS4 -0.0146 -0.2792 0.2501 1.0000 

TS6-TS5 0.0851 -0.1795 0.3497 0.9397 
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7.3.3 Large Problem Structure  

 

Total Weighted Tardiness  

In order to perform a statistical analysis on TWT, a preliminary data exploration 

is necessary to examine the distribution of TWT (for large problems). The box plots of 

the TWT for all levels of IS and all levels of TS are shown in Figure F.3 of Appendix F 

for large problem structures. The plots show that the data is highly skewed, which implies 

severe departure from normality and unequal variance. To stabilize the spread of the data 

variance, a natural-logarithm data transformation is applied. After the transformation, the 

TWT has a normal shape and the variance is equally spread as shown in Figure F.6 of 

Appendix F. Since the normality assumption for the parametric statistical method is met, 

an analysis of variance (ANOVA) or F-test can be applied to the log-transformed TWT 

(LOG_TWT).  

The ANOVA result for the TWT on large problem structures has been presented 

in table 7.8. The results clearly suggests that neither the initial solution finding 

mechanism (Pr > F = 0.8153> 5%) nor the Tabu search algorithms (Pr > F = 0.9036 > 

5%) have proven to be significant at 5% significant level. The results also suggest that the 

interaction between IS finding mechanism and TS algorithms is not significant at 5% 

significance level (Pr > F = 1.0000 > 5%). We can infer that no IS finding mechanism or 

TS algorithm has contributed to identifying a better quality solution (i.e a lower TWT) in 

large size problems.  

 

Table 7-8 Results for large size problems from ANOVA for TWT 

 
Df Sum Sq Mean Sq F value Pr(>F) 

IS 4 1.0000 0.2490 0.3905 0.8153 

TS 5 1.0000 0.2010 0.3150 0.9036 

Block 3 485.0400 161.6810 253.4232 <.0001 
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IS:TS 20 0.8200 0.0410 0.0642 1.0000 

Residuals 207 132.0600 0.6380 
  

 

Computation Time 

Next, we determine if any IS finding mechanism or TS algorithm outperforms 

others based on the efficiency parameters. An initial data exploration is performed on the 

computation time for large problem structures. The box plots of computation time for 

different levels of IS mechanism and TS algorithm are shown in Figures G.3 of Appendix 

G for large problem structure. Recall, that natural logarithmic transformation was 

performed on CT for small and medium problem structures. But the plots for large 

problem structures show that the distribution of computation time (without the natural 

logarithmic transformation) is fairly normal and has reasonably equal spread for IS 

finding mechanism. Although the CT plot for TS algorithm is slightly skewed than the IS 

finding mechanism, for practical purposes, it can be assumed to abide by normality 

assumptions. The computation time required for small and medium problem structures 

was very small (in most cases it was less than a second), which often resulted skewed 

data with unequal variance. As the problem structure grows, the computation time 

required to solve the problem increases significantly, giving a better spread and fairly 

equal variance. Therefore the CT data for large problem structures does not require any 

transformation whereas the small and medium problem structures required a natural 

logarithmic transformation. The plots showing distribution of the computation time is 

shown in Figures G.3 of Appendix G. Since the normality assumption for parametric 

statistical methods is met, an analysis of variance (ANOVA) or F-test can be applied to 

the CT data.  

 

Table 7-9 Results for large size problems from ANOVA for CT 

 
Df Sum Sq Mean Sq F value Pr(>F) 

IS 4 22.6000 5.6550 0.2487 0.9102 

TS 5 659.0000 131.7980 5.7954 <.0001 
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Block 3 2.0000 0.6660 0.0293 0.9932 

IS:TS 20 23.6000 1.1790 0.0518 1.0000 

Residuals 207 4707.6000 22.7420 
  

 

The result for the CT on large problem structures has been presented in table 7.9. 

Clearly, the IS finding mechanism (Pr > F = .9102 > 5%) is not significant at 5% 

significance level. On the other hand, the TS algorithm (Pr > F = .0001< 5%) reports to 

be significant at 5% significance level. Therefore, further analysis is focused to find out if 

there is a significant difference between the levels of TS for large problems??. The box 

plots shown in Figure G.3 of Appendix G suggest that TS1 takes less computation time 

than TS2, TS3, TS5 and TS6 whereas TS4 takes less computation time than TS2, TS3, 

TS5 and TS6. Table 7.10 summarizes the differences of least square means for CT of 

large problems based on TS algorithms.  

 

 

Table 7-10 Differences of least squares means for CT of large size problems 

    diff         lwr        upr      p adj 

TS2-TS1   3.7395 0.6720 6.8070 0.0073 

TS3-TS1   3.4428 0.3753 6.5102 0.0179 

TS4-TS1 0.3203 -2.7472 3.3877 0.9997 

TS5-TS1 3.7983 0.7308 6.8657 0.0060 

TS6-TS1 3.6675 0.6000 6.7350 0.0091 

TS3-TS2 -0.2968 -3.6610 2.7707 0.9998 

TS4-TS2 -3.4193 -6.4867 -0.3518 0.0192 

TS5-TS2 0.0588 -3.0087 3.1262 1.0000 

TS6-TS2 -0.0720 -3.1395 2.9955 1.0000 

TS4-TS3 -3.1225 -6.1900 -0.0550 0.0434 

TS5-TS3 0.3555 -2.7120 3.4230 0.9994 

TS6-TS3  0.2248 -2.8427 3.2922 0.9999 

TS5-TS4 3.4780 0.4105 6.5455 0.0161 



116 
 

 
 

TS6-TS4 3.3473 0.2798 6.4147 0.0235 

TS6-TS5 -0.1308 -3.1982 2.9367 1.0000 

 

 

The comparison shows that the pairs TS1-TS2, TS1-TS3, TS1-TS5 and TS1-TS6 

are significantly different. The comparison also shows that the pairs TS4-TS2, TS4-TS3, 

TS4-TS5 and TS4-TS6 are significantly different. TS1 and TS4 are based on short term 

memory while others are based on LTM. In each of these pairs, the least squares mean 

estimate with short term memory produces a lower TWT than that with LTM. Thus, it 

pays to use short term memory search to solve large size problems. Since there is no 

significant difference between TS1 (short term memory with fixed TLS) and TS4 (short 

term memory with variable TLS), TS1 is recommended for efficiently solving the large 

size problems.    
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8 Conclusion and Suggestions for further research  

 

A job scheduling problem in flexible flowshops with dynamic machine 

availability and dynamic job release time has been addressed in this research. In a 

flexible flowshop, one or more stages may have unrelated parallel machines. Unrelated 

parallel machines are machines that can perform the same function but have different 

capacity or capability. Since each machine has different capability, the run times of a job 

may differ from one machine to another. The machines considered in this research have 

dynamic availability time, which means that each machine may become available at a 

different time. The jobs are also assumed to be released dynamically. Each job in the 

scheduling problem considered in this research has a job release time, due date, and 

weight associated with it. A sequence-dependent setup time has also been considered in 

this research, which implies that a considerable amount of time can be spent to change 

over from one job to another. The release time can be viewed as a customer‟s order 

placement date, the due date can be considered as the shipment date and the weights can 

be considered as the priority of each job.  

The possibility of machine skipping has also been incorporated in this 

research. A job may skip one or more stages depending upon customer‟s requirement or 

budgetary constraints. The objective of this research is to minimize the sum of weighted 

tardiness of all jobs released within the planning horizon. This research objective can be 

translated into on-time delivery or meeting customer‟s due dates. Such an objective is 

very important in industry practice because on-time delivery is the underlying factor for 

customer‟s satisfaction.  

The research problem is formulated as a mixed (binary) integer-linear 

programming model with the objective function focused on minimizing the total 

weighted tardiness of all jobs released. The computational complexity of the research 

problem is shown to be strongly NP-hard. Because it is strongly NP-hard, an implicit 

enumeration technique can only be used to solve small problem instances in reasonable 

computation time. For medium and large problem instances, the branch and bound 

technique would not only be very time consuming, but in some cases may never find the 
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optimal solution even after investing an exceedingly large computation time. Knowing 

the inefficiency of the implicit enumeration method, a higher-level search heuristic, based 

on the concept of tabu search, is developed and applied to solve the research problem.  

Six different tabu-search based heuristics are developed by incorporating the 

different features of tabu search such as short and long term memory with fixed and 

variable tabu-list size. Five different methods are developed to generate the initial 

solution that can be used as starting points by tabu search. Two of the initial solutions are 

developed based on simple dispatching rules known as the Earliest Due Date (EDD) and 

Due Date Weight Ratio (DDW). The difference between the two methods is that the 

former is myopic to weights. A more complex initial solution presented in this research 

was the hybrid critical ratio (HCR), which is a modified form of DDW and takes into 

account the set-up times and runtimes of jobs besides due date and weight. LFJ/LFM and 

LWT are two other initial solutions presented, which are based on flexibility (of jobs and 

machines) and makespan of jobs, respectively.  

In order to assess the quality of the final solutions obtained from tabu-search 

based heuristics, ten small problem instances were generated and solved using the 

branch-and bound technique embedded in CPLEX 9.0 and the tabu search based 

heuristics. Using the branch-and bound technique, 7 out of 10 problem instances were 

solved optimally. The optimal solutions are then compared with the solutions obtained 

from the tabu-search based heuristics. One of the heuristics (IS1/TS4) obtained solutions 

that have average percentage deviation of only 2.19%, thus demonstrating the capability 

of search heuristics to identify high quality solutions.  

Since the optimal solutions for the medium and large problem structures are 

not attainable, the effectiveness of the tabu-search based heuristics is evaluated 

differently from small problem structure. Four problem instances of medium size and 

four problem instances of large size were constructed to have zero total weighted 

tardiness. Since the optimal solutions for these problem instances have zero total 

weighted tardiness, the point of reference for evaluating the deviation is shifted to a 

positive value. This reference point is obtained by delaying the completion times of all 

jobs in the optimal schedule by one unit of time. Thus, the percentage deviation of the 
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solutions obtained by the heuristics was evaluated based on the reference point. The 

results show that the average percentage deviation evaluated over the heuristics is 9.45% 

for the medium problem structure and 10.36% over the large problem structure.  

A more complete experiment with a broader scope was conducted to assess the 

performance of the heuristics as the size of the problem grows from small to medium and 

finally to large. A multi-factor experiment with randomized complete block design was 

conducted. The design of the experiment included two different factors. The five initial 

solution generation methods (IS1-IS5) were the levels of one factor and the six tabu-

search heuristics (TS1-TS6) were the levels of the other factor. The total weighted 

tardiness and the computation time were the two performance measures used. The results 

of the experiment suggest that no IS finding mechanism or TS algorithm contributed to 

identifying a better quality solution (i.e a lower TWT) for all three problem instances (i.e. 

small, medium and large). In other words, no IS finding mechanism or TS algorithm 

could statistically outperform others.  In absence of a distinct outperformer, TS1 with 

short-term memory and fixed TLS are recommended for all problem instances.  

