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This thesis presents methods to reduce the effects of finite opamp DC gain, output 

voltage swing limitations in opamps, and component mismatches. The primary 

contribution of this thesis is a new switched-capacitor method named correlated level 

shifting (CLS).  CLS enables true rail-to-rail operation by storing an estimate of the 

desired signal on a capacitor during an “estimate” phase, and subtracting the signal 

from the active circuitry (typically an opamp) during a “level shift” phase.  This is 

done within the confines of a feedback loop.  The effective loop-gain is the product of 

the loop-gains during the estimate and level shift phases.  This enables, for example, a 

two-stage opamp to have the accuracy of a four-stage opamp.  It also enables full 

utilization of the power supply since the gain block’s output voltage can exceed the 

power supply.  The thesis shows that the full utilization of the power supply and the 

increased DC effective loop gain leads to a significant power savings compared to 

existing techniques. 

The methods are presented in the context of pipelined analog-to-digital converters, 

although the methods can be used with other circuits that use opamps or are sensitive 



 

 

to component mismatch.  An overview of the detrimental effects of reduced signal 

swing and low DC gain is given with an emphasis on the cost in power to correct these 

deficiencies when limited to existing circuit techniques.  CLS is then shown to correct 

these deficiencies without increasing power.  A detailed explanation of CLS operation 

is given, as are measured results from a 12-bit pipelined analog-to-digital converter 

that was fabricated using a 0.18µ CMOS process.  The results include greater than 10-

bit performance with true rail-to-rail operation. 

An overview of calibration is also given and the limitations are discussed.  An 

argument is made that using CLS in addition to calibration will reduce power by 

increasing signal-to-noise ratio and reducing and linearizing the errors due to finite 

opamp gain.  In addition, a method to reduce the effects of mismatch by measuring the 

relative size of elements is presented.   

Finally, several avenues for future research into CLS are given.   
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Correlated Level Shifting as a Power-Saving Method to Reduce  

the Effects of Finite DC Gain and Signal Swing in Opamps 
 _________________________________________________________________ 

 

1 The need for methods to reduce noise and low opamp-gain effects 

1.1 Document overview 

Noise and distortion are two very important factors that limit the performance of 

analog circuits.  This thesis will focus on reducing the effects of noise and distortion in 

pipelined analog to digital converters (ADCs), although the principles presented in this 

thesis can be used in other circuits that require high performance operational 

amplifiers (opamps) and good matching of elements.   

The remaining portion of section 1 will explain how noise, distortion from limited 

swing, distortion from finite opamp DC gain, and distortion caused by mismatches 

affect the accuracy of ADCs.  With existing technologies the power must be increased 

significantly to eliminate this noise and distortion. 

Section 2 presents a new method named correlated level shifting (CLS) that 

reduces the effects of noise and distortion described in section 1; noise effects are 

reduced by increasing the allowable signal swing; distortion effects are reduced by 

decreasing the effects of finite opamp DC gain, and also by extending the allowable 

signal swing. 

Section 3 discusses calibration methods that can be used reduce distortion.  

Calibration is a method that depends on accurately measuring the errors of the system.  

Once these errors are known, they can be easily corrected in the digital domain.   

Section 4 introduces a method that estimates component mismatch by ranking them 

from smallest to largest.  Component mismatch causes the same errors in ADCs as 

finite opamp DC gain, thus methods are needed to correct their effects.  The field of 

order statistics shows that if we order a set of randomly sized components from 

smallest to largest we increase our ability to accurately estimate their size.  We can 

then use this additional information to arrange the elements to minimize the errors (in 

a statistical sense) caused by their imperfect matching. 



                                                                                                                2 

Section 5 suggests several promising circuits that incorporate (or mimic) CLS. 

Section 6 is a summary of the key concepts and applications presented in this 

thesis.   

Finally, the appendices contain derivations of the gain improvement obtained using 

CLS for two circuit topologies: Miller compensated two-stage opamps and cascode 

compensated two-stage opamps.  The performance of CLS when used with a single 

stage opamp can be derived from either of the topologies derived, so it is not 

presented. 

1.2 The nature of noise 

Noise is an additional random voltage added onto a signal.  In a hand-waving 

sense, it is no surprise that one cannot determine a signal’s value with a single sample 

to a precision greater than the value of the noise that is added to it.  The type of noise 

that will be discussed in this thesis is thermal noise.   

If one was to collect many samples of thermal noise over a period of time and put 

the values into a histogram, one would see that its distribution is Gaussian.  The noise 

adds to the signal (at least to a good approximation since nonlinear circuits distort).  

The frequency spectrum of thermal noise is so large that it is modeled as if it contains 

all frequencies.  Thus thermal noise is often described as additive Gaussian white 

noise. 

When referring to measured voltages, mathematicians quantify the amplitude of 

Gaussian noise by its standard deviation (σ).  Electrical engineers usually quantify 

noise amplitude by its root-mean-square (RMS) value.  The two values are exactly the 

same, but the engineering definition implies a bound to its value that does not exist.  

Noise follows the rules of Gaussian distributed variables.  For example, noise 

amplitude will be greater than the RMS value approximately 32% of the time, and 

greater than twice the RMS value approximately 5% of the time.     

Other types of noise such as flicker noise and cross talk also limit the performance 

and in many applications are very important.  They can be treated in a similar fashion 

to white noise. 
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1.3 Modeling and reducing thermal noise from transistors 

Thermal noise is modeled in a transistor by including a voltage (or current) source 

whose value is equal to the RMS value of the noise.  This is shown in Fig. 1. 

( )
I3

fVVkT4

g3

fkT8
V

TGS
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n

∆−
=

∆
=−+ nV 

 

Fig. 1. A model of a MOSFET with thermal noise source included. 

 

Note that we have written transconductance (gm) in terms of the MOSFET’s current 

and overdrive voltage (VGS-VT).  Also note that the only way gm can be changed is to 

change its current or to adjust its dimensions to change its overdrive voltage.  The 

equation for gm is derived from the simplified “square-law” equation I=β(VGS – VT)
2
 

but the conclusions that will be drawn in this section are not changed by using more 

elaborate models. 

The noise in an opamp can be modeled by using the noise of its input differential 

pair because in most well designed opamp it is the dominant source. An opamp 

modeled in this fashion is shown in Fig. 2.  

−+ nV 

( )
I3

fVVkT8
V TGS

n

∆−
=

 

Fig. 2. A model of an opamp including thermal noise source. Note that the current is the current in 

each element of the differential pair.  The total opamp current is ~4x this current. 

 

The equation for noise in Fig. 2 clearly shows that there are only two choices to 

decrease the noise: increase current or decrease the overdrive voltage (VGS − VT).  
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Realistically, the only choice is to increase current because (VGS − VT) is usually 

minimized to maximize gm for a given amount of current.  The noise source in Fig. 2 

assumes the main contributor is the differential pair.  If other components are 

contributors the main point remains: current must be increased to decrease noise. 

Fig. 2 shows that reducing noise is very costly: noise is inversely proportional to 

the square-root of the current (1).  For example, current must be quadrupled to 

decrease the noise by a factor of two.  In reality current has to be increased more than 

that: to keep the (VGS − VT) value constant the width of the device must also be 

increased by a factor of four, which increases the input capacitance by a factor of four.  

More current, over and above the existing 4x increase, will be required to keep the 

performance the same if the input capacitance increases. 

ces)circumstan ofbest  (under the    
I

1
  voltage noise RMS

BIAS

∝ . 
 

(1) 

The conclusion to be drawn from this brief analysis is that current has to be at least 

quadrupled to reduce the noise by a factor of two.   

1.4 Reducing kT/C noise 

Most A/D converters sample a signal onto a capacitor.  It is well known that the 

RMS noise sampled onto a capacitor is equal to 

C

kT
  )(capacitor voltage noise RMS = , 

 

(2) 

where T is absolute (Kelvin) temperature and k is Boltzman’s constant.   

To reduce the noise by a factor of two the capacitance has to be increased by a 

factor of four.  In turn, the opamp current needs to be increased proportionally to 

maintain the bandwidth.  Bandwidth is proportional to gm/C so kT/C noise and thermal 

noise have the same current relationship: kT/C noise is inversely proportional to the 

square-root of the current because larger currents must be used to drive the reduced 

noise (i.e. larger) capacitors.  Again, the conclusion is that reducing kT/C and thermal 

noise is very costly: the current must be increased quadratically. 
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1.5 Signal to noise (SNR) and effective number of bits (ENOB) 

The signal to noise ratio (SNR) is a very important measurement.  As its name 

suggests, it is the ratio of the root-mean-square (RMS) value of the signal to the RMS 

value of the noise.  The signal is what we are trying to determine, and the noise is 

what limits how accurately we can determine the signal.  The probability of obtaining 

a measurement within a window of accuracy can be determined using SNR.  For 

example, if we have a 1V RMS signal and 1mV RMS Gaussian noise, we can quickly 

determine that a measurement will be within 1mV (i.e. within one standard deviation) 

of the true answer 68.3% of the time; within 2mV of the true signal 95.4% of the time; 

within 3mV 99.7% of the time, etc.  This is a simple application of probability with 

noise being a random variable with a Gaussian distribution. 

SNR is also used to produce a parameter named effective number of bits (ENOB): 

6.02

1.76-SNR
  ENOB = . 

(3) 

The units for SNR and ENOB in this equation are dB and bits respectively.  For 

most ADC applications the “noise” in the SNR value includes harmonics from 

distortion, with the resulting modified SNR being referred to as SNDR (Signal to 

Noise + Distortion Ratio) or SINAD (SIgnal to Noise And Distortion).  To keep things 

simple we neglect distortion for this example. 

An ENOB of 10 bits implies an SNR of ~62dB (1259 to 1).  It is based on the SNR 

obtained if we assume the noise is quantization noise.  For this equation the 

quantization noise is assumed to be uniformly distributed across the quantization 

window.  In other words the “noise” is bounded.  But real noise is Gaussian distributed 

so it does not have such bounds.  For example, an SNR of 62dB does not mean that 

the signal can be measured to 10 bit accuracy (1 part in 1024) with certainty.  It means 

a measurement of the signal can be measured to 1 part in 1259 (~10 bits) 68.3% of the 

time, 2 parts in 1259 (~9 bits) 95.4% of the time, etc.  Nonetheless, ENOB is a 

common and useful way of characterizing A/D converters.   
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1.6 Effects of limited opamp output swing 

 The cost of the inability to use the whole supply is the subject of this section.  Fig. 

3 shows a circuit that models noise in an amplifier by adding the noise to a signal 

before amplification.  The output is visibly “noisy” (noise amplitude is exaggerated to 

illustrate the point).  As mentioned earlier, reducing noise requires a significant 

increase in power.  A power-efficient alternative is to increase the signal.  However, as 

shown in Fig. 4 , the opamp starts distorting (clipping) the signal well before it reaches 

the supply rail.   

It was shown in sections 1.3 and 1.4 that reducing noise requires quadratically 

increasing the bias current: reducing the noise by a factor of two requires quadrupling 

the current − under the best of circumstances.  Section 1.5 showed how the ratio of 

signal to noise determines how accurately a signal can be measured.  The conclusion is 

that there are only two ways to increase how precise we can measure a signal: increase 

the signal amplitude or decrease the noise added to it.  This section will discuss how 

opamp imperfections limit how much we can increase the signal amplitude. 

 

 

Fig. 3. Simplified circuit with noisy signal at output. 
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Fig. 4. Distortion (clipping) caused by increasing the input signal beyond the linear range of the opamp. 

 

The output voltage of most modern opamps is advertised as being able to swing 

“rail-to-rail.”  Truthfully, the output voltage of these opamps cannot literally swing 

rail-to-rail without significant distortion; a practical “rail-to-rail” opamp output 

voltage needs to be at least 150mV from both of the supplies to remain relatively 

distortion free – i.e. the maximum swing is reduced by a total of 300mV.  

Realistically, the signal needs to be reduced by more than 300mV to maintain 

performance, but 300mV will be used to demonstrate that the penalty is large even 

with this optimistic assumption. 

To take advantage of modern and future smaller geometry’s inherently faster 

speeds, one needs to reduce the supply to accommodate the limitations of the process.  

The 300mV loss of swing becomes especially detrimental with smaller supplies.  For 

example, to maintain SNR with this loss of swing the noise must be decreased by a 

factor of (VDD − 0.3)/VDD because we do not have the option of increasing the signal 

amplitude.  To decrease noise by this amount, the current must be scaled by a factor of 

VDD
2
/(VDD − 0.3)

2
.  So, to maintain SNR with a 1V supply the current needs to be 

doubled!  Even with modern “large” 3.3V and 1.8V power supply voltages, the 

required power increases are 20% and 44% respectively.  If future reductions in 

geometry size cause supplies to approach 300mV, the swing that can be realized while 

maintaining opamp performance approaches zero; therefore, no amount of power 

scaling will achieve the SNR that could be obtained if the full supply was used.  A 

graph showing how much the power needs to be scaled to overcome a 300mV loss in 

swing is shown in Fig. 5.   



8 

 

 

 

 

Fig. 5. Amount that the power needs to be scaled to maintain constant SNR with a 300mV loss in 

swing.  The graph shows that if one could use the full supply when operating at 1V the required power 

would be cut in half compared to opamps available today. 

 

Use of the full supply range (or even beyond the supply if the process can tolerate 

it) is one of the features of correlated level shifting (CLS), which is the main 

contribution of the research presented in this thesis. 

In summary, the amount that the power needs to be scaled to accommodate a 

300mV loss in swing is significant: a factor of 2 with a 1V supply, 44% with a 1.8V 

supply.  Furthermore, a 300mV loss is swing is optimistic – most opamps will have 

reduced performance at levels less than 300mV.  CLS allows the full use of the supply 

and thus saves significant power.
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1.7 The effect of low DC gain on pipelined ADC performance 

The previous sections discussed how noise limits performance.  The next two 

sections will discuss how finite opamp gain limits performance in pipelined ADCs. 

A pipelined ADC is a topology that allows a low resolution A/D converter to 

achieve much higher resolution.  In order to do this the input signal needs to be gained 

up.  For example, 1mV resolution can be achieved by using a 128mV resolution ADC 

if the signal in amplified by a factor of 128.  There are obvious limitations to this: if 

the power supply is 1.28v, an ADC with 128mV resolution cannot have more than 10 

levels.  To achieve more than 10 levels it would need to process inputs greater than the 

supply.   

Pipelined ADCs take a different approach: they remove known amounts from the 

signal so when the signal is amplified it remains within the range of the course-

resolution ADC.  As long as these analog operations are perfectly replicated in the 

digital domain the signal will be properly converted to a digital value (Fig. 6). 

Multiplying (amplifying) by two in the digital domain is trivial: shift the digital word 

one bit left.  The challenge lies in accurately amplifying in the analog domain.  The 

amplification of the signal must be at least as accurate as the resolution to be achieved.  

 

L
og

ic

 

Fig. 6. A simple pipelined ADC with one pipeline stage with a gain of 2 to increase the resolution of the 

BEACD by 1 bit.  The analog operations of adding –VREF, 0, or +VREF and amplifying by two are 

mimicked in the digital domain. 
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For accuracy, feedback topologies are used to amplify the signal.  The well known 

feedback system block diagram is shown in Fig. 7.  The signal VIN is amplified by 

approximately 1/β and the error is dependent on the loop gain Aβ. For example, to 

achieve 10-bit accuracy (1 part in 1024), Aβ must be greater than 1024.  β is the 

inverse of the desired gain (1/2, 1/4, etc) so it is fixed; thus the burden is to increase A, 

which is the open-loop gain. 

 

 

 

Fig. 7. The classic block diagram of a feedback system showing the loss in accuracy due to finite A. 

