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Supervised learning is concerned with discovering the relationship between example sets

of features and their corresponding classes. The traditional supervised learning formulation

assumes that all examples are independent from one another. The order of the examples

contains no information. Nonetheless, many problems have a sequential nature. Classifiers

for these problems must use the sequence of the examples, as well as the regular features,

when generating a prediction. Sequential supervised learning (SSL) algorithms are able to

capture both types of information.

A variety of sequential supervised learning methods have already exist. The conditional

random field is a particularly robust SSL algorithm that overcomes some limitations of other

SSL methods, such as hidden Markov models and recurrent sliding windows. However, the

original implementation of the conditional random field explicitly represents a weight for

every feature combination. For sequential problems using a window of input features, this

means a combinatorial explosion. A better way to represent the conditional random field,

using regression trees, is introduced. The regression tree conditional random field provides

an efficient method for learning feature weights and supports the selection and combination

of features. The ability to select feature combinations benefits classification performance.
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CHAPTER 1

INTRODUCTION

Supervised learning is a methodology that strives to discover the relationship between a

set of observations and their corresponding classifications. There are a wide variety of

applications for supervised learning, such as speech recognition and medical diagnosis. The

basic goal is to learn a function y = F (x), where we provide some input x and receive an

answer y. For a task such as face recognition, the input would be an image of someone’s

face while the classification is the individual’s identity. A supervised learning algorithm is

trained to make these predictions from a set of examples of the form (x, y). The better a

supervised learning algorithm, the more successfully it generalizes from training data and

correctly predicts for new queries.

Traditional supervised learning assumes that each example is independent from all oth-

ers. The order in which the examples exist in the training set has no importance. While true

for many problems, not everything fits so nicely into this framework. Consider predicting

the pronunciation of an English word, or the problem of diagramming a sentence. Each

task can be represented as a sequence of observable features (x1, x2, x3, ..., xL) for which a

series of classes (y1, y2, y3, ..., yL) must be predicted. The letters of a word correspond to a

series of phonemes and stresses. The words in a sentence correspond to a chain of nouns,

verbs, etc.

A task with a sequential nature can pose a problem for standard supervised learning.

To illustrate this, imagine diagramming sentences, also called part-of-speech tagging. Many

words can be diagrammed easily, requiring no context from a sentence. “Shoe” is a noun.

“Swim” is a verb. Other words are not as simple. Consider the sentences “He will lead the

way” and “His feet are like lead”. “Lead” can either be a noun or a verb. The part of speech

cannot be predicted without taking into account the surrounding words. In this situation,
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the independence assumption of traditional supervised learning is not valid. The sub-field

of sequential supervised learning (SSL) focuses on ways to solve sequential problems, such

as part-of-speech tagging.

There are a number of existing methods for sequential supervised learning. Common

approaches are sliding windows, recurrent sliding windows, and hidden Markov models.

Newer algorithms include maximum entropy Markov models and conditional random fields.

As always in machine learning, each approach has its own strengths and weaknesses. This

thesis explores some of the techniques for sequential supervised learning and introduces an

improvement for conditional random fields.

1.1 Sliding Windows and Recurrent Sliding Windows

Sliding window methods are a simple and popular method for sequential problems. They

offer the ability to convert an SSL problem into a format for which any traditional su-

pervised learning algorithm may be applied. Given a sequence of L observable features

〈x1, x2, x3, . . . , xL〉 and a sequence of corresponding classes 〈y1, y2, y3, . . . , yL〉, a window of

size d (also known as input context) will slide across the feature sequence, generating an

independent example for each class. Given a window of size 3, a sliding window would gen-

erate examples (〈B,x1, x2〉 , y1), (〈x1, x2, x3〉 , y2), (〈x2, x3, x4〉 , y3), . . . , (〈xL−1, xL, B〉 , yL),

where B symbolizes a null value that pads the ends of our sequence.

The sequential context of the feature windows generated by a sliding window cap-

tures some sequential information. However, recurrent sliding windows (RSW) offer a bet-

ter way to handle sequential data. Very similar to the sliding window, the RSW adds

the n previously predicted y’s (also known as output context) as features of the cur-

rent window position. Given an input context of 3 and an output context of 1, a RSW

would generate examples (〈B,x1, x2, B〉 , y1), (〈x1, x2, x3, y1〉 , y2), (〈x2, x3, x4, y2〉 , y3), . . . ,

(〈xL−1, xL, B, yL−1〉 , yL). During training, the correct y values are used as the output

context.

A pitfall of recurrent sliding windows is that sequential information is propagated in
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t−1 t+1t

X X Xt t+1t−1

y y y

Figure 1: Hidden Markov Model

only one direction. To clarify, try pronouncing “photograph” and “photography”. The

pronunciation of the words differ entirely according to the ending “y”. Now imagine using

a left-to-right RSW with a window size of 7. To the recurrent sliding window, both words

appear exactly the same until the “y” position moves into the window. At this point, the

window is focused on “a” with an input context of 〈o, g, r, a, p, h, y〉. The phonemes and

stresses have already been predicted for every position left of “a”. Once the “y” (or lack

thereof) is discovered, it is already too late to accurately choose the correct pronunciation

at the beginning of the word. In short, a sliding window method must choose between

pronouncing “photograph” and “photography” before it knows which word it is observing.

