

AN ABSTRACT OF THE THESIS OF

Vaibhav Pandya for the degree of Master of Science in Industrial Engineering presented

on June 15, 2011.

Title: A Methodology for Scheduling Jobs in a Flexible Flowshop with Sequence

Dependent Setup Times and Machine Skipping.

Abstract approved: __

Rasaratnam Logendran

A flexible flowshop, comprised of one or more stages having unrelated parallel

machines, is investigated in this research. Unrelated parallel machines can perform the

same function but have different capacity or capability. Since this problem is motivated

by industry research, dynamic job release times and dynamic machine availability times

have been considered. Each job considered in this research can have different weight and

due date. Sequence-dependent setup times of jobs further add to the complexity of the

research. Machine skipping is yet another innate feature of this research that allows jobs

to skip one or more stages depending upon customer‟s demand or budgetary constraints.

The objective of this research is to minimize the sum of the weighted tardiness of all jobs

released within the planning horizon.

The research problem is modeled as a mixed (binary) integer-linear programming

model and is shown to be strictly NP-hard. Being strongly NP-hard, industry size

problems cannot be solved using an implicit enumeration technique within a reasonable

computation time. Cognizant of the challenges in solving industry-size problems, we use

the tabu-search-based heuristic solution algorithm to find optimal/near optimal solutions.

Five different initial solution finding mechanisms, based on dispatching rules, have been

developed, to initiate the search. The five initial solution finding mechanisms (IS1-IS5)

have been used in conjunction with the six tabu-search-based heuristics (TS1-TS6) to

solve the problems in an effective and efficient manner. The applicability of the search

algorithm on an example problem has been demonstrated. The tabu-search based

heuristics are tested on seven small problems and the quality of their solutions is

compared to the optimal solutions obtained by the branch-and-bound technique. The

evaluations show that the tabu-search based heuristics are capable of obtaining solutions

of good quality within a much shorter computation time. The best performer among these

heuristics recorded a percentage deviation of only 2.19%.

The performance of the tabu-search based heuristics is compared by conducting a

statistical experiment that is based on a randomized complete block design. Three sizes of

problem structures ranging from 9 jobs to 55 jobs are used in the experiment. The results

of the experiment suggest that no IS finding mechanism or TS algorithm contributed to

identifying a better quality solution (i.e a lower TWT) for all three problem instances (i.e.

small, medium and large). In other words, no IS finding mechanism or TS algorithm

could statistically outperform others. In absence of a distinct outperformer, TS1 with

short-term memory and fixed TLS are recommended for all problem instances. When

comparing the efficiency of the search algorithm, the results of the experiment show that

IS1, which refers to the EDD (earliest due date) method, is recommended as the initial

solution generation method for small problem sizes. The EDD method is capable of

obtaining an initial solution that helps the tabu-search based heuristic to get to the final

solution within a short time. TS1 is recommended as the tabu-search based heuristic for

large problems, in order to save on time. TS1 is also recommended to solve small and

medium problem structures in absence of a statistically proven outperformer.

©Copyright by Vaibhav Pandya

June 15, 2011

All Rights Reserved

A Methodology for Scheduling Jobs in a Flexible Flowshop with Sequence Dependent

Setup Times and Machine Skipping

by

Vaibhav Pandya

A THESIS

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Master of Science

Presented June 15, 2011

Commencement June 2012

 Master of Science thesis of Vaibhav Pandya presented on June 15, 2011

APPROVED:

Major Professor, representing Industrial Engineering

Head of the School of Mechanical, Industrial and Manufacturing Engineering

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon State

University libraries. My signature below authorizes release of my thesis to any reader

upon request.

Vaibhav Pandya, Author

ACKNOWLEDGEMENTS

This thesis wouldn‟t have come to fruition without the support of my dear ones.

They have provided me with unconditional help and encouragement at every stage of my

life. I will be indebted to them for the rest of my life.

I would like to convey my sincere gratitude to Dr. Logendran, my Major

Professor, who gave me the opportunity to work on a problem that was industry funded.

He helped me on each and every step and was extremely patient throughout my stay at

Oregon State University. This funded project was my first opportunity to work with

industry professionals on a day to day basis. This project prepared me to face challenges

that are prevalent in the industry.

I would like to thank my employer Microchip Technologies for being

exceptionally cooperative. Their help and support was phenomenal. I would like to thank

my committee members: Dr. Dan Schafer, my minor professor, Dr. Karl Haapala, my

committee member, and Dr. Mario Magana, my graduate council representative, for

taking the time to evaluate my thesis.

My friends at OSU, SWOSU and India made my journey remarkably effortless. I

would like to thank Amelia, Chetan, Ravi, Tulsi, Valmiki, Venkatesh, and Vineeth for all

their help and support. Raul for helping me out with statistical analysis. I would also like

to thank my Persian friends Amir, Yasaman and Hadi for helping me out with my course

work and thesis. Pankaj‟s and Ziggy‟s friendship has been invaluable and their support

has been one of my biggest strengths. So thank you everyone for being there.

Finally, I would like to express my sincere gratefulness to my parents, my beloved sisters

Vartika and Shweta, and my grand mom (dadi) for their prayers, support and

encouragement. My Grand dad whose blessings have helped me conquer new heights.

Pooja for standing by my side during my rough phase and for being extremely

understanding and patient. My teachers at OSU, SWOSU and India, whose priceless

contributions have made things look incredibly easy. And everyone back home, who

made this journey successful. Thank you once again.

TABLE OF CONTENTS

Page

1 INTRODUCTION ... 1

2 LITERATURE REVIEW .. 4

3 PROBLEM STATEMENT .. 9

4 MODEL DEVELOPMENT .. 11

4.1 Introduction .. 11

4.2 Assumptions ... 11

4.3 Notations: ... 12

4.4 Mathematical Model .. 13

4.5 Model Description .. 14

4.6 Computational Complexity of the Research Problem .. 15

5 HEURISTIC ALGORITHM ... 17

5.1 Introduction .. 17

5.2 Tabu Search Mechanism .. 18

5.3 Initial Solution .. 21

5.4 Generation of Neighborhood Solutions.. 36

5.5 Steps of Tabu Search .. 38

5.6 Application of Heuristic Algorithm to Example Problem 45

6 THE OPTIMALITY OF TABU-SEARCH BASED HEURISTIC ALGORITHM .. 81

6.1 Comparison Between the Optimal Solution and Solution Obtained by the

Heuristic Algorithm... 83

6.2 The Effectiveness of Tabu-Search Based Heuristics for Medium and Large

Problems .. 87

7 RESULTS AND DISCUSSION .. 93

7.1 Data Generation.. 96

7.2 Design of Experiment... 100

7.3 Experimental Results and Analysis .. 103

8 Conclusion and Suggestions for further research .. 117

BIBLIOGRAPHY ... 121

APPENDICES .. 126

LIST OF TABLES

Table Page

Table 5-1 Problem Structure ... 46

Table 5-2 Example problem with 11 jobs ... 46

Table 5-3 Initial solutions of example problem .. 62

Table 5-4 The neighborhood solutions of initial solution as a result of applying swap and

insert moves .. 63

Table 5-5 Entries into the LTM matrix after perturbing the initial solution 68

Table 5-6 Results of tabu search applied to the initial solution of the example problem . 69

Table 5-7 Entries into the LTM matrix at the end of the search using the initial solution 71

Table 5-8 Results from the first restart based on maximal frequency 72

Table 5-9 Entries into the LTM matrix at the end of the first restart based on maximum

frequency... 73

Table 5-10 Results from the second restart based on maximal frequency 74

Table 5-11 Summary of results for the entire search process based on LTM-max 75

Table 5-12 Results of first restart based on minimum frequency 76

Table 5-13 Entries into the LTM matix at the end of first restart based on minimum

frequency... 77

Table 5-14 Results of second restart based on minimum frequency 78

Table 5-15 Summary of results for the entire search process based on LTM-min 80

Table 6-1 Results of solving the problems implicitly using CPLEX 9.0 83

Table 6-2 Tabu search based heuristic algorithms used in this research 84

Table 6-3 Percentage deviation of the solutions obtained by the heuristics for small

problems .. 84

Table 6-4 Computation time of the heuristics for small problems (in seconds) 86

Table 6-6 Results of applying the heuristics to medium problem structures with zero

values of TWT .. 88

LIST OF TABLES (Continued)

Table Page

Table 6-7 Average percentage deviation of the solutions obtained by the heuristics for

medium problem structure .. 90

Table 6-8 Results of applying the heuristics to large problem structures with zero values

of TWT.. 91

Table 6-9 Average percentage deviation of the solutions obtained by the heuristics for

large problem structure ... 92

Table 7-1 Due date classification .. 99

Table 7-2 Results for small size problems from ANOVA for TWT 106

Table 7-3 Results for small size problems from ANOVA for CT 107

Table 7-4 Differences of least square means for CT of small size problems (IS) 107

Table 7-5 Results for medium size problems from ANOVA for TWT 109

Table 7-6 Results for medium size problems from ANOVA for CT 111

Table 7-7 Differences of least square means for CT for medium size problems 111

Table 7-8 Results for large size problems from ANOVA for TWT 113

Table 7-9 Results for large size problems from ANOVA for CT................................... 114

Table 7-10 Differences of least squares means for CT of large size problems 115

DEDICATION

To my late grandfather - Shri Vinay Shanker Pandya

A Methodology for Scheduling Jobs in a Flexible Flowshop with

Sequence Dependent Setup Times and Machine Skipping

1 INTRODUCTION

Manufacturing firms are persistently discovering ingenious techniques to

overcome the fierce completion from their counterparts. Conventional manufacturing

approaches are constantly being replaced by novel practices to improve the overall

efficiency and effectiveness of the manufacturing system. Various manufacturing firms

are resorting to scheduling algorithms to help them meet the customer requirements in a

timely manner, and to reduce their operational costs.

The two vital components of a scheduling problem are machine configurations

and job characteristics. Typically, the machine configuration of a manufacturing plant

consists of either a flow shop or a job shop setting, with single or multiple machines. A

flow shop setting or a job shop setting may consist of several stages. Typically, in a flow

shop setting, each stage has only a single machine. If at least one stage of the flow shop

has more than one machine, it is termed as a flexible flow shop. Characteristically, in a

flow shop setting, jobs follow a flow line and have exactly one operation on each

machine. On the other hand, in a job shop setting, jobs do not strictly adhere to a flow

line.

The machines in a flexible flow shop environment can be classified into three

categories: identical parallel machines, uniform parallel machines and unrelated parallel

machines. In an identical parallel machine system, the processing time of a job is the

same on all machines. In a uniform parallel machine system, each machine has a unique

speed factor. The processing time of a job on each machine is determined by its speed

factor. In unrelated parallel machines, the processing time of a job may differ from one

machine to the other, depending on machine‟s capacity (low, medium or high). In an

unrelated parallel machines system, a machine with low capability usually takes more

time to process a job than a machine with high capability. Unrelated parallel machines

system is extensively used in the industry because a company may invest in similar

2

machines with different capability to cut down on investment or capital costs or to meet

the variation in production demand.

As mentioned earlier, along with machine configurations, job characteristics are

also an innate component of a scheduling problem. Cheng and Sin (1990) listed five

characteristics of a job: job processing time, due-date, preemptive sequencing,

precedence constraints and job release time. The first two characteristics do not require

much explanation and are relatively easy to understand. The third characteristic

(preemptive sequencing) refers to the idea of giving a particular job precedence over the

other, if it is deemed urgent. The fourth characteristic (precedence constraints)

determines the sequence in which the jobs are supposed to be processed on each machine.

The fifth characteristic (release time) of jobs refers to the time when a particular job is

available on a shop floor. A scenario in which one or more jobs are released at different

times is termed as dynamic job availability. On the other hand, if all the jobs are available

to be processed at the same time, it is called static job availability. Lodree et al. (2004)

suggested a scheduling rule for minimizing the number of tardy jobs in a dynamic flow

shop environment, consisting of m machines. The processing times and due dates of jobs

were allotted randomly. The research assumed that the availability time of jobs was not

known in advance and that the jobs arrive randomly to the system.

Similar to jobs, machines may also have different release times. If machines are

released at different times, the condition is called dynamic machine availability and if all

the machines are released at the same time, it is called static machine availability. In an

industrial environment, jobs compete for limited resources based on customer‟s priority

and due-date. A job which has a high priority and tight due date must be given preference

over another job with low priority and loose due date. A superior scheduling algorithm

must be capable of providing a sequence of jobs that would not only reduce the

manufacturing costs, but also meet the customer demand on time.

Since this research is aimed at solving a problem that is very much prevalent in

industry, jobs are assumed to have sequence-dependent setup times on machines. Setup

time may be defined as the time required for changing over from one job to another, on a

particular machine. If the setup time varies when changing over from one job to another,

3

then the jobs are said to have sequence-dependent setup times. If the setup time remains

the same for changing over from one job to another, then the jobs are said to have

sequence-independent setup times. Tasgetiren (2009) investigated the possibilities of

minimizing the total weighted tardiness of all jobs on a single machine with sequence-

dependent setup times. Pfund et al. (2008) explored the possibilities of scheduling jobs of

on identical parallel machines with sequence-dependent setup times. The purpose of their

study was to minimize the weighted tardiness of all the jobs.

The problem investigated in this thesis is directly motivated by a leading

manufacturing company. The industrial setting considered in the research problem is that

of a flexible flowshop with the possibility of machine skipping. A flexible flowshop

comprises of multiple stages with at least one (or more) stage having more than one

machine. The scheduling environment considered in this research is assumed to be

dynamic in job release time as well as machine availability time. The purpose of this

research is to find an optimal or near optimal schedule that would minimize the weighted

tardiness of all the jobs. Such an attempt is very much relevant to the industry since

customer satisfaction is the primary concern of all the firms. A job in this research can be

viewed as a customer order that has a „strategic weight‟ associated with it. The weight of

the job reflects its priority, i.e. a job with higher weight receives greater priority. The

tardiness of a job is evaluated as the difference in completion time and the due date of a

job. A negative tardiness is considered to be zero and suggests that the job was completed

before the due date. Weighed tardiness is evaluated by multiplying tardiness of a job by

its weight.

4

2 LITERATURE REVIEW

Production scheduling has been a key area of interest for several researchers over

the past 50 years. Johnson (1954) was the first one to introduce a systematic approach for

finding a mechanism that helped in obtaining an optimal solution for a two machine flow

shop (and also for a special case of three machines). Campbell, Dudek and Smith (CDS)

(1970) proposed a methodology that was an extension of Johnson‟s Algorithm. CDS

methodology uses the Johnson‟s algorithm in a heuristic manner whereby several

schedules are created from which the best is chosen. Nawaz, Enscore, and Ham (1983)

proposed a new algorithm based on the assumption that the job with greater total

processing time on all machines should be given priority over jobs with a lower total

processing time. Unlike the CDS algorithm, the NEH algorithm doesn‟t transform a m-

machine problem into a two machine problem. Instead, it aims at generating a best partial

solution for the original problem by adding a job in each step, to finally identify the best

(complete) solution.

Sriskandarajah and Sethi (1989) proposed a heuristic algorithm for a unique

flexible flow-shop problem, with only two machine centers. They assumed that each

machine center had the same number of homogeneous machines. Their research had an

underlying supposition that the primary operation on each job must initially be performed

on the first machine, followed by the second. The jobs were processed on any vacant

machine at the machine center, depending on its availability. Kyparisis and Koulamas

(2006) also investigated a two-stage flexible flow shop problem with uniform parallel

machines. The primary purpose of their research was to minimize the makespan of all the

jobs.

Taking advantage of branch-and-bound algorithm, Salvador (1973) investigated a

flexible flow shop problem aimed at minimizing the makespan with no in-process

buffers. A branch-and-bound algorithm for the general flow shop, with parallel machines,

was investigated by Hunsucker (1991). This structure became popular by the name of

hybrid flow shops and included in-process buffers. However, the algorithm was incapable

5

of solving large combinatorial problems, revealing the limitations of mixed integer

programming algorithms. Ding and Kittichartphayak (1994) developed three different

heuristic algorithms for minimizing the makespan in a flexible flow line. Their algorithm

was an extension of the heuristic algorithms used in regular flow shop scheduling

problems.

 Jaymohan and Rajendran (2000) explored the relative effectiveness of two approaches to

schedule jobs in a flexible flow shop environment. The first approach utilized the

possibility of using different dispatching rules at different stages of the flow shop and the

second approach utilized the same dispatching rule for all the stages in the flow-shop.

Both approaches were aimed at minimizing the flow time and tardiness of jobs. The

authors argue that most dispatching rules for flow shop scheduling assume that the cost of

holding per unit time is the same for all jobs. The authors further say that it is assumed

that the cost of tardiness per unit time is the same for all jobs. In other words, it is implied

that the holding cost of a job is directly proportional to its flowtime, and the tardiness

cost of a job is directly proportional to its positive lateness. The authors try to overcome

this deficiency by proposing a couple of dispatching rules, which consider different

weights or penalties for different jobs.

Wang (2005) investigated several scholarly articles published on flexible flow

shop scheduling. The purpose of the research was to review all the solution approaches

adopted in flexible flow shop scheduling, ranging from optimum to heuristic solutions.

The article not only presents a detail analysis of all the approaches, but also provides

suggestions for future research.

Flexible flow shop scheduling problems have held the interest of researchers

primarily because of its industrial relevance. Kurz and Askin (2003) investigated

scheduling of jobs in flexible flow lines with sequence-dependent setup times. They

explored heuristic approaches including the insertion heuristic, Johnson‟s algorithm for

two-stage flow shops and its heuristic extensions to m-machine flow shops. Furthermore,

Kurz and Askin (2004) developed a random keys genetic algorithm for the problem they

had investigated in (Kurz and Askin, 2003), primarily to evaluate their proposed random

key genetic algorithm against other heuristics they had proposed earlier. With the

objective of minimizing the make-span, Zandieh et al. (2006) investigated the same

6

problem and proposed an immune algorithm. They successfully demonstrated that the

immune algorithm outperformed the random key genetic algorithm proposed by Kurz and

Askin (2004).

Allahverdi et al. (2006) completed a survey of all scheduling problems with setup

times. Naderi, Ruiz, and Zandieh (2009) investigated a flowshop problem with parallel

machines and sequence dependent setup times where the objective was to minimize the

makespan. They made an assumption that all jobs need not visit each and every stage,

meaning that machine skipping was allowed. They introduced a heuristic in the form of a

dynamic dispatching rule that is based on iterated local search.

Jungwattanakit et al. (2009) considered a flexible flow shop scheduling problem,

taking sequence- and machine-dependent setup times into consideration. The study aimed

at developing a bi-criteria model for minimizing the convex sum of makespan and the

number of tardy jobs in a static flexible flow shop setting. The authors initially

formulated a mixed integer programming model to find the optimal solution for an

industry size problem. But due to large computation time associated with running the

mixed integer programming model, they suggested other heuristic approaches to obtain a

quality solution within a reasonable time. The authors primarily used metaheuristic

algorithms such as simulated annealing (SA), tabu search (TS) and genetic algorithms to

obtain an optimal or near optimal solution.

Naderi et al. (2009) considered a flexible flowshop scheduling problem with

sequence dependent set-up time and job-independent transportation times. The primary

objective of the research was to minimize the total weighted tardiness. However, they did

not consider dynamic release of jobs and dynamic machine availability, which are

commonly prevalent in industry situations. All the machines in a given stage are

considered to be uniform parallel. Furthermore, machine skipping is not permitted in the

problem they investigated. They utilize electromagnetic algorithm (EMA) to efficiently

solve the research problem. EMA is a meta-heuristic algorithm that originated from the

attraction-repulsion mechanism of the electromagnetism theory. The authors also

formulated a mixed integer linear programming (MILP) model for optimally solving

small-sized problem instances.

7

A large number of research efforts have been made in the past based on tardiness

objectives in a flowshop. To minimize mean tardiness, Kim (1993) modified several

priority rules including earliest due date (EDD), minimum slack (SLACK), slack per

remaining work (SRMWK) and modified due date (MDD). The author also demonstrated

the utilization of tabu search to solve the problem using EDD as initial solution.

Rajendran (1997) utilized simulated annealing (a probabilistic meta-heuristic search

algorithm for obtaining global maxima or minima) for a sequence dependent flexible

flow shop problem to minimize the maximum weighted tardiness and the total weighted

tardiness.

Vallada et al. (2008) performed a comprehensive evaluation of heuristics and

metaheuristics for the m-machine flowshop scheduling problem with the objective of

minimizing total tardiness. Fourty different heuristics and metaheuristics were

implemented and their performance was analyzed using same benchmark of instances in

order to make a fair comparison. The study entails a wide variety of classical priority

rules as well as most recent metaheuristic algorithms such as tabu search, simulated

annealing and genetic algorithms. An experimental design approach was used by the

researchers to carry out the statistical analysis and to validate the effectiveness of the

different methods tested.

In the past few years, tabu search has proved to be remarkably successful at

solving notoriously complex problems of industrial merit. Tabu search was first

introduced by Glover (1996). A synopsis of the application of tabu search on production

scheduling problem was investigated by Barnes et al. (1995). The study listed tabu search

based applications in a single-machines problem, parallel machines problems, travelling

salesman problem, flow shop problem, vehicle routing problem, classical job shop

problem and flexible job-shop problem. Muller et al. (1995) investigated the relevance of

tabu search in solving identical parallel machine scheduling problem with sequence

dependent setup times, to minimize the makespan. The algorithm consists of three

phases: initial assignment, tabu search, and post-optimization procedure.

Logendran and Subur (2004) utilized the tabu search based heuristics to schedule

jobs on unrelated parallel machines, with the possibility of job splitting. Their research

incorporated various tabu search features and led to the development of six different

8

heuristic algorithms. The study showed that the proposed heuristic algorithms were

capable of solving large complex problems in surprisingly short time. A mathematical

model for the problem was also developed to demonstrate that the tabu search solutions

identified were very effective by comparing them to the optimal solutions obtained for

small problem instances.

Logendran et al. (2006) suggested a heuristic approach for solving sequence

dependent group scheduling problems of industrial merit utilizing tabu search. The

objective of the research was to minimize the makespan required to process all the jobs in

all the groups that were released on the shop floor. Their research took into consideration

of problem sizes ranging from small, medium to large, and suggested a methodology for

solving large problems in an efficient and effective manner. Logendran et al. (2007)

employed the tabu search based heuristics to schedule jobs on unrelated parallel machines

with sequence-dependent setup times. They proposed six different search algorithms

based on tabu search heuristics to minimize the total weighted tardiness.

To summarize, the scheduling environment of this research is dynamic in both job

release time and machine availability. The objective of the research focuses on finding

optimal/near-optimal schedule that minimizes the sum of the weighted tardiness of all

jobs in a flexible flowshop environment. Such an objective is important in many

industrial applications since on-time delivery is one of the most important factors in

customer satisfaction. Machine skipping is another important feature in this research. A

job can skip one or more stages depending upon customer‟s request. Additionally, each

job has a strategic weight associated with it, which reflects its priority, i.e. job with

higher priority receives higher weight.

9

3 PROBLEM STATEMENT

This research focuses on scheduling jobs in a flexible flow shop with

sequence-dependent setup times. Since it is a flexible flow shop scheduling problem, one

or more stages may have more than one machine. The stage with multiple machines may

comprise of identical, uniform or unrelated parallel machines. If a stage comprises of

unrelated parallel machines, not all jobs would be eligible to be processed on all

machines. The release times of jobs and the availability times of machines are assumed to

be dynamic. It means that the jobs can be released at any time during the current planning

horizon, depending upon the customer‟s request or order. Similarly, at the start of the

current planning horizon, a subset of machines might be unavailable due to processing

jobs from the previous planning horizon, only to become available at a later time. These

assumptions are in conjunction with what is typically observed in an industrial setting.

Machine skipping is an innate feature of this research problem. A job may skip one or

more stages depending upon customer‟s requirement or budgetary constraints. In other

words, if a customer deems a particular process as a non value adding activity, he may

opt not to perform it. The possibility of a job skipping a stage makes this problem even

more intricate.

Companies usually associate a project with a unique customer so that they can

make a clear distinction among customers. The jobs considered in this paper are directly

associated with a particular project, and that association is an integral part of this

research. Consequently, a project may consist of one or more jobs, depending upon

customer requirements. Thus, a project may be considered as a larger entity for

distinguishing customers and the jobs can be considered as smaller components or

elemental units associated with a project. Additionally, the jobs within the same project

may be similar or dissimilar depending upon customer‟s requirements. Therefore, the

jobs within a project may have an entirely different run time on the same machine. There

is also a sequence-dependent setup time associated with changing over from one job to

another, on a particular machine. Similar jobs will have smaller setup times, while

dissimilar jobs will have larger setup times.

The objectives of this research are as follows:

10

i. To develop a mathematical model for minimizing the total weighted

tardiness of jobs which are dynamically released in a flexible flow shop,

with the possibility of machine skipping. (Note that jobs considered in this

research have sequence-dependent setup times and the machine

availability is considered to be dynamic)

ii. To develop a scheduling algorithm that would efficiently solve the

mathematical model considered in (i).

11

4 MODEL DEVELOPMENT

4.1 Introduction

 A mixed (binary) integer linear programming model that captures the operational

constraints of an industrial setting is developed to quantify the effectiveness of the

proposed solution algorithm. The parameters used in the model such as the number of

jobs, number of stages, number of machines in a given stage, job release times, machine

availability times, job weights, job due dates, job run times, sequence-dependent setup

times, and whether or not a job has an operation in a given stage, are known quantities.

 Notice that during a planning horizon, a machine may become unavailable due to

an unanticipated breakdown. It is extremely difficult to predict when the machine might

break down and how long it will remain unavailable. Moreover, introducing additional

constraints add to the complexity of an already complex model. Therefore, for the

purpose of modeling, we assume that during a given planning horizon, a machine remains

fully functional from the time it becomes available.

4.2 Assumptions

(1) Each job can be processed only once at each stage

(2) A job may skip one or more stages depending upon customer requirements

(3) Even though a job may skip one or more stages, it still follows a flow line

(unidirectional) arrangement

(4) Cross precedence is not allowed, meaning that a job cannot be at the same time

both a predecessor and a successor of another job

(5) Sequence-dependent setup times of jobs are known

(6) No preemption is allowed

(7) Each machine can process only one job at a time

12

(8) Not all jobs can be processed on all machines. If a job cannot be processed on a

machine, it is assumed to have a very large run time on that machine

4.3 Notations:

 jobs

 stages

 number of machines in stage g

Parameters

aig = availability time of machine i in stage g

rijg = run time of job j on machine i in stage g

wj = weight assigned to job j

dj = due date of job j

eijg = release time of job j on machine i in stage g

sikjg = setup time for job j, immediately following job k on machine i of stage g

 (k = 0 means the reference job)

 1 if job j can be processed on machine i of stage g

 0 otherwise

 1 if job j has an operation in stage g

 0 otherwise

hjg =

fijg =

13

4.4 Mathematical Model

Subject to:

14

4.5 Model Description

 The proposed mathematical model is a mixed (binary) integer-linear

programming model that entails both real and binary (0/1) integers. The objective

function of the mathematical model focuses on minimizing the weighted tardiness of all

jobs released in the current planning horizon. Constraint (1) states that each job should be

processed only on one machine in a given stage. Constraints (2) ensures that the

completion time a job on a given machine is at least equal to or greater than the

machine‟s availability and runtime of that job on the machine, after accounting for the

sequence dependent set up time. Constraint (3) also ensures that the completion time of a

job on a given machine in stage 1 is always equal to or greater than the release time of the

job in stage 1 and the runtime of the job in that stage. Constraint (4) states that the

completion time of a job on a machine in a given stage is zero, if its operation is not

performed on that machine. Constraints (5) and (6) jointly ensure that the completion

time of a job in a given stage is greater than the completion time of the job in previous

15

stage plus the runtime and the sequence-dependent setup time of the job in that stage.

Constraints (7) and (8) together ensure that two jobs are not processed at the same time

on a machine in a given stage. Constraint (9) states that a job must be preceded by only

one job if it has an operation on a particular machine in a given stage. Constraint (10)

guarantees that a job can only transfer to at most one job if it has an operation on a

particular machine in a given stage whereas constraint (11) ensures that a job cannot

transfer to another job if it is not scheduled to be processed on a particular machine of a

given stage. Constraint (12) ensures that tardiness of a job is greater than or equal to the

difference between its completion time in the last stage and its due date. Finally,

constraint (13) guarantees that only positive values for tardiness are considered.

4.6 Computational Complexity of the Research Problem

 Research problems, in the field of optimization, can be characterized in a

comprehensive manner by using mathematical models. Recent advancements in

technology have greatly enhanced the processing speed of computer and have

dramatically increased the speed of optimization solvers. Despite these technological

advancements, often only small-sized problems can be efficiently solved to optimality by

using optimization software.

 The computational complexity for this research problem can be illustrated by

considering a special case in total weighted tardiness problem. Lenstra et al. (1977)

proved that scheduling jobs with equal weights on a single-machine is NP-hard in the

strong sense. Note that scheduling jobs on a single machine with equal weights is a

special case of unrelated parallel machines with variable weights of jobs. Furthermore,

scheduling on unrelated parallel machines is a special case of flexible flow shop

scheduling. We therefore conclude that if the special case of the research problem is

strongly NP-hard then the original research problem must also be NP-hard in the strong

sense.

16

 Obtaining a polynomial time solution (by using optimization software) for a NP-

hard problem is very unlikely. As mentioned earlier, only small-sized problems can be

efficiently solved by using optimization software. Other implicit enumeration methods

such as branch and bound technique can be used to solve small problem instances in a

reasonable computational time. But for medium and large problem instances, the branch

and bound technique will often fail to identify the optimal solution. Even if it identifies

the optimal solution, the computational time required to solve these problem instances

can be extremely large. Therefore, we need to develop a solution algorithm for optimally

or near-optimally solving the medium and small problem instances in an efficient

manner.

 In the past, researchers have utilized tabu search-based heuristics to find

optimal/near optimal solutions for industry-size problems. Barnes et al. (1995) gave an

overview of the application of tabu search heuristics on problems involving single

machine, parallel machines, flow shop and job shop. The use of tabu search-based

heuristics has been successfully demonstrated by Glass et al. (1994), Suresh and

Chaudhary (1996), and Logendran and Subur (2000) in their research work.

17

5 HEURISTIC ALGORITHM

5.1 Introduction
 The heuristic algorithm employs Tabu Search, which was first proposed by

Glover (1986), as the mechanism to explore the solution space. The search space of a

tabu search is essentially all the solutions (feasible and infeasible) that can be considered

during the search. Over the past few years, several researchers have utilized tabu search

as a mechanism to solve large combinatorial optimization problems in practical settings.

Researchers have used Tabu search heuristics to solve a wide range of problems

including the traveling salesman problems, scheduling problems, product delivery and

routing problems, and manufacturing cell design problems. It has been proven that tabu

search is capable of providing optimal or near optimal solution for complex

combinatorial problems in an effective manner. Tabu search is superior to other search

mechanisms primarily because it has the capability of overcoming the limitations of local

optimality. Tabu search can steer the search mechanism from one solution state to

another by tactically constraining and releasing the attributes of the search process. This

is achievable because tabu search employs flexible memory functions that record search

information of varying time spans. Intensification and diversification of the search to

obtain a better solution can be attained by employing long-term memory with minimum

and maximum frequencies.

 Further details on tabu search including the genesis, fundamental concepts,

advanced setting and guiding principle can be found in Glover (1989, 1990a and 1990b).

A detailed description of the tabu search mechanism has been presented in the next

section. Thereafter, five different mechanisms to obtain the initial solution of the research

problem are presented. The steps associated with the generation of neighborhood have

also been presented, followed by an example problem that illustrates the application of

the heuristic algorithm.

18

5.2 Tabu Search Mechanism

Tabu search mechanism is primarily built on three features (Glover, 1990b):

1. Tabu search mechanism effectively employs the flexible memory structures to store

information during the search process. This feature allows the evaluation criteria

and historical search information to be exploited more comprehensively than by

rigid memory structures (such as branch-and-bound mechanism) or by memoryless

systems (such as simulated annealing and other randomized approaches).

2. A control mechanism that is directed towards the interplay between restricting and

releasing the constraints during the search process (embodied in the tabu restrictions

and aspiration criteria).

3. The combination of memory functions of different time spans, from short term to

long term, to implement strategies for intensifying and diversifying the search.

Tabu search is a refined form of a popular heuristic, namely the hill-climbing

heuristic. The hill-climbing heuristic starts with an initial solution and thereafter,

depending upon whether the primary objective is minimization or maximization, moves

progressively in a unidirectional path for identifying a better solution. Since the hill-

climbing heuristic always searches for a better solution, the search terminates whenever a

local optimum is found, well before exploring the entire search space. In contrast, the

tabu search overcomes the inherent difficultly of being trapped in the local optimum by

settling for a solution that is inferior to the previous solution.

Tabu search requires an initial solution to begin the search. Therefore the initial

solution can be considered as a matchstick to initiate the search. The initial solution can

be generated either arbitrarily or systematically. Additionally, the initial solution can

either be feasible or infeasible. Logendran and Subur (2000) have shown that a quality

initial solution can lead to the optimal/near-optimal solution much more efficiently. If the

initial solution is infeasible then the search space is much wider and therefore it takes a

much longer time to get to an optimal/near optimal solution. On the contrary, a better-

quality initial solution narrows down the search space and hence it speeds up the process

of identifying the optimal/near optimal solution. We propose five different initial solution

finding mechanisms that serve as a starting point. These initial solution finding

19

mechanisms have been developed methodically to ensure that the search algorithm

performs as efficiently as possible. All five initial solution finding mechanisms are

explained in detail in the next section.

By perturbing the initial solution, we can go about finding alternate solutions in the

nearest neighborhood. The neighborhood solutions are evaluated by a performance

criterion, which in this research is the total weighted tardiness. Each neighborhood

solution has to pass a tabu-status check in order to be considered as a permissible move.

The objective of the tabu restriction is to take the search process beyond the points of

local optimality while ensuring high quality moves at each step. The tabu restrictions are

stored in a list known as tabu list. The tabu list entails the recently applied moves that are

necessary to move the search from one solution state to another. The moves are recorded

exactly in the order in which they are made. A tabu-list has an associated size which

determines the amount of time a particular tabu move is enforced. The size of the tabu-

list predominantly depends upon size of problems being investigated. This necessitates

conducting a thorough experimentation to determine an appropriate size of the tabu-list

for a given research problem.

The search process is prevented from revisiting the earlier found solution by

restricting the search to moves that are not tabu. In certain instances, a tabu move may

result in a solution that is superior to the one found so far. Hence, an aspiration criterion

is used to offset tabu restrictions. An aspiration criterion is used as a condition that a tabu

move has to satisfy in order to be released from tabu restriction. For a more detailed

description please refer to Chapter 5.5. If a tabu move results in a solution that is better

than all previously found solution, the tabu restriction can be overridden. Thus an

aspiration criterion gives a tabu move a second opportunity to be considered during the

search process. After testing all neighborhood solutions against the tabu status and the

aspiration criterion, the move that results in the best solution is chosen for future

perturbation. This move is stored in the candidate list (CL). Before admitting a solution

into the CL, the solution is checked against all other entries of the CL in order to avoid a

possible duplication. The entire process is repeated until a criterion to terminate the

search is satisfied.

20

A search can be concluded by employing one of the several terminating conditions.

One way to end the search is to set a limit to the size of the IL. In other words, the search

will terminate when a certain size of the CL is achieved. Another method is to terminate

the search is to let the entire search process run until a certain number of consecutive

iterations that do not result in an improvement. Limiting the computational time is yet

another way of terminating the search process.

The tabu-list discussed above is the short-term memory component of the tabu

search. Besides employing short-term memory to execute the search, we can also utilize

the long-term memory function. The long-term memory can be used to direct the search

in regions that have been historically found good (intensification process) or in regions

that were not thoroughly explored previously (diversification process). Relevant

information regarding the long-term memory is stored in a frequency matrix that keeps

track of all previous moves.

21

5.3 Initial Solution

The initial solution finding mechanism serves as a matchstick to initiate the

search. In order for the search to begin, the search algorithm must be provided with an

initial solution. In the past, researchers have used simple dispatching rules to solve

problems aimed at minimizing the tardiness. These problems include minimizing the

weighted tardiness, total tardiness and maximum tardiness. Some of the simple

dispatching rules used to solve tardiness related problems include Earliest Due Date

(EDD), Shortest Processing Time (SPT), Minimum Slack (MSLACK) and Slack per

Remaining Processing Time (S/RPT). While the EDD and SPT dispatching rules are

time-independent (i.e. the job priority depends upon the job and machine data and it

remains the same throughout the scheduling horizon), the MSLACK and S/RPT

dispatching rules are time-dependent (i.e. job priority depends upon the time when

machines become available after processing a preceding job).

Simple dispatching rules only use a single attribute to attain its objective. An

attribute can be defined as a property that belongs to a job or the machine environment

under consideration such as the job processing time, job due date, job release time, or job

waiting time. Simple dispatching rules are not readily used in an industrial setting where

more than one attribute determines a good schedule. Industrial practice often benefits

from the use of composite dispatching rules to obtain a good schedule. Unlike a simple

dispatching rule, a composite dispatching rule incorporates several job and machine

attributes. A composite dispatching rule is a function made up of various attributes and

some scaling parameters.

In the past, researchers have proposed several composite dispatching rules for

various machine environments. Vepsalainen and Morton (1987) proposed a composite

dispatching rule called apparent tardiness heuristic (ATC) to solve weighted tardiness

problem on a single machine under the assumption of static job release and static

machine availability time. ATC is an amalgamation of two simple dispatching heuristics,

22

namely, the weighted shortest processing time (WSPT) and the minimum slack (MS).