 

1.8 Accuracy/power tradeoffs 

As mentioned previously, high accuracy requires a large open-loop gain.  This gain 

is realized with a multi-stage opamp such as the one shown in Fig. 8.  Each stage 

increases the gain by a factor of gmro, where ro represents the equivalent impedance at 

the point where the gain is taken.  For this example we have assumed gmro is the same 

for each stage.  While not strictly true, gmro will not vary significantly in an amplifier 

where gain and bandwidth are maximized. 

As a reference point, an amplifier using a 0.18µ CMOS process with the transistors 

biased with 1mA current can achieve a value of gmro of about 8.  Four amplifier stages 

will be required to achieve an open-loop gain adequate enough for accuracy in the 10 

− 11 bit range. 

As mentioned earlier, this structure needs about 300mV of “headroom” to operate, 

thus one has to increase the power by a factor of (VDD)
2
/(VDD − 0.3)2

 to maintain the  
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Fig. 8. A simplified schematic of a multi-stage opamp.  Each stage increases the open loop gain by a 

factor of gmro where ro represents the equivalent impedance at the point where the gain is taken. 

 

same SNR of an amplifier that can operate in a true rail-to-rail fashion.  For a 0.9V 

supply the current needs to be increased by a factor of 2.25 to compensate for the lack 

of swing. 

Longer channel length can be used to increase output impedance, but the cost in 

bandwidth is substantial: bandwidth is inversely proportional to the square of the 

channel length.   

Cascaded amplifiers of more than two stages are difficult to compensate and are 

bandwidth inefficient, so cascode transistors are often used to achieve gain beyond 

what is possible with two stages.  The phase loss through a cascode device is less than 

through an additional stage, so cascoded amplifiers achieve higher gain with less 

current.   

The effectiveness of the cascode transistors can be increased by using “active” 

cascode devices (aka regulated cascode devices) [5], which use active circuitry to 

amplify the effective output resistance.  This can be done in many ways, but a very 

efficient “telescopic” implementation is shown in Fig. 9 [6].  The “active” cascode is  
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Fig. 9. A simplified schematic of a telescopic cascode amplifier. 

 

produced by the parallel opamps.  The parallel opamps increase the effective output 

impedance of the cascode devices by an amount proportional to the parallel opamp 

loop-gain.  The phase loss due to these cascoded stages is less than a cascaded stage.  

In addition, the parallel opamps usually consume less power than a cascaded stage. 

At first glance this telescopic amplifier structure looks to be a very power-efficient 

way to increase DC gain, but, as the figure illustrates, it needs 600mV of headroom.  

To maintain the same SNR as a true rail-to-rail opamp the power would have to be 

scaled by a factor of (VDD)
2
/(VDD − 0.6)2

.  For a 0.9V supply one needs to increase the 

current by a factor of 9!  The lost swing will be even greater if a tail current source is 

used to bias the differential pair for increased common mode rejection. 

  The swing can be increased by adding a second stage to the opamp, but as 

geometries shrink the threshold voltage decreases to accommodate lower supply 

voltages.  This in turn forces the second stage transistors to have more overdrive (VGS 

− VT) to give the cascode devices enough headroom to remain saturated.  The 

increased overdrive limits the headroom as the output voltage cannot get closer to the 
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rail than the larger of (VGS − VT) or a few thermal voltages (kT/q).  The increased 

overdrive also decreases the gm unless the current is increased proportionally.  In 

conclusion, the use of cascode (active or passive) increases the DC gain of an 

amplifier, but it also reduces the amount of swing so they may not be a power-efficient 

solution if noise is a limiting factor in a design. 

1.9 The effects of capacitor mismatch on ADC performance 

Power must also increase to eliminate the effect of component mismatches.  

Component mismatches, especially the feedback capacitors, decrease the accuracy of 

the gain.  The negative effects of the decreased accuracy are the same as those caused 

by low loop-gain (section 1.7).  Just as is the case for DC gain and noise errors, power 

must be increased quadratically if one needs to reduce the effects of capacitor 

mismatch.  This is because mismatch can only be reduced by increasing the size of the 

capacitors [68], and to reduce mismatch by a factor of two the size of the capacitors 

needs to be increased by a factor of four, and the current must be scaled 

proportionately to drive the increased capacitance.  Once again we see that increased 

precision requires a quadratic increase in current. 

Section 3 describes how mismatch can be reduced using digital calibration.  Section 

4 describes a method to reduce mismatch effects by ordering the capacitors based on 

their relative size.   

1.10 Using correlated level shifting to reduce power 

The previous sections have highlighted two major issues that increase power: 1) the 

output signal of an opamp cannot utilize the entire power supply because opamps 

require at least 300mV of headroom.  2) High DC gain requires increased power 

because multiple stages are required.  Cascode topologies require fewer stages, but 

suffer from increased headroom requirements; thus they still require increased power. 

The main contribution of this thesis is a new technique named correlated level 

shifting (CLS).  CLS significantly reduces the swing and DC gain problems associated 

with traditional opamps.  It is a double-sampled switched-capacitor technique that 
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enables the output voltage of an opamp to operate true rail-to-rail.  Operation beyond 

the rail can also be achieved.   

CLS uses double sampling to achieve the DC gain of an opamp with twice the 

number of stages.  This thesis focuses on double sampling, but triple sampling also 

works and achieves the gain of an opamp with 3 times the number of stages.   

The reduced number of stages and the increased swing give opamps using CLS a 

significant power-saving advantage.  The CLS network mimics an output stage (Fig. 

10).  However, the CLS components are passive, thus the only additional power 

required is to drive the switches.  The double-sampling operation does not increase the 

settling times in most instances and can decrease it under some circumstances. 

Section 2 gives a detailed description of the operation and advantages of CLS 

including measured results from a 20MS/s 12-bit pipelined A/D converter fabricated 

in a 0.18µm CMOS process.   

 

 

 

 

Fig. 10. Conceptual schematic of an amplifier using CLS.  The passive CLS network allows operation 

beyond the rail.  It also achieves the gain of an N-stage amplifier with N/2 stages.  These features save 

significant power. 
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2 An Over-60dB True Rail-to-Rail Performance Using Correlated 

Level Shifting and an Opamp with Only 30dB Loop Gain [1] 

2.1 Introduction 

Finite opamp gain and output swing are two limitations for precision analog 

circuits.  These limitations are especially serious at lower supply voltages where 

limited headroom prevents the use of cascode devices to improve gain.   The 

magnitude of the problem is illustrated in Fig. 11 for a two-stage opamp in a 0.18µm 

process.  Ideally, the circuit has a closed-loop gain of two, but it falls short because of 

the finite DC gain of the opamp.  The gain of this particular opamp is about 36dB.  

When configured for a closed-loop gain of 2, the overall loop gain is about 30dB.  

This loop gain decreases dramatically when the output is near the rails as the driven 

second stage device enters the linear region.  Fig. 11(b) shows that with a loop gain of 

30dB the closed loop gain is only 1.95 V/V and this poor gain is maintained only over  

a small output range.  At best, one could expect about 5-bit performance with a useful 

swing of 0.6V when configured traditionally.  However, with CLS the performance is 

better than 10 bits over most of the supply range. 

 

 

Fig. 11. a) Simplified two stage amplifier with correlated level shifting (CLS) network, b) closed loop 

performance of the opamp with and without CLS. 
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Technology scaling will not improve the situation.  First, intrinsic gain (gmro) will 

get smaller as channel lengths decrease.  Second, to be in saturation, the minimum 

drain-to-source voltage is the larger of VGS-VT or a few kT/q.  These do not change 

with process.   

Correlated double sampling (CDS) [2]-[3] can be used to decrease errors from 

finite opamp gain, but it adds significant noise and does not reduce errors near the 

rails.  Similarly, replica amplifiers [4], multi-stage or regulated cascode amplifiers 

[5][6] can increase equivalent gain, but do not reduce errors near the rail.  They also 

reduce phase margin and increase complexity. 

This work introduces correlated level shifting (CLS), which is a new switched-

capacitor technique that simultaneously decreases the error due to finite opamp gain 

and allows operation to and beyond the rails (true rail-to-rail operation).  An extra 

clock phase is needed, but, surprisingly, settling time is about the same.  In addition 

the increased signal swing means that the same signal-to-noise ratio (SNR) can be 

achieved using smaller sampling capacitors.  Thus, it could be argued that CLS can  

provide accurate results at a higher speed than the traditional approach of using high 

DC gain opamps. This is especially true at low power supplies.  

This paper is organized as follows:  Section 2.2 gives an overview of the steps and 

performance of the CLS technique.  Section 2.3 covers some considerations required 

when using multi-stage opamps.  Section 2.4 compares CLS to CDS.  Sections 2.5 

through 2.8 show how CLS can be incorporated into a pipelined A/D converter and 

achieve rail-to-rail performance in excess of 60dB with a 30dB opamp.  Conclusions 

are given in section 2.9. Finally, the improvement that CLS gives is derived in the 

Appendix (sections 8 and 9).  The Appendix also contains a discussion of the 

speed/accuracy tradeoffs associated with choosing the size of the level-shifting 

capacitance. 
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2.2 CLS overview 

2.2.1 CLS applications 

CLS is a general technique that reduces opamp errors due to finite gain and 

increases the distortion-free swing.  Possible applications include ∆-Σ integrators, 

switched capacitor filters, and any circuit where the capacitive load is relatively 

constant.  It cannot be used in circuits that need to drive DC loads unless the output is 

buffered.  This paper shows that it is very well suited to improve the performance of a 

pipelined A/D converter.   

2.2.2 CLS operation 

CLS can be implemented as shown in Fig. 12.  Single ended is shown for 

simplicity. There are three phases: 1) sample input, 2) estimate output signal and store  

 

 

Fig. 12. The three phases of correlated level shifting (CLS), and the waveform at the load.  The opamps 

gains A(EST) and A(LS) are different because the opamp output is different in the respective phases.  

Single ended is shown for simplicity. 
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it on CCLS, 3) level shift to eliminate signal from opamp.  The CCLS capacitor can be 

reset during the sample phase to eliminate memory effects.  Note that the operation is 

identical to the two phases used in a typical MDAC [8] with a level-shifting phase 

added as a third step. 

Fig. 15 shows that CDS has analogous steps, but the error (not the signal) is stored 

and eliminated from the signal (not the opamp).  For the purposes of this paper, the 

steps for both CLS and CDS will be referred to as sample, estimate, and level shift. 

2.2.3 Transient behavior and speed 

One would expect the CLS operation to have a speed disadvantage compared to a 

higher gain amplifier.   Surprisingly, the settling times are about the same if the 

amplifiers have the same phase margin and bandwidth.  Furthermore, when one 

considers practical design constraints, CLS will generally be faster than other methods 

to achieve high precision.   

Fig. 13 is a simulation result that will be used to illustrate some general speed 

trends of a 30dB opamp using CLS compared to a 60dB opamp that doesn’t use CLS. 

Both opamps have the same phase margin and bandwidth.  The CLS allows the 30dB 

opamp to settle to the same accuracy as the 60dB opamp. 

The signal using CLS has a jump at the beginning of the level-shift phase that 

determines if the 30dB/CLS combination is faster or slower than the 60dB opamp.  

This jump is caused by capacitance at the output of the opamp, and its height is 

determined by the relative size of the output capacitance and the load that it sees.  We 

can make some observations about the settling times based on the size of the jump 

since both amplifiers have the same settling characteristics.  If the output capacitance  

is very small compared to the load, the CLS circuit output will start the level-shift 

phase below the 60dB opamp curve (region A) and the settling time will be longer 

because it has further to settle.  Similarly if the output capacitance is very large the 

CLS circuit will start in region C and take longer to settle.  On the other hand, the CLS 

circuit will settle faster than the 60dB circuit if it starts the level-shift phase in region 

B.   
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Fig. 13. Transient response of a 30dB amplifier using CLS 

compared to a conventional 60dB opamp. 

 

 

 

Fig. 14. CLS placement in a fully differential multi-stage amplifier with inter-stage compensation.  The 

network should be inside the compensation loop to keep settling times the same during estimation and 

level-shifting phases. 

 

Simulations show that practical circuits can start the level-shifting phase in region 

B, but often start in the lower part of region C and settle 10-20% slower.  However, it 

is incorrect to infer that CLS is slower because the 30dB opamp will have fewer stages 

and consume roughly half the power of a 60dB opamp for the same bandwidth in a 
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realistic design.  Since the settling times are close to begin with, the ability to use 

twice the power indicates that CLS would be a faster method.  In addition, the CLS 

will increase the swing of the opamp so smaller sampling capacitors can be used to 

achieve the same SNR.  For example, Fig. 11 shows CLS increases the opamp output 

range from about 0.6V to the entire 0.9V supply.  As a result, the standard 

configuration requires a complex opamp and 2.25x larger sampling capacitors to 

achieve the same signal to kT/C noise ratio as CLS.  Thus a high gain opamp without 

CLS will need to increase the power by a factor of 2.25 to maintain the speed, a factor 

of two to achieve the gain, and likely more to maintain the phase margin.  These 

advantages are tempered by the digital overhead and the slightly larger current 

required to maintain phase margin while driving CCLS.  Nonetheless, it is very 

plausible that CLS with a simple opamp will be faster than a high gain opamp, given 

the nominal ~5x speed advantage of the simple opamp if the same power is used.   

Even with a 3.3V supply the sampling capacitors need to be ~17% larger to achieve 

the same SNR and, when you account for the power required for the additional stages 

in a high gain amplifier, the CLS opamp will be ~2.3 times faster if the same power is 

used.   

2.2.4 CLS error reduction analysis 

This sub-section quantifies the amount that CLS reduces the effects of finite opamp 

gain.  The variables are defined by Fig. 12.   

The circuit in Fig. 12 can be analyzed to show that the output voltage at the end of 

the estimation phase is  
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=  is the opamp loop gain during the estimation phase.   

This first estimate ( 0V̂ ) is less than the error-free output (i.e. V0=VIN(1+C1/C2)) 

because the finite opamp gain produces an imperfect virtual ground so C1 doesn’t 
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completely transfer its charge to C2.  The residual voltage on C1 from the imperfect 

virtual ground is 

(EST)

0
)EST(1C A

V̂
V

−
= . 

(5) 

Traditionally this error is reduced by making the opamp DC gain (i.e. A) as large as 

possible, but notice that the error could also be reduced by making the output of the 

opamp small.  This is what CLS does: it removes the signal from the active circuitry 

by storing the first estimate of the output voltage on CCLS and then removing that 

signal from the output of the opamp in the level-shift phase (Fig. 12).  Thus the 

residue voltage on C1 is much smaller at the end of the level-shift phase.  If we neglect 

the charge lost from CCLS, the voltage at the inverting node at the end of the level-

shifting phase is: 
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where 0V̂̂  is referred to as the second estimate.  This is much smaller than (5), which 

means that the charge from C1 is closer to being completely transferred to C2. 

The output voltage can be found using traditional techniques (see Appendix  for 

details).  
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where the equivalent loop gain is 

 

( ) .TT2TT 2
EQ ≈+=  (8) 

 

   Equation (8) neglects the charge loss from CCLS and lets A(EST) = A(LS).  Charge 

transfer from CCLS to the load will reduce the equivalent gain.  This effect is quantified 

by λ in the Appendix (section 8). 
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2.3 Multi-stage opamp considerations 

2.3.1   Special considerations 

 There are two minor special considerations when using multi-stage opamps that are 

compensated with inter-stage capacitance, as in the popular Miller and cascode 

compensated schemes [9]-[10].  First, the bandwidth will be reduced during the level-

shift phase unless the circuit in Fig. 12 is slightly modified.  Secondly, charge from the 

Miller compensation capacitor can be used offset the charge supplied by CCLS, 

resulting in a much higher equivalent loop gain.  These are discussed in the next two 

sub-sections. 