A large enough window size could cope with this, but introduces new difficulties. The

larger the window size, the more input features for a learning algorithm. With too many

inputs, a learning algorithm can have trouble discriminating between informative features

and non-informative, or noisy, features. This can hurt the algorithm’s ability to generalize

effectively.

1.2 Hidden Markov Models

The hidden Markov model (HMM), illustrated in figure 1, is a probabilistic model describing

how sequences of observations and class labels are generated. The model assumes that the

observations at time t in the sequence are generated according to the class at time t. The

class label at time t is generated according to the previous class label, at time t− 1.
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t−1 t+1t

X X Xt t+1t−1

y y y

Figure 2: Conditional Random Field

To represent this model, the probabilities P (y1|start), P (yt|yt−1), and P (xt|yt) must be

learned. Fortunately, training is simple. The probabilities for the model can be found by

counting the frequency of every possible pair of (yt, yt−1) and (yt, xt).

Given only a sequence of observations, a Hidden Markov model can find the most likely

class label at any time t by using the forward-backward algorithm, also known as the Baum-

Welch algorithm (see section 1.3.2). Alternatively, the HMM can find the overall most likely

sequence of class labels by searching over all possible sequences with the Viterbi algorithm

(see section 1.3.3). Both methods are dynamic programs which carry information in each

direction over the sequence, therefore avoiding the problem inherent in recurrent sliding

windows.

While hidden Markov models work well for many applications, the model is limited by

its assumptions. If long distance relationships in the data exist (e.g. yt−5 influences yt),

the Markov property prevents capturing the relationship. There may also be overlapping

features, where xt is influenced by more than just yt. A larger input context can cope with

this, but it requires learning much larger probability distributions. For a input window of

size 3, we must learn P (xt−1, xt, xt+1|yt−1, yt, yt+1) instead of P (xt|yt). This increase in the

order of the model can quickly make the HMM computationally impractical.
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1.3 Conditional Random Fields

Introduced by Lafferty, McCallum, and Pereira [10], the conditional random field (CRF)

is a Markov random field where y-to-y relationships are conditioned by the observable x’s.

With the y transitions conditioned on x, the model can accept an arbitrary set of input

features. Overlapping features or features that capture long distance relationships do not

pose the problems they did for hidden Markov models.

Mt(yt, yt−1|wt) = exp

⎛
⎝∑

α

λαfα(yt, yt−1, wt) +
∑
β

μβgβ(yt, wt)

⎞
⎠ (1)

Conditional random fields are represented as a set of potentials, Mt(yt, yt−1|wt). We

denote the window of input features at time t as wt. The function f(yt, yt−1, wt) generates

a vector of boolean features related to the interactions between yt, yt−1, and wt. The second

function, g(yt, wt), generates a vector of boolean features regarding the yt to wt relationship.

The learned parameters of the CRF are represented by the vectors λ and μ. The λ matrix

consists of a weight for every element in f(yt, yt−1, wt), while μ consists of a weight for every

gβ(yt, wt) element.

The probability of a label sequence Y given a feature sequence X is calculated using the

potentials. Let L be the length of the sequence, y0 is a special starting state, and yl+1 is a

stopping state.

P (Y |X) =
∏L+1

t=1 Mt(yt, yt−1|wt)
Z

(2)

Z is a normalizer, the total of all potentials,

Z =

(
L+1∏
t=1

Mt(wt)

)
start,stop

= (M1(w1) ∗M2(w2) ∗M3(w3) · · ·ML(wL) ∗ML+1(wL+1))start,stop.

After finding the matrix product of all Mt potential matrices, Z is equal to the element

that represents the potential for beginning at the start state at t = 0 and finishing at the

stop state at t = L+ 1.
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1.3.1 Training the CRF

In the original CRF formulation, iterative scaling was used to learn the weights for λ and

μ. To speed up training time, we implemented a version of conditional random fields with

gradient descent. Let ρ be the scalar step size for a gradient update. After each iteration,

the weight matrices are updated using:

λi = λi + (ρ ∗ ∂λi)

μi = μi + (ρ ∗ ∂μi)

Let N be the entire set of training sequences, and K be the set of all possible classes.

ŷt and ŷt−1 denote the true classes from the current training sequence at time t and t− 1.

The gradients are calculated by

∂λ =
∑
N

L∑
t=1

⎛
⎝f(ŷt, ŷt−1, wt) −

∑
p,q∈K

f(q, p, wt) ∗ P (yt = q, yt−1 = p|wt)

⎞
⎠

∂μ =
∑
N

L∑
t=1

⎛
⎝g(ŷt, wt) −

∑
q∈K

g(q, wt) ∗ Pt(yt = q|wt)

⎞
⎠

The optimal step size, ρ, for the gradient update can be found using a line search over

the training data, or a hold out dataset. The probabilities used in the gradient updates are

computed using the forward-backward algorithm, described in the next section.

1.3.2 Forward-Backward Algorithm

The forward-backward algorithm uses the potentials to calculate the flow of probability over

all possible classes at each time step in a sequence. Two passes, forward and backward,

ensure that sequential information flows in both directions. After the forward and backward

passes, the potential values are normalized to find the final probabilities.