The WSPT is a variation of another simple dispatching heuristic called the shortest

processing time (SPT). SPT heuristic is used to minimize the mean flow time. Therefore

WSPT heuristic is used to minimize the weighted mean flow time. The MS heuristic, on

the other hand, maximizes the minimum lateness in a single machine environment.

Lee et al. (1997) extended the ATC rule and suggested another composite

dispatching heuristic called Apparent Tardiness Cost with Setup (ATCS). The ATCS

heuristic incorporates sequence dependent setup times for solving problems related to

weighted tardiness, on a single machine with static job releases and static machine

availability. The ATCS rule utilizes three different simple composite dispatching rules

namely, the WSPT rule, the MS rule and the Shortest setup time (SST). Few other

composite dispatching rules include the Dynamic Composite Rule/DCR (Conway et al.,

1967) and the Cost Over Time/COVERT (Carroll, 1965).

Previous research on tabu search (Logendran and Subur, 2004) has shown that a

superior quality initial solution may contribute to identifying a better quality final/best

solution in an efficient manner. Thus we propose five different methods to generate the

initial solution for the tabu search. These five initial solutions are as follows: Earliest Due

Date (EDD), Least Flexible Job/Least Flexible Machine (LFJ/LFM), Lowest Weighted

Tardiness (LWT), Due Date to Weight Ratio (DDW) and Hybrid Critical Ratio (HCR).

The mechanism for finding each of Initial solution will be presented in detail later. We

first present the set of notations that will be used throughout the development of the

algorithm.

Notations

i = 1, 2,…, G stages

k = 1, 2,…,fi machines in stage i

mki = k
th

 machine of stage i

NSJ = set of unscheduled jobs

23

p = 1, 2,...,l (total number of projects)

 j = 1, 2,…,np number of jobs in project p

Jjp = job j of project p (j = 1, 2,…,np; p = 1,2,…,l)

Parameters

rjpki = run time of job j of project p on k
th

 machine of stage i;

wjp= weight assigned to job j of project p;

ejp = release time of job j of project p;

djp = due date of job j of project p;

s(j’p’)(jp)ki = setup time required to change over from job j’ of project p’ to job j of project p

on k
th

 machine of stage i (where p=p‟ is allowed since the changeover of jobs can occur

within the same project);

aki = initial availability time of k
th

 machine of stage i;

tdjpki = tardiness of job job j of project p on k
th

 machine of stage i;

tmk*1 = release time of k
th

 machine of stage 1 (after processing a job)

Variables

CT(Jjp, mki) = Completion time of job j of project p on k
th

 machine of stage i

ST(Jjp, mki) = Start time of job j of project p on k
th

 machine of stage i

24

5.3.1 Earliest Due Date (EDD)

 IS1 aims at giving the highest priority to the job that has the earliest due date

(EDD) among the jobs that can be processed on an available machine. If two jobs have

the same due date, ties are broken in favor of the job that has more weight. If two jobs

have the same EDD and weight, then ties are broken in favor of the job that has the

smallest project identification number. If two jobs have the same EDD, weight and same

project identification number, ties are broken in favor of the job that has the smallest job

id. The machines are selected in the order of increasing available time (ai). Should there

be a tie among two or more machines, the machine that has the lowest machine

identification number is selected. The following steps give a comprehensive illustration

of the methodology associated in the development of the initial solution based on the

EDD rule.

1. Initially, set t = 0 and tmk1 = ak1 f1. Include all jobs in NSJ.

2. Select the machine/unit (k) that has the minimum tmk1. If there is more than one

machine with minimum tmk1, break ties by choosing the machine with the smallest

machine identification number. Let the selected machine be k*. Set t = tmk*1.

3. Let SJ = the set of job/jobs (belonging to various projects) released at or earlier than t,

and that can be processed on k* (SJ NSJ).

a. If SJ = , find a job/jobs from NSJ that can be processed on k* and have the

minimum ejp.

i. If none of the jobs in NSJ can be processed on k*, exclude k* from

future consideration. Go to step 6.

ii. If only one job is found, select this job and assign it to k*. Go to step 4.

iii. If two or more jobs are found, break ties in favor of job that has the

earliest due date, followed by highest weight. If the job ties still exist,

break ties in favor job that has the smallest project identification

number followed by smallest job identification number. Assign the

selected job to k*. Go to step 4.

b. If SJ has only one job, assign the job to k*. Go to step 4.

25

c. If SJ has two or more jobs, break ties in favor of job that has the earliest due

date followed by highest weight. If the job ties still exist, break ties in favor of

job that has the smallest project identification number followed by smallest

job identification number. Assign the selected job to k*. Go to step 4.

4. Let Jj*p* = the selected job; evaluate the start time and completion time of job using

the following equations:

a. If ej*p* is less than or equal to tmk*1, then set ST (Jj*p*,mk*1) = tmk*1 and

CT(Jj*p*,mk*1) = ST (Jj*p*,mk*1) + s (j’p’) (j*p*)k*1 + rj* p*k*1.

b. If ej*p* is greater than tmk*1, then set ST (Jj*p*,mk*1) = ej*p*. Next evaluate (ej*p*

- tmk*1).

i. If (ej*p* - tmk*1) is greater than or equal to s (j’p’) (j*p*)(k*1), then CT(Jj*p*,m

k*1) = ST (Jj*p*,m k*1) + rj* p*k*1.

ii. If (ej*p* - tmk*1) is less than s (j’p’) (j*p*)(k*1) CT(Jj*p*,mk*1) = ST

(Jj*p*,mk*1) + [s (j’p’) (j*p*)k*1 - (ej*p* - tmk*1)] + rj* p*k*1.

5. Set tmk*1 = CT(Jj*p*,mk*1). Eliminate Jj*p* from NSJ.

6. If NSJ , go to step 2.

The algorithmic procedure in step 4 needs further explanation. The equations in

step 4 illustrate the evaluation of completion times of jobs in stage 1. Since this research

problem involves sequence-dependent setup times, we primarily investigate two cases for

evaluating the completion times of jobs (Step 4 (a) and (b)). The first case, (Step 4 (a),

assumes that a job is released before a machine is available. In this case, the setup can be

started only when the machine becomes available. The second case, Step 4 (b), pertains

to the instance when the machine becomes available before the job. In this case, we can

perform an anticipatory setup, starting when the machine becomes available, and can

complete either the entire setup (Step 4 (b)(i)) or partial setup for the job (Step 4 (b)(ii)).

.

26

5.3.2 Least Flexible Job and Least Flexible Machine (LFJ/LFM)

 Centeno and Armacost (1997) proposed an algorithm for scheduling jobs on

parallel machines with dynamic job release time, due dates and different machine

capabilities. The purpose of their research was to minimize the maximum lateness.

Lateness of a job is evaluated as the completion time minus the due date. Thus Lateness

of a job can either be a negative, zero or a positive value. Lateness of a job should not be

confused with the tardiness of a job. Tardiness of a job can only be zero or positive value.

Tardiness of a job can never take a negative value.

 LFJ (least flexible job) can be defined as the job that can be processed on least

number of machines and LFM (least flexible machine), which can be defined as the

machine that can process the least number of jobs. The LFJ/LFM approach to IS2 gives

priority to those jobs that are least flexible and machines that are least capable. If two or

more jobs are available at the same time, ties are broken in favor of the job that is least

flexible. If two or more machines are available at the same time, ties are broken in favor

of the machine that is least flexible. Other tie braking rules for IS2 are similar to that of

IS1.

The LFJ rule prevents jobs from being late due to their inflexibility. The LFM

rule ensures that less capable machines get a fair share of job assignment in comparison

to more capable machines. The following steps give a comprehensive illustration of the

methodology associated in the development of the initial solution based on the LFJ/LFM

rule.

1. Initially, set t = 0 and tmk1 = ak1 f1. Include all jobs in NSJ.

2. Check if any ejp ≤ t. If yes, then go to step 4.

3. Set t = min [ejp] where Jjp NSJ.

4. Choose the least flexible job with ejp ≤ t. If two or more jobs are chosen, select the

job with minimum ejp. If the job ties still exist, break ties in favor of job that has

27

the smallest project identification number followed by smallest job identification

number.

5. Let Jj*p* = the selected job. Find the least flexible machine that can process Jj*p*

and is currently idle. If two or more machines are found, break ties in favor of

machine with the smallest machine index.

a. If all the machines that are capable of processing Jj*p* are busy, go to step

8.

b. Let the selected machine be k*. Go to step 6.

6. Evaluate the start time and completion time of job using the following equations:

a. If ej*p* is less than or equal to tmk*1, then set ST (Jj*p*,mk*1) = tmk*1 and

CT(Jj*p*,mk*1) = ST (Jj*p*,mk*1) + s (j’p’) (j*p*)k*1 + rj* p*k*1.

b. If ej*p* is greater than tmk*1, then set ST (Jj*p*,mk*1) = ej*p*. Calculate (ej*p* -

tmk*1).

i. If (ej*p* - tmk*1) is greater than or equal to s (j’p’) (j*p*)(k*1), then

CT(Jj*p*,m k*1) = ST (Jj*p*,m k*1) + rj* p*k*1.

ii. If (ej*p* - tmk*1) is less than s (j’p’) (j*p*)(k*1), then CT(Jj*p*,mk*1) = ST

(Jj*p*,mk*1) + [s (j’p’) (j*p*)k*1 - (ej*p* - tmk*1)] + rj* p*k*1.

7. Set tmk*1 = CT(Jj*p*,mk*1) = t. Eliminate Jj*p* from NSJ. Go to step 9.

8. Set t = min[tmk1] f1 and k can process Jj*p*; go to step 2.

9. If NSJ , go to step 2; otherwise, stop.

28

5.3.3 Lowest Weighted tardiness (LWT)

 For IS3, we use LWT (lowest weighted tardiness) mechanism to commence the

search. Tardiness for job j of project p on k
th

 machine of stage i (tdjpki) can be evaluated as

max [0, CT (Jjp, mik) - djp] and weighted tardiness can be evaluated as (tdjpki) wjp. The tie

braking rules for machines and jobs are similar to IS1. If two jobs have the same LWT,

ties are broken in favor of the job that has the smallest project identification number. If

two or more jobs have same LWT and same project identification number then the ties

are broken in favor of the job with the smallest job id. The machines are selected in the

order of increasing available time (ai). Should there be a tie among two or more

machines, the machine that has the lowest machine identification number is selected.

 It should be noted that to find the completion time of jobs, we need a schedule

that would tell us the sequence of jobs on each machine in every stage. We propose a

mechanism based on Cmax (the maximum completion time (makespan) of all jobs

released) to come up with a provisional schedule. Although the real Cmax is schedule-

dependent, a thorough estimation scheme has to be developed for accurately estimating

Cmax that is schedule-independent. Given the job release time, job setup time, job runtime

and machine availability time, we propose the following equation to estimate the Cmax for

the i
th

 stage:

where mj is the total number of machines on which job j can be processed in stage i,

is the average setup time of job j of project p on k
th

 machine of stage i and is introduced

as an adjustment to the average setup time. The need for incorporating originates from

29

the fact that in reality, a quality schedule would try to changeover from one job to another

that requires the smallest setup time on a particular machine. Hence considering average

setup time for jobs in estimating Cmax disregarding , would not provide an accurate

estimate of the makespan for the first stage. We further define coefficient of variation

(CV) for the sequence-dependent setup times for a job on a machine as CV = xs / where

s is the sample standard deviation and x is the mean. In case of setup times being

sequence independent, the standard deviation of the data points (i.e., the sequence-

dependent setup times of a job on a machine) will be equal to zero, forcing CV to be

equal to zero. We surmise that a linear relationship holds true between and CV, and

suggest the following set of end points for the purpose of interpolation: CV = 0.01

corresponds to =.9, and CV = 1.0 corresponds to = 0.1.

 The average completion time of a job evaluated for the first stage serves as the

release time for jobs in the second (following) stage. We propose the following equation

to estimate the release time of a job in (i+1)
th

 stage:

To estimate a reasonable completion time for a particular job in a specific

stage i (or equivalently the release time of a job in (i+1)
th

 stage), we compare the release

time of a job in stage i with the machine‟s availability time combined with the average

setup time of that job on that machine. The rationale to go after the larger of the two

evaluated numbers originates from the fact that if a job is released before a machine is

available then the job has to wait until the machine is made available and the setup is

performed on the machine or vice-versa. Recall that not all of the jobs have operation in

each and every stage. If such were the case for one or more jobs, the evaluated

completion time of the job serves as the release time for the next immediate stage, where

30

the job has an operation. Notice that the Cmax increases progressively through stages 1-17.

Therefore, the following condition holds true:

When all jobs choose to skip a particular stage, ; for all other

stages .We evaluate the Cmax for stages 1 through 17 and use Cmax

evaluated for stage 17 to estimate the maximum completion time of all jobs for a given

problem. The scheduling steps that use the LWT dispatching rule can be documented as

follows:

1 Initially, set t = 0 and tmk1 = ak1 f1. Include all jobs in NSJ.

2 Select the machine/unit (k) that has the minimum tmk1. If there is more than one

machine with minimum tmk1, break ties by choosing the machine with the

smallest machine identification number. Let the selected machine be k*. Set t =

tmk*1.

3 Let SJ = the set of job/jobs (belonging to various projects) released at or earlier

than t, and that can be processed on k* (SJ NSJ).

a. If SJ = , find a job/jobs from NSJ that can be processed on k* and have

the minimum ejp.

i. If none of the jobs in NSJ can be processed on k*, exclude k* from

future consideration. Go to step 6.

ii. If only one job is found, select this job and assign it to k*. Go to

step 4.

iii. If two or more jobs are found, break ties in favor of job that has the

lowest weighted tardiness. If the job ties still exist, break ties in

favor of job that has the smallest project identification number

followed by smallest job identification number. Assign the selected

job to k*. Go to step 4.

b. If SJ has only one job, assign the job to k*. Go to step 4.

c. If SJ has two or more jobs, break ties in favor of job that has the lowest

weighted tardiness. If the job ties still exist, break ties in favor of job that

31

has the smallest project identification number followed by the smallest job

identification number. Assign the selected job to k*. Go to step 4.

4 Let Jj*p* = the selected job; Evaluate the start time and completion time of job

using the following equations:

a. If ej*p* is less than or equal to tmk*1, then set ST (Jj*p*,mk*1) = tmk*1 and

CT(Jj*p*,mk*1) = ST (Jj*p*,mk*1) + s (j’p’) (j*p*)k*1 + rj* p*k*1.

b. If ej*p* is greater than tmk*1, then set ST (Jj*p*,mk*1) = ej*p*. Next evaluate

(ej*p* - tmk*1).

i. If (ej*p* - tmk*1) is greater than or equal to s (j’p’) (j*p*)(k*1),then

CT(Jj*p*,m k*1) = ST (Jj*p*,m k*1) + rj* p*k*1.

ii. If (ej*p* - tmk*1) is less than s (j’p’) (j*p*)(k*1), then CT(Jj*p*,mk*1) = ST

(Jj*p*,mk*1) + [s (j’p’) (j*p*)k*1 - (ej*p* - tmk*1)] + rj* p*k*1.

5 Set tmk*1 = CT(Jj*p*,mk*1). Eliminate Jj*p* from NSJ.

6 If NSJ , go to step 2.

32

5.3.4 Due Date Weight Ratio (DDW)

 IS4 mechanism initiates jobs to be processed using the due date to weight (DDW)

ratio. DDW can be defined as djp/wjp. The motive is to expand the ideas presented in IS1.

IS1 is myopic to the weights assigned to the various jobs released during the planning

horizon. In IS1, we only dealt with the EDD, (though we took weight into consideration

for breaking ties) but in IS4 we attempt to combine the EDD factor and the weight

assigned to a job. The logic behind DDW ratio is that a job that has the earliest due date

and most weight will have the least DDW and therefore should be given a higher priority

over other jobs.

The tie braking rules for machines and jobs are analogous to IS1. IS4 begins with

prioritizing jobs with the lowest DDW ratio. If two jobs have the same DDW ratio, ties

are broken in favor of the job that has the smallest project identification number. If two or

more jobs have same DDW ratio and same project identification number then the ties are

broken in favor of the job with smallest job id. The machines are selected in the order of

increasing available time (ai). Should there be a tie among two or more machines, the

machine that has the lowest machine identification number is selected.

A method to generate the initial solution is developed based on DDW ratio. The

steps associated with this method can be documented as follows:

1. Initially, set t = 0 and tmk1 = ak1 f1. Include all jobs in NSJ.

2. Select the machine/unit (k) that has the minimum tmk1. If there is more than one

machine with minimum tmk1, break ties by choosing the machine with the

smallest machine identification number. Let the selected machine be k*. Set t =

tmk*1.

3. Let SJ = the set of job/jobs (belonging to various projects) released at or earlier

than t, and that can be processed on k* (SJ NSJ).

a. If SJ = , find a job/jobs from NSJ that can be processed on k* and have

the minimum ejp.

33

i. If none of the jobs in NSJ can be processed on k*, exclude k* from

future consideration. Go to step 6.

ii. If only one job is found, select this job and assign it to k*. Go to

step 4.

iii. If two or more jobs are found, break ties in favor of job that has the

smallest due date to weight ratio (DDW). If the job ties still exist,

break ties in favor of job that has the smallest project identification

number followed by smallest job identification number. Assign the

selected job to k*. Go to step 4.

b. If SJ has only one job, assign the job to k*. Go to step 4.

c. If SJ has two or more jobs, break ties in favor of job that has the smallest

due date to weight ratio (DDW). If the job ties still exist, break ties in

favor of job that has the smallest project identification number followed

by smallest job identification number. Assign the selected job to k*. Go to

step 4.

4. Let Jj*p* = the selected job; Evaluate the start time and completion time of job

using the following equations:

a. If ej*p* is less than or equal to tmk*1, then set ST (Jj*p*,mk*1) = tmk*1 and

CT(Jj*p*,mk*1) = ST (Jj*p*,mk*1) + s (j’p’) (j*p*)k*1 + rj* p*k*1.

b. If ej*p* is greater than tmk*1, then set ST (Jj*p*,mk*1) = ej*p*. Next evaluate

(ej*p* - tmk*1).

i. If (ej*p* - tmk*1) is greater than or equal to s (j’p’) (j*p*)(k*1), then

CT(Jj*p*,m k*1) = ST (Jj*p*,m k*1) + rj* p*k*1.

ii. If (ej*p* - tmk*1) is less than s (j’p’) (j*p*)(k*1) CT(Jj*p*,mk*1) = ST

(Jj*p*,mk*1) + [s (j’p’) (j*p*)k*1 - (ej*p* - tmk*1)] + rj* p*k*1.

5. Set tmk*1 = CT(Jj*p*,mk*1). Eliminate Jj*p* from NSJ.

6. If NSJ , go to step 2.

34

5.3.5 Hybrid Critical Ratio (HCR)

 The critical ratio, defined as due date/processing time, has been used for

due date related objectives in the scheduling literature for a long time. Logendran et. al.

(2007) suggested a modified version of critical ratio (known as hybrid critical ratio or

HCR) for problems that involved sequence dependent setup times. Taking advantage of

their work, we propose IS5 (which is a refined version of IS4). In IS5, we include the

sequence-dependent setup time and run time of a job besides due date and weight. The

hybrid critical ratio is given by {djp/[wjp*(s (j’p’)(jp)ki + rjpki)]}. The job that has the

smallest HCR is given preference. The logic behind HCR calculation is similar to the

DDW ratio. The only difference is that we introduce two new variables in the

denominator.

The tie braking rules for jobs are similar to IS1 but instead of using EDD, we use

the HCR. IS5 begins with prioritizing jobs with the lowest HCR ratio. If two jobs have

the same HCR ratio, ties are broken in favor of the job that has the smallest project

identification number. If two or more jobs have the same HCR ratio and same project

identification number, then the ties are broken in favor of the job with smallest job id.

The machines are selected in the order of increasing available time (ai). Should there be a

tie among two or more machines, the machine that has the lowest machine identification

number is selected.

A method to generate the initial solution is developed based on HCR ratio. The

steps associated with this method can be documented as follows:

1. Initially, set t = 0 and tmk1 = ak1 f1. Include all jobs in NSJ.

2. Select the machine/unit (k) that has the minimum tmk1. If there is more than one

machine with minimum tmk1, break ties by choosing the machine with the

smallest machine identification number. Let the selected machine be k*. Set t =

tmk*1.

3. Let SJ = the set of job/jobs (belonging to various projects) released at or earlier

than t, and that can be processed on k* (SJ NSJ).

35

a. If SJ = , find a job/jobs from NSJ that can be processed on k* and have

the minimum ejp.

i. If none of the jobs in NSJ can be processed on k*, exclude k* from

future consideration. Go to step 6.

ii. If only one job is found, select this job and assign it to k*. Go to

step 4.

iii. If two or more jobs are found, break ties in favor of job that has

smallest hybrid critical ratio (HCR). If the job ties still exist, break

ties in favor of job that has the smallest project identification

number followed by smallest job identification number. Assign the

selected job to k*. Go to step 4.

b. If SJ has only one job, assign the job to k*. Go to step 4.

c. If SJ has two or more jobs, break ties in favor of job that has the smallest

hybrid critical ratio (HCR). If the job ties still exist, break ties in favor of

job that has the smallest project identification number followed by

smallest job identification number. Assign the selected job to k*. Go to

step 4.

4. Let Jj*p* = the selected job; Evaluate the start time and completion time of job

using following equations:

a. If ej*p* is less than or equal to tmk*1, then set ST (Jj*p*,mk*1) = tmk*1 and

CT(Jj*p*,mk*1) = ST (Jj*p*,mk*1) + s (j’p’) (j*p*)k*1 + rj* p*k*1.

b. If ej*p* is greater than tmk*1, then set ST (Jj*p*,mk*1) = ej*p*. We calculate

(ej*p* - tmk*1).

i. If (ej*p* - tmk*1) is greater than or equal to s (j’p’) (j*p*)(k*1), then

CT(Jj*p*,m k*1) = ST (Jj*p*,m k*1) + rj* p*k*1.

ii. If (ej*p* - tmk*1) is less than s (j’p’) (j*p*)(k*1) CT(Jj*p*,mk*1) = ST

(Jj*p*,mk*1) + [s (j’p’) (j*p*)k*1 - (ej*p* - tmk*1)] + rj* p*k*1.

5. Set tmk*1 = CT(Jj*p*,mk*1). Eliminate Jj*p* from NSJ.

6. If NSJ , go to step 2.

36

5.4 Generation of Neighborhood Solutions

The application of tabu search begins with the initial solution as the seed. Two

methods are developed to generate a set of neighborhood solutions from a seed. The total

weighted tardiness is evaluated for each of the solutions generated by applying these

methods. The best solution is then selected as the new seed to generate a new set of

neighborhood solutions. This process is repeated aat every iteration of tabu search until

the search is terminated. The performance criteria and the steps related to tabu search

application are explained in the next section.

In order to generate a set of neighborhood solutions from a chosen seed, two types

of move are applied to the seed: Swap moves and insert moves. A swap move is a move

that interchanges the positions of two jobs that are assigned to the same machines. An

insert move is a move that inserts a job to any machine except the one that it currently

occupies. A swap moves allows two jobs from the same or different machines to

exchange postions. An insert move allows a job to move from one machine to another.

5.4.1 Swap Move

Let Jj**p** and Jj‟‟p‟‟ be the jobs considered for swap. Jj**p** and Jj‟‟p‟‟ are currently

scheduled on machine Mk*1 and Mk‟1, respectively. Let […Jj*p*, Jj**p**, Jj***p***, …] be the

partial sequence of jobs assigned to Mk*1 and […Jj‟p‟, Jj‟‟p‟‟, Jj‟‟‟p‟‟‟,…] be the partial

sequence of jobs assigned to Mk‟1. Jj**p** and Jj‟‟p‟‟ are allowed to exchange positions if

both the following conditions are satisfied:

1. Jj**p** can be processed on Mk‟1 and Jj‟‟p‟‟ can be processed on Mk*1.

2. ej**p** < CT(Jj‟‟p‟‟, Mk‟1) and ej‟‟p‟‟< CT(Jj**p** , Mk*1).

If Jj**p** and Jj‟‟p‟‟ satisfied the two conditions, proceed with swapping Jj**p** and

Jj‟‟p‟‟. The start time and completion time of Jj**p** and Jj‟‟p‟‟ must be revised. To

differentiate the current start and completion times from the revised times, a subscript „r‟

37

is added to the notation such that the revised start time and completion time are denoted

by STr and CTr, respectively.

a. If ej**p** is less than or equal to tmk’1, then set STr (Jj*p*,mk’1) = tmk’1 and

CTr(Jj**p**,mk’1) = STr (Jj**p**,mk’1) + s (j’p’) (j**p**)k’1 + rj** p**k’1.

b. If ej**p** is greater than tmk’1, then set ST (Jj**p**,mk’1) = ej**p**. Next evaluate

(ej**p** - tmk’1).

i. If (ej**p** - tmk’1) is greater than or equal to s (j’p’) (j**p**)(k’1), then

CTr(Jj**p**,m k’1) = STr (Jj**p**,m k’1) + rj**p**k’1.

ii. If (ej**p** - tmk’1) is less than s (j’p’) (j**p**)(k’1) CTr(Jj**p**,mk’1) = ST

(Jj**p**,mk’1) + [s (j’p’) (j**p**)(k’1)- (ej**p** - tmk’1)] + rj** p**k’1.

5.4.2 Insert Move

Let Jj**p** is the job considered for insertion on Mk‟1 and Jj**p** is currently

scheduled on machine Mk*1. Let […Jj*p*, Jj**p**, Jj***p***, …] be the partial sequence of

jobs assigned to Mk*1 and […Jj‟p‟, Jj‟‟p‟‟, Jj‟‟‟p‟‟‟,…] be the partial sequence of jobs assigned

to Mk‟1. Jj**p** is allowed to be inserted on Mk‟1 if both the following conditions are

satisfied:

3. Jj**p** can be processed on Mk‟1 ej**p** < CT(Jj‟‟p‟‟, Mk‟1) and ej‟‟p‟‟< CT(Jj**p** , Mk*1).

If Jj**p** satisfies the two conditions, proceed with inserting Jj**p** on Mk‟1. The

start time and completion time of Jj**p** must be revised. To differentiate the current

start and completion times from the revised times, a subscript „r‟ is added to the notation

such that the revised start time and completion time are denoted by STr and CTr,

respectively.

38

c. If ej**p** is less than or equal to tmk’1, then set STr (Jj*p*,mk’1) = tmk’1 and

CTr(Jj**p**,mk’1) = STr (Jj**p**,mk’1) + s (j’p’) (j**p**)k’1 + rj** p**k’1.

d. If ej**p** is greater than tmk’1, then set ST (Jj**p**,mk’1) = ej**p**. Next evaluate

(ej**p** - tmk’1).

i. If (ej**p** - tmk’1) is greater than or equal to s (j’p’) (j**p**)(k’1), then

CTr(Jj**p**,m k’1) = STr (Jj**p**,m k’1) + rj**p**k’1.

If (ej**p** - tmk’1) is less than s (j’p’) (j**p**)(k’1) CTr(Jj**p**,mk’1) = ST (Jj**p**,mk’1) + [s (j’p’)

(j**p**)(k’1)- (ej**p** - tmk’1)] + rj**

5.5 Steps of Tabu Search

 The steps related to the tabu-search mechanism can be documented as follows:

Step 1: Apply swap and insert moves to the initial solution in order to obtain a set of

neighborhood solutions. A problem instance with n jobs has

 possible

combinations of swap moves. Note that the above equation represents any possible

combination of two jobs. A swap move, however, is applied to a pair of jobs only if they

satisfy the conditions listed in Section 5.4.1.

 In applying insert moves, the attempt is to insert jobs to different positions on all

the machines that have the capability of processing the job. Insert moves are not

attempted on machines that the job is presently occupying. Suppose that a machine

currently has k jobs scheduled to be processed. The total number of positions (on that

particular machine) to insert a job will be k+1, i.e. all the currently occupied positions

plus the last unoccupied position. Note that all the conditions listed in Section 5.4.2 must

be satisfied before we can apply the insert move to a job. Applying swap and insert

moves provide with a set of solutions considered as the neighborhood solution of the

initial solution.

39

Step 2: Evaluate the total weighted tardiness (TWT) of every solution in the

neighborhood, obtained as a result of performing swap and insert moves. As mentioned

before, tardiness of a job is evaluated as Max (0, CTjp - djp) and weighted tardiness is

evaluated by multiplying the weight of a job and its tardiness.

Step 3: Select the solution that results in the best (minimum) TWT value. If one or more

solutions yield the best TWT, choose the first best solution. Apply the move that results

in the best solution to the initial solution. Then update the following parameters used

during the search process.

(1) Tabu List: Tabu list consists of the most recent moves (swap or insert). The move that

resulted in the best TWT is recorded into the Tabu list. For example, if a swap move

resulted in the best TWT then record the pair of jobs swapped into the tabu list. This job

pair is not allowed to exchange positions unless an aspiration criterion is satisfied. All

such pairs of job that appear in the tabu list (at any given time) indicate that these pairs

were swapped at some previous iteration during the search process.

Now suppose that the best solution results after applying an insert move. The tabu

list records the job index along with the position and the machine occupied by the job,

before the insert move was applied. The job cannot be inserted back at the same position

of the same machine unless an aspiration criterion is satisfied. All insert moves recorded

in the tabu list indicate that a particular job had been inserted at some position on a

machine in some previous iteration.

The entries in the tabu list follow the FIFO (first-in-first-out) rule. This means that

the oldest entry is removed and the new one is inserted into the tabu list whenever the

tabu list reaches its maximum size. For example, if the size of tabu list is equal to 4 then a

move will stay in the tabu list for four iterations. The length of time a move remains tabu

depends on the tabu list size. Tabu list size for a particular problem is determined

empirically.

Since tabu list stores the most recent moves applied as the search progresses, it is

necessary to make the size of tabu list proportional to the total number of possible moves

(both swap and insert). The number of possible moves increases as we increase the total

40

number of jobs. Therefore the size of the tabu list is dependent upon the total number of

jobs.

Any given problem instance can be categorized as small, medium or large

problem. If a given problem has 20 or fewer jobs, it is considered as a small problem

instance. If a given problem has 20 jobs or greater but less than or equal to 40, it is

considered as a medium problem instance. If a given problem has greater than 40 jobs, it

is considered to be a large problem instance. Classification of problem instances (into

small, medium or large) was done only after consulting with experts in a manufacturing

company where this research can be applied. Based on factual company data and years of

experience, the experts helped us to classify the problem into small, medium and large

categories.

Two different types of tabu list size are considered in this research: fixed tabu list

size and variable tabu list size. Empirical formulae for determining tabu list size were

developed after performing detailed experiments for small, medium and large size

problems. Instead of fixing tabu list sizes arbitrarily, the idea was to conduct a thorough

experimentation to allow best performing values to be input into the search algorithm

when problems are solved. For example, to determine the tabu list size for large problem

instances, we varied the tabu list size from 1 to a large number (say 30) while holding

other relevant parameters (Iterations without Improvement and Entries into the Index

List) constant at large values. A particular value that returned the best TWT was noted

and we constructed empirical equations based on the experimental results.

Extensive experimentation was performed for each (small medium and large)

problem structure. The empirical equations use the total number of jobs to determine the

appropriate parameter value for any given problem structure. We do not use the total

number of projects in determining the value of parameters even though it is a valuable

piece of information from an industrial perspective. Note that it is the number of jobs and

not the number of projects that determine the search space and drive the search algorithm.

The empirical equations developed after performing the equation may not fit the

data perfectly. However, the experimentation was detailed enough to ensure that the fit

41

obtained was indeed the best for a given problem structure. Similar experimentation was

performed in each category (small, medium and large) for other parameters (Entries into

Index List, Number of iterations without improvement etc) also. Based on the

experimental results, the following formulae were developed:

 For fixed tabu list size, use the following formula:

 For fixed tabu list size = .04558x – 1.0177

 For variable tabu list size:

 Initial size of the tabu list = 0.4426x – 0.7869

 The Decreased size of the tabu list = -0.0254x
2

+ 1.1085x – 5.9898

 The Increased size of the tabu list = 0.0086x
3

– 0.3838x
2

+ 6.0924x - 27

where x is the total number of jobs

x, if x is a real number with a decimal value < 0.5

INT(x) =

x , if x is a real number with a decimal value 0.5

(2) Aspiration Level (AL): Aspiration criterion is the condition a tabu move has to

satisfy in order to be released from tabu restrictions. Aspiration Level (AL) is set equal to

the TWT of the initial solution at the beginning of the search process. In subsequent

iterations, if the TWT of the selected best solution is less than AL then the AL is updated

to be the TWT of the selected best solution. As mentioned earlier, if a tabu move results

in TWT that is better than AL, the move is released from tabu restrictions and the

corresponding schedule is included in the set of solutions considered for selection.

42

(3) Candidate List (CL): Candidate List consists of the best solution selected at each

iteration whereas Index list entails all the local optima obtained during the search process.

For a given problem instance, suppose that the initial solution gave a TWT equal to S0.

The initial solution (S0) is considered to be the first local optimum and therefore it is

included in the Index List as well as the Candidate List. As mentioned earlier, TWT is

used as a measure of performance for any given solution. Further suppose that the best

solution obtained after perturbing S0 is S1. Since S1 is best solution obtained after first

iteration, it is admitted into the Candidate List. If TWT of S1 is less than TWT of S0

(S1<S0), S1 will receive a (*), which indicates that it has the potential to become a local

optimum. Now let S2 be the best solution obtained after perturbing S1. S2 is admitted in

the Candidate List. If TWT of S1 is less than or equal to TWT of S2 then S1 will receive

another star. A solution with double stars (**) implies that it is a local optimum and is

inducted into the Index List. If TWT of S2 is less than TWT of S1, then S2 will receive a

star suggesting that it has the potential to become the next local optimum. Before

admitting an entry into the CL, it has to be checked against all previously admitted entries

to avoid duplication. If a solution already exists in the CL, the next best solution is

chosen instead.

(4) Number of iterations without improvement: The number of iterations without

improvement (IWOI) is set equal to zero before initiating the search. At subsequent

iterations, if there is no improvement in the TWT value (i.e. the current TWT is equal or

larger than the previous TWT), increase the IWOI by 1. The IWOI is reset to zero, if an

improvement is found in TWT.

(5) Long term memory (LTM) matrix: The long term memory matrix is used when the

tabu-search employs long term memory function for exploring the search space. The long

term memory matrix is a frequency matrix that keeps track of the number of times a

particular job is processed on a particular machine. The size of the LTM matrix is equal

to the number of jobs times the number of machines. For example, if a problem instance

has 10 jobs and 3 machines then the size of the LTM matrix would be 10 by 3 (10 rows

and 3 columns = 10*3 = 30 cells). Initially, all the entries of the LTM matrix are set equal

to zero. Note that not all jobs can be processed on all machines (due to machine

43

capability). If a job cannot be processed on a particular machine then the corresponding

cells will remain empty throughout the search.

 The LTM-matrix is updated after every iteration. Each cell that corresponds to the

machine on which a job is processed is increased by 1, after each iteration. The LTM

matrix provides information regarding the machine that is most or least frequently used

by a job. We utilize this information to determine the restarting point to intensify and

diversify the search process.

Step 4: There are two stopping criterion used to terminate the search: (1) Maximum

number of iterations without improvement and (2) Maximum entries into the index list.

Both criteria are dependent upon the size of the problem instance. Extensive

experimentation was performed to determine the appropriate threshold values for IWOI

Max and IL Max. IWOI Max and IL max are proportional to the total number of jobs.

Hence IWOI Max and IL Max increase as the number of jobs increase.

Step 5: Tabu search employs the intensification and diversification strategies to further

explore the search space. The intensification of search is carried out using the long term

memory based on the maximum frequency (LTM-MAX). The diversification of search is

carried out using the long term memory based on the minimum frequency (LTM-MIN).

As mentioned earlier, the information pertaining to maximum and minimum frequency is

stored in the LTM matrix.

 The LTM search based on maximum frequency directs the search to restart from

regions that have previously been considered as „good‟. The LTM search based on the

minimum frequency directs the search to restart from regions that were least or never

explored. The following paragraph serves as the guideline for using the LTM matrix.

 For LTM-MAX, job-machine pair with maximum frequency from the frequency matrix is

selected. Note that if one or more jobs have operation only on one machine (due to

machine capability) then the cells corresponding to these jobs will have the largest entries

because the job will always opt to be processed only on that machine (due to the machine

capability constraint). Fixing such jobs on machines is pointless because they will be

processed on the assigned machine throughout the search (regardless of whether we fix

44

them to a particular machine or not). Extra precaution needs to be taken while selecting

the job and machine pair. Only those job-machine pairs must be selected where the job

(in consideration) can be processed on two or more machines. Once the job-machine pair

is selected, the job is fixed to the respective machine (based on the LTM frequency

matrix) throughout the search process until the next restart is invoked. If there is a tie

maximum frequency, row-wise first best strategy is used to break ties.

 For LTM-MIN, job-machine pair with minimum frequency from the frequency matrix is

selected. Meticulous attention is required while selecting the job-machine pair. Note that

if one or more jobs have no operation on a particular machine (due to machine capability)

then the cells corresponding to these jobs will have the smallest entries because the job

will never opt to be processed on that machine. Therefore, we only consider those job-

machine pairs in which the job (in consideration) can be processed on two or more

machines. After the job-machine pair is selected, fix the job on the respective machine

until the next restart is invoked. Similar to the LTM-max, use the row-wise first best

strategy to break ties.