2.3.2 Bandwidth considerations 

If the opamp is compensated by the load (as in a single stage OTA), the bandwidth 

is about the same during the estimate and level-shifting phases.  The bandwidth stays 

the same even though putting CCLS in series with the load reduces the loop gain 

because it also reduces the load (i.e. compensation) by the same amount.   

This will not happen if the compensation is inter-stage (e.g. Miller or cascode [9]-

[10]).  The loop gain decrease will lower the bandwidth of the configuration shown in 

Fig. 12, resulting in a level-shifting phase that is much slower than the estimate phase 

because there is no corresponding decrease in compensation.  This problem is solved 

by putting CCLS inside the compensation loop (Fig. 14).  The bandwidth is the same 

during the estimate and level-shift phases because the lowered loop gain during the 

level-shift phase decreases the Miller multiplication of the compensation capacitance.  

These bandwidth observations are intuitive if one realizes the amplifiers in Fig. 14 

are really voltage-controlled current sources (transconductances).  As such, their 

output currents are not affected by series capacitive elements to first order.  On the 

other hand, it can be seen that any capacitance at the output of the last stage forms a 

capacitive current divider with CCLS which reduces the output stage’s 

transconductance.  This reduced transconductance reduces the phase margin during the 

level-shift phase, requiring the output stage current to be slightly larger than what 

would be needed if a traditional OTA was used.  The reduction is partially offset 
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because the opamp no longer has to drive CCLS.  Nonetheless the divider can place a 

lower bound on the size of CCLS and power savings in high-speed designs where the 

opamp output capacitance can be comparable to the load.   

2.3.3   Enhanced equivalent gain with Miller compensation 

 The Appendix (section 8) shows that the charge required to change the output 

voltage from 0V̂ to 0V
ˆ̂

comes from CCLS, and this charge loss lowers the equivalent 

loop gain (TEQ).  The effect is quantified by the term λ (17).  This charge will be 

partially provided by the compensation capacitance (CC) if Miller compensation is 

used resulting in enhanced gain under some conditions.    

Physically, the different equivalent gains are caused by differing amounts of level 

shifting.  With very large CCLS, the opamp output will be level shifted by 0V̂ , which is 

slightly less than the error free amount.  Consequently, the second estimate is still 

slightly less than the error free voltage.  Finite CCLS results in slightly more error 

because the level shifting will be less than 0V̂ due to the charge loss.  However, Miller 

compensation reduces the error because it adds charge to CCLS and causes the level 

shifting to be slightly more than 0V̂ . 

  If CCLS is sized so that λ = -1, we get a perfect estimate stored onto CCLS and the 

equivalent opamp gain is theoretically infinite, but a ~10dB increase is a more realistic 

expectation over corners unless A1 is well controlled.  A value of λ less than -1 does 

not indicate an unstable positive feedback condition even though TEQ will be negative; 

rather, it means that the compensation capacitor adds more charge than necessary, 

which causes the magnitude of the output voltage to be slightly larger than the error 

free value. CLS works with other compensation methods such as cascode 

compensation.  These other methods may have benefits that outweigh the gain 

enhancement that Miller compensation gives.  In fact, very large first-stage gain will 

make λ < −2 and the gain will be degraded instead of enhanced by using Miller 

compensation. 
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2.4 CLS compared to CDS 

2.4.1  Equivalent gain of CDS 

 Fig. 15 shows that CDS [2], [3], [7] has steps that are similar to CLS.  The output 

voltage after the analogous “level shift” phase is  
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(9) 

 

where ζ is a term analogous to λ in to account for charge sharing between the error 

storage capacitor and its load.   

Like CLS, the error due to opamp loop gain is inversely proportional to loop gain 

squared, but there is a difference that gives CLS a large performance improvement:   

 

 

Fig. 15. The three phases of correlated double sampling (CDS).  Note difference in operation compared 

to CLS shown in Fig. 12 
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the level-shift phase returns the opamp output towards the mid-rail, where opamp gain 

will be the largest.  This is especially important when the output is close to the rails 

because A(EST) will be very small.  Simulation results in Fig. 16 show the performance 

differences.  Note how the equivalent open-loop gain for CLS is shifted up by A(LS) 

over the entire output range.  (Actually the gain is increased by +6dB more than A(LS) 

due to Miller enhancement.)  The CLS equivalent loop gain is much better than the 

CDS equivalent loop gain, which is just the opamp gain squared with some significant 

attenuation due to charge sharing (ζ).   

 

Fig. 16. Simulated open loop gain versus output voltage using CLS or CDS with a 36dB opamp.  The 

gain is lowest near the 0 and 0.9V supplies.  The gain with no enhanacement (A(EST)) is also shown for 

comparison.   

 

2.4.2   Noise and offset 

The noise power added by the CLS sampling network is 

2
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(10) 

where Vn(op) is the noise from the opamp that is sampled onto CCLS, including the 

components that are folded down.  

 The noise power for CDS is  

( ) CDS
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2
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where CCDS is the capacitor that stores the error. 
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CLS has significantly better noise performance than CDS because the method 

removes the signal from the active circuitry by storing it on CCLS inside the loop 

between the gain block and the output.  The result is that imperfections sampled onto 

CCLS during the estimate phase are reduced by the DC gain during the level-shift 

phase.  These sampled imperfections include thermal noise and such things as charge 

injection and errors from finite swing or even incomplete settling. 

CDS, on the other hand, samples the error and subtracts it from the signal.  Thus 

any sampled imperfections are directly added to the signal.  The opamp noise sampled 

onto CCDS is very significant and limits the usefulness of CDS.   In addition, CCDS 

needs to be large or its kT/CCDS noise contribution will be significant, but large CCDS 

lowers the loop gain (and bandwidth) during the estimate phase 

The one area where CDS is better than CLS is canceling noise that does not change 

between the estimate and level-shifting phases (e.g. noise with frequencies much 

lower than the sampling frequencies including opamp offset).  CDS cancels these 

effects, whereas CLS does not.    

2.4.3 Complexity 

 CLS also has a significant advantage over CDS in terms of complexity.  To boost 

gain effectively, CDS needs to use two different sets of matched capacitors for the 

estimation and level-shifting phases [7].  CLS can use a single set of capacitors 

without losing performance.   

2.4.4 Output offset storage (CDS at output) 

Superficially, CLS resembles output referred CDS, also referred to as output offset 

storage (OOS) [3].  A schematic using OOS is shown in Fig. 17.  There are some key 

behaviors that differentiate OOS from CLS.  First, OOS is a method to remove offset 

and low frequency noise (i.e. noise slow compared to the sample rate).  CLS does not 

remove these DC and low frequency errors.  Second, unlike CLS, OOS does not 

enhance gain, nor does it remove the signal from the active circuitry.  Third, sampling 

imperfections are directly added to the output when OOS is used, whereas sampling 

errors are attenuated by the open loop gain with CLS.  Clearly, when one considers 

these three differences, one must draw a distinction between OOS and CLS. 
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Fig. 17. Output offset storage 

2.5 Pipelined A/D converter implementation 

2.5.1  Prior methods to reduce low opamp gain effects in ADCs 

Pipelined A/D converters require the first few stages to provide a very accurate 

gain.  The accuracy of this gain is limited by the finite loop gain of the opamp used in 

the multiplying A/D converter (MDAC).  For example, a 10-bit pipelined A/D 

converter needs the first-stage opamp to have at least 60dB DC gain.  Several methods 

have been used to provide high DC gain opamps in pipelined ADCs.  These include 

nested gain boosting [6] and CDS [7].   Measuring and compensating the error with a 

parallel A/D converter [12] is another method.  CLS is simpler than these methods.   

Foreground and background digital calibration [13]-[19] are very good techniques 

to compensate for finite opamp gain, but they cannot increase the linear range of the 

opamps to use the whole supply as CLS can.  The ability to efficiently use the whole 

supply gives CLS a clear advantage because smaller sampling capacitors and lower 

power opamps can be used to achieve the same SNR.   

Nonlinear calibration [19] can extend the range somewhat, but not nearly as much 

as CLS, which can go to and beyond the rails.  Digital calibration also takes many 

cycles to respond to events such as power supply changes.  On the other hand, the 

error reduction from CLS is updated each cycle. 

Finally, CLS can be used in conjunction with calibration.  The increased linear 

range of CLS circuits will enhance the performance of digitally calibrated circuits. 
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2.5.2   CLS pipelined A/D topology 

To prove the CLS method, a 12-bit resolution pipelined A/D converter was built in 

a 0.18µm CMOS process.  The testchip was designed to show three things: 1) CLS 

can produce ~60dB equivalent gain using an opamp with ~30dB loop gain; 2) CLS 

extends the output signal range of a gain block to the rails and beyond; 3) 

Performance, including low kT/CCLS noise, is maintained even if the level-shifting 

capacitor (CCLS) is not large compared to the load capacitance.   

The topology is shown in Fig. 18.  It uses 1.5-bit per stage MDACs similar to [8] 

with a CLS network inserted at the output of the opamp.  While only three phases are 

needed for CLS, four phases make more sense in a pipelined application because the 

following stage’s sample capacitors need to be connected during the estimate and 

level-shift phase to minimize the charge transferred from CCLS during the level-shift 

phase.  The timing for the first three stages is shown in Fig. 19. 

 

 

Fig. 18.  Topology of pipelined A/D converter (single ended shown for simplicity). 

 

 The comparators used in the flash sub-ADC can be very low power because the 

comparison is done on the estimated signal, thus the comparators in the second stage 

can use the entire first stage’s level-shifting period to make the comparison.   

The fully differential opamp in Fig. 20 was used in the 1.5-bit per stage MDAC.  

The transistors Ma-Md match the drain-to-source voltage of M0 and M1 to M2 for 

increased input common mode range.  Without CLS the performance would be about 

5 bits since the opamp has a loop gain of about 30dB.  With CLS, we should expect 

about 10-bit (60dB) performance. 
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Fig. 19. Timing of first three stages in the CLS pipelined A/D converter.  For stages beyond the first 

one, the flash sub-ADC converts the estimated signal of the previous stage, and thus can use the entire 

level-shift period to convert the signal.  

 

 

Fig. 20. Fully differential opamp with CLS used in the pipelined A/D converter.  Placement of the 

Miller compensation and CLS network are shown in Fig. 14. 

2.6 Experimental results 

The following results are with a 0.9V analog supply and Vref=1.0V.  The sample 

rate is 20.2MHz, and the total analog power is 6.2mW. A second pass that fixed a 

glitch in the opamp bias and used smaller sampling capacitors improved on the results 

in [11]. The 1
st
 stage sampling switch was bootstrapped, but the remaining switches 

were powered from a 1.2V supply for simplicity.  Proven methods such as 

bootstrapping [8] or switched RC techniques [17] could be used in a true 0.9V design. 

2.6.1  True rail-to-rail performance 

To test the performance to and beyond the rail the reference was chosen so that it 

was 100mV larger than the supply.  As shown in Fig. 21, an input of -1dBFS will 

cause the output of the first stage MDAC to be true rail-to-rail.  At 0dBFS the output 

will swing 50mV beyond the rail.  Realistically, offsets and non-centered output 
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common mode voltage will cause the output to swing more than 50mV beyond the 

rails. 

 

Fig. 21.   Reference scheme to prove performance beyond the rail.  The reference is greater than the 

supply so that at 0dBFS the output of the MDAC swings at least 50mV beyond the rails. 

 

The performance sampling at 20MHz with a Nyquist rate signal is shown in Fig. 

22.  The SFDR is 68dB, and the effective number of bits (ENOB) is nearly 10.  Fig. 23 

and Fig. 24 also show greater than 60dB performance at and beyond the rail.  Finally, 

Fig. 25 shows the ENOB for 1MHz and 10MHz inputs sampled at 20MHz. 

 

Fig. 22.  Spectrum for Nyquist signal showing more 

than 60dB performance with the MDAC operating 

true rail-to-rail. 

 

Fig. 23.  SFDR, SNR, and SNDR vs. input signal 

magnitude for a Nyquist input sampled at 

20.2MHz.  Dynamic range is 72dB. 
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Fig. 24.  Performance vs. input signal sampling a 

1MHz signal at 20.2MHz.  Performance increases 

until the MDAC output starts swinging beyond the 

rails. 

 

 

Fig. 25.  Effective number of bits (ENOB) vs input 

signal for 10MHz and 1MHz sampled at 20MHz. 

 

2.6.2  INL 

 The INL and DNL while sampling at 20.2MHz are shown in Fig. 26.  The jumps in 

INL are consistent with what one would expect from a first and second stage using an 

opamp with ~60dB DC gain. 

 

Fig. 26.  Measured INL and DNL. 
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2.6.3  CLS vs. Non-CLS 

The chip had an option to disable the CLS by replacing the CLS level-shifting 

capacitors with a closed transmission gate.  The dramatic improvement in INL with 

CLS enabled can be seen in Fig. 27.   

 

 

 

Fig. 27.  Measured INL with CLS and without CLS.   

 

2.7 Sensitivity to level-shifting capacitance values 

2.7.1   Background 

CLS would be of limited use if it required exact values of CCLS, or values that are 

large compared to the normal load capacitance.  To show that this is not the case, CCLS 

was digitally-controlled to range from 0.1pF to 1.5pF.  By comparison, first stage 

feedback capacitors were 0.8pF each, and the next stage sampling capacitors were 

0.4pF each, thus giving a total load of 1.2pF.  For this to be a viable technique, good 

noise and distortion are needed with values of CCLS that are not large compared to 

1.2pF.   
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2.7.2 Dynamic range (noise) vs. CCLS 

Thermal noise from the switch (a.k.a. kT/C noise) being sampled onto CCLS is the 

main concern.  Equation (10) predicts that noise sampled onto CCLS will be attenuated 

by the loop gain present in the level-shifting phase.  To verify this, dynamic range was 

measured with CCLS ranging between 0.1pF and 1.5pF with VREF =0.9V.   The 12-bit 

resolution and the 0.8pF input sampling capacitors will limit the dynamic range to 

about 72dB.  By comparison, (10) predicts noise from the CLS capacitor will be a 

factor of 30 less, which is negligible.  As Fig. 28 shows, the added noise is indeed 

negligible even if CCLS is 100fF. 

2.7.3   Distortion vs. CCLS 

 

Fig. 28.  Dynamic range vs. level-shifting capacitance showing that kT/CCLS noise is negligable. 

 

Equations (13) and (23) (Appendix) predict that loop gain has only a small 

dependence on the value of CCLS until it becomes comparable to the total load 

capacitance.  This is verified by the results shown Fig. 29, which shows that measured 

rail-to-rail performance is maintained even if CCLS is a fraction of the overall load 

capacitance.  The Appendix analysis shows that we should expect ~6dB drop in 

performance when CCLS is equal to the load capacitance.   
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Fig. 29.  Performance vs. level-shifting capacitance.  The input is 1MHz, rail-to-rail (-1dBFS).  Good 

performance is maintained for CCLS as small at CL/6. 

 

2.8 Performance summary 

The performance is summarized in Table 1. 

TABLE 1.  12-BIT ADC MEASURED PERFORMANCE SUMMARY. 

VDD 0.9v 

VREF 1.0V 

Sampling frequency 20.2MHz 

Power (Analog) 6.2mW 

Power (Digital) 1.3mW 

ENOB 10.5 bits at FIN=1MHz  

10.0 bits at FIN=10MHz 

Dynamic range 72dB 

Process 0.18µm CMOS 

 

 The chip was designed to show that CLS is an effective method to reduce errors 

from finite opamp gain and output swing so it was not optimized for low power.  For 

example, the sampling capacitors are much bigger than necessary for 10-bit ENOB.  