A common way to visualize this algorithm is as a graph of the possible classes at each

time step in a sequence. This is referred to as the trellis. Figure 3 depicts the forward

pass of the algorithm over the trellis. There are three classes in this example, excluding
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q

start

stop

(q)2

t=2 t=3 t=4t=1

p

α

1M (p, start |w )1

Figure 3: Forward Pass of the Forward-Backward Algorithm

the special start and stop states. The columns correspond to the time steps, and the nodes

correspond to classes. Each edge represents a potential (e.g. M1(p, start|w1)).

The value αt(y) symbolizes the sum of potentials flowing into class y at time t. When

starting the forward pass, the initial alpha vector is

α0(y) =
{

1 if y=start
0 otherwise

The recurrence for computing the alphas over the sequence is

αt = αt−1Mt(wt),

which is equivalent to

αt(y) =
∑
i∈K

αt−1(i)Mt(i, y|wt).

Similarly, the initial beta vector is

βL+1(y) = {1 if y=stop
0 otherwise.

The recurrence computing the betas over the sequence is

βT
t = Mt+1(wt+1)βt+1,



8

q

p

start

stop

(q)β

(p)α

t=1 t=2 t=3 t=4

2

3

3M (q, p |w )3

Figure 4: Finding a Transition Probability

which is equivalent to

βt(y) =
∑
i∈K

Mt+1(y, i|wt+1)βt+1(i).

After completing both passes, we can compute the probability for any state at any time

in the sequence according to

P (yt = q|wt) =
αt(q)βt(q)

Z
, (3)

where Z is the normalizer found through summing the alpha-beta values of each class at

any time t,

Z =
∑
i∈K

αt(i)βt(i).

For training a conditional random field we must also compute the probability of a

transition between specific states, P (yt, yt−1|wt). Shown in figure 4, this is found with

P (yt = q, yt−1 = p|wt) =
αt−1(p)Mt(q, p|wt)βt(q)

Z
. (4)

We note that the normalizer can also be found by summing the entire potential flow
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between the classes at any time t− 1 and t,

Z =
∑

i,j∈K

αt−1(i)Mt(j, i|wt)βt(j).

While the forward-backward algorithm is used during training of conditional random

fields, it is also useful for classification of new data. Since the forward-backward algorithm

takes the CRF’s potentials and finds P (yt = u|wt), we can use it to predict the most likely

class at any time step t. This is valuable if we are interested in maximize the number of

individual classes predicted correctly. If instead we want to maximizing the probability of

predicting an entire sequence correctly, we use the Viterbi algorithm.

1.3.3 Viterbi Algorithm

Viterbi searches for the maximum transition into each state yt instead of summing the

potentials. Sweeping across the trellis, the algorithm calculates the most probable path

from the start state to any yt. When Viterbi reaches the end of the sequence, it has found

the overall most likely classification sequence.

The Viterbi algorithm is initialized as follows:

γ0(y) = {1 if y=start
0 otherwise .

The recurrence, calculating the best path to yt is computed as

γt(y) = max
i
γt−1(i)Mt(y, i|wt).

The forward-backward and Viterbi algorithms are computationally efficient. Although

there are KL possible classification sequences, the algorithms run in O(L ∗K2).

1.3.4 Normalization

SSL problems with long sequence lengths pose a computational problem for the forward-

backward and Viterbi algorithms. The length of a protein secondary structure sequence may

extend up to 500 time steps. The potential values across a long sequence,
∏L+1

t=1 Mt(yt, yt−1|wt),
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can grow prohibitively large. A solution is to normalize during the recurrence:

α̂t(y) =
αt(y)
Qt

.

Qt is the sum of all αt:

Qt =
∑

i

αt(i).

The original αt is found in the regular fashion, but using the previously calculated α̂t−1,

αt(y) =
∑
i∈K

α̂t−1(i)Mt(i, y|wt).

The backward pass calculates β̂ values in the same way as α̂. Probabilities are calculated

using

P (yt = q|wt) =
α̂t(q)β̂t(q)

Ẑt

P (yt = q, yt−1 = p|wt) =
α̂t−1(p)Mt(q, p|wt)β̂t(q)

Ẑt,t−1

The probability normalizers are now be calculated at every time across the sequence:

Ẑt =
∑
i∈K

α̂t(i)β̂t(i)

Ẑt,t−1 =
∑

i,j∈K

α̂t−1(i)Mt(j, i|wt)β̂t(j)

1.3.5 Performance of the CRF

Lafferty, McCallum, and Pereira [10] compared the performance of the conditional random

fields, hidden Markov models, and maximum entropy Markov models on the part-of-speech

tagging problem. The maximum entropy Markov model (MEMM) was a precursor to the

CRF [13].

In one experiment, the classifiers all used the same feature configuration and were tested

on sentences that only included words seen in training sentences (in vocabulary). In another

experiment, they added spelling related features that could not be used by the HMM because

of its restrictions. They then tested the learning algorithms on sentences that included

previously unseen words (out of vocabulary).
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In Vocabulary Out of Vocabulary
Error Error

HMM 5.69% 45.99%
MEMM 4.81% 26.99%
CRF 4.27% 23.76%

Table 1: HMM, MEMM, and CRF results on the part-of-speech tagging problem.