The job selected from the LTM matrix is referred to as „fixed job‟ and the

corresponding machine (on which the job is supposed to be „fixed‟ throughout the search)

is referred as „fixed machine‟. The schedule used to restart the search is derived from the

initial solution. If „fixed job‟ is already assigned to the „fixed‟ machine in the initial

solution then the restart solution will be similar to the initial solution. In this scenario, the

only difference between the initial solution and the restart solution is that the „fixed job‟

will not be removed from the „fixed machine‟ until another restart is invoked.

In case if the „fixed job‟ is not already assigned to the „fixed machine‟ in the

initial solution, we insert the „fixed job‟ to the fist position of the „fixed machine‟. The

rationale behind doing so is to address a situation when no jobs are scheduled to be

processed on the „fixed machine‟. Under this circumstance, scheduling „fixed job‟ on

„fixed machine‟ will make the „fixed job‟ the first as well as the only job to be processed

on the „fixed machine‟.

Using restart as a starting point, repeat Steps 1 through 4. Total number of restarts

used in this research is assumed to be 2. Logendran and Sonthinen (1997), Logendran and

45

Subur (2000) have previously used two restarts to solve problems of industrial merit. The

tabu list, Aspiration Level and iterations without improvement must be re-initialized at

the beginning of each restart.

Step 6: If short term memory is utilized to commence the search, the entire search should

be concluded at the end of Step 4. For long-term memory function, the search is

concluded when the total number of restarts is reached (which is 2 in this case). The best

solution (minimum TWT) is then chosen from the index list.

 The entire algorithmic steps are written in C# using Visual Studio.NET platform.

Visual Studio is an integrated development tool from Microsoft that lets developers to

create user interfaces for web and windows services. Visual Studio.NET supports several

different programming languages including C#.NET, VB.NET, C++, PHP and several

others. The programs are written in the form of function files and are executable from C#

.NET 2008. A flowchart showing the steps of the tabu search is presented in Figure 5.1.

5.6 Application of Heuristic Algorithm to Example Problem

We illustrate the application of the tabu search heuristic by means of a randomly

generated sample problem, shown in Table 5.2. The problem comprises of one project

and the number of jobs within the project is 11. There are a total of 5 jobs that have an

operation which can be performed on more than one machine is stage 1. The due dates of

jobs along with weights, release times, runtimes have been presented in Table 5.2. The

sequence-dependent setup times have been included in the appendix A instead of Table

5.2 due to space limitations and overwhelming data content.

The machine availability times are also presented in Table 5.2. Note that among

the 3 machines in stage 1, M1,1 is available at t = 3, M2,1 is available at t = 8, and M3,1 is

available at t = 4. Jobs that cannot be processed on certain machines are assumed to have

a runtime of 0 (e.g. runtime of J1,1 on M3,1 is 0). The five methods described in Section

5.3 are applied to this example problem to obtain initial solutions.

46

Table 5-1 Problem Structure

Number of Jobs 11

Number of stages 17

Number of machines 19

Table 5-2 Example problem with 11 jobs

P J Wt RT

DD

M1,1 M2,1 M3,1 M1,2 M1,3 M1,4 M1,5 M1,6 M1,7 M1,8 M1.9 M1,10

3 8 4 18 22 30 36 41 48 53 61 64

Runtime of Jobs

1 1 1 2 1684 45 35 0 0 23 0 0 0 0 0 0 44

1 2 2 4 520 0 34 0 0 38 41 0 0 0 0 37 0

1 3 1 4 339 0 0 33 0 41 0 0 0 0 28 24 31

1 4 3 8 1462 34 0 0 32 41 0 0 0 0 0 0 0

1 5 3 4 1501 0 41 32 0 0 35 31 0 0 0 0 0

1 6 2 6 517 0 0 43 0 40 33 0 0 0 0 0 0

1 7 2 8 388 40 0 45 0 0 35 0 0 0 0 0 28

1 8 3 7 603 37 0 0 36 25 0 0 0 0 0 0 38

1 9 2 4 441 0 24 47 39 32 0 0 0 0 0 33 0

1 10 1 4 819 0 0 46 0 33 0 0 0 32 0 0 0

1 11 1 4 350 48 0 41 0 27 0 0 0 31 0 38 0

47

a. The following evaluations are obtained by applying the EDD method to the example

problem:

 At t = 0, tm1,1 = 3, tm2,1 = 8, tm3,1 = 4. NSJ = [J1,1 , J2,1 , J3,1 , J4,1 , J5,1 , J6,1 , J7,1

, J8,1 , J9,1 , J10,1 , J11,1].

 The machine with minimum availability is M1,1 at t = 3. J1, 1 is released at t = 2

hence it is selected to be processed on M1,1. Anticipatory setup cannot be

performed since the machine availability is greater than the job release time.

ST (J1,1 , M1,1) = 3, CT (J1,1 , M1,1) = 3 + 33+ 45 = 81 (where 33 is the change

over from reference to J1,1 on M1,1 and 45 is the runtime of J1,1 on M1,1). NSJ

= [J2,1 , J3,1 , J4,1 , J5,1 , J6,1 , J7,1 , J8,1 , J9,1 , J10,1 , J11,1]. tm1,1 = 81.

 The next machine with minimum availability is M3,1 at t = 4. SJ = [J3,1 , J5,1 ,

J9,1 , J10,1 , J11,1]. J3,1 is selected since it has the minimum due date. ST (J3,1 ,

M3,1) = 4, CT (J3,1 , M3,1) = 4 + 7 + 33 = 44 (where 7 is the change over from

reference to J3,1 on M3,1 and 33 is the runtime of J3,1 on M3,1). NSJ = [J2,1 , J4,1 ,

J5,1 , J6,1 , J7,1 , J8,1 , J9,1 , J10,1 , J11,1]. tm3,1 = 44.

 The next machine with minimum availability is M2,1 at t = 8. SJ = [J2,1 , J5,1 ,

J9,1]. J9,1 is selected since it has the minimum due date. ST (J9,1 , M2,1) = 8. CT

(J9,1 , M2,1) = 8 + 23 + 24 = 55 (where 23 is the change over from reference to

J9,1 on M2,1). NSJ = [J2,1 , J4,1 , J5,1 , J6,1 , J7,1 , J8,1 , J10,1 , J11,1]. tm2,1 = 55.

 tmi,k = [81, 44, 55]. M3,1 has the minimum tmi,k and t = 44. SJ = [J5,1 , J6,1 , J7,1

, J10,1 , J11,1]. J11,1 is selected since it has the minimum due date. ST (J11,1 ,

M3,1) = 44, CT (J11,1 , M3,1) = 44 + 6 + 41 = 91 (where 6 is the change over

from J3,1 to J11,1 on M3,1 and 41 is the runtime of J11,1 on M3,1). NSJ = [J2,1 , J4,1

, J5,1 , J6,1 , J7,1 , J8,1 , J10,1] and tm3,1 = 91.

 tmi,k = [81, 91, 55]. M2,1 has the minimum tmi,k and t = 55. SJ = [J2,1 , J5,1]. J2,1

is selected since it has the minimum due date. ST (J2,1, M2,1) = 55 and CT (J2,1,

M2,1) = 55 + 23 + 34 = 112 (where 23 is the change over from J9,1 to J2,1 on

M2,1). NSJ = [J4,1 , J5,1 , J6,1 , J7,1 , J8,1 , J10,1] and tm2,1 = 112.

 tmi,k = [81, 91, 112]. M1,1 has the minimum tmi,k and t = 81. SJ = [J4,1 , J7,1 , J8,1

]. J7,1 is chosen since it has the minimum due date. ST (J7,1, M1,1) = 81 and CT

(J7,1, M1,1) = 81 + 39 + 40 = 160 (where 39 is the change over from J1,1 to J7,1

48

on M1,1 and 40 is the runtime of J7,1 on M1,1). NSJ = [J4,1 , J5,1 , J6,1 , J8,1 , J10,1]

and tm1,1 = 160.

 tmi,k = [160, 91, 112]. M3,1 has the minimum tmi,k and t = 91. SJ = [J5,1 , J6,1 ,

J10,1]. J6,1 is selected since it has the minimum due date. ST (J6,1, M3,1) = 91

and CT (J6,1, M3,1) = 91+ 15 + 43 = 149 (where 15 is the change over from

J11,1 to J6,1 on M3,1 and 43 is the runtime of J6,1 on M3,1). NSJ = [J4,1 , J5,1 , J8,1 ,

J10,1] and tm3,1 = 149.

 tmi,k = [160, 149, 112]. M2,1 has the minimum tmi,k and t = 112. SJ = [J5,1].

Since J5,1 is the only job, it is scheduled on M2,1. ST(J5,1, M2,1) = 112 and

CT(J5,1, M2,1) = 112 + 12 + 41 = 165. NSJ = [J4,1 , J8,1 , J10,1] and tm2,1 = 165.

 tmi,k = [160, 149, 165]. M3,1 has the minimum tmi,k and t = 149. SJ = [J10,1].

Since J10,1 is the only job, it is scheduled on M3,1. ST (J10,1, M3,1) = 149 and CT

(J10,1, M3,1) = 149+ 3 + 46 = 198. NSJ = [J4,1 , J8,1] and tm3,1 = 198.

 tmi,k = [160, 198, 165]. M1,1 has the minimum tmi,k and t = 160. SJ = [J4,1 , J8,1

]. J8,1 is chosen since it has the minimum due date. ST (J8,1, M1,1) = 160 and

CT (J8,1, M1,1) = 160 + 18 + 37 = 215 (where 18 is the change from J7,1 to J8,1

on M1,1 and 37 is the runtime of J8,1 on M1,1). NSJ = [J4,1] and tm1,1 = 215.

 tmi,k = [215, 198, 165]. M2,1 has the minimum tmi,k and t = 165 but since

remaining unscheduled job [J4,1] cannot be processed on M2,1, it is excluded

from future consideration.

 tmi,k = [215, 198]. M3,1 has the minimum tmi,k and t = 198 but since remaining

unscheduled job [J4,1] cannot be processed on M3,1, it is excluded from future

consideration.

 tmi,k = [215]. M1,1 has the minimum tmi,k and is the only machine available at t

= 215. SJ = [J4,1]. Since [J4,1] is the only job, it is scheduled on M1,1. ST (J4,1,

M1,1) = 215 and CT (J4,1, M1,1) = 215 + 28 + 34 = 277 (where 28 is the change

from J8,1 to J4,1 on M1,1 and 34 is the runtime of J4,1 on M1,1). tm1,1 = 277.

 At this time, all jobs have been processed in the first stage and are ready to be

processed on the second stage. Note that not all jobs are processed in the

second stage due to machine skipping. J4,1, J8,1 and J9,1 are required to be

processed on M1,2. M1,2 becomes available at t = 18 and J4,1, J8,1 and J9,1 are

49

released at t = 277, t = 215 and t = 55, respectively. Since J9,1 is released

earliest, it is the first job to be processed on M1,2 followed by J8,1 and J4,1. The

start and completion time of jobs can be documented as follows.

 ST (J9,1 , M1,2) = 55. CT (J9,1 , M1,2) = 55 + 39 = 94 (where 39 is the run time

of J9,1 on M2,1). Anticipatory setup is performed on the machine starting at t =

25 and finished before the release of the job (t = 55). Note that the changeover

time required to change from reference to J9,1 on M2,1 is 30.

 Next, ST (J8,1 , M1,2) = 215. CT (J8,1 , M1,2) = 215 + 36 = 251 (where 36 is the

run time of J8,1 on M2,1). Anticipatory setup is performed on the machine

starting at t = 182 and finished before the release of the job (t = 215). Note

that the changeover time required to change from J9,1 on M2,1 to J8,1 on M2,1 is

33.

 M2,1 becomes available at t = 251. J4,1 is the next job required to be processed

on M2,1. Setup is performed on machine starting t = 251 and completed at time

279 (changeover from J8,1 on M2,1 to J4,1 on M2,1 is 28). ST (J4,1 , M1,2) = 279.

CT (J8,1 , M1,2) = 279 + 32 = 309 (where 32 is the run time of J4,1 on M2,1). At

this point, there aren‟t any jobs that require an operation on M1,2.

 The jobs are processed on stages 3-17 in the similar fashion. The completion

time of all jobs the end of stage 17 along with their weighted tardiness is

summarized in Table 5.3.

50

b. The following evaluations are obtained by applying (LFJ/LFM) method to the

example problem:

 At t = 0, tm1,1 = 3, tm2,1 = 8, tm3,1 = 4. NSJ = [J1,1 , J2,1 , J3,1 , J4,1 , J5,1 , J6,1 , J7,1

, J8,1 , J9,1 , J10,1 , J11,1].

 The machine with minimum availability is M1,1 at t = 3. J1, 1 is released at t = 2

hence it is selected to be processed on M1,1. Anticipatory setup cannot be

performed since the machine availability is greater than the job release time.

ST (J1,1 , M1,1) = 3, CT (J1,1 , M1,1) = 3 + 33+ 45 = 81 (where 33 is the change

over from reference to J1,1 on M1,1 and 45 is the runtime of J1,1 on M1,1). NSJ

= [J2,1 , J3,1 , J4,1 , J5,1 , J6,1 , J7,1 , J8,1 , J9,1 , J10,1 , J11,1]. tm1,1 = 81.

 The next machine with minimum availability is M3,1 at t = 4. SJ = [J3,1 , J5,1 ,

J9,1 , J10,1 , J11,1]. J10,1 is selected since it is the least flexible job. ST (J10,1 ,

M3,1) = 4, CT (J10,1 , M3,1) = 4 + 9 + 46 = 59 (where 8 is the change over from

reference to J10,1 on M3,1 and 46 is the runtime of J10,1 on M3,1). NSJ = [J2,1 , J3,1

, J4,1 , J5,1 , J6,1 , J7,1 , J8,1 , J9,1 , J11,1]. tm3,1 = 59.

 The next machine with minimum availability is M2,1 at t = 8. SJ = [J2,1 , J5,1 ,

J9,1]. J2,1 is selected since it is the least flexible. ST (J2,1 , M2,1) = 8. CT (J2,1 ,

M2,1) = 8 + 17 + 34 = 59 (where 17 is the change over from reference to J2,1 on

M2,1). NSJ = [J3,1, J4,1 , J5,1 , J6,1 , J7,1 , J8,1 , J9,1 , J11,1]. tm2,1 = 59.

 tmi,k = [81, 59, 59]. Though M2,1 and M3,1 have the same tmi,k (release time) at t

= 59, M2,1 is selected because it is less flexible . SJ = [J5,1 , J9,1]. J5,1 is

selected over J9,1 because both have same flexibility but the former has a

lower job number. ST (J5,1 , M3,1) = 59, CT (J5,1 , M3,1) = 59 + 39 + 41 = 139

(where 39 is the change over from J2,1 to J5,1 on M3,1 and 41 is the runtime of

J5,1 on M3,1). NSJ = [J3,1, J4,1 , J6,1 , J7,1 , J8,1 , J9,1 , J11,1] and tm3,1 = 139.

 tmi,k = [81, 139, 59]. M3,1 has the minimum tmi,k and t = 59. SJ = [J3,1 , J6,1, J7,1

, J11,1]. J6,1 because it is the least flexible job. ST (J6,1, M2,1) = 59 and CT (J6,1,

M2,1) = 59 + 25 + 43 = 127 (where 25 is the change over from J10,1 to J6,1 on

M2,1). NSJ = [J3,1, J4,1, J7,1 , J8,1 , J9,1 , J11,1] and tm2,1 = 127.

51

 tmi,k = [81, 139, 127]. M1,1 has the minimum tmi,k and t = 81. SJ = [J4,1 , J8,1 ,

J11,1]. Though all three unscheduled jobs have same flexibility, J4,1 is chosen

because it is has the lowest job number. ST (J4,1, M1,1) = 81 and CT (J4,1, M1,1)

= 81 + 31 + 34 = 146 (where 31 is the change over from J1,1 to J4,1 on M1,1 and

34 is the runtime of J4,1 on M1,1). NSJ = [J3,1, J7,1 , J8,1 , J9,1 , J11,1] and tm1,1 =

147.

 tmi,k = [147, 139, 127]. M3,1 has the minimum tmi,k and t = 127 and SJ = [J3,1 ,

J7,1 , J11,1]. J3,1 is selected since it is least flexible. ST (J3,1, M3,1) = 127 and CT

(J3,1, M3,1) = 127 + + 33 = 180 (where 20 is the change over from J6,1 to J3,1

on M3,1). NSJ = [J7,1 , J8,1 , J9,1 , J11,1] and tm3,1 = 180.

 tmi,k = [147, 139, 180]. M2,1 has the minimum tmi,k and t = 139. SJ = [J9,1].

J9,1 is scheduled to be processed on M2,1 since it is the only remaining job . ST

(J9,1, M2,1) = 139 and CT (J8,1, M2,1) = 139+ 4 + 24 = 167 where (4 is the

change over from J5,1 to J9,1 on M2,1 and 24 is the runtime of J9,1 on M2,1). NSJ

= [J7,1 , J8,1 , J11,1] and tm2,1 = 175.

 M2,1 is removed from further consideration since none of the unscheduled jobs

can be processed on M2,1.

 tmi,k = [147, 180]. M1,1 has the minimum tmi,k and t = 147. SJ = [J8,1, J11,1].

J8,1 is chosen since it is less flexible than J11,1. ST(J8,1, M1,1) = 147 and CT(J8,1,

M1,1) = 147+ 9 + 37 = 193 (where 9 is the change over from J4,1 to J8,1 on M1,1

and 37 is the runtime of J11,1 on M1,1). NSJ = [J7,1 , J11,1] and tm1,1 = 193.

 tmi,k = [193, 180]. M3,1 has the minimum tmi,k and t = 180. SJ = [J7,1, J10,1]. J7,1

is selected since it is the only job that can be on M3,1. ST (J7,1, M3,1) = 180 and

CT (J7,1, M3,1) = 180 + 12 + 45 = 237 (where 12 is the change over from J3,1 to

J7,1 on M3,1 and 45 is the runtime of J7,1 on M3,1). NSJ = [J10,1] and tm3,1 = 237.

 tmi,k = [193, 237]. M1,1 has the minimum tmi,k and t = 193. SJ = [J11,1]. J11,1 is

the only remaining unscheduled job. ST (J11,1, M1,1) = 193 and CT (J4,1, M1,1) =

193 + 8 + 48 = 249 (where 8 is the change from J8,1 to J11,1 on M1,1 and 48 is

the runtime of J11,1 on M1,1). NSJ = [Ø]

52

 At this time, all jobs have been processed in the first stage and are ready to be

processed on the second stage. Note that not all jobs are processed in the

following stages (stage 2-17) due to machine skipping.

 The jobs are processed on stages 2-17 in the similar fashion. The completion

time of all jobs the end of stage 17 along with their weighted tardiness is

summarized in Table 5.3.

53

c. The following evaluations are obtained by applying IS3 method to the example

problem:

 At t = 0, tm1,1 = 3, tm2,1 = 8, tm3,1 = 4. NSJ = [J1,1 , J2,1 , J3,1 , J4,1 , J5,1 , J6,1 , J7,1

, J8,1 , J9,1 , J10,1 , J11,1].

 The machine with minimum availability is M1,1 at t = 3. J1, 1 is released at t = 2

hence it is selected to be processed on M1,1. Anticipatory setup cannot be

performed since the machine availability is greater than the job release time.

ST (J1,1 , M1,1) = 3, CT (J1,1 , M1,1) = 3 + 33+ 45 = 81 (where 33 is the change

over from reference to J1,1 on M1,1 and 45 is the runtime of J1,1 on M1,1). NSJ

= [J2,1 , J3,1 , J4,1 , J5,1 , J6,1 , J7,1 , J8,1 , J9,1 , J10,1 , J11,1]. tm1,1 = 81.

 The next machine with minimum availability is M3,1 at t = 4. SJ = [J3,1 , J5,1 ,

J9,1 , J10,1 , J11,1]. J5,1 is selected since it has the minimum tardiness. ST (J5,1 ,

M3,1) = 4, CT (J5,1 , M3,1) = 4 + 13 + 41 = 58 (where 13 is the change over

from reference to J5,1 on M3,1 and 41 is the runtime of J5,1 on M3,1). NSJ = [J2,1 ,

J3,1 , J4,1 , J6,1 , J7,1 , J8,1 , J9,1 , J10,1 , J11,1]. tm3,1 = 58.

 The next machine with minimum availability is M2,1 at t = 8. SJ = [J2,1 , J5,1 ,

J9,1]. J2,1 is selected since it has the minimum tardiness. ST (J2,1 , M2,1) = 8. CT

(J2,1 , M2,1) = 8 + 17 + 34 = 59 (where 17 is the change over from reference to

J2,1 on M2,1). NSJ = [J3,1 , J4,1 , J6,1 , J7,1 , J8,1 , J9,1 , J10,1 , J11,1]. tm2,1 = 59.

 tmi,k = [81, 58, 59]. M3,1 has the minimum tmi,k and t = 58. SJ = [J3,1 , J6,1 , J7,1

, J9,1 , J10,1 , J11,1]. J10,1 is selected since it has the minimum tardiness. ST (J10,1

, M3,1) = 58, CT (J10,1 , M3,1) = 58 + 4 + 46 = 108 (where 4 is the change over

from J5,1 to J10,1 on M3,1 and 46 is the runtime of J10,1 on M3,1). NSJ = [J3,1 , J4,1

, J6,1 , J7,1 , J8,1 , J9,1 , J11,1] and tm3,1 = 108.

 tmi,k = [81, 108, 59]. M2,1 has the minimum tmi,k and t = 59. SJ = [J9,1]. J9,1 is

selected since it is the only remaining job that can be processed on M2,1. ST

(J9,1, M2,1) = 59 and CT (J9,1, M2,1) = 59 + 12 + 24 = 95 (where 12 is the

change over from J2,1 to J9,1 on M2,1). NSJ = [J3,1 , J4,1 , J6,1 , J7,1 , J8,1 , J11,1

]and tm2,1 = 95.

54

 tmi,k = [81, 108, 95]. M1,1 has the minimum tmi,k and t = 81. SJ = [J4,1 , J7,1 ,

J8,1, J11,1]. J4,1 is chosen since it has the minimum tardiness. ST (J4,1, M1,1) =

81 and CT (J4,1, M1,1) = 81 + 31 + 34 = 146 (where 31 is the change over from

J1,1 to J4,1 on M1,1 and 34 is the runtime of J4,1 on M1,1). NSJ = [J3,1 , J6,1 , J7,1 ,

J8,1 , J11,1] and tm1,1 = 146.

 tmi,k = [146, 108, 95]. M2,1 has the minimum tmi,k and t = 95. SJ = [Ø]. Thus

M2,1 is not taken into consideration and is removed from the set of available

machines.

 tmi,k = [146, 108]. M3,1 has the minimum tmi,k and t = 108. SJ = [J3,1 , J6,1 , J7,1

, J11,1]. J6,1 is selected since it has the minimum tardiness. ST(J6,1, M3,1) = 108

and CT(J6,1, M3,1) = 108 + 33 + 35 = 176. (where 33 is the changeover from

J10,1 to J6,1 on M3,1). NSJ = [J3,1 , J7,1 , J8,1 , J11,1] and tm,1 = 176

 tmi,k = [146, 176]. M1,1 has the minimum tmi,k and t = 146. SJ = [J8,1 , J11,1]. J8,1

is chosen since it has the minimum tardiness. ST (J8,1, M1,1) = 146 and CT

(J8,1, M1,1) = 146+ 10 + 37 = 193 (where 10 is the changeover from J4,1 to J8,1

on M1,1). NSJ = [J3,1 , J7,1 , J11,1] and tm1,1 = 193.

 tmi,k = [193, 176]. M3,1 has the minimum tmi,k and t = 176. SJ = [J3,1 , J7,1 ,

J11,1]. J7,1 is chosen since it has the minimum tardiness. ST (J7,1, M3,1) = 176

and CT (J7,1, M3,1) = 176 + 14 + 45 = 235 (where 14 is the change from J6,1 to

J7,1 on M3,1 and 45 is the runtime of J7,1 on M3,1). NSJ = [J3,1, J11,1] and tm3,1 =

235.

 tmi,k = [193, 235]. M1,1 has the minimum tmi,k and t = 193. SJ = [J11,1]. Since

J11,1 is the only remaining job that can be processed on M1,1, it is scheduled on

M1,1. ST (J11,1, M1,1) = 193 and CT (J11,1, M1,1) = 193 + 8 + 48 = 249 (where 8

is the change from J8,1 to J11,1 on M1,1 and 48 is the runtime of J11,1 on M1,1).

tm1,1 = 249. NSJ = [J3,1].

 tmi,k = [249, 235]. M3,1 has the minimum tmi,k and t = 235. SJ = [J3,1]. The only

job that can be processed on M3,1 is J3,1. Therefore, it is scheduled to be

processed on M3,1. ST (J3,1, M3,1) = 235 and CT (J3,1, M3,1) = 235 + 6 + 33 =

274 (where 6 is the change from J6,1 to J3,1 on M3,1 and 33 is the runtime of J3,1

on M3,1). tm1,1 = 274 and NSJ = [Ø].

55

 At this time, all jobs have been processed in the first stage and are ready to be

processed on the second stage. Note that not all jobs are processed in the

second stage due to machine skipping. J4,1, J8,1 and J9,1 are required to be

processed on M1,2. M1,2 becomes available at t = 18 and J4,1, J8,1 and J9,1 are

released at t = 146, t = 193 and t = 95 respectively. Since J9,1 is released

earliest, it is the first job to be processed on M1,2 followed by J4,1 and J8,1. The

start and completion time of jobs can be documented as follows.

 ST (J9,1 , M1,2) = 55. CT (J9,1 , M1,2) = 95 + 39 = 134 (where 39 is the run time

of J9,1 on M2,1) Anticipatory setup is performed on the machine starting at t =

65 and finished before the release of the job (t = 95). Note that the changeover

time required to change from reference to J9,1 on M2,1 is 30.

 M2,1 becomes available at t = 134. J4,1 is the next job required to be processed

on M2,1. Anticipatory setup is performed on machine starting at t = 134 and

completed at time 159 (changeover from J9,1 on M2,1 to J4,1 on M2,1 is 25). ST

(J4,1 , M1,2) = 159. CT (J4,1 , M1,2) = 159 + 32 = 191 (where 32 is the run time

of J4,1 on M2,1).

 Next, M2,1 becomes available at t = 191. Anticipatory setup is performed on

the machine starting at t = 191 and finished at t = 224. Note that the

changeover time required to change from J4,1 on M2,1 to J8,1 on M2,1 is 33).

ST(J8,1 , M1,2) = 234. CT(J8,1 , M1,2) = 234 + 36 = 260 (where 36 is the run

time of J8,1 on M2,1).

 The jobs are processed on stages 3-17 in the similar fashion. The completion

time of all jobs the end of stage 17 along with their weighted tardiness is

summarized in Table 5.3.

56

d. The following evaluations are obtained by applying (Due Date/Weight) method to the

example problem:

 At t = 0, tm1,1 = 3, tm2,1 = 8, tm3,1 = 4. NSJ = [J1,1 , J2,1 , J3,1 , J4,1 , J5,1 , J6,1 , J7,1

, J8,1 , J9,1 , J10,1 , J11,1].

 The machine with minimum availability is M1,1 at t = 3. J1, 1 is released at t = 2

hence it is selected to be processed on M1,1. Anticipatory setup cannot be

performed since the machine availability is greater than the job release time.

ST (J1,1 , M1,1) = 3, CT (J1,1 , M1,1) = 3 + 33+ 45 = 81 (where 33 is the change

over from reference to J1,1 on M1,1 and 45 is the runtime of J1,1 on M1,1). NSJ

= [J2,1 , J3,1 , J4,1 , J5,1 , J6,1 , J7,1 , J8,1 , J9,1 , J10,1 , J11,1]. tm1,1 = 81.

 The next machine with minimum availability is M3,1 at t = 4. SJ = [J3,1 , J5,1 ,

J9,1 , J10,1 , J11,1]. J9,1 is selected since it has the minimum (due date/weight)

ratio. ST (J9,1 , M3,1) = 4, CT (J9,1 , M3,1) = 4 + 2 + 47 = 53 (where 2 is the

change over from reference to J9,1 on M3,1 and 47 is the runtime of J9,1 on

M3,1). NSJ = [J2,1 , J3,1 , J4,1 , J5,1 , J6,1 , J7,1 , J8,1 , J10,1 , J11,1]. tm3,1 = 53.

 The next machine with minimum availability is M2,1 at t = 8. SJ = [J2,1 , J5,1].

J2,1 is selected since it has the minimum (due date/weight). ST (J2,1 , M2,1) = 8.

CT (J2,1 , M2,1) = 8 + 17 + 34 = 59 (where 17 is the change over from

reference to J2,1 on M2,1). NSJ = [J3,1, J4,1 , J5,1 , J6,1 , J7,1 , J8,1 , J10,1 , J11,1].

tm2,1 = 59.

 tmi,k = [81, 53, 59]. M3,1 has the minimum tmi,k and t = 53. SJ = [J3,1, J5,1 , J6,1 ,

J7,1 , J10,1 , J11,1]. J7,1 is selected since it has the minimum due date/weight

ratio. ST (J7,1 , M3,1) = 53, CT (J7,1 , M3,1) = 53 + 16 + 45 = 114 (where 16 is

the change over from J9,1 to J7,1 on M3,1 and 45 is the runtime of J7,1 on M3,1).

NSJ = [J3,1, J4,1 , J5,1 , J6,1 , J8,1 , J10,1 , J11,1]and tm3,1 = 114.

 tmi,k = [81, 114, 59]. M2,1 has the minimum tmi,k and t = 59. SJ = [J5,1]. J5,1 is

selected since it is the only job that can be processed on M2,1. ST (J5,1, M2,1) =

59 and CT (J5,1, M2,1) = 59 + 12 + 41 = 112 (where 12 is the change over from

J2,1 to J5,1 on M2,1). NSJ = [J3,1, J4,1 , J6,1 , J8,1 , J10,1 , J11,1] and tm2,1 = 112.

 tmi,k = [81, 114, 112]. M1,1 has the minimum tmi,k and t = 81. SJ = [J4,1 , J8,1 ,

J11,1]. J8,1 is chosen since it has the minimum due date/weight. ST (J8,1, M1,1) =

57

81 and CT (J8,1, M1,1) = 81 + 29 + 37 = 147 (where 29 is the change over from

J1,1 to J8,1 on M1,1 and 37 is the runtime of J8,1 on M1,1). NSJ = [J3,1, J4,1 , J6,1

,J10,1, J11,1] and tm1,1 = 147.

 tmi,k = [147, 114, 112]. M2,1 has the minimum tmi,k and t = 112 but since the

remaining unscheduled jobs cannot be processed on M2,1, they are excluded

from future consideration.

 tmi,k = [147, 114]. M3,1 has the minimum tmi,k and t = 114. SJ = [J3,1 , J6,1 ,

J10,1 , J11,1]. J6,1 is selected since it has the minimum due date/weight ratio . ST

(J6,1, M3,1) = 114 and CT (J6,1, M3,1) = 114+ 18 + 43 = 175 where (18 is the

change over from J7,1 to J6,1 on M3,1 and 43 is the runtime of J6,1 on M3,1). NSJ

= [J3,1, J4,1 , J10,1, J11,1]and tm3,1 = 175.

 tmi,k = [147, 175]. M1,1 has the minimum tmi,k and t = 147. SJ = [J11,1, J4,1].

J11,1 is chosen since it has the minimum Due Date/weight ratio. ST(J11,1, M1,1)

= 147 and CT(J11,1, M1,1) = 147 + 8 + 48 = 203 (where 8 is the change over

from J8,1 to J11,1 on M1,1 and 48 is the runtime of J11,1 on M1,1). NSJ = [J3,1 , J4,1

, J10,1] and tm1,1 = 203.

 tmi,k = [203, 175]. M3,1 has the minimum tmi,k and t = 175. SJ = [J3,1 ,J10,1].

Since J3,1 is selected since it has the minimum Due Date/weight ratio and is

scheduled on M3,1. ST (J3,1, M3,1) = 175 and CT (J3,1, M3,1) = 175 + 20 + 33 =

228 (where 20 is the change over from J6,1 to J3,1 on M3,1 and 33 is the runtime

of J3,1 on M3,1). NSJ = [J4,1 , J10,1] and tm3,1 = 228.

 tmi,k = [203, 228]. M1,1 has the minimum tmi,k and t = 203. SJ = [J4,1]. J4,1 is

only remaining unscheduled job. ST (J4,1, M1,1) = 203 and CT (J4,1, M1,1) = 203

+ 4 + 34 = 241 (where 4 is the change from J11,1 to J4,1 on M1,1 and 34 is the

runtime of J4,1 on M1,1). NSJ = [J10,1] and tm1,1 = 241.

 tmi,k = [241, 228]. M3,1 has the minimum tmi,k and t = 228. SJ = [J10,1]. Since

J10,1 is the only remaining unscheduled job, [J10,1] is scheduled to be processed

on M3,1. ST (J10,1, M3,1) = 228 and CT (J10,1, M3,1) = 228 + 34 + 46 = 308. NSJ

= [Ø] and tm3,1 = 308.

 At this time, all jobs have been processed in the first stage and are ready to be

processed on the second stage. Note that not all jobs are processed in the

58

second stage due to machine skipping. J4,1, J8,1 and J9,1 are required to be

processed on M1,2. M1,2 becomes available at t = 18 and J4,1, J8,1 and J9,1 are

released at t = 241, t = 147 and t = 53 respectively. Since J9,1 is released

earliest, it is the first job to be processed on M1,2 followed by J8,1 and J4,1. The

start and completion time of jobs can be documented as follows.

 ST (J9,1 , M1,2) = 53. CT (J9,1 , M1,2) = 53 + 39 = 92 (where 39 is the run time

of J9,1 on M2,1). Anticipatory setup is performed on the machine starting at t =

23 and finished before the release of the job (t = 53). Note that the changeover

time required to change from reference to J9,1 on M2,1 is 30..

 Next, ST (J8,1 , M1,2) = 147. CT (J8,1 , M1,2) = 147 + 36 = 183 (where 36 is the

run time of J8,1 on M2,1). Anticipatory setup is performed on the machine

starting at t = 114 and finished before the release of the job (t = 147). Note

that the changeover time required to change from J9,1 on M2,1 to J8,1 on M2,1 is

33.

 M2,1 becomes available at t = 183. J4,1 is the next job required to be processed

on M2,1. Anticipatory setup is performed on machine starting at t = 251 and

completed at time 213 (changeover from J8,1 on M2,1 to J4,1 on M2,1 is 28). ST

(J4,1 , M1,2) = 241. CT (J8,1 , M1,2) = 241 + 32 = 273 (where 32 is the run time

of J4,1 on M2,1). At this point, there aren‟t any jobs that require an operation on

M1,2.

 The jobs are processed on stages 3-17 in the similar fashion. The completion

time of all jobs the end of stage 17 along with their weighted tardiness is

summarized in Table 5.3.

59

e. The following evaluations are obtained by applying (HCR-Hybrid Critical Ratio)

method to the example problem:

 At t = 0, tm1,1 = 3, tm2,1 = 8, tm3,1 = 4. NSJ = [J1,1 , J2,1 , J3,1 , J4,1 , J5,1 , J6,1 , J7,1

, J8,1 , J9,1 , J10,1 , J11,1].

 The machine with minimum availability is M1,1 at t = 3. J1, 1 is released at t = 2

hence it is selected to be processed on M1,1. Anticipatory setup cannot be

performed since the machine availability is greater than the job release time.

ST (J1,1 , M1,1) = 3, CT (J1,1 , M1,1) = 3 + 33+ 45 = 81 (where 33 is the change

over from reference to J1,1 on M1,1 and 45 is the runtime of J1,1 on M1,1). NSJ

= [J2,1 , J3,1 , J4,1 , J5,1 , J6,1 , J7,1 , J8,1 , J9,1 , J10,1 , J11,1]. tm1,1 = 81.

 The next machine with minimum availability is M3,1 at t = 4. SJ = [J3,1 , J5,1 ,

J9,1 , J10,1 , J11,1]. J9,1 is selected since it has the minimum HCR ratio. ST (J9,1 ,

M3,1) = 4, CT (J9,1 , M3,1) = 4 + 2 + 47 = 53 (where 2 is the change over from

reference to J9,1 on M3,1 and 47 is the runtime of J9,1 on M3,1). NSJ = [J2,1 , J3,1 ,

J4,1 , J5,1 , J6,1 , J7,1 , J8,1 , J10,1 , J11,1]. tm3,1 = 53.

 The next machine with minimum availability is M2,1 at t = 8. SJ = [J2,1 , J5,1].