Still, the converter achieves a respectable figure of merit of 360fJ/conversion with a 

0.9V supply.  The pad limited chip is shown in Fig. 30. 
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Fig. 30. Die photo 

2.9 Conclusions 

Correlated level shifting (CLS) is a new switched-capacitor technique that reduces 

the errors caused by low DC gain and non-linearities caused by limited swing in 

opamp circuits.  The increased performance is achieved by sampling and then 

removing the signal from the output of the opamp.  Speed is comparable, if not faster, 

than amplifiers with higher gain because CLS allows simpler opamps and allows 
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utilization of the entire supply.  It is analogous to correlated double sampling (CDS) in 

that it needs an extra phase, but the operation is fundamentally different: CLS samples 

and removes an estimate of the signal from the active circuitry; CDS removes an 

estimate of the error from the signal.  Unlike CDS, the CLS sampling capacitor can be 

small compared to the load with negligible noise impacts and manageable equivalent 

gain impacts.  CLS also lends itself to simpler circuitry than CDS. 

CLS is well suited for use in pipelined A/D converters, and a 0.18µm CMOS 

testchip using CLS produced 10.5 ENOB using a 30dB opamp when sampling at 

20.2MHz.  The power consumption was 6.2mW with a 0.9V analog supply.  
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3 Digital Self-Calibration of Pipeline-Type A/D Converters 

3.1 Introduction 

Interstage gain errors limit the performance of pipeline and algorithmic A/D 

converters.  These errors can arise from capacitor mismatches, finite operational 

amplifier (opamp) gain, and incomplete settling.  Nonlinearities in amplifiers and 

passive components cause additional interstage errors. 

Precision analog techniques can eliminate these errors, but they require a high 

amount of skill and customization to implement.  Analog designs are also sensitive to 

process changes, so they cannot be migrated easily to new processes.  The shorter 

channel lengths and lower supply voltages of future processes will make the analog 

solutions even more challenging. 

Digital designs, on the other hand, are very robust.  They are easy to simulate and 

generally work the first time. Shorter channel lengths and lower supply voltages 

increase performance and reduce power.  Fine geometries allow very complex digital 

circuits to be designed using less power and space than equivalent analog functions.  

Thus, using sophisticated digital circuits to correct the errors inherent in simple analog 

functions should outperform the equivalent sophisticated error-free analog circuit.   

This paper covers the different categories and methods of the digital calibration of 

pipelined and algorithmic A/D converters.  It also covers common implementations.  

The methods can be used to correct non-linear errors, but those methods are not 

discussed here.  The reader is referred to references [28], [31], [37], [39], [41], [19] for 

the techniques specific to non-linear interstage errors.  Similarly, techniques specific 

to time-interleaved ADCs are covered elsewhere [24], [49], [57], [16], [59].  Memory 

effects (dielectric absorption, etc) are addressed in [23].  Calibration methods to find 

the minimum bias [29] or compensate for incomplete settling [27] are not addressed. 
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3.2 Digital self-calibration categories 

3.2.1   Foreground, true-background, and background 

Digital self-calibration of pipelined A/D converters can be split into three 

categories based on how and when the calibration is applied.  For the purposes of this 

paper, the categories will be called foreground, background, and true-background.  

These categories are described in this section 

Foreground calibration [14], [15], [47] takes the A/D converter out of service to 

calibrate it.  The advantage of doing this is that simple and fast techniques can be 

used.  Calibration can be accomplished with less than 10
4
 conversions.  The 

disadvantage is that service must be interrupted, so foreground calibration is usually 

done at power-up, or during blanking periods between frames if available. 

True-background calibration is done while simultaneously processing the input 

signal.  This can be done by monitoring the output codes for a long time and making 

corrections until there are no errors at major transitions [35], [36].  It can also be done 

by injecting a calibration signal of known value on top of the analog input (e.g. [16]), 

and then extracting the calibration signal using correlation techniques.  Finally, the 

redundancy of the converter can be used to produce an error signal when the converter 

is not properly calibrated (e.g. [19]).  The advantage of true background calibration is 

that it can be done continuously to eliminate errors due to environment changes or 

component aging.  The disadvantage is that it generally takes on the order of 10
8
 

conversions to calibrate.  However new true background techniques such as “split-

ADC” [17], [18] converge nearly as fast as foreground calibration. 

Background calibration is continuous, like true-background calibration, but the A/D 

converter (or a sub-block of the converter) is periodically taken “off-line” for 

calibration.  This is accomplished by skipping a conversion and interpolating the 

missing result [60], using queue based sampling to generate time slots for calibration 

[33], [54], or calibrating in “ping-pong” fashion where an extra A/D converter is 

swapped with the converter to be calibrated (e.g. [56], [57]).  These schemes generally 
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limit the performance and do not show as much promise as true-background 

calibration or simple foreground schemes.   

3.3 Digital self-calibration methods 

3.3.1   Pipelined A/D topology and calibration 

To understand how pipelined A/D converters can be calibrated, consider the 12-bit 

converter shown in Fig. 31.  It is made up of two 1.5-bit pipelined stages (Fig. 32) 

consisting of an analog to digital sub-converter (ADSC), a digital to analog sub-

converter (DASC), and a gain block.  The backend nine-bit converter (BEADC) 

converts the residue to digital format where it can be combined with the information 

from the first two stages.   

Here we assume that the BEADC is accurate to nine bits, but the two front stages 

have gain G1 and G2 that are NOT 11-bit accurate.  The error can be from capacitor 

mismatch, finite op-amp gain, or incomplete settling.  It will be shown how the nine-

bit BEADC can be used to measure and account for the errors in the first two stages.   
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Fig. 31. An 11b converter with two 1.5-bit pipelined stages and an ideal backend ADC. 
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Fig. 32. Detail of typical 1.5-bit per stage pipelined ADC converter Fig. 31. 
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3.3.2   A/D converter transfer curve 

The transfer curve for the A/D converter is shown in Fig. 33.  The 1.5-bit-per-stage 

A/D converters operate in the same manner as described by Lee [64] or Abo [8], with 

possible digital outputs of -1, 0, or 1.  For this example, assume the capacitor ratios 

(CFi/CSi) for the first stage and second stages are 0.9 and 1.0 respectively.  That is, the 

first stage gain contains a 10% mismatch (it would normally be 1.0).  For simplicity, 

errors caused by op-amp finite gain are neglected. 

 

 

Fig. 33. Input/Output transfer characteristics of the A/D converter in Fig. 1.  Note 

that it is segmented into regions based on the analog signal processing done by the 

first two stages.  The bracketed numbers refer to {D1,D2} respectively. 

 

In Fig. 33, notice how the first two pipeline stages have created nine distinct regions, 

each with a different {D1, D2} code.  As shown in Table 2, a different analog 

operation has occurred in each region.  Thus, {D1, D2} map to specific analog 

operations. 

For this example we will assume that VREF represents a half-scale input to the 

BEADC.  (i.e., +VREF will get converted to +256 counts.)  Because of the gain error in 



41 

 

 

G1, D1 represents 2*(0.9)*256 = 461 counts.  G2 has no error, so D2 represents 256 

counts.   

 

TABLE 2.  ANALOG OPERATION PERFORMED IN EACH REGION. 

D1 D2  Analog Operation (BEADC Input) 

-1 -1  G1G2VIN      +     (V1+V2) 

-1 0  G1G2VIN      +     (V1+0) 

-1 1  G1G2VIN      +     (V1-V2) 

0 -1  G1G2VIN      +     -V2 

0 0  G1G2VIN      +       0 

0 1  G1G2VIN      +       V2 

1 -1  G1G2VIN      +     (-V1+V2) 

1 0  G1G2VIN      +     (-V1+0) 

1 1  G1G2VIN      +     (-V1-V2) 

G1 = (1+CF1/CS1) 

G2 = (1+CF2/CS2) 

V1 = G2 (CF1/CS1)VREF 

V2 =      (CF2/CS2)VREF 

 

Referring to the marked point in Fig. 33, an input of 0.8*VREF would get processed 

to 61, D1=1, D2=1.  This data will be processed to obtain 61+D2+D1 = 778, which is 

the correct answer with the first stage gain of 1.9 and second stage gain of 2.  Of 

course, the real challenge is to get the correct answer when the gains G1 and G2 are 

unknown.   

The next two sub-sections will describe how these results can be obtained without 

knowing G1 and G2 using either difference-based or radix-based methods.    

3.3.3   Difference-based methods 

The spirit of the methods proposed in [14], [15], [58] is that D1 and D2 correspond 

directly with adding or subtracting fixed voltages V1 and V2. This makes sense if you 
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think of the first two stages as blocks that remove fixed amounts from the input signal.  

The sole purpose of removing the signal is to keep the signal within the range of the 

BEADC as the signal is gained up.   Thus, accurately reconstructing the signal requires 

nothing more than determining how much has been removed prior to the BEADC.   

That is, we need to determine the weights of D1 and D2.  Luckily, this is easy to do 

with the BEADC if we are not concerned with overall gain errors.   

To find the weight of D2, one would apply 0V to the A/D input and record the result 

(nominally this will be D1=D2=0 and DBE=0).  Then one would force D2 to 1, and 

record the change in DBE.  This difference is the digital weight of the DASC code 

D=1.  Thus, it is the amount that needs to be subtracted from the BEADC code when  

D2 = 1.  The amount to be added when D2 = -1 is found in the same manner
1
.  Since 

we know what values to add/subtract for all values of D2, the second stage is 

calibrated
2
. 

With the second stage calibrated, the procedure is repeated for the first stage to 

determine the meaning of D1=-1 and D1=+1 in terms of the codes from the second 

and backend stages.  This procedure obviously could have started farther down the 

pipeline than the second stage; however, one has to be careful that error accumulation 

doesn’t limit performance.  Delic-Ibukic [25] claimed that starting at the least 

significant stage may actually decrease performance.    

Most papers published prior to 1999 used methods similar to the difference-based 

method.  Generally, the input is forced to be close to the transition zones (Vref/4 in 

this example) so that offsets do not force the stage’s output beyond the BEADC input 

range.  The most common reference on the subject is Karanicolas’s 1993 work [14].  

The thesis of Lin [61] has a good explanation.   

 

 

 

                                                 
1 Actually, for the 1.5 bit architecture, the error with D2=1 will always have the same magnitude (but different sign) as the 

error with D2=-1. 

2 As mentioned earlier, the ADC will still have an overall gain error. 
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The difference-based method can be used to calibrate out the effects of capacitor 

mismatch, finite op-amp gain, and even incomplete settling [27], [62].  An example 

with multi-bit DASCs is [24].   The difference can also be found using low linearity 

signals [42] or white noise [48]. 

Graphically, the calibration scheme amounts to finding the correct amount to add to 

each line segment in Fig. 33 to form a continuous line.  Fig. 34 shows the 

reconstructed curves.  The solid line assumes D1 and D2 have weights of 512 and 256 

respectively, which produces a nonlinearity (missing codes).  The dashed line is the 

difference-based calibration result: D1 and D2 have weights of 461 and 256 

respectively, which gives an overall gain error [55], but no nonlinearity. 

 

 

Fig. 34. Reconstructed input/output curve.  Solid: uncalibrated.  Dashed: calibrated by adding the 

proper values for D1 and D2.  Note gain error of dashed line – it falls short of spanning +/-1024 counts. 

 

3.3.4   Radix-based methods 

Radix-based methods [30], [38], [40], [46], [54] seek to determine the interstage 

gains directly, thus keeping the weights of D1 and D2 at 512 and 256 (in this 

example).  Graphically, the goal is to change the slope of the segments so that the 

reconstructed segments line up without adjusting the weights of D1 and D2.  In 

addition to removing the nonlinearity, the gain error is removed.   
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From a mathematical perspective, the digital output can be expressed as 

( ) ( )( ) ...,raraDraDDD 2n1n2n1n1nnOUT +++= −−−−−  (12) 

and the essence of radix-based calibration is to find the radices rak that produce the 

best linearity.  Schematically, it is shown in Fig. 35 that radix based-calibration 

attempts to scale the digital data from each stage so that it matches the scale factor of 

the analog.  If the gain in the digital domain matches the gain in the analog domain, 

linearity and gain errors are eliminated.   

For an algorithmic ADC, it is much easier to determine the single inter-stage gain 

term than to calculate the proper weights of the bits produced in each cycle.  This was 

first reported by Erdogan [54] in 1999.  One disadvantage of this approach is that it 

usually requires multipliers; however, look up tables (LUT) can be used to minimize 

the impact.  

Another disadvantage is that converters with multilevel DASCs are difficult to 

calibrate with a radix-based approach since the proper radix with vary depending on 

DASC code.  Siragusa/Galton [45] calibrated the DASC errors separately from the 

interstage error.  One could determine the gains using the difference-based method, so 

in that sense the radix-based and difference-based methods can produce the same 

information.    
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Fig. 35. Schematic of Radix based calibration.  The scale factor of the digital output 

(ra2) from each stage is matched to the amount analog scale factor (G2). 
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3.4 Implementation of true-background calibration schemes 

Previously we have discussed difference-based and radix-based methods of 

calibration.  These can be implemented in the foreground, background, or true-

background.  The gist of foreground and background schemes was discussed earlier.  

This section will discuss practical implementations and limitations of true background 

schemes since they are currently the method where most of the research is taking 

place.   

3.4.1   Methods using only the input signal 

If the input signal is dense enough, it is possible to get calibration information by 

monitoring the codes for missing ones and adjust the interstage gains accordingly [35], 

[36].  Using a “slow-but-accurate” A/D converter in parallel with main converter (Fig. 

36) could also be lumped into this category in some cases [39], [41], [63], [65].  

However, the methods described in the following sections look to be more promising. 

 

 

Fig. 36. Calibration using a slow but accurate ADC in parallel with main ADC. 

 

3.4.2   Calibration using signal injection and correlation 

Jewett [66] is credited with first adding a calibration signal to the input signal and 

processing both simultaneously (often referred to as dither).  The calibration signal is 

modulated with a pseudorandom sequence that is uncorrelated with the input signal.  

The calibration signal is recovered by correlating (de-modulating) the A/D output with 

the same pseudorandom sequence.  Modulating the input signal with an uncorrelated 

pseudorandom sequence forces it to have a zero mean.  Therefore, the calibration 
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signal is recovered by taking an average of the total correlated signal.  The recovered 

signal is then compared to the ideal digital value of the input signal and gains are 

adjusted until the two signals match (Fig. 37).   

If accurate, the calibration signal can be injected at the ADC input [49], [52], [16].  

This usually requires an additional “slow but accurate” ADC to measure the 

calibration signal (Fig. 36).  An inaccurate calibration signal at the input in time-

interleaved systems [49] , [16] can be used to eliminate mismatches between channels.   

Injecting the signal at the DASC output [21], [24], [34], [45] reduces the need for an 

accurate signal. 

Signal injection has conflicting requirements.  First, the calibration signal should be 

large compared to the input signal so that it can be recovered with minimal averaging.  

Unfortunately, a large calibration signal limits the range of the input signal.  To 

minimize this problem, Shu [21] only injected the calibration signal when the input 

signal was within a certain range.  Even so, the converter still took 45 seconds to self-

calibrate.  Other converters take several minutes to self calibrate [34]. 