The conditional random field shows strong results. This is a reflection of the CRF’s

abilities to incorporate any arbitrary feature and use information from over the entire se-

quence for classification. CRFs have also succeded in noun phrase segmentation [18] and

table extraction from documents [14]. The CRF appears to be an elegant solution to the

problems posed in sequential supervised learning. Nonetheless, the CRF still struggles when

faced with certain tasks.

The CRF uses the λ weight table to learn the probability of class transitions given some

features, P (yt, yt−1|wt). To learn this, λ must contain a weight for every combination of

transitions and features. The table must be of size (K ∗K ∗ F ), where K is the number of

classes and F is the number of features.

For the basic representation for a problem with 3 classes and 20 possible feature values,

λ will have (3 ∗ 3 ∗ 20) elements. The drawback to this formulation is that only the current

feature, xt, influences the class transition. It is often more useful to use a window of input

features rather than a single input feature (wt = 〈xt−1, xt, xt+1〉 instead of wt = 〈xt〉).
Given a window size d, there are F d possible feature combinations. This means, using a

window of input features, λ will be of size (K ∗K ∗ F d).

Window size 1 3 5 7
λ table size 180 72000 28.8 ∗ 106 11.52 ∗ 109

Table 2: The λ weight table size as the window of input features increase.

As seen in table 2, λ grows rapidly when increasing the input window size for a problem

with 3 classes and 20 features. There are two main disadvantages to a large λ. First, the
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CRF can become computationally infeasible, both in time and memory, if the weight table

grows too large. Second, with too many weights there will not be enough data to accurately

learn each value. The CRF can overfit the training data and lose the ability to generalize

to new data.

The core problem is that of feature selection and combination. We want the ability to

express any informative combination of features in our input window, yet we do not want

to express every combination. In other words, we need a compact way to represent the

important areas of the λ table. Our solution to this problem is a variant of CRF that uses

regression trees to learn the equivalent of the λ weights.
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CHAPTER 2

A TREE BOOSTED CRF

We introduce a new implementation of the conditional random field which uses gradient

descent and boosted regression trees to train the classifier. This approach retains the

benefits of the table-based CRF while the regression trees support a method for feature

selection and combination. The regression tree CRF can make more accurate predictions, as

the trees help prevent overfitting to the training data. However, the primary motivation for

the new algorithm is the dramatic computational speed-up when compared to an equivalent

table-based CRF.

Window size 1 3 5 7
Table-based CRF 0.04 0.66 41.2 1505
Regression Tree CRF 0.8 1.11 1.2 1.4

Table 3: Training iteration run time (in seconds) for table and tree CRFs.

Table 3 compares the average run time per training iteration of the table-based CRF

and the regression tree CRF for various feature window sizes. The CRFs were trained on

a reduced version of the protein secondary structure dataset (section 3.3) which uses only

five feature values, as opposed to the original 20 amino acids. The regression trees were

limited to thirty leaves. The run times were recorded on a 2.0 GHz Intel Celeron machine.

2.1 Algorithm Overview

The gradient boosted regression tree CRF is adapted from the LK TreeBoost algorithm by

Friedman [8]. The fundamental idea is that our potential functions are now represented by

a set of regression trees Fy,

Mt(yt, yt−1|wt) = expFyt(yt−1, wt).
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Table 4: Pseudo-Code for Training a Boosted Regression Tree CRF

Let M be number of iterations
Let S be number of training sequences
Let Ts be the length of sequence s
Let K be number of classes

Fq , 0(w) = 0, q = 1, K
For m = 1 to M :

Find Ps(Ys|Xs) using Forward-Backward, s = 1, S
For q = 1 to K :

For p = 1 to K :
For s = 1 to S :

For t = 1 to Ts :
ψq,p,s,t = [q = yt, p = yt−1] − Ps(q, p|wt)
Generate a target example for Hq : (〈ws,t〉 , ψq,p,s,t)

End For
End For

End For
Fit the regression tree Hq to all the target examples (〈w〉 , ψq)
Fq,m(w) = Fq,m−1(w) +Hq(w)

End For
End For

At every iteration, we grow new trees to correct for the error of the existing regression trees

and add them into the classifier. This is the boosting process [9].

As with the regular CRF, the potentials are used to calculate probabilities of classes

and transitions over a sequence. With these probabilities, we can find the gradients ψ of

our potential functions, Fy. In the original CRF, the gradients ∂λ are used to update the

weight table λ. However, for the tree CRF we will fit a new set of regression trees Hy to

the gradients ψ. Hy consists of one regression tree for each class. The trees, Hy, can be

thought of as the representing the corrections for our current trees Fy. The update for Fy

is carried out by adding the outputs of Hy,

Fy = Fy +Hy.

The update concludes one training iteration, which can be repeated to further lower the

error of the probabilities calculated on the training data. Table 4 gives the pseudo-code for

training a regression tree CRF.
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Figure 5 shows the ∂λy tables and the correspondingHy regression trees for a three class

problem with three possible feature values. The H̃y column depicts the table equivalent of

the Hy regression trees. Essentially, the Hy trees are a method to compactly generalize ∂λy

tables. The larger we grow the regression trees, the more closely they will resemble ∂λy.