J2,1 is selected since it has the minimum HCR ratio. ST (J2,1 , M2,1) = 8. CT

(J2,1 , M2,1) = 8 + 17 + 34 = 59 (where 17 is the change over from reference to

J2,1 on M2,1). NSJ = [J3,1, J4,1 , J5,1 , J6,1 , J7,1 , J8,1 , J10,1 , J11,1]. tm2,1 = 59.

 tmi,k = [81, 53, 59]. M3,1 has the minimum tmi,k and t = 53. SJ = [J3,1, J5,1 , J6,1 ,

J7,1 , J10,1 , J11,1]. J7,1 is selected since it has the minimum HCR ratio. ST (J7,1 ,

M3,1) = 53, CT (J7,1 , M3,1) = 53 + 16 + 45 = 114 (where 16 is the change over

from J9,1 to J7,1 on M3,1 and 45 is the runtime of J7,1 on M3,1). NSJ = [J3,1, J4,1 ,

J5,1 , J6,1 , J8,1 , J10,1 , J11,1] and tm3,1 = 114.

 tmi,k = [81, 114, 59]. M2,1 has the minimum tmi,k and t = 59. SJ = [J5,1]. J5,1 is

selected since it is the only job that can be processed on M2,1. ST (J5,1, M2,1) =

59 and CT (J5,1, M2,1) = 59 + 12 + 41 = 112 (where 12 is the change over from

J2,1 to J5,1 on M2,1). NSJ = [J3,1, J4,1 , J6,1 , J8,1 , J10,1 , J11,1] and tm2,1 = 112.

 tmi,k = [81, 114, 112]. M1,1 has the minimum tmi,k and t = 81. SJ = [J4,1 , J8,1 ,

J11,1]. J8,1 is chosen since it has the minimum HCR ratio. ST (J8,1, M1,1) = 81

60

and CT (J8,1, M1,1) = 81 + 29 + 37 = 147 (where 29 is the change over from

J1,1 to J8,1 on M1,1 and 37 is the runtime of J8,1 on M1,1). NSJ = [J3,1, J4,1 , J6,1

,J10,1, J11,1] and tm1,1 = 147.

 tmi,k = [147, 114, 112]. M2,1 has the minimum tmi,k and t = 112 but since

remaining unscheduled jobs cannot be processed on M2,1, it is excluded from

future consideration.

 tmi,k = [147, 114]. M3,1 has the minimum tmi,k and t = 114. SJ = [J3,1 , J6,1 ,

J10,1 , J11,1]. J6,1 is selected since it has the minimum HCR ratio . ST (J6,1, M3,1)

= 114 and CT (J6,1, M3,1) = 114+ 18 + 43 = 175 where (18 is the change over

from J7,1 to J6,1 on M3,1 and 43 is the runtime of J6,1 on M3,1). NSJ = [J3,1, J4,1 ,

J10,1, J11,1]and tm3,1 = 175.

 tmi,k = [147, 175]. M1,1 has the minimum tmi,k and t = 147. SJ = [J11,1, J4,1].

J11,1 is chosen since it has the minimum HCR ratio. ST(J11,1, M1,1) = 147 and

CT(J11,1, M1,1) = 147 + 8 + 48 = 203 (where 8 is the change over from J8,1 to

J11,1 on M1,1 and 48 is the runtime of J11,1 on M1,1). NSJ = [J3,1 , J4,1 , J10,1] and

tm1,1 = 203.

 tmi,k = [203, 175]. M3,1 has the minimum tmi,k and t = 175. SJ = [J3,1 ,J10,1].

Since J3,1 is selected since it has the minimum HCR ratio and is scheduled on

M3,1. ST (J3,1, M3,1) = 175 and CT (J3,1, M3,1) = 175 + 20 + 33 = 228 (where 20

is the change over from J6,1 to J3,1 on M3,1 and 33 is the runtime of J3,1 on

M3,1). NSJ = [J4,1 , J10,1] and tm3,1 = 228.

 tmi,k = [203, 228]. M1,1 has the minimum tmi,k and t = 203. SJ = [J4,1]. J4,1 is

the only remaining unscheduled job. ST (J4,1, M1,1) = 203 and CT (J4,1, M1,1) =

203 + 4 + 34 = 241 (where 4 is the change from J11,1 to J4,1 on M1,1 and 34 is

the runtime of J4,1 on M1,1). NSJ = [J10,1] and tm1,1 = 241.

 tmi,k = [241, 228]. M3,1 has the minimum tmi,k and t = 228. SJ = [J10,1]. Since

J10,1 is the only remaining unscheduled job, [J10,1] is scheduled to be processed

on processed on M3,1. ST (J10,1, M3,1) = 228 and CT (J10,1, M3,1) = 228 + 34 +

46 = 308. NSJ = [Ø] and tm3,1 = 308.

 At this time, all jobs have been processed in the first stage and are ready to be

processed on the second stage. Note that not all jobs are processed in the

61

second stage due to machine skipping. J4,1, J8,1 and J9,1 are required to be

processed on M1,2. M1,2 becomes available at t = 18 and J4,1, J8,1 and J9,1 are

released at t = 241, t = 147 and t = 53 respectively. Since J9,1 is released

earliest, it is the first job to be processed on M1,2 followed by J8,1 and J4,1. The

start and completion times of jobs can be documented as follows.

 ST (J9,1 , M1,2) = 53. CT (J9,1 , M1,2) = 53 + 39 = 92 (where 39 is the run time

of J9,1 on M2,1) Anticipatory setup is performed on the machine starting t = 23

and finished before the release of the job (t = 53). Note that the changeover

time required to change from reference to J9,1 on M2,1 is 30.

 Next, ST (J8,1 , M1,2) = 147. CT (J8,1 , M1,2) = 147 + 36 = 183 (where 36 is the

run time of J8,1 on M2,1). Anticipatory setup is performed on the machine

starting t = 114 and finished before the release of the job (t = 147). Note that

the changeover time required to change from J9,1 on M2,1 to J8,1 on M2,1 is 33..

 M2,1 becomes available at t = 183. J4,1 is the next job required to be processed

on M2,1. Anticipatory setup is performed on machine starting at t = 251 and

completed at time 213 (changeover from J8,1 on M2,1 to J4,1 on M2,1 is 28). ST

(J4,1 , M1,2) = 241. CT (J8,1 , M1,2) = 241 + 32 = 273 (where 32 is the run time

of J4,1 on M2,1). At this point, there aren‟t any jobs that require an operation on

M1,2.

 The jobs are processed on stages 3-17 in the similar fashion. The completion

time of all jobs the end of stage 17 along with their weighted tardiness is

summarized in Table 5.3.

Table 5.3 shows the summarized initial schedule and weighted tardiness obtained

by applying the initial solution finding mechanisms. The weighted tardiness (WT) is

evaluated as a job‟s weight times max [due date – completion time (stage 17), 0]. The

total WT is the sum of the weighted tardiness of all jobs. With the initial solution in hand,

the effort to find an optimal/near-optimal solution is continued by applying steps of tabu

search documented in Section 5.5. The demonstration of the application of tabu search is

done via using IS4 (DD/weight) and an optimal/near-optimal solution is finally obtained.

62

Table 5-3 Initial solutions of example problem

Jobs EDD LFJ/
LFM

 LWT DD/Wt ratio HCR

 CT WT CT WT CT WT CT WT CT WT

J1,1 288 0 501 0 412 0 368 0 368 0

J2,1 652 15 454 0 365 0 321 0 321 0

J3,1 354 0 716 377 820 0 796 2 796 2

J4,1 883 134 815 0 703 0 911 0 911 0

J5,1 590 300 385 0 296 354 507 394 507 394

J6,1 748 0 766 498 654 324 659 284 659 284

J7,1 538 264 646 516 565 274 585 375 585 375

J8,1 817 0 880 831 902 0 728 457 728 457

J9,1 413 462 575 268 603 396 442 500 442 500

J10,1 696 642 252 0 482 481 986 0 986 0

J11,1 484 0 833 483 746 897 850 167 850 167

Total 1817 2973 2726 2179 2179

CT = Completion time of Job in stage 17, WT = job's weighted tardiness

Step 1 & 2: All possible interchange (swap) of two jobs are considered. The swap

between J1,1 and J2,1 is ruled out as J2,1 cannot be processed on M1,1. A similar situation

exists for J1,1 and J3,1. The swap between J1,1 and J3,1 is ruled out as J3,1 cannot be

processed on M1,1 and J1,1 cannot be processed on M3,1. The swap between J1,1 and J4,1 is

feasible as both are processed on M1,1 and e1,1 < CT (J4,1, M1,1) and e3,1 < CT (J1,1, M1,1).

Two new scripts namely STS and STR have been introduced for comprehensively

explaining the search algorithm. STS refers to the start of the setup whereas STR refers to

the start of the run. Swapping J1,1 and J4,1 results in the following changes on M1,1. STSr

(J4,1, M1,1) = 3, STRr (J4,1, M1,1) = 22 and CTr (J4,1, M1,1) = 56 whereas STSr (J1,1, M1,1) =

159, STRr (J1,1, M1,1) = 191 and CTr (J1,1, M1,1) = 236. Note the subscript „r‟ following

STS, STR and CT denotes that they are revised.

63

 The swap between J1,1 and J5,1 is ruled out as J5,1 cannot be processed on M1,1. A

similar situation exists for J1,1 and J6,1 as J6,1 cannot be processed on M1,1. Swap between

J1,1 and J7,1 is also infeasible because J1,1 cannot be processed on M3,1. The swap between

J1,1 and J8,1 is feasible as both are processed on M1,1 and e1,1 < CT (J8,1, M1,1) and e8,1 < CT

(J1,1, M1,1). Swapping J1,1 and J8,1 results in the following changes on M1,1. STSr (J8,1,

M1,1) = 3, STRr (J8,1, M1,1) = 18 and CTr (J8,1, M1,1) = 55 whereas STSr (J1,1, M1,1) = 55,

STRr (J1,1, M1,1) = 60 and CTr (J1,1, M1,1) = 105. Note that according to IS4, J1,1 was the

first job scheduled on M1,1 and J8,1 was the second. After swapping J1,1 with J8,1, J1,1

becomes the second job scheduled on M1,1 and J8,1 becomes the first. Note that the time

taken to change over from J8,1 to J1,1 on M1,1 is just 5 units. This information can be

located in the setup time matrix provided in the appendix.

 The swap between J1,1 and J9,1 is ruled out as J9,1 cannot be processed on M1,1. A

similar situation exists for J1,1 and J10,1 as J10,1 cannot be processed on M1,1. The swap

between J1,1 and J11,1 is feasible as both are processed on M1,1 and e1,1 < CT (J11,1, M1,1)

and e11,1 < CT (J1,1, M1,1). Swapping J1,1 and J11,1 results in the following changes on M1,1.

STSr (J11,1, M1,1) = 3, STRr (J11,1, M1,1) = 35 and CTr (J11,1, M1,1) = 83 whereas STSr (J1,1,

M1,1) = 127, STRr (J1,1, M1,1) =132 and CTr (J1,1, M1,1) = 177. The job swapping is

continued in the same fashion until all feasible swap moves are made. Table 5.4 shows all

feasible swap moves applied to the initial solution along with their TWT value.

Table 5-4 The neighborhood solutions of initial solution as a result of applying swap and

insert moves

Swap Moves

Swap Jobs TWT Swap Jobs TWT

J1,1 and J4,1 2148 J5,1 and J9,1 2030

J1,1 and J8,1 2018 J6,1 and J7,1 2179

J1,1 and J11,1 1548 J6,1 and J9,1 2197

J2,1 and J5,1 1988 J6,1 and J10,1 2393

64

J3,1 and J6,1 2414 J7,1 and J9,1 1759

J3,1 and J7,1 2202 J7,1 and J10,1 2678

J3,1 and J9,1 2202 J7,1 and J11,1 4540

J3,1 and J10,1 2157 J8,1 and J11,1 2270

J4,1 and J8,1 2722 J9,1 and J10,1 2591

J4,1 and J11,1 2307

 Insert Moves

Job Machine Position TWT Job Machine Position TWT

J1,1 M1,1 1309 J7,1 M3,1 2207

J1,1 M1,1 1952 J7,1 M3,1

J1,1 M1,1 J9,1 M3,1 1559

J5,1 M2,1 1851 J9,1 M3,1 1590

J5,1 M2,1 1935 J9,1 M3,1

J5,1 M2,1 1928 J11,1 M1,1 2042

J5,1 M2,1 1732 J11,1 M1,1 1921

J5,1 M2,1 1654 J11,1 M1,1 1921

J5,1 M2,1 J11,1 M1,1 2222

J7,1 M3,1 1514 J11,1 M1,1 2307

J7,1 M3,1 2371 J11,1 M1,1

J7,1 M3,1 2136

 Insert moves are now considered. J1,1 can be inserted to other machines as it can

be processed on more than one machine in stage 1 (J1,1 can be processed on M1,1 and M2,1

in stage 1). Inserting J1,1 in the first position of M2,1 (i.e. preceding J2,1) is feasible as J1,1

65

can be processed on M2,1 and e1,1 < CT (J2,1, M2,1). The new start and completion times of

the jobs scheduled on M2,1 are: STSr (J1,1, M2,1) = 8, STRr (J1,1, M2,1) = 34 and CTr (J1,1,

M2,1) = 69 whereas : STSr (J2,1, M2,1) = 69, STRr (J2,1, M2,1) = 82 and CTr (J2,1, M2,1) =

116. Note that according to IS4, J2,1 was the first job scheduled on M2,1 followed by J9,1.

After inserting J1,1 at the first position on M2,1, J2,1 becomes the second job to be

processed on M2,1 and J5,1 becomes the third job to be processed on M2,1.

 The next feasible insert move is to insert J1,1 to the second position of M2,1 (i.e

between J2,1 and J5,1). The new start and completion times of the jobs scheduled on M2,1

are STSr (J1,1, M2,1) = 59, STRr (J1,1, M2,1) = 66 and CTr (J1,1, M2,1) = 101 whereas : STSr

(J5,1, M2,1) = 101, STRr (J5,1, M2,1) = 114 and CTr (J5,1, M2,1) = 155. The start and

completion time of J2,1 remains unchanged (i.e. same as explained in the IS2) because

J1,1 is inserted to the second position on machine M2,1.

 Inserting J1,1 to the third (also the last) position of M2,1 (i.e. after J5,1) is the next

feasible move. The start and completion time of J2,1 and J5,1 on M2,1 remains unaltered.

According to IS4, only two jobs were scheduled to be processed on M2,1 (J2,1 and J5,1).

Therefore, inserting J1,1 to the third position of M2,1 doesn‟t alter the start and completion

times of J2,1 and J5,1. The start and completion times of J1,1 scheduled on M2,1 (i.e. after

being inserted to the last position) is given as follows: STSr (J1,1, M2,1) = 147, STRr (J1,1,

M2,1) = 156 and CTr (J1,1, M2,1) = 191. The insert moves are continued in the same fashion

for all feasible moves. The overall insert moves applied to IS and their total weighted

tardiness values are shown in Table 5.4.

Step 3: The minimum TWT is 1309. The move that results in this value is inserting J1,1 at

the first position of M2,1. The schedule generated by inserting J1,1 at the first position of

M2,1 would be used as the seed for the next iteration. At this point, the following

parameters need to be updated:

(1) Tabu List

 The primary use of the tabu list is to prevent the search from revisiting previous

solutions or repeating the previous moves. As mentioned earlier, whenever a move is

66

made, the tabu list is updated by storing the attributes of the move. For example, if a

swap move results in the best solution, then tabu list records the pair of jobs being

exchanged and these pairs of jobs are not allowed to exchange positions for the number

of iterations indicated by the size of the tabu list unless an aspiration criterion is satisfied.

If the best solution is the result of an insert move, then tabu list records the job index

along with the position and machine occupied by the job before the move was applied.

The job is not allowed to be inserted back to this position of the machine for the number

of iterations indicated by the size of the tabu list unless an aspiration criterion is satisfied.

In the example problem illustrated above, J1,1 is inserted at the first position of M2,1 from

the first position M1,1. Therefore, J1,1 is not allowed to be inserted back on the first

position of M1,1. As mentioned in section 5.5, two types of tabu list sizes are used: fixed

tabu list size and variable tabu list size. The tabu list size is evaluated as follows:

 For fixed tabu list size = .04558x – 1.0177 = 4

 For variable tabu list size:

 Initial = 0.4426x – 0.7869 = 4

 Decrease = -0.0254x
2

+ 1.1085x – 5.9898 = 3

 Increase = 0.0086x
3

– 0.3838x
2

+ 6.0924x – 27 = 5

-(2) Aspiration Level (AL)

 The AL is initially set equal to the TWT of the initial solution, which is 2179.

Since inserting J1,1 to the first position of M2,1 yields a TWT of 1309, the AL is updated

to be equal to 1309. If a tabu move in the next iteration results in a TWT that is less than

1309, the move is released from its tabu restriction.

(3) Candidate List (CL) and Index List (IL)

Initially, the initial solution (S0) is admitted to both CL and IL as it is considered

as a local optimum. As the solution obtained by inserting J1,1 to the first position of M2,1

(i.e. S1) is selected as the best solution, S1 is admitted into the CL. Since S1 is better than

S0, S1 receives a star, which means that is has the potential to become a local optimum.

At this point, the CL has two entries and IL has only one entry:

67

CL: { [J1,1/M1,1, J2,1/M2,1, J1,1/M1,1, J3,1/M3,1, J4,1/M1,1, J5,1/M2,1, J6,1/M3,1, J7,1/M3,1,

J8,1/M1,1, J9,1/M3,1, J10,1/M3,1, J11,1/M1,1]

 [J1,1/M2,1, J2,1/M2,1, J1,1/M1,1, J3,1/M3,1, J4,1/M1,1, J5,1/M2,1, J6,1/M3,1, J7,1/M3,1,

J8,1/M1,1, J9,1/M3,1, J10,1/M3,1, J11,1/M1,1] }

IL: { [J1,1/M2,1, J2,1/M2,1, J1,1/M1,1, J3,1/M3,1, J4,1/M1,1, J5,1/M2,1, J6,1/M3,1, J7,1/M3,1,

J8,1/M1,1, J9,1/M3,1, J10,1/M3,1, J11,1/M1,1]

(4) Number of iterations without improvement (IWOI)

 Initially, IWOI equals to zero. Since there is an improvement in the TWT, i.e. a

change from 2179 to 1309, the IWOI remains to be zero.

(5) Long-term memory (LTM) Matrix

 As mentioned in Section 5.5, the LTM matrix records the tally of the jobs

processed on the machines. For this research, we consider LTM matrix consisting of 11 ×

3 cells. Note that only first stage has multiple machines (three to be precise). Stages 2-17

have only one machine. The tally for jobs corresponding to machines in stages 2-17 will

always be maximum (since there is only one machine per stage). It is meaningless to fix

these jobs to the machine since even without doing so the jobs will not be processed on

other machines throughout the course of the search process. Thus for the purpose of this

research, we are primarily interested in the 3 machines that belong to stage 1. In this case,

we consider the LTM matrix consisting of 11 jobs and 3 machines (11 × 3 cells). The

first iteration obtained by inserting J1,1 at the first position of M2,1 results in the following

entries in LTM matrix, as presented in Table 5.5.

Step 4: To terminate the search, two stopping criterions are used: IWOI max and IL max.

For fixed and variable tabu list, the stopping criteria are evaluated as follows:

 IWOI = -0.0141x
2

+ .6741x – 1.8444 = 4

 IL = 0.0109x
3
 – 0.5065x

2
 + 7.8506x – 35.571 = 4

68

The search is terminated if IWOI max reaches 4 or ILmax reaches 4, whichever comes

first.

Table 5-5 Entries into the LTM matrix after perturbing the initial solution

Job Index M1,1 M2,1 M3,1

J1,1 0 1 -

J2,1 - 1 -

J3,1 - - 1

J4,1 1 - -

J5,1 - 1 0

J6,1 - - 1

J7,1 0 - 1

J8,1 1 - -

J9,1 - 0 1

J10,1 - - 1

J11,1 1 - 0

 For variable tabu list size:

The ITmax and IWOImax are evaluated the same way as in fixed tabu list size. The

ILmax is used in conjunction with the following steps:

(i) If there is no improvement in the last 4/3 = 1 iterations with the initial size of

tabu list, decrease the size of tabu list to the decreased size evaluated in step 3.

69

(ii) If there is no improvement in the last 4/3 = 1 iterations with the decreased

size of tabu list, increase the size of tabu list to the increased size evaluated in

step 3.

(iii) If there is no improvement in the last 4/3 = 1 iterations with the increased

size of tabu list, terminate the search.

At this point of the search, both stopping criteria are not met. Thus, the search is

continued until one of the stopping criteria is met. In this example, the search is

terminated after 14 iterations. The stopping criterion activated to terminate the search is

ILmax (i.e. when the number of entries into the IL has reached 4). The results of search

using the fixed size of tabu list and short-term memory are summarized in Table 5.6.

Table 5-6 Results of tabu search applied to the initial solution of the example problem

Iteration

No.
Move applied Entry into the CL TWT

Entry

into

the IL

0

--

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 ,

J5,1/M2,1 , J6,1/M3,1 , J7,1/M3,1 , J8,1/M1,1 ,

J9,1/M3,1 , J10,1/M3,1 , J11,1/M1,1]**

2179

2179

1

Insert

(J1,1,M2,1,P1)

[J1,1/M2,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 ,

J5,1/M2,1 , J6,1/M3,1 , J7,1/M3,1 , J8,1/M1,1 ,

J9,1/M3,1 , J10,1/M3,1 , J11,1/M1,1]*

1309

2

Swap

(J1,1, J5,1)

[J1,1/M2,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 ,

J5,1/M2,1 , J6,1/M3,1 , J7,1/M3,1 , J8,1/M1,1 ,

J9,1/M3,1 , J10,1/M3,1 , J11,1/M1,1]*

923

3

Insert

(J9,1,M2,1,P1)

[J1,1/M2,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 ,

J5,1/M2,1 , J6,1/M3,1 , J7,1/M3,1 , J8,1/M1,1 ,

J9,1/M2,1 , J10,1/M3,1 , J11,1/M1,1]*

864

4

Insert

(J1,1,M1,1,P3)

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 ,

J5,1/M2,1 , J6,1/M3,1 , J7,1/M3,1 , J8,1/M1,1 ,

J9,1/M2,1 , J10,1/M3,1 , J11,1/M1,1]**

799

799

5

Swap

(J1,1, J4,1)

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 ,

J5,1/M2,1 , J6,1/M3,1 , J7,1/M3,1 , J8,1/M1,1 ,

J9,1/M2,1 , J10,1/M3,1 , J11,1/M1,1]

864

70

6
Insert

(J7,1,M1,1,P1)

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 ,

J5,1/M2,1 , J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 ,

J9,1/M2,1 , J10,1/M3,1 , J11,1/M1,1]

878

7
Insert

(J11,1,M3,1,P3)

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 ,

J5,1/M2,1 , J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 ,

J9,1/M2,1 , J10,1/M3,1 , J11,1/M3,1]

885

8
Insert

(J5,1,M3,1,P4)

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 ,

J5,1/M3,1 , J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 ,

J9,1/M2,1 , J10,1/M3,1 , J11,1/M3,1]*

665

9
Swap

(J5,1,J10,1)

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 ,

J5,1/M3,1 , J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 ,

J9,1/M2,1 , J10,1/M3,1 , J11,1/M3,1]*

580

10
Swap

(J6,1,J3,1)

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 ,

J5,1/M3,1 , J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 ,

J9,1/M2,1 , J10,1/M3,1 , J11,1/M3,1]**

400 400

11
Swap

(J4,1,J1,1)

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 ,

J5,1/M3,1 , J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 ,

J9,1/M2,1 , J10,1/M3,1 , J11,1/M3,1]

436

12
Insert

(J9,1,M3,1,P2)

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 ,

J5,1/M3,1 , J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 ,

J9,1/M3,1 , J10,1/M3,1 , J11,1/M3,1]

496

13
Insert

(J11,1,M1,1,P3)

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 ,

J5,1/M3,1 , J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 ,

J9,1/M3,1 , J10,1/M3,1 , J11,1/M1,1]**

329 329

14
Swap

(J4,1,J1,1)

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 ,

J5,1/M3,1 , J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 ,

J9,1/M3,1 , J10,1/M3,1 , J11,1/M1,1]

506

The CL has 15 entries and the IL has 4 entries. The best solution obtained by short term

memory function is found at the 13
th

 iteration with a TWT value of 329. The best solution

is pointing to the following schedule: [J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , J5,1/M3,1 ,

J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 , J9,1/M3,1 , J10,1/M3,1 , J11,1/M1,1].

Step 5: At this point, the search can be restarted from a different region of the solution

space. The restarting point is defined from the LTM matrix. The entries into the LTM

matrix at the time the search is terminated is shown in Table 5.7. For the maximum

frequency approach, the cells that have the maximum tally, is chosen. Recall that for

maximum frequency approach, we only consider jobs that can be processed on multiple

71

machines. Among jobs that can be processed on more than one machine, the cell

corresponding to J1,1 and M1,1 has the highest tally. Thus, the first restart solution based

on maximal frequency is generated by fixing J1,1 on M1,1. The first restart solution is

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , J5,1/M3,1 , J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 , J9,1/M3,1 ,

J10,1/M3,1 , J11,1/M1,1]. The tabu list and IWOI are re-initialized back to zero. The AL is

reset to the TWT of the restart solution, which is equal to 2179. Repeat Step 1 to Step 4

using the first restart solution as a new starting point.

Table 5-7 Entries into the LTM matrix at the end of the search using the initial solution

Job Index M1,1 M2,1 M3,1

J1,1 11 3 -

J2,1 - 14 -

J3,1 - - 14

J4,1 14 - -

J5,1 - 7 7

J6,1 - - 14

J7,1 9 - 5

J8,1 14 - -

J9,1 - 9 5

J10,1 - - 14

J11,1 8 - 6

 Based on the LTM-max, the results obtained with the first restart are shown in

Table 5.8. The underlined job indicates that it is fixed to the machine throughout the first

72

restart. The first restart is terminated after 10 iterations because the entries into the IL

reached its maximum (4). The best solution obtained from the first LTM-max restart is

found at the sixth iteration with a TWT value of 599.

Table 5-8 Results from the first restart based on maximal frequency

Iteration

No.
Move applied Entry into the CL TWT

Entry

into the

IL

0

--

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 ,

J5,1/M2,1 , J6,1/M3,1 , J7,1/M3,1 , J8,1/M1,1 ,

J9,1/M3,1 , J10,1/M3,1 , J11,1/M1,1]**

2179

2179

1

Insert

(J7,1,M1,1,P1)

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 ,

J5,1/M2,1 , J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 ,

J9,1/M3,1 , J10,1/M3,1 , J11,1/M1,1]*

1514

2

Insert

(J11,1,M3,1,P4)

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 ,

J5,1/M2,1 , J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 ,

J9,1/M3,1 , J10,1/M3,1 , J11,1/M3,1]**

1150
1150

3

Swap

(J3,1, J6,1)

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 ,

J5,1/M2,1 , J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 ,

J9,1/M3,1 , J10,1/M3,1 , J11,1/M3,1]

1178

4

Swap

(J3,1, J9,1)

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 ,

J5,1/M2,1 , J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 ,

J9,1/M3,1 , J10,1/M3,1 , J11,1/M3,1]*

1011

5

Insert

(J5,1,M3,1,P5)

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 ,

J5,1/M3,1 , J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 ,

J9,1/M3,1 , J10,1/M3,1 , J11,1/M3,1]*

666

6
Swap

(J5,1, J10,1)

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 ,

J5,1/M3,1 , J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 ,

J9,1/M3,1 , J10,1/M3,1 , J11,1/M3,1]**

599 599

7
Swap

(J10,1, J11,1)

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 ,

J5,1/M3,1 , J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 ,

J9,1/M3,1 , J10,1/M3,1 , J11,1/M3,1]

881

8
Insert

(J7,1,M3,1,P2)

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 ,

J5,1/M3,1 , J6,1/M3,1 , J7,1/M3,1 , J8,1/M1,1 ,

J9,1/M3,1 , J10,1/M3,1 , J11,1/M3,1]

957

73

9
Swap

(J5,1,J11,1)

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 ,

J5,1/M3,1 , J6,1/M3,1 , J7,1/M3,1 , J8,1/M1,1 ,

J9,1/M3,1 , J10,1/M3,1 , J11,1/M3,1]**

927 927

10
Swap

(J6,1,J3,1)

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 ,

J5,1/M3,1 , J6,1/M3,1 , J7,1/M3,1 , J8,1/M1,1 ,

J9,1/M3,1 , J10,1/M3,1 , J11,1/M3,1]

1104

Since the total number of restarts is set equal to 2, the search process is poised to

begin its second restart. Again, the restarting point is determined by selecting the job-

machine pair with maximum frequency from the LTM matrix. The entries into the LTM

matrix at the termination of the first restart are shown in Table 5.9. Using the row-wise

first best strategy, J7,1 is fixed on machine M1,1 because it has the maximum frequency.

The seed for the second restart is obtained by fixing J7,1 on machine M1,1 in the initial

solution. Note that in the initial solution, J7,1 is scheduled to be processed on machine

M3,1. Therefore, J7,1 is removed from M3,1 and inserted at the first position of M1,1. The

tabu list and IWOI are re-initialized back to zero. Repeat Step 1 to Step 4 using the

second restart solution as a new starting point.

Table 5-9 Entries into the LTM matrix at the end of the first restart based on maximum

frequency

Job Index M1,1 M2,1 M3,1

J1,1 21 3 -

J2,1 - 24 -

J3,1 - - 24

J4,1 24 - -

J5,1 - 11 13

J6,1 - - 24

J7,1 16 - 8

J8,1 24 - -

74

J9,1 - 9 15

J10,1 - - 24

J11,1 9 - 15

The results obtained with the second restart based on maximum frequency are

shown in Table 5.10. The underlined job indicates that it is fixed to the machine

throughout the second restart. The second restart is terminated after nine iterations when

IL entries reach its maximum (4).

Table 5-10 Results from the second restart based on maximal frequency

Iteration

No.
Move applied Entry into the CL TWT

Entry

into

the IL

0

--

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 ,

J5,1/M2,1 , J6,1/M1,1 , J7,1/M3,1 , J8,1/M1,1 ,

J9,1/M3,1 , J10,1/M3,1 , J11,1/M1,1]**

1775

1775

1

Swap

(J1,1, J8,1)

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 ,

J5,1/M2,1 , J6,1/M1,1 , J7,1/M3,1 , J8,1/M1,1 ,

J9,1/M3,1 , J10,1/M3,1 , J11,1/M1,1]*

1012

2

Insert

(J5,1,M3,1,P4)

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 ,

J5,1/M3,1 , J6,1/M1,1 , J7,1/M3,1 , J8,1/M1,1 ,

J9,1/M3,1 , J10,1/M3,1 , J11,1/M1,1]**

653
653

3

Swap

(J1,1, J11,1)

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 ,

J5,1/M3,1 , J6,1/M1,1 , J7,1/M3,1 , J8,1/M1,1 ,

J9,1/M3,1 , J10,1/M3,1 , J11,1/M1,1]

714

4

Swap

(J5,1, J10,1)

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 ,

J5,1/M3,1 , J6,1/M1,1 , J7,1/M3,1 , J8,1/M1,1 ,

J9,1/M3,1 , J10,1/M3,1 , J11,1/M1,1]

714

5

Swap

(J1,1, J4,1)

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 ,

J5,1/M3,1 , J6,1/M1,1 , J7,1/M3,1 , J8,1/M1,1 ,

J9,1/M3,1 , J10,1/M3,1 , J11,1/M1,1]*

587

6
Insert

(J9,1,M2,1,P1)
[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 ,

J5,1/M3,1 , J6,1/M1,1 , J7,1/M3,1 , J8,1/M1,1 ,
533 533

75

J9,1/M1,1 , J10,1/M3,1 , J11,1/M1,1]**

7
Insert

(J11,1,M3,1,P3)

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 ,

J5,1/M3,1 , J6,1/M1,1 , J7,1/M3,1 , J8,1/M1,1 ,

J9,1/M1,1 , J10,1/M3,1 , J11,1/M3,1]

580

8
Swap

(J3,1,J6,1)

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 ,

J5,1/M3,1 , J6,1/M1,1 , J7,1/M3,1 , J8,1/M1,1 ,

J9,1/M1,1 , J10,1/M3,1 , J11,1/M3,1]**

400 400

9
Insert

(J9,1,M3,1,P2)

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 ,

J5,1/M3,1 , J6,1/M1,1 , J7,1/M3,1 , J8,1/M1,1 ,

J9,1/M3,1 , J10,1/M3,1 , J11,1/M3,1]

451

Table 5.11 summarizes the best solutions obtained from the initial solution and

the two restarts using LTM-max. The table shows that the best solutions obtained by two

restarts are not any better than the best solution obtained by the initial search. The quality

of the best solutions obtained in the two restarts is actually much inferior than the one

obtained in the initial search. For this particular problem, the long term memory did not

improve the quality of solution obtained by the short term memory. There are two

possible reasons for this. First, the best solution obtained in the initial search is the

optimal solution. Hence the long term memory was unable to identify a better solution.

Second, the approach used in the long-term memory function, although is capable of

directing the search to a different region, is unable to identify a better solution in the new

region than the one already found with short term memory. We further explore the search

space by applying the long term memory function.

Table 5-11 Summary of results for the entire search process based on LTM-max

Restart

Number
Best solutions obtained TWT

Initial
[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , J5,1/M3,1 , J6,1/M3,1 ,

J7,1/M1,1 , J8,1/M1,1 , J9,1/M3,1 , J10,1/M3,1 , J11,1/M1,1]
329

First [J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , J5,1/M3,1 , J6,1/M3,1 , 599

76

J7,1/M1,1 , J8,1/M1,1 , J9,1/M3,1 , J10,1/M3,1 , J11,1/M3,1]

Second
[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , J5,1/M3,1 , J6,1/M1,1 ,

J7,1/M3,1 , J8,1/M1,1 , J9,1/M1,1 , J10,1/M3,1 , J11,1/M3,1]
400

Referring to the LTM matrix at the time of termination of the initial search in

Table 5.7, the job-machine pair with minimum frequency, which is 3, would be J1,1 on

M2,1. Therefore, the starting point for the first restart using the minimum frequency will

be generated from the initial solution by fixing J1,1 on M2,1. In the initial solution, J1,1 is

processed on M1,1. J1,1 is removed from M1,1 and is inserted into the first position of M2,1.

This insert move will cause changes in start and completion times of the jobs processed

on M1,1 and M2,1. The starting point for the first restart using minimum frequency is

[J1,1/M2,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , J5,1/M2,1 , J6,1/M3,1 , J7,1/M3,1 , J8,1/M1,1 , J9,1/M3,1 ,

J10,1/M3,1 , J11,1/M1,1] with a TWT value of 1309. Using this solution from LTM-min, the

results obtained with the first restart are shown in Table 5.12. J1,1 on M2,1 is underlined as

a sign that J1,1 is fixed to M2,1 throughout the first restart. The first restart is terminated

after seven iterations because entries into the index list reached their maximum (4). The

best solution from the first restart is obtained at sixth iteration with a TWT of 1052.

Table 5-12 Results of first restart based on minimum frequency

Iteration

No.

Move

applied
Entry into the CL

TWT Entry into

the IL

0

--

[J1,1/M2,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 ,

J5,1/M2,1 , J6,1/M3,1 , J7,1/M3,1 , J8,1/M1,1 ,

J9,1/M3,1 , J10,1/M3,1 , J11,1/M1,1]**

1309

1309

1
Insert

(J5,1,M3,1,P5)

[J1,1/M2,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 ,

J5,1/M3,1 , J6,1/M3,1 , J7,1/M3,1 , J8,1/M1,1 ,

J9,1/M3,1 , J10,1/M3,1 , J11,1/M1,1]**

1072
1072

2

Swap

(J5,1, J10,1)

[J1,1/M2,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 ,

J5,1/M3,1 , J6,1/M3,1 , J7,1/M3,1 , J8,1/M1,1 ,

J9,1/M3,1 , J10,1/M3,1 , J11,1/M1,1]

1072

 Swap [J1,1/M2,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 ,

J5,1/M3,1 , J6,1/M3,1 , J7,1/M3,1 , J8,1/M1,1 ,

77

3 (J3,1, J10,1) J9,1/M3,1 , J10,1/M3,1 , J11,1/M1,1] 1099

4

Swap

(J7,1, J11,1)

[J1,1/M2,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 ,

J5,1/M3,1 , J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 ,

J9,1/M3,1 , J10,1/M3,1 , J11,1/M3,1]**

1063
1063

5

Swap

(J7,1, J8,1)

[J1,1/M2,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 ,

J5,1/M3,1 , J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 ,

J9,1/M3,1 , J10,1/M3,1 , J11,1/M3,1]

1075

6
Swap

(J9,1, J11,1)

[J1,1/M2,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 ,

J5,1/M3,1 , J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 ,

J9,1/M3,1 , J10,1/M3,1 , J11,1/M3,1]**

1052 1052

7
Swap

(J3,1, J5,1)

[J1,1/M2,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 ,

J5,1/M3,1 , J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 ,

J9,1/M3,1 , J10,1/M3,1 , J11,1/M3,1]

1088

The second restart based on LTM-min would use the information provided by the

LTM matrix at the time of termination of the first restart. This matrix is shown in Table

5.13. The minimum frequency, which is 7, is pointing to J5,1 on M2,1. Thus J5,1 would be

fixed on M2,1 throughout the second restart. Since J5,1 is processed on M2,1 in the initial

solution, the starting point for the second restart will be generated from the initial

solution itself. Using the initial solution, the search is restarted in the similar fashion as in

LTM-max and the results are shown in Table 5.14.

Table 5-13 Entries into the LTM matix at the end of first restart based on minimum

frequency

Job Index M1,1 M2,1 M3,1

J1,1 11 10 -

J2,1 - 21 -

J3,1 - - 21

78

J4,1 21 - -

J5,1 - 7 14

J6,1 - - 21

J7,1 13 - 8

J8,1 21 - -

J9,1 - 9 12

J10,1 - - 21

J11,1 11 - 10

The summary of the best solutions obtained from the initial search and the two

restarts using LTM-min is shown in Table 5.15. The first restart using LTM-min yields a

solution that is inferior to the one obtained by the initial search. Therefore the solution

obtained by the initial search should be optimal/near optimal (since intensification and

diversification yield inferior solutions). In chapter 6, the optimal solution for this problem

is found using optimization software (CPLEX) and the results are discussed for various

small problem instances.

Table 5-14 Results of second restart based on minimum frequency

Iteration

No.