 

 

Fig. 37.  Signal recovery via correlation.  A calibration signal is modulated with a pseudorandom 

sequence (PN) and added to the input sequence.  The error of the recovered calibration signal is then 

used to adjust the interstage gains of the ADC. 
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3.4.3   Error signals created from element rotation 

It has been long known that rotation of elements can eliminate the distortion tones 

caused by mismatch at a cost of increased SNR.  For example, one could swap the 

feedback and sampling capacitors in a pseudorandom fashion to convert the distortion 

tones to zero- mean noise.  Galton [53] and others [51], [22] recognized that the 

element sequencing will produce an error signal which can be recovered by correlating 

the output with the same sequence.  The amplitude of the error signal will indicate the 

size of the mismatch.  This signal is fed into an error correcting block which then 

attempts to null out the error signal by digitally accounting for it.  The error correcting 

block typically uses an adaptive least mean square loop to efficiently eliminate the 

error. The disadvantage of this method is that it only corrects for mismatches, which 

are not normally a serious limiting factor.  Calibration schemes that account for finite 

op-amp gain and incomplete settling are more desirable. 

3.4.4   Residue transfer function modulation 

Murmann/Boser [19] observed that an error signal would be produced if multiple 

residue paths were used in converters with redundancy.  To see how this works, 

consider the multiple residue transfer function shown in Fig. 38.  Such a curve can be 

generated using extra comparators, comparators with programmable thresholds, or by 

adjusting their trip point by adding a signal to the ADSC input [43].  In this case, 

assume the curve is for a single stage, and the Y-axis is the ideal 9-bit BEADC 

conversion of that stage’s output.   

Consider an input at -1/8 scale.  If the first (solid) residue is used, the first pipelined 

stage will produce a code of D1=0, and the BEADC will produce a code of -64.  On 

the other hand, if the second (dashed) transfer curve is used, the first stage will give 

D1=-1, and the BEADC will give a code of +192.  Both of these answers will be the 

same only if the proper weight of D1 is known.  In this case, the weight of D1 needs to 

be 256.  Any other weight will produce an error signal that can be used to determine 

the proper weight of D1.   
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Fig. 38.  Residue transfer curve obtained by changing one comparator trip point from –Vref/4 (Solid) to 

0 (Dashed).  If the solid curve is used, a signal at –VREF/8 will get converted to {DBE=-64, D=0}.  If the 

dashed curve is used, the result will be {DBE=192, D= -1}. 

 

 

The Murmann/Boser’s method [19] was slow to converge and required certain 

input levels to be present.  Keane [32] improved this method slightly, but the error 

signal was still small compared to the noise created by the input signal so many 

averages were needed to resolve the error signal.  This problem was eliminated with 

the “split-ADC” structure described in the next section.   

3.4.5   Split ADC topology 

The problem with the previously mentioned true background schemes is that the 

pseudorandom sequence turns the input signal into white noise, which resides on top 

of the error signal.  Recovering the error signal from this white noise background 

requires between 10
7 

and 10
9
 conversions.  The split ADC [17], [26] , [43], [18] solves 

this problem by separating the signal from the error (Fig. 39), resulting in calibration 

times on the order of 10
4
 cycles – an improvement of three to five orders of 

magnitude. 
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Fig. 39. Split ADC.  The output signal is the average of the two signals.  The error is the difference. 

 

When both paths of the split ADC are calibrated they will produce the same result, 

so the difference ∆x will be zero.  Calibration can be done by feeding the error signal 

∆x into a loop that will force the difference to zero.   

The output is the average of the two converters, thus the overall active area and 

power is not necessarily increased; that is, each converter and uses ½ the power and ½ 

the capacitance because the thermal and kT/C noise will be averaged.   

The idea could be thought of as an extension of the nested “slow-but-accurate” 

parallel ADC of Wang [65], where the two A/D converters calibrate each other, but at 

the normal sampling rate.  The published split ADC architectures modulate the residue 

transfer function.  As mentioned in the previous section, the only way for the same 

signal to produce the same result while using different residue paths is for the ADC to 

be properly calibrated.   

3.5 Multi-bit calibration 

High performance pipelined ADCs usually use pipeline stages with more than two 

levels and resolve more than one bit per stage.  A model that shows the errors 

associated with such a topology, along with the mirrored digital section, is shown in 

Fig. 40.   
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Fig. 40. An N-level pipeline stage followed by a 5-bit BEADC.  The errors in the analog path are 

modeled by the αi terms. 

 

The calibration process for an N-level stage is similar to the 2-level (1.5-bit/stage) 

example explained earlier, except that there are more levels to check.  To do this the 

input is (again) set to approximately zero, and one of the comparators (e.g. Cmp1) is 

forced so that 0 and α1VR are alternately subtracted from the input.  β1 is calculated so 

that the digital output is the same regardless of the comparator output.  This is done for 

each comparator until all of the βs are determined.  The value of βi is not necessarily 

equal to the corresponding αi because of errors in the gain of Amp1.   

Fig. 40 is a simplistic topology.  Generally logic is used to reduce the number of 

muxes by adding in one of the three values -αiVR, 0, or αiVR instead of one of the 

pairs 0, αiVR.  Again, symmetry is used so that only two of the three values need to be 

toggled to determine the corresponding βi term.   

3.6 Limitations of digital calibration 

Although deservedly highly heralded as the method of the future for high 

performance A/D converters, digital calibration has a major limitation: noise cannot be 

removed through calibration.  The feasibility of calibration is dependent on small 

geometries to minimize the size and power impacts of the large amounts of logic 

required for advanced calibration techniques; however these enabling small 
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geometries will operate at reduced supply.  As explained in section 1, keeping the 

same SNR while reducing the signal swing requires the power to increase 

quadratically (e.g. keeping the same SNR with one-half the swing requires four times 

the current).  In addition, opamp swing is bounded by VDD − 150mV and VSS + 

150mV so a decrease in power supply voltage from 1.8V to 0.9V is a reduction of 

swing from 1.5V to 0.6V – requiring 6.25 times the current to maintain SNR.  Thus, as 

the reduced sizes of smaller geometries make calibration of analog circuits more 

feasible, the reduced operating voltages required by smaller geometries require 

increased power to maintain SNR.   

Calibration is also limited by amplifier nonlinearity.  Amplifier nonlinearity is a 

gain that is dependant on the signal amplitude.  The gain changes dramatically as the 

signal swing approaches the supply rails because the transistors at the opamp output 

enter the linear region.  Non-linear calibration techniques such as those developed by 

Murman and Boser [19] go a long way to correct the effects of nonlinearity, but there 

are physical limitations preventing complete signal recovery. 

The first physical limitation is the extreme sensitivity of the calibration coefficients 

to the signal’s proximity to the power supply.  As the signal swing gets closer to the 

rail the correction algorithm becomes increasingly higher order so there is a limit to 

the amount of increased swing that can be obtained with non-linear calibration.  The 

sensitivity also means the coefficients will change dramatically if the powers supply 

changes.  If the power supply changes are fast compared to the background calibration 

response time the accuracy will be compromised.  The industry trend is “system on a 

chip” where several blocks are placed on the same chip.  As these blocks are powered 

on and off the power supply will change and the accuracy of the ADC will suffer even 

if non-linear calibration is used.   

The second physical limitation is that you cannot recover signal if it isn’t there.  

Nonlinear gain causes the signal near the rail to be gained up by a lesser amount.  This 

signal can’t be recovered by scaling the digital value (if it could then the gain would 

not be necessary).  Recovery can only be obtained if the resolution and SNR of the 

following stages is enough to recover the compressed signal.  This loss of signal 
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ranges from the minor distortions when the signal is, for example, 200mV from the 

power supply rail to clipping of the signal.  If the signal is clipped it is gone forever. 

It should be noted that CLS mitigates the negative effects of reduced power supply 

by extending the signal swing to and beyond the rail.  This mitigates the two physical 

limitation of calibration: noise and lack of signal gain due to distortion.  Thus it can 

improve the performance of ADCs and other analog circuits relying on calibration to 

remove knowable errors (Fig. 41). 

 

 

Fig. 41. Simplified multi-bit pipelined A/D converter using CLS and calibration to reduce errors.  

Calibration adjusts the weights WC1(i) to match the actual amount the capacitors C1(i) remove (or add) to 

the signal to keep it within range of the BEADC. 
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3.7 Calibration summary 

Calibration methods for A/D converters can be categorized as foreground, 

background, and true-background.  Foreground methods are the fastest and easiest to 

implement, but the ADC must be taken off-line to be calibrated. Foreground 

calibration is only a good choice if there are frequent periods, such as blanking pulses, 

where the ADC can be recalibrated.  Foreground calibration at power-up is appropriate 

if the errors won’t change over time.  It takes on the order of 10
4
 conversions to 

complete a foreground conversion. 

Background calibration still takes the ADC (or parts of it) off-line, but the effect is 

transparent to the user because another ADC is swapped in, or some other method is 

used to maintain constant sampling.  The advantage is that the fast and simple 

foreground methods can be used.  In addition, the concept is easy to understand.  

Unfortunately, the methods of maintaining the consistent sample rate invariably 

sacrifice performance compared to foreground or true-background calibration. 

True-background ADCs are calibrated at the same time they are processing signals, 

thus they are highly desirable.  Modern methods produce an error signal when the 

converter is uncalibrated.  This error signal is fed back to digital circuitry which 

compensates for the error.  Most true-background calibration schemes for converters 

greater than 12 bits require more than 10
7
 conversions to calibrate.  This is a serious 

limitation in many applications, and makes production testing expensive.  Split ADC 

structures calibrate at a rate comparable with foreground schemes, making them a very 

useful configuration for most applications.   
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4 Reducing the Effects of Component Mismatch Using Relative Size 

Information [67] 

4.1 Introduction 

Component mismatch is often a performance-limiting factor in analog circuits such 

as A/D and D/A converters. Component mismatch can be dealt with in various ways 

including making the devices larger [68], digital calibration [15], error averaging [6], 

data weighted averaging [69] or self-configured capacitor matching [70]. This work 

shows how the information contained in the relative sizes of elements (easily obtained 

by ordering them from smallest to largest) can be used to cancel the mismatches, 

giving matching performance equivalent to elements orders of magnitude larger. 

Section 4.2 shows how using the relative size of devices to determine where they 

are placed improves performance.  Whereas most matching schemes are less effective 

at higher ratios, this method is more effective.  Section 4.3 highlights some important 

properties of ordered elements.  Section 4.4 shows how grouping the ordered elements 

and reordering them can improve matching even more.  Section 4.5 uses the 

introduced concepts to improve the INL of a 17 level D/A converter from 10 bits to 

more than 15 bits.  Finally, section 4.6 shows how to determine the relative sizes of 

the elements. 



55 

 

 

 

4.2 Strategic element placement 

4.2.1  Average mismatch cancellation 

Performance can be increased substantially if the relative sizes of the devices are 

known. Consider, for example, the simple 1.5-b MDAC in Fig. 42 [8]. We can 

improve the gain error tolerance by arranging the capacitors so that the mismatch error 

of the top pair is of the opposite sign of the bottom pair. This is done by picking the 

top feedback capacitor to be the larger of the two top capacitors, and the bottom 

feedback capacitor to be the smaller of the two bottom capacitors. As will be shown in 

section 4.6, the capacitor relative size can be determined using the op-amp. 

As Fig. 42 shows, this simple change in configuration makes the distribution much 

peakier. At the 98 percentile, the spread is reduced by a factor of 1.6. To get this same 

spread without sorting one would have to increase the size of the capacitors by a factor 

of (1.6)
2
 = 2.56. The power would also have to be increased by at least the same factor 

to maintain the same speed. The distribution was determined with Monte Carlo  

 

%43.0

CC

CC

 so  Positioned

BOT2BOT1

TOP2TOP1

=
µ

σ

<

>

%70.0

modified not

 positions Capacitor

=
µ
σ

21

BOT2

BOT1

TOP2

TOP1
OUT

CC

 ,
C

C

C

C
2

2

1
V

 of Histogram

≈









++=

 

Fig. 42. Fully differential gain of two circuit and the reduced spread when the capacitors are arranged 

based on relative size.  The factor of 1.6 improvement in matching means that capacitors can be 2.56x 

smaller. 
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simulations, although in this case it could have been derived by convolving two half-

Gaussian distributions. 

4.2.2  Selecting the median device 

The procedure works even better when higher ratios are desired.  This is very 

fortunate because achieving accurate high ratios is difficult because the mismatch is 

largely determined by the smallest element (C2 in Fig. 43).  As a result, the other 

element (C1) must be must larger than would normally be required based on matching 

considerations alone.  However, if one is able to choose which device is used for C2 

the matching performance increases substantially as the number of choices is 

increased.  This makes sense since more choices will increase the odds of finding a 

well matched device.  One application of this is shown in Fig. 43, which is a gain of 

sixteen circuit.  As can be seen, the spread is reduced by a factor of 5.3 when the  

feedback device is chosen based on the relative sizes of devices.  This means 

capacitors 1/30
th

 the size can achieve the same matching performance as unordered 

devices. Ideally, the feedback device would be chosen to be the one closest to the 

mean value of the other devices.  This cannot be found if we only know the relative  
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Fig. 43. Gain of sixteen circuit and the reduced spread when the feedback device is chosen to be the 

median element of the ordered devices.  Capacitors can be made nearly 30x smaller when this is 

done. 
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device sizes; however, the median device is easily found from an ordered set as it will 

rank half-way, and using this device gives very good results.   

The circuits in Fig. 42 and Fig. 43 have an even number of elements so a single 

median device does not exist.  This case is easily handled by choosing the devices as 

shown in Fig. 43.  The top feedback device is the 8
th

 largest of 16, whereas the bottom 

feedback is the 9
th

 largest of 16.  While each choice will give a mean error, the errors 

are of the opposite sign and cancel.   

4.2.3  Other applications 

The popular op-amp sharing topology (Fig. 44) [70] allows one to take advantage 

of ordering with little added complexity. To do this, one would rank the four upper 

capacitors from smallest to largest and choose the first stage devices to be the second 

and third largest devices (i.e. the middle devices). This will be repeated for the bottom 

four devices. As in the previous examples, the mismatch of the top pair will be the 

opposite sign of the mismatch of the bottom pair. Doing this will decrease the spread 

by a factor of 2.6 for the first stage, and 1.6 for the second stage. The second stage will 

have greater mismatch than the first stage since it uses the outliers. This is acceptable 

because the second stage has less stringent matching requirements than the first stage.  

The net effect is a 1.4 bit improvement in matching with little overhead.   

 

 

Fig. 44 Op-amp sharing topology that allows for reduced spread by choosing the first stage capacitor 

pair from a group of four devices. No sub-elements are used in this example. 
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The ∆Vgs (β multiplier) bias [74] and bandgap references are other applications 

where it would be desirable to select the median device to decrease spread from 

mismatch. 

4.3 Order statistics 

4.3.1  Properties of ordered elements 

For the purposes of this paper, the form of an ordered (i.e. sorted) array of length 

2*N will be  

C-(N), C-(N-1), … C(N-1), C(N) , 

 

where C-(N) is the smallest device, C-(N-1)  is the second smallest device, etc.  

If the length of the array is 2*N+1, the center (median) device will be denoted as 

C0. There are three important properties of sorted (ranked) devices chosen from a 

population of normally distributed devices.  

1) Sorting reduces the standard deviation of the devices. That is, one knows the size of 

the i
th
 element of an array with more certainty if the array is sorted.  

2) With respect to C0, the mean value of the i
th
 largest has the opposite sign of the i

th
 

smallest (aka -i
th
) device. That is, E(C-(i) + C(i)) = C0, where E is the expected value 

operator.  

3) The middle devices have a lower standard deviation than the devices towards the 

endpoints of the array.  

Properties 1-3 are shown graphically in Fig. 45 for a normally distributed random 

variable with 100,000 Matlab Monte Carlo simulations. Note that the plots are 

normalized to a mean value of zero and a standard deviation of one.  