2.2 Regression Trees

A regression tree predicts continuous numbers given some input features [2]. The trees are

grown according to a set of examples of the form (〈x1, x2, . . . , xn〉 , ψ), where ψ is a real

valued target that represents a functional gradient.

The regression tree starts as a single leaf node whose output, γ, is the average of all the

ψ targets,

γ =
∑C

i=1 ψi

C
.

C is the number of examples in the data set. To grow the tree, a leaf node is selected to

become a new split. The new split node will test some feature from the feature window,

xk. Two leaf nodes are added as children of the split node, one representing the case where

xk = true and the other where xk = false. We divide the dataset according to xk. The

output of the ‘true’ leaf node will be the average of the targets for the ‘true’ dataset,

γxk=true =
∑Cxk=true

i=1 ψi,xk=true

Cxk=true
.

Conversely, the output of the ‘false’ leaf node is the average of the targets for the ‘false’

dataset,

γxk=false =
∑Cxk=false

i=1 ψi,xk=false

Cxk=false
.

To choose which leaf node to split, the regression tree will greedily choose the split that

minimizes the squared error on the training data. The squared error for leaf l is found

by summing the squared difference between l’s output and the targets of the training data

classified by l. Let σl be the squared error at l:

σl =
Cl∑
i=1

(ψl,i − γl)2.
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For every possible leaf node and every feature, we search for the greatest difference of

squared error between the candidate splitting node and its children. We will split at the

leaf l with the splitting feature xi that maximizes:

max
l,xi

σl − (σl,xi=true + σl,xi=false).

We determine the size of the regression trees by setting a limit on the number of allowed

leaf nodes. There is a tradeoff in choosing tree sizes. The larger a tree, the more expressive

it is. A CRF with large regression trees will learn faster, but runs the risk of overfitting if

the tree is too big. Small regression trees narrow the hypothesis space for the CRF, which

can help the CRF generalize better to test data.

2.3 Gradient Derivation

We have discussed growing regression trees to fit a set of target gradients, and how to

update our CRF’s potential functions. Before this happens, however, we must find the

target gradients.

The conditional model of the boosted regression tree CRF is unchanged from equation

2. Our potential functions are represented by regression trees:

Mt(yt, yt−1|wt) = expFyt(yt−1, wt).

Equation 2 can be rewritten:

P (Y |X) =
exp [

∑
t Fyt(yt−1, wt)]
Z

The goal is to train the CRF to maximize the log likelihood of all sequences in a training

data set, S: ∑
i∈S

log P (Yi, wi).

To find a target ψ, we must know the gradient of the log likelihood with respect to some

Fq(p.w):
∂

∂Fq(p,w)

∑
i

logP (Yi,Xi)
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Since targets are generated for each sequence independently, we can abandon the i sub-

scripts.

The log likelihood for a sequence is

log P (Y |X) =
∑

t

Fyt(yt−1, wt) − logZ.

Recalling that Z is found with the forward-backward algorithm,

Z =
∑
i∈K

αt(i)βt(i)

=
∑

i,j∈K

αt−1(i)Mt(j, i|wt)βt(j)

Hence, we can write the derivatives

∂

∂Fq(p,w)
log P (Y |X) =

∂

∂Fq(p,w)

∑
t

Fyt(yt−1, wt) − logZ (5)

.

2.3.1 Case 1: Fq(p,w) appears in both terms

In this case, Fq(p,w) appears within the term
∑

t Fyt(yt−1, wt) from equation 5, as well as in

logZ. In other words, the transition from class p to class q appears in the training sequence.

When differentiating the first term, Fq(p,w) goes to 1 while all other terms in the

summation act as constants and are dropped. This gives us:

∂

∂Fq(p,w)
log P (Y,X) = 1 − ∂

∂Fq(p,w)
logZ

Differentiating logZ gives us:

∂

∂Fq(p,w)
logP (Y,X) = 1 − 1

Z

∂

∂Fq(p,w)
Z. (6)

We are now interested in the derivative of Z with respect to Fq(p,w). We rewrite Z

using its forward-backward equivalent,

∂

∂Fq(p,w)
Z =

∂

∂Fq(p,w)

∑
i,j∈K

αt−1(j)[expFi(j, wt)]βt(i).
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Fq(p,w) appears in Z, so we can separate out the terms:

∂

∂Fq(p,w)
Z =

∂

∂Fq(p,w)

∑
i�=q,j �=p

αt−1(j)[expFi(j, wt)]βt(i) +

αt−1(p)[expFq(p,wt)]βt(q)

The first term consists entirely of constants, while the second term differentiates to itself:

∂

∂Fq(p,w)
Z = αt−1(p)[expFq(p,wt)]βt(q).

Substituting back into equation 6, we have

∂

∂Fq(p,w)
log P (Y,X) = 1 − αt−1(p)[expFq(p,wt)]βt(q)

Z
(7)

2.3.2 Case 2: Fq(p,w) appears only in Z

This case is identical to Case 1, except that the entire summation in first term is a constant

and can be ignored. This gives us:

∂

∂Fq(p,w)
logP (Y,X) = −αt−1(p)[expFq(p,wt)]βt(q)

Z
(8)

2.3.3 Generating example targets

Combining equations 7 and 8, we generate gradient targets:

ψq,p,wt = [q = yt, p = yt−1] − αt−1(p)[expFq(p,wt)]βt(q)
Z

[q = yt, p = yt−1] is an indicator function that evaluates to 1 if q and p are in the true

training sequence, 0 if otherwise. A ψ target is generated for every q and p at every time

step t for every training sequence.