Move

applied
Entry into the CL

TWT Entry into

the IL

0

--

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , J5,1/M2,1 ,

J6,1/M3,1 , J7,1/M3,1 , J8,1/M1,1 , J9,1/M3,1 , J10,1/M3,1

, J11,1/M1,1]**

2179

2179

1

Insert

(J1,1,M2,1,P1

)

[J1,1/M2,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , J5,1/M2,1

, J6,1/M3,1 , J7,1/M3,1 , J8,1/M1,1 , J9,1/M3,1 ,

J10,1/M3,1 , J11,1/M1,1]*

1309

79

2

Swap

(J7,1,J11,1)

J1,1/M2,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , J5,1/M2,1 ,

J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 , J9,1/M3,1 ,

J10,1/M3,1 , J11,1/M3,1]*

1237

3

Swap

(J3,1,J10,1)

[J1,1/M2,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , J5,1/M2,1

, J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 , J9,1/M3,1 ,

J10,1/M3,1 , J11,1/M3,1]**

1181
1181

4

Swap

(J6,1,J11,1)

[J1,1/M2,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , J5,1/M2,1 ,

J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 , J9,1/M3,1 ,

J10,1/M3,1 , J11,1/M3,1]

1337

5

Swap

(J7,1,J8,1)

[J1,1/M2,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , J5,1/M2,1 ,

J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 , J9,1/M3,1 ,

J10,1/M3,1 , J11,1/M3,1]*

1267

6

Insert

(J1,1,M1,1,P3

)

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , J5,1/M2,1

, J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 , J9,1/M3,1 ,

J10,1/M3,1 , J11,1/M3,1]*

1173

7
Swap

(J1,1,J4,1)

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , J5,1/M2,1

, J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 , J9,1/M3,1 ,

J10,1/M3,1 , J11,1/M3,1]*

914

8

Insert

(J9,1,M2,1,P1

)

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , J5,1/M2,1 ,

J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 , J9,1/M2,1 ,

J10,1/M3,1 , J11,1/M3,1]**

909 909

9
Swap

(J2,1,J9,1)

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , J5,1/M2,1

, J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 , J9,1/M2,1 ,

J10,1/M3,1 , J11,1/M3,1]

921

10
Swap

(J3,1,J10,1)

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , J5,1/M2,1

, J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 , J9,1/M2,1 ,

J10,1/M3,1 , J11,1/M3,1]

979

11
Swap

(J3,1,J6,1)

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , J5,1/M2,1

, J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 , J9,1/M2,1 ,

J10,1/M3,1 , J11,1/M3,1]*

833

12
Swap

(J6,1,J10,1)

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , J5,1/M2,1 ,

J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 , J9,1/M2,1 ,

J10,1/M3,1 , J11,1/M3,1]**

579 579

13
 Swap

(J10,1,J11,1)

[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , J5,1/M2,1 ,

J6,1/M3,1 , J7,1/M1,1 , J8,1/M1,1 , J9,1/M2,1 ,

J10,1/M3,1 , J11,1/M3,1]

891

80

Table 5-15 Summary of results for the entire search process based on LTM-min

Restart

Number
Best solutions obtained TWT

Initial
[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , J5,1/M3,1 , J6,1/M3,1 , J7,1/M1,1 ,

J8,1/M1,1 , J9,1/M3,1 , J10,1/M3,1 , J11,1/M1,1]
329

First
[J1,1/M2,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , J5,1/M3,1 , J6,1/M3,1 , J7,1/M1,1 ,

J8,1/M1,1 , J9,1/M3,1 , J10,1/M3,1 , J11,1/M3,1]
1052

Second
[J1,1/M1,1, J2,1/M2,1, J3,1/M3,1, J4,1/M1,1 , J5,1/M2,1 , J6,1/M3,1 , J7,1/M1,1 ,

J8,1/M1,1 , J9,1/M2,1 , J10,1/M3,1 , J11,1/M3,1]
579

81

6 THE OPTIMALITY OF TABU-SEARCH BASED HEURISTIC

ALGORITHM

Demonstrating the efficacy of the proposed heuristic algorithm is an essential component

of this research. This can be attained by assessing the quality of the final solution

obtained by the algorithm and the total computation time it takes. The final solution

evaluated by the heuristic algorithm can easily be assessed if the optimal solution is

known. If the optimal solution is unknown, we need to compare the solution obtained by

the heuristic algorithm to a suitable lower bound for the problem that is being

investigated. The mathematical model developed in Chapter 4 can be used to quantify the

effectiveness of the search algorithm by optimally solving small problem instances. As

mentioned earlier, the mathematical model uses the branch-and-bound enumeration

technique to obtain the optimal solution.

 The example problem used in Chapter 5 is used again to show how a model can

be formulated for a given problem instance. Recall there are two sets of binary variables -

 and . The first variable receives a value of 1 if job j is assigned to machine

i of stage g or 0 otherwise. Generally, if each assignment of a job on a machine is

considered, then there will be a total of

 variables, where n is the total

number of jobs, G is the total number of stages and mg is the number of machines in a

given stage. Similarly, there will be a total of

 variables for and

 variables for . Note that and are two sets of real variables. Some

jobs cannot be processed on certain machines due to machine capability of capability..

Thus one can exclude the variables that correspond to those assignments. In a real

problem, therefore, the total number of variables for and separately will be less

than

 and the total number of variables for will be less than .

The second binary variable receives a value of 1 if job k precedes job j on machine i

of stage g or 0 otherwise. There are a total of

 variables for

 if all machines are assumed to be capable of processing all jobs.

82

 A general model formulation for the example problem could have been developed

where all eleven jobs could be processed on each machine in all the stages. This would

have resulted in (11×19 + 5×11×19) = 1254 binary variables. This type of model

formation is highly undesirable since mathematical models are computationally difficult

to solve, particularly when they include a large number of binary variables. As we

increase the number of variables, the computational time required to solve these problem

instances becomes extremely large. Therefore, we formulate a more restricted (compact)

model, i.e. a model that only incorporates feasible jobs-to-machine assignments, and

allows jobs to skip stages. This type of model formulation results in a fewer number of

variables and constraints. The compact model formulation provides a comprehensive

insight into the research problem.

 In order to identify the optimal solution for small problem instances, their

corresponding formulated model was solved using the branch-and-bound enumeration

method incorporated in CPLEX 9.0 (IBM, 2009) computer software. CPLEX (also

referred to as ILOG CPLEX) was developed by Robert E. Bixby of CPLEX Optimization

Inc. CPLEX Optimization was acquired by ILOG in 1997 and finally ILOG was acquired

by IBM in 2009. The software was installed and run on an intel Core i3-370, 2.4GHz

processor with 4 GB RAM. The large amount of time needed to identify the optimal

solution is partly due to the large number of binary variables included in the model.

CPLEX doesn‟t seem to be efficient enough even in solving small problem instances,

although it uses the branch-and-bound technique, which is an implicit enumeration

algorithm for solving combinatorial optimization problems.

 In order to further examine the efficiency of CPLEX, ten problem instances were

generated and run using CPLEX. These problem instances generated were large enough

for CPLEX to solve. In other words, the total number of variables that are within the

capacity of CPLEX 9.0 is 2100000000. The data generated for these problem instances

used the same procedure as described in Section 7.1 of Chapter 7.

83

Table 6-1 Results of solving the problems implicitly using CPLEX 9.0

Problem instance Number of Jobs Number of Machines Solution Time (sec)

1 9 19 537 2080

2 10 19 1014 2643

3 10 19 472 4496

4 12 19 387 3822

5 12 19 963 5670

6 14 19 662 9076

7 16 19 Infeasible 28800

8 16 19 592 12178

9 18 19 Infeasible 28800

10 20 19 Infeasible 28800

6.1 Comparison Between the Optimal Solution and Solution Obtained by

the Heuristic Algorithm

With the optimal solution obtained by CPLEX 9.0, the quality of the solution generated

by the tabu-search based heuristic algorithms can easily be assessed. As described in

Chapter 5, the search heuristics begin with an initial solution. Five different initial

solutions were developed, namely: EDD (Earliest Due Date), LFJ/LFM (Least Flexible

Job/Least Flexible Machine), LWT (Lowest Weighted Tardiness), DDW (Due Date

Weight Ratio), HCR (Hybrid Critical Ratio). EDD, LFJ/LFM, LWT, DDW and HCR will

be referred as IS1, IS2, IS3, IS4 and IS5 respectively. The initial solution generated by

each of these methods is used as a starting point for the tabu-search based heuristic. Tabu

search has few features that affect its performance as a heuristic algorithm. These features

include short-term/long-term memory function and fixed/variable size of tabu list. There

are two different approaches in the application of long-term memory function: the

maximum frequency and the minimum frequency. The heuristic algorithms developed in

this research encompass the combinations of these features, as shown in Table 6.2.

84

Table 6-2 Tabu search based heuristic algorithms used in this research

Types of Heuristic Memory Function Size of Tabu List

TS1 Short Fixed

TS2 Long-Max Fixed

TS3 Long-Min Fixed

TS4 Short Variable

TS5 Long-Max Variable

TS6 Long-Min Variable

 Each initial solution method (IS) is used in combination with each type of tabu-

search heuristics (TS). Thus there are a total of 30 heuristic combinations. Each

combination is tested on 7 problem instances presented in Table 6.1. The remaining three

problem instances are not used since CPLEX 9.0 couldn‟t identify the optimal solution

for them, and thus there is no basis for comparison. The solutions obtained by the

algorithm are then compared to the corresponding optimal solutions obtained by CPLEX

9.0. The percentage deviation of the algorithms from the optimal solutions is evaluated

and reported in Table 6.3. Table 6.4 shows the computation time of each algorithm. The

computation time presented in the table is the sum of time IS takes to generated the initial

solution and the time TS takes to complete the search.

Table 6-3 Percentage deviation of the solutions obtained by the heuristics for small

problems

Problem

TS1

TS2

Instance IS1 IS2 IS3 IS4 IS5 IS1 IS2 IS3 IS4 IS5

9 Job 3.1 0.6 0.0 3.7 6.2 3.1 3.1 0.0 3.7 2.6

10 Job 2.6 15.1 26.5 5.3 8.9 2.6 15.1 24.0 3.7 14.4

85

10 Job 0.0 14.7 11.1 0.0 12.4 0.0 0.5 13.4 0.0 7.8

12 Job 2.9 4.3 7.3 5.3 5.1 2.9 2.4 7.4 8.6 2.9

12 Job 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

14 Job 6.6 16.8 23.5 4.8 22.8 5.7 14.7 11.3 4.8 3.1

16 Job 0.7 5.5 7.2 6.6 0.0 3.1 5.5 7.2 0.6 0.0

Average 2.27 8.14 10.80 3.67 7.91 2.49 5.90 9.04 3.06 4.40

Problem

TS3

TS4

Instance IS1 IS2 IS3 IS4 IS5 IS1 IS2 IS3 IS4 IS5

9 Job 3.1 3.1 3.7 3.7 5.5 3.1 0.6 0.0 3.7 6.2

10 Job 2.6 18.2 6.3 3.0 7.3 2.6 15.1 26.5 5.3 8.9

10 Job 0.0 3.5 14.9 0.0 14.2 0.0 11.3 11.1 0.0 15.1

12 Job 3.7 1.5 2.7 7.5 8.0 2.9 4.3 9.3 5.3 4.7

12 Job 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

14 Job 7.2 15.2 10.1 4.8 17.1 6.0 13.2 23.5 4.4 17.8

16 Job 3.1 6.1 7.2 1.4 2.1 0.7 5.5 8.2 6.6 0.0

Average 2.81 6.80 6.41 2.91 7.74 2.19 7.14 11.23 3.61 7.53

Problem

TS5

TS6

Instance IS1 IS2 IS3 IS4 IS5 IS1 IS2 IS3 IS4 IS5

9 Job 3.1 2.1 0.0 3.7 2.6 3.1 3.1 3.7 3.7 5.5

10 Job 2.6 13.1 18.2 3.7 14.4 2.6 18.2 6.3 4.5 7.3

10 Job 0.0 1.5 9.1 0.0 7.8 0.0 3.5 14.9 0.0 14.2

12 Job 2.9 2.4 7.4 6.5 2.9 3.7 1.5 12.4 8.4 8.0

12 Job 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

14 Job 5.7 14.7 7.1 4.8 3.1 7.2 15.2 20.1 4.8 17.1

16 Job 3.1 6.9 7.2 0.6 0.0 3.1 6.1 7.2 4.1 2.1

Average 2.49 5.81 7.00 2.76 4.40 2.81 6.80 9.23 3.64 7.74

The average percentage deviation of all heuristic combination is 5.63% with 8 heuristic

combinations below 3%. From the 30 heuristic combinations, IS1/TS4 appears to be the

most effective heuristic combination in identifying the optimal solutions. The average

percentage deviation for IS1/TS4 is 2.19%. The next best performer is IS1/TS1, which

has an average percentage deviation of 2.27%. Both these heuristic combination use IS1

86

(Earliest Due Date) method as the initial solution generating mechanism, and basic search

with fixed (TS1) and variable (TS4) tabu list size.

Table 6-4 Computation time of the heuristics for small problems (in seconds)

Problem

TS1

TS2

Instance IS1 IS2 IS3 IS4 IS5 IS1 IS2 IS3 IS4 IS5

9 Job 0.025 0.031 0.031 0.034 0.056 0.038 0.065 0.036 0.031 0.073

10 Job 0.041 0.082 0.065 0.075 0.071 0.033 0.054 0.064 0.082 0.054

10 Job 0.079 0.074 0.054 0.085 0.067 0.065 0.066 0.054 0.054 0.056

12 Job 0.038 0.068 0.043 0.067 0.07 0.055 0.032 0.068 0.068 0.056

12 Job 0.034 0.051 0.045 0.075 0.075 0.068 0.084 0.082 0.048 0.043

14 Job 0.046 0.049 0.061 0.068 0.087 0.057 0.049 0.067 0.096 0.058

16 Job 0.114 0.214 0.207 0.156 0.246 0.136 0.215 0.222 0.124 0.250

Average 0.054 0.081 0.072 0.080 0.096 0.065 0.081 0.085 0.072 0.084

Problem

TS3

TS4

Instance IS1 IS2 IS3 IS4 IS5 IS1 IS2 IS3 IS4 IS5

9 Job 0.032 0.085 0.049 0.057 0.054 0.030 0.056 0.046 0.056 0.046

10 Job 0.047 0.049 0.067 0.070 0.020 0.016 0.078 0.033 0.071 0.033

10 Job 0.088 0.067 0.024 0.066 0.071 0.055 0.036 0.065 0.067 0.065

12 Job 0.036 0.024 0.066 0.082 0.027 0.047 0.034 0.040 0.066 0.040

12 Job 0.07 0.064 0.046 0.088 0.056 0.03 0.079 0.08 0.067 .078.

14 Job 0.034 0.07 0.06 0.068 0.097 0.016 0.081 0.044 0.066 0.078

16 Job 0.217 0.159 0.221 0.174 0.250 0.188 0.245 0.203 0.185 0.218

Average 0.075 0.074 0.076 0.086 0.082 0.055 0.087 0.073 0.083 0.080

Problem

TS5

TS6

Instance IS1 IS2 IS3 IS4 IS5 IS1 IS2 IS3 IS4 IS5

9 Job 0.053 0.046 0.040 0.062 0.046 0.075 0.056 0.046 0.037 0.061

10 Job 0.088 0.046 0.046 0.062 0.046 0.064 0.071 0.046 0.03 0.096

10 Job 0.054 0.089 0.046 0.062 0.089 0.070 0.067 0.089 0.016 0.048

12 Job 0.036 0.04 0.064 0.020 0.04 0.020 0.066 0.040 0.055 0.046

12 Job 0.016 0.048 0.067 0.078 0.065 0.049 0.072 0.098 0.038 0.059

14 Job 0.055 0.065 0.058 0.061 0.054 0.055 0.090 0.044 0.061 0.041

16 Job 0.167 0.265 0.235 0.231 0.300 0.184 0.245 0.222 0.199 0.286

Average 0.067 0.086 0.079 0.082 0.091 0.074 0.095 0.084 0.062 0.091

87

6.2 The Effectiveness of Tabu-Search Based Heuristics for Medium and

Large Problems

 The computational complexity of the research problem being investigated has

already been highlighted in chapter 4. The branch-and-bound enumeration technique can

solve small problem instances but it is inefficient in finding the optimal solution for

medium and large problem instances. As the problem structure grows larger, the branch-

and-bound technique often fails to identify the optimal solution. Therefore to quantify the

effectiveness of the solution algorithm for medium and large problem instances, we need

to identify a suitable lower bound. However, the problem structure doesn‟t seem to lend

itself to conveniently identify a lower bound. An alternative approach to evaluate the

effectiveness of the heuristics for medium and large problem instances is by testing the

heuristics on carefully constructed problem instances with a known optimal total

weighted tardiness (TWT) of zero. The effectiveness of the heuristics can then be

evaluated by measuring the deviation of their total weighted tardiness from the optimum

solution (which is zero). A problem instance with an optimal TWT of zero can be

generated using the following procedure:

1. Generate a problem instance using steps 1 to 9 of the procedure outlined in section

7.1 of chapter 7.

2. Randomly assign each job to a machine and record the completion time of jobs at the

end of the last stage.

3. Set the due dates of all the jobs equal to their completion time in the last stage.

For medium and large problem structures, 4 problem instances are generated

using the above procedure. There are a total of 30 heuristic combinations (5 levels of IS

and 6 levels of TS) that need to be tested. The actual number of medium and large

problems tested is 120 (30*4). The combination of IS1-IS5 and TS1-TS6 are applied to

each problem instance. The values obtained from the heuristic combinations are

compared to the TWT of the optimal schedule which is zero. Notice that the evaluation of

the percentage deviation is not possible since it would lead to a division by zero (because

the optimal solution is zero). In order to overcome this problem, the point of reference,

88

which is the TWT of the optimal schedule, must be a positive value. In order to obtain a

positive point of reference, the reference point needs to be shifted to a positive value.

This can be attained by delaying the completion time of jobs in the last stage by one unit

of time. As a result, the TWT of the optimal solution (which was zero before) will hold

on to a positive value. This would result in a TWT that is equal to the sum of weights of

all jobs. This positive TWT (obtained by offsetting the due dates of all jobs by 1) is used

as the new reference point for evaluating the percentage deviation for the heuristic

algorithm. Thus the percentage deviation is evaluated as:

 * 100% if TWT > reference point

 0 if TWT ≤ reference point

The results of applying the heuristics to the four medium problem structures are

presented in Table 6.5. The first seven columns show the TWT obtained by each heuristic

combination. The last seven columns show the percentage deviation of the TWT obtained

by each heuristic combination. More than half of the heuristic combinations for the 25

job problem are able to identify the true optimal TWT of zero. Most of the heuristic

combinations (across all problems) are able to identify a solution less than the reference

point.

Table 6-5 Results of applying the heuristics to medium problem structures with zero

values of TWT

25 Jobs, 17 Stages, 19 Machines (Reference Point = 48)

TWT TS1 TS2 TS3 TS4 TS5 TS6
%

DEV
TS1 TS2 TS3 TS4 TS5 TS6

IS1 0 0 0 0 0 0 IS1 0.00 0.00 0.00 0.00 0.00 0.00

IS2 0 0 8 0 9 8 IS2 0.00 0.00 0.00 0.00 0.00 0.00

IS3 0 0 0 0 0 0 IS3 0.00 0.00 0.00 0.00 0.00 0.00

IS4 0 0 0 0 0 11 IS4 0.00 0.00 0.00 0.00 0.00 0.00

IS5 0 7 7 0 7 7 IS5 0.00 0.00 0.00 0.00 0.00 0.00

30 Jobs, 17 Stages, 19 Machines (Reference Point = 70)

Percentage Deviation =

89

TWT TS1 TS2 TS3 TS4 TS5 TS6
%

DEV
TS1 TS2 TS3 TS4 TS5 TS6

IS1 49 16 16 16 16 16 IS1 0.00 0.00 0.00 0.00 0.00 0.00

IS2 47 47 47 47 47 47 IS2 0.00 0.00 0.00 0.00 0.00 0.00

IS3 57 56 56 57 56 56 IS3 0.00 0.00 0.00 0.00 0.00 0.00

IS4 14 11 11 14 11 11 IS4 0.00 0.00 0.00 0.00 0.00 0.00

IS5 36 21 18 36 21 18 IS5 0.00 0.00 0.00 0.00 0.00 0.00

35 Jobs, 17 Stages, 19 Machines (Reference Point = 72)

TWT TS1 TS2 TS3 TS4 TS5 TS6
%

DEV
TS1 TS2 TS3 TS4 TS5 TS6

IS1 12 12 27 12 12 27 IS1 0.00 0.00 0.00 0.00 0.00 0.00

IS2 31 31 31 31 31 31 IS2 0.00 0.00 0.00 0.00 0.00 0.00

IS3 48 37 90 48 37 90 IS3 0.00 0.00 25.00 0.00 0.00 25.00

IS4 12 12 27 12 12 27 IS4 0.00 0.00 0.00 0.00 0.00 0.00

IS5 77 48 73 77 48 73 IS5 6.94 0.00 1.39 6.94 0.00 1.39

40 Jobs, 17 Stages, 19 Machines (Reference Point = 86)

TWT TS1 TS2 TS3 TS4 TS5 TS6
%

DEV
TS1 TS2 TS3 TS4 TS5 TS6

IS1 108 108 119 108 108 119 IS1 25.58 25.58 38.37 25.58 25.58 38.37

IS2 117 110 110 117 110 110 IS2 36.05 27.91 27.91 36.05 27.91 27.91

IS3 128 128 128 128 128 128 IS3 48.84 48.84 48.84 48.84 48.84 48.84

IS4 108 108 119 108 108 119 IS4 25.58 25.58 38.37 25.58 25.58 38.37

IS5 123 123 112 123 123 112 IS5 43.02 43.02 30.23 43.02 43.02 30.23

 To view the performance of each heuristic combination, the average percentage

deviation over the four problem instances is evaluated and presented in Table 6.6. Eight

heuristic combinations, i.e. IS1/TS1, IS2/TS2, IS1/TS4, IS2/TS5 and IS4/TS1, IS4/TS2,

IS4/TS4, IS4/TS5 have the same minimum average percentage deviation of 6.40%. The

percentage deviation averaged over the four problem instances and the 30 heuristic

combinations is 9.45%. Based on these results, one may surmise that the heuristics are

sufficiently effective in identifying very good near optimal solutions, if not the optimal

solutions, for the medium problem structure.

90

Table 6-6 Average percentage deviation of the solutions obtained by the heuristics for

medium problem structure

Initial Tabu-Search based heuristics

Solution TS1 TS2 TS3 TS4 TS5 TS6

IS1 6.40 6.40 9.59 6.40 6.40 9.59

IS2 9.01 6.98 6.98 9.01 6.98 6.98

IS3 12.21 12.21 18.46 12.21 12.21 18.46

IS4 6.40 6.40 9.59 6.40 6.40 9.59

IS5 12.49 10.76 7.91 12.49 10.76 7.91

 A similar effort is made to assess the effectiveness of the heuristics in identifying

optimal solutions for large problem structure. Four problem instances that range from 40

to 60 jobs were generated using the random generation mechanism. As mentioned before,

the problems falling between 40 to 60 jobs are considered large. Cognizant of the fact

that the computational effort to solve the large problems can take anywhere between 45

minutes to 1 hour and 30 minutes, testing on many problem instances can take up a large

computational effort. Another important thing to consider is that there are 30 heuristic

combinations for each problem instance. For each problem instance, an optimal schedule

with a TWT of 0 is obtained by setting the due dates equal to the completion times of the

jobs. All 30 heuristic combinations are applied to each problem instance and the TWT of

the final solutions is obtained accordingly. The percentage deviation of the final solutions

is evaluated the same way as in the medium problem structure.

 The TWT and percentage deviation obtained by each heuristic combinations are

reported in Table 6.7. For 45 jobs problem and the 60 jobs problem, all 30 heuristic

combinations identified a TWT less than the reference point. For 50 jobs problem, the

heuristic combinations involving IS2, IS3 and IS5 are able to identify a final solution less

than the reference point of 107 where as for the 55 jobs problem, the heuristic

combinations involving IS1 and IS4 are able to identify a final solution less than the

reference point of 112.

91

Table 6-7 Results of applying the heuristics to large problem structures with zero values

of TWT

45 Jobs, 17 stages, 19 machines (Reference Point = 92)

TWT TS1 TS2 TS3 TS4 TS5 TS6 % DEV TS1 TS2 TS3 TS4 TS5 TS6

IS1 53 53 53 53 53 53 IS1 0.0 0.0 0.0 0.0 0.0 0.0

IS2 41 41 53 41 41 53 IS2 0.0 0.0 0.0 0.0 0.0 0.0

IS3 48 41 53 48 51 53 IS3 0.0 0.0 0.0 0.0 0.0 0.0

IS4 70 70 68 70 70 68 IS4 0.0 0.0 0.0 0.0 0.0 0.0

IS5 68 68 68 68 68 68 IS5 0.0 0.0 0.0 0.0 0.0 0.0

50 Jobs, 17 stages, 19 machines (Reference Point = 107)

TWT TS1 TS2 TS3 TS4 TS5 TS6 % DEV TS1 TS2 TS3 TS4 TS5 TS6

IS1 144 129 150 144 129 150 IS1 34.6 20.6 40.2 34.6 20.6 40.2

IS2 85 80 77 85 80 77 IS2 0.0 0.0 0.0 0.0 0.0 0.0

IS3 90 63 93 90 63 93 IS3 0.0 0.0 0.0 0.0 0.0 0.0

IS4 150 147 153 150 147 153 IS4 40.2 37.4 43.0 40.2 37.4 43.0

IS5 87 87 87 87 87 87 IS5 0.0 0.0 0.0 0.0 0.0 0.0

55 Jobs, 17 stages, 19 machines (Reference Point = 112)

TWT TS1 TS2 TS3 TS4 TS5 TS6 % DEV TS1 TS2 TS3 TS4 TS5 TS6

IS1 110 93 80 110 93 80 IS1 0.0 0.0 0.0 0.0 0.0 0.0

IS2 163 128 160 163 128 163 IS2 45.5 14.3 42.9 45.5 14.3 45.5

IS3 186 186 189 186 186 189 IS3 66.1 66.1 68.8 66.1 66.1 68.8

IS4 98 98 98 98 98 98 IS4 0.0 0.0 0.0 0.0 0.0 0.0

IS5 158 132 159 158 132 159 IS5 41.1 17.9 42.0 41.1 17.9 42.0

60 Jobs, 17 stages, 19 machines (Reference Point = 113)

TWT TS1 TS2 TS3 TS4 TS5 TS6 % DEV TS1 TS2 TS3 TS4 TS5 TS6

IS1 57 28 23 57 28 23 IS1 0.0 0.0 0.0 0.0 0.0 0.0

IS2 31 31 31 31 31 31 IS2 0.0 0.0 0.0 0.0 0.0 0.0

IS3 68 68 77 68 68 77 IS3 0.0 0.0 0.0 0.0 0.0 0.0

IS4 57 28 57 57 28 57 IS4 0.0 0.0 0.0 0.0 0.0 0.0

IS5 76 76 76 76 76 76 IS5 0.0 0.0 0.0 0.0 0.0 0.0

 The average percentage deviation of the solutions obtained by each heuristic

combination is evaluated over all four-problem instances and summarized in Table 6.8. It

is apparent from the table that the heuristic combination of IS2/TS2 and IS2/TS5 exhibit

only 3.57 percentage deviations. Other heuristic combinations IS5/TS2 and IS5/TS5 have

a percentage deviation less than 5%. IS1/TS2 and IS1/TS5 have an average percentage

92

deviation of only 5.14%. The percentage deviation averaged over the four problems and

the 30 heuristic combinations is 10.36%. Based on these results, one can conclude that

the heuristics are very effective in identifying a very good near optimal solution even for

the large problem instances.

Table 6-8 Average percentage deviation of the solutions obtained by the heuristics for

large problem structure

Initial Tabu-Search based heuristics

Solution TS1 TS2 TS3 TS4 TS5 TS6

IS1 8.64 5.14 10.05 8.64 5.14 10.05

IS2 11.38 3.57 10.71 11.38 3.57 11.38

IS3 16.52 16.52 17.19 16.52 16.52 17.19

IS4 10.05 9.35 10.75 10.05 9.35 10.75

IS5 10.27 4.46 10.49 10.27 4.46 10.49

93

7 RESULTS AND DISCUSSION

Recall from Chapter 6, the tabu-search based heuristic algorithms proved to be

highly efficient in comparison to the implicit enumeration technique (namely branch-and-

bound) in solving small problem structures. While the heuristic algorithms take less than

2 seconds to solve the problem, the branch-and-bound technique embedded in CPLEX

can take as long as 50 minutes just to solve a small problem structure. Chapter 6 also

illustrated the efficiency of the tabu search mechanism for problems that cannot be solved

using the branch-and-bound enumeration technique. Based on those results, the tabu-

search based heuristic algorithms can be conjectured to provide very good/near optimal

solution, if not optimal, to problem structures with no known optimal solutions. The

research question is now focused on evaluating the comparative performance of the tabu-

search based heuristics, aided by initial solution generation methods. Precisely, the intent

of this research is to evaluate the performance of each algorithm as the size of the

problem structure grows from small to medium and then large.

The size of a problem structure is determined by the number of jobs, n. The size

of the problem structures covered in this research is defined as follows:

Small size: up to 20 jobs

Medium size: 21-40 jobs

Large size: 41 or more jobs

 These sizes are selected based upon the direct feedback from the company for

which the research was carried out. These sizes are selected to cover a wide variety of

scheduling problems encountered in industry practice. Wide variety of problems allow us

to evaluate whether the computation time required to solve them using the algorithm lies

within reasonable expectations. Most of the small problem structures can be solved in

less than a second. The medium problem structures require less than 2 seconds to be

solved. Solving a large problem structure may require as much as 15 seconds. The

increase in the computation time is due to the increase in complexity of the problem,

presented in the form of an enlarged search space. The increase in search space causes the

94

algorithm to consider more neighborhood solutions before selecting the best solution and

then applying the move that results in the best solution. The increase in search space also

delays the termination of the search as more moves are required before the stopping

criterion is activated.

 Note that to comply with the industry requirements, the algorithms were

developed in C# .NET. The data was read using Microsoft Excel spreadsheet and the

final results were also stored and displayed using Microsoft Excel spreadsheet. This was

also done to comply with the industry requirements. Much of the work in the industry is

done using Microsoft Excel and the easy user interface provided by Microsoft Excel has

made it really popular over the years. The employees of the company for which this

research was carried out were also proficient at Microsoft excel. Hence they wanted the

algorithm to interact with Microsoft Excel (to input data and to display results). However,

reading data into Microsoft Excel from C# is much more time consuming than reading

data from other sources (say an SQL database or a text file). Solving a large problem may

take as long as two hour.

 For demonstrating the efficiency of the algorithm, only the computation time

while the algorithm is running is taken into consideration. In other words, the time taken

to read the data from the excel file is disregarded because had this algorithm been

developed using text files, the time consumed to read the file would have been

significantly lower (only a few seconds). C#.NET offers a built-in function that can easily

verify the time required to run a routine. Therefore, the time required to run each TS

algorithm can be easily obtained.

 Once the sizes of the problem structures are established, an experiment can be

conducted to address the following research issues:

1. To analyze the performance of the five initial solution generation methods on

each size of the problem structure.

2. To analyze the performance of the six tabu-search based heuristics on each size of

the problem structure.

95

3. To examine if the performance of the six tabu-search based heuristics is affected

by the initial solution generation methods used.

96

7.1 Data Generation

 With the exception of the estimation of Cmax, which is the maximum completion

time (makespan) of all jobs released, we take advantage of the data generation

methodology proposed by Logendran and Subur (2000). As mentioned earlier, the

structure of a problem is defined by the total number of jobs. The data used in this

research, namely the run time of jobs, sequence-dependent setup time for jobs, job release

time, job weight, job due date, and machine availability are generated using a random

number generation (?) procedure. The notation for total number of projects is p and total

number of jobs is n. The methodology for generating each problem instance can be

documented as follows:

(1) The total number of projects for a given problem is generated from uniformly

distributed random numbers over the interval [1, 10]. These random numbers must be

integers.

(2) Once the number of projects for a given problem instance is determined, the number

of jobs within each project is generated from uniformly distributed random numbers

over the interval [1, 15]. These random numbers must be integers. As the total

number of jobs considered in this research has the most influence in the scheduling

algorithm, the classification that we use is based upon the total number of jobs as

follows:

 1-20 jobs – small size problem

 21-40 - medium size problem

 41 and higher – large size problem

(3) The machines can be categorized as least, medium or most capable. For the first stage

(which has three machines), three random numbers are generated from a uniform

distribution in [1, 10] and the coefficients of machines capability (αi) are calculated as

follows: the first (αi) is assigned to the first machine. The second (αi) is assigned to

the second machine and so on. The machine that receives the smallest (αi) represents

97

the most capable machine and the machine with the largest (αi) represents the least

capable machine. For subsequent stages with one machine each, a uniformly

distributed random number is generated between [0, 1]. If the random number has a

value less than or equal to 1/3, then the machine is considered to be most capable. If

the random number is between 1/3 and 2/3 then the machine is considered to be of

medium capability and lastly if the random number is greater than 2/3, the machine is

considered to be least capable.

(4) If a job is capable of being processed on a machine, then the run time of the job is a

randomly generated number between [αi + 21] and [αi + 40]. This reasoning is

justifiable since a highly capable machine (that has a lower αi) will have a lower run

time for a job than a machine that has medium or lower capability (meaning that the

machine has a higher αi)

(5) The sequence-dependent setup times are generated from a uniform distribution over

[1, 40]. Using a wide range such as this ensures that a large number of setup times

generated for the same job on a machine are truly different.

(6) The release times of jobs are generated from a Poisson process with a mean arrival

rate of 5 per hour, assuming that the setup and run times are all expressed in minutes.

A Poisson process can be used to model the arrival of jobs independently of each

other. A Poisson process was used to generate job release time by Schutten and

Leussink (1996). These random numbers must take integer values.

(7) Machine availability times are also generated from a Poisson process with a mean

arrival rate of 5 per hour. Suresh and Chaudhuri (1996) used Poisson process to

model the occurrence of machine non-availability. As was the case with release times

of jobs, the random numbers generated for machine availability must also take integer

values. Once we have availability times for all machines, we delay the machine

availability time in stage 2 by cumulative machine availability time in stage 1. The

rationale behind doing so originates from the fact that at the start of any given

planning horizon, the machines in the first stage have reference jobs loaded on them.

The machines should process these reference jobs before processing the jobs from the

current planning horizon. The ideal thing would be to evaluate the run time and set up

time of the reference jobs and delay the machine availability by that much time. But

98

our motivation is to solve the problem instance that belongs to the current planning

horizon rather than grappling with a problem from previous planning horizon (which

in this case is that represented by the reference job). Therefore without making the

problem overly complicated, we delay the machine availability time in stage 2 by

cumulative machine availability time in stage 1. The machine availability for

following stages (stage 3 to stage 17) is also evaluated by sequentially adding the

machine availability times.

(8) The generation of meaningful due dates for the random test problem is by far the most

challenging than the other algorithmic parameters. The due dates play a vital role in

the evaluation of the total weighted tardiness of the jobs. In the absence of meaningful

due dates, the initial solution and the search algorithm will not be effective in

identifying an optimal or near optimal solution. In the past, researchers have used

tardiness factor (τ), range factor (R), and Cmax (the maximum completion time

(makespan) of all jobs released) to generate meaningful due dates. τ is defined as τ =

1− d / Cmax, where d is the average due date and Cmax is the estimated makespan. A

large value of τ indicates tight due dates and a small τ signifies loose due dates. R

provides the measure of variability and is defined as R = (dmax – dmin) / Cmax where dmax

is the largest due date and dmin is the smallest due date. A large value of R ensures that

the randomly generated due dates are distributed over a wide interval whereas a small

value of R guarantees due dates within a restricted range. The due dates are generated

from a composite uniform distribution based on R and τ (refer to Table 7.1 for due

date classification). With probability τ, the due date is uniformly distributed over the

interval [d – R d , d] and with probability (1-), the due date is uniformly distributed

over the interval [d , d + (Cmax – d)R]. The evaluation of Cmax is described in Section

5.3.4.

Note that all the random numbers are generated from a uniform distribution

except for job release time and machine availability times, which are generated from a

Poisson distribution. A uniform distribution has been proven to be appropriate to

model length or duration of a process whereas a Poisson distribution has been proven

to be appropriate to model the occurrence of an event at a given point of time.

99

Table 7-1 Due date classification

 R Degree of tightness Width of range

0.2 0.2 Loose Narrow

0.2 0.5 Loose Medium

0.2 0.8 Loose Wide

0.5 0.2 Medium Narrow

0.5 0.5 Medium Medium

0.5 0.8 Medium Wide

0.8 0.2 Tight Narrow

0.8 0.5 Tight Medium

0.8 0.8 Tight Wide

100

7.2 Design of Experiment

 A multi-factor experimental design is employed to address research questions 1, 2

and 3. The total weighted tardiness and the total computation time of the algorithms are

used as a basis for performance measurement. Two factors are used in the experiment,

they are the initial solution generation methods (IS) and different types of tabu-search

based heuristics (TS). There are a total of five different levels of IS and six different

levels of TS.