When comparing the efficiency of the search algorithms, the results of the 

experiment show that IS1, which refers to the EDD method, is recommended as the initial 

solution generation method for small problem sizes. The EDD method is capable of 

obtaining an initial solution that helps the tabu-search based heuristic to get to the final 

solution within a short time. TS1 is recommended as the tabu-search based heuristic for 

large problems, in order to save on time. TS1 is also recommended to solve small and 

medium problem structures in the absence of a statistically proven outperformer.  

As mentioned before, this research focuses on minimizing the total weighted 

tardiness, in a flexible flowshop setting only. Further research may consider scheduling 

jobs in a job-shop environment since not all industrial settings tend to follow a flowline 

arrangement. Scheduling jobs in a job-shop environment will further add to the 

complexity of developing the search algorithm as well as the mathematical model. 

However, cognizant of the industrial significance of a job-shop setting, the proposed 

research may be relevant to various firms across the manufacturing industry.  
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Further research could also focus on comparing the performance of tabu 

search to other higher-level heuristics such as genetic algorithm and simulated annealing 

in solving the scheduling problems addressed in this research. The performance of these 

heuristics has been compared to tabu search in solving different types of scheduling 

problems (Park and Kim, 1997, Piersma and Van Dijk, 1996, Glass et al., 1994). These 

heuristics have shown different performances in different applications. More insights can 

be gained by applying simulated annealing or genetic algorithm to the research problem 

and comparing their results to the results obtained from this research.  

Besides scheduling, rescheduling of jobs is of high relevance? in any 

manufacturing scenario. The ability to reschedule jobs gives the flexibility to introduce, 

modify or cancel jobs during a particular planning horizon. A job may have to be 

rescheduled depending upon the change in customer‟s demand, machine breakdowns or 

due to any unforeseen circumstances (labor or raw-material shortages). 
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Appendix A. Setup Times for the example problem 

 

 

 

 

 

 

 

 

 

 

 

 

Change over from Jj’p’ to J1,1 on Mi,k 

                    

 M

1,1 
M

2,1 
M

3,1 
M

1,2 
M

1,3 
M

1,4 
M

1,5 
M

1,6 
M

1,7 
M

1,8 
M

1,9 
M1,

10 
M1,

11 
M1,

12 
M1,

13 
M1,

14 
M1,

15 
M1,

16 
M1,

17 

                    

J1,

1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

J2,

1 

0 7 0 0 38 0 0 0 0 0 0 0 0 0 0 35 0 12 14 

J3,

1 

0 0 0 0 2 0 0 0 0 0 0 23 0 0 0 0 0 24 30 

J4,

1 

22 0 0 0 28 0 0 0 0 0 0 0 0 0 0 0 0 26 11 

J5,

1 

0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 28 0 21 13 

J6,

1 

0 0 0 0 38 0 0 0 0 0 0 0 0 0 0 29 0 29 17 

J7,

1 

30 0 0 0 0 0 0 0 0 0 0 14 0 9 0 37 0 29 1 

J8,

1 

5 0 0 0 20 0 0 0 0 0 0 8 0 0 0 4 0 38 35 

J9,

1 

0 5 0 0 18 0 0 0 0 0 0 0 0 0 0 0 0 31 39 

J1

0,1 

0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 26 27 

J1

1,1 

32 0 0 0 14 0 0 0 0 0 0 0 0 0 0 16 0 12 10 
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Change over from Jj’p’ to J2,1 on Mi,k 

                    

 

M

1,1 
M

2,1 
M

3,1 
M

1,2 
M

1,3 
M

1,4 
M

1,5 
M

1,6 
M

1,7 
M

1,8 
M

1,9 
M1,

10 
M1,

11 
M1,

12 
M1,

13 
M1,

14 
M1,

15 
M1,

16 
M1,

17 

                    
J1,

1 
0 13 0 0 11 0 0 0 0 0 0 0 0 0 0 32 0 32 22 

J2,

1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

J3,

1 
0 0 0 0 14 0 0 0 0 0 34 0 0 0 0 0 39 15 4 

J4,

1 
0 0 0 0 34 0 0 0 0 0 0 0 0 0 0 0 14 23 12 

J5,

1 
0 39 0 0 0 2 0 0 0 0 0 0 0 0 0 13 17 7 24 

J6,

1 
0 0 0 0 20 26 0 0 0 0 0 0 0 0 0 17 26 16 32 

J7,

1 
0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 12 0 18 29 

J8,

1 
0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 35 16 19 4 

J9,

1 
0 23 0 0 6 0 0 0 0 0 17 0 0 0 0 0 20 10 23 

J1

0,1 
0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 21 21 8 

J1

1,1 
0 0 0 0 24 0 0 0 0 0 16 0 0 0 0 3 3 31 7 
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Change over from Jj’p’ to J3,1 on Mi,k 

                    

 

M

1,1 
M

2,1 
M

3,1 
M

1,2 
M

1,3 
M

1,4 
M

1,5 
M

1,6 
M

1,7 
M

1,8 
M

1,9 
M1,

10 
M1,

11 
M1,

12 
M1,

13 
M1,

14 
M1,

15 
M1,

16 
M1,

17 

                    
J1,

1 
0 0 0 0 6 0 0 0 0 0 0 15 0 0 0 0 0 17 15 

J2,

1 
0 0 0 0 27 0 0 0 0 0 22 0 0 0 0 0 7 37 17 

J3,

1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

J4,

1 
0 0 0 0 17 0 0 0 0 0 0 0 0 0 0 0 18 21 3 

J5,

1 
0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 13 23 28 

J6,

1 
0 0 20 0 2 0 0 0 0 0 0 0 0 0 0 0 10 33 2 

J7,

1 
0 0 6 0 0 0 0 0 0 0 0 4 0 0 0 0 0 9 26 

J8,

1 
0 0 0 0 20 0 0 0 0 0 0 13 0 0 0 0 29 26 24 

J9,

1 
0 0 14 0 14 0 0 0 0 0 17 0 0 0 0 0 22 5 12 

J1

0,1 
0 0 1 0 4 0 0 0 0 0 0 0 0 0 0 0 11 38 19 

J1

1,1 
0 0 6 0 31 0 0 0 0 0 22 0 0 0 0 0 11 37 24 
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Change over from Jj’p’ to J4,1 on Mi,k 

                    

 

M

1,1 
M

2,1 
M

3,1 
M

1,2 
M

1,3 
M

1,4 
M

1,5 
M

1,6 
M

1,7 
M

1,8 
M

1,9 
M1,

10 
M1,

11 
M1,

12 
M1,

13 
M1,

14 
M1,

15 
M1,

16 
M1,

17 

                    
J1,

1 
31 0 0 0 22 0 0 0 0 0 0 0 0 0 0 0 0 20 17 

J2,

1 
0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 26 17 12 

J3,

1 
0 0 0 0 30 0 0 0 0 0 0 0 0 0 0 0 4 24 27 

J4,

1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

J5,

1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 6 17 30 

J6,

1 
0 0 0 0 28 0 0 0 0 0 0 0 0 0 10 0 31 29 18 

J7,

1 
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 35 35 

J8,

1 
28 0 0 28 3 0 0 0 0 0 0 0 0 0 13 0 9 23 35 

J9,

1 
0 0 0 25 37 0 0 0 0 0 0 0 0 0 0 0 21 12 9 

J1

0,1 
0 0 0 0 37 0 0 0 0 0 0 0 0 0 26 0 38 14 3 

J1

1,1 
4 0 0 0 16 0 0 0 0 0 0 0 0 0 21 0 37 9 30 
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Change over from Jj’p’ to J5,1 on Mi,k 

                    

 M

1,1 
M

2,1 
M

3,1 
M

1,2 
M

1,3 
M

1,4 
M

1,5 
M

1,6 
M

1,7 
M

1,8 
M

1,9 
M1,

10 
M1,

11 
M1,

12 
M1,

13 
M1,

14 
M1,

15 
M1,

16 
M1,

17 

                    

J1,

1 

0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 19 0 33 22 

J2,

1 

0 12 0 0 0 36 0 0 0 0 0 0 0 0 0 28 24 30 4 

J3,

1 

0 0 18 0 0 0 0 0 0 0 0 0 0 0 0 0 27 8 37 

J4,

1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 1 18 30 

J5,

1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

J6,

1 

0 0 25 0 0 37 0 0 0 0 0 0 0 0 21 2 6 28 17 

J7,

1 

0 0 15 0 0 29 0 0 0 0 0 0 0 0 0 21 0 11 12 

J8,

1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 31 2 6 25 21 

J9,

1 

0 11 16 0 0 0 0 0 0 0 0 0 0 0 0 0 3 27 25 

J1

0,1 

0 0 10 0 0 0 0 0 0 0 0 0 0 0 20 0 5 29 20 

J1

1,1 

0 0 34 0 0 0 0 0 0 0 0 0 0 0 6 4 34 27 35 
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Change over from Jj’p’ to J6,1 on Mi,k 

                    

 M

1,1 
M

2,1 
M

3,1 
M

1,2 
M

1,3 
M

1,4 
M

1,5 
M

1,6 
M

1,7 
M

1,8 
M

1,9 
M1,

10 
M1,

11 
M1,

12 
M1,

13 
M1,

14 
M1,

15 
M1,

16 
M1,

17 

                    

J1,

1 

0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 25 0 10 18 

J2,

1 

0 0 0 0 13 9 0 0 0 0 0 0 0 0 0 14 17 34 38 

J3,

1 

0 0 9 0 31 0 0 0 0 0 0 0 0 0 0 0 28 26 14 

J4,

1 

0 0 0 0 26 0 0 0 0 0 0 0 0 0 4 0 15 34 8 

J5,

1 

0 0 37 0 0 19 0 0 0 0 0 0 0 0 29 25 33 39 11 

J6,

1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

J7,

1 

0 0 18 0 0 38 0 0 0 0 0 0 0 0 0 8 0 35 38 

J8,

1 

0 0 0 0 8 0 0 0 0 0 0 0 0 0 4 26 1 30 9 

J9,

1 

0 0 19 0 10 0 0 0 0 0 0 0 0 0 0 0 19 5 15 

J1

0,1 

0 0 25 0 4 0 0 0 0 0 0 0 0 0 18 0 28 22 16 

J1

1,1 

0 0 15 0 22 0 0 0 0 0 0 0 0 0 10 3 3 14 30 
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Change over from Jj’p’ to 