The practical use of the second property is that we can group the i
th

 device with the 

-i
th

 device and construct a composite capacitor with much better matching properties 

than if we had simply doubled the area. It also follows that multiple devices could be 

constructed. For example, one could create four well matched devices by sorting eight 

elements and grouping the i
th

 and the -i
th

 devices together. Further improvement could 
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be expected if the four devices were sorted and grouped again, producing a single pair 

of devices. The sequence to do this is shown in Fig. 46.  

The consequence of the third property is that, if possible, the critical capacitors 

should be selected from the middle devices of a sorted array. (In fact, significant 

reduction in standard deviation can be achieved by simply not using five or so outliers, 

although this isn't done in this paper.) Using the middle devices for the more critical 

first stage MDAC was illustrated earlier in Fig. 44. Further improvement can be 

obtained by sorting and grouping more elements to create the capacitors, before setting 

their positions. This is explained in the next section. 

 

 

 

 

Fig. 45 The expected mean and standard deviation of an (a) 16 element sorted array, (b) 128 element 

array. 
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4.4 Sorting and grouping 

4.4.1  Better matched pairs using sub-elements 

The term sorting and grouping was used by Cong to describe a method to reduce 

D/A converter integral nonlinearity (INL) [73]. This work improves that methodology 

significantly by using a simpler sorting routine, and repeated applications of it to 

eliminate nonlinear gradients.  

Sorting and grouping arranges devices so that their mismatches tend to cancel. For 

example, if four devices are sorted from smallest to largest we can construct an 

improved matched pair by grouping the smallest and largest together for one capacitor, 

and make the second capacitor from the two middle capacitors. This improvement can 

be predicted by the use of order statistics [72]. However, it is much more practical to 

use Monte Carlo simulations to investigate the properties because order statistics does 

not generally provide closed form solutions for these problems.  

Fig. 46 shows how sorting and grouping can be used to construct two well matched 

devices from 8 devices.  Fig. 47 shows the improvement when sorting and grouping is 

used to create the matched capacitors for the circuit in Fig. 42.  The upper left point 

corresponds to the factor of 1.6 improvement described in section 4.2.1.  As can be 

seen from Fig. 47, the spread is inversely proportional to the number of elements used.  

This result is NOT from increased area – the total capacitance is kept the same for 

each case.  In other words, matching is significantly improved by breaking a capacitor 

into many small pieces and using sorting/grouping methods to construct a matched 

pair.   
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Fig. 46. Sort and group operations to create two well matched capacitors from 8 sub-elements. 
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Fig. 47. Reduction in σ obtained for the circuit in Fig. 42 when the capacitor is broken into sub-

elements and sorted.  Spread is roughly inversely proportional to the number of sub-elements used, even 

though total capacitor area stays the same. 

 

4.4.2  Improved D/A converters 

The sorting and grouping operation orders elements well for use in very linear 

thermometer coded D/A converters.  Such D/A converters would be valuable for 

Nyquist-rate or low over-sampling-ratio applications where data weighted averaging 

[69] does not work well.  The final order of capacitors in a nine-level thermometer 

coded D/A converter is shown in Fig. 48.  Different ordering schemes such as 

switching the direction of the sort after each grouping, or repeated usage of the 

ordering presented in [73], can offer small improvements in special cases. 
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4.5 A highly linear 17 level D/A converter 

The principles described in this paper were used to design the highly linear 17 level 

D/A converter shown in Fig. 49.  The results were simulated with MATLAB.  The 

histograms show that the baseline INL performance is about 10 bits when the 32 unit 

capacitors per side are unordered (i.e. traditional configuration).    Ordering these 

capacitors in addition to using the outliers for the less critical feedback capacitor adds 

3 bits of linearity.  Another two bits can be obtained by using 64 half-sized unit 

capacitors instead of 32.  To get the same INL performance, capacitance area would 

need to be increased by a factor of 1024.  Further performance increases could be 

expected using 128 quarter-sized unit capacitors, etc.   

 

 

Fig. 48. Using the sorting and grouping algorithm to order elements for a highly linear nine-level D/A 

converter.  

 

 

 



64 

 

 

 

Fig. 49. Highly linear 17 level D/A converter and INL histograms.  Unordered capacitors limit INL to 

10bits (98% yield).  Simple ordering (Fig. 47) the same capacitors increases linearity by 3 bits.  

Further improvement is obtained by creating a 33 level (N=32) D/A converter, and only using the 

even levels.  Total capacitance is the same for all three D/A converters. 

4.6 Capacitor sorting circuit 

The operational amplifier can be configured to sort the sub-element capacitors from 

largest to smallest. This is done by comparing the relative size of each capacitor to the 

other capacitors. If there are N capacitors, it will take N*(N-1)/2 comparisons to 

completely characterize the array if all possibilities are checked. Bubble sorts, etc. can 

be used to sort the array with less comparisons.  

A circuit to compare sub-element capacitors C1 and C2 is shown in Fig. 50. It has 

two phases. The first phase auto-zeros the op-amp offset and pre-charges C1 and C2 to 

-VREF and VREF respectively. Phase two reverses the polarity of the charge, and if C2 is 
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larger than C1, the voltage at the inverting node of the op-amp will increase. 

Accordingly, the op-amp will function as a comparator and output a logic zero. A 

counter register corresponding to C2 will then be incremented. This procedure will be 

repeated to check all permutations of the top-half capacitors. The procedure will be 

repeated for the bottom-half capacitors. At the end, each counter register will contain 

the rank of its respective capacitor.  

C3 and C4 are necessary to negate the effects of charge injection. They are 

nominally equal to C1 and C2. Noise of the operational amplifier will limit the 

measurement accuracy, but one would expect the noise performance of the amplifier 

to be at least as good as the desired capacitor matching, or there would be no benefit to 

increased matching. Slower rate measurements, or multiple measurements could be 

taken with a majority vote strategy to reduce noise. 

4.7 Limitations of using relative size information 

This method uses relative size information to construct accurate gain circuits and 

D/A converters.  For pipelined ADCs it isn’t clear if the complexity required to 

arrange the elements offers any advantage over calibration methods (section 3) which 

can also eliminate the errors due to low DC gain.   

 

Fig. 50 Capacitor ranking circuit created using existing operational amplifier. 
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On the other hand this method could offer large advantages for circuits with analog 

outputs that cannot be calibrated.  Such circuits would include high linearity D/A 

converters, gain circuits, and biases that are based on matching one device to several 

devices (e.g. β multipliers).    

4.8 Summary (using relative size information) 

The effects of component mismatch can be reduced using relative size information.  

When done, these components can match as well as components orders of magnitude 

larger. Sorting can be done by comparing each capacitor to the others in an array. This 

is possible using the op-amp present, and will take N*(N-1)/2 operations to sort N 

capacitors. The method looks to be especially promising for circuits such as D/A 

converters, gain circuits, and biases. 
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5 Other Applications of CLS 

5.1 Switched-capacitor integrator using CLS 

Switched capacitor integrators are very important building blocks for circuits such 

as delta-sigma modulators.  CLS can be used to increase the accuracy of integrators by 

increasing the effective loop gain.  An integrator incorporating CLS is shown in Fig. 

51. 

Errors in integrators and switched capacitor amplifiers are caused by the same 

thing: the virtual ground of the opamp is not perfect so the capacitor C1 does not 

completely discharge during the integrate phase (φ3 and φ4).  CLS reduces the error in 

the same fashion as previously described: the signal is removed from the opamp 

output.  This produces a virtual ground voltage that is closer to ideal.   

 

 

Fig. 51. Switched capacitor integrator.  The output is estimated during phase 3, and level shifted for 

phases 4, 1, and 2.  The output is valid during the level shifting phase. 

 

Fig. 52 shows simulated results with an ideal 40dB opamp.  The top left signal is 

the voltage across C1.  It is equal to the input voltage during the sampling time (φ1 and 

φ2).  With an ideal opamp C1 will be completely discharged during the integrate time 

period (φ3 and φ4).  The detail in the top right plot shows that an error voltage exists 

during φ3 because the opamp DC gain is only 40dB.  Since the output is 240mV 

(bottom right plot), 2.4mV remains across C1.   
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Fig. 52. Simulated output voltage of the integrator shown in Fig. 51.  Open loop gain is 40dB.  The top 

left signal is the voltage on the sampling capacitor C1.  Top right is the detail showing the error voltage 

reduction during the level shift phase. The bottom curves are the output signal. 

 

As with previously described CLS action, the 240mV output is sampled onto CCLS 

and removed during the level shift phase (φ4).  The signal removal reduces the error to 

48µV, an error reduction by a factor of 50 (34dB).  Thus, the error using this 40dB 

opamp and CLS is equivalent to using an opamp with 74dB. 

5.2 Load Free CLS 

Wu, et al [20] describe a “load-free” architecture that uses the compensation 

capacitors of a two stage opamp to sample the input signal.  This saves power because 

the output stage does not have drive the next stage sampling capacitors, thus the output 

stage’s current can be reduced without reducing the phase margin.  Load-free 

sampling also increases effective DC gain when using CLS because load capacitance 

shares charge with the CLS capacitor (see Appendix).  Therefore, the CLS/load-free 

combination topology will reduce power in two ways: a high current output stage is 

not needed to drive the next stage’s sampling capacitors; 2) the reduced load capacitor 

means less gain attenuation during the level shift phase.   

Fig. 53 shows a practical circuit implementation combining CLS and the load-free 

idea.  In this case the level shifting capacitor, CCLS is also connected in a load free  
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Fig. 53. Load-free implementation of CLS in a pipelined A/D converter MDAC stage. 

 

fashion. Simulations indicate that compensation requirements dictate a larger 

capacitance than the kT/C requirements of the following stage so the compensation 

capacitor does not increase in size when it also functions as a sampling capacitor.  

5.3 Nested Load Free 

The load-free circuit in Fig. 53 can be made more power efficient by noting that the 

second stage of the first amplifier can double as the first stage of the second amplifier.  

This saves power since it reduces the number of stages in a fashion similar to opamp 

sharing [71].  Fig. 54 shows an efficient way to do this.   
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Fig. 54. Nested load free implementation of CLS in a pipelined A/D converter to take advantage of the 

power savings from opamp sharing. 

5.4 Virtual Miller enhanced CLS (VMEC) 

Virtual Miller enhanced CLS (VMEC) is a method to achieve this perfect error 

cancellation with a passive level shifting phase (switches are used to force the 

capacitors to the proper voltages instead of opamp stages).  If a passive method is used 

the settling will be very fast since it would be determined by switch resistances rather 

than opamp bandwidth.  Furthermore, the opamp could be shut down during this 

period to further save power.   

The appendix and section 2.3.3 show that the Miller compensation capacitor can be 

used to add charge to the level shifting capacitor.  If the condition in (13) is satisfied λ 

(14) will equal -1.  This will result in complete error cancellation (i.e. infinite 

equivalent gain (28), Appendix).   
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Referring to Fig. 55, the first observation to make is when there is no error the 

virtual ground at the input is perfect – that is to say that the voltage differential at the 

amplifier input is zero.  As a consequence, the voltage at the output of each stage is 

zero.  This can be accomplished in two ways: using the normal Miller enhanced CLS 

method described earlier, or by forcing the condition with switches (i.e. VMEC).   

Note that if the output of the last stage is zero, the level shifting capacitor (CCLS) 

capacitor is switched from zero volts to zero volts so it is not needed.   

The equivalent open-loop gain obtained by the VMEC action is approximately 

A1A2/(1+λ) where λ is defined (14).  This is potentially less than obtainable with 

Miller enhanced CLS: (A1A2)
2
/(1+λ) so the decreased settling time and power 

consumption must be made to offset the reduced gain if λ ≠ −1. 

Like Miller enhanced CLS, to achieve perfect error cancellation virtual CLS 

depends on an exact value of first-stage gain to realize a λ = −1 condition.  This could 

be achieved by using feedback in the first stage, or by monitoring the output of the 

first gain stage because when the error is completely cancelled its output will be zero 

during the level shifting phase.  The gain of the first stage will not change quickly, so 

a slow feedback loop could be used to tune it so that the output is zero.  The first stage 

could also be used as a comparator to adjust the gain based on the polarity of the 

output.  Note that gain adjustment will need to consider the polarity of the first stage 

output as well as the polarity of VOUT: if the polarities are opposite then the first stage 

gain will need to be increased and vice-versa.   

The first-stage gain adjustment could also be made based on the polarity of the 

virtual ground during φ3 and φ4.  If the polarity does not change the gain needs to be 

increased and vice-versa.   
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Fig. 55. Virtual Miller enhanced CLS (VMEC).  When properly tuned, the Miller enhanced CLS circuit 

(top) produces voltages that replicate perfect virtual grounds at the inputs of the opamp stages.  The end 

result can be replicated using Virtual Miller enhanced CLS (bottom).  A slow loop is used to tune the 

first stage gain. 

  

 

5.5 Decreasing settling time instead of increasing loop gain 

 

CLS was conceived as a method to increase the accuracy of circuits using opamps 

by increasing the effective open loop gain of the opamp.  Settling time was increased 

minimally or even improved under certain conditions.  For example, section 2.2.3 

shows settling times were similar for circuits using a 60dB opamp and circuits using 

CLS and a 30dB opamp.  This fact begs the question:  will a 60dB opamp using CLS 
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settle to 54dB accuracy faster than the 60dB opamp without CLS?  (54dB is the 

accuracy that the 60dB opamp would settle to when configured for a gain of two.)  

The answer is that under some circumstances it can settle significantly faster.   

To test the idea the circuits in Fig. 56 and Fig. 57 were simulated.  The amount of 

phase margin proved to be important so compensation was varied for both circuits. 

 

 

Fig. 56. Which circuit settles faster?  Ideal opamp circuits to determine if CLS could be used to 

decrease settling times. 
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Fig. 57.  Ideal circuitry to realize the opamps in Fig. 56.  Left, ideal opamp model.  Right, opamp 

configured as a flip-around gain-of-two circuit.  Compensation was varied to test the effect of phase 

margin. 
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The simulated transient response shown in Fig. 58 is a case where the level shifting 

was invoked at 0.6nS (note the small glitch at the start of the level-shifting period).  

The slower initial rise time and overshoot is a consequence of the additional load of 

the CLS capacitor – which is the only way to do a fair comparison.  In spite of this 

extra load, the CLS settles to within the final tolerance faster.   

The settling to within final tolerance is difficult to see in Fig. 58 given the small 

value of the error.  Fig. 59 illustrates the settling time improvement more clearly by 

showing the error on a log scale.  The dashed line shows the tolerance: once the 

voltage stays below the dashed line it is fully settled to 54dB accuracy.  As can be 

seen, the 60dB opamp configuration’s final settling level is 54dB accurate.  Adding 

CLS to the circuit speeds it up considerably.   

 

 

Fig. 58. Simulated results showing transient response of gain-of-two circuit 

using CLS to decrease settling time.  Settling time to 54dB accuracy was 

2.5nS without CLS, and 1.4nS with CLS. 

 

 

CLS at  

0.6nS 

No CLS 
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Fig. 59. Simulated results showing transient response of gain-of-two circuit 

using CLS to decrease settling time.  Settling time to 54dB accuracy was 

2.5nS without CLS, and 1.4nS with CLS.   Decreased settling times require 

the level shifting phase to be invoked during specific windows. 

 

Clearly, CLS can be used to decrease settling times, or decrease finite-opamp-gain 

induced errors, or to decrease both simultaneously.  However, decreased settling times 

require the level shifting phase to be invoked during a certain time window.  For the 

simulated circuit the window is shown in Fig. 60.  If CLS is invoked during the shaded 

time period it will decrease settling time.   

The earliest time in which CLS can be invoked and still reduce settling is when the 

output voltage is “close” to the final value.  If we invoke CLS too early (say 0.15ns in 

this example) it will settle to its final value quicker, but that final value will not be as 

accurate as the case where no CLS is used.  In other words, the decreased settling time 

comes at a cost of reduced accuracy if CLS is invoked too early. 

