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Distance-based algorithms are machine learning algorithms that classify queries

by computing distances between these queries and a number of internally stored

exemplars. Exemplars that are closest to the query have the largest influence on

the classification assigned to the query. Two specific distance-based algorithms, the

nearest neighbor algorithm and the nearest-hyperrectangle algorithm, are studied in

detail.

It is shown that the k-nearest neighbor algorithm (kNN) outperforms the first-

nearest neighbor algorithm only under certain conditions. Data sets must contain

moderate amounts of noise. Training examples from the different classes must belong

to clusters that allow an increase in the value of k without reaching into clusters of

other classes. Methods for choosing the value of k for kNN are investigated. It is

shown that one-fold cross-validation on a restricted number of values for k suffices

for best performance. It is also shown that for best performance the votes of the

k-nearest neighbors of a query should be weighted in inverse proportion to their

distances from the query.

Principal component analysis is shown to reduce the number of relevant dimen-

sions substantially in several domains. Two methods for learning feature weights

for a weighted Euclidean distance metric are proposed. These methods improve the

performance of kNN and NN in a variety of domains.

The nearest-hyperrectangle algorithm (NGE) is found to give predictions that are

substantially inferior to those given by kNN in a variety of domains. Experiments
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performed to understand this inferior performance led to the discovery of several

improvements to NGE. Foremost of these is BNGE, a batch algorithm that avoids

construction of overlapping hyperrectangles from different classes. Although it is

generally superior to NGE, BNGE is still significantly inferior to kNN in a variety

of domains. Hence, a hybrid algorithm (KBNGE), that uses BNGE in parts of the

input space that can be represented by a single hyperrectangle and kNN otherwise,

is introduced.

The primary contributions of this dissertation are (a) several improvements to

existing distance-based algorithms, (b) several new distance-based algorithms, and

(c) an experimentally supported understanding of the conditions under which various

distance-based algorithms are likely to give good performance.
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A Study of Distance-Based Machine Learning Algorithms

Chapter 1
Introduction

The primary goal of research in the field of Machine Learning is to develop meth-

ods that enable machines to accomplish tasks for which no known or efficient algo-

rithm exists. The term "learning" indicates that these methods should modify their

behavior in response to given stimuli. These stimuli can be unrefined knowledge in

terms of rules or hypotheses, or specific instances of the task at hand. Machine learn-

ing has been used to solve a variety of tasks, including, but not limited to, recogni-

tion of hand written [F1a94J or spoken text [HCG93], classification of stars [FWD93],

steering of a vehicle {Pom93], and prediction of stock market developments [Ref92].

Many of the tasks to which machine learning techniques are applied are tasks

that humans can perform quite well. However, humans often cannot tell how they

solve these tasks. For example, when listening to speech, people recognize that a

certain sequence of sounds represents a certain word. However, the most that human

subjects can generally say is: "Well, it sounds like an 'A', but I do not know why that

is so." Inductive supervised learning is able to exploit the human ability to assign

labels to given instances without requiring humans to explicitly formulate rules that

do the same. These labeled instances are then analyzed by inductive supervised

learning algorithms to learn specific tasks.1 Supervised learning is formally defined

as the task of learning from a set of training examples. These training examples are

represented by illput vectors and their corresponding classifications (labels, classes,

output classes). The goal of supervised learning is to classify input vectors that were

not necessarily part of the training set and whose classifications are unknown. The

'Another form of machine learning is speed-up learning where a complete set of rules
defining the task (for example, chess) is known, but an evaluation of these rules to
determine, say, the next move iii chess, is intractable.
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ability of an algorithm to classify such unseen instances is called its generalization

ability.

Theory of inductive machine learning tells us that there cannot be a universal

algorithm that can reliably learn any unknown function from a finite set of ex-

amples, because that set could have been generated by any of a large number of

functions [Val84, Aug88]. In other words, the problem of finding a function that

maps a finite set of possibly noisy input vectors onto corresponding output vectors

is ill-posed. Hence, additional assumptions about the nature of the function to be

learned must be made. Such assumptions must be built into any learning algorithm

to enable it to generalize beyond the given training data. These assumptions are

called the bias of the algorithm [Mit9O, Ren86, GBD92]. Introduction of a bias into

an algorithm enables that algorithm to find a unique solution to an ill-posed problem.

However, the algorithm will be unable to learn the task if the bias is ilisuited. The

more specific (restrictive) the bias is, the fewer training examples will be sufficient

to build the classifier, but the more likely it will be that the function learned will

not be the correct one.

There exists a vast number of biases which can be partitioned into two groups:

preference biases and restricted hypothesis space biases. Algorithms employing a bias

from the first group have some notion of nominal order of hypotheses, and try to find

the "most preferred" hypothesis which fits the data. Decision tree algorithms, for ex-

ample, try to find rectangular partitions of the training data using a small number of

input features such that each region contains only examples from a single class. That

is, decision tree algorithms prefer small (shallow) trees over large ones. Preference bi-

ases obtain their justification from principles such as the minimum description length

principal [Ris78] and Occam's razor [BEHW87, Hau88]. Algorithms employing a

restricted hypothesis space bias assume that decision boundaries2 have a specific

shape. For example, the perceptron algorithm assumes that examples are linearly

separable, and multi-layer perceptrons use a pre-specified number of hyperplanes.

2Decision boundaries are defined as the boundaries between data points from dif-
ferent classes.
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Most learning algorithms that perform well in a variety of applications employ

a preference bias (1D3 [Qui86], Cascade-correlation [FL9OJ). However, best results

in specific applications such as speech or text recognition are generally achieved by

algorithms employing only restricted hypothesis space biases {LBD+90]. It is also

important to note that biases are not exclusive. That is, different "sub-biases" can

be combined to obtain a new bias. For example, a sub-bias that is often incorporated

into the bias of an algorithm is the Mm-feature bias {A1m91], in which hypotheses

using a smaller number of features are preferred. Another sub-bias concerns how

missing features are dealt with by an algorithm.

In this dissertation we will be particularly interested in the bias employed by

distance-based algorithms (DBA). Distance-based algorithms are exemplar3 based

algorithms that compute the output for a given instance exclusively from a com-

bination of internal parameters and the distance between that instance and each

exemplar (see Section 2.1.1 for a formal definition of DBAs). Part of the bias of

every DBA are the assumptions that exemplars most similar to the query have the

largest influence on its classification, that input features are un-correlated, and that

all input features should be used to determine the most similar exemplars.4

Distance-based algorithms are developed, studied, and refined in a variety of

fields (statistics [Che84}, machine learning [WD94a], pattern recognition {DH73],

vision [Low94}, and cognitive psychology [Ros78, SM81]) and are used to solve a

large number of tasks [LL9O, Lee9l, Fog92, SL92, WD92, CS93, SLCD93, Low94}.

The earliest example of a DBA is the nearest neighbor classifier [FHJ51]. The most

recent additions to the DBA family include certain artificial neural networks [NL91,

PG89, BL88.

3An exemplar is either a specific training example or a generalization of a number
of examples. For example, the average of the input vectors of several examples or
a rectangle built to cover a number of examples may constitute an exemplar.

4Different DBAs employ different methods for determining the weight of each feature
during distance computation.
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A number of properties of DBAs explain the continuing and growing interest in

these algorithms. The foremost reason for this interest is that DBAs have shown

excellent performance in a variety of applications [LL9O, Lee9l, Fog92, SL92, WD92,

CS93, SLCD93, Low94]. For example, Wettschereck and Dietterich [WD92} have

shown that one DBA, which uses Generalized Radial Basis Functions [PG89], out-

performs all other methods, including multi-layer perceptrons [RJ86} and Decision

Trees [Qui86], in the task of mapping English text to speech. Lowe [Low94] has

obtained similar results with another distance-based algorithm.

A further benefit of DBAs is that exemplars can often be interpreted as pro-

totypical instances of the task learned. For example, exemplars constructed by the

BNGE algorithm introduced in Section 5.4.4 can be directly mapped onto human

readable rules. These rules can then be used to evaluate the classifier or to increase

the willingness of the user to accept the classifier's decision.

An additional advantage of distance-based algorithms is that DBAs generally re-

quire very short training phases. For example, training for nearest neighbor simply

means storing the data. Radial Basis Function Networks can be constructed incre-

mentally [P1a90, 0mo92, CL93, Fri93]. These short training phases result from the

fact that distance-based algorithms are local algorithms. They classify each query

by considering only the local neighborhood of the query. In many cases it is not

necessary to have knowledge of the global structure of a task to make decisions that

are accurate. This ignorance towards the global structure of the task may, in some

cases, lead to inefficiencies. To this date, however, it has not been conclusively shown

that any global algorithm consistently outperforms all local algorithms in any specific

task.

Some of the shortcomings of DBAs are deterioration of performance with in-

creasing dimensionality (the so-called "curse of dimensionality", [Be161, 11ub85]) as

well as sensitivity to the choice of metric used to compute distances and the feature

selection algorithm. There are also computational disadvantages of DBAs such as

high memory consumption and slow classification. Much of the research concerning
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distance-based algorithms including the research reported in this dissertation

revolves around these issues.

Well-developed theory exists for some distance-based algorithms. In particu-

lar, the first nearest neighbor algorithm and radial basis function networks have

been shown to be able to learn any possible function (given a sufficiently large sam-

ple) [DH73, PS93].

Distance-based algorithms have a number of advantages that make this family

of algorithms interesting. As with any algorithm there are also disadvantages. This

study is necessary to better understand how to best utilize these algorithms.

1.1 Objectives of this Dissertation

Despite the fact that distance-based algorithms have been studied in a variety of

fields, our understanding of the behavior of specific distance-based algorithms and the

generalized behavior of the family is still limited. In this dissertation, we will focus

on obtaining a better understanding of (a) the relationship between the first nearest

neighbor algorithm (NN) and the k-nearest neighbor algorithm (kNN), (b) how to

obtain the best performance when employing kNN, and (c) the relationship between

NN, kNN and the nearest hyperrectangle algorithm (NGE). Specifically, the following

issues will be addressed:

When does kNN outperform NN? The kNN algorithm requires estimation of

the parameter k. An understanding of when it is necessary to estimate k, and

when it is better to prefer the simpler NN algorithm, is important to be able

to best apply these algorithms.

How should the value of k be chosen? As with any algorithm with free pa-

rameters, a variety of methods exist for choosing these parameters. In this

dissertation, we will set out to determine the most efficient and reliable ap-

proach for estimating the value of k.



Can the distances of the k nearest neighbors of a query be used to estimate the

query's label more reliably? The most commonly implemented version of kNN

disregards information contained in the distances that the nearest neighbors

have to the query. We will research whether this information can always be

utilized to the advantage of kNN.