 Three different sizes of problem structures were defined in the beginning of this

chapter. Within each size, there are different structures to consider based upon different

number of jobs. Within a problem structure, one can generate different problem instances

(test problems) using the procedure described in section 7.1. All the problems are

randomly generated and no two problem instances are exactly the same. Thus an

experiment involving various problem instances and various problem structures will have

fairly large variability in results. This variation can be reduced by treating each problem

instance as a block. Blocking the problem instance is necessary to eliminate the influence

of the differences between the problem instances (caused by random generation of

problems). Thus, the differences in the performances of the algorithms, if identified, can

be wholly attributed to the effect of the algorithms and not to the difference between

problem instances.

 All 30 (5 levels of IS * 6 levels of TS) combinations of factors are tested in each

block. At this point, the experimental design looks like a randomized complete block

design. Randomized complete block design is one of the most widely used experimental

designs. Blocking can be used to systematically eliminate the effect of nuisance factor on

the statistical comparisons among treatments. Blocking is an extremely important design

technique, used extensively in industrial experiments.

 A completely randomized block design may be defined as a design in which

treatments are assigned to the experimental units completely at random. The design is

completely flexible, i.e., any number of treatments and any number of levels (?) per

treatment may be used. For this research, we are interested in finding out the effect of the

101

two primary factors i.e., IS and TS. As mentioned earlier, IS has 5 different levels and TS

has 6 different levels. Note that both these factors are of equal interest in this research

because the IS finding mechanism helps in initiating the search whereas the TS

mechanism helps in identifying the final solution. Moreover, previous research has

shown that a quality initial solution may lead to better quality final solution (Logendran

and Subur, 2004). Therefore, equal importance is given to both of these factors (IS and

TS) while performing the statistical experimentation. A completely randomized block

design was used where randomization was performed within each block. The 30

combination of factors (5 levels of IS and 6 levels of TS) were randomly assigned to the

problem instances within a block. Blocking was used to account for the variability

induced by the randomly generated problem instances.

 A more complex design such as split-plot design was not chosen to conduct the

experimentation because both the factors (IS and TS) are of equal interest to us.

Moreover, we were able to completely randomize the order of the runs for all 30 heuristic

combinations (5 levels of IS and 6 levels of TS). If we had to give more importance to a

particular factor of interest (say TS) then we could have modeled the experiment as a

split-plot design rather than a completely randomized block design. But as mentioned

before, we are equally interested in the effects of both factors. Hence, a completely

randomized block design was chosen over a split-plot design.

 The experiment includes all three sizes of problem structures. For small size

category, three different problem structures are used; they are 9 jobs and 19 machines, 12

jobs and 19 machines, and 17 jobs and 19 machines. For medium and large size category,

the types of problem structures are reduced to two. Two problem structures are used for

medium size category: 25 jobs and 19 machines and 35 jobs and 19 machines. Similarly,

two problem structures are used for large size category: 45 jobs and 19 machines and 55

jobs and 19 machines. This reduction in size is due to the extensive computation time

required to solve the medium and large problem, as explained in the beginning of the

chapter.

 Within each problem structure, 5 problem instances are generated. Each problem

instance is characterized by the combination of the due date tightness factor (R) and the

102

due date range factor (τ) used to generate the due dates of jobs in the problem. The

combination of R and τ determines the characteristics of the due dates, as documented in

Table 5.1. In order to cover different characteristics of due dates, 5 combinations of R

and τ are selected from Table 5.1. Each combination is used in each problem instance

(block) as:

Block 1: τ = 0.2 and R = 0.8,

Block 2: τ = 0.5 and R = 0.5,

Block 3: τ = 0.8 and R = 0.2,

Block 4: τ = 0.2 and R = 0.2,

Block 5: τ = 0.8 and R = 0.8,

The five combinations are used consistently over each problem structure. The data

generated for the experiment using the procedure described in section 7.1 is presented in

Table D.1-D.3 in Appendix D for all problem structures. The experiment is performed on

intel Core I3 2.1 GHz machine with 4 GB RAM.

103

7.3 Experimental Results and Analysis

 The results of the experimentation are presented in Table E.1 – Table E.3 of

Appendix E for small, medium and large problems, respectively. The total weighted

tardiness presented in the tables refer to the final best solution obtained by a tabu-search

heuristic (TS) using the initial solution (generated by an initial solution generation

method (IS)). The computation time is the total time taken by an initial solution

generation method and a tabu-search based heuristic to identify the final solution. The

summary of the results collected for each problem structure is shown in Table 7.1. The

analysis of results will focus on the total weighted tardiness first and then on the

computation time. The correlation coefficient for TWT and computation time came out to

be (-.18). This value suggests that there is no correlation between TWT and computation

time and therefore, we can perform individual analysis on TWT and computation time.

 As the summary of results only shows the average of the total weighted tardiness

(TWT), one cannot conclusively say which level of factors yield the minimum TWT. A

thorough statistical analysis on TWT will help us to determine if a particular level of a

factor is better than the rest. A preliminary data exploration is essential to examine the

distribution of TWT, in order to perform a statistical analysis on the TWT. Statistical

analysis methods such as t-test are very powerful tools if the data is normally distributed.

Graphical tools such as box plots can be very useful to detect any departure from the

assumption of normality. The box plots of the TWT for all the levels of IS and all the

levels of TS are shown in Figure F.1-F.3 of Apendix F for small medium and large

problem structures, respectively. These box plots are generated by using popular

statistical analysis package called R version 2.12.0. R is a free software environment for

statistical computing and graphics. It compiles and runs on a wide variety of UNIX

platforms, Windows and Mac Operating System.

 The plots initially show that the data distribution is highly skewed and long tailed,

which implied departure from normality and equal variance assumption. This is due to

the large inconsistency between the values of the TWT obtained using different

104

combinations of due date tightness factor () and due date range factor (R). A problem

with small () and small (R) would tend to yield a relatively small TWT whereas a

problem with large () and small (R) tend to yield a relatively large value of TWT. Due to

non-normality of the data distribution and unequal variance, parametric methods such as

F-test and t-test are not appropriate for analyzing the experimental results.

 Kruskal-Wallis test is a nonparametric alternative to the usual analysis of

variance. Kruskal-Wallis can be applied to test the null hypothesis that involves only

single factor. In this research, we have two factors (IS and TS) with blocking. Therefore

Kruskal-Wallis test cannot be used as an alternative procedure to the F-test analysis of

variance. Friedman test is another alternative for the F-test which can be applied for

analyzing a single factor in a randomized block experiment. Again, we cannot apply the

Friedman test as we have two factors together with blocking instead of 1 factor with

blocking. Other non-parametric tests involve signed ANOVA but it is not widely

accepted in the statistical community therefore it is also ruled out. Moreover, non-

parametric tests fail to predict the interactions correctly (Conover, 1999). Therefore we

need to keep the analysis in the realm of parametric tests.

 Notice that problem instances generated using = 0.2 and R = 0.2 (Block 4) yield

loose due dates. All search algorithms (TS1-TS6) in conjunction with the initial solution

generating mechanisms (IS1-IS5) are able to identify a TWT of zero and this is true for

each problem structure (small, medium and large). A TWT value of zero makes the data

highly skewed. If we remove Block 4 from the analysis, the box plots show that the data

is approximately normal with approximately equal variance. A TWT value of zero

implies that none of the jobs are tardy. In an industrial setting, there would hardly be any

instance where none of the jobs are tardy. If none of the jobs are tardy, it means that the

problem is not carefully constructed, meaning not rigorous enough to emulate industrial

settings. Therefore, Block 4 is eliminated in performing further analysis.

 After eliminating Block 4, the data becomes approximately normal (though a

transformation is required). We can now apply a two-way ANOVA with blocking to each

105

problem structure. Three different hypotheses need to be tested and they can be stated as

follows:

Hypothesis 1

H0: There is no difference in the TWT obtained for the problem instances using the five

initial solution generation methods (IS).

H1: At least one of the initial solution generation methods tends to yield a smaller TWT

than the others.

Hypothesis 2

H0: There is no difference in the TWT obtained for the problem instances using the six

tabu search heuristics (TS).

H1: At least one of the tabu search heuristics tends to yield a smaller TWT than the

others.

Hypothesis 3

H0: There is no interaction between IS and TS.

H1: There is interaction between IS and TS.

The results of the two-way ANOVA with blocking are discussed individually on

each problem structure. Among the various statistical methods available for comparing

the effects of a factor at different levels, the least significance difference (LSD) based on

t-statistic can be regarded as the least conservative, and Tukey-Kramer‟s adjusted P-value

can be regarded as most conservative method. Since our goal is to truly identify a clear

difference between the levels of a factor, we select Tukey-Kramer‟s adjusted P-value

method for the purpose of analysis. Thus, while a particular factor may be deemed as

significant, the detailed analysis for identifying which factor levels contribute to this

significance may indeed point to none because of the stringent difference sought by

Tukey-Kramer‟s adjusted P-value method. In the following sections, the analysis of

results obtained for each size of problem is presented separately.

106

7.3.1 Small Problem Structures

A preliminary data exploration is carried out in order to perform a statistical

analysis on TWT for small problem structures. The box plots of the TWT for all levels of

IS and all levels of TS are shown in Figure F.1 of Appendix F for small problem

structures. The plots show that the data is highly skewed which implies severe departure

from normality and unequal variance. To stabilize the spread of the data variance, a

natural-logarithm data transformation is applied. After the transformation, the TWT has a

normal shape and the variance is equally spread as shown in Figure F.4 of Appendix F.

Since the normality assumption for the parametric statistical method is met, an analysis of

variance (ANOVA) or F-test can be applied to the log-transformed TWT (LOG_TWT).

The ANOVA result for the TWT on small problem structures has been presented

in table 7.2. We assume a significance level (α) of 5%, as is commonly done in

experimental design. The results clearly indicate that neither the initial solution finding

mechanism (Pr > F = 0.7349 > 5%) nor the Tabu search algorithms (Pr > F = 0.4203 >

5%) have proven to be significant at 5% significance level. The results also suggest that

the interaction between IS finding mechanism and TS algorithms is not significant at 5%

significance level (Pr > F = 1.0000 > 5%). We can infer that no IS finding mechanism or

TS algorithm has contributed to identifying a better quality solution (i.e. a lower TWT) in

small size problems.

Table 7-2 Results for small size problems from ANOVA for TWT

Df Sum Sq Mean Sq F value Pr(>F)

IS 4 0.8730 0.2180 0.5011 0.7349

TS 5 2.1690 0.4340 0.9957 0.4203

Block 3 264.7100 88.2370 202.5638 <.0001*

IS:TS 20 0.7570 0.0380 0.0869 1.0000

Residuals 327 142.4410 0.4360

107

Table 7-3 Results for small size problems from ANOVA for CT

 Df Sum Sq Mean Sq F value Pr(>F)

IS 4 8.2330 2.0581 5.5174 <.0002 *

TS 5 0.1840 0.0368 0.0988 0.9923

Block 3 7.8420 2.6140 7.0075 <.0001 *

IS:TS 20 0.5170 0.0259 0.0694 1.0000

Residuals 327 121.9790 0.3730

Table 7-4 Differences of least square means for CT of small size problems (IS)

 diff lwr upr p adj

IS2-IS1 0.2718 0.0002 0.5433 0.0497

IS3-IS1 0.3441 0.0726 0.6157 0.0052

IS4-IS1 0.0494 -0.2222 0.3209 0.9875

IS5-IS1 0.3608 0.0893 0.6324 0.0028

IS3-IS2 0.0723 -0.1992 0.3439 0.9493

IS4-IS2 -0.2224 -0.4939 0.0491 0.1655

IS5-IS2 0.0890 -0.1825 0.3606 0.8971

IS4-IS3 -0.2947 -0.5663 -0.0232 0.0258

IS5-IS3 0.0167 -0.2549 0.2882 0.9998

IS5-IS4 0.3114 0.0399 0.5830 0.0154

Since no significant difference exists between the levels of IS or the levels of the

TS algorithm based on TWT, we venture into finding if differences exists between the

levels of IS or levels of TS based on CT. As was the case with TWT for small problem

structures, initial data exploration for CT reveals that the data is highly skewed with

unequal variance and spread. A log transformation is applied to normalize the data and

the box plots have been presented in Figure G.4 of Appendix G. Since the transformed

data has normal distribution and approximately equal variance, ANOVA can be applied.

The ANOVA result for the CT on small problem structures has been presented in table

7.3. The IS finding mechanism (Pr > F = .0002 < 5%) reports to be significant at 5%

108

significance level. On the other hand, the TS algorithm (Pr > F = .9923 > 5%) does not

report to be significant at 5% significance level. The results also suggest that the

interaction between IS finding mechanism and TS algorithms is not significant at 5%

significance level (Pr > F = 1.0000 > 5%).

Since the IS finding mechanism is significant at 5% significance level, this raises

an interesting research question as to whether there is a unique IS finding mechanism that

eventually leads to consuming lower computation time. An extended analysis is

performed to address that question. Note that the processing speed of the computer

comprising of 2.4 GHz i3 core processer, 4 GB RAM memory, and Windows 7 operating

system enable us to evaluate the final answer within a fraction of a second for small

problem instances. Though the analysis shows the IS finding mechanisms to be

significant, it should be noted that solving the small problem instances does not even take

one second (for all IS finding mechanisms and the TS search algorithms). Such is the

efficacy of the entire search algorithm.

Table 7.4 summarizes the differences of least square means for CT of small

problems based on IS finding mechanism. The comparison shows that IS1 (EDD) takes

less computation time than IS2 (LFJ/LFM), IS3 (LWT) and IS5 (HCR). Table 7.4 also

suggests that IS4 (DDW Ratio) takes less computation time than IS3 (LWT) and IS5

(HCR). Note that IS1 prioritizes jobs based on earliest due date whereas IS4 prioritizes

jobs based on due dates as well as their respective weights. In other words, both IS1 and

IS4 finding mechanisms prioritize jobs based on their due dates (with IS4 also

incorporating the weights) hence it is not surprising that both take lower computation

time simultaneously. However, there is no difference between IS1 (EDD) and IS4 (DDW

Ratio) based on the least square means for CT as summarized in Table 7.4. Thus, if the

decision is to be purely based on CT, IS1 (EDD) is the recommended choice since it can

help save on the computation time over other IS finding mechanisms.

109

7.3.2 Medium Test Problems

Total Weighted Tardiness

A preliminary data exploration is carried out in order to perform a statistical

analysis on TWT for medium problem structures. The box plots of the TWT for all levels

of IS and all levels of TS are shown in Figure F.2 of Appendix F for medium problem

structures. As was the case with small problem instances, the plots show that the data is

highly skewed which implies severe departure from normality and unequal variance. To

stabilize the spread of the data variance, a natural-logarithm data transformation is

applied. After the transformation, the TWT has a normal shape and the variance is

equally spread as shown in Figure F.5 of Appendix F. Since the normality assumption for

the parametric statistical method is met, an analysis of variance (ANOVA) or F-test can

be applied to the log-transformed TWT (LOG_TWT).

The ANOVA result for the TWT on medium problem structures has been

presented in table 7.5. The results clearly suggests that neither the initial solution finding

mechanism (Pr > F = 0.1101 > 5%) nor the Tabu search algorithms (Pr > F = 0.8431 >

5%) have proven to be significant at 5% significant level. The results also suggest that the

interaction between IS finding mechanism and TS algorithms is not significant at 5%

significance level (Pr > F = 1.0000 > 5%). We can infer that no IS finding mechanism or

TS algorithm has contributed to identifying a better quality solution (i.e. a lower TWT) in

medium?? size problems. In the absence of a distinct outperformer, TS1 with short-term

memory and fixed TLS are recommended for medium problem instances.

Table 7-5 Results for medium size problems from ANOVA for TWT

Df Sum Sq Mean Sq F value Pr(>F)

IS 4 1.2900 0.3230 1.9093 0.1101

TS 5 0.3500 0.0690 0.4078 0.8431

Block 3 499.0800 166.3610 982.8069 < 0.0001

IS:TS 20 0.4800 0.0240 0.1432 1.0000

110

Residuals 207 35.0400 0.1690

Computation Time

The performance of each level of IS and TS is evaluated based on the

computation time. Similar to TWT, an initial data exploration is performed on the

computation time as the second response variable in the experiment. The box plots of

computation time for medium problem structures are shown in Figure G.2 of Appendix

G. The plots show that the distribution of computation time is highly skewed and the

variance of each level of factor (i.e. IS or TS) is not equally spread. This is because some

levels of IS or TS tend to take computation times that are much higher than the other

levels. To stabilize the spread of data variance, a natural-logarithm data transformation is

applied. The distribution of the transformed computation time has a normal shape and the

variance is equally spread as shown in Figures G.5 of Appendix G. Since the normality

assumption for parametric statistical methods is met, an analysis of variance (ANOVA)

or F-test can be applied to the log-transformed computation time (LOG_CT).

 The ANOVA result for the CT on medium problem structures has been presented

in table 7.7. For medium size problems, the IS finding mechanism does not show any

evidence of a difference at various levels (Pr > F = .9903 > 5%). However, the TS

algorithm proves to be significant at 5% significance level (Pr > F = .0143 < 5%). The

interaction between the IS finding mechanism and TS algorithm is also insignificant (Pr >

F = 1.0000).

 Further analysis focused only on the differences between the levels of TS

algorithm produces no significant difference (Table 7.7) for any one TS algorithm to

claim superiority of lower CT. As mentioned earlier, the least significance differences are

evaluated based Tukey-Kramer‟s adjusted P-value, which is the most conservative

method. Thus, while a particular factor may be deemed as significant, the detailed

analysis for identifying which levels contribute to this significance may indeed point to

none because of the stringent difference sought by Tukey-Kramer‟s adjusted P-value

111

method. Though the plots clearly indicate that TS1 and TS4 probably require lower

computation time than TS2, TS3, TS5 or TS6, the Tukey-Kramer‟s adjusted P-value

method does not distinctively point out this significance at 5% significance level. In the

absence of a statistically proven outperformer, TS1 with short-term memory and fixed

TLS is recommended for large problems.

Table 7-6 Results for medium size problems from ANOVA for CT

Df Sum Sq Mean Sq F value Pr(>F)

IS 4 0.3960 0.0990 0.0729 0.9903

TS 5 19.8180 3.9636 2.9215 0.0143 *

Block 3 2.5790 0.8596 0.6336 0.5942

IS:TS 20 1.5040 0.0752 0.0554 1.0000

Residuals 207 280.8390 1.3567

Table 7-7 Differences of least square means for CT for medium size problems

diff lwr upr p adj

TS2-TS1 -0.0669 -0.3315 0.1978 0.9784

TS3-TS1 -0.0137 -0.2783 0.2510 1.0000

TS4-TS1 0.0262 -0.2385 0.2908 0.9997

TS5-TS1 -0.0735 -0.3382 0.1911 0.9674

TS6-TS1 0.0116 -0.2531 0.2762 1.0000

TS3-TS2 0.0531 -0.2114 0.3178 0.9924

TS4-TS2 0.0930 -0.1716 0.3577 0.9138

TS5-TS2 -0.0067 -0.2713 0.2580 1.0000

TS6-TS2 0.0785 -0.1862 0.3431 0.9570

TS4-TS3 0.0398 -0.2248 0.3045 0.9980

TS5-TS3 -0.0598 -0.3245 0.2048 0.9869

TS6-TS3 0.0253 -0.2394 0.2899 0.9998

TS5-TS4 -0.0997 -0.3643 0.1649 0.8875

TS6-TS4 -0.0146 -0.2792 0.2501 1.0000

TS6-TS5 0.0851 -0.1795 0.3497 0.9397

112

113

7.3.3 Large Problem Structure

Total Weighted Tardiness

In order to perform a statistical analysis on TWT, a preliminary data exploration

is necessary to examine the distribution of TWT (for large problems). The box plots of

the TWT for all levels of IS and all levels of TS are shown in Figure F.3 of Appendix F

for large problem structures. The plots show that the data is highly skewed, which implies

severe departure from normality and unequal variance. To stabilize the spread of the data

variance, a natural-logarithm data transformation is applied. After the transformation, the

TWT has a normal shape and the variance is equally spread as shown in Figure F.6 of

Appendix F. Since the normality assumption for the parametric statistical method is met,

an analysis of variance (ANOVA) or F-test can be applied to the log-transformed TWT

(LOG_TWT).

The ANOVA result for the TWT on large problem structures has been presented

in table 7.8. The results clearly suggests that neither the initial solution finding

mechanism (Pr > F = 0.8153> 5%) nor the Tabu search algorithms (Pr > F = 0.9036 >

5%) have proven to be significant at 5% significant level. The results also suggest that the

interaction between IS finding mechanism and TS algorithms is not significant at 5%

significance level (Pr > F = 1.0000 > 5%). We can infer that no IS finding mechanism or

TS algorithm has contributed to identifying a better quality solution (i.e a lower TWT) in

large size problems.

Table 7-8 Results for large size problems from ANOVA for TWT

Df Sum Sq Mean Sq F value Pr(>F)

IS 4 1.0000 0.2490 0.3905 0.8153

TS 5 1.0000 0.2010 0.3150 0.9036

Block 3 485.0400 161.6810 253.4232 <.0001

114

IS:TS 20 0.8200 0.0410 0.0642 1.0000

Residuals 207 132.0600 0.6380

Computation Time

Next, we determine if any IS finding mechanism or TS algorithm outperforms

others based on the efficiency parameters. An initial data exploration is performed on the

computation time for large problem structures. The box plots of computation time for

different levels of IS mechanism and TS algorithm are shown in Figures G.3 of Appendix

G for large problem structure. Recall, that natural logarithmic transformation was

performed on CT for small and medium problem structures. But the plots for large

problem structures show that the distribution of computation time (without the natural

logarithmic transformation) is fairly normal and has reasonably equal spread for IS

finding mechanism. Although the CT plot for TS algorithm is slightly skewed than the IS

finding mechanism, for practical purposes, it can be assumed to abide by normality

assumptions. The computation time required for small and medium problem structures

was very small (in most cases it was less than a second), which often resulted skewed

data with unequal variance. As the problem structure grows, the computation time

required to solve the problem increases significantly, giving a better spread and fairly

equal variance. Therefore the CT data for large problem structures does not require any

transformation whereas the small and medium problem structures required a natural

logarithmic transformation. The plots showing distribution of the computation time is

shown in Figures G.3 of Appendix G. Since the normality assumption for parametric

statistical methods is met, an analysis of variance (ANOVA) or F-test can be applied to

the CT data.

Table 7-9 Results for large size problems from ANOVA for CT

Df Sum Sq Mean Sq F value Pr(>F)

IS 4 22.6000 5.6550 0.2487 0.9102

TS 5 659.0000 131.7980 5.7954 <.0001

115

Block 3 2.0000 0.6660 0.0293 0.9932

IS:TS 20 23.6000 1.1790 0.0518 1.0000

Residuals 207 4707.6000 22.7420

The result for the CT on large problem structures has been presented in table 7.9.

Clearly, the IS finding mechanism (Pr > F = .9102 > 5%) is not significant at 5%

significance level. On the other hand, the TS algorithm (Pr > F = .0001< 5%) reports to

be significant at 5% significance level. Therefore, further analysis is focused to find out if

there is a significant difference between the levels of TS for large problems??. The box

plots shown in Figure G.3 of Appendix G suggest that TS1 takes less computation time

than TS2, TS3, TS5 and TS6 whereas TS4 takes less computation time than TS2, TS3,

TS5 and TS6. Table 7.10 summarizes the differences of least square means for CT of

large problems based on TS algorithms.

Table 7-10 Differences of least squares means for CT of large size problems

 diff lwr upr p adj

TS2-TS1 3.7395 0.6720 6.8070 0.0073

TS3-TS1 3.4428 0.3753 6.5102 0.0179

TS4-TS1 0.3203 -2.7472 3.3877 0.9997

TS5-TS1 3.7983 0.7308 6.8657 0.0060

TS6-TS1 3.6675 0.6000 6.7350 0.0091

TS3-TS2 -0.2968 -3.6610 2.7707 0.9998

TS4-TS2 -3.4193 -6.4867 -0.3518 0.0192

TS5-TS2 0.0588 -3.0087 3.1262 1.0000

TS6-TS2 -0.0720 -3.1395 2.9955 1.0000

TS4-TS3 -3.1225 -6.1900 -0.0550 0.0434

TS5-TS3 0.3555 -2.7120 3.4230 0.9994

TS6-TS3 0.2248 -2.8427 3.2922 0.9999

TS5-TS4 3.4780 0.4105 6.5455 0.0161

116

TS6-TS4 3.3473 0.2798 6.4147 0.0235

TS6-TS5 -0.1308 -3.1982 2.9367 1.0000

The comparison shows that the pairs TS1-TS2, TS1-TS3, TS1-TS5 and TS1-TS6

are significantly different. The comparison also shows that the pairs TS4-TS2, TS4-TS3,

TS4-TS5 and TS4-TS6 are significantly different. TS1 and TS4 are based on short term

memory while others are based on LTM. In each of these pairs, the least squares mean

estimate with short term memory produces a lower TWT than that with LTM. Thus, it

pays to use short term memory search to solve large size problems. Since there is no

significant difference between TS1 (short term memory with fixed TLS) and TS4 (short

term memory with variable TLS), TS1 is recommended for efficiently solving the large

size problems.

117

8 Conclusion and Suggestions for further research

A job scheduling problem in flexible flowshops with dynamic machine

availability and dynamic job release time has been addressed in this research. In a

flexible flowshop, one or more stages may have unrelated parallel machines. Unrelated

parallel machines are machines that can perform the same function but have different

capacity or capability. Since each machine has different capability, the run times of a job

may differ from one machine to another. The machines considered in this research have

dynamic availability time, which means that each machine may become available at a

different time. The jobs are also assumed to be released dynamically. Each job in the

scheduling problem considered in this research has a job release time, due date, and

weight associated with it. A sequence-dependent setup time has also been considered in

this research, which implies that a considerable amount of time can be spent to change

over from one job to another. The release time can be viewed as a customer‟s order

placement date, the due date can be considered as the shipment date and the weights can

be considered as the priority of each job.

The possibility of machine skipping has also been incorporated in this

research. A job may skip one or more stages depending upon customer‟s requirement or

budgetary constraints. The objective of this research is to minimize the sum of weighted

tardiness of all jobs released within the planning horizon. This research objective can be

translated into on-time delivery or meeting customer‟s due dates. Such an objective is

very important in industry practice because on-time delivery is the underlying factor for

customer‟s satisfaction.

The research problem is formulated as a mixed (binary) integer-linear

programming model with the objective function focused on minimizing the total

weighted tardiness of all jobs released. The computational complexity of the research

problem is shown to be strongly NP-hard. Because it is strongly NP-hard, an implicit

enumeration technique can only be used to solve small problem instances in reasonable

computation time. For medium and large problem instances, the branch and bound

technique would not only be very time consuming, but in some cases may never find the

118

optimal solution even after investing an exceedingly large computation time. Knowing

the inefficiency of the implicit enumeration method, a higher-level search heuristic, based

on the concept of tabu search, is developed and applied to solve the research problem.

Six different tabu-search based heuristics are developed by incorporating the

different features of tabu search such as short and long term memory with fixed and

variable tabu-list size. Five different methods are developed to generate the initial

solution that can be used as starting points by tabu search. Two of the initial solutions are

developed based on simple dispatching rules known as the Earliest Due Date (EDD) and

Due Date Weight Ratio (DDW). The difference between the two methods is that the

former is myopic to weights. A more complex initial solution presented in this research

was the hybrid critical ratio (HCR), which is a modified form of DDW and takes into

account the set-up times and runtimes of jobs besides due date and weight. LFJ/LFM and

LWT are two other initial solutions presented, which are based on flexibility (of jobs and

machines) and makespan of jobs, respectively.

In order to assess the quality of the final solutions obtained from tabu-search

based heuristics, ten small problem instances were generated and solved using the

branch-and bound technique embedded in CPLEX 9.0 and the tabu search based

heuristics. Using the branch-and bound technique, 7 out of 10 problem instances were

solved optimally. The optimal solutions are then compared with the solutions obtained

from the tabu-search based heuristics. One of the heuristics (IS1/TS4) obtained solutions

that have average percentage deviation of only 2.19%, thus demonstrating the capability

of search heuristics to identify high quality solutions.

Since the optimal solutions for the medium and large problem structures are

not attainable, the effectiveness of the tabu-search based heuristics is evaluated

differently from small problem structure. Four problem instances of medium size and

four problem instances of large size were constructed to have zero total weighted

tardiness. Since the optimal solutions for these problem instances have zero total

weighted tardiness, the point of reference for evaluating the deviation is shifted to a

positive value. This reference point is obtained by delaying the completion times of all

jobs in the optimal schedule by one unit of time. Thus, the percentage deviation of the

119

solutions obtained by the heuristics was evaluated based on the reference point. The

results show that the average percentage deviation evaluated over the heuristics is 9.45%

for the medium problem structure and 10.36% over the large problem structure.

A more complete experiment with a broader scope was conducted to assess the

performance of the heuristics as the size of the problem grows from small to medium and

finally to large. A multi-factor experiment with randomized complete block design was

conducted. The design of the experiment included two different factors. The five initial

solution generation methods (IS1-IS5) were the levels of one factor and the six tabu-

search heuristics (TS1-TS6) were the levels of the other factor. The total weighted

tardiness and the computation time were the two performance measures used. The results

of the experiment suggest that no IS finding mechanism or TS algorithm contributed to

identifying a better quality solution (i.e a lower TWT) for all three problem instances (i.e.

small, medium and large). In other words, no IS finding mechanism or TS algorithm

could statistically outperform others. In absence of a distinct outperformer, TS1 with

short-term memory and fixed TLS are recommended for all problem instances.

When comparing the efficiency of the search algorithms, the results of the

experiment show that IS1, which refers to the EDD method, is recommended as the initial

solution generation method for small problem sizes. The EDD method is capable of

obtaining an initial solution that helps the tabu-search based heuristic to get to the final

solution within a short time. TS1 is recommended as the tabu-search based heuristic for

large problems, in order to save on time. TS1 is also recommended to solve small and

medium problem structures in the absence of a statistically proven outperformer.

As mentioned before, this research focuses on minimizing the total weighted

tardiness, in a flexible flowshop setting only. Further research may consider scheduling

jobs in a job-shop environment since not all industrial settings tend to follow a flowline

arrangement. Scheduling jobs in a job-shop environment will further add to the

complexity of developing the search algorithm as well as the mathematical model.

However, cognizant of the industrial significance of a job-shop setting, the proposed

research may be relevant to various firms across the manufacturing industry.

120

Further research could also focus on comparing the performance of tabu

search to other higher-level heuristics such as genetic algorithm and simulated annealing

in solving the scheduling problems addressed in this research. The performance of these

heuristics has been compared to tabu search in solving different types of scheduling

problems (Park and Kim, 1997, Piersma and Van Dijk, 1996, Glass et al., 1994). These

heuristics have shown different performances in different applications. More insights can

be gained by applying simulated annealing or genetic algorithm to the research problem

and comparing their results to the results obtained from this research.

Besides scheduling, rescheduling of jobs is of high relevance? in any

manufacturing scenario. The ability to reschedule jobs gives the flexibility to introduce,

modify or cancel jobs during a particular planning horizon. A job may have to be

rescheduled depending upon the change in customer‟s demand, machine breakdowns or

due to any unforeseen circumstances (labor or raw-material shortages).

121

BIBLIOGRAPHY

Azizoglu, M., and Kirca, O. "Scheduling Jobs On Unrelated Parallel Machines to

Minimize Regular Total Cost Functions." IIE Transactions (1999): 153-159.

Barnes, J. W., M. Laguna, and F. Glover. "An Overview of Tabu Search Approaches to

Production Scheduling Problems." Intelligent Scheduling Systems (1995): 101.

Bradley, J.V., Distribution-Free Statistical Tests (1968).

Brah, S. A., and J. L. Hunsucker. "Branch and Bound Algorithm for the Flow-Shop with

Multiple Processors." European Journal of Operational Research 51.1 (1991): 88-99.

C#.NET Version 3.0 “Microsoft Visual Studio.NET” (2008).

Carlier, J. "Scheduling Jobs with Release Dates and Tails on Identical Machines to

Minimize Makespan. " European Journal of Operational Research 29 (1987): 298-306.

Carroll, D.C. "Heuristic Sequencing of Jobs with Single and Multiple Components." PhD

Thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts (1965).

Centeno, G., and Armacost R. L. "Parallel Machine Scheduling with Release Time and

Machine Eligibility Restrictions. " Computers and Industrial Engineering 33.1 (1997):

273-276.

Cheng, T. C. E., and C. C. S. Sin. "A State-of-the-Art Review of Parallel-Machine

Scheduling Research." European Journal of Operational Research 47.3 (1990): 271-92.

Conover, W. J., Practical Nonparametric Statistics (1999) (New York: Wiley).

Conway, R. W., Maxwell, W. L., and Miller, L.W., Theory of Scheduling (1967)

(Reading, MA: Addison-Wesley).

Davis, E., and Jaffe, J. M. "Algorithms for Scheduling Tasks on Unrelated Processor."

Laboratory for Computer Science, Massachusetts Institute of Technology (1979).

Ding, F. Y., and D. Kittichartphayak. "Heuristics for Scheduling Flexible Flow Lines."

Computers & Industrial Engineering 26.1 (1994): 27-34.

Glover, F. "Future Paths for Integer Programming and Links to Artificial-Intelligence."

Computers & Operations Research 13.5 (1986): 533-49.

Guinet, A. "Scheduling Independent Jobs on Uniform Parallel Machines to Minimize

Tardiness Criteria." Journal of Intelligent Manufacturing 6 (1995): 95-103.

122

Hariri, A. M. A., and Potts, C.N. "Heuristics for Scheduling Unrelated Parallel

Machines." Journal of Computers and Operations Research 18.3 (1991): 323-331.

Ho, J. C., and Chang, Y. L. "Heuristics for Minimizing Mean Tardiness for m Parallel

Machines." Naval Research Logistics 38 (1991): 367-381.

Hubscher, R., and Glover, F. "Applying Tabu Search with Influential Diversification to

Multiprocessor Scheduling." Journal of Computers and Operations Research 21.8 (1994):

877-884.

Glass, C. A., Potts, C. N., and Shade, P. "Unrelated Parallel Machine Scheduling Using

Local Search." Mathematical and Computer Modeling 20.2 (1994): 41-52.

Glover, F. "Future Paths for Integer Programming and Links to Artificial Intelligence."

Computers and Operations Research 13.55 (1986): 533-549.

Glover, F. "Tabu Search-Part I." ORSA Journal on Computing 1.3 (1989): 190-206.

Glover, F. "Tabu Search: A Tutorial." Interfaces 20 (1990): 74-94.

Glover, F. "Tabu Search-Part II." ORSA Journal on Computing 2.1 (1990): 4-32.

IBM. (2009) ILOG CPLEX Optimization Studio, Version 12.2.

Jayamohan, M. S., and C. Rajendran. "A Comparative Analysis of Two Different

Approaches to Scheduling in Flexible Flow Shops." Production Planning & Control 11.6

(2000): 572-80.

Jungwattanakit, J., et al. "A Comparison of Scheduling Algorithms for Flexible Flow

Shop Problems with Unrelated Parallel Machines, Setup Times, and Dual Criteria."

Computers & Operations Research 36.2 (2009): 358-78.

Comparing Scheduling Rules for Flexible Flow Lines. 2003. Elsevier Science Bv.

Karim, Y. "The Impact of Alternative Cell Locations and Alternative Routes of Material

Handling Equipment in the Design of Cellular Manufacturing Systems." MS Thesis,

Oregon State University, Corvallis, Oregon (1999).

Koulmas, C. "The Total Tardiness Problem: Review and Extensions." Operations

Research 42.6 (1994): 1024-1041.

Kyparisis, G. J., and C. Koulamas. "A Note on Makespan Minimization in Two-Stage

Flexible Flow Shops with Uniform Machines." European Journal of Operational

Research 175.2 (2006): 1321-27.

Lam, K., and Xing, W. "New Trends in Parallel Machine Scheduling." International

Journal of Operations and Production Management 17 (1997): 326-338.

123

Lee, Y. H., Bhaskaran, K., and Pinedo, M. "A Heuristic to Minimize the Total Weighted

Tardiness with Sequence-Dependent Setups." IIE Transactions 29 (1997): 45-52.

Lenstra, J.K., Rinnooy Kan, A. H. G., and Brucker, P. "Complexity of Machine

Scheduling Problems." Annals of Discrete Mathematics 1 (1977): 343-362.

Lenstra, J. K., Shmoys, D. B., and Tardos, E. "Approximation Algorithms for scheduling

Unrelated Parallel Machines." Report OS-R8714 – Centre of Mathematics and Computer

Science, Amsterdam (1987).

Logendran, R., and Sonthinen, A. "A Tabu Search-Based Approach for Scheduling Job-

Shop type flexible manufacturing systems." Journal of the Operational Research Society

48 (1997): 264-277.

Lodree, E., W. S. Jang, and C. M. Klein. "A New Rule for Minimizing the Number of

Tardy Jobs in Dynamic Flow Shops." European Journal of Operational Research 159.1

(2004): 258-63.

Logendran, R., P. deSzoeke, and F. Barnard. "Sequence-Dependent Group Scheduling

Problems in Flexible Flow Shops." International Journal of Production Economics 102.1

(2006): 66-86.

Logendran, R., B. McDonell, and B. Smucker. "Scheduling Unrelated Parallel Machines

with Sequence-Dependent Setups." Computers & Operations Research 34.11 (2007):

3420-38.

Logendran, R., and A. Sonthinen. "A Tabu Search-Based Approach for Scheduling Job-

Shop Type Flexible Manufacturing Systems." Journal of the Operational Research

Society 48.3 (1997): 264-77.

Logendran, R., and F. Subur. "Unrelated Parallel Machine Scheduling with Job

Splitting." IIE Transactions 36.4 (2004): 359-72.