2.4 Approximation

The regression tree CRF is robust for large numbers of features. However, as with the HMM

and the table-based CRF, the tree CRF can suffer computationally from problems with a

large number of classes. The forward-backward algorithm runs in O(L∗K2), where L is the
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length of a sequence and K is the number of classes. If S is the number of sequences, when

generating gradient targets we compute L ∗ S ∗K2 unique ψ targets. Either one of these

steps can be very costly when given a large K, such as the Nettalk problem with K = 127

classes.

It is also important to note that we have been treating the CRF as a first-order model.

We have only modeled the relationship between yt and yt−1. However, it is often desirable

to use a larger number of recurrent features (yt−1, yt−2, yt−3, . . .).

Consider a second-order model, where yt is influenced by yt−1 and yt−2. Calculating

probabilities with the forward-backward algorithm and generating gradients work in nearly

the same way as the first-order model. The forward pass of the forward-backward algorithm

for a first-order model is

αt(y) =
∑
i∈K

αt−1(i)Mt(i, y|wt).

The major difference for the second-order model is that every reference to a class (such as

y or i in the previous equation) symbolizes a pair of actual classes. The forward pass for a

second-order model is

αt(〈j, k〉) =
∑
i∈K

αt−1(〈j, i〉) ∗Mt(〈j, k〉 , 〈i, j〉 |wt).

If we made a trellis for a second-order model, each column would have K2 nodes. Every

node would represent a pair of classes 〈yt−1, yt〉. A sequence through the trellis might look

something like this: 〈j, i〉 → 〈i, l〉 → 〈l, k〉 → 〈k, j〉 → 〈j, l〉.
An interesting side effect is that while there are K2 nodes in each column of the trellis, a

node can only have K possible predecessors. Using ‘∗’ as a wildcard symbol, we can express

this as: 〈∗, i〉 → 〈i, l〉.
Even with the limitation on transition edges in the trellis, the costs of the forward-

backward and Viterbi algorithms are high. For a second-order CRF, the time complexity

is O(L ∗K ∗K2) for either algorithm. With an n-th order model, the complexity is O(L ∗
K ∗Kn).
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Obviously, it is impractical to use the full forward-backward or Viterbi algorithms when

using many recurrent features. This led us to implement approximations for both algorithms

using a beam search. At every time step through the trellis, only the nodes with the b highest

potential scores (or α values) are kept. All other nodes in the column are deleted. The

outgoing potentials from the b best nodes are used to find the next set of b nodes, and so

forth across the trellis. This can be thought of as a process for choosing a subset of the

trellis. With the forward-backward algorithm, the forward pass chooses the subset of nodes

and the backward pass simply calculates over this subset. This reduces the time complexity

of Viterbi and forward-backward to O(L ∗K ∗ b), where b is size of the beam search. The

complexity stays the same, regardless of the number of recurrent features. Also, the beam

approximation reduces the number of target gradients generated to L ∗ S ∗ b2.
This approximation method allows us to apply the CRF on problems with many classes,

and to use an arbitrary number of recurrent features. Unfortunately, the beam search has

shown to have adverse effects on performance. This is discussed further, along with results

of the approximation on the Nettalk problem, in section 3.1.
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CHAPTER 3

TESTS AND RESULTS

In this chapter, we describe some sequential learning problems and the performance of

the tree boosted conditional random field on these tasks. It should be noted that the

parameters of the tree CRF, such as tree size or the size of feature windows, have been

chosen empirically. To make an unbiased comparison of learning methods, these parameters

must be chosen without knowledge of the effect on the test sets. This can be accomplished

using hold-out sets or cross validation. The results in this chapter should be considered as

the performance potential of the regression tree CRF if suitable parameters are chosen.

3.1 Nettalk

A difficult machine learning problem, the Nettalk task, is to map English text into speech.

Each letter in a word is labeled with a stress and a phoneme. An English word, given

as a sequence of letters, must be translated into a sequence of phoneme-stress pairs. The

difficulty of the problem comes from the large number of classes. There are 127 possible

classifications, representing all valid pairs of phonemes and stresses.

For Nettalk, we are most interested in pronouncing entire words correctly. This means

we used Viterbi classifications to maximize the probability of the sequences we predict.

Recurrent features carry useful information, so we used a 15-letter feature window, along

with 7 recurrent features. Approximation for the forward-backward and Viterbi algorithms

was required for the large number of recurrent features. The training set and test sets each

consisted of 1000 words.

Bakiri and Dietterich employed recurrent decision trees with error-correcting output

coding to correctly label 37% of the words in a 1000 word corpus [1]. Although we test on

a separate 1000 word corpus, the CRF produces competitive results.
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Figure 6: Nettalk Results

Figure 6 shows the results of a regression tree CRF and a regression tree RSW with

Viterbi classification. We limited the regression trees to 50 leaves. For the CRF, we used a

small forward-backward beam search of 3. The Viterbi classification used a beam search of

10.