How should the distance metric be chosen? Choosing the proper distance

metric is the most important factor influencing the generalization accuracy of

any distance-based algorithm. We will study several algorithms for choosing

the proper feature weights for distance-based algorithms.

Nearest neighbor algorithms minimize the amount of computation that must

be conducted at learning time at the cost of increased classification time. The

nearest-hyperrectangle algorithm (NGE), on the other hand, combines sets of

input examples into hyperrectaugles to obtain a more compact representation

of the training data. We will investigate how the NGE algorithm compares to

NN and kNN, what improvements can be made to the NGE algorithm, and

how it can be made competitive with kNN.

1.2 Approach

The algorithms studied in this dissertation will be compared empirically. Empirical

studies are necessary due to the fact that it is often extremely difficult or impossible,

to obtain any analytical results regarding the behavior of learning algorithms. Many

of the results that are obtained from analytical studies are also difficult to interpret

with respect to real world problems. Further, an analysis of an algorithm's behavior

in a specific domain requires knowledge of the exact characteristics of that domain.

That knowledge is generally not available. Empirical studies, on the other hand,

can be conducted to explore the abilities and shortcomings of an algorithm without

exact knowledge of the underlying distribution of the data. General results can be

obtained from empirical studies if a large number of domains is chosen to compare

algorithms.



An important difference between this empirical study and most other empirical

studies [KBC88, MSTG89, WK89, LL9O, NL91, WD92, 11o193} is that similar algo-

rithms within one family are compared. Comparison of similar algorithms highlights

dissimilarities that can explain observed performance differences. An explanation of

observed performance differences carries substantially more information than merely

stating that a significant difference was or was not observed. A few other empirical

studies notably Mingers [Min89], Aha [Aha9O], and Dietterich et al. [DHB9OJ em-

ployed an approach similar to the one employed here, thereby significantly improving

our understanding of learning algorithms.

1.3 Overview of this Dissertation

This dissertation presents and evaluates a variety of methods aimed at improving our

understanding and the performance of nearest neighbor and nearest hyperrectangle

algorithms.

In Chapter 2, detailed descriptions of the basic algorithms studied in this disser-

tation are presented along with descriptions of other representative distance-based al-

gorithms. Descriptions of the evaluation domains are given in Section 2.2. Chapter 2

also summarizes the experimental methods employed throughout this research and

introduces procedures not directly related to distance-based algorithms such as prin-

cipal component analysis, the mutual information procedure, and cross-validation.

Six synthetic data sets are employed in Chapter 3 to determine the conditions

under which the k-nearest neighbor algorithm is likely to outperform the first-nearest

neighbor algorithm.

Chapter 4 presents a detailed study of the k-nearest neighbor algorithm. It

begins by assuming that a single value of k is sufficient to classify all queries, and

determines the most efficient way to estimate the optimal value for k. Subsequently,

several methods for choosing different values of k for differen queries are proposed

and evaluated. The k-nearest neighbor algorithm with simple majority voting is

compared to kNN with weighted voting in Section 4.2. In the final part of Chapter 4,



the issue of how to pre-process features and to estimate good feature weights is

investigated.

The nearest-hyperrectangle algorithm is studied in detail in Chapter 5 and corn-

pared to the k-nearest neighbor algorithm. A hybrid k-nearest neighbor and nearest-

hyperrectangle algorithm is introduced in Section 5.6.

A summary of the results obtained from the experiments conducted in this dis-

sertation is given in Chapter 6 followed by recommendations regarding the best use

of the k-nearest neighbor and the nearest-hyperrectangle algorithms. Chapter 6 is

concluded with an overview of possible extensions to the work reported here.

A summary of the generalization accuracies obtained with the methods studied

in this dissertation is given in the appendix for reference so that results reported in

this dissertation can be compared to results obtained by other researchers.



Chapter 2
Framework

The specific distance-based algorithms studied in this dissertation and the evalua-

tion domains used are introduced in this chapter. The experimental methods used

throughout the thesis are also explained. Finally, algorithms for pre-processing, clus-

tering, and feature weight computation are specified.

2.1 A Review of Distance-Based Algorithms

The definition of distance-based algorithms (DBAs) is relatively broad and includes a

variety of algorithms. Selected representatives from each sub-group of DBAs are de-

scribed in this chapter. This section introduces and defines all of the major distance-

based algorithms. At the end of the description of each the algorithm, a formal

definition of how each DBA computes its outputs is given. Issues of training are

ignored in this chapter. Studied in detail in this dissertation are three of the most

basic DBAs: the nearest neighbor algorithm, the weighted vote k-nearest neighbor

algorithm, and the nearest hyperrectangle algorithm (NGE). With the exception of

the NGE algorithm, all DBAs presented here have one feature in common: The num-

ber of their internal parameters is either fixed or is determined via cross-validation.

The NGE algorithm incrementally increases the number of exemplars (and therefore

the number of its internal parameters) during training.

2.1.1 Distance-Based Algorithms A Definition

Distance-based algorithms are defined in this dissertation as follows: They are given

a set of classified examples (xi, y), 1 j < L. The input x1 of each example is
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represented by a vector of real numbers (x2 Rn). Assume there are C classes,

then the output is encoded as an integer (yj E N), a binary code E {o, 1}m),

or a one-out-of-rn code (y, E {O, 1} with at most one ij 1). Distance-based

algorithms construct a set of r < L weighted exemplars (ui, v, wi), u E R', v1 E N

or e {o, 1} and w E R where u represents the input of an exemplar (for example,

either a specific training example or a hyperrectangle), v its classification, and w

the weight of the exemplar. Given a query q R and a distance function d, the

DBA output for q depends oniy on q's distance to the exemplars and possibly the

output values stored with the exemplars and weights attached to the exemplars.

Formally: output(q) = f(d(q,ul),d(q,u2),...,d(q,ur),vl,v2,...,vr,wl,w2,...,wr), for

some function f.

2.1.2 The Nearest Neighbor and k-Nearest Neighbor Algorithms

One of the most venerable algorithms in machine learning is the nearest neighbor

algorithm (NN,[FHJ51, Seb62, CH67, Cov68, DH73, CS93], see also [Das9l] for a

survey of the literature). The entire training set is stored in memory. To classify

a new example the distance is computed between the example, and each stored

training example and the new example is assigned the class of the nearest neighboring

example. More generally, the k nearest neighbors are computed, and the new example

is assigned the class that is most frequent among these k neighbors (this will be

abbreviated as kNN). Ties are broken arbitrarily in favor of the class with the smallest

index among the ties. The optimal value of k can be estimated via leave-one-out

cross-validation ([WK91] and Section 2.4.8). Ties during cross-validation are broken

in favor of smaller ks.

Formally: Given a query q, output(q) = majority (vj1, v2, ..., vik)

with Uil,Ui2,...,Uik the k nearest neighbors of q, k 1, uj = y,l j L.
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2.1.3 Weighted Vote k-Nearest Neighbor

This algorithm is identical to the k-nearest neighbor algorithm as described in the

previous section with one exception. The votes of the k nearest neighbors of a

query are given weights inversely proportional to their distances. It will be denoted

by kNNWV. Variations of this method have been discussed since Dudani's initial

paper [Dud75]. Most recently, Wolpert introduced a weighted vote kNN algorithm

which he termed HERBIE [Wo189], and Aha discussed a simple form of the algorithm

in his dissertation (IB1 [Aha9O]).

All these algorithms compute the output corresponding to a given input from a

weighted sum of its k nearest neighbors in the stored set. The weight of each of the

k neighbors is inversely proportional to the normalized distance from the instance to

be classified.

Formally: Given a query q, output(q) = c s.t. 1Vkd( is maximal, with
>I= 1/d(u, ,q)

kl,k2,k3,...,kk indices of the k nearest neighbors of q, u3 = xj,v = y3,l j L,

and (vk = c) 1 if the class of vk1 is equal to c and 0 otherwise, c = l,...,C. To avoid

division by 0, 1 was added to all distances computed in domains that may contain

several identical examples (Led Display and Voting domains).

2.1.4 Nested Generalized Exemplar Theory

Salzberg [Sa191] described a family of learning algorithms based on nested generalized

exemplars (NGE). In NGE, an exemplar is a single training example, and a gener-

alized exemplar is an axis-parallel hyperrectangle that may cover several training

examples. These hyperrectangles may overlap or nest. The NGE algorithm grows

the hyperrectangles incrementally as training examples are processed.

Once the generalized exemplars are learned, a test example can be classified

by computing the distance between the example and each of the generalized exem-

plars. If an example is contained inside a generalized exemplar, the distance to that

generalized exemplar is zero; otherwise the distance between the example and the

generalized exemplar is its (weighted) Euclidean distance to the closest side of the
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exemplar. The class of the nearest generalized exemplar is output as the predicted

class of the test example.

Each hyperrectangle5 H describes a region belonging to exactly one output class

and is defined by two exemplars which are located at the upper right hand (u')

and the lower left hand corners 1' lower\
ISUH ), respectively.

An instance is classified by the smallest hyperrectangle it falls into, or by the

hyperrectangle it is closest to if it is not contained in any hyperrectangle.

Formally: Given a query q, output(q) = vH with

i upper Iower\\1
5

argmin(areau , Uj , V U U qj <u2T, 1 jH
argmin(d(q, upper Uer)) otherwise

where

4I
lower + Iuw q31+)2d(q,uf,u )Wu 1+

j=1

and IxI+ = 0 V x < 0 and IxI+ = x otherwise.

The following distance-based algorithms are not studied in this dissertation. These

algorithms are described here to show the generality of the definition given in Sec-

tion 2.1.1 and to give the reader an impression of the wide range of algorithms that

we consider distance-based.

2.1.5 Variable-Kernel Similarity Metric Learning

Lowe [Low94] suggests placing a Gaussian kernel over each query to determine its

output. The k neighbors nearest to the query are determined (Lowe uses k = 10).

The average distance of the query to its k/2 nearest neighbors is used to determine

the width of the Gaussian at each query point. Each neighbor's distance from the

query is passed through the Gaussian kernel to obtain the weight of that neighbor's

vote when the query's class is determined. Lowe uses a gradient descent method to

5j have artificially reworded the definition so that it closely matches the descriptions
of the other algorithms. Note that two exemplars HuPPer and H10r) are involved
in the distance computation.
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learn the similarity metric (feature weights), and a single, global scaling factor to

scale the width of each of the Gaussians.

Formally: Given a query q, output(q) = c s.t.
n(v=c) maximal with n =15

ni

exp(d(q, u)/2cr), and (vk = c) = 1 if the class of vk, is equal to c and 0 otherwise,

= 1,...,c.

2.1.6 Learning Vector Quantization

Kohonen introduced the notion of self-organizing feature maps as a model of the

brain's ability to form topology-preserving mappings of sensory inputs. To quote

Kohonen, "Visual, somatosensory, etc response signals are obtained in the same

topographical order on the cortex in which they were received at the sensory or-

gans." [Koh89}.