One can see there is a short window before the output overshoots.  During this time 

period the output is “close” enough so that CLS will still allow the opamp to settle to 

54dB accuracy.   

Settling time 

with CLS 

(1.4nS) 

Settling time 

without CLS 

(2.5nS) 
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Note that after the oscillation of the original waveform stops the signal will settle 

approximately 0.5ns after CLS is invoked.  This gives an upper bound to the time that 

CLS can be invoked without increasing the settling time.  The upper bound is 2ns in 

this case since settling is 2.5ns without CLS. 

Fig. 61 shows the window that CLS can be invoked for a signal from an opamp 

circuit with increase phase margin.  In this case the window is much smaller because it 

takes 0.7ns to settle after CLS is invoked (not 0.5ns).  The difference is likely due to 

interaction of the increased compensation capacitance with the CLS capacitor. 
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Fig. 60. (Top) Output waveform without CLS.  The signal settles in 2.5nS.  (Bottom) Settling time as a 

function of when CLS is invoked.  If CLS is invoked during the shaded time periods it will improve 

settling time.   

 

 

Fig. 61.  Results described in Fig. 60, except using an opamp with increased phase margin (less 

ringing). 
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6 Conclusion 

This thesis discusses how excess power is required to correct or prevent errors due 

to  

1) Opamps with low DC opamp loop gain 

2) Distortion from opamps with limited opamp swing 

3) Capacitor mismatch  

4) Thermal noise 

5) kT/C noise 

Two new power-saving methods were introduced to reduce the aforementioned 

errors:  

1) Correlated level shifting (CLS) 

2) Reducing mismatches by using relative size information   

Calibration methods were also summarized given their usefulness although no 

unpublished techniques were presented. 

CLS reduces power consumption in two ways.  First, CLS allows the signal at the 

output of the gain block to swing to and even beyond the power supply rails without 

significant distortion.  This increases the maximum signal amplitude, and thus it 

increases the achievable SNR.  Traditional “rail-to-rail” opamps need to limit the 

amplitude swing to about 300mV less than the power supply.  Opamps with cascoded 

output stages need to limit the swing to about 600mV less than the power supply.  The 

power savings that CLS enables with true rail-to-rail operation is significant: if a 0.9V 

supply is used a traditional “rail-to-rail” opamp will need ((0.9)/(0.9-0.3))
2
 = 2.25 

times the power to achieve the same SNR as the same opamp topology using CLS.  An 

opamp with a cascoded output stage will need 9 times the power compared to the same 

opamp topology using CLS.   

The second way CLS reduces power is by increasing the effective DC gain by 

removing most of the signal from the opamp output during the level-shift phase.  

Removing the signal from the opamp results in an error inversely proportional to 
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(Aβ)
2
, thus CLS reduces the error to the same amount that could be achieved using an 

opamp with twice as many stages, and twice as much power.    

The digital background calibration techniques (section 3) can be used to correct 

errors due to low DC opamp gain in pipelined ADCs.  This comes at a cost of 

increased complexity and power.  The power increase may be less than using high DC 

gain opamps with more stages, but the power increase will likely be than using CLS to 

prevent the errors.   

Preventing errors using CLS is likely more power efficient than correcting them 

with background calibration for two reasons: First, the digital overhead of CLS is 

minimal compared to background calibration circuitry.  Second, CLS enables true rail-

to-rail signal swing.  Nonlinear calibration can only increase swing a small amount, so 

it must use far more current to achieve the same SNR as an opamp using CLS.   

Digital calibration can correct problems that CLS cannot prevent, however.  It can 

correct errors from capacitor mismatch, memory effects when opamp sharing is used, 

and channel mismatch effects in interleaved ADCs.  Because of these additional 

features, combining CLS with calibration should provide a very power-efficient 

solution. 

In circuits where calibration cannot be used, increased power is required to reduce 

errors due to capacitor mismatches.  Errors from mismatch are inversely proportional 

to capacitance area.  The power increase is proportional to the size of the capacitors so 

the power must be quadrupled to decrease the standard deviation of the mismatch error 

by a factor of two.  Section 4 introduced a method that uses relative size information 

to construct capacitors that match better.  It can also be used to minimize errors by 

optimizing the order capacitors should be used in circuits such as D/A converters.  The 

relative size information can be determined with a comparator circuit.   



80 

 

 

 

7 Bibliography 

 

[1] B.R. Gregoire, U-K. Moon, “An over-60dB true rail-to-rail performance using 

correlated level shifting and an opamp with only 30dB loop gain,” IEEE J. Solid-

State Circuits, Dec. 2008, in press. 

 

[2] K. Nagaraj, “Switched-capacitor circuits with reduced sensitivity to amplifier 

gain,” IEEE Tran. Circuits Syst. Vol. CAS-34, pp. 571-574, May 1987. 

 

[3] Enz, C.C.; Temes, G.C., "Circuit techniques for reducing the effects of op-amp 

imperfections: autozeroing, correlated double sampling, and chopper 

stabilization," Proceedings of the IEEE, vol.84, no.11, pp.1584-1614, no. 11, pp. 

1584-1614, Nov. 1996. 

 

[4] P.C. Yu, H-S Lee, “A high-swing 2-V CMOS operational amplifier with replica-

amp gain enhancement,” IEEE J. Solid-State Circuits, vol 28, no. 12, pp. 1265-

1272, Dec. 1993. 

 

[5] K. Bult and G. J. G. M. Geelen, “A fast-settling CMOS op amp for SC circuits 

with 90-dB DC gain,” IEEE J. Solid-State Circuits, vol. 25, pp. 1379-1384, June 

1990. 

 

[6] Y. Chiu, P.R. Gray, B. Nikolic, “A 14-b 12-MS/s CMOS pipeline ADC with over 

100-dB SFDR,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2139-2151, Dec. 

2004. 

 

[7] J. Li and U-K Moon, “A 1.8-V 67-mW 10-bit 100-MS/s pipelined ADC using 

time-shifted CDS technique,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 

1468-1476, Sept. 2004. 

 

[8] Abo, A.M.; Gray, P.R., "A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-

digital converter," Solid-State Circuits, IEEE Journal of , vol.34, no.5, pp.599-606, 

May 1999 

 

[9] B. K. Ahuja, “An improved frequency compensation technique for CMOS 

operational amplifiers,” IEEE J. Solid-State Circuits, vol. SC-18, pp. 629-33, Dec. 

1983.  

 

[10] D. B. Ribner and M. A. Copeland, “Design techniques for cascoded CMOS op 

amps with improved PSRR and common-mode input range,” IEEE J. Solid-State 

Circuits, vol. SC-19, pp. 919-25, Dec. 1984.  

 



81 

 

 

[11] B.R. Gregoire and U-K Moon, “An over-60dB true rail-to-rail performance 

using correlated level shifting and an opamp with 30dB loop gain,” IEEE Int. 

Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2008, pp.540-541. 

 

[12] A. Ali and K. Nagaraj, “Correction of operational amplifier gain error in 

pipelined A/D converters,” in Proc. IEEE Int. Symp. Circuits and Systems, vol. I, 

May 2001, pp. 568-571.  

 

[13] B.R Gregoire, “Digital self-calibration of pipeline-type A/D converters,” PhD 

qualifying exam, Oregon State University, Apr. 2007, online: 

http://web.engr.oregonstate.edu/~gregoire/papers/DigCal2.1.pdf. 

 

[14] A.N. Karanicolas, H-S. Lee, K.L. Bacrania, “A 15-b 1-Msample/s digitally self-

calibrated pipeline ADC,” IEEE J. Solid-State Circuits, vol. 28, no. 12, pp. 1207-

1215, Dec. 1993. 

 

[15] S.H. Lee and B.S. Song, “Digital-domain calibration of multistep analog-to-

digital converters,” IEEE J. Solid-State Circuits, vol. 27, no. 12, pp. 1679-1688, 

Dec. 1992. 

 

[16] D. Fu, K.C. Dyer, S.H. Lewis, and P.J. Hurst, “A digital background calibration 

technique for time-interleaved analog-to-digital Converters,” IEEE J. Solid-State 

Circuits, vol. 33, no. 12, pp. 1904-1911, Dec. 1998. 

 

[17] J. Li, G-C. Ahn, D. Y. Chang, U-K. Moon, “A 0.9V 12mW 5-MSPS algorithmic 

ADC with 77-dB SFDR,” IEEE J. Solid State Circ., vol. 40, no. 4, pp. 960-969, 

Apr. 2005.  

 

[18] J. McNeill, M.C.W. Coln, B.J. Larivee, “’Split ADC’ architecture for 

deterministic digital background calibration of a 16 bit 1-MS/s ADC,” vol. 40, no. 

12, pp. 2437-2445, Dec. 2005. 

 

[19] B. Murmann and B.E. Boser, “A 12-bit 75-MS/s pipelined ADC using open-

loop residue amplification,” IEEE J. Solid-State Circuits, vol. 38, no. 12, pp. 2040-

2050, Dec. 2003. 

 

[20] P.Y. Wu, V. S-L Cheung, and H.C. Luong, “A 1-V 100-MS/s 8-bit CMOS 

Switched-Opamp Pipelined ADC Using Loading-Free Architecture,” IEEE J. 

Solid-State Circuits, vol. 42, no. 4, pp. 730-738, Apr. 2007. 

 

[21] Y. S. Shu and B.S. Song, “A 15b-Linear, 20MS/s, 1.5b/stage pipelined ADC 

digitally calibrated with signal-dependent dithering,” Symp. On VLSI Circuits 

Digest of Technical Papers, 2006. 

 



82 

 

 

[22] M. T. Sani, A. A. Hamoui, “Digital background calibration of capacitor-

mismatch errors in pipelined ADCs,” IEEE Trans. Circuits Syst. II, vol. 53. no. 9, 

pp. 966-970, Sep. 2006. 

 

[23] J. P. Keane, P.J. Hurst, S.H. Lewis, “Digital background calibration for memory 

effects in pipelined analog-to-digital converters,” IEEE Trans. Circuits Syst. I, vol. 

53, no. 3, pp. 511-525, Mar. 2006. 

 

[24]  K. El-Sankary, M. Sawan, “Background calibration technique for multibit/stage 

pipelined time-interleaved ADCs,” IEEE Trans. Circuits Syst. II, vol. 53, no. 6, 

pp.448-452, Jun. 2006.  

 

[25] A. Delic-Ibukic, D.M. Hummels, “Continuous digital calibration of pipeline 

A/D converters,” IEEE Trans. On Instrumentation and Meas., vol. 55, no. 4, pp. 

1175-1185, Aug. 2006. 

 

[26] I. Ahmed and D. A. Johns, “DAC nonlinearity and residue gain error correction 

in a pipelined ADC using split-ADC architecture,” Research in Microelectronics 

2006, Ph.D, pp. 289-292, 2006. 

 

[27] A. Varzaghani and C-K. Yang, “A 600-MS/S 5-Bit pipeline A/D converter using 

digital reference calibration,” IEEE J. Solid-State Circuits, vol. 41, no. 2, pp. 310-

319, Feb. 2006. 

 

[28]  M. Daito, H. Matsui, M. Ueda, and K. Iizuka, “A 14-bit 20-MS/s pipelined 

ADC with digital distortion calibration,” IEEE J. Solid-State Circuits, vol. 41, no. 

11, pp. 2417-2423, Nov. 2006. 

 

[29] K. Iizuka, H. Matsui, M. Ueda, M. Daito, “ A 14-bit digitally self-calibrated 

pipelined ADC with adaptive bias optimization for arbitrary speeds up to 40MS/s,” 

IEEE J. Solid-State Circuits, vol. 41, no. 4, pp. 883-890, Apr. 2006. 

 

[30] D-Y. Chang, G-C. Ahn, and U-K. Moon, “Sub-1-V design techniques for high-

linearity multistage/pipelined analog-to-digital converters,” IEEE Trans. Circuits 

Syst. I, vol. 52, no. 1, pp. 1-12, Jan. 2005. 

 

[31]  D.L. Shen and T.C. Lee, “A linear-approximation technique for digitally-

calibrated pipelined A/D converters,” IEEE Int. Symp. Circuits Syst., pp. 1382-

1385, May, 2005.  

 

[32] J.P. Keane, P.J. Hurst, and S.H. Lewis, “Background interstage gain calibration 

techniques for pipelined ADCs,” IEEE Trans. Circuits Syst. I, vol. 52, no. 1, pp. 

32-43, Jan. 2005. 

 



83 

 

 

[33] C. R. Grace, P.J. Hurst, and S.H. Lewis, “A 12-bit 80-MSample/s pipelined 

ADC with bootstrapped digital calibration,” IEEE J. Solid State Circ., vol. 40, no. 

5, pp. 1038-1046, May, 2005.  

 

[34] H.C. Liu, Z.M. Lee, J.T Wu, “A 15-b 40MS/s CMOS pipelined analog-to-digital 

converter with digital background calibration,” IEEE J. Solid State Circ., vol. 40, 

no. 5, pp. 1047-1056, May, 2005. 

 

[35] D. Chen, Z. Yu, and R. Geiger, “An adaptive, truly background calibration 

method for high speed pipeline ADC design,” IEEE Int. Symp. Circuits Syst., pp. 

6190-6193, May, 2005. 

 

[36] X. Dai, D. Chen, and R. Geiger, “A cost-effective histogram test-based 

algorithm for digital calibration of high-precision pipelined ADCs,” ISCAS, pp. 

4831-4834, May, 2005.   

 

[37] J. Yuan, N. Farhat, J. Van der Spiegel, “A 50MS/s 12-bit CMOS pipeline A/D 

converter with nonlinear background calibration,” Proc. IEEE Custom Integrated 

Circuits Conference, pp. 399-402, 2005. 

 

[38] J. Markus and I. Kollar, “On the monotonicity and linearity of ideal radix-based 

A/D converters,” IEEE Trans. Instrumentation and Meas., vol. 54, no. 6, pp. 2454-

2457, Dec. 2005. 

 

[39] Y. Chiu, C.W. Tsang, B. Nikolic, P.R. Gray, “Least mean square adaptive 

digital background calibration of pipelined analog-to-digital Converters,”  IEEE 

Trans. Circuits Syst. I, vol. 51, no. 1, pp. 38-46, Jan. 2004. 

 

[40] D-Y. Chang, J. Li, and U-K. Moon, “Radix-based digital calibration techniques 

for multi-stage recycling pipelined ADSs,” IEEE Trans. Circuits Syst. I, vol. 51, 

no. 11, pp. 2133-2140, Nov. 2004. 

 

[41] A. Larsson and S. Sonkusale, “A background calibration scheme for pipelined 

ADCs including non-linear operational amplifier gain and reference error 

correction,” IEEE Int. Symp. Circuits Syst., 2004.   

 

[42] L. Jin, D. Chen, and R. Geiger, “A digital self-calibration algorithm for ADCs 

based on histogram test using low-linearity input signals,” 

 

[43] J. Li and U-K. Moon, “Background calibration techniques for multistage 

pipelined ADCs with digital redundancy,”  IEEE Trans. Circuits Syst. II, vol. 50, 

no. 9, pp. 531-538, Sep. 2003. 

 



84 

 

 

[44] A.M. Abdelatty and K. Nagaraj, “Background calibration of operation 

amplifiers gain error in pipelined A/D converters,”  IEEE Trans. Circuits Syst. II, 

vol. 50, no. 8, pp. 631-634, Sep. 2003. 

 

[45] E. Siragusa and I. Galton, “A digitally enhanced 1.8-V 15-bit 40-MSample/s 

CMOS pipelined ADC,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2126-

2138, Dec. 2004. 