A surprising result from our Nettalk experiments is that calculating the training prob-

abilities with only the forward pass of the forward-backward algorithm was much more

successful than using both passes. This corresponds to the plots of ‘FB’ and ‘Forward-

Only’ CRFs. We believe this is a side effect of the beam search approximation on the

forward-backward algorithm.

Consider the resultant sub-trellis following the forward pass of the beam search forward-

backward algorithm. A situation can occur where a class node q has no children that

survived within the beam width at the next time step. When this happens, the βt value for

q will be zero. Assuming q is not the true state at time t,

ψq,p,wt = [q = yt, p = yt−1] − αt−1(p)[expFq(p,wt)]βt(q)
Z
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= 0 − 0
Z

= 0

We treat Fq(p,wt) as though it has a gradient of of 0, regardless of its value. For the

training sequence, this is fine, since q’s children are not in the true path. However, we

are not generating any training gradients for Fq(p,wt). For a test sequence, q’s children

may not be eliminated and a poorly trained Fq(p,wt) could lead to poor performance. The

‘Forward-Only’ CRF from figure 6 treats every βt value as 1, therefore avoiding this problem.

The pitfall with the ‘Forward-Only CRF’ is that it trains using sequential information in

exclusively the forward direction.

Another drawback of our forward-backward approximation is that if the true state is

dropped during the forward pass, it cannot be corrected. Regardless of the information

gained in the backward pass, the states that were not contained in the forward pass beam

width are lost. This biases the algorithm toward sequential information in the forward

direction.

3.2 Artificial Dataset

To explore this problem further, we created an artificial dataset using a ten state hidden

Markov model. The hidden states were linked in a ring pattern. Each state has a 70%

chance of transitioning to the next state in the ring:

P (yt = 1|yt−1 = 0) = 0.7

P (yt = 2|yt−1 = 1) = 0.7

P (yt = 3|yt−1 = 2) = 0.7

. . .

The other 30% transition probability is evenly distributed over the remaining nine states.

There are ten features, one correlated to each state. A state has a 70% chance of

generating its corresponding feature:

P (xt = 0|yt = 0) = 0.7
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P (xt = 1|yt = 1) = 0.7

P (xt = 2|yt = 2) = 0.7

. . .

As before, the remaining 30% probability is evenly distributed over the other nine features.

All sequences were of length ten. 500 sequences were generated for the training data, and

500 for the testing data.
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Figure 7: Artificial Dataset Results

The model was simple enough to allow us to use the full forward-backward calculations

and experiment with beam width approximation. The problem was also small enough to

apply the table CRF. In figure 7 the regression tree CRF and the table CRF show nearly

identical performance once they are trained. This was expected, as we put no limit on the

size of the regression trees. Fully grown regression trees will represent gradients at the same

detail as using tables. The recurrent sliding windows using the forward-backward algorithm

for classification do slightly better than the CRFs. The RSW without the forward-backward
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algorithm performs very badly. This is likely because the RSW cannot use information from

both directions over the sequence and sequential influence is stong in this problem.

Experiments with regression tree CRFs using beam width approximation show char-

acteristics in common with the Nettalk results. In these experiments, we used Viterbi

classifications to predict the most likely sequences. The percentages reported are an aver-

age over fifty training iterations. The regression tree CRF with the full forward-backward

algorithm (beam width of 10) performed the best, with 11% error. Lowering the beam

width to 5 severely reduces the CRF’s performance to 6.5%. As in the Nettalk results,

using only the forward pass of the forward-backward algorithm improves performance of

the beam approximation to 8.9%.

Full FB FB Beam=5 F-Only Beam=5
% Seq. Correct 11.0 6.5 8.9

Table 5: Average Sequences Correct using Beam Approximation on Artificial Data

3.3 Protein Secondary Structure Prediction

Using a linear sequence of amino acids, we must predict, for every amino acid, which

protein secondary structure the acid appears in [11]. There are twenty amino acids and

three possible secondary structures: alpha-helix, beta-sheet, and random-coil.

The dataset has been frequently used to compare the effectiveness of various algorithms.

One of the earliest approaches was the Chou-Fasman algorithm [3], a conglomeration of

hand written rules. Qian and Sejonowski [15] designed a neural network for protein sec-

ondary structure prediction. Qian and Sejonowski achieved an average performance of 64.3%

structures correctly classified. They also argue that, according to the dataset, significant

improvement in performance is not possible.

As there are only three classes, we could afford to employ the full forward-backward

algorithm on this problem. Empirically, we found there is no benefit in using more than

one recurrent feature. The tree boosted CRF and the recurrent sliding window methods
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used a feature window of size 11. Shown in figure 8, the tree CRF competes well against

the previous best-known algorithm from Qian and Sejonowski. Both RSW methods show

poor results. The RSW using forward-backward classification does especially poorly.