Learning Vector Quantization (LVQ) algorithms are supervised learning algo-

rithms developed by Kohonen [Koh9Ob] to improve the classification accuracy of

self-organizing maps. The class of an instance is determined by its nearest neighbor

(codebook vector) within the feature map. LVQ differs from simple nearest neighbor

classification in that supervised learning is employed to find good locations for the

codebook vectors. Generally, the number of codebook vectors is chosen to be smaller

than the number of training examples. The classification procedure employed by

LVQ is identical to that of the basic first-nearest neighbor algorithm.

Formally: Given a query q, output(q) = v with u the nearest neighbors of q, u

generally to x3 Vj, i and r L with r the number of codebook vectors and L the

number of training examples.

2.1.7 Radial Basis Functions

The task of learning from examples can be seen as finding an interpolation or approx-

imation function that maps a point in the n-dimensional input space onto a point in

the rn-dimensional output space. In other words, the learning algorithm must find

a function f with: f :
'Jn 'j,m In the case of interpolation, one basis function
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(generally nonlinear) is centered at each training point, and the output is computed

as a weighted sum of these basis functions. Broomhead and Lowe [BL88] reviewed

the relation between multivariable functional interpolation and adaptive networks.

They argued that interpolation often overfits the data and that better generalization

could be achieved by using fewer basis functions than there are data points. In that

case, the training data is only approximated.

Radially symmetric Gaussian basis function (RBF) networks, as proposed by

Moody and Darken {MD88}, are the most commonly-used radial basis function net-

works.
d(q,u )2

Formally: Given a query q, output(q) = >I wk e 2 where r is the num-

ber of basis functions and the uk are either a random subset of the training set or

are obtained via application of an unsupervised clustering algorithm (Section 2.4.7)

to the training set. Alternative methods for constructing RBF networks have been

proposed by many authors ([P1a90, Fri93, CL93, XK093]).

2.2 Domains

The performance of the algorithms introduced in Section 2.1 will be evaluated in

a number of different domains. Most domains chosen for this study have been the

object of empirical evaluation by other researchers. This ensures that it will be

possible to compare the performance of distance-based algorithms described in this

dissertation to other families of algorithms.

The assumption that the results obtained from this study will be of value for

other domains is justified for two reasons. First, the domains were chosen without

consideration of whether they were well-suited for the algorithms tested (with the

exception of the synthetic data sets described below). Second, the relatively large

number of domains and the fact that these domains differ in complexity, size, and

noise levels should insure the robustness of any conclusions drawn.

The domains considered include two extremely difficult problems, the tasks of

mapping English text to speech and of recognizing isolated spoken English letters.
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Six data sets were constructed to test specific hypotheses about the behavior of the

algorithms studied in a controlled environment. Advantages of artificial domains

over "real world" data sets are that the level of noise, number of relevant features,

and shape of the decision boundaries of these domains are exactly known before

experimentation. Artificial data sets can therefore be used to evaluate the bias of

an algorithm and to determine its behavior with respect to increasing levels of noise.

Eleven additional domains were obtained from the University of California at Irvine's

repository [MA91] of machine learning databases. See [Aha9O] for specific details.

In the remainder of this section a short description of each of the domains is

given. Characteristic features of the data sets used in this dissertation are also

summarized in Table 2.1.

Synthetic Data Sets Six synthetic data sets were constructed so that we would

be able to evaluate the different behaviors of the algorithms in domains with prop-

erties that were exactly known (Figure 2.1). The quadrants and banded tasks have

axis-parallel decision boundaries, while the diagonal task has a diagonal decision

boundary. The decision boundary in the sinusoidal task is a sine curve, and the ra-

dial task consists of 5 nested rings of examples from different classes. The gaussian

task consists of four Gaussian distributions (variance 0.025).

Fisher's Iris Data Set This data set consists of four measurements made by

E. Anderson on 150 samples of three species of iris. Fisher [Fis361 used this data set

in his classic paper on discriminant analysis. This task is relatively easy, since the

species iris setosa is linearly separable from the other two species, and there is very

little overlap between the species iris versicolor and iris virginica.

Wine Recognition Data These data are the results of a chemical analysis of

wines grown in a single region in Italy, but derived from three different cultivars.

The analysis determined the quantities of 13 constituents found in each of the three
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Figure 2.1. The distribution of examples from the different classes in several 2-di-

mensional artificial data sets. The quadrants, diagonal, arid sinusoidal tasks are 2

class problems. The banded task has 10 classes, the radial task consists of 5 concentric

rings and the gaussian task contains examples drawn from 4 Gaussian distributions

(variance = 0.025). Different symbols indicate different classes. Lines represent the

decision boundaries used to label the data.

types of wines. The task is to determine from the constituents the cultivar that was

used to grow the wine.

Glass Identification Database The study of classification of types of glass was

motivated by criminological investigation. At the scene of the crime, the glass left

can be used as evidenceif it is correctly identified! Measurements of 9 chemical

compounds extracted from the glass found at the scene of the crime must be used to

identify the type of the glass.
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Led-7 and Led-24 Display The Led-7 and Led-24 Display domains are artificial

domains introduced by Breiman et a! {BFOS84]. Both domains have seven boolean

inputs indicating whether light-emitting diodes are on or off. Seventeen irrelevant

features have been added to Led-7 to create the Led-24 domain. Each attribute value

is corrupted with a probability of 0.1. The task is to classify the input as one of the

ten digits.

Waveform-21. (40) The Waveform-21 (40) domain is also a noisy artificial domain

that was designed by Breiman et al. [BFOS84]. Each instance of this domain contains

21 real-valued attributes (Waveform-40 has an additional 19 irrelevant attributes).

Three waves are defined. Each instance is a linear combination of 2 waves, and the

classification task is to determine to which of the 3 possible combinations an instance

belongs.

Cleveland and Hungarian databases The Cleveland and Hungarian databases

(Detrano et al. [DJS89}) contain cardiological diagnoses. Each input vector de-

scribes data obtained from a patent. The task is to determine whether the patient

suffers from heart disease. About 20% of the features in the Hungarian database and

less than 1% of the features ill the Cleveland database are missing.

Congressional Voting database The Congressional Voting database contains

little noise; some of the 16 boolean inputs are irrelevant. The target of this applica-

tion is to determine the political party of United States Congressional representatives

from their voting records. This domain is linearly separable, although some input

features are missing for some examples.

Isolated Letter Recognition This database contains letters of the English alpha-

bet spoken in isolation. It was recorded at the Oregon Graduate Institute [CMF9O].
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Table 2.1. Characteristics of domains used as evaluation domains (modified
from [Aha9O}). B = Boolean, C = Continuous, N = Nominal, S = Symbolic.

Domain Training

Set Size

Test

Set Size

Number and Kind

of Features

Number of

Classes

Quadrants 350 150 2 C 2

Diagonal 350 150 2 C 2

Banded 350 150 2 C 10

Sinusoidal 350 150 2 C 2

Radial 350 150 2 C 5

Gaussian 350 150 2 C 4

Iris 105 45 4C 3

Wine 125 53 13 C 3

Glass 150 64 9 C 7

Led-7 Display 200 500 7 B 10

Led-24 Display 200 500 24 B 10

Waveform-21 300 100 21 C 3

Waveform-40 300 100 40 C 3

Cleveland 212 91 5 C, 3 B, 5 S 2

Hungariall 206 88 5 C, 3 B, 5 S 2

Voting 305 130 16 B 2

Isolet 1040 1040 617 C 26

Letter Recognition 16000 4000 16 N 26

Letter RecognitionBR 1000 500 16 N 2

NETtalk 1000 1000 7 S 140
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Each input feature encodes the value of a specific time frame of the waveform sam-

ple obtained from the speaker. The entire database contains two productions of

each letter by 150 speakers. A subset of 40 speakers was used in this dissertation.

Cross-validation procedures (Section 2.4.8) have been modified to ensure that cross-

validation and testing were conducted on records from distinct speakers.

Frey and Slate's Letter Recognition database This data set was created by

D. Slate. Frey and Slate used it to evaluate several Holland-style adaptive classi-

fier systems [FS91]. The data set consists of randomly permuted black-and-white

rectangular pixel displays of the 26 capital letters in the English alphabet. The

original images were obtained from 20 different fonts. Since this data set is rather

large (Table 2.1) only the letters B and R of this domain were used to train and

test the classifiers in some experiments. Whenever only these two letters are used,

the subscript BR will be appended to the name of the data set. Initial experiments

have shown that these two letters are among the two letters that nearest neighbor

algorithms confuse most often.

NETtalk The goal of the NETtalk task (Sejnowski & Rosenberg [SR87]) is to learn

to pronounce English words by studying a dictionary of correct pronunciations. In

this task, each letter to be pronounced is presented to the classifier together with

the three preceding and succeeding letters in the word. Output is the phoneme and

stress that constitutes the pronunciation of the letter.

2.3 Experimental Methods

To measure the performance of the distance-based algorithms, the training set/test

set methodology was employed. Each data set was randomly partitioned into a

training set containing approximately 70% of the examples and a test set containing

the remaining examples (see also Table 2.1). After training on the training set, the
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percentage of correct classifications on the test set was measured. The procedure was

repeated a total of 25 times to reduce statistical variation. In each experiment, the

algorithms being compared were trained (and tested) on identical data sets to ensure

that differences in performance were due entirely to the algorithms. We followed the

same procedure to generate learning curves, except that oniy a subset of the training

set was used. The test set along each learning curve was constant, while each larger

training set contained all smaller ones.

We have reported the average percentage of correct classifications and its stan-

dard error. Two-tailed, paired t-tests were conducted to determine the level of sig-

nificance at which one algorithm outperformed another. A performance difference

was considered significant when the p-value was smaller than 0.05.

Cross-validation (see Section 2.4.8) was performed to estimate optimal settings

for free parameters such as k for kNN, M in localKNN (Chapter 4), and the number

of seeds for NGE (Chapter 5). Whenever computationally possible, leave-one-out

cross-validation [WK91] was employed.

2.4 Other Procedures

2.4.1 Error Correlation Studies

Absolute percentage point differences in classification accuracies on a set of test

examples are often not sufficient to determine whether two algorithms share the

same strengths and weaknesses. Error correlation studies can often be used to find

subtle differences among different methods. If the error correlation turns out to be

very tow for a set of algorithms, it indicates that a hybrid of these algorithms might

be able to overcome some of the errors. A high correlation, however, indicates that

the algorithms compared have a very similar bias. In the latter case, other concerns

aside from classification accuracy should be used to decide on which algorithm to

use. Venn-diagrams [Ven94] can be employed to compare the correlation of up to

four methods. Correlation can be expressed in a table when more than four methods

are compared.
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2.4.2 Preprocessing of Data with a Projection Pursuit Method

We considered applying projection pursuit methods to the data to reduce input

dimensionality and decorrelate input features. Since projection pursuit methods

compute linear projections, they may fail to preserve the information contained in

the training data if it contains highly nonlinear structures (Huber [Hub85]). Huber

lists the method of principal component analysis as a classical implementation of a

specific projection pursuit method. Hence, rather than employing general projection

pursuit, we employed only principal component analysis.