Montgomery, D. C. Design and Analysis of Experiments (New York: Wiley) (1991).

Muller, F. M., Franca P. M., and Guidini, C. M. "A Diversification Strategy for a Tabu

Search Heuristic to Solve the Multiprocessor Scheduling Problem with Sequence

Dependent Setup times." Proceeding of The 11
th

 ISPE/IEE/IFAC International

Conference on CAD/CAM Robotics and Factories of the Future (1995): 217-222.

Neave, H. R., and Worthington, P. L. Distribution-Free Tests (London: Unwin Hyman)

(1988).

Ow, P. S., and Morton, T.E. "The Single Machine Early/Tardy Problem." Management

Science 35.2 (1989): 177-191.

124

Park, M. W., and Kim, Y. D. "Search Heuristics for a Parallel Machine Scheduling

Problem with Ready Times and Due Dates." Computers and Industrial Engineering 33.3

(1997): 793-796.

Piersma, N., and Van Dijk, W. "A Local Search Heuristic for Unrelated Heuristic for

Unrelated Parallel machine Scheduling with Efficient Neighborhood search."

Mathematical and Computer Modeling 24.9 (1996): 11-19.

A Diversification Strategy for a Tabu Search Heuristic to Solve the Multiprocessor

Scheduling Problem with Sequence Dependent Setup Times. 1995.

Pfund, M., et al. "Scheduling Jobs on Parallel Machines with Setup Times and Ready

Times." Computers & Industrial Engineering 54.4 (2008): 764-82.

R Statistical Software Version 2.11.0. “Support for Windows 64 bit systems” (2010).

Rachamadugu, R. V. and Morton, T. E. "Myopic Heuristics for the Single Machine

Weighted Tardiness Problem." Master‟s Thesis – Graduate School of Industrial

Administration, Carnegie-Mellon University (1981): 81-82.

Salvador, M. S. "A Solution of Special Class of Flowshop Scheduling and Its

Application." Berlin: Springer-Verlag, 1973.

Schutten, J. M. J., and Leussink, R. A. M. "Parallel Machine Scheduling with Release

Dates, Due Dates, and Family Setup Times." International Journal of Production

Economics 46/47 (1996) 119-125.

Sriskandarajah, C., and S. P. Sethi. "Scheduling Algorithms for Flexible Flowshops -

Worst and Average Case Performance." European Journal of Operational Research 43.2

(1989): 143-60.

Suresh, V., and Chaudhuri, D. "Minimizing Maximum Tardiness for Unrelated Parallel

Machines." International Journal of Production Economics 34 (1994): 223-229.

Suresh, V., and Chaudhari, D. "Bicriteria Scheduling Problem for Unrelated Parallel

Machines." Computers and Industrial Engineering 30.1 (1996a): 77-82.

Suresh, V., and Chaudhari, D. "Bicriteria Scheduling Problem for Unrelated Parallel

Machines." Computers and Industrial Engineering 30.1 (1996a): 77-82.

Suresh, V., and Chaudhari, D. "Scheduling of Unrelated Parallel Machines When

Machine Availability is Specified." Production Planning and Control 7.4 (1996b): 393-

400.

Tasgetiren, M. F., Q. K. Pan, and Y. C. Liang. "A Discrete Differential Evolution

Algorithm for the Single Machine Total Weighted Tardiness Problem with Sequence

Dependent Setup Times." Computers & Operations Research 36.6 (2009): 1900-15.

125

Vepsalainen, A. P. J., and Morton, T. E.

Wang, H. "Flexible Flow Shop Scheduling: Optimum, Heuristics and Artificial

Intelligence Solutions." Expert Systems 22.2 (2005): 78-85.

126

APPENDICES

127

Appendix A. Setup Times for the example problem

Change over from Jj’p’ to J1,1 on Mi,k

 M

1,1
M

2,1
M

3,1
M

1,2
M

1,3
M

1,4
M

1,5
M

1,6
M

1,7
M

1,8
M

1,9
M1,

10
M1,

11
M1,

12
M1,

13
M1,

14
M1,

15
M1,

16
M1,

17

J1,

1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

J2,

1

0 7 0 0 38 0 0 0 0 0 0 0 0 0 0 35 0 12 14

J3,

1

0 0 0 0 2 0 0 0 0 0 0 23 0 0 0 0 0 24 30

J4,

1

22 0 0 0 28 0 0 0 0 0 0 0 0 0 0 0 0 26 11

J5,

1

0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 28 0 21 13

J6,

1

0 0 0 0 38 0 0 0 0 0 0 0 0 0 0 29 0 29 17

J7,

1

30 0 0 0 0 0 0 0 0 0 0 14 0 9 0 37 0 29 1

J8,

1

5 0 0 0 20 0 0 0 0 0 0 8 0 0 0 4 0 38 35

J9,

1

0 5 0 0 18 0 0 0 0 0 0 0 0 0 0 0 0 31 39

J1

0,1

0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 26 27

J1

1,1

32 0 0 0 14 0 0 0 0 0 0 0 0 0 0 16 0 12 10

128

Change over from Jj’p’ to J2,1 on Mi,k

M

1,1
M

2,1
M

3,1
M

1,2
M

1,3
M

1,4
M

1,5
M

1,6
M

1,7
M

1,8
M

1,9
M1,

10
M1,

11
M1,

12
M1,

13
M1,

14
M1,

15
M1,

16
M1,

17

J1,

1
0 13 0 0 11 0 0 0 0 0 0 0 0 0 0 32 0 32 22

J2,

1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

J3,

1
0 0 0 0 14 0 0 0 0 0 34 0 0 0 0 0 39 15 4

J4,

1
0 0 0 0 34 0 0 0 0 0 0 0 0 0 0 0 14 23 12

J5,

1
0 39 0 0 0 2 0 0 0 0 0 0 0 0 0 13 17 7 24

J6,

1
0 0 0 0 20 26 0 0 0 0 0 0 0 0 0 17 26 16 32

J7,

1
0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 12 0 18 29

J8,

1
0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 35 16 19 4

J9,

1
0 23 0 0 6 0 0 0 0 0 17 0 0 0 0 0 20 10 23

J1

0,1
0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 21 21 8

J1

1,1
0 0 0 0 24 0 0 0 0 0 16 0 0 0 0 3 3 31 7

129

Change over from Jj’p’ to J3,1 on Mi,k

M

1,1
M

2,1
M

3,1
M

1,2
M

1,3
M

1,4
M

1,5
M

1,6
M

1,7
M

1,8
M

1,9
M1,

10
M1,

11
M1,

12
M1,

13
M1,

14
M1,

15
M1,

16
M1,

17

J1,

1
0 0 0 0 6 0 0 0 0 0 0 15 0 0 0 0 0 17 15

J2,

1
0 0 0 0 27 0 0 0 0 0 22 0 0 0 0 0 7 37 17

J3,

1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

J4,

1
0 0 0 0 17 0 0 0 0 0 0 0 0 0 0 0 18 21 3

J5,

1
0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 13 23 28

J6,

1
0 0 20 0 2 0 0 0 0 0 0 0 0 0 0 0 10 33 2

J7,

1
0 0 6 0 0 0 0 0 0 0 0 4 0 0 0 0 0 9 26

J8,

1
0 0 0 0 20 0 0 0 0 0 0 13 0 0 0 0 29 26 24

J9,

1
0 0 14 0 14 0 0 0 0 0 17 0 0 0 0 0 22 5 12

J1

0,1
0 0 1 0 4 0 0 0 0 0 0 0 0 0 0 0 11 38 19

J1

1,1
0 0 6 0 31 0 0 0 0 0 22 0 0 0 0 0 11 37 24

130

Change over from Jj’p’ to J4,1 on Mi,k

M

1,1
M

2,1
M

3,1
M

1,2
M

1,3
M

1,4
M

1,5
M

1,6
M

1,7
M

1,8
M

1,9
M1,

10
M1,

11
M1,

12
M1,

13
M1,

14
M1,

15
M1,

16
M1,

17

J1,

1
31 0 0 0 22 0 0 0 0 0 0 0 0 0 0 0 0 20 17

J2,

1
0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 26 17 12

J3,

1
0 0 0 0 30 0 0 0 0 0 0 0 0 0 0 0 4 24 27

J4,

1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

J5,

1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 6 17 30

J6,

1
0 0 0 0 28 0 0 0 0 0 0 0 0 0 10 0 31 29 18

J7,

1
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 35 35

J8,

1
28 0 0 28 3 0 0 0 0 0 0 0 0 0 13 0 9 23 35

J9,

1
0 0 0 25 37 0 0 0 0 0 0 0 0 0 0 0 21 12 9

J1

0,1
0 0 0 0 37 0 0 0 0 0 0 0 0 0 26 0 38 14 3

J1

1,1
4 0 0 0 16 0 0 0 0 0 0 0 0 0 21 0 37 9 30

131

Change over from Jj’p’ to J5,1 on Mi,k

 M

1,1
M

2,1
M

3,1
M

1,2
M

1,3
M

1,4
M

1,5
M

1,6
M

1,7
M

1,8
M

1,9
M1,

10
M1,

11
M1,

12
M1,

13
M1,

14
M1,

15
M1,

16
M1,

17

J1,

1

0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 19 0 33 22

J2,

1

0 12 0 0 0 36 0 0 0 0 0 0 0 0 0 28 24 30 4

J3,

1

0 0 18 0 0 0 0 0 0 0 0 0 0 0 0 0 27 8 37

J4,

1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 1 18 30

J5,

1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

J6,

1

0 0 25 0 0 37 0 0 0 0 0 0 0 0 21 2 6 28 17

J7,

1

0 0 15 0 0 29 0 0 0 0 0 0 0 0 0 21 0 11 12

J8,

1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 31 2 6 25 21

J9,

1

0 11 16 0 0 0 0 0 0 0 0 0 0 0 0 0 3 27 25

J1

0,1

0 0 10 0 0 0 0 0 0 0 0 0 0 0 20 0 5 29 20

J1

1,1

0 0 34 0 0 0 0 0 0 0 0 0 0 0 6 4 34 27 35

132

Change over from Jj’p’ to J6,1 on Mi,k

 M

1,1
M

2,1
M

3,1
M

1,2
M

1,3
M

1,4
M

1,5
M

1,6
M

1,7
M

1,8
M

1,9
M1,

10
M1,

11
M1,

12
M1,

13
M1,

14
M1,

15
M1,

16
M1,

17

J1,

1

0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 25 0 10 18

J2,

1

0 0 0 0 13 9 0 0 0 0 0 0 0 0 0 14 17 34 38

J3,

1

0 0 9 0 31 0 0 0 0 0 0 0 0 0 0 0 28 26 14

J4,

1

0 0 0 0 26 0 0 0 0 0 0 0 0 0 4 0 15 34 8

J5,

1

0 0 37 0 0 19 0 0 0 0 0 0 0 0 29 25 33 39 11

J6,

1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

J7,

1

0 0 18 0 0 38 0 0 0 0 0 0 0 0 0 8 0 35 38

J8,

1

0 0 0 0 8 0 0 0 0 0 0 0 0 0 4 26 1 30 9

J9,

1

0 0 19 0 10 0 0 0 0 0 0 0 0 0 0 0 19 5 15

J1

0,1

0 0 25 0 4 0 0 0 0 0 0 0 0 0 18 0 28 22 16

J1

1,1

0 0 15 0 22 0 0 0 0 0 0 0 0 0 10 3 3 14 30

133

Change over from Jj’p’ to

J7,1 on Mi,k

M

1,1
M

2,1
M

3,1
M

1,2
M

1,3
M

1,4
M

1,5
M

1,6
M

1,7
M1,

8
M1,

9
M1,1

0
M1,1

1
M1

,12
M1

,13
M1

,14
M1

,15
M1

,16
M1

,17

J1,

1
39 0 0 0 0 0 0 0 0 0 0 36 0 32 0 23 0 34 38

J2,

1
0 0 0 0 0 36 0 0 0 0 0 0 0 0 0 34 0 7 8

J3,

1
0 0 12 0 0 0 0 0 0 0 0 24 0 0 0 0 0 37 32

J4,

1
38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 39 25

J5,

1
0 0 15 0 0 36 0 0 0 0 0 0 0 0 0 30 0 37 34

J6,

1
0 0 14 0 0 14 0 0 0 0 0 0 0 0 0 6 0 39 2

J7,

1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

J8,

1
29 0 0 0 0 0 0 0 0 0 0 18 0 0 0 10 0 24 9

J9,

1
0 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27 27

J1

0,1
0 0 38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 39

J1

1,1
33 0 17 0 0 0 0 0 0 0 0 0 0 0 0 39 0 18 4

134

Change over from Jj’p’ to J8,1 on Mi,k

M

1,1
M

2,1
M

3,1
M

1,2
M

1,3
M

1,4
M

1,5
M

1,6
M

1,7
M

1,8
M

1,9
M1,

10
M1,

11
M1,

12
M1,

13
M1,

14
M1,

15
M1,

16
M1,

17

J1,

1
29 0 0 0 29 0 0 0 0 0 0 20 0 0 0 22 0 9 24

J2,

1
0 0 0 0 22 0 0 0 0 0 0 0 0 0 0 22 22 5 34

J3,

1
0 0 0 0 8 0 0 0 0 0 0 1 0 0 0 0 30 1 39

J4,

1
10 0 0 33 21 0 0 0 0 0 0 0 0 0 23 0 36 13 5

J5,

1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 30 34 12 5 38

J6,

1
0 0 0 0 27 0 0 0 0 0 0 0 0 0 4 32 4 32 26

J7,

1
18 0 0 0 0 0 0 0 0 0 0 25 0 0 0 39 0 20 9

J8,

1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

J9,

1
0 0 0 33 9 0 0 0 0 0 0 0 0 0 0 0 16 19 31

J1

0,1
0 0 0 0 3 0 0 0 0 0 0 0 0 0 38 0 16 11 33

J1

1,1
7 0 0 0 6 0 0 0 0 0 0 0 0 0 24 7 17 9 5

135

Change over from Jj’p’ to J9,1 on Mi,k

M

1,1
M

2,1
M

3,1
M

1,2
M

1,3
M

1,4
M

1,5
M

1,6
M

1,7
M

1,8
M

1,9
M1,

10
M1,

11
M1,

12
M1,

13
M1,

14
M1,

15
M1,

16
M1,

17

J1,

1
0 3 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 33 21

J2,

1
0 12 0 0 28 0 0 0 0 0 38 0 0 0 0 0 4 8 33

J3,

1
0 0 20 0 36 0 0 0 0 0 24 0 0 0 0 0 13 29 28

J4,

1
0 0 0 9 22 0 0 0 0 0 0 0 0 0 0 0 9 24 17

J5,

1
0 37 19 0 0 0 0 0 0 0 0 0 0 0 0 0 5 22 23

J6,

1
0 0 8 0 14 0 0 0 0 0 0 0 0 0 0 0 36 29 8

J7,

1
0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28 7

J8,

1
0 0 0 32 35 0 0 0 0 0 0 0 0 0 0 0 28 27 37

J9,

1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

J1

0,1
0 0 38 0 35 0 0 0 0 0 0 0 0 0 0 0 35 9 27

J1

1,1
0 0 37 0 34 0 0 0 0 0 15 0 0 0 0 0 33 27 15

136

Change over from Jj’p’ to J10,1 on Mi,k

M

1,1
M

2,1
M

3,1
M

1,2
M

1,3
M

1,4
M

1,5
M

1,6
M

1,7
M

1,8
M

1,9
M1,

10
M1,

11
M1,

12
M1,

13
M1,

14
M1,

15
M1,

16
M1,

17

J1,

1
0 0 0 0 24 0 0 0 0 0 0 0 0 0 0 0 0 20 32

J2,

1
0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 3 36 6

J3,

1
0 0 34 0 9 0 0 0 0 0 0 0 0 0 0 0 10 1 30

J4,

1
0 0 0 0 12 0 0 0 0 0 0 0 0 0 38 0 24 20 37

J5,

1
0 0 4 0 0 0 0 0 0 0 0 0 0 0 2 0 12 1 31

J6,

1
0 0 3 0 37 0 0 0 0 0 0 0 0 0 37 0 10 31 23

J7,

1
0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 10

J8,

1
0 0 0 0 23 0 0 0 0 0 0 0 0 0 38 0 5 36 10

J9,

1
0 0 14 0 28 0 0 0 0 0 0 0 0 0 0 0 34 4 17

J1

0,1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

J1

1,1
0 0 30 0 12 0 0 0 13 0 0 0 0 0 19 0 22 18 36

137

Change over from Jj’p’ to J11,1 on Mi,k

M

1,1
M

2,1
M

3,1
M

1,2
M

1,3
M

1,4
M

1,5
M

1,6
M

1,7
M

1,8
M

1,9
M1,

10
M1,

11
M1,

12
M1,

13
M1,

14
M1,

15
M1,

16
M1,

17

J1,

1
17 0 0 0 33 0 0 0 0 0 0 0 0 0 0 1 0 31 14

J2,

1
0 0 0 0 20 0 0 0 0 0 6 0 0 0 0 26 35 26 14

J3,

1
0 0 6 0 18 0 0 0 0 0 34 0 0 0 0 0 33 22 19

J4,

1
3 0 0 0 31 0 0 0 0 0 0 0 0 0 8 0 24 34 8

J5,

1
0 0 28 0 0 0 0 0 0 0 0 0 0 0 25 25 35 27 6

J6,

1
0 0 15 0 7 0 0 0 0 0 0 0 0 0 16 26 27 2 29

J7,

1
24 0 24 0 0 0 0 0 0 0 0 0 0 0 0 3 0 4 13

J8,

1
8 0 0 0 38 0 0 0 0 0 0 0 0 0 37 20 4 10 39

J9,

1
0 0 14 0 38 0 0 0 0 0 8 0 0 0 0 0 6 29 3

J10

,1
0 0 19 0 25 0 0 0 18 0 0 0 0 0 28 0 38 3 25

J11

,1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

138

Change over reference to Jj’p’ on Mi,k

M

1,1
M

2,1
M

3,1
M

1,2
M

1,3
M

1,4
M

1,5
M

1,6
M

1,7
M

1,8
M

1,9
M1,

10
M1,

11
M1,

12
M1,

13
M1,

14
M1,

15
M1,

16
M1,

17

J1,

1
33 26 0 0 18 0 0 0 0 0 0 10 0 34 0 2 0 26 4

J2,

1
0 17 0 0 19 14 0 0 0 0 24 0 0 0 0 12 4 38 34

J3,

1
0 0 7 0 3 0 0 0 0 14 30 28 0 0 0 0 19 22 2

J4,

1
19 0 0 5 2 0 0 0 0 0 0 0 12 0 1 0 13 15 3

J5,

1
0 28 22 0 0 1 12 0 0 0 0 0 0 0 3 20 12 25 26

J6,

1
0 0 36 0 7 24 0 0 0 0 0 0 0 0 16 13 13 37 13

J7,

1
39 0 29 0 0 14 0 0 0 0 0 23 0 36 0 9 0 13 31

J8,

1
15 0 0 9 32 0 0 0 0 0 0 17 0 0 39 25 22 16 32

J9,

1
0 23 2 30 19 0 0 0 0 0 39 0 0 0 0 0 27 28 35

J10

,1
0 0 9 0 5 0 0 0 20 0 0 0 0 0 22 0 8 14 35

J11

,1
32 0 22 0 3 0 0 0 37 0 7 0 0 0 27 18 37 29 3

139

APPENDIX B.

User Manual for Scheduling software

Procedure for running the scheduling algorithm

1) Create five new excel files namely IS1, IS2, IS3, IS4 and IS5 and place these in

the C:\ drive. Each file will contain the final best solution obtained from a

particular initial solution. For example, IS1 will contain best solution for a given

problem, using Initial Solution 1 as a starting point.

2) Place the excel data file (which has appropriate data for job release time, due date,

weight, setup time, etc.) in the C:\ drive.

3) Save this excel data file as “Test.xls”.

4) If we need to provide the algorithm with a new problem instance, revise the same

“Test.xls” with new data set.

5) Unzip the “TestProduct” folder and double click on it. Next double click on the

folder named “Combine” and run the C# file which is also named “Combine”

6) Click on the “Build” Tab and select “Rebuild Solution”.

140

7) Now click on the “Debug” tab and select “Start without Debugging”.

141

8) Five console windows will pop up. Each window will prompt the user to enter the

total number of jobs. Enter the total number of jobs in each console window (that

the new problem instance has). For example if the new problem instance has a

total of 50 jobs, then simply enter “50” using the keyboard and press “Enter” key.

142

9) The algorithm‟s execution will begin immediately and after few seconds, five

excel sheets will appear on the screen, showing the best results obtained using

each initial solution.

10) The first row in each excel sheet will read as follows:

The best TWT (total weighted tardiness) obtained from Initial Solution 1 (or 2 or

3) is ______ (a value).

143

11) Among the five different excel spreadsheets (generated by the algorithm), choose

the excel file that has the least TWT (total weighted tardiness) and save it.

Discard the other excel files.

Understanding the final schedule

1) The final schedule provides us information regarding which job should be

processed on which particular machine (to obtain a near optimal solution). It also

gives us the time when the setup of a job should start, along with the time when

the actual run of the job should start. Completion time of each job (in each

stage) is also provided to avoid any confusion.

2) Additional Clarifications:

 Setup start time: The setup start time presented in the schedule is the latest

time by which the setup of a job must begin on a particular machine.

 Start time of the run: The start time of the run of a job on a particular

machine is the time when the setup of a job is finished and the actual run of a

job should begin.

 Completion time: Completion time of a job on a particular machine is the

start time of the run + run time of that job.

 In the final schedule, jobs are sorted in increasing order (for each stage)

according “the start times of their runs”.