J7,1 on Mi,k       

                    

 

M

1,1 
M

2,1 
M

3,1 
M

1,2 
M

1,3 
M

1,4 
M

1,5 
M

1,6 
M

1,7 
M1,

8 
M1,

9 
M1,1

0 
M1,1

1 
M1

,12 
M1

,13 
M1

,14 
M1

,15 
M1

,16 
M1

,17 

                    
J1,

1 
39 0 0 0 0 0 0 0 0 0 0 36 0 32 0 23 0 34 38 

J2,

1 
0 0 0 0 0 36 0 0 0 0 0 0 0 0 0 34 0 7 8 

J3,

1 
0 0 12 0 0 0 0 0 0 0 0 24 0 0 0 0 0 37 32 

J4,

1 
38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 39 25 

J5,

1 
0 0 15 0 0 36 0 0 0 0 0 0 0 0 0 30 0 37 34 

J6,

1 
0 0 14 0 0 14 0 0 0 0 0 0 0 0 0 6 0 39 2 

J7,

1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

J8,

1 
29 0 0 0 0 0 0 0 0 0 0 18 0 0 0 10 0 24 9 

J9,

1 
0 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27 27 

J1

0,1 
0 0 38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 39 

J1

1,1 
33 0 17 0 0 0 0 0 0 0 0 0 0 0 0 39 0 18 4 
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Change over from Jj’p’ to J8,1 on Mi,k 

                    

 

M

1,1 
M

2,1 
M

3,1 
M

1,2 
M

1,3 
M

1,4 
M

1,5 
M

1,6 
M

1,7 
M

1,8 
M

1,9 
M1,

10 
M1,

11 
M1,

12 
M1,

13 
M1,

14 
M1,

15 
M1,

16 
M1,

17 

                    
J1,

1 
29 0 0 0 29 0 0 0 0 0 0 20 0 0 0 22 0 9 24 

J2,

1 
0 0 0 0 22 0 0 0 0 0 0 0 0 0 0 22 22 5 34 

J3,

1 
0 0 0 0 8 0 0 0 0 0 0 1 0 0 0 0 30 1 39 

J4,

1 
10 0 0 33 21 0 0 0 0 0 0 0 0 0 23 0 36 13 5 

J5,

1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 30 34 12 5 38 

J6,

1 
0 0 0 0 27 0 0 0 0 0 0 0 0 0 4 32 4 32 26 

J7,

1 
18 0 0 0 0 0 0 0 0 0 0 25 0 0 0 39 0 20 9 

J8,

1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

J9,

1 
0 0 0 33 9 0 0 0 0 0 0 0 0 0 0 0 16 19 31 

J1

0,1 
0 0 0 0 3 0 0 0 0 0 0 0 0 0 38 0 16 11 33 

J1

1,1 
7 0 0 0 6 0 0 0 0 0 0 0 0 0 24 7 17 9 5 
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Change over from Jj’p’ to J9,1 on Mi,k 

                    

 

M

1,1 
M

2,1 
M

3,1 
M

1,2 
M

1,3 
M

1,4 
M

1,5 
M

1,6 
M

1,7 
M

1,8 
M

1,9 
M1,

10 
M1,

11 
M1,

12 
M1,

13 
M1,

14 
M1,

15 
M1,

16 
M1,

17 

                    
J1,

1 
0 3 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 33 21 

J2,

1 
0 12 0 0 28 0 0 0 0 0 38 0 0 0 0 0 4 8 33 

J3,

1 
0 0 20 0 36 0 0 0 0 0 24 0 0 0 0 0 13 29 28 

J4,

1 
0 0 0 9 22 0 0 0 0 0 0 0 0 0 0 0 9 24 17 

J5,

1 
0 37 19 0 0 0 0 0 0 0 0 0 0 0 0 0 5 22 23 

J6,

1 
0 0 8 0 14 0 0 0 0 0 0 0 0 0 0 0 36 29 8 

J7,

1 
0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28 7 

J8,

1 
0 0 0 32 35 0 0 0 0 0 0 0 0 0 0 0 28 27 37 

J9,

1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

J1

0,1 
0 0 38 0 35 0 0 0 0 0 0 0 0 0 0 0 35 9 27 

J1

1,1 
0 0 37 0 34 0 0 0 0 0 15 0 0 0 0 0 33 27 15 
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Change over from Jj’p’ to J10,1 on Mi,k 

                    

 

M

1,1 
M

2,1 
M

3,1 
M

1,2 
M

1,3 
M

1,4 
M

1,5 
M

1,6 
M

1,7 
M

1,8 
M

1,9 
M1,

10 
M1,

11 
M1,

12 
M1,

13 
M1,

14 
M1,

15 
M1,

16 
M1,

17 

                    
J1,

1 
0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 0 20 32 

J2,

1 
0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 3 36 6 

J3,

1 
0 0 34 0 9 0 0 0 0 0 0 0 0 0 0 0 10 1 30 

J4,

1 
0 0 0 0 12 0 0 0 0 0 0 0 0 0 38 0 24 20 37 

J5,

1 
0 0 4 0 0 0 0 0 0 0 0 0 0 0 2 0 12 1 31 

J6,

1 
0 0 3 0 37 0 0 0 0 0 0 0 0 0 37 0 10 31 23 

J7,

1 
0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 10 

J8,

1 
0 0 0 0 23 0 0 0 0 0 0 0 0 0 38 0 5 36 10 

J9,

1 
0 0 14 0 28 0 0 0 0 0 0 0 0 0 0 0 34 4 17 

J1

0,1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

J1

1,1 
0 0 30 0 12 0 0 0 13 0 0 0 0 0 19 0 22 18 36 
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Change over from Jj’p’ to J11,1 on Mi,k 

                    

 
M

1,1 
M

2,1 
M

3,1 
M

1,2 
M

1,3 
M

1,4 
M

1,5 
M

1,6 
M

1,7 
M

1,8 
M

1,9 
M1,

10 
M1,

11 
M1,

12 
M1,

13 
M1,

14 
M1,

15 
M1,

16 
M1,

17 

                    
J1,

1 
17 0 0 0 33 0 0 0 0 0 0 0 0 0 0 1 0 31 14 

J2,

1 
0 0 0 0 20 0 0 0 0 0 6 0 0 0 0 26 35 26 14 

J3,

1 
0 0 6 0 18 0 0 0 0 0 34 0 0 0 0 0 33 22 19 

J4,

1 
3 0 0 0 31 0 0 0 0 0 0 0 0 0 8 0 24 34 8 

J5,

1 
0 0 28 0 0 0 0 0 0 0 0 0 0 0 25 25 35 27 6 

J6,

1 
0 0 15 0 7 0 0 0 0 0 0 0 0 0 16 26 27 2 29 

J7,

1 
24 0 24 0 0 0 0 0 0 0 0 0 0 0 0 3 0 4 13 

J8,

1 
8 0 0 0 38 0 0 0 0 0 0 0 0 0 37 20 4 10 39 

J9,

1 
0 0 14 0 38 0 0 0 0 0 8 0 0 0 0 0 6 29 3 

J10

,1 
0 0 19 0 25 0 0 0 18 0 0 0 0 0 28 0 38 3 25 

J11

,1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Change over reference to  Jj’p’ on Mi,k 

                    

 
M

1,1 
M

2,1 
M

3,1 
M

1,2 
M

1,3 
M

1,4 
M

1,5 
M

1,6 
M

1,7 
M

1,8 
M

1,9 
M1,

10 
M1,

11 
M1,

12 
M1,

13 
M1,

14 
M1,

15 
M1,

16 
M1,

17 

                    
J1,

1 
33 26 0 0 18 0 0 0 0 0 0 10 0 34 0 2 0 26 4 

J2,

1 
0 17 0 0 19 14 0 0 0 0 24 0 0 0 0 12 4 38 34 

J3,

1 
0 0 7 0 3 0 0 0 0 14 30 28 0 0 0 0 19 22 2 

J4,

1 
19 0 0 5 2 0 0 0 0 0 0 0 12 0 1 0 13 15 3 

J5,

1 
0 28 22 0 0 1 12 0 0 0 0 0 0 0 3 20 12 25 26 

J6,

1 
0 0 36 0 7 24 0 0 0 0 0 0 0 0 16 13 13 37 13 

J7,

1 
39 0 29 0 0 14 0 0 0 0 0 23 0 36 0 9 0 13 31 

J8,

1 
15 0 0 9 32 0 0 0 0 0 0 17 0 0 39 25 22 16 32 

J9,

1 
0 23 2 30 19 0 0 0 0 0 39 0 0 0 0 0 27 28 35 

J10

,1 
0 0 9 0 5 0 0 0 20 0 0 0 0 0 22 0 8 14 35 

J11

,1 
32 0 22 0 3 0 0 0 37 0 7 0 0 0 27 18 37 29 3 
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APPENDIX B.  

User Manual for Scheduling software 

Procedure for running the scheduling algorithm 

 

1) Create five new excel files namely IS1, IS2, IS3, IS4 and IS5 and place these in 

the C:\ drive. Each file will contain the final best solution obtained from a 

particular initial solution. For example, IS1 will contain best solution for a given 

problem, using Initial Solution 1 as a starting point. 

2) Place the excel data file (which has appropriate data for job release time, due date, 

weight, setup time, etc.) in the C:\ drive. 

3) Save this excel data file as “Test.xls”.  

4) If we need to provide the algorithm with a new problem instance, revise the same 

“Test.xls” with new data set. 

5) Unzip the “TestProduct” folder and double click on it. Next double click on the 

folder named “Combine” and run the C# file which is also named “Combine” 

6) Click on the “Build” Tab and select “Rebuild Solution”. 
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7) Now click on the “Debug” tab and select “Start without Debugging”. 
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8) Five console windows will pop up. Each window will prompt the user to enter the 

total number of jobs. Enter the total number of jobs in each console window (that 

the new problem instance has). For example if the new problem instance has a 

total of 50 jobs, then simply enter “50” using the keyboard and press “Enter” key. 
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9) The algorithm‟s execution will begin immediately and after few seconds, five 

excel sheets will appear on the screen, showing the best results obtained using 

each initial solution. 

10)  The first row in each excel sheet will read as follows: 

The best TWT (total weighted tardiness) obtained from Initial Solution 1 (or 2 or 

3) is ______ (a value). 
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11) Among the five different excel spreadsheets (generated by the algorithm), choose 

the excel file that has the least TWT (total weighted tardiness) and save it. 

Discard the other excel files. 