 

[46] D.Y. Chang and U.K. Moon, “Radix-based digital calibration technique for 

multi-stage ADC,” IEEE Int. Symp. Circuits Syst., 2002. 

 

[47] S. Y. Chuang and T.L. Sculley, “A digitally self-calibrated 14-bit 10-MHz 

CMOS pipelined A/D converter,” IEEE J. Solid-State Circuits, vol. 37, no. 6, pp. 

674-683, Jun. 2002. 

 

[48] J. Goes, N. Paulino and M.D. Ortigueira, “Digital-domain self-calibration 

technique for video rate pipeline A/D Converters using Gaussian white noise,” 

Electronic Letters, vol. 38, no. 19, pp. 1100-1102, Sep. 2002.   

 

[49] S.M. Jamal, D. Fu, N.C.J. Chang, P.J. Hurst and S.H. Lewis, “A 10-b 120-

Msample/s time-interleaved analog-to-digital converter with digital background 

calibration,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1618-1627, Dec. 

2002. 

 

[50] S. Sonkusale and Jan Van der Spiegel, “Mixed signal calibration of pipelined 

analog-digital converters,” IEEE Int. Symp. Circuits Syst., 2003. 

 

[51] P.C. Yu, S. Shehata, et al, “A 14b 40MSample/a pipelined ADC with DFCA,” 

IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 136-137, Feb, 2001. 

 

[52] J. Ming and S.H. Lewis, “An 8-bit 80-Msample/s pipelined analog-to-digital 

converter with background calibration,” IEEE J. Solid-State Circuits, vol. 36, no. 

10, pp. 1489-1497, Oct. 2001. 

 

[53] I. Galton, “Digital cancellation of D/A converter noise in pipelined A/D 

converters,” IEEE Trans. Circuits Syst. II, vol. 47, no. 3, pp. 185-196, Mar. 2000. 

 

[54] O.E. Erdogan, P.J. Hurst, and S.H. Lewis, “A 12-b digital background-calibrated 

algorithmic ADC with -90-dB THD,” IEEE J. Solid-State Circuits, vol. 34, no. 12, 

pp. 1812-1820, Dec. 1999. 

 

[55] P. Rombouts and L. Weyten, “Comments on ‘Intersage gain-proration technique 

for digital domain multi-step ADC calibration,” IEEE Trans. Circuits Syst. II, vol. 

46, no. 8, pp. 1114-116, Aug. 1999. 

 



85 

 

 

[56] J. Inginao, B.A. Wooley, “A continuously calibrated 12-b 10-MS/s, 3.3-v A/D 

converter,” IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 1920-1931, Dec. 

1998. 

 

[57] K.C. Dyer, D. Fu, S.H. Lewis, and P.J. Hurst, “An analog background 

calibration technique for time-interleaved analog-to-digital Converters,” IEEE J. 

Solid-State Circuits, vol. 33, no. 12, pp. 1912-1919, Dec. 1998. 

 

[58] I.E. Opris, L.D. Lewicki, B.C. Wong, “A single-ended 12-bit 20 Msample/s self-

calibrating pipeline A/D converter,” IEEE J. Solid-State Circuits, vol. 33, no. 12, 

pp. 1898-1903, Dec. 1998. 

 

[59] K. Dyer, D. Fu, P. Hurst, S. Lewis, “A Comparison of monolithic background 

calibration in two time-interleaved analog-to-digital converters,” IEEE Int. Symp. 

Circuits Syst., 1998. 

 

[60] U-K. Moon and B-S. Song, “Background digital calibration techniques for 

pipelined ADCs,” IEEE Trans. Circuits Syst. II, vol. 44, no. 2, Feb, 1997. 

 

[61] L. Lin, “Design techniques for parallel pipelined ADC,” Ph.D Thesis, U.C. 

Berkeley, 1996. 

 

[62] M.K. Mayes and S.W. Chin, “A 200mW, 1 Msample/s, 16b pipelined A/D 

converter with on-Chip 32-b microcontroller,” IEEE J. Solid-State Circuits, vol. 

31, no. 12, pp. 1862-1872, Dec. 1996.   

 

[63] T-H. Shu, B-S. Song, K. Bacrania, “A 13-b 10-MSample/s ADC digitally 

calibrated with oversampling delta-sigma converter,” IEEE J. Solid-State Circuits, 

vol. 30, no. 4, pp. 443-452, Apr. 1995. 

 

[64] H.S. Lee, “A 12-b 600ks/s digitally self-calibrated pipelined algorithmic ADC,” 

IEEE J. Solid-State Circuits, vol. 29, no. 4, pp. 509-515, Apr. 1994. 

 

[65] X. Wang, P.J. Hurst and S.H. Lewis, “A 12-Bit 20-Msample/s pipelined analog-

to-digital converter with nested digital background Calibration,” IEEE J. Solid-

State circ. vol. 39, no. 11, pp. 1799-1808, Nov. 2004. 

 

[66] R. Jewett, K. Poulton, K-C Hsieh and J. Doernberg, “A 12b 128-MSample/s 

ADC with 0.05-LSB DNL,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. 

Papers, Feb, 1997, pp. 138-139. 

 

[67] B.R. Gregoire and U-K. Moon, “Reducing the effects of component mismatch 

using relative size information,” IEEE Int. Symp. Circuits Syst., May 2008. 

 



86 

 

 

[68] M.J. Pelgrom, A.C Duinmaijer, and A.P. Welbers, “Matching Properties of 

MOS Transistors,” IEEE J. Solid State Circuits, Vol. 24, No. 5, Oct. 1989, pp. 

1433-1440. 

 

[69] R.T Baird and T.S. Fiez, "Linearity enhancement of multibit ∆Σ A/D and D/A 

converters using data weighted averaging," Circuits and Systems II: Analog and 

Digital Signal Processing, IEEE Transactions on, vol.42, no.12, Dec. 1995, 

pp.753-762. 

 

[70] S. Ray and B. Song, “A 13b Linear 40MS/s Pipelined ADC with Self-

Configured Capacitor Matching,” ISSCC Dig. Tech Papers, Feb. 2006, pp. 228-

229. 

 

[71] K. Nagaraj, H.S. Fetterman, J. Anidjar, S.H. Lewis, and R.G. Renninger, "A 

250-mW, 8-b, 52-Msamples/s parallel-pipelined A/D converter with reduced 

number of amplifiers," IEEE J. Solid State Circuits , vol.32, no.3, Mar. 1997, 

pp.312-320. 

 

[72] N. Balakrishnan and A. C. Cohen, Order Statistics and Inference, New York: 

John Wiley & Sons, Inc., 1991. 

 

[73] Y. Cong and R.L. Geiger, "Switching sequence optimization for gradient error 

compensation in thermometer-decoded DAC arrays," Circuits and Systems II: 

Analog and Digital Signal Processing, IEEE Transactions on , vol.47, no.7, Jul. 

2000, pp.585-595. 

 

[74] Gregoire, B.R.; Un-Ku Moon, "A Sub 1-V Constant Gm/C Switched-Capacitor 

Current Source," Circuits and Systems II: Express Briefs, IEEE Transactions, 

vol.54, no.3, Mar. 2007, pp.222-226. 

 



87 

 

 

8 Appendix I: CLS with Miller compensation (derivation) 

 

 

Fig. 62  CLS circuit for derivation of equivalent gain for a Miller compensated opamp.  It can also 

represent load compensated OTAs by making CC=0.  CP, the brainchild of Tawfiq Musah, is optional, 

but can be used to enhancing equivalent gain. 

8.1 Definitions for Miller-compensated CLS derivation 

XV   Voltage at output of second stage 

(node c)  

 

INC   Input capacitance of opamp (not 

shown) 
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Effect of finite CCLS 
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0V̂ and 0V
ˆ̂

are the first and second estimate of the output voltage respectively, and 

are shown in Fig. 12.  The component names refer to Fig. 62.   
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The voltages on each capacitor at the end of each phase are given in Table 3.  These 

are used to generate the charge conservation equations used in the derivation. 

 

TABLE 3. CAPACITOR VOLTAGES AT THE END OF EACH PHASE (MILLER COMPENSATION) 

 Sample Estimate Level Shift 
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VX  
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8.2 Traditional: voltage sampled at opamp output   

This derivation is for the most common configuration: the signal is sampled onto 

CL. The first estimate of the output voltage ( 0V̂ ) is found by writing the charge 

conservation equations at the inverting node at the end of the sample/estimate 

transition. 
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where T is the loop gain defined earlier.  
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The second estimate of the output voltage ( 0V
ˆ̂

) is found by first writing the charge 

conservation equations at the inverting node and the circuit’s output.  The charge 

conservation equation at the inverting node is 
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The charge conservation equation at the output is 
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Isolating VX in (22) gives 
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which is combined with (21) and simplified to get 
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This can be simplified by dividing through by CCLS. 
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which can be further simplified to  
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where λ and T are defined earlier.                      

Τhe final answer is found by combining (19) and (26) to get  
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8.3 Discussion of Miller compensated CLS derivation 

 A few comments are in order.  If CC=0 the analysis models a single stage opamp 

with DC gain equal to A1*A2.  These are the assumption made to get the results in 

Section 2.2.  In these cases the equivalent gain is maximized by making CCLS large 

compared to the load.   

On the other hand, if speed is maximized by making CCLS as small as possible 

λ will be large and equivalent gain will be reduced.  There is a speed/accuracy tradeoff 

with a ~6dB loss when CCLS is equal to the total load capacitance, and a ~12dB loss 

when CCLS is 1/3 the load.  Even with the reduced gain CLS seems to be a better way 

to achieve high accuracy than to use a reduced swing opamp with more stages. 

 The sensitivity to CCLS can be reduced by using Miller compensation to reduce λ. 

λ is reduced because CC (and/or CP) puts some charge onto CCLS which offsets the 

charge lost to the load.  A smaller λ decreases the sensitivity to CCLS.   For example, if 

λ is made to be nominally 0.25, CCLS could be ¼ the load capacitance and only reduce 

the gain by 6dB.   

The gain enhancement described in section 2.3 can also be achieved by choosing an 

appropriate value of CP, but it has similar sensitivity to opamp gain variations. 

8.4 Load Free [20]: voltage sampled by compensation capacitor (CC)   

 Wu, et al [20] described a “loading free” architecture where the amplified residue 

signal is sampled onto the compensation capacitance instead of the load capacitance.  

This technique can be used with CLS (see Fig. 53), improving both speed and 

accuracy compared to loading the output.  This subsection will show the resulting 

gain.   

First we observe that Table 3 gives the final voltage across CC.  It is equal to 
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Right away we can see that the output voltage 
CCV  is slightly larger than 0V

ˆ̂
, and 

may offer an improved accuracy.  Equations (21), (25), and (26) can be combined to 

find VX: 
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This result is combined with (27) and (29) to give  
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From which we can deduce that  
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(32) 

which is an enhancement over (28).  It can be made to be infinite, but again it will not 

be robust over corners.  Note that, since CL is not needed to sample the output, λ is 

smaller so TEQ is larger.  Also making the TEQ larger is the term subtracted in the 

denominator.  This term comes from the slightly larger than 0V
ˆ̂

 voltage in (29). 
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9 Appendix II: CLS with cascode compensation (derivation) 

 

Fig. 63  CLS circuit for derivation of equivalent gain for a cascode compensated opamp [9].  It can also 

represent load compensated OTAs by making CC=0.  CP, the brainchild of Tawfiq Musah, is optional, 

but can be used to enhancing equivalent gain. 

9.1  Definitions for cascode-compensated CLS derivation 

XV   Voltage at output of second 

stage (node c) 

 

INC   Input capacitance of opamp (not 

shown) 

 

21AAA =   Opamp DC gain (33) 
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Effect of finite CCLS 

 

 

(36) 

This derivation is done for a cascoded compensated amplifier [9].  The PMOS 

devices between (b, e) and (b’, e’) are the cascode devices.  The derivation is similar 
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to the Miller compensated case with the exception of the voltage across CC. The 

component names refer to Fig. 63.  0V̂ and 0V
ˆ̂

are the first and second estimate of the 

output voltage respectively, and are shown in Fig. 12.   

 The voltages on each capacitor at the end of each phase are given in Table 4. All 

voltages are the same as the Miller compensated circuit except the voltage across CC. 

 

TABLE 4. CAPACITOR VOLTAGES AT THE END OF EACH PHASE (CASCODE COMPENSATION) 

 Sample Estimate Level Shift 
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9.2 Traditional: voltage sampled at opamp output  

This derivation is for the most common configuration: the signal is sampled onto 

CL. The first estimate of the output voltage ( 0V̂ ) is found by writing the charge 

conservation equations at the inverting node at the end of the sample/estimate 

transition. 
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where T is the loop gain defined earlier.  

 

(38) 

The second estimate of the output voltage ( 0V
ˆ̂

) is found by writing the charge 

conservation equations at the inverting node and the circuit’s output.  The charge 

conservation equation at the inverting node is 
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This reduces to  
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The charge conservation equation at the output is 
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Isolating VX in (41) gives 
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which is combined with (40) and simplified to get 
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This can be simplified by dividing through by CCLS. 
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which can be further simplified to  
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where T and λC are given by (34)and (36) respectively.   

Τhe final answer is found by combining (38) and (45) to get  
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which can be put in the form of  
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loop gain resulting from the CLS operation is 
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(47) 

Note that λC is the same as λ for the Miller compensated case if one substitutes gmroA2 

for the A2. 

9.3 Discussion of cascode compensated CLS derivation 

 A few comments are in order.  Like the Miller compensated case, if speed is 

maximized by making CCLS as small as possible λC will be large and equivalent gain 

will be reduced.  This results in the same speed/accuracy tradeoff as with the Miller 

compensated case.  As discussed in section 8.3, the sensitivity to CCLS can be reduced 

by proper weights of CCLS, CC and CP, but unlike the Miller compensation circuit, the 

compensation capacitance will play a lesser role since the gain from the input to the 

source of the cascode transistor (node e) is relatively small (it is reduced by a factor of 

gmro).     

As mentioned earlier the error from finite opamp gain is completely cancelled if λ 

= -1.  λ has terms in it that are proportional capacitor ratios and terms proportional to 

the first stage gain (T/A2 ~ A1).  It is the term proportional to A1 that make λ sensitive 

to variations.  However, with cascode compensation this term becomes ~A1/(gmro) 

which is determined by the ratio of two transconductances (gm of the diff pair and gm 

of the cascode device).  Ratios of gm are reasonably robust; i.e. they track over process 

and temperature variations.  This makes it plausible that cascode compensation could 

lend itself to a robust method of completely canceling the error from finite gain.  The 

main limitation to this is the requirement for a large compensation capacitor since the 

A1/(gmro) term will be small compared to the Miller compensated case. 

9.4 Load Free [20]: voltage sampled by compensation capacitor (CC)  

 Wu, et al [20] described a “loading free” architecture where the compensation 

capacitance is used to sample to amplified residue that will be used by the next stage.  

This technique can be used with CLS (See Fig. 53), improving both speed and 

accuracy compared to loading the output.  Section 8.4 derived the gain equations for 
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Miller compensation.  This subsection will derive the gain for cascode compensation.  

The derivations are very similar. 

 First we observe that Table 4 gives us the final voltage across CC.  The final voltage 

value is 
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Like the Miller compensated case, we can see that the output voltage 
CCV  is 

slightly larger than 0V
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, and may offer an improved accuracy.  Equations (40), (44), 

and (45) can be combined to find VX: 
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This result is combined with (27) and (29) to give  
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From which we can deduce that  
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(51) 

which is an enhancement over (47) due to the lower λC and increased CC voltage.  As 

was the case when the voltage is sampled at the output, the result is the same as the 

Miller compensated result with gmroA2 substituted for the A2 term in (32).   



                                                                                                                 

 