2.4.3 Principal Component Analysis

Flury {F1u88] writes:

Principal component analysis can be looked at from three different points of view:

1. It is a method of transforming correlated variables into uncorrelated ones.

2. It is a method for finding linear combinations with relatively large or relatively

small variability.

3. It is a tool for data reduction.

The procedure for obtaining the principal components6 of a p x n matrix X of

n p-dimensional samples can be summarized as follows: Let ' be the covariance

matrix of X. By spectral decomposition, can be decomposed into = 13A/9T

where 3 (j3, /32, ..., /3,) is an orthogonal p x p matrix and A diag(Ai, A2, ..., A1,) is

a diagonal matrix of eigenvalues with A A2 ... A1,. Then U = /3TX contains

the principal components of X and has covariance Cov(U) E[UUT] = A

which indicates that the principal components are pairwise uncorrelated.

Principal component analysis does not assume a specific distribution of the data,

such as a normal distribution. However, it will give best results if the data distri-

bution is elliptical but not circular [Mor76]. Principal component analysis can also

6This technique is known as the Karhunen-Loéve expansion in the communication
theory literature.
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be described as a method for finding a new coordinate system such that the sums

of the squared distance of each point to its projections on successive axes are mini-

mized [PeaOl]. Although the principal components are ordered with respect to their

variation in the input data, the variable with the highest predictive relevance may

be the variable with the lowest variation in some cases [Ksb72J.

The pca-program by A. Weigand from the International Computer Science In-

stitute was used in this dissertation to compute principal components.7

2.4.4 Determining Weights by Mutual Information

The purpose of a feature weight mechanism is to give low weight to features that

provide no information for classification (e.g., very noisy or irrelevant features), and

to give high weight to features that provide reliable information. Hence, a natural

quantity to consider is the mutual information [Sha48, McG55} between the values of

a feature and the class of the examples. The mutual information between two vari-

ables is defined as the reduction iii uncertainty concerning the possible values of one

variable that is obtained when the value of the other variable is determined [CT91].

In this research, we want to determine the amount of information ("reduction in un-

certainty") that knowledge of a feature's value yields in respect to the classification.

If a feature provides no information about the class, the mutual information will be

zero. If a feature completely determines the class, the mutual information will be

proportional to the log of the number of classes (assuming examples from different

classes have equal frequency). The mutual information between two discrete random

variables is defined as follows:

I(X;Y) = H(X) H(X I Y) = p(x,y)log
x,y P PY

where H(X) is the entropy of a random variable X with probability mass func-

tion p(x) and H(X) = >p(x) log2p(x). In our case, we want to compute the

7The program can be obtained via ftp from icsi-ftp.berkeley.edu.
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mutual information between class C and feature F3. The probability distributions of

C and F are in general unknown, but can be estimated from the training data. Let

e p(C c) be the probability that the class of any training example equals c.

p(F3 = f) be the probability that the value of the symbolic or nominal feature

F3 of any example equals f.

p(C c A F = f) be the joint probability of these two events.

nClasses be the number of classes.

nFV be the number of distinct values feature F3 can assume.

Then the mutual information between feature F3 and the classification C is defined

as:

nFV nClasses p(C = c A F3 = f)
I(C, Fj) = p(C = c A F3 f) c). (F = f)1=1 c=1

For continuous features, we must compute the mutual information between a

discrete random variable (the output class) and a continuous random variable (the

feature). Assume feature F has density 1(x) and the joint density of C and F3 is

f(x, y). Then the mutual information between C and F3 can be computed as follows:

nClasscs f(x, C = c)
og dxi(C,)=J E f(x,c). f(x).p(C=c)c1

A density estimation technique must be employed to estimate the probability

distributions f(x) and f(x, C = c) for continuous feature F,. The kth nearest neigh-

bor density estimate, as described by Silverman [Si186], was used in this research.

This method estimates the density at a certain location from the distance of the kth

nearest data point from this location. Formally, the density f(x) at location x is

estimated as:
k1

f(x)
2Ndk(x)

where N is the sample size and dk(x) is the distance of the kth nearest neighbor

from location x. Initial experiment showed that the value 25 of k gave good results
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in most applications. The integral f, was numerically approximated by computing

the value of f(x) for values of x that varied from 0 to 1 at steps of size 0.002.

The probabilities were estimated from the training data, and missing values

were ignored. Note that this feature weight mechanism assumes independence of

the features and may therefore lead to inferior performance in domains with highly

correlated features.

2.4.5 Distance Metrics

The most commonly used metric for distance computation is Euclidean distance, also

called the L2-norm. This metric was used in all experiments throughout this research

unless otherwise noted. Alternative metrics considered were weighted Euclidean

distance, where the weights were either learned (Section 4.3.3), computed via the

Mutual Information procedure (see also Section 2.4.4), or set to the eigenvalues

computed via principal component analysis (Section 2.4.3). The weighted L norm

between two vectors, q and u, is formally defined as:

where

L(q,u) = (w x

qj u2 if feature i is continuous or nominal

d(q, u) = 1 if feature i is symbolic and qj equals u

0 otherwise

denotes the positive p-th root.

2.4.6 Missing Features

Some of the input features in the Cleveland and Hungarian databases as well as in the

Congressional Voting database are missing. It was necessary to modify all algorithms

so that they dealt properly with missing features. We adopted Aha's Ignore [Aha9O,

Section 5.2.1] method for handling examples with missing features. This method will

ignore any missing features when computing the distance between a given input and
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the exemplars. To distinguish missing features from identical features, the distance

between two vectors is divided by the square root of the number of features which

are known in both vectors at the same time. Formally:

d(q,'a)
/number of features i for which q, and u1 are known

where d(q, u) = 0 whenever either qj or u are unknown and d(q, u) = 00 whenever

there is not a single feature of q and u known simultaneously.

The reader should note that the performance of any inductive learning algorithm

may change substantially in domains where a large number of features is missing, if

a different missing-values policy is employed. See [Aha9O] for a comparison of three

different missing-values policies.

2.4.7 Clustering Algorithms

The K-Means Algorithm The k-means algorithm [Mac67] is one of the most

widely used unsupervised clustering algorithms in machine learning. The algorithm

finds centers of a user-defined number of clusters. Each cluster center ("mean") is

initialized to one random input example. The algorithm iteratively finds the nearest

cluster center for each new example and replaces that center by the weighted average

of that example and the old center. The weight of the center is given by the number

of examples that have been previously averaged into that center.

Rival Penalized Competitive Learning Rival Penalized Competitive Learning

(RPCL, [XK093}) is a straightforward modification of the well known k-means

clustering algorithm [Mac67]. Cluster centers in RPCL are initialized outside of

the input range covered by the training examples. The algorithm then moves only

those cluster centers that are needed into the range of input values, and effectively

eliminates the need for cross-validation on the number of clusters in k-means. In

this dissertation, a simple version of RPCL with a fixed number of initial clusters



and fixed learning rates was employed. The number of initial clusters was always

set to 25, an arbitrarily chosen number that was larger than the expected number

of clusters in all cases. A larger number should be used if it is expected that more

clusters might be present. The learning rates (rate of movement of nearest cluster

center towards training example) and cr (rate of movement of runner-up cluster

center away from training example) were set to 0.05 and 0.002, respectively. These

values were employed by Xu et al. [XK093}. Other values might result in faster

convergence and/or a different number of active cluster centers. Hence, if learning

time or the number of active clusters are of concern, then these values should be

determined experimentally.

2.4.8 Cross-validation

Cross-validation [Sto74, WK91] is a widely used method for estimating optimal values

for free parameters. The need for cross-validation stems from the fact that most

learning algorithms will overfit if all the training data is used to estimate values for

free parameters (see also [GBD92]). Overfitting means that the learning method will

learn overly specific (coincidental) features of the training set. This overly specific

"knowledge" will then impair the method's ability to generalize beyond the training

data.

The basic idea behind cross-validation is to set aside parts of the training data,

train the classifier with different settings of the free parameters on the remaining

training data, and then to test all resulting classifiers on the data set aside previously.

The setting of free parameters which leads to the best performance on the cross-

validation test set is then used to train the final classifier on all training data. One

extreme form of cross-validation is leave-one-out cross-validation. Here each training

example is set aside in turn, a classifier is constructed for all remaining examples,

and then tested on the single example set aside. This method is the computationally

most expensive cross-validation method, since N classifiers must be constructed if

there are N training examples. On the other hand, the method uses almost all
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training data to estimate free parameters, and therefore, should give a very good

estimate.

Less computationally expensive cross-validation methods involve setting aside

more than one example at a time, which reduces the number of times the classifier

must be constructed. In k-fold cross-validation, for example, the training data is

divided into k data sets, with each set containing N/k training examples. Leave-

one-out cross-validation is equivalent to N-fold cross-validation. It has been recom-

mended [BFOS84} to evenly divide the training examples from the different classes

among the k partitions used in k-fold cross-validation when k> 1 (this procedure is

called stratified cross-validation).

Weiss [Wei9l] has shown in experiments with first-nearest neighbor and third-

nearest neighbor that two-fold cross-validation may give estimates superior to those

obtained with leave-one-out cross-validation for very small samples. The issue of

which cross-validation method is most appropriate for kNN is investigated in Sec-

tion 4.1.1. A computationally efficient alternative to k-fold cross-validation is what

will be termed one-fold cross-validation throughout this research. In one-fold cross-

validation, one subset of the training data (usually around 20-25% of N) is set aside

for cross-validation, and the remaining training examples are used for training. The

classifier is trained on that sub-training set and tested on. the cross-validation set for

different settings of the free parameters until the best setting of the free parameters

is found.

Cross-validation may also be used to select a classification method among a set

of alternatives [Sch93b]. A computationally more efficient alternative to leave-one-

out cross-validation is suggested by Maron & Moore [MM94}. Maron & Moore use

statistical means to estimate when one classifier can be believed to be superior to an-

other. When applied to a group of classifiers (for example, kNN with all the different

instantiations of k), the classifiers that perform very poorly can be eliminated after a

few cross-validation examples have been tested. More cross-validation examples are

then tested until either only a single classifier remains or the estimated error rate is

believed to be within a certain range of the true error rate.