Understanding the final schedule 

 

1) The final schedule provides us information regarding which job should be 

processed on which particular machine (to obtain a near optimal solution). It also 

gives us the time when the setup of a job should start, along with the time when 

the actual run of the job should start. Completion time of each job (in each 

stage) is also provided to avoid any confusion.  

2) Additional Clarifications: 

 Setup start time: The setup start time presented in the schedule is the latest 

time by which the setup of a job must begin on a particular machine. 

 Start time of the run: The start time of the run of a job on a particular 

machine is the time when the setup of a job is finished and the actual run of a 

job should begin. 

 Completion time: Completion time of a job on a particular machine is the 

start time of the run + run time of that job. 

 In the final schedule, jobs are sorted in increasing order (for each stage) 

according “the start times of their runs”. 
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APPENDIX C 

CMAX EVALUATION  

  

Proj Job 

Runtime 

on 

Machine 

Machine 

Availability Beta 

Avg 

set 

up 

M/c Avai 

+ 

beta*Avg 

set up 

Job 

release 

time 

Add 

runtime 

divide 

by 

num 

of 

m/c 

Sum 

total 

Sum 

total 

divided 

by 3 

            
1 1 45 3 0.52 24.40 15.70 2 60.70 53.25 574.66 191.55 

1 1 35 8 0.24 11.50 10.80 2 45.80 

   

            
1 2 34 8 0.51 23.00 19.63 4 53.63 53.63 

  

            
1 3 33 4 0.34 8.85 6.99 4 39.99 39.99 

  

            
1 4 34 3 0.47 19.60 12.14 8 46.14 46.14 

  

            
1 5 41 8 0.50 16.00 16.01 4 57.01 52.41 

  
1 5 32 4 0.59 20.00 15.80 4 47.80 

   

            
1 6 43 4 0.53 22.71 16.07 6 59.07 59.07 

  

            
1 7 40 3 0.81 35.60 31.72 8 71.72 65.61 

  
1 7 45 4 0.52 20.14 14.50 8 59.50 

   

            
1 8 37 3 0.47 15.80 10.44 7 47.44 47.44 

  

            
1 9 24 8 0.27 18.75 13.15 4 37.15 46.75 

  
1 9 47 4 0.29 18.71 9.35 4 56.35 

   

            
1 10 46 4 0.27 15.43 8.16 4 54.16 54.16 

  

            
1 11 48 3 0.34 16.80 8.75 4 56.75 56.21 

  
1 11 41 4 0.58 18.29 14.68 4 55.68 
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Hybrid Critical Ratio Evaluations 

 

P J Wt Release DueDate M1 M2 M3 

Avg 

Set up 

on M1 

Avg Set 

up on 

M2 

Avg Set 

up on 

M3 

HCR 

M1 

HCR 

M2 

HCR 

M3 

     

3 8 4 

      

              
1 1 1 2 1684 45 35 0 24.40 11.75 0.00 24.27 36.02 

 
1 2 2 4 520 0 34 0 0.00 23.00 0.00 

 

4.56 

 
1 3 1 4 339 0 0 33 0.00 0.00 8.86 

  

8.10 

1 4 3 8 1462 34 0 0 19.60 0.00 0.00 9.09 

  
1 5 3 4 1501 0 41 32 0.00 16.00 20.00 

 

8.78 9.62 

1 6 2 6 517 0 0 43 0.00 0.00 22.71 

  

3.93 

1 7 2 8 388 40 0 45 35.60 0.00 20.14 2.57 

 

2.98 

1 8 3 7 603 37 0 0 15.80 0.00 0.00 3.81 

  
1 9 2 4 441 0 24 47 0.00 18.75 18.71 

 

5.16 3.36 

1 10 1 4 819 0 0 46 0.00 0.00 15.43 

  

13.33 

1 11 1 4 350 48 0 41 16.80 0.00 18.29 5.40 

 

5.90 
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Appendix D 

 

Nine job block 1 

 

P J W RR DD M1,1 M2,1 M3,1 M1,2 M1,3 M1,4 M1,5 M1,6 M1,7 M1,8 M1,9 M1,10 

     
2 5 7 21 26 30 32 37 44 47 53 59 

Runtime of Jobs 

1 1 2 6 2593 45 33 0 40 40 0 0 0 42 29 40 0 

1 2 1 4 1063 0 0 41 0 27 0 0 0 0 43 0 0 

1 3 2 2 1664 38 31 0 0 32 0 0 0 0 0 0 34 

1 4 2 3 2435 0 0 31 0 30 0 0 0 0 0 45 0 

1 5 2 4 2821 0 0 38 0 0 0 31 35 0 0 35 26 

1 6 3 8 2542 0 41 0 0 37 0 0 0 0 0 40 0 

1 7 1 8 2732 0 0 40 0 34 29 0 0 32 44 37 42 

1 8 1 7 2582 47 0 0 38 39 0 37 33 0 37 33 0 

1 9 3 2 1171 38 0 0 0 39 0 0 0 0 0 37 0 

 

 

P J W RR DD M1,11 M1,12 M1,13 M1,14 M1,15 M1,16 M1,17 

     
61 64 68 70 77 81 86 

Runtime of Jobs 

1 1 2 6 2593 0 0 40 29 35 27 31 

1 2 1 4 1063 0 39 0 0 0 36 34 

1 3 2 2 1664 41 0 0 26 28 29 40 

1 4 2 3 2435 0 36 0 41 36 27 44 

1 5 2 4 2821 0 33 0 43 28 40 38 

1 6 3 8 2542 0 35 30 0 0 26 37 

1 7 1 8 2732 0 34 35 28 0 38 39 

1 8 1 7 2582 0 0 40 29 37 37 47 

1 9 3 2 1171 0 0 0 40 28 25 47 
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Nine job block 2 

P J W RR DD M1,1 M2,1 M3,1 M1,2 M1,3 M1,4 M1,5 M1,6 M1,7 M1,8 M1,9 M1,10 

     
4 5 8 25 33 40 47 55 59 66 74 79 

Runtime of Jobs 

1 1 3 7 964 0 0 28 0 41 0 0 0 0 0 0 0 

1 2 2 6 735 47 0 0 0 36 0 0 0 0 0 0 0 

1 3 2 6 1643 0 30 0 0 29 31 0 0 46 45 0 41 

1 4 1 3 1702 0 0 28 34 0 0 31 0 0 0 0 0 

1 5 1 3 1067 0 34 0 38 23 0 0 0 0 0 46 0 

1 6 3 5 1365 42 0 0 41 26 31 0 0 0 34 0 0 

1 7 3 5 1326 0 41 0 0 25 0 0 0 0 35 0 0 

1 8 2 5 836 37 0 37 0 34 0 0 0 0 29 35 28 

1 9 1 6 1092 0 32 0 0 25 0 42 0 31 41 48 0 

 

P J W RR DD M1,11 M1,12 M1,13 M1,14 M1,15 M1,16 M1,17 

     
85 93 98 106 111 119 121 

Runtime of Jobs 

1 1 3 7 964 0 27 0 0 29 42 45 

1 2 2 6 735 0 0 0 0 0 38 38 

1 3 2 6 1643 0 0 0 34 41 41 42 

1 4 1 3 1702 0 0 28 39 44 33 32 

1 5 1 3 1067 0 0 0 35 39 30 44 

1 6 3 5 1365 0 0 0 27 38 25 43 

1 7 3 5 1326 0 32 0 0 45 37 43 

1 8 2 5 836 0 30 27 0 40 25 34 

1 9 1 6 1092 0 0 0 34 42 39 46 
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Nine job block 3 

P J W RR DD M1,1 M2,1 M3,1 M1,2 M1,3 M1,4 M1,5 M1,6 M1,7 M1,8 M1,9 M1,10 

     
8 6 4 25 28 34 42 44 49 55 59 64 

Runtime of Jobs 

1 1 3 3 498 0 25 0 0 43 28 0 47 0 0 0 26 

1 2 3 3 500 0 27 0 0 0 0 0 0 0 0 40 0 

1 3 1 6 966 30 0 0 0 30 39 0 0 0 0 25 0 

1 4 2 8 523 0 36 0 33 43 0 0 0 0 0 0 30 

1 5 1 4 508 39 38 0 0 38 0 0 0 31 0 30 0 

1 6 3 6 543 0 0 31 28 41 0 32 31 0 30 0 0 

1 7 2 6 822 25 0 37 0 45 0 0 0 0 0 0 0 

1 8 2 5 527 27 0 24 0 43 0 0 0 0 42 29 35 

1 9 1 4 476 33 0 0 28 43 31 0 0 30 0 37 0 

 

P J W RR DD M1,11 M1,12 M1,13 M1,14 M1,15 M1,16 M1,17 

     
68 70 73 75 81 84 87 

Runtime of Jobs 

1 1 3 3 498 0 39 36 0 40 43 41 

1 2 3 3 500 0 33 28 33 43 34 27 

1 3 1 6 966 0 0 0 33 45 31 38 

1 4 2 8 523 40 0 0 41 0 27 32 

1 5 1 4 508 0 30 38 0 0 43 28 

1 6 3 6 543 0 0 0 0 47 32 31 

1 7 2 6 822 0 32 0 37 33 36 32 

1 8 2 5 527 0 36 0 41 39 43 38 

1 9 1 4 476 0 0 35 30 44 28 36 
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Nine job block 5 

P J W RR DD M1,1 M2,1 M3,1 M1,2 M1,3 M1,4 M1,5 M1,6 M1,7 M1,8 M1,9 M1,10 

     
2 4 3 14 21 26 33 35 38 42 47 54 

Runtime of Jobs 

1 1 1 8 225 36 25 0 39 37 0 0 0 0 0 24 0 

1 2 1 8 192 0 42 0 47 0 27 31 0 0 0 0 0 

1 3 2 4 1996 0 0 33 40 0 0 0 0 0 42 0 0 

1 4 2 6 497 33 43 0 0 46 0 0 0 0 43 0 37 

1 5 3 4 396 0 42 0 0 33 0 0 0 0 28 0 0 

1 6 1 3 299 33 32 0 0 38 0 0 0 0 25 0 0 

1 7 3 8 345 0 28 40 0 34 0 0 0 0 0 39 0 

1 8 1 6 272 0 31 0 0 32 40 0 0 0 33 24 0 

1 9 3 3 249 30 0 0 37 33 0 0 0 0 40 41 0 

 