Reg. Tree CRF Table CRF
Train Set 64.8 80.4
Test Set 61.3 51.7

Table 6: Table vs. Tree CRF on Protein Prediction

The table based CRF is not practical for the 11 residue window of the previous exper-

iment. To compare classification performance, we tested tree and table CRFs using a 3

residue window. Table 6 shows the results from both algorithms after ten iterations, when

they had fit the data. The table-based CRF fits the training data well, but generalizes

poorly on the test set. This is not surprising, as representing so many feature combinations

can lead to overfitting. The regression tree CRF, limited to trees with 25 leaves, does a

much better job on the test set. Small regression trees help the tree CRF avoid overfitting,
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as is evident by the similar results on the training and testing sets.

3.4 Frequently-Asked-Question Parsing

The Frequently Asked Questions (FAQ) dataset is a collection of seven Usenet multipart

FAQs from the internet. Each multi-part FAQ consists of four to seven separate FAQ files. A

FAQ file is represented as a single sequence of labels. Every line of a FAQ is labeled as either

part of the header, a question, an answer, or part of the FAQ’s tail. We are interested in

maximizing the number of lines we correctly label. This means classifying with the forward-

backward algorithm. There are twenty boolean features, capturing information such as

whether the current line ends with a ‘?’. This makes 220 possible feature combinations, too

many for the table-based CRF to represent.

Reg. Tree CRF MEMM
% Seg. Correct 91.2 86.7

Table 7: Segment Prediction on FAQ data

For our first experiment (table 7) the CRF is trained on all but one sequence from a

FAQ collection, and then tested on the held out sequence. Every sequence will be held

out once, and the entire process is repeated for every FAQ collection. The dataset used by

McCallum, Freitag, and Pereira [13] may have some minor differences to that used by the

CRF. Nonetheless, the CRF compares favorably to the results of the MEMM for overall

segment prediction accuracy.

Reg. Tree CRF Reg. Tree RSW Reg. Tree RSW /w FB
% Seg. Correct 96.3 54.7 91.6

Table 8: Segment Prediction on AI-Neural FAQ

In our second experiment (table 8) we focus on the AI-Neural FAQ collection. We train

on three sequences, and test on the four remaining AI-Neural FAQ sequences. We com-

pare the regression tree CRF to RSWs with and without forward-backward classification.
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Again, the RSW with forward-backward makes better use of sequential information and

outperforms the regular RSW. The CRF achieves the best performance.
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CHAPTER 4

CONCLUSIONS

The conditional random field is a powerful approach to sequential supervised learning. The

CRF’s main advantage is its ability to use a variety of arbitrary, non-independent features

[12]. The CRF matched or outperformed other SSL classifiers in domains such as part-of-

speech tagging [10], noun phrase segmentation [18], and table extraction from documents

[14]. However, the CRF’s ability to express any input feature, or their combination, can

result in massive feature sets. Without a method to choose only informative feature com-

binations, the CRF is too computationally expensive for many SSL tasks.

This thesis has shown that using gradient boosted regression trees with conditional

random fields provides a method for selecting feature combinations and a process for efficient

training. CRF run time results illustrate the drastic reduction in the computational burden

for training CRFs. We also show that using regression trees to select feature conjunctions

helps avoid overfitting and increases prediction performance.

Both the table-based and tree-based CRFs suffer when implemented as high order mod-

els or when applied to tasks with many classes. The forward-backward and Viterbi algo-

rithms are very sensitive to recurrent features and the number of classes. Often, we must

use some sort of approximation for these dynamic programs. The thesis shows that the

beam width approximation for these algorithms decreases performance significantly. While

the regression tree CRF is effective at coping with large potential feature sets, it provides no

benefit for dealing with large class sets. This is a hurdle for the CRF becoming a successful

general purpose SSL algorithm.
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4.1 Related Work

Andrew McCallum addresses the feature selection and combination problem using feature

induction [12]. Features and conjunctions are iteratively added to the CRF’s feature set.

Starting with no features in the CRF model, his algorithm creates a list of candidate features

and their conjunctions. The numbers of conjunctions considered are limited to those with

the highest gain. The gain of a feature is a measure of the improvement in log-likelihood the

feature provides the CRF. All candidate features are tested, and those with the highest gain

are added to the model. This process is repeated until the CRF has the desired number

of features. The effectiveness of this algorithm has not been compared to the boosted

regression tree CRF, but both methods provide the same benefits for the CRF.

4.2 Future Work

The foremost research question raised by this thesis is that of how to improve the forward-

backward and Viterbi approximation. The beam search appears to be inadequate for large

numbers of classes. With effective approximation, the CRF would be robust to both large

feature and class sets. The A∗ algorithm is one possible solution for better approximations.

However, this leads to another question: finding a decent heuristic.

More work is also needed in reducing the number of hand-tuned parameters used by the

regression tree CRF. Instead of a user-defined threshold to limit the size of our regression

trees, an automatic pruning technique could be implemented. Also, the scale or step size of

each gradient update is currently a user-defined constant. Finding a step size using a line

search, or another method, could eliminate this parameter.

Finally, in this thesis we consider only two types of prediction tasks. For one task,

we are concerned with predicting an entire sequence correctly. In the other, we care only

about maximizing the probability of correctly classifying each segment. However, problems

can have more complicated objectives. Misclassification of one class may be more costly

than another. Predicting short sequences correctly may be more important than correctly
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predicting long sequences. More research is needed to find how to train conditional random

fields for arbitrary objective functions.
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