Chapter 3
An Evaluation of Nearest Neighbor Algorithms

The nearest neighbor algorithm is one of the oldest, most widely used, and success-

ful machine learning algorithms. It has been studied in a variety of environments

since Fix and lodge's initial paper [FHJ51}, and innumerable variations of the ba-

sic algorithm exist [Das9l}. This chapter is devoted to an in-depth study of the

nearest neighbor algorithm. Experiments described in this chapter were designed to

determine the effect of the number of neighbors that are used to classify a query. It

is known that cross-validation on the number of neighbors used to classify a query

can lead to improved and/or more robust performance of the nearest neighbor al-

gorithm. However, it is not known unequivocally under which circumstances the

k-nearest neighbor algorithm (kNN, k chosen via leave-one-out cross-validation) per-

forms better than the first-nearest neighbor algorithm (NN, k = 1).

The k-nearest neighbor algorithm is generally considered to give classification

accuracies superior to the first nearest neighbor algorithm. Although a variety of

empirical results that support the correctness of that assumption exist [SD86, CU87,

JRLW87, Aha9O], there are also a few known cases where the first nearest neighbor

algorithm performs as well or better than kNN where k is determined via cross-

validation [Hol93, SLCD93]. Theoretical results indicate that the first nearest neigh-

bor algorithm can PAC-learn [Val84] any function that can be represented by the

union of a finite number of closed hyper-curves of finite size [AKA91]. Cover

Hart [CH67] show that for any size of the sample (training) set there exists no value

of k> 1 that has a consistently lower error rate than k = 1 against all distributions.

However, little is known about the causes of the performance differences between

NN (Ic = 1) and kNN (k chosen via leave-one-out cross-validation) that are often
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observed for specific distributions. Here are two hypotheses that may explain why

kNN's performance is often superior to NN's:

Hi. Noisy data necessitate large values for k.

H2. The performance of kNN is less sensitive to the choice of distance function used.

The experiments presented below were designed to test these two hypotheses. The

six synthetic data sets described in Section 2.2 were used as evaluation tasks.

3.1 Hi: Noisy Data.

Hypothesis Hi states that in domains where data points are noisy, larger values of

k could be helpful in filtering out some of the noise. Consider, for example, the

picture in Figure 3.1. Example b is noisy. The first nearest neighbor algorithm will

misclassify point a, because b is its nearest neighbor. With k = 3 or k = 5, the other

neighbors c, d, e and f can "out-vote" b so that a is correctly classified. Distance-

based algorithms are susceptible to at least three distinct types of noise: class noise,

feature noise, and irrelevant features. Three sets of experiments were conducted to

test hypothesis Hi, and to determine whether the three kinds of noise had different

effects on the nearest neighbor algorithm.

c@

bO®a

Figure 3.1. An example of a data set with one noisy example. Example b is noisy.
First nearest neighbor will misclassify point a, while kNN with ic = 3 will correcly
classify a since d and e "out-vote" b.
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Figure 3.2. The performance of NN and kNN in response to increasing levels of
class noise (350 training examples, 150 test examples).
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3.1.1 Class Noise

In the first set of experiments, class labels of training (and test) examples were

changed with increasing probability. In the noise-free case, leave-one-out cross-

validation leads to improved performance only in the gaussian task (Figure 3.2,

0% class noise), which is the only task where regions with examples from different

classes overlap. In the quadrants and diagonal tasks, the performance of kNN is even

inferior (p < 0.05, Table A.l) to NN's. This indicates that the performance of kNN

might be improved if the choice of k is biased more strongly toward small values for

k (see also Section 4.1.1). For moderate amounts of class noise, cross-validation on

k leads to significantly superior performance in all tasks except the sinusoidal task.

Why such different effects can be observed in different tasks when class noise is

added can be explained by the following argument: If all examples in one class are

well enough separated from all examples of other classes, then k could be increased
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Figure 3.3. The effect of different values of k on the performance of the nearest
neighbor algorithm in synthetic data sets (350 training examples, 150 test examples,
noise-free).

to the number of training examples of that class with the result that any amount of

class noise of less than 50% could be filtered out. However, if (noise-free) examples

from different classes are very close together, then k must be kept small to avoid

random guessing near the decision boundaries. Hence, a necessary condition for

kNN's ability to filter out class noise is that an increase in the value of k leads to

a degradation in performance in the noise-free case that is less than the amount

of class noise present. In the quadrants, diagonal, and gaussian tasks, any value

of k between 1 (3 for the gaussian task) and 55 (largest value tested) would lead

to a performance indistinguishable from the best observed performance (Figure 3.3,

top). In these tasks, class noise can therefore be compensated for to the extent that

all non-perturbed test cases that would be classified correctly in the noise-free case

would still be classified correctly. In the banded and radial tasks, k could not be

increased beyond 5 without a significant loss in predictive accuracy. With such a

small value, oniy a few noisy training exemplars can be filtered out, which explains

why kNN was not able to achieve as significant a performance improvement in these

tasks as it achieved in the quadrants, diagonal, and gaussian tasks. The decrease
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in performance for k-values between 2 and 13 in the sinusoidal task is even more

significant than in the banded and radial tasks. In this task, performance improves

again when k is larger than 13. This behavior is due to the distribution of examples

from the two classes in the sinusoidal task (see also Figure 2.1 and below).

I11 /

97.2%

/1/47
'I.,

'p

Figure 3.4. The performance of kNN (vertical axis) for different values of k (hori-
zontal axis, k = 1, 3, 5, 9, 13, 17, 21, 25, 31, 43, 55) in the quadrants task (noise-free).
Sizes of training sets were as follows: 5, 10, 15, 20, 25, 30, 35, 40, 50, 100, 200, 250,
300, 400, 500. Test set size was kept fixed at 150 examples.

The results displayed in Figures 3.2 and 3.3 were obtained from experiments

with the standard size data sets as reported in Table 2.1. Experiments with various

sizes of training sets yielded the same qualitative results with one exception. For very

small training sets (< 100 examples), k 1 always leads to the best performance,

independent of the task or level of class noise (Figures 3.4 through 3.7).

['1j.
. - -

A'WA_.

Figure 3.5. The performance of kNN for different values of k in the quadrants task
in the presence of different levels of class noise. Values on axes are as indicated in
Figure 3.4.

Figure 3.6 indicates that the "valley" shown in Figure 3.3 for the sinusoidal task

can be observed for all training sets with more than 100 examples. This "valley"
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Figure 3.6. The performance of kNN for different values of k in the sinusoidal task
in the presence of different levels of class noise. Sizes of training sets were 5, 10, 20,
50, 100, 200, 350, 500, 850. All other values are as indicated in Figure 3.4.

is caused by the shape of the decision boundary in the sinusoidal task (see also

Figure 2.1). The performance in this task initially degrades as k is increased, since

an increasing number of examples from the neighboring two "peaks" are used to

classify the query. It improves again when k becomes large enough that examples

from the four neighboring "peaks" are used. The valley moves toward larger values

of k as the training sets become larger (Figure 3.6). This indicates that for large

training sets (> 500 examples), the sinusoidal task should behave as the banded and

radial tasks, which it does.

Similar results were also obtained when kNN and NN were trained and tested on

the letters B and R of the Letter Recognition domain. In this task, kNN outperforms

NN only if the training set is relatively large and moderate amounts of class noise

are present in the data (Figure 3.7). For very large amounts of noise, performance

of both kNN and NN deteriorates rapidly in this domain as well as in all of the

constructed tasks. The result is random guessing at a class noise level of 100/n%

where n is the number of classes.

To summarize, kNN can overcome moderate amounts of class noise if the centers

of different clusters of the noise-free data for the different classes are relatively well

separated when compared to their intra-cluster variances, and as long as the sample

size is moderate-to-large.
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Figure 3.7. Percentage point performance differences between kNN and NN when
trained on various combinations of training sets sizes and class noise levels. The
letters B and R of the Letter Recognition domain were used as the evaluation domain.
Test set size was kept fixed at 500 examples.

3.1.2 Feature Noise

In the second set of experiments, input feature values were randomly perturbed to

simulate noisy feature measurement. A random number within the range indicated in

the legend of Figure 3.8 was added to each of the initial input features.8 Addition of

feature noise has an effect similar to class noise on the performance of kNN and NN:

performance drops with increasing amounts of noise (Figure 3.8). In experiments

with moderate amounts of feature noise, kNN also significantly outperformed NN in

most tasks. Two results, however, stand in contrast to what we observed in the class

noise experiments: a) There was no level of feature noise where kNN significantly

outperformed NN in the banded task. b) In the sinusoidal task, kNN outperformed

NN for nearly any amount of feature noise and all training sets with more than 50

training examples. This varying behavior can be explained by the different effects

8llowever, feature values were not permitted to fall outside the range [0.. .1].
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Figure 3.8. The performance of NN and kNN in response to increasing levels of
feature noise. The value of x on the horizontal axis indicates that random values in
the range [x. . . + x} were added to the original features.

class noise and feature noise have on the data. Feature noise can be interpreted

as class noise that is restricted to the vicinity of decision boundaries, since feature

noise applied to examples distant from the decision boundaries cannot move the

examples across a decision boundary. Feature noise applied to examples close to the

decision boundary, on the other hand, can move the example to the other side of the

boundary, which produces the same effect as flipping the class label of an example

on that side of the decision boundary.

If the relative distance from the decision boundary of a significant number of

examples from one class is large, then large values of k can be used to eliminate the

detrimental effects of some of the "invading" noisy exemplars from other classes. If,

on the other hand, there are no regions that remain noise-free when feature noise

is added, then larger values of k will quickly reach into areas with examples from

other classes. This effect is most apparent in the banded task with its narrow bands
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that contain examples from the different classes. The kNN algorithm is not able

to outperform NN in this task, since addition of feature noise causes the bands

containing clean data to become even narrower. A large value of k would then very

likely include a large portion of noisy exemplars.

Additional support for this is provided by the following experiment: When the

banded task was changed to a two class problem (where the two classes occupied

alternating bands of data (Figure 2.1)), then kNN also never outperformed NN in

the presence of class noise. This shows clearly that feature and class noise will have

similar effects in tasks where data are distributed in a highly non-Gaussian manner.
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Figure 3.9. The classification labels assigned to 500 test cases in the sinusoidal
task by the nearest neighbor algorithm. Classifications were computed with k = 1
(58.0% correct) in A and with k = 55 (66.6% correct) in B. Random values in the
range [-0.1 .. . + 0.1] were added to input features of training and testing cases (350
training examples). The original decision boundary is also plotted for comparison
(dotted line).