P J W RR DD M1,11 M1,12 M1,13 M1,14 M1,15 M1,16 M1,17 

     
57 62 68 74 81 84 89 

Runtime of Jobs 

1 1 1 8 225 0 27 39 31 0 41 41 

1 2 1 8 192 0 0 36 31 38 33 33 

1 3 2 4 1996 0 0 0 0 34 35 31 

1 4 2 6 497 0 0 41 39 0 39 43 

1 5 3 4 396 0 0 28 41 34 36 31 

1 6 1 3 299 0 0 0 37 47 37 28 

1 7 3 8 345 38 0 32 0 37 35 34 

1 8 1 6 272 0 0 0 41 40 37 35 

1 9 3 3 249 0 34 32 0 47 31 29 
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TWELVE JOBS BLOCK 1 

P J W RR DD M1,1 M2,1 M3,1 M1,2 M1,3 M1,4 M1,5 M1,6 M1,7 M1,8 M1,9 M1,10 

     
2 6 7 19 26 34 41 43 48 51 57 61 

Runtime of Jobs 

1 1 3 2 2344 37 0 32 0 32 34 0 0 0 39 45 0 

1 2 2 5 3180 0 0 30 35 28 0 0 0 0 0 0 0 

1 3 2 8 3103 0 0 47 0 34 0 0 0 48 0 0 29 

1 4 2 2 2253 0 36 36 38 0 0 0 0 0 0 42 35 

1 5 1 8 995 0 39 0 0 0 26 0 0 0 0 39 0 

1 6 3 2 3598 0 28 33 31 38 0 0 0 31 0 0 0 

1 7 2 2 3052 0 0 46 0 37 34 0 0 0 0 38 36 

1 8 1 2 3185 0 26 31 0 41 26 24 0 0 0 28 0 

1 9 1 4 3376 0 41 0 0 0 0 0 0 0 0 35 42 

1 10 1 6 3178 41 0 0 0 30 0 0 0 0 42 0 0 

1 11 1 5 1431 35 0 45 0 37 0 0 0 0 0 0 40 

1 12 1 4 3498 29 33 0 0 27 0 0 0 0 0 0 0 

 

P J W RR DD M1,11 M1,12 M1,13 M1,14 M1,15 M1,16 M1,17 

     
64 67 74 77 82 90 96 

Runtime of Jobs 

1 1 3 2 2344 0 0 39 37 0 41 42 

1 2 2 5 3180 0 0 33 29 0 39 29 

1 3 2 8 3103 0 0 0 0 44 27 39 

1 4 2 2 2253 0 35 36 42 0 42 35 

1 5 1 8 995 0 45 47 36 28 26 44 

1 6 3 2 3598 0 0 0 0 32 39 29 

1 7 2 2 3052 0 42 45 35 37 39 30 

1 8 1 2 3185 0 32 32 30 0 37 40 

1 9 1 4 3376 0 43 0 36 0 27 28 

1 10 1 6 3178 0 0 0 29 42 38 35 

1 11 1 5 1431 0 42 40 27 38 43 41 
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1 12 1 4 3498 0 30 0 27 28 37 29 

 

 

 

TWELVE JOBS BLOCK 2 

P J W RR DD M1,1 M2,1 M3,1 M1,2 M1,3 M1,4 M1,5 M1,6 M1,7 M1,8 M1,9 M1,10 

     
4 8 5 24 29 31 39 42 50 58 66 71 

Runtime of Jobs 

1 1 1 3 1540 0 33 0 0 31 0 0 0 0 26 0 0 

1 2 3 8 1967 44 0 0 42 32 0 0 24 0 0 0 0 

1 3 3 7 2854 0 32 0 0 40 29 34 0 23 0 33 0 

1 4 3 8 2680 0 37 31 0 26 0 45 0 0 0 0 30 

1 5 3 8 2947 0 35 0 35 34 28 0 0 0 0 0 0 

1 6 2 6 2169 0 0 38 0 34 0 0 0 31 36 27 0 

1 7 3 5 2461 0 0 33 0 31 33 30 0 0 33 31 0 

1 8 3 4 2798 30 40 0 0 32 0 0 0 0 43 0 23 

1 9 2 3 2043 44 0 0 0 26 0 0 0 0 0 32 0 

1 10 2 5 2088 0 0 41 0 42 0 33 0 0 0 0 0 

1 11 1 6 1294 42 27 0 42 36 43 0 0 0 0 0 0 

1 12 2 8 1098 0 37 0 38 36 0 0 0 27 0 0 26 

 

P J W RR DD M1,11 M1,12 M1,13 M1,14 M1,15 M1,16 M1,17 

     
76 84 86 94 96 102 106 

Runtime of Jobs 

1 1 1 3 1540 0 0 0 47 29 46 39 

1 2 3 8 1967 0 37 33 44 30 40 40 

1 3 3 7 2854 0 0 44 45 38 40 48 

1 4 3 8 2680 28 30 0 44 29 36 41 

1 5 3 8 2947 0 0 0 41 38 36 35 

1 6 2 6 2169 0 0 0 43 37 36 32 

1 7 3 5 2461 0 0 31 35 41 44 47 

1 8 3 4 2798 0 45 0 45 36 34 37 

1 9 2 3 2043 39 28 33 48 39 31 32 

1 10 2 5 2088 0 33 0 32 47 36 30 

1 11 1 6 1294 0 0 0 32 43 34 34 

1 12 2 8 1098 0 0 39 31 0 37 41 
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TWELVE BLOCKS JOB 3 

P J W RR DD M1,1 M2,1 M3,1 M1,2 M1,3 M1,4 M1,5 M1,6 M1,7 M1,8 M1,9 M1,10 

     
5 8 7 23 26 30 32 35 42 50 58 65 

Runtime of Jobs 

1 1 3 5 659 26 30 0 0 27 0 0 0 0 0 0 39 

1 2 2 6 634 41 35 0 0 38 0 0 0 33 25 0 0 

1 3 3 7 676 0 31 37 36 0 37 0 0 0 0 0 0 

1 4 1 2 567 0 36 0 30 31 0 0 0 29 32 31 27 

1 5 2 8 665 0 0 34 0 31 0 0 0 0 0 0 25 

1 6 3 4 624 0 38 0 0 0 38 0 0 31 0 26 35 

1 7 1 3 636 37 0 0 47 37 34 0 41 0 0 0 0 

1 8 2 4 999 30 0 0 0 36 27 0 0 0 38 0 36 

1 9 1 4 675 0 44 0 0 32 0 0 0 0 0 0 25 

1 10 1 5 597 0 0 41 0 35 42 0 0 0 0 0 0 

1 11 2 4 617 0 35 0 33 30 0 0 0 29 0 0 0 

1 12 3 7 646 33 0 0 0 28 0 0 0 29 0 0 0 

 

P J W RR DD M1,11 M1,12 M1,13 M1,14 M1,15 M1,16 M1,17 

     
73 77 80 82 89 96 101 

Runtime of Jobs 

1 1 3 5 659 0 0 35 30 0 41 33 

1 2 2 6 634 0 33 40 0 35 28 23 

1 3 3 7 676 40 0 0 0 0 45 40 

1 4 1 2 567 0 0 36 30 0 41 30 

1 5 2 8 665 0 32 0 38 34 31 28 

1 6 3 4 624 0 0 0 35 33 42 25 

1 7 1 3 636 0 0 0 35 33 27 26 

1 8 2 4 999 0 35 45 38 37 30 40 

1 9 1 4 675 0 0 0 25 31 35 31 

1 10 1 5 597 0 0 0 31 44 34 22 

1 11 2 4 617 0 0 0 27 0 35 29 
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1 12 3 7 646 0 0 37 29 43 32 29 

 

 

 

 

 

TWELVE JOBS BLOCK 5 

P J W RR DD M1,1 M2,1 M3,1 M1,2 M1,3 M1,4 M1,5 M1,6 M1,7 M1,8 M1,9 M1,10 

     
4 4 4 17 21 24 26 30 32 40 44 50 

Runtime of Jobs 

1 1 1 7 635 0 26 36 38 28 0 0 0 0 31 0 0 

1 2 3 8 554 0 30 0 0 39 0 31 0 0 0 0 0 

1 3 1 2 254 0 0 42 0 28 0 38 0 0 0 38 40 

1 4 2 2 236 40 0 30 25 0 0 0 0 0 0 29 0 

1 5 3 4 1006 26 0 0 30 24 0 0 43 0 0 0 0 

1 6 3 7 538 0 0 40 39 38 38 0 0 0 0 0 0 

1 7 2 6 563 24 0 0 24 38 0 0 0 0 34 0 0 

1 8 3 6 370 0 26 0 0 25 0 0 0 0 0 0 0 

1 9 3 4 698 0 0 28 0 40 0 0 0 0 0 31 0 

1 10 3 6 1809 37 40 0 31 30 39 0 0 0 32 28 42 

1 11 3 6 309 29 0 0 0 34 24 30 0 0 0 0 41 

1 12 1 2 297 0 32 0 22 42 35 0 0 0 0 31 0 
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P J W RR DD M1,11 M1,12 M1,13 M1,14 M1,15 M1,16 M1,17 

     
54 58 66 70 75 82 89 

Runtime of Jobs 

1 1 1 7 635 0 36 0 0 35 37 36 

1 2 3 8 554 0 47 33 37 27 37 43 

1 3 1 2 254 0 0 27 27 38 35 35 

1 4 2 2 236 0 32 0 35 0 40 33 

1 5 3 4 1006 0 0 0 40 37 34 34 

1 6 3 7 538 0 0 33 30 37 25 43 

1 7 2 6 563 0 0 0 29 28 39 35 

1 8 3 6 370 0 0 0 0 0 38 48 

1 9 3 4 698 35 0 0 0 27 38 41 

1 10 3 6 1809 0 0 39 29 0 29 38 

1 11 3 6 309 0 36 34 34 45 37 30 

1 12 1 2 297 0 0 40 0 37 38 30 
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SEVENTEEN JOBS BLOCK 1 