144

APPENDIX C

CMAX EVALUATION

Proj Job

Runtime

on

Machine

Machine

Availability Beta

Avg

set

up

M/c Avai

+

beta*Avg

set up

Job

release

time

Add

runtime

divide

by

num

of

m/c

Sum

total

Sum

total

divided

by 3

1 1 45 3 0.52 24.40 15.70 2 60.70 53.25 574.66 191.55

1 1 35 8 0.24 11.50 10.80 2 45.80

1 2 34 8 0.51 23.00 19.63 4 53.63 53.63

1 3 33 4 0.34 8.85 6.99 4 39.99 39.99

1 4 34 3 0.47 19.60 12.14 8 46.14 46.14

1 5 41 8 0.50 16.00 16.01 4 57.01 52.41

1 5 32 4 0.59 20.00 15.80 4 47.80

1 6 43 4 0.53 22.71 16.07 6 59.07 59.07

1 7 40 3 0.81 35.60 31.72 8 71.72 65.61

1 7 45 4 0.52 20.14 14.50 8 59.50

1 8 37 3 0.47 15.80 10.44 7 47.44 47.44

1 9 24 8 0.27 18.75 13.15 4 37.15 46.75

1 9 47 4 0.29 18.71 9.35 4 56.35

1 10 46 4 0.27 15.43 8.16 4 54.16 54.16

1 11 48 3 0.34 16.80 8.75 4 56.75 56.21

1 11 41 4 0.58 18.29 14.68 4 55.68

145

Hybrid Critical Ratio Evaluations

P J Wt Release DueDate M1 M2 M3

Avg

Set up

on M1

Avg Set

up on

M2

Avg Set

up on

M3

HCR

M1

HCR

M2

HCR

M3

3 8 4

1 1 1 2 1684 45 35 0 24.40 11.75 0.00 24.27 36.02

1 2 2 4 520 0 34 0 0.00 23.00 0.00

4.56

1 3 1 4 339 0 0 33 0.00 0.00 8.86

8.10

1 4 3 8 1462 34 0 0 19.60 0.00 0.00 9.09

1 5 3 4 1501 0 41 32 0.00 16.00 20.00

8.78 9.62

1 6 2 6 517 0 0 43 0.00 0.00 22.71

3.93

1 7 2 8 388 40 0 45 35.60 0.00 20.14 2.57

2.98

1 8 3 7 603 37 0 0 15.80 0.00 0.00 3.81

1 9 2 4 441 0 24 47 0.00 18.75 18.71

5.16 3.36

1 10 1 4 819 0 0 46 0.00 0.00 15.43

13.33

1 11 1 4 350 48 0 41 16.80 0.00 18.29 5.40

5.90

146

Appendix D

Nine job block 1

P J W RR DD M1,1 M2,1 M3,1 M1,2 M1,3 M1,4 M1,5 M1,6 M1,7 M1,8 M1,9 M1,10

2 5 7 21 26 30 32 37 44 47 53 59

Runtime of Jobs

1 1 2 6 2593 45 33 0 40 40 0 0 0 42 29 40 0

1 2 1 4 1063 0 0 41 0 27 0 0 0 0 43 0 0

1 3 2 2 1664 38 31 0 0 32 0 0 0 0 0 0 34

1 4 2 3 2435 0 0 31 0 30 0 0 0 0 0 45 0

1 5 2 4 2821 0 0 38 0 0 0 31 35 0 0 35 26

1 6 3 8 2542 0 41 0 0 37 0 0 0 0 0 40 0

1 7 1 8 2732 0 0 40 0 34 29 0 0 32 44 37 42

1 8 1 7 2582 47 0 0 38 39 0 37 33 0 37 33 0

1 9 3 2 1171 38 0 0 0 39 0 0 0 0 0 37 0

P J W RR DD M1,11 M1,12 M1,13 M1,14 M1,15 M1,16 M1,17

61 64 68 70 77 81 86

Runtime of Jobs

1 1 2 6 2593 0 0 40 29 35 27 31

1 2 1 4 1063 0 39 0 0 0 36 34

1 3 2 2 1664 41 0 0 26 28 29 40

1 4 2 3 2435 0 36 0 41 36 27 44

1 5 2 4 2821 0 33 0 43 28 40 38

1 6 3 8 2542 0 35 30 0 0 26 37

1 7 1 8 2732 0 34 35 28 0 38 39

1 8 1 7 2582 0 0 40 29 37 37 47

1 9 3 2 1171 0 0 0 40 28 25 47

147

Nine job block 2

P J W RR DD M1,1 M2,1 M3,1 M1,2 M1,3 M1,4 M1,5 M1,6 M1,7 M1,8 M1,9 M1,10

4 5 8 25 33 40 47 55 59 66 74 79

Runtime of Jobs

1 1 3 7 964 0 0 28 0 41 0 0 0 0 0 0 0

1 2 2 6 735 47 0 0 0 36 0 0 0 0 0 0 0

1 3 2 6 1643 0 30 0 0 29 31 0 0 46 45 0 41

1 4 1 3 1702 0 0 28 34 0 0 31 0 0 0 0 0

1 5 1 3 1067 0 34 0 38 23 0 0 0 0 0 46 0

1 6 3 5 1365 42 0 0 41 26 31 0 0 0 34 0 0

1 7 3 5 1326 0 41 0 0 25 0 0 0 0 35 0 0

1 8 2 5 836 37 0 37 0 34 0 0 0 0 29 35 28

1 9 1 6 1092 0 32 0 0 25 0 42 0 31 41 48 0

P J W RR DD M1,11 M1,12 M1,13 M1,14 M1,15 M1,16 M1,17

85 93 98 106 111 119 121

Runtime of Jobs

1 1 3 7 964 0 27 0 0 29 42 45

1 2 2 6 735 0 0 0 0 0 38 38

1 3 2 6 1643 0 0 0 34 41 41 42

1 4 1 3 1702 0 0 28 39 44 33 32

1 5 1 3 1067 0 0 0 35 39 30 44

1 6 3 5 1365 0 0 0 27 38 25 43

1 7 3 5 1326 0 32 0 0 45 37 43

1 8 2 5 836 0 30 27 0 40 25 34

1 9 1 6 1092 0 0 0 34 42 39 46

148

Nine job block 3

P J W RR DD M1,1 M2,1 M3,1 M1,2 M1,3 M1,4 M1,5 M1,6 M1,7 M1,8 M1,9 M1,10

8 6 4 25 28 34 42 44 49 55 59 64

Runtime of Jobs

1 1 3 3 498 0 25 0 0 43 28 0 47 0 0 0 26

1 2 3 3 500 0 27 0 0 0 0 0 0 0 0 40 0

1 3 1 6 966 30 0 0 0 30 39 0 0 0 0 25 0

1 4 2 8 523 0 36 0 33 43 0 0 0 0 0 0 30

1 5 1 4 508 39 38 0 0 38 0 0 0 31 0 30 0

1 6 3 6 543 0 0 31 28 41 0 32 31 0 30 0 0

1 7 2 6 822 25 0 37 0 45 0 0 0 0 0 0 0

1 8 2 5 527 27 0 24 0 43 0 0 0 0 42 29 35

1 9 1 4 476 33 0 0 28 43 31 0 0 30 0 37 0

P J W RR DD M1,11 M1,12 M1,13 M1,14 M1,15 M1,16 M1,17

68 70 73 75 81 84 87

Runtime of Jobs

1 1 3 3 498 0 39 36 0 40 43 41

1 2 3 3 500 0 33 28 33 43 34 27

1 3 1 6 966 0 0 0 33 45 31 38

1 4 2 8 523 40 0 0 41 0 27 32

1 5 1 4 508 0 30 38 0 0 43 28

1 6 3 6 543 0 0 0 0 47 32 31

1 7 2 6 822 0 32 0 37 33 36 32

1 8 2 5 527 0 36 0 41 39 43 38

1 9 1 4 476 0 0 35 30 44 28 36

149

Nine job block 5

P J W RR DD M1,1 M2,1 M3,1 M1,2 M1,3 M1,4 M1,5 M1,6 M1,7 M1,8 M1,9 M1,10

2 4 3 14 21 26 33 35 38 42 47 54

Runtime of Jobs

1 1 1 8 225 36 25 0 39 37 0 0 0 0 0 24 0

1 2 1 8 192 0 42 0 47 0 27 31 0 0 0 0 0

1 3 2 4 1996 0 0 33 40 0 0 0 0 0 42 0 0

1 4 2 6 497 33 43 0 0 46 0 0 0 0 43 0 37

1 5 3 4 396 0 42 0 0 33 0 0 0 0 28 0 0

1 6 1 3 299 33 32 0 0 38 0 0 0 0 25 0 0

1 7 3 8 345 0 28 40 0 34 0 0 0 0 0 39 0

1 8 1 6 272 0 31 0 0 32 40 0 0 0 33 24 0

1 9 3 3 249 30 0 0 37 33 0 0 0 0 40 41 0

P J W RR DD M1,11 M1,12 M1,13 M1,14 M1,15 M1,16 M1,17

57 62 68 74 81 84 89

Runtime of Jobs

1 1 1 8 225 0 27 39 31 0 41 41

1 2 1 8 192 0 0 36 31 38 33 33

1 3 2 4 1996 0 0 0 0 34 35 31

1 4 2 6 497 0 0 41 39 0 39 43

1 5 3 4 396 0 0 28 41 34 36 31

1 6 1 3 299 0 0 0 37 47 37 28

1 7 3 8 345 38 0 32 0 37 35 34

1 8 1 6 272 0 0 0 41 40 37 35

1 9 3 3 249 0 34 32 0 47 31 29

150

TWELVE JOBS BLOCK 1

P J W RR DD M1,1 M2,1 M3,1 M1,2 M1,3 M1,4 M1,5 M1,6 M1,7 M1,8 M1,9 M1,10

2 6 7 19 26 34 41 43 48 51 57 61

Runtime of Jobs

1 1 3 2 2344 37 0 32 0 32 34 0 0 0 39 45 0

1 2 2 5 3180 0 0 30 35 28 0 0 0 0 0 0 0

1 3 2 8 3103 0 0 47 0 34 0 0 0 48 0 0 29

1 4 2 2 2253 0 36 36 38 0 0 0 0 0 0 42 35

1 5 1 8 995 0 39 0 0 0 26 0 0 0 0 39 0

1 6 3 2 3598 0 28 33 31 38 0 0 0 31 0 0 0

1 7 2 2 3052 0 0 46 0 37 34 0 0 0 0 38 36

1 8 1 2 3185 0 26 31 0 41 26 24 0 0 0 28 0

1 9 1 4 3376 0 41 0 0 0 0 0 0 0 0 35 42

1 10 1 6 3178 41 0 0 0 30 0 0 0 0 42 0 0

1 11 1 5 1431 35 0 45 0 37 0 0 0 0 0 0 40

1 12 1 4 3498 29 33 0 0 27 0 0 0 0 0 0 0

P J W RR DD M1,11 M1,12 M1,13 M1,14 M1,15 M1,16 M1,17

64 67 74 77 82 90 96

Runtime of Jobs

1 1 3 2 2344 0 0 39 37 0 41 42

1 2 2 5 3180 0 0 33 29 0 39 29

1 3 2 8 3103 0 0 0 0 44 27 39

1 4 2 2 2253 0 35 36 42 0 42 35

1 5 1 8 995 0 45 47 36 28 26 44

1 6 3 2 3598 0 0 0 0 32 39 29

1 7 2 2 3052 0 42 45 35 37 39 30

1 8 1 2 3185 0 32 32 30 0 37 40

1 9 1 4 3376 0 43 0 36 0 27 28

1 10 1 6 3178 0 0 0 29 42 38 35

1 11 1 5 1431 0 42 40 27 38 43 41

151

1 12 1 4 3498 0 30 0 27 28 37 29

TWELVE JOBS BLOCK 2

P J W RR DD M1,1 M2,1 M3,1 M1,2 M1,3 M1,4 M1,5 M1,6 M1,7 M1,8 M1,9 M1,10

4 8 5 24 29 31 39 42 50 58 66 71

Runtime of Jobs

1 1 1 3 1540 0 33 0 0 31 0 0 0 0 26 0 0

1 2 3 8 1967 44 0 0 42 32 0 0 24 0 0 0 0

1 3 3 7 2854 0 32 0 0 40 29 34 0 23 0 33 0

1 4 3 8 2680 0 37 31 0 26 0 45 0 0 0 0 30

1 5 3 8 2947 0 35 0 35 34 28 0 0 0 0 0 0

1 6 2 6 2169 0 0 38 0 34 0 0 0 31 36 27 0

1 7 3 5 2461 0 0 33 0 31 33 30 0 0 33 31 0

1 8 3 4 2798 30 40 0 0 32 0 0 0 0 43 0 23

1 9 2 3 2043 44 0 0 0 26 0 0 0 0 0 32 0

1 10 2 5 2088 0 0 41 0 42 0 33 0 0 0 0 0

1 11 1 6 1294 42 27 0 42 36 43 0 0 0 0 0 0

1 12 2 8 1098 0 37 0 38 36 0 0 0 27 0 0 26

P J W RR DD M1,11 M1,12 M1,13 M1,14 M1,15 M1,16 M1,17

76 84 86 94 96 102 106

Runtime of Jobs

1 1 1 3 1540 0 0 0 47 29 46 39

1 2 3 8 1967 0 37 33 44 30 40 40

1 3 3 7 2854 0 0 44 45 38 40 48

1 4 3 8 2680 28 30 0 44 29 36 41

1 5 3 8 2947 0 0 0 41 38 36 35

1 6 2 6 2169 0 0 0 43 37 36 32

1 7 3 5 2461 0 0 31 35 41 44 47

1 8 3 4 2798 0 45 0 45 36 34 37

1 9 2 3 2043 39 28 33 48 39 31 32

1 10 2 5 2088 0 33 0 32 47 36 30

1 11 1 6 1294 0 0 0 32 43 34 34

1 12 2 8 1098 0 0 39 31 0 37 41

152

TWELVE BLOCKS JOB 3

P J W RR DD M1,1 M2,1 M3,1 M1,2 M1,3 M1,4 M1,5 M1,6 M1,7 M1,8 M1,9 M1,10

5 8 7 23 26 30 32 35 42 50 58 65

Runtime of Jobs

1 1 3 5 659 26 30 0 0 27 0 0 0 0 0 0 39

1 2 2 6 634 41 35 0 0 38 0 0 0 33 25 0 0

1 3 3 7 676 0 31 37 36 0 37 0 0 0 0 0 0

1 4 1 2 567 0 36 0 30 31 0 0 0 29 32 31 27

1 5 2 8 665 0 0 34 0 31 0 0 0 0 0 0 25

1 6 3 4 624 0 38 0 0 0 38 0 0 31 0 26 35

1 7 1 3 636 37 0 0 47 37 34 0 41 0 0 0 0

1 8 2 4 999 30 0 0 0 36 27 0 0 0 38 0 36

1 9 1 4 675 0 44 0 0 32 0 0 0 0 0 0 25

1 10 1 5 597 0 0 41 0 35 42 0 0 0 0 0 0

1 11 2 4 617 0 35 0 33 30 0 0 0 29 0 0 0

1 12 3 7 646 33 0 0 0 28 0 0 0 29 0 0 0

P J W RR DD M1,11 M1,12 M1,13 M1,14 M1,15 M1,16 M1,17

73 77 80 82 89 96 101

Runtime of Jobs

1 1 3 5 659 0 0 35 30 0 41 33

1 2 2 6 634 0 33 40 0 35 28 23

1 3 3 7 676 40 0 0 0 0 45 40

1 4 1 2 567 0 0 36 30 0 41 30

1 5 2 8 665 0 32 0 38 34 31 28

1 6 3 4 624 0 0 0 35 33 42 25

1 7 1 3 636 0 0 0 35 33 27 26

1 8 2 4 999 0 35 45 38 37 30 40

1 9 1 4 675 0 0 0 25 31 35 31

1 10 1 5 597 0 0 0 31 44 34 22

1 11 2 4 617 0 0 0 27 0 35 29

153

1 12 3 7 646 0 0 37 29 43 32 29

TWELVE JOBS BLOCK 5

P J W RR DD M1,1 M2,1 M3,1 M1,2 M1,3 M1,4 M1,5 M1,6 M1,7 M1,8 M1,9 M1,10

4 4 4 17 21 24 26 30 32 40 44 50

Runtime of Jobs

1 1 1 7 635 0 26 36 38 28 0 0 0 0 31 0 0

1 2 3 8 554 0 30 0 0 39 0 31 0 0 0 0 0

1 3 1 2 254 0 0 42 0 28 0 38 0 0 0 38 40

1 4 2 2 236 40 0 30 25 0 0 0 0 0 0 29 0

1 5 3 4 1006 26 0 0 30 24 0 0 43 0 0 0 0

1 6 3 7 538 0 0 40 39 38 38 0 0 0 0 0 0

1 7 2 6 563 24 0 0 24 38 0 0 0 0 34 0 0

1 8 3 6 370 0 26 0 0 25 0 0 0 0 0 0 0

1 9 3 4 698 0 0 28 0 40 0 0 0 0 0 31 0

1 10 3 6 1809 37 40 0 31 30 39 0 0 0 32 28 42

1 11 3 6 309 29 0 0 0 34 24 30 0 0 0 0 41

1 12 1 2 297 0 32 0 22 42 35 0 0 0 0 31 0

154

P J W RR DD M1,11 M1,12 M1,13 M1,14 M1,15 M1,16 M1,17

54 58 66 70 75 82 89

Runtime of Jobs

1 1 1 7 635 0 36 0 0 35 37 36

1 2 3 8 554 0 47 33 37 27 37 43

1 3 1 2 254 0 0 27 27 38 35 35

1 4 2 2 236 0 32 0 35 0 40 33

1 5 3 4 1006 0 0 0 40 37 34 34

1 6 3 7 538 0 0 33 30 37 25 43

1 7 2 6 563 0 0 0 29 28 39 35

1 8 3 6 370 0 0 0 0 0 38 48

1 9 3 4 698 35 0 0 0 27 38 41

1 10 3 6 1809 0 0 39 29 0 29 38

1 11 3 6 309 0 36 34 34 45 37 30

1 12 1 2 297 0 0 40 0 37 38 30

155

SEVENTEEN JOBS BLOCK 1

P J W R DD M1,1 M2,1 M3,1 M1,2 M1,3 M1,4 M1,5 M1,6 M1,7 M1,8 M1,9 M1,10

4 6 7 20 24 27 34 42 46 52 57 59

Runtime of Jobs

1 1 3 7 4381 34 0 37 32 29 0 0 0 39 40 0 0

1 2 1 4 4197 0 0 42 0 28 0 0 0 33 29 35 0

1 3 2 8 4641 0 25 0 0 29 0 0 0 24 0 0 34

1 4 2 5 3369 37 0 0 0 38 0 0 0 0 33 0 0

1 5 3 8 4640 0 0 28 0 26 0 0 0 0 34 0 0

1 6 2 5 4347 0 0 29 0 29 0 0 0 0 24 0 33

1 7 2 6 3983 0 0 42 27 27 0 0 0 0 0 28 0

1 8 2 7 4249 0 34 0 0 26 0 0 0 33 29 0 36

1 9 1 2 4651 0 0 40 0 33 0 0 0 0 36 0 0

1 10 2 2 4480 32 25 0 0 41 0 0 0 0 31 0 28

2 1 1 3 4675 30 0 41 0 31 0 0 0 0 0 0 0

2 2 3 8 4487 0 0 26 0 0 0 0 0 32 27 0 0

2 3 1 6 4124 0 29 0 0 26 0 0 0 26 0 0 0

2 4 2 7 3965 0 28 0 37 41 34 0 0 37 29 30 0

2 5 1 8 4511 31 0 0 0 32 0 0 0 0 23 31 0

2 6 2 3 4561 0 0 25 33 36 0 0 0 30 0 0 0

2 7 1 6 1594 0 29 0 30 29 0 41 0 0 0 0 30

156

P J W R DD M1,11 M1,12 M1,13 M1,14 M1,15 M1,16 M1,17

61 66 73 76 81 87 91

Runtime of Jobs

1 1 3 7 4381 0 0 32 39 32 37 32

1 2 1 4 4197 0 0 0 39 42 31 38

1 3 2 8 4641 36 38 32 36 39 29 27

1 4 2 5 3369 0 33 34 40 0 34 32

1 5 3 8 4640 0 0 36 0 0 34 37

1 6 2 5 4347 0 0 0 0 29 33 36

1 7 2 6 3983 29 0 0 30 29 27 31

1 8 2 7 4249 0 0 32 43 0 28 23

1 9 1 2 4651 0 47 47 0 38 39 40

1 10 2 2 4480 0 0 39 39 27 26 28

2 1 1 3 4675 0 32 41 43 24 33 28

2 2 3 8 4487 0 0 37 0 30 25 28

2 3 1 6 4124 0 0 0 0 27 33 39

2 4 2 7 3965 31 0 0 42 26 28 38

2 5 1 8 4511 37 38 0 31 0 39 24

2 6 2 3 4561 0 0 0 0 32 30 38

2 7 1 6 1594 0 0 34 0 0 24 37

157

SEVENTEEN JOBS BLOCK 2

P J W RR DD M1,1 M2,1 M3,1 M1,2 M1,3 M1,4 M1,5 M1,6 M1,7 M1,8 M1,9 M1,10

4 8 4 22 28 35 39 44 52 54 61 67

Runtime of Jobs

1 1 2 6 3052 38 0 0 33 37 41 0 0 0 27 39 0

1 2 3 3 1475 0 0 33 0 41 0 0 0 0 0 0 29

1 3 1 5 1676 32 0 0 41 43 0 0 0 0 35 40 0

1 4 1 5 1703 0 28 0 0 27 0 0 44 0 0 0 37

1 5 2 2 1290 45 0 0 0 29 0 34 0 0 0 0 0

1 6 1 4 2657 0 0 38 36 27 26 0 0 27 30 0 0

1 7 2 3 1784 42 0 0 0 28 0 31 0 0 0 33 0

1 8 1 4 1879 0 0 32 0 27 0 0 45 0 30 0 34

1 9 2 5 3575 34 29 0 27 26 0 42 0 0 0 0 0

1 10 3 6 2971 38 30 0 0 32 41 0 0 0 0 28 0

2 1 1 7 2857 0 0 31 29 38 38 0 0 0 0 41 30

2 2 1 2 1685 36 0 0 0 42 35 0 0 0 0 24 0

2 3 1 2 1360 0 0 42 31 37 0 0 0 39 0 38 0

2 4 1 4 1490 0 0 27 24 36 0 0 0 0 40 40 0

2 5 2 6 1447 0 39 0 0 35 0 0 0 26 0 24 0

2 6 2 8 2002 0 0 32 0 26 0 0 0 0 0 0 0

2 7 3 5 2238 0 44 0 25 44 32 38 0 0 0 0 0

158

P J W RR DD M1,11 M1,12 M1,13 M1,14 M1,15 M1,16 M1,17

73 76 81 88 93 96 104

Runtime of Jobs

1 1 2 6 3052 0 0 0 39 43 31 29

1 2 3 3 1475 0 0 45 41 33 40 41

1 3 1 5 1676 0 0 37 37 31 48 29

1 4 1 5 1703 41 33 33 35 0 33 44

1 5 2 2 1290 0 42 0 0 40 47 32

1 6 1 4 2657 0 29 0 33 0 34 31

1 7 2 3 1784 0 45 0 23 0 44 37

1 8 1 4 1879 0 43 0 37 30 48 36

1 9 2 5 3575 0 46 0 0 43 39 39

1 10 3 6 2971 0 37 40 40 42 40 40

2 1 1 7 2857 0 38 0 36 40 33 38

2 2 1 2 1685 0 0 0 25 32 36 42

2 3 1 2 1360 0 30 0 0 28 45 44

2 4 1 4 1490 0 0 45 37 30 32 37

2 5 2 6 1447 0 41 0 24 45 34 33

2 6 2 8 2002 0 0 0 0 32 47 38

2 7 3 5 2238 0 32 42 34 41 30 39

159

SEVENTEEN JOBS BLOCK 3

P J W RR DD M1,1 M2,1 M3,1 M1,2 M1,3 M1,4 M1,5 M1,6 M1,7 M1,8 M1,9 M1,10

5 2 8 18 24 31 39 45 51 55 61 66

Runtime of Jobs

1 1 1 2 1049 0 23 0 45 34 0 39 0 0 0 0 0

1 2 1 6 930 24 31 0 0 42 41 0 0 38 0 0 0

1 3 1 7 1022 0 0 38 0 0 0 0 26 0 0 0 0

1 4 3 6 940 35 0 0 0 43 24 0 32 0 32 0 0

1 5 1 3 858 39 0 38 40 0 0 0 0 0 0 24 39

1 6 1 5 953 0 0 28 0 28 0 0 0 34 0 0 0

1 7 2 8 988 32 0 0 35 43 0 0 40 0 0 0 35

1 8 2 2 1031 40 0 0 38 41 0 0 0 0 0 0 0

1 9 3 2 875 0 0 46 44 39 0 0 0 0 23 0 0

1 10 3 5 1041 0 34 34 30 39 40 0 0 0 39 0 42

2 1 1 3 997 0 0 30 0 35 0 27 0 0 0 41 40

2 2 1 2 1057 30 0 0 0 0 0 0 0 0 28 0 0

2 3 1 3 914 42 0 0 40 27 0 0 0 0 23 0 0

2 4 2 7 925 0 32 0 0 32 0 0 0 34 32 42 0

2 5 1 3 954 0 33 38 0 40 0 0 24 31 0 0 0

2 6 1 8 889 24 32 0 0 43 0 0 0 0 30 35 0

2 7 1 4 873 0 27 0 0 41 0 0 0 28 0 0 0

160

P J W RR DD M1,11 M1,12 M1,13 M1,14 M1,15 M1,16 M1,17

69 76 83 87 91 99 105

Runtime of Jobs

1 1 1 2 1049 0 0 0 25 30 28 41

1 2 1 6 930 0 42 0 41 39 39 43

1 3 1 7 1022 0 42 0 30 44 41 31

1 4 3 6 940 0 0 36 0 34 29 36

1 5 1 3 858 0 0 33 34 41 29 45

1 6 1 5 953 0 0 28 41 34 33 46

1 7 2 8 988 0 28 33 39 0 41 32

1 8 2 2 1031 36 38 0 41 0 45 28

1 9 3 2 875 44 32 28 27 37 29 32

1 10 3 5 1041 0 0 0 0 45 41 31

2 1 1 3 997 32 29 29 31 31 33 30

2 2 1 2 1057 0 0 0 0 45 28 35

2 3 1 3 914 0 0 0 0 44 45 39

2 4 2 7 925 0 28 0 28 32 38 32

2 5 1 3 954 0 27 37 37 0 46 32

2 6 1 8 889 0 0 0 33 0 31 44

2 7 1 4 873 0 0 30 24 0 37 33

161

Table E.1 Experimental results for small problem structure

9 Jobs, 17 Stages , 19 Machines, Block 1

Initial Solution
TS1 TS2 TS3 TS4 TS5 TS6

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT

IS1 1845 384 .054 384 .068 295 .065 384 .053 384 .062 384 .068

IS2 1745 487 .090 354 .088 384 .087 384 .088 384 .076 558 .076

IS3 2003 384 .044 412 .048 375 .037 375 .054 384 .058 843 .038

IS4 1355 279 .036 258 .042 251 .041 279 .036 279 .041 689 .041

IS5 1148 384 .047 384 .047 371 .031 380 .055 457 .054 709 .038

9 Jobs, 17 Stages , 19 Machines, Block 2

Initial Solution
TS1 TS2 TS3 TS4 TS5 TS6

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT

IS1 553 64 .025 64 .032 64 .031 64 .029 64 .045 64 .038

IS2 601 64 .041 64 .047 64 .046 64 .048 64 .034 64 .045

IS3 889 77 .079 77 .088 77 .088 73 .069 77 .078 77 .078

IS4 493 64 .038 64 .036 64 .036 64 .038 64 .046 64 .032

IS5 493 64 .071 64 .088 64 .088 64 .075 64 .076 64 .076

9 Jobs, 17 Stages , 19 Machines, Block 3

Initial Solution
TS1 TS2 TS3 TS4 TS5 TS6

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT

IS1 1489 548 .050 596 .034 737 .035 854 .057 605 .045 1184 .043

IS2 1575 548 .076 601 .075 554 .077 645 .070 906 .079 1016 .071

IS3 1602 548 .056 552 .085 596 .078 717 .066 810 .067 823 .068

IS4 1492 596 .074 737 .067 440 .082 803 .082 803 .064 950 .086

IS5 1483 548 .058 596 .086 440 .078 854 .061 605 .066 1184 .066

9 Jobs, 17 Stages , 19 Machines, Block 4

Initial Solution
TS1 TS2 TS3 TS4 TS5 TS6

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT

IS1 186 0 .031 0 .041 0 .046 0 .034 0 .062 0 .062

IS2 202 0 .054 0 .039 0 .033 0 .050 0 .062 0 .078.

IS3 219 0 .056 0 .071 0 .065 0 .035 0 .062 0 .078

IS4 151 0 .044 0 .042 0 .040 0 .037 0 .060 0 .080

IS5 151 0 .041 0 .061 0 .068 0 .040 0 .059 0 .044

9 Jobs, 17 Stages , 19 Machines, Block 5

Initial Solution
TS1 TS2 TS3 TS4 TS5 TS6

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT

IS1 3988 2945 .035 2241 .031 3026 .031 3701 .035 3701 .036 3290 .044

IS2 3512 2564 .059 2545 .066 2865 .065 2456 .055 2403 .064 2314 .056

IS3 3536 2778 .045 2777 .058 2817 .054 2978 .045 2943 .044 2464 .057

IS4 3168 2943 .030 2943 .036 2863 .043 3026 .053 2943 .068 2737 .042

IS5 3465 2737 .044 2737 .054 2984 .058 2943 .045 2943 .039 2737 .059

162

12 Jobs, 17 Stages , 19 Machines, Block 1

Initial Solution
TS1 TS2 TS3 TS4 TS5 TS6

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT

IS1 576 201 .093 166 .046 186 .046 321 .094 317 .042 414 .043

IS2 654 345 .045 345 .046 186 .046 345 .050 317 .056 301 .054

IS3 603 287 .087 147 .089 145 .098 416 .095 354 .089 443 .096

IS4 554 196 .033 121 .053 126 .040 203 .037 215 .058 369 .046

IS5 554 297 .085 247 .098 300 .098 335 .095 279 .098 374 .098

12 Jobs, 17 Stages , 19 Machines, Block 2

Initial Solution
TS1 TS2 TS3 TS4 TS5 TS6

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT

IS1 756 356 .048 543 .037 598 .031 356 .047 469 .038 664 .035

IS2 884 198 .065 611 .058 562 .082 291 .070 436 .061 676 .064

IS3 818 471 .045 546 .050 523 .054 543 .047 354 .046 531 .086

IS4 901 512 .061 546 .075 602 .068 543 .055 279 .078 223 .062

IS5 830 385 .040 543 .056 332 .051 350 .047 249 .046 276 .084

12 Jobs, 17 Stages , 19 Machines, Block 3

Initial Solution
TS1 TS2 TS3 TS4 TS5 TS6

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT

IS1 1190 329 .056 319 .062 298 .065 578 .066 578 .063 654 .065

IS2 983 345 .071 465 .050 223 .054 321 .070 421 .087 689 .059

IS3 875 300 .097 441 .097 410 .090 300 .085 450 .100 637 .098

IS4 759 367 .066 319 .047 356 .096 383 .067 389 .047 577 .088

IS5 552 304 .097 337 .096 332 .090 397 .088 335 .100 512 .098

12 Jobs, 17 Stages , 19 Machines, Block 4

Initial Solution
TS1 TS2 TS3 TS4 TS5 TS6

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT

IS1 187 0 .046 0 .078 0 .075 0 .056 0 .062 0 .064

IS2 268 0 .070 0 .099 0 .064 0 .064 0 .126 0 .095

IS3 93 0 .034 0 .098 0 .070 0 .032 0 .087 0 .069

IS4 56 0 .051 0 .078 0 .020 0 .050 0 .020 0 .030

IS5 70 0 .025 0 .074 0 .092 0 .075 0 .081 0 .131

12 Jobs, 17 Stages , 19 Machines, Block 5

Initial Solution
TS1 TS2 TS3 TS4 TS5 TS6

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT

IS1 3698 2086 .049 2086 .046 1649 .046 2215 .056 2215 .042 2906 .062

IS2 3559 1334 .047 1856 .054 1316 .040 1648 .056 2680 .051 2606 .060

IS3 3475 762 .083 1978 .059 741 .065 1021 .034 1943 .047 2359 .045

IS4 3876 1649 .045 1649 .048 1018 .052 2640 .081 2640 .064 3067 .040

IS5 3338 1925 .080 2295 .058 1649 .060 2412 .047 2412 .048 2309 .046

163

17 Jobs, 17 Stages , 19 Machines, Block 1

Initial Solution
TS1 TS2 TS3 TS4 TS5 TS6

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT

IS1 1683 1482 .093 1250 .102 1275 .109 1124 .094 1035 .067 978 .114

IS2 1456 1201 .153 1183 .103 975 .126 1292 .149 1257 .089 924 .123

IS3 951 681 .192 652 .145 593 .158 644 .147 629 .197 788 .141

IS4 1029 800 .093 756 .100 593 .109 597 .088 597 .080 788 .104

IS5 1212 687 .199 656 .222 644 .216 644 .169 543 .168 701 .165

17 Jobs, 17 Stages , 19 Machines, Block 2

Initial Solution
TS1 TS2 TS3 TS4 TS5 TS6

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT

IS1 962 618 .094 618 .103 618 .109 618 .087 618 .062 618 .105

IS2 947 618 .170 618 .199 618 .188 618 .166 618 .188 618 .199

IS3 1433 618 .127 612 .142 618 .147 618 .122 618 .153 618 .148

IS4 676 612 .083 612 .065 612 .079 612 .082 612 .084 612 .092

IS5 951 612 .127 612 .142 612 .147 612 .122 612 .155 612 .145

17 Jobs, 17 Stages , 19 Machines, Block 3

Initial Solution
TS1 TS2 TS3 TS4 TS5 TS6

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT

IS1 1571 365 .156 365 .271 198 .296 709 .152 487 .174 890 .224

IS2 1601 659 .238 575 .214 254 .211 547 .225 422 .213 953 .215

IS3 2075 452 .250 248 .270 442 .280 753 .230 722 .240 793 .255

IS4 2308 232 .166 232 .224 220 .213 982 .166 1000 .220 652 .212

IS5 2142 92 .250 92 .270 91 .280 615 .230 615 .240 532 .260

17 Jobs, 17 Stages , 19 Machines, Block 4

Initial Solution
TS1 TS2 TS3 TS4 TS5 TS6

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT

IS1 155 0 .093 0 .109 0 .124 0 .093 0 .249 0 .124

IS2 264 0 .114 0 .395 0 .355 0 .198 0 .272 0 .156

IS3 188 0 .117 0 .311 0 .318 0 .215 0 .225 0 .254

IS4 96 0 .109 0 .062 0 .109 0 .066 0 .124 0 .062

IS5 121 0 .167 0 .188 0 .191 0 .136 0 .248 0 .233

17 Jobs, 17 Stages , 19 Machines, Block 5

Initial Solution
TS1 TS2 TS3 TS4 TS5 TS6

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT

IS1 5494 1974 .171 2244 .218 2779 .234 3529 .176 3091 .217 2924 .224

IS2 4578 3564 .228 2681 .263 1987 .231 3214 .227 2457 .230 3655 .225

IS3 4666 3874 .250 2475 .235 2654 .260 3475 .300 2645 .261 3661 .302

IS4 4077 2646 .140 2646 .211 2607 .218 3752 .151 2705 .200 3914 .209

IS5 4270 2646 .256 2607 .247 2837 .262 3139 .306 2382 .341 3161 .300

164

25 Jobs, 17 Stages , 19 Machines, Block 1

Initial Solution
TS1 TS2 TS3 TS4 TS5 TS6

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT

IS1 440 74 .30 74 .47 74 .55 74 .27 74 .39 74 .37

IS2 705 53 .23 53 .31 74 .41 161 .20 161 .38 133 .41

IS3 667 134 .35 134 .67 89 .78 105 .29 74 .30 111 .41

IS4 517 71 .27 71 .74 74 .38 74 .34 74 .45 74 .56

IS5 414 84 .20 74 .43 74 .43 74 .32 74 .60 74 .60

25 Jobs, 17 Stages , 19 Machines, Block 2

Initial Solution
TS1 TS2 TS3 TS4 TS5 TS6

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT

IS1 488 321 .54 321 .53 321 .68 321 .46 321 .75 321 .62

IS2 496 321 .43 321 .62 321 .88 321 .58 321 .75 321 .63

IS3 1168 321 .28 321 .79 321 .94 321 .40 321 .82 321 .59

IS4 470 321 .47 321 .72 321 .88 321 .62 321 .85 321 .80

IS5 391 321 .31 321 .72 321 .73 321 .37 321 .63 321 .61

25 Jobs, 17 Stages , 19 Machines, Block 3

Initial Solution
TS1 TS2 TS3 TS4 TS5 TS6

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT

IS1 776 680 .30 514 .47 559 .55 669 .27 581 .39 495 .37

IS2 793 680 .45 612 .54 559 .67 658 .27 543 .61 652 .61

IS3 948 576 .43 548 .62 566 .63 579 .20 543 .84 547 .77

IS4 735 576 .26 548 .48 549 .75 579 .59 543 .58 543 .76

IS5 714 680 .40 543 .92 543 .70 543 .42 543 .82 543 .84

25 Jobs, 17 Stages , 19 Machines, Block 4

Initial Solution
TS1 TS2 TS3 TS4 TS5 TS6

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT

IS1 143 41 .44 27 .60 24 .71 41 .41 27 .98 24 .82

IS2 173 41 .42 41 .70 24 .80 41 .55 41 .98 24 .75

IS3 556 13 .59 13 .77 16 .68 16 .36 13 .76 15 .64

IS4 195 48 .64 29 .82 41 .76 59 .49 38 .80 42 .64

IS5 210 48 .31 29 .75 43 .48 49 .56 38 .81 47 .75

25 Jobs, 17 Stages , 19 Machines, Block 5

Initial Solution
TS1 TS2 TS3 TS4 TS5 TS6

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT

IS1 6317 3409 .48 3279 .75 4554 1.57 5247 .17 4497 .43 4800 .72

IS2 4593 3547 .31 2978 .71 4009 .98 3512 .32 3510 .88 3854 .90

IS3 5478 4517 .26 4517 .52 4918 .98 4580 .46 3936 .88 5162 .95

IS4 5662 4987 .48 3681 .60 3785 .83 4257 .25 4262 .80 5125 .58

IS5 4531 4325 .59 3674 .81 4128 .70 3451 .19 3451 .64 3587 .47

165

35 Jobs, 17 Stages , 19 Machines, Block 1

Initial Solution
TS1 TS2 TS3 TS4 TS5 TS6

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT

IS1 108 38 2.37 38 5.37 38 4.71 38 3.08 38 4.80 38 5.69

IS2 108 38 1.76 38 5.39 38 4.10 38 4.11 38 5.05 38 6.57

IS3 277 76 2.04 76 4.53 76 4.04 76 3.01 76 5.78 76 4.71

IS4 102 38 2.14 38 2.61 38 4.09 38 3.87 38 6.83 38 6.43

IS5 83 38 2.00 38 5.19 38 3.82 38 3.86 38 5.83 38 5.09

35 Jobs, 17 Stages , 19 Machines, Block 2

Initial Solution
TS1 TS2 TS3 TS4 TS5 TS6

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT

IS1 1681 411 3.75 411 5.62 411 6.05 411 4.42 411 5.15 411 5.00

IS2 1342 420 2.71 407 6.39 443 4.27 483 4.39 407 5.86 404 6.32

IS3 1256 469 4.80 469 5.25 410 4.80 536 3.23 479 6.07 408 7.84

IS4 659 389 2.13 385 5.22 381 2.68 389 3.25 386 7.42 381 5.29

IS5 1450 417 3.11 354 4.37 358 4.56 417 3.26 412 6.46 381 5.08

35 Jobs, 17 Stages , 19 Machines, Block 3

Initial Solution
TS1 TS2 TS3 TS4 TS5 TS6

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT

IS1 2415 221 2.11 360 7.99 117 6.64 221 1.33 266 4.09 360 5.74

IS2 2580 203 2.62 196 6.05 193 5.52 196 3.22 110 4.61 196 4.50

IS3 2412 240 3.69 151 4.27 153 6.63 240 3.25 151 7.84 151 5.59

IS4 1585 248 2.52 151 6.80 153 6.39 248 3.23 151 5.90 151 4.77

IS5 1585 248 2.23 151 6.45 153 4.18 248 2.00 151 5.90 151 4.00

35 Jobs, 17 Stages , 19 Machines, Block 4

Initial Solution
TS1 TS2 TS3 TS4 TS5 TS6

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT

IS1 79 0 2.87 0 4.43 0 6.82 0 2.21 0 4.68 0 6.76

IS2 87 0 2.67 0 5.83 0 3.96 0 2.52 0 4.61 0 3.65

IS3 63 0 3.44 0 5.41 0 4.80 0 3.70 0 7.74 0 4.97

IS4 59 0 3.12 0 4.63 0 5.81 0 2.74 0 3.59 0 3.59

IS5 59 0 3.45 0 4.02 0 5.07 0 3.11 0 4.39 0 4.39

35 Jobs, 17 Stages , 19 Machines, Block 5

Initial Solution
TS1 TS2 TS3 TS4 TS5 TS6

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT

IS1 7671 2721 2.8 2637 4.90 4222 4.61 2701 2.22 2088 3.98 4764 2.74

IS2 9595 2725 2.26 2870 4.10 6363 5.17 2597 2.93 2112 5.15 5124 4.16

IS3 8644 2968 3.15 2870 5.15 6620 5.19 3896 3.05 2988 5.00 3626 5.00

IS4 8562 2764 2.75 2632 5.15 3793 4.44 2755 2.85 2755 4.28 2707 5.21

IS5 8774 2527 3.00 2801 6.21 2684 5.65 2618 2.97 2600 3.95 2618 6.03

166

45 Jobs, 17 Stages , 19 Machines, Block 1

Initial Solution
TS1 TS2 TS3 TS4 TS5 TS6

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT

IS1 2187 1410 5.6 1410 7.04 1410 6.32 1410 4.78 1410 6.97 1410 7.85

IS2 3245 1421 4.18 1405 8.25 1404 7.19 1419 3.99 1405 8.33 1404 8.33

IS3 1077 778 5.14 756 9.87 997 8.98 778 5.46 756 9.54 997 8.54

IS4 1204 864 6.00 864 8.12 921 8.02 950 4.74 864 9.54 904 7.77

IS5 1260 1013 5.84 732 10.02 745 9.97 941 5.19 941 8.79 885 8.98

45 Jobs, 17 Stages , 19 Machines, Block 2

Initial Solution
TS1 TS2 TS3 TS4 TS5 TS6

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT

IS1 1161 420 3.98 420 7.71 420 8.30 420 3.98 420 7.71 420 8.30

IS2 1257 417 4.64 402 8.86 400 7.12 417 4.45 406 6.44 404 6.44

IS3 1576 469 5.16 469 7.25 419 7.25 503 4.36 479 7.71 410 6.71

IS4 659 384 4.78 384 6.38 383 8.03 386 5.19 385 8.23 401 7.91

IS5 1218 647 4.55 647 6.02 845 6.95 647 4.55 647 6.02 845 6.95

45 Jobs, 17 Stages , 19 Machines, Block 3

Initial Solution
TS1 TS2 TS3 TS4 TS5 TS6

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT

IS1 4671 2252 6.67 2175 9.19 2693 9.78 2252 6.21 2175 8.64 2693 9.26

IS2 4887 2275 5.47 2175 8.12 2693 8.12 2275 4.96 2175 7.17 2693 7.02

IS3 5595 2968 4.85 2870 6.76 2663 6.76 2968 5.12 2870 8.23 2663 8.16

IS4 5628 2676 5.02 2756 7.55 2654 6.57 2676 5.02 2756 7.55 2654 6.57

IS5 5272 2600 4.12 2600 6.31 2754 6.31 2600 4.12 2600 6.31 2754 6.31

45 Jobs, 17 Stages , 19 Machines, Block 4

Initial Solution
TS1 TS2 TS3 TS4 TS5 TS6

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT

IS1 117 0 3.24 0 6.23 0 5.87 0 3.24 0 6.23 0 5.87

IS2 203 0 4.18 0 7.12 0 6.57 0 4.18 0 7.12 0 6.57

IS3 218 0 4.06 0 7.47 0 8.15 0 5.12 0 6.85 0 7.19

IS4 93 0 5.45 0 7.68 0 7.68 0 5.45 0 7.68 0 7.68

IS5 93 0 3.97 0 6.29 0 6.29 0 4.52 0 8.25 0 8.36

45 Jobs, 17 Stages , 19 Machines, Block 5

Initial Solution
TS1 TS2 TS3 TS4 TS5 TS6

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT

IS1 4478 3620 5.23 3329 8.96 3620 7.69 3112 5.01 3112 8.65 3805 7.71

IS2 4585 3529 4.78 3529 8.24 3594 8.56 3259 5.62 3125 9.12 3592 8.12

IS3 8296 3543 6.02 3515 9.68 3242 9.68 3309 6.78 2943 10.21 3423 9.43

IS4 3825 3572 5.64 3223 10.23 3110 9.51 3276 4.25 3006 8.75 3257 9.01

IS5 3825 3572 5.12 3223 9.85 3110 8.79 3276 5.18 3006 7.28 3257 8.62

167

55 Jobs, 17 Stages , 19 Machines, Block 1

Initial Solution
TS1 TS2 TS3 TS4 TS5 TS6

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT

IS1 450 123 9.12 123 13.45 231 14.73 143 9.12 143 13.45 221 14.73

IS2 651 105 10.45 101 14.50 220 15.07 112 11.77 105 15.50 264 13.96

IS3 752 250 9.48 210 13.85 342 12.82 234 10.78 143 14.18 144 15.81

IS4 347 112 11.70 98 15.09 178 14.10 117 8.89 98 13.20 124 15.20

IS5 347 112 12.15 98 16.78 178 17.61 117 10.62 98 14.44 124 13.26

55 Jobs, 17 Stages , 19 Machines, Block 2

Initial Solution
TS1 TS2 TS3 TS4 TS5 TS6

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT

IS1 778 351 8.16 251 14.12 98 13.25 351 8.16 251 12.04 98 13.83

IS2 576 98 9.12 85 15.18 98 14.32 98 9.58 85 13.81 98 14.10

IS3 734 130 8.19 84 13.24 112 14.36 84 10.45 84 15.45 83 15.45

IS4 643 197 10.65 125 15.97 121 15.97 197 8.64 129 14.17 121 15.48

IS5 643 197 11.23 125 16.61 121 16.11 197 10.72 129 14.75 121 15.50

55 Jobs, 17 Stages , 19 Machines, Block 3

Initial Solution
TS1 TS2 TS3 TS4 TS5 TS6

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT

IS1 3587 2513 8.15 1709 13.45 1395 14.65 2513 8.14 1709 12.82 1395 15.75

IS2 4904 1772 9.23 1778 14.45 1778 14.82 1772 9.40 1778 13.58 1778 13.58

IS3 6752 1932 10.14 1393 13.68 1932 13.72 1932 8.65 1393 13.27 1932 13.27

IS4 5899 1945 8.45 1419 14.93 1800 15.30 1945 10.17 1419 16.55 1800 14.59

IS5 5899 1945 9.38 1419 15.84 1800 14.68 1945 11.45 1419 17.18 1800 16.03

55 Jobs, 17 Stages , 19 Machines, Block 4

Initial Solution
TS1 TS2 TS3 TS4 TS5 TS6

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT

IS1 210 0 9.12 0 13.54 0 14.56 0 7.17 0 12.75 0 13.24

IS2 179 0 10.16 0 13.72 0 12.62 0 10.10 0 14.13 0 13.54

IS3 98 0 8.15 0 11.76 0 14.18 0 10.45 0 12.68 0 14.87

IS4 67 0 10.73 0 12.82 0 13.19 0 9.73 0 13.82 0 16.13

IS5 154 0 9.56 0 13.97 0 12.85 0 8.22 0 11.91 0 11.47

55 Jobs, 17 Stages , 19 Machines, Block 5

Initial Solution
TS1 TS2 TS3 TS4 TS5 TS6

TWT CT TWT CT TWT CT TWT CT TWT CT TWT CT

IS1 9495 4412 9.42 4407 13.85 5759 12.16 4214 10.12 4214 15.32 5662 13.26

IS2 8516 4468 10.11 4386 14.25 5212 14.65 3741 11.47 3642 14.69 4713 13.26

IS3 7521 4435 9.17 3620 13.46 4622 17.18 4872 9.83 4800 16.71 6471 12.82

IS4 6863 4393 11.73 4393 14.89 3541 11.29 3842 10.72 3125 16.29 4275 14.26

IS5 8132 5463 10.46 4545 15.41 4587 13.81 7821 11.03 5740 15.01 4834 17.23

168

Appendix F. ANALYSIS OF EXPERIMENTAL RESULTS (TOTAL WEIGHTED

TARDINESS)

Figure F.1 Box Plots of total weighted tardiness between (a) levels of IS; (b) levels of TS

for small problem structures

IS1 IS2 IS3 IS4 IS5

0
10

00
20

00
30

00

IS

TW
T

TS1 TS2 TS3 TS4 TS5 TS6

0
10

00
20

00
30

00

TS

TW
T

169

Figure F.2 Box Plots of total weighted tardiness between (a) levels of IS; (b) levels of TS

for medium problem structures

IS1 IS2 IS3 IS4 IS5

0
10

00
20

00
30

00
40

00
50

00
60

00

IS

T
W

T

TS1 TS2 TS3 TS4 TS5 TS6

0
10

00
20

00
30

00
40

00
50

00
60

00

TS

TW
T

170

Figure F.3 Box Plots of total weighted tardiness between (a) levels of IS; (b) levels of TS

for large problem structures

IS1 IS2 IS3 IS4 IS5

0
10

00
20

00
30

00
40

00
50

00
60

00

IS

TW
T

TS1 TS2 TS3 TS4 TS5 TS6

0
10

00
20

00
30

00
40

00
50

00
60

00

TS

T
W

T

171

Figure F.4 Box Plots of Log(TWT) between (a) levels of IS; (b) levels of TS for small

problem structure

IS1 IS2 IS3 IS4 IS5

5
6

7
8

IS

Lo
g

(T
W

T)

TS1 TS2 TS3 TS4 TS5 TS6

5
6

7
8

TS

Lo
g

(T
W

T
)

172

Figure F.5 Box Plots of Log(TWT) between (a) levels of IS; (b) levels of TS for medium

problem structure

IS1 IS2 IS3 IS4 IS5

4
5

6
7

8
9

IS

Lo
g

(T
W

T
)

TS1 TS2 TS3 TS4 TS5 TS6

4
5

6
7

8
9

TS

Lo
g

(T
W

T
)

173

Figure F.6 Box Plots of Log(TWT) between (a) levels of IS; (b) levels of TS for the

small problem structure

IS1 IS2 IS3 IS4 IS5

4
5

6
7

8
9

IS

Lo
g

(T
W

T)

TS1 TS2 TS3 TS4 TS5 TS6

4
5

6
7

8
9

Tabu Search

L
o

g
 (

T
W

T
)

174

APPENDIX G. ANALYSIS OF EXPERIMENTAL RESULTS (COMPUTATION

TIME)

Figure G.1 Box Plots of computation time between (a) levels of IS; (b) levels of TS for

small problem structure

IS1 IS2 IS3 IS4 IS5

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

IS

C
om

pu
ta

tio
n

 T
im

e

TS1 TS2 TS3 TS4 TS5 TS6

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

TS

C
om

pu
ta

tio
n

 T
im

e

175

Figure G.2 Box Plots of computation time between (a) levels of IS; (b) levels of TS for

medium problem structure

IS1 IS2 IS3 IS4 IS5

0
2

4
6

8

IS

C
om

pu
ta

tio
n

 T
im

e

TS1 TS2 TS3 TS4 TS5 TS6

0
2

4
6

8

TS

C
om

pu
ta

tio
n

 T
im

e

176

Figure G.3 Box Plots of computation time between (a) levels of IS; (b) levels of TS for

large problem structure

IS1 IS2 IS3 IS4 IS5

5
10

15

IS

C
om

pu
ta

tio
n

 T
im

e

TS1 TS2 TS3 TS4 TS5 TS6

5
10

15

TS

C
om

pu
ta

tio
n

 T
im

e

177

Figure G.4 Box Plots of Log (Computation Time) between (a) levels of IS; (b) levels of

TS for small problem structure

IS1 IS2 IS3 IS4 IS5

-3
.5

-3
.0

-2
.5

-2
.0

-1
.5

-1
.0

IS

Lo
g

(C
om

pu
ta

tio
n

 T
im

e
)

TS1 TS2 TS3 TS4 TS5 TS6

-3
.5

-3
.0

-2
.5

-2
.0

-1
.5

-1
.0

TS

Lo
g

(C
om

pu
ta

tio
n

 T
im

e
)

178

Figure G.5 Box Plots of Log (Computation Time) between (a) levels of IS; (b) levels of

TS for medium problem structure

IS1 IS2 IS3 IS4 IS5

-1
0

1
2

IS

Lo
g

 (C
om

pu
ta

tio
n

 T
im

e)

TS1 TS2 TS3 TS4 TS5 TS6

-1
0

1
2

TS

Lo
g

 (C
om

pu
ta

tio
n

 T
im

e)