The different behavior of kNN for class and feature noise in the sinusoidal task

is due to the fact that significantly more examples belong to class 1 than to class

2 in the upper portion of the input space due to the shape of the sine curve (and

vice versa for the lower portion of the input space, Figure 2.1). Cross-validation on k

selected values of k between 13 and 67 (median 50) for feature noise in the range 0.1

to +0.1. With such large values of k, the decision boundary is a jagged line through

the middle of the input space (Figure 3.9). The narrow ends of the sine curve are
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therefore smoothed out. This smoothing has a beneficial effect, since many of the

examples in these narrow tips are noisy. Such smoothing did not lead to improved

performance in the presence of class noise, because, in addition to the few examples

within the tips of the sine curve, all data points that were mislabeled due to class

noise were also misclassified.

Only small differences in performance between NN and kNN are observed in the

gaussian task, since in this task feature noise has the effect of generating regions

containing examples with random class labels in between the four cluster centers.

These regions grow as the level of feature noise is increased. Hence there are only

regions that are either relatively noise-free or nearly entirely random. No algorithm

can make a good prediction in regions with completely random examples, and previ-

ous experiments have shown that NN and kNN will give nearly identical predictions

in noise-free regions. A similar argument holds also in the quadrants and diagonal

tasks. This argument qualifies the statement made previously: Although it would

be possible to increase the value of k in the quadrants, diagonal, and gaussian tasks,

there is little to gain from doing so, since, in the presence of feature noise, regions

either contain nearly noise-free examples or nearly entirely noisy examples. In other

words, an increase in k has the effect of "sacrificing" small pockets of data belonging

to different classes so that the larger areas can be assigned to the proper class in the

presence of noise. Naturally, this process only succeeds if significantly more examples

can be classified correctly within the larger, smoothed region than must be sacrificed

to obtain that larger region.

3.1.3 Irrelevant Features

The third set of experiments involved addition of irrelevant features to the original

features of the data sets (Figure 3.10). Irrelevant features were given uniformly

distributed random values. Results are very similar to those obtained in the feature

noise experiments with one deviation: Large differences in performance are observed

in tasks with relatively large regions that are dominated by examples from a single
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Figure 3.10. The performance of kNN and NN in response to increasing numbers
of irrelevant features added to original data points (350 training examples, 150 test
examples).

class (the diagonal and gaussian tasks). The effect is less pronounced in the quadrants

task than in the gaussian task, since in the quadrants task more examples are located

close to the decision boundary than in the gaussian task. Consider, for example, the

two pictures in Figure 3.11. The picture on the left side exemplifies the quadrants

task. Example c is misclassified by any value of k when the irrelevant feature is added.

However, in the picture on the right hand side, which exemplifies the gaussian task,

example c can be classified correctly if k = 3. This indicates that larger values of k

can be used to compensate for the negative effects of irrelevant features in domains

where most examples are well separated from the decision boundary.

To summarize, there is considerable evidence that the often observed superior

performance of kNN over NN is due to the presence of moderate amounts of noise

in the data. However, larger values of k only improve the classification accuracy of
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Figure 3.11. An example of the different effects resulting from addition of a single
irrelevant feature. The picture on the left exemplifies tasks where examples are close
to the decision boundary. Example c would be classified correctly by k = 1 when
only the relevant feature is considered, but would be misclassified after the irrelevant
feature is added. The picture on the right shows a task where examples are more
distant from the decision boundary. In that case, example c would still be classified
correctly after the irrelevant feature is added.

nearest neighbor algorithms if the training set is relatively large and the noise level

is moderate. For very small samples, it is generally best to use k = 1, regardless of

the level of noise. Also, the effects of class noise and feature noise can be different

in certain applications. In particular, class noise cannot be compensated for by

larger values of k in tasks with highly curved decision boundaries. While feature

noise can only be compensated for in tasks where small pockets with data from one

class reach into large regions with data from another class. Irrelevant features have

effects similar to feature noise on the relative performance of NN and kNN with the

exception that cross-validation on k can lead to an improved performance if there are

relatively large (nearly Gaussian) regions containing examples from a single class.

3.2 H2: Choice of Distance Function.

We have already concluded from the experiments with irrelevant features that larger

k-values may be used to diminish the negative effects of irrelevant features. A perfect

distance function would ignore these features. One could therefore interpret these

results as evidence for hypothesis H2, which states that larger k values may be

necessary for best performance if the distance function is not well chosen.

Through inspection of the graphs in Figure 2.1, one can easily see that a Eu-

clidean distance metric is not the optimal distance metric in some of the tasks. The
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horizontal dimension in the banded task, for example, is irrelevant, while the vertical

dimension in the sinusoidal task is significantly less important than the horizontal

dimension. Experiments with a weighted Euclidean distance metric were conducted.

Weights were varied from uniform weights to weights that were nearly optimal for

each task. As the weighted metric improved, performance of kNN and NN improved

(Figure 3.12). However, 112 predicts that the relative improvement in performance

of NN should be larger than the relative improvement for kNN. That effect was not

observed in the experiments conducted.
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Figure 3.12. The performance of NN and kNN in the banded and sinusoidal tasks.
The change in performance is shown as the weights of the horizontal dimension in the
banded task and the vertical dimension in the sinusoidal task are changed from 1.0
(standard Euclidean distance) to 0.0 (feature ignored). The drop in performance in
the sinusoidal task for weights of the vertical dimension that are smaller than 0.001
is caused by the fact that then many examples from the two classes have identical
input vectors.

Similar results were obtained when the opposite experiment was conducted, that

is, when a good metric was replaced by an inferior metric. In the quadrants task,

both dimensions are equally important. When the weight of the horizontal dimension

in the quadrants task was slowly decreased to 0, the absolute performance of NN

and kNN dropped while the relative performance difference between NN and kNN

increased (with NN always being better). Furthermore, no assignment of random

weights to the input features could be found in fifteen trials in the Letter Recognition
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domain (letters B and R only) such that kNN had a higher classification accuracy

than NN.

The above experiments strongly support the conclusion that, contrary to H2,

kNN is more susceptible to an improperly weighted Euclidean distance metric than

NN (in the noise-free case). However, 112 may still hold if the proper distance metric

is not Euclidean. The radial task can be used to test 112 in that case. A better

distance function for the radial task is the "Radial" distance function: d Idi d2
I

where d s./(X. - 0.5)2 + (y - 0.5)2. Figure 3.13 shows for the radial task what has

been observed in all experiments: as the metric is slowly improved (from Euclidean

to the (nearly) optimal "Radial" distance metric, in this case) performance of both

algorithms also improves steadily. Furthermore, the relative performance differences

between NN and kNN decrease in all experiments as the metric is improved.
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Figure 3.13. The performance of NN and kNN in the radial task as the distance
metric is changed from Euclidean to Radial.

We conclude that larger values of k cannot be used to compensate for the effects

of a non-optimal distance metric. Section 4.3 contains a further discussion of the

various distance metrics that can be used for nearest neighbor type algorithms.

3.3 Effect of the Training Set Size

Nearly all experiments described in this chapter have been conducted on a variety

of training set sizes. Not surprisingly, the performance of NN and kNN improves as

the size of the training sets is increased (see, for example, Figure 3.5). However, it is

important to note that in those experiments where kNN outperforms NN, this was
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oniy observed for sufficiently large training sets. The necessary size of the training

set varies with the complexity of the given task. One factor that influences the com-

plexity of a task is the relative length of the boundaries between classes. The longer

these boundaries are, the more training examples will be necessary to achieve a de-

sired predictive accuracy. This increase in the training set size can be compared to an

increase in the number of interpolation points and degree of the spline function used

during spline interpolation. The higher the degree of the spline function, the closer

the resulting spline will approximate the curve built by the original data. However,

in contrast to spline functions, nearest neighbor algorithms can avoid overtraining

by increasing the value of k.

50

k=l

250

k=1

500

Figure 3.14. The decision boundary produced by NN. The plots show decision
boundaries for different sizes of training sets in the diagonal task. Numbers in the
lower right corner of each plot indicate the size of the training set used to produce
each plot.

This point is illustrated in Figures 3.14 through 3.17. In the noise-free case,

NN and kNN (k = 15) produce similar decision boundaries for large training sets

(Figures 3.14 and 3.15). For small data sets, however, the larger divergence of kNN

from the correct decision boundary at the extremes of the input space is noticeable.

This larger divergence illustrates why kNN's performance is often inferior to NN's

when training sets are small: As data points become increasingly more sparse, it is

less likely that kNN will find the correct decision boundary, since points further away

from the decision boundary influence the decision made. When class noise is present

in the data, the advantage of using larger values of k becomes apparent: while first
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nearest neighbor creates many pockets with incorrect classifications (Figure 3.16),

kNN produces decision boundaries that are very similar to those generated in the

noise free case (Figures 3.15 and 3.17).

k=15 k=15 k=15

50 250

Figure 3.15. The decision boundary produced by kNN (k = 15). The plots show
decision boundaries for different sizes of training sets in the diagonal task. Numbers
in the lower right corner of each plot indicate the size of the training set used to
produce each plot.

k=1 k=1 k=1

50

o tj
--

sooc

Figure 3.16. The decision boundary produced by NN in the presence of 15% class

noise. The plots show decision boundaries for different sizes of training sets in the
diagonal task. Numbers in the lower right corner of each plot indicate the size of the
training set used to produce each plot.

Note that due to the locality of the nearest neighbor algorithm, only the local

shape of the decision boundary influences the behavior of the algorithm in that area.

It is therefore reasonable to believe that the synthetic data sets used in this section

are representative of "real" data sets, since these "real" data sets could be partitioned

and re-scaled until they resemble one of the synthetic data sets.
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Figure 3.17. The decision boundary produced by kNN (k = 15) in the presence of
15% class noise. The plots show decision boundaries for different sizes of training
sets in the diagonal task. Numbers in the lower right corner of each plot indicate
the size of the training set used to produce each plot.

3.4 Summary

The results obtained from the experiments described in this chapter support the

following conclusions:

For very small training sets (<200 examples) one should always use k = 1.

If the task is known to be noise free and decision boundaries do not overlap,

k = 1 should be used.

Irrelevant features have effects similar to feature noise on the performance of

the first nearest neighbor and the k-nearest neighbor algorithms.

Data that are distributed in a highly non-Gaussian manner also necessitate

k=l.

The choice of distance function heavily influences the behavior of NN and kNN.

First nearest neighbor is more likely to outperform kNN as the distance metric

degrades.

Larger values of k can lead to significantly improved performance in the pres-

ence of moderate amounts of noise for specific data sets. The examples of the

different classes of these data sets must belong to clusters where the variances

among the different dimensions within each cluster are similar.
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Chapter 4
A Study of k-Nearest Neighbor Algorithms

We have seen in the previous chapter that the k-nearest neighbor algorithm can

outperform the first-nearest neighbor algorithm on specific data sets. We believe

that the characteristics of these data sets (presence of moderate amounts of noise,

data from different classes belonging to relatively large Gaussian clusters) may be

similar to the characteristics of many data sets encountered in real applications. This

chapter is, therefore, devoted to studying methods and modifications of kNN that

can improve kNN's performance.