P J W R DD M1,1 M2,1 M3,1 M1,2 M1,3 M1,4 M1,5 M1,6 M1,7 M1,8 M1,9 M1,10 

     
4 6 7 20 24 27 34 42 46 52 57 59 

Runtime of Jobs 

1 1 3 7 4381 34 0 37 32 29 0 0 0 39 40 0 0 

1 2 1 4 4197 0 0 42 0 28 0 0 0 33 29 35 0 

1 3 2 8 4641 0 25 0 0 29 0 0 0 24 0 0 34 

1 4 2 5 3369 37 0 0 0 38 0 0 0 0 33 0 0 

1 5 3 8 4640 0 0 28 0 26 0 0 0 0 34 0 0 

1 6 2 5 4347 0 0 29 0 29 0 0 0 0 24 0 33 

1 7 2 6 3983 0 0 42 27 27 0 0 0 0 0 28 0 

1 8 2 7 4249 0 34 0 0 26 0 0 0 33 29 0 36 

1 9 1 2 4651 0 0 40 0 33 0 0 0 0 36 0 0 

1 10 2 2 4480 32 25 0 0 41 0 0 0 0 31 0 28 

2 1 1 3 4675 30 0 41 0 31 0 0 0 0 0 0 0 

2 2 3 8 4487 0 0 26 0 0 0 0 0 32 27 0 0 

2 3 1 6 4124 0 29 0 0 26 0 0 0 26 0 0 0 

2 4 2 7 3965 0 28 0 37 41 34 0 0 37 29 30 0 

2 5 1 8 4511 31 0 0 0 32 0 0 0 0 23 31 0 

2 6 2 3 4561 0 0 25 33 36 0 0 0 30 0 0 0 

2 7 1 6 1594 0 29 0 30 29 0 41 0 0 0 0 30 
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P J W R DD M1,11 M1,12 M1,13 M1,14 M1,15 M1,16 M1,17 

     
61 66 73 76 81 87 91 

Runtime of Jobs 

1 1 3 7 4381 0 0 32 39 32 37 32 

1 2 1 4 4197 0 0 0 39 42 31 38 

1 3 2 8 4641 36 38 32 36 39 29 27 

1 4 2 5 3369 0 33 34 40 0 34 32 

1 5 3 8 4640 0 0 36 0 0 34 37 

1 6 2 5 4347 0 0 0 0 29 33 36 

1 7 2 6 3983 29 0 0 30 29 27 31 

1 8 2 7 4249 0 0 32 43 0 28 23 

1 9 1 2 4651 0 47 47 0 38 39 40 

1 10 2 2 4480 0 0 39 39 27 26 28 

2 1 1 3 4675 0 32 41 43 24 33 28 

2 2 3 8 4487 0 0 37 0 30 25 28 

2 3 1 6 4124 0 0 0 0 27 33 39 

2 4 2 7 3965 31 0 0 42 26 28 38 

2 5 1 8 4511 37 38 0 31 0 39 24 

2 6 2 3 4561 0 0 0 0 32 30 38 

2 7 1 6 1594 0 0 34 0 0 24 37 

 

 

 

 

 

 

 

 

 



157 
 

 
 

 

 

 

SEVENTEEN JOBS BLOCK 2 

P J W RR DD M1,1 M2,1 M3,1 M1,2 M1,3 M1,4 M1,5 M1,6 M1,7 M1,8 M1,9 M1,10 

     
4 8 4 22 28 35 39 44 52 54 61 67 

Runtime of Jobs 

1 1 2 6 3052 38 0 0 33 37 41 0 0 0 27 39 0 

1 2 3 3 1475 0 0 33 0 41 0 0 0 0 0 0 29 

1 3 1 5 1676 32 0 0 41 43 0 0 0 0 35 40 0 

1 4 1 5 1703 0 28 0 0 27 0 0 44 0 0 0 37 

1 5 2 2 1290 45 0 0 0 29 0 34 0 0 0 0 0 

1 6 1 4 2657 0 0 38 36 27 26 0 0 27 30 0 0 

1 7 2 3 1784 42 0 0 0 28 0 31 0 0 0 33 0 

1 8 1 4 1879 0 0 32 0 27 0 0 45 0 30 0 34 

1 9 2 5 3575 34 29 0 27 26 0 42 0 0 0 0 0 

1 10 3 6 2971 38 30 0 0 32 41 0 0 0 0 28 0 

2 1 1 7 2857 0 0 31 29 38 38 0 0 0 0 41 30 

2 2 1 2 1685 36 0 0 0 42 35 0 0 0 0 24 0 

2 3 1 2 1360 0 0 42 31 37 0 0 0 39 0 38 0 

2 4 1 4 1490 0 0 27 24 36 0 0 0 0 40 40 0 

2 5 2 6 1447 0 39 0 0 35 0 0 0 26 0 24 0 

2 6 2 8 2002 0 0 32 0 26 0 0 0 0 0 0 0 

2 7 3 5 2238 0 44 0 25 44 32 38 0 0 0 0 0 
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P J W RR DD M1,11 M1,12 M1,13 M1,14 M1,15 M1,16 M1,17 

     
73 76 81 88 93 96 104 

Runtime of Jobs 

1 1 2 6 3052 0 0 0 39 43 31 29 

1 2 3 3 1475 0 0 45 41 33 40 41 

1 3 1 5 1676 0 0 37 37 31 48 29 

1 4 1 5 1703 41 33 33 35 0 33 44 

1 5 2 2 1290 0 42 0 0 40 47 32 

1 6 1 4 2657 0 29 0 33 0 34 31 

1 7 2 3 1784 0 45 0 23 0 44 37 

1 8 1 4 1879 0 43 0 37 30 48 36 

1 9 2 5 3575 0 46 0 0 43 39 39 

1 10 3 6 2971 0 37 40 40 42 40 40 

2 1 1 7 2857 0 38 0 36 40 33 38 

2 2 1 2 1685 0 0 0 25 32 36 42 

2 3 1 2 1360 0 30 0 0 28 45 44 

2 4 1 4 1490 0 0 45 37 30 32 37 

2 5 2 6 1447 0 41 0 24 45 34 33 

2 6 2 8 2002 0 0 0 0 32 47 38 

2 7 3 5 2238 0 32 42 34 41 30 39 
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SEVENTEEN JOBS BLOCK 3 

P J W RR DD M1,1 M2,1 M3,1 M1,2 M1,3 M1,4 M1,5 M1,6 M1,7 M1,8 M1,9 M1,10 

     
5 2 8 18 24 31 39 45 51 55 61 66 

Runtime of Jobs 

1 1 1 2 1049 0 23 0 45 34 0 39 0 0 0 0 0 

1 2 1 6 930 24 31 0 0 42 41 0 0 38 0 0 0 

1 3 1 7 1022 0 0 38 0 0 0 0 26 0 0 0 0 

1 4 3 6 940 35 0 0 0 43 24 0 32 0 32 0 0 

1 5 1 3 858 39 0 38 40 0 0 0 0 0 0 24 39 

1 6 1 5 953 0 0 28 0 28 0 0 0 34 0 0 0 

1 7 2 8 988 32 0 0 35 43 0 0 40 0 0 0 35 

1 8 2 2 1031 40 0 0 38 41 0 0 0 0 0 0 0 

1 9 3 2 875 0 0 46 44 39 0 0 0 0 23 0 0 

1 10 3 5 1041 0 34 34 30 39 40 0 0 0 39 0 42 

2 1 1 3 997 0 0 30 0 35 0 27 0 0 0 41 40 

2 2 1 2 1057 30 0 0 0 0 0 0 0 0 28 0 0 

2 3 1 3 914 42 0 0 40 27 0 0 0 0 23 0 0 

2 4 2 7 925 0 32 0 0 32 0 0 0 34 32 42 0 

2 5 1 3 954 0 33 38 0 40 0 0 24 31 0 0 0 

2 6 1 8 889 24 32 0 0 43 0 0 0 0 30 35 0 

2 7 1 4 873 0 27 0 0 41 0 0 0 28 0 0 0 
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P J W RR DD M1,11 M1,12 M1,13 M1,14 M1,15 M1,16 M1,17 

     
69 76 83 87 91 99 105 

Runtime of Jobs 

1 1 1 2 1049 0 0 0 25 30 28 41 

1 2 1 6 930 0 42 0 41 39 39 43 

1 3 1 7 1022 0 42 0 30 44 41 31 

1 4 3 6 940 0 0 36 0 34 29 36 

1 5 1 3 858 0 0 33 34 41 29 45 

1 6 1 5 953 0 0 28 41 34 33 46 

1 7 2 8 988 0 28 33 39 0 41 32 

1 8 2 2 1031 36 38 0 41 0 45 28 

1 9 3 2 875 44 32 28 27 37 29 32 

1 10 3 5 1041 0 0 0 0 45 41 31 

2 1 1 3 997 32 29 29 31 31 33 30 

2 2 1 2 1057 0 0 0 0 45 28 35 

2 3 1 3 914 0 0 0 0 44 45 39 

2 4 2 7 925 0 28 0 28 32 38 32 

2 5 1 3 954 0 27 37 37 0 46 32 

2 6 1 8 889 0 0 0 33 0 31 44 

2 7 1 4 873 0 0 30 24 0 37 33 
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Table E.1 Experimental results for small problem structure 

9 Jobs, 17 Stages , 19 Machines, Block 1 

Initial Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 

IS1 1845 384 .054 384 .068 295 .065 384 .053 384 .062 384 .068 

IS2 1745 487 .090 354 .088 384 .087 384 .088 384 .076 558 .076 

IS3 2003 384 .044 412 .048 375 .037 375 .054 384 .058 843 .038 

IS4 1355 279 .036 258 .042 251 .041 279 .036 279 .041 689 .041 

IS5 1148 384 .047 384 .047 371 .031 380 .055 457 .054 709 .038 

9 Jobs, 17 Stages , 19 Machines, Block 2 

Initial Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 

IS1 553 64 .025 64 .032 64 .031 64 .029 64 .045 64 .038 

IS2 601 64 .041 64 .047 64 .046 64 .048 64 .034 64 .045 

IS3 889 77 .079 77 .088 77 .088 73 .069 77 .078 77 .078 

IS4 493 64 .038 64 .036 64 .036 64 .038 64 .046 64 .032 

IS5 493 64 .071 64 .088 64 .088 64 .075 64 .076 64 .076 

9 Jobs, 17 Stages , 19 Machines, Block 3 

Initial Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 

IS1 1489 548 .050 596 .034 737 .035 854 .057 605 .045 1184 .043 

IS2 1575 548 .076 601 .075 554 .077 645 .070 906 .079 1016 .071 

IS3 1602 548 .056 552 .085 596 .078 717 .066 810 .067 823 .068 

IS4 1492 596 .074 737 .067 440 .082 803 .082 803 .064 950 .086 

IS5 1483 548 .058 596 .086 440 .078 854 .061 605 .066 1184 .066 

9 Jobs, 17 Stages , 19 Machines, Block 4 

Initial Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 

IS1 186 0 .031 0 .041 0 .046 0 .034 0 .062 0 .062 

IS2 202 0 .054 0 .039 0 .033 0 .050 0 .062 0 .078. 