First, we will investigate the issue of how to estimate the value of k that will

maximize the predictive accuracy of kNN on the test set. This is followed by a

comparison of kNN with simple majority voting versus kNN with weighted voting

where the distances of the neighbors determine their weight during voting. Two

well known shortcomings of nearest neighbor algorithms are their dependence on

the proper choice of the distance metric and their degradation in performance (in

accuracy as well as speed) as the number of input dimensions rises. In the second part

of this chapter, principal component analysis is evaluated as a means for reducing

the number of input dimension of a given task. Finally, two methods that can be

used to determine the weights of input features are introduced and compared to each

other, as well as to kNN without feature weights.

4.1 Estimating the Value of k

The previous chapter was concerned with whether any value of k 1 would lead

to a performance superior to that of the first nearest neighbor algorithm. In this

section, we will investigate the issue of how the value of k that would lead to the
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best performance can be reliably estimated. One assumption that has been made

throughout all research reported in the literature to this date is that a single value of

k suffices to classify all queries. We will also make that assumption in Section 4.1.1.

In Section 4.1.2, however, we will investigate methods that compute different values

of k, depending on the local distributions of the data.

4.1.1 Global Determination of k

The experiments described in Section 3 indicate that, as class noise is added, kNN

is more likely to outperform NN. These experiments suggest that an increase in

the value of k can often be used to compensate for some of the negative effects of

noise in the data. In this section, we will investigate the effect that the addition

of class noise has on the optimal value of k, how that value can be chosen, and

how sensitive performance is to the proper choice of k. We will assume in this

section that training sets are large enough so that small sample effects, such as those

observed in Figures 3.5 and 3.6, do not affect the experiments. See Weiss [Wei9l] for

a comparison of different cross-validation methods for kNN classifiers for very small

training sets.

Consider again the synthetic data sets described in Figure 2.1. We can deter-

mine how the optimal value of k changes as the noise level of data sets increases

through the following experiment. Randomly permute the class labels of an increas-

ing number of examples of these tasks. For each level of class noise and for each

task, measure the value of k or the range of values of k that would give the best per-

formance. The optimal value of k follows two distinct patterns for the six synthetic

data sets (Figure 4.1). In tasks that contain relatively large, near-Gaussian clusters

(the quadrants, diagonal, and gaussian tasks), the minimum value of k that gives

the best performance rises slowly as the level of class noise increases. The largest

value of k that would give the best performance, however, rises very quickly. Hence

for moderate amounts of class noise, there is a large range of k values that we can

choose from to obtain the best performance. This and the fact that these ranges
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Figure 4.1. Ranges of values of k that resulted in best performance in the synthetic
data sets. Any values of k between the upper and lower curves in each graph resulted
iii a performance within one standard error of the best observed performance (sizes
of training sets: 500 (850 in the sinusoidal task), test sets: 150).

do not include k 1, indicates once again why kNN can significantly outperform

NN in tasks with these characteristics. In the banded, sinusoidal, and radial tasks,

on the other hand, there is a very small range of relatively small values of lc that

would result in the best performance. Such small values of k cannot be used to

compensate for any significant amount of noise, which is why in these tasks kNN

never outperformed NN.

The large range of k values that give the best performance in tasks where kNN

is able to outperform NN indicates that the performance of kNN is not sensitive to

the exact choice of k if k is chosen to be large. This suggests that it may not be

necessary to consider all possible values of lc during cross-validation to obtain the

best performance. A restriction in the number of values considered for k during

cross-validation has only minor impact on the training time of kNN, since we must

still compute all distances which is by far the most expensive operation during cross-



validation. Nonetheless, this restriction may result in a more robust behavior of kNN

and it may help characterizing data sets by the specific value of k that was chosen

by kNN.

Choosing a Cross-validation Method Even when we restrict the number of

values k can assume, the issue of how to choose that value still remains. The optimal

method would give the most reliable estimate with the smallest computational effort.

We will use the synthetic data sets and some other data sets described in Section 2.2

to evaluate several methods for estimating the value of k. Three methods for choosing

the value of k are compared below. (See Table 4.1 for an explanation of terms.)

1. The value of k could be set to some constant value before experimentation

(denoted by kNNk).

2. Leave-one-out cross-validation (Section 2.4.8) can be used to estimate the op-

timal value of k (denoted by ). This procedure is the computa-
Leave-i -out

tionally most expensive of the methods discussed here.

3. The value of k could also be determined via one-fold cross-validation (denoted

by kNNGid ). When compared to kNNa , this method requires very
ifold leaveiOut

little training time.

The experiments indicate that setting k to some fixed value without cross-

validation would only lead to good results if the experimenter had some prior knowl-

edge as to what the value of k should be (Tables 4.1 and 4.2). Prior knowledge is

necessary since no single value of k gave the best performance in all possible tasks.

One choice of k that is often used in the literature is k = 1. A choice of k = 1

may often lead to inferior classification accuracies, since NN performed significantly

worse than kNNCV in 7 of the 9 non-synthetic domains (Table 4.2). The performance

of kNN0& is superior to that of the first nearest neighbor in nearly all (8 out of

10, Tables 4.1 and 4.2) tasks that are not entirely noise-free. Furthermore, in five of

the nine experiments described in Table 4.2, this method matched the best average
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performance that can be achieved with any fixed value of ic (this method is denoted

by kNNkbesj in Tables 4.1 and 4.2).

When 1-fold cross-validation is conducted on odd values of k only, an accu-

racy on the separate test sets that was statistically indistinguishable from that of

kNNcaii in 12 of the 15 experiments (Tables 4.1 and 4.2) was achieved. Thisleaveiout

method was inferior to kNNva in two tasks and superior in the radial task.leaveiout

The results displayed in Tables 4.1 and 4.2 indicate that the sensitivity of kNN

to the exact choice of k decreases as k becomes larger.9 Furthermore, in domains

with irrelevant features (Hungarian, Led-24 Display, and Waveform-40 domains) rel-

atively large (> 20) values for k are required for best performance. Leave-one-out

cross-validation on all possible values of k generally leads to the best performance

across all domains that are not entirely noise-free. However, cross-validation on odd

values only (kNNodd ) leads to accuracies that are statistically indistinguish-leavei out

able from that of kNNcva . The set of potential candidates for k can even
leaveiout

be further reduced without any significant loss in predictive accuracy. When cross-

validation was conducted on the arbitrarily chosen values k = 1, 3, 17, 31, and 47

alone (kNN 1,3,17,31,47 ) performance was never inferior to that of kNNva and
CVleve lout leaveiout

superior in the Voting domain.

In summary, to obtain the best performance it is necessary to perform cross-

validation on no more than approximately 10 values for k. The consistently good

performance of kNNl,3,17,ai,47 gives strong support for the hypothesis that this will
leaveiout

be true in the majority of the applications that are encountered in the real world.

In most applications, one-fold cross-validation can be used instead of leave-one-out

cross-validation, if the time required to train the classifier is of concern.

Choosing Among Different Candidates for k The determination of the value

of k as described above was exclusively governed by the performance of the different

9This is indicated by the fact that the range of k values that gave the best perfor-
mance increases as the smallest k that gave the best performance increases.
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Table 4.1. The performance of the k-nearest neighbor algorithm in synthetic tasks
(noise-free) for different methods of determining the value of k. Shown is the absolute
value (± standard error) of the best average performance that can be achieved by any
single fixed value of k during 25 repetitions (kNNk=best) and the relative performance
differences between all other methods and kNNk=best. The subscript k = i indicates
that k was fixed at i. Numbers in parentheses in the row denoted by kNNk=b3t

indicate the range of k values that resulted in a performance within one standard error
of the best performance. The subscript cv indicates cross-validation. The superscript
to cv indicates the kind of potential candidates for k, and the subscript indicates the
type of cross-validation. Significance of difference to kNNkl (kNNu1) is

indicated by * (*).

Method Quadrants Diagonal Banded

kNNkl +0.0 +0.0 +0.0
kNNk=3 -0.2 -0.1 -1.3
kNNk=17 -i ''° -0 8**** 9 *****

kNNk3l -2 -0 9****
. **

-'1 5*,k***
.

kNNk=bes, 97.2±0.3 (14) 98.2±0.2 (1_3) 86.9±0.6 (14)
kNN -0.3 _0.4* -0.8

kNNii -0.2 -0.1 -0.7
kNN oacv-1-00 _0.4* +0.0 -0.7

kNNi,3,1:,3i, _0.4** +0.0 -0.5

Method Sinusoidal Radial Gaussian

kNNkl +0.0 +0.0, -0.6
kNNk=3 - 8*

.J.
_10*k -0.4

kNNk=17 -'1 4**
U.

kNNk=31 -'6 -25 +0.0

kNNk=bes 84. 1±0.4 (1-1) 90.3±0.6 (11) 97.9±0.2 (543)
kNN

CV1_Iold
-1 2

. ** +0.1

kNN . +0.0 -1.0 -0.1
00 0 10 t

kNN
CVI +0.0 _0.9* -0.1 '

kNNi,3,ii,47 +0.0 _0.6*

t 850 training examples, 150 test examples
500 training examples, 150 test examples

<0.001, ****p <0.005, ***p <0.01, **p <0.05, *p <0.1
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Table 4.2. The performance of the k-nearest neighbor algorithm in non-synthetic
tasks for different methods of determining the value of k. The meaning of the terms
used is the same as in Table 4.1.

Method Iris Voting Cleveland

kNNkl -1.1
kNNk3 -1.0 -0.6
kNNk=17 -0.8 -i 9'
kNNk3l 9 1*k** -2.7 _1.1*****

kNNk=bes 96.3±0.4 (513)* 92.5±0.4 (59)7 84.0±0.5 (19_57)

kNN -1.1 -O.7CV

kNN -0.7 -0.6

kNNd -0.7 -0.3
-1.3 -0

Method Hungarian Isolet Led-7 Display

kNNkl -0.9
kNNk3 -4 -0.6
kNNkl7 _2.3** -0.4 5 8k

kNNk3l _1.8* -1.7 *** -13 6*
.

kNNk-best 83.8±0.9 (3771**** 84.0±0.4 (513) 72.6±0.5 (3_5)°
kNNCV1 -2.9 -0.6 -0 6*

-fold

kNNi _1.8** _0.4*

kNNd -1.7 -0.4
-0.2

Method Led-24 Display Waveform-21 Waveform-40

kNNkl -21
kNNk3 -13 7* -3 9 -6 5*
kNNkl7 -2 8* _0.3*** _1.1*****

kNNk3l -1.0 _0.2** +0.0*

kNNk-best 69.9±0.6 (4367)* 82.1±0.8 (17_55)** 79.7±0.8 (21_55)**
kNN -1 6*

. **
95*****

1fold
kNN -0.5 -0.2 +L0
kNN -0.4 _Ø3**

kNNl,37,3l, _0.3** _0.5**
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candidates for k during cross-validation. The actual value of k only played a role

when two or more values of k gave the same performance. The algorithm as used in

Section 4.1.1 prefers the smaller k when the performance is equal. It is well known

that smaller values of k lead to larger variance (i.e. local idiosyncrasies of the data

have a large influence on the output of the classifier) while larger values employ a

stronger bias [GBD92]. According to Geman et al [GBD92], a strong bias may be

necessary for optimal performance when the available training set is relatively small.