IS3 219 0 .056 0 .071 0 .065 0 .035 0 .062 0 .078 

IS4 151 0 .044 0 .042 0 .040 0 .037 0 .060 0 .080 

IS5 151 0 .041 0 .061 0 .068 0 .040 0 .059 0 .044 

9 Jobs, 17 Stages , 19 Machines, Block 5 

Initial Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 

IS1 3988 2945 .035 2241 .031 3026 .031 3701 .035 3701 .036 3290 .044 

IS2 3512 2564 .059 2545 .066 2865 .065 2456 .055 2403 .064 2314 .056 

IS3 3536 2778 .045 2777 .058 2817 .054 2978 .045 2943 .044 2464 .057 

IS4 3168 2943 .030 2943 .036 2863 .043 3026 .053 2943 .068 2737 .042 

IS5 3465 2737 .044 2737 .054 2984 .058 2943 .045 2943 .039 2737 .059 
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12 Jobs, 17 Stages , 19 Machines, Block 1 

Initial Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 

IS1 576 201 .093 166 .046 186 .046 321 .094 317 .042 414 .043 

IS2 654 345 .045 345 .046 186 .046 345 .050 317 .056 301 .054 

IS3 603 287 .087 147 .089 145 .098 416 .095 354 .089 443 .096 

IS4 554 196 .033 121 .053 126 .040 203 .037 215 .058 369 .046 

IS5 554 297 .085 247 .098 300 .098 335 .095 279 .098 374 .098 

12 Jobs, 17 Stages , 19 Machines, Block 2 

Initial Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 

IS1 756 356 .048 543 .037 598 .031 356 .047 469 .038 664 .035 

IS2 884 198 .065 611 .058 562 .082 291 .070 436 .061 676 .064 

IS3 818 471 .045 546 .050 523 .054 543 .047 354 .046 531 .086 

IS4 901 512 .061 546 .075 602 .068 543 .055 279 .078 223 .062 

IS5 830 385 .040 543 .056 332 .051 350 .047 249 .046 276 .084 

12 Jobs, 17 Stages , 19 Machines, Block 3 

Initial Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 

IS1 1190 329 .056 319 .062 298 .065 578 .066 578 .063 654 .065 

IS2 983 345 .071 465 .050 223 .054 321 .070 421 .087 689 .059 

IS3 875 300 .097 441 .097 410 .090 300 .085 450 .100 637 .098 

IS4 759 367 .066 319 .047 356 .096 383 .067 389 .047 577 .088 

IS5 552 304 .097 337 .096 332 .090 397 .088 335 .100 512 .098 

12 Jobs, 17 Stages , 19 Machines, Block 4 

Initial Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 

IS1 187 0 .046 0 .078 0 .075 0 .056 0 .062 0 .064 

IS2 268 0 .070 0 .099 0 .064 0 .064 0 .126 0 .095 

IS3 93 0 .034 0 .098 0 .070 0 .032 0 .087 0 .069 

IS4 56 0 .051 0 .078 0 .020 0 .050 0 .020 0 .030 

IS5 70 0 .025 0 .074 0 .092 0 .075 0 .081 0 .131 

12 Jobs, 17 Stages , 19 Machines, Block 5 

Initial Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 

IS1 3698 2086 .049 2086 .046 1649 .046 2215 .056 2215 .042 2906 .062 

IS2 3559 1334 .047 1856 .054 1316 .040 1648 .056 2680 .051 2606 .060 

IS3 3475 762 .083 1978 .059 741 .065 1021 .034 1943 .047 2359 .045 

IS4 3876 1649 .045 1649 .048 1018 .052 2640 .081 2640 .064 3067 .040 

IS5 3338 1925 .080 2295 .058 1649 .060 2412 .047 2412 .048 2309 .046 
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17 Jobs, 17 Stages , 19 Machines, Block 1 

Initial Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 

IS1 1683 1482 .093 1250 .102 1275 .109 1124 .094 1035 .067 978 .114 

IS2 1456 1201 .153 1183 .103 975 .126 1292 .149 1257 .089 924 .123 

IS3 951 681 .192 652 .145 593 .158 644 .147 629 .197 788 .141 

IS4 1029 800 .093 756 .100 593 .109 597 .088 597 .080 788 .104 

IS5 1212 687 .199 656 .222 644 .216 644 .169 543 .168 701 .165 

17 Jobs, 17 Stages , 19 Machines, Block 2 

Initial Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 

IS1 962 618 .094 618 .103 618 .109 618 .087 618 .062 618 .105 

IS2 947 618 .170 618 .199 618 .188 618 .166 618 .188 618 .199 

IS3 1433 618 .127 612 .142 618 .147 618 .122 618 .153 618 .148 

IS4 676 612 .083 612 .065 612 .079 612 .082 612 .084 612 .092 

IS5 951 612 .127 612 .142 612 .147 612 .122 612 .155 612 .145 

17 Jobs, 17 Stages , 19 Machines, Block 3 

Initial Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 

IS1 1571 365 .156 365 .271 198 .296 709 .152 487 .174 890 .224 

IS2 1601 659 .238 575 .214 254 .211 547 .225 422 .213 953 .215 

IS3 2075 452 .250 248 .270 442 .280 753 .230 722 .240 793 .255 

IS4 2308 232 .166 232 .224 220 .213 982 .166 1000 .220 652 .212 

IS5 2142 92 .250 92 .270 91 .280 615 .230 615 .240 532 .260 

17 Jobs, 17 Stages , 19 Machines, Block 4 

Initial Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 

IS1 155 0 .093 0 .109 0 .124 0 .093 0 .249 0 .124 

IS2 264 0 .114 0 .395 0 .355 0 .198 0 .272 0 .156 

IS3 188 0 .117 0 .311 0 .318 0 .215 0 .225 0 .254 

IS4 96 0 .109 0 .062 0 .109 0 .066 0 .124 0 .062 

IS5 121 0 .167 0 .188 0 .191 0 .136 0 .248 0 .233 

17 Jobs, 17 Stages , 19 Machines, Block 5 

Initial Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 

IS1 5494 1974 .171 2244 .218 2779 .234 3529 .176 3091 .217 2924 .224 

IS2 4578 3564 .228 2681 .263 1987 .231 3214 .227 2457 .230 3655 .225 

IS3 4666 3874 .250 2475 .235 2654 .260 3475 .300 2645 .261 3661 .302 

IS4 4077 2646 .140 2646 .211 2607 .218 3752 .151 2705 .200 3914 .209 

IS5 4270 2646 .256 2607 .247 2837 .262 3139 .306 2382 .341 3161 .300 
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25 Jobs, 17 Stages , 19 Machines, Block 1 

Initial Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 

IS1 440 74 .30 74 .47 74 .55 74 .27 74 .39 74 .37 

IS2 705 53 .23 53 .31 74 .41 161 .20 161 .38 133 .41 

IS3 667 134 .35 134 .67 89 .78 105 .29 74 .30 111 .41 

IS4 517 71 .27 71 .74 74 .38 74 .34 74 .45 74 .56 

IS5 414 84 .20 74 .43 74 .43 74 .32 74 .60 74 .60 

25 Jobs, 17 Stages , 19 Machines, Block 2 

Initial Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 

IS1 488 321 .54 321 .53 321 .68 321 .46 321 .75 321 .62 

IS2 496 321 .43 321 .62 321 .88 321 .58 321 .75 321 .63 

IS3 1168 321 .28 321 .79 321 .94 321 .40 321 .82 321 .59 

IS4 470 321 .47 321 .72 321 .88 321 .62 321 .85 321 .80 

IS5 391 321 .31 321 .72 321 .73 321 .37 321 .63 321 .61 

25 Jobs, 17 Stages , 19 Machines, Block 3 

Initial Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 

IS1 776 680 .30 514 .47 559 .55 669 .27 581 .39 495 .37 

IS2 793 680 .45 612 .54 559 .67 658 .27 543 .61 652 .61 

IS3 948 576 .43 548 .62 566 .63 579 .20 543 .84 547 .77 

IS4 735 576 .26 548 .48 549 .75 579 .59 543 .58 543 .76 

IS5 714 680 .40 543 .92 543 .70 543 .42 543 .82 543 .84 

25 Jobs, 17 Stages , 19 Machines, Block 4 

Initial Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 

IS1 143 41 .44 27 .60 24 .71 41 .41 27 .98 24 .82 

IS2 173 41 .42 41 .70 24 .80 41 .55 41 .98 24 .75 

IS3 556 13 .59 13 .77 16 .68 16 .36 13 .76 15 .64 

IS4 195 48 .64 29 .82 41 .76 59 .49 38 .80 42 .64 

IS5 210 48 .31 29 .75 43 .48 49 .56 38 .81 47 .75 

25 Jobs, 17 Stages , 19 Machines, Block 5 

Initial Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 

IS1 6317 3409 .48 3279 .75 4554 1.57 5247 .17 4497 .43 4800 .72 

IS2 4593 3547 .31 2978 .71 4009 .98 3512 .32 3510 .88 3854 .90 

IS3 5478 4517 .26 4517 .52 4918 .98 4580 .46 3936 .88 5162 .95 

IS4 5662 4987 .48 3681 .60 3785 .83 4257 .25 4262 .80 5125 .58 

IS5 4531 4325 .59 3674 .81 4128 .70 3451 .19 3451 .64 3587 .47 
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35 Jobs, 17 Stages , 19 Machines, Block 1 