However, this stands in contrast to the results that we observed in Chapter 3 that

indicate that one should always use k = 1 for very small data sets. This apparent

contradiction may be caused by the fact that for very small data sets any bias that

is stronger than the bias of NN may already be too strong.

The experiments described above have shown that the performance of kNN is

not sensitive to the exact choice of k when k is large. We would expect, therefore,

that a modification of kNN's preference bias has little effect on its performance. The

following modifications were tested to evaluate this hypothesis:

Choose the smallest k that gave an accuracy within one percentage point of

the best observed cross-validation performance (denoted by kNNmin ki).

Choose the smallest k with the best cross-validation performance (this is the

original version, denoted by kNNmin k).

Choose the largest k with the best cross-validation performance (denoted by

kNNmar k).

Choose the largest k that gave an accuracy within one percentage point of the

best observed cross-validation performance (denoted by kNNma ki).

Minimize the risk of choosing the wrong k through smoothing (denoted by

kNNmin risk k). This can be achieved by choosing k = j to minimize

O.1.P(error,_2) + O.2.P(error3i) + O.4.P(error3) + O.2.P(error,i)+

0.1 xP(error,+2) (where P(error,) is the error rate of kNN with k = j as esti-

mated from the training data and P(errori) = P(erroro) = P(errori)). This
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method can be used to filter out coincidental peaks in the cross-validation

performance that would otherwise be chosen over the more robust value as

indicated by the good performance obtained by the k values that are imme-

diately smaller or larger. Consider Figure 4.2 which shows the leave-one-out

cross-validation accuracies obtained in an experiment in the Hungarian do-

main before and after smoothing. Without smoothing, k = 29 would have

been chosen and resulted in a performance on the test set of 84.1% correct,

while smoothing indicated that k = 45 should be used, which gave an accuracy

on the test set of 88.6% correct.

4)

E

4)

no smoothing
smoothing

Ic

Figure 4.2. Cross-validation accuracy for different values of k in the Hungarian
domain. Shown is performance without and with smoothing.

The average classification accuracies are similar for all methods in all domains

(as shown in Table 4.3). Tn the noise-free tasks (the quadrants, diagonal, banded,

sinusoidal, and radial tasks) slightly better results were obtained with smaller ks,

while larger values of k give slightly better accuracies in the other domains. The

best overall method was kNNmin risk k

4.1.2 Locally Adaptive Nearest Neighbor Algorithms

The methods discussed previously assumed that a single uniform value for k is used

to classify all queries. For certain applications, it might be desirable to vary the
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Table 4.3. The performance of the kNN algorithm when different procedures for
choosing the value of k are employed. Shown is the absolute percentage correct for
kNNmjn k (± standard error) and the relative differences in performance of the other
methods when compared to kNNmin k.

Domain mm k-i mm Ic

kNN

max k max k-i mm risk k

Quadrants -0.3 96.8±0.4 -0.1 -0.1 +0.2

Diagonal +0.6 97.2±0.5 +0.1 -0.8 +0.0

Banded +0.3 83.0±0.7 +0.0 +0.2 +0.5

Sinusoidal +0.0 73.2±0.7 -0.2 -0.2 -0.5

Radial +0.1 86.9±0.6 -0.1 -0.7 +0.0

Gaussian -0.1 97.5±0.2 +0.1 +0.2 -0.1

Iris -0.2 95.6±0.5 +0.1 -0.4 +0.3

Cleveland -0.5 83.4±0.5 +0.0 -0.4 -0.1

Hungarian -0.8 82.1±1.0 +0.3 +1.1 +0.4

Voting -0.4 92.0±0.4 +0.1 -0.5 +0.3

Waveform-21 -0.6 81.8±0.9 +0.0 +0.1 +0.1

Waveform-40 +0.5 80.7±1.1 +0.2 +0.7 +0.5

Led-? Display -0.2 72.3±0.6 +0.5 +0.5 +0.0

Led-24 Display -0.5 69.4±0.6 +0.1 +0.1 +0.2

Letter RecognitionBR +0.1 97.5±0.1 +0.3 -0.5 +0.2

kNNmin k4: The smallest value of k that gave a cross-validation performance within
one percentage point of the best observed cross-validation performance was chosen.
kNNmin k: In case of ties, the smallest value that gave the best cross-validation per-
formance was chosen.
kNNmax k: In case of ties, the largest value that gave the best cross-validation per-
formance was chosen.
kNNmax k_i: The largest value of k that gave a cross-validation performance within
one percentage point of the best observed cross-validation performance was chosen.
kNNmin risk k: k was chosen to minimize 0.1.P(errork_2) + 0.2.P(errork_l)
+ O.4.P(errork) + O.2P(errork+i)+ 0.1.P(errork+2) (P(error_i) = P(erroro) =
P(errori)).
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value of k locally within different parts of the input space to account for varying

characteristics of the data such as noise or irrelevant features. However, for lack of

an algorithm, researchers have assumed a global value for k in all work concerning

nearest neighbor algorithms to date [BV92]. In this section, four new algorithms that

determine different values for k in different parts of the input space are proposed and

evaluated. The locally varying values of k computed by these algorithms are used

to classify novel examples. These four algorithms use different methods to compute

the k-values that are used for classification.

We can split the problem of locally choosing the value of k into two phases. In

the first phase, statistics on good values of k in various parts of the input space are

gathered at learning time. In the second phase, during classification, a value for

k must be chosen based on the location of the query and the previously computed

statistics in its immidiate surroundings.

We developed four algorithms based on this idea:

e
localKNNj3 unrestricted

This is the basic local kNN algorithm. The three subsequent algorithms are

modifications of this method. This algorithm stores all of the training examples.

Along with each training example, it stores a list of those values of k that

correctly classify that example under leave-one-out cross-validation. To classify

a query q, the M nearest neighbors of the query are computed, and that k

which classifies correctly most of theseM neighbors is determined. Call this

value kM,q. The query q is then classified with the class of the majority of its

kM,q nearest neighbors. Note that kM,q can be larger or smaller than M. The

parameter M is the only parameter of the algorithm, and it can be determined

by cross-validation. Consider, for example, Figure 4.3. The location of the

query q is indicated by the small cirle in the center of the figure. Assume

M = 10, the M nearest neighbors of q then lie within the larger circle. The

table in Figure 4.3 shows for each of the 10 nearest neighbors of q the set of k

values that would result in a correct classification of these neighbors. The value
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k = 5 would classify correctly 8 of the 10 nearest neighbors of q (as indicated

by the last column in the table). We would, therefore, set kio,q to 8. Query q

would, thus, be classified as belonging to class +. Note that the table shown in

Figure 4.3 can be computed at training time. All we have to do at classification

time is to extract the M columns that indicate the good k values of the M

nearest neighbors of the query from this global table.

Pattern number
1 2 3 4 5 6 7 8 9 10 Sum

1 x x x 4
2 x x 2

3 x x x x 4

4 x x 2

5 x x x x x x x x 8

6 x x 2

7 x x x x x x x 7

8 x x x x 4

9 x x x x x 5

10 x x x x x 5

11 x x x x x x 6

12 x x x x x 5

13 x x x x 6

14 x x x x x x 5

15 x x x x x 5

Figure 4.3. An example of how
localKNNk8 unresiricted would determine the value of

k that should be used to classify query q. The picture shows the 10 nearest neighbors
of q and their classification labels. The table contains for each value of k from 1 to
15, and for each of the 10 neighbors of q whether that k would correctly classify the
training example (x).
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localKNNk5 pruned

The list of good k values for each training example generally contains many

values. A more robust performance might be achieved if some of the less

frequent values in these lists are removed. This can be accomplished as follows.

A global histogram of k values is computed, and k values that appear fewer

than L times are pruned from all lists (at least one k value must, however,

remain in each list). The parameter £ can be estimated via cross-validation.

Classification of queries is identical to localKNNk3 unrestricted In the example

shown in Figure 4.3, we would compute the sum of each row of the global table

of good k values and remove those rows that sum up to less than L.

1oca1KNN0 k per class

For each output class, the value of k that would result in the correct (leave-one-

out) classification of the maximum number of training patterns from that class

is determined. A query q is classified as follows: Assume there are two output

classes, C1 and C2. Let k1 and k2 be the k value computed for classes C1 and

C2, respectively. The query is assigned to class C1 if the percentage of the k1

nearest neighbors of q that belong to class C1 is larger than the percentage of

the k2 nearest neighbors of q that belong to class C2. Otherwise, q is assigned

to class C2. Generalization of that procedure to any number of output classes

is straightforward.

localKNNone k per cluster

An unsupervised clustering algorithm (RPCL [XK093], see Section 2.4.7), is

applied to determine clusters of input data. A single k value is determined for

each cluster by leave-one-out cross-validation on all the examples that are part

of that cluster. However, the entire training set is used to classify each of these

cross-validation examples. Each query is classified according to the k value of

the cluster it is assigned to.



Experiments with Constructed Data Sets Three constructed data sets were

used to determine the ability of local k-nearest neighbor methods to determine proper

values of k. These data sets were constructed such that it was known before experi-

mentation that varying k values should lead to superior performance:

Data set Letter-Led: Previous experiments have shown that in the Letter

Recognition domain, very small values of k lead to the best performance. In the

Led-24 Display domain, on the other hand, values of k that are typically larger than

50 resulted in the best performance (Table 4.2). The Letter Recognition domain

has only 16 input features. We removed 8 of the 17 irrelevant features of the Led-

24 Display domain to obtain two data sets with the same number of input features.

When trained and tested on these two data sets, local kNN methods performed worse

than the global kNN algorithm (Figure 4.4). However, when the Letter Recognition

and the Led-16 data sets were combined into a single data set, performance of all

local kNN methods was superior to that of kNN (Figure 4.4, "Combined").

8
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Figure 4.4. Percent accuracy of local kNN methods relative to kNN on the Letter
Recognition and the Led-16 Display data sets (left) and on the combination of these
data sets (right). These differences (*) were statistically significant (p < 0.05). Re-
sults are based on 25 repetitions. Shown at the bottom of each graph are sizes of
training sets/sizes of test sets/number of input features. The percentage