Initial Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 

IS1 108 38 2.37 38 5.37 38 4.71 38 3.08 38 4.80 38 5.69 

IS2 108 38 1.76 38 5.39 38 4.10 38 4.11 38 5.05 38 6.57 

IS3 277 76 2.04 76 4.53 76 4.04 76 3.01 76 5.78 76 4.71 

IS4 102 38 2.14 38 2.61 38 4.09 38 3.87 38 6.83 38 6.43 

IS5 83 38 2.00 38 5.19 38 3.82 38 3.86 38 5.83 38 5.09 

35 Jobs, 17 Stages , 19 Machines, Block 2 

Initial Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 

IS1 1681 411 3.75 411 5.62 411 6.05 411 4.42 411 5.15 411 5.00 

IS2 1342 420 2.71 407 6.39 443 4.27 483 4.39 407 5.86 404 6.32 

IS3 1256 469 4.80 469 5.25 410 4.80 536 3.23 479 6.07 408 7.84 

IS4 659 389 2.13 385 5.22 381 2.68 389 3.25 386 7.42 381 5.29 

IS5 1450 417 3.11 354 4.37 358 4.56 417 3.26 412 6.46 381 5.08 

35 Jobs, 17 Stages , 19 Machines, Block 3 

Initial Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 

IS1 2415 221 2.11 360 7.99 117 6.64 221 1.33 266 4.09 360 5.74 

IS2 2580 203 2.62 196 6.05 193 5.52 196 3.22 110 4.61 196 4.50 

IS3 2412 240 3.69 151 4.27 153 6.63 240 3.25 151 7.84 151 5.59 

IS4 1585 248 2.52 151 6.80 153 6.39 248 3.23 151 5.90 151 4.77 

IS5 1585 248 2.23 151 6.45 153 4.18 248 2.00 151 5.90 151 4.00 

35 Jobs, 17 Stages , 19 Machines, Block 4 

Initial Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 

IS1 79 0 2.87 0 4.43 0 6.82 0 2.21 0 4.68 0 6.76 

IS2 87 0 2.67 0 5.83 0 3.96 0 2.52 0 4.61 0 3.65 

IS3 63 0 3.44 0 5.41 0 4.80 0 3.70 0 7.74 0 4.97 

IS4 59 0 3.12 0 4.63 0 5.81 0 2.74 0 3.59 0 3.59 

IS5 59 0 3.45 0 4.02 0 5.07 0 3.11 0 4.39 0 4.39 

35 Jobs, 17 Stages , 19 Machines, Block 5 

Initial Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 

IS1 7671 2721 2.8 2637 4.90 4222 4.61 2701 2.22 2088 3.98 4764 2.74 

IS2 9595 2725 2.26 2870 4.10 6363 5.17 2597 2.93 2112 5.15 5124 4.16 

IS3 8644 2968 3.15 2870 5.15 6620 5.19 3896 3.05 2988 5.00 3626 5.00 

IS4 8562 2764 2.75 2632 5.15 3793 4.44 2755 2.85 2755 4.28 2707 5.21 

IS5 8774 2527 3.00 2801 6.21 2684 5.65 2618 2.97 2600 3.95 2618 6.03 
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45 Jobs, 17 Stages , 19 Machines, Block 1 

Initial Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 

IS1 2187 1410 5.6 1410 7.04 1410 6.32 1410 4.78 1410 6.97 1410 7.85 

IS2 3245 1421 4.18 1405 8.25 1404 7.19 1419 3.99 1405 8.33 1404 8.33 

IS3 1077 778 5.14 756 9.87 997 8.98 778 5.46 756 9.54 997 8.54 

IS4 1204 864 6.00 864 8.12 921 8.02 950 4.74 864 9.54 904 7.77 

IS5 1260 1013 5.84 732 10.02 745 9.97 941 5.19 941 8.79 885 8.98 

45 Jobs, 17 Stages , 19 Machines, Block 2 

Initial Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 

IS1 1161 420 3.98 420 7.71 420 8.30 420 3.98 420 7.71 420 8.30 

IS2 1257 417 4.64 402 8.86 400 7.12 417 4.45 406 6.44 404 6.44 

IS3 1576 469 5.16 469 7.25 419 7.25 503 4.36 479 7.71 410 6.71 

IS4 659 384 4.78 384 6.38 383 8.03 386 5.19 385 8.23 401 7.91 

IS5 1218 647 4.55 647 6.02 845 6.95 647 4.55 647 6.02 845 6.95 

45 Jobs, 17 Stages , 19 Machines, Block 3 

Initial Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 

IS1 4671 2252 6.67 2175 9.19 2693 9.78 2252 6.21 2175 8.64 2693 9.26 

IS2 4887 2275 5.47 2175 8.12 2693 8.12 2275 4.96 2175 7.17 2693 7.02 

IS3 5595 2968 4.85 2870 6.76 2663 6.76 2968 5.12 2870 8.23 2663 8.16 

IS4 5628 2676 5.02 2756 7.55 2654 6.57 2676 5.02 2756 7.55 2654 6.57 

IS5 5272 2600 4.12 2600 6.31 2754 6.31 2600 4.12 2600 6.31 2754 6.31 

45 Jobs, 17 Stages , 19 Machines, Block 4 

Initial Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 

IS1 117 0 3.24 0 6.23 0 5.87 0 3.24 0 6.23 0 5.87 

IS2 203 0 4.18 0 7.12 0 6.57 0 4.18 0 7.12 0 6.57 

IS3 218 0 4.06 0 7.47 0 8.15 0 5.12 0 6.85 0 7.19 

IS4 93 0 5.45 0 7.68 0 7.68 0 5.45 0 7.68 0 7.68 

IS5 93 0 3.97 0 6.29 0 6.29 0 4.52 0 8.25 0 8.36 

45 Jobs, 17 Stages , 19 Machines, Block 5 

Initial Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 

IS1 4478 3620 5.23 3329 8.96 3620 7.69 3112 5.01 3112 8.65 3805 7.71 

IS2 4585 3529 4.78 3529 8.24 3594 8.56 3259 5.62 3125 9.12 3592 8.12 

IS3 8296 3543 6.02 3515 9.68 3242 9.68 3309 6.78 2943 10.21 3423 9.43 

IS4 3825 3572 5.64 3223 10.23 3110 9.51 3276 4.25 3006 8.75 3257 9.01 

IS5 3825 3572 5.12 3223 9.85 3110 8.79 3276 5.18 3006 7.28 3257 8.62 
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55 Jobs, 17 Stages , 19 Machines, Block 1 

Initial Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 

IS1 450 123 9.12 123 13.45 231 14.73 143 9.12 143 13.45 221 14.73 

IS2 651 105 10.45 101 14.50 220 15.07 112 11.77 105 15.50 264 13.96 

IS3 752 250 9.48 210 13.85 342 12.82 234 10.78 143 14.18 144 15.81 

IS4 347 112 11.70 98 15.09 178 14.10 117 8.89 98 13.20 124 15.20 

IS5 347 112 12.15 98 16.78 178 17.61 117 10.62 98 14.44 124 13.26 

55 Jobs, 17 Stages , 19 Machines, Block 2 

Initial Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 

IS1 778 351 8.16 251 14.12 98 13.25 351 8.16 251 12.04 98 13.83 

IS2 576 98 9.12 85 15.18 98 14.32 98 9.58 85 13.81 98 14.10 

IS3 734 130 8.19 84 13.24 112 14.36 84 10.45 84 15.45 83 15.45 

IS4 643 197 10.65 125 15.97 121 15.97 197 8.64 129 14.17 121 15.48 

IS5 643 197 11.23 125 16.61 121 16.11 197 10.72 129 14.75 121 15.50 

55 Jobs, 17 Stages , 19 Machines, Block 3 

Initial Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 

IS1 3587 2513 8.15 1709 13.45 1395 14.65 2513 8.14 1709 12.82 1395 15.75 

IS2 4904 1772 9.23 1778 14.45 1778 14.82 1772 9.40 1778 13.58 1778 13.58 

IS3 6752 1932 10.14 1393 13.68 1932 13.72 1932 8.65 1393 13.27 1932 13.27 

IS4 5899 1945 8.45 1419 14.93 1800 15.30 1945 10.17 1419 16.55 1800 14.59 

IS5 5899 1945 9.38 1419 15.84 1800 14.68 1945 11.45 1419 17.18 1800 16.03 

55 Jobs, 17 Stages , 19 Machines, Block 4 

Initial Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 

IS1 210 0 9.12 0 13.54 0 14.56 0 7.17 0 12.75 0 13.24 

IS2 179 0 10.16 0 13.72 0 12.62 0 10.10 0 14.13 0 13.54 

IS3 98 0 8.15 0 11.76 0 14.18 0 10.45 0 12.68 0 14.87 

IS4 67 0 10.73 0 12.82 0 13.19 0 9.73 0 13.82 0 16.13 

IS5 154 0 9.56 0 13.97 0 12.85 0 8.22 0 11.91 0 11.47 

55 Jobs, 17 Stages , 19 Machines, Block 5 

Initial Solution 
TS1 TS2 TS3 TS4 TS5 TS6 

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT 

IS1 9495 4412 9.42 4407 13.85 5759 12.16 4214 10.12 4214 15.32 5662 13.26 

IS2 8516 4468 10.11 4386 14.25 5212 14.65 3741 11.47 3642 14.69 4713 13.26 

IS3 7521 4435 9.17 3620 13.46 4622 17.18 4872 9.83 4800 16.71 6471 12.82 

IS4 6863 4393 11.73 4393 14.89 3541 11.29 3842 10.72 3125 16.29 4275 14.26 

IS5 8132 5463 10.46 4545 15.41 4587 13.81 7821 11.03 5740 15.01 4834 17.23 
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Appendix F.  ANALYSIS OF EXPERIMENTAL RESULTS (TOTAL WEIGHTED 

TARDINESS) 

 

 

 

 

Figure F.1  Box Plots of total weighted tardiness between (a) levels of IS; (b) levels of TS 

for small problem structures 
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Figure F.2  Box Plots of total weighted tardiness between (a) levels of IS; (b) levels of TS 

for medium problem structures 
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Figure F.3  Box Plots of total weighted tardiness between (a) levels of IS; (b) levels of TS 

for large problem structures 
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Figure F.4  Box Plots of Log(TWT) between (a) levels of IS; (b) levels of TS for small 

problem structure 
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Figure F.5  Box Plots of Log(TWT) between (a) levels of IS; (b) levels of TS for medium 

problem structure 
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Figure F.6  Box Plots of Log(TWT) between (a) levels of IS; (b) levels of TS for the 

small problem structure 
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APPENDIX G.  ANALYSIS OF EXPERIMENTAL RESULTS (COMPUTATION 

TIME) 

 

 

 

 

 

Figure G.1  Box Plots of computation time between (a) levels of IS; (b) levels of TS for 

small problem structure 

 

IS1 IS2 IS3 IS4 IS5

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

IS

C
om

pu
ta

tio
n 

 T
im

e

TS1 TS2 TS3 TS4 TS5 TS6

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

TS

C
om

pu
ta

tio
n 

 T
im

e



175 
 

 
 

 

 

 

 

 

 

Figure G.2  Box Plots of computation time between (a) levels of IS; (b) levels of TS for 

medium problem structure 
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Figure G.3  Box Plots of computation time between (a) levels of IS; (b) levels of TS for 

large problem structure 
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Figure G.4  Box Plots of Log (Computation Time) between (a) levels of IS; (b) levels of 

TS for small problem structure 

IS1 IS2 IS3 IS4 IS5

-3
.5

-3
.0

-2
.5

-2
.0

-1
.5

-1
.0

IS

Lo
g 

( C
om

pu
ta

tio
n 

 T
im

e 
)

TS1 TS2 TS3 TS4 TS5 TS6

-3
.5

-3
.0

-2
.5

-2
.0

-1
.5

-1
.0

TS

Lo
g 

( C
om

pu
ta

tio
n 

 T
im

e 
)



178 
 

 
 

 

 

 

 

 

 

 

Figure G.5  Box Plots of Log (Computation Time) between (a) levels of IS; (b) levels of 

TS for medium problem structure 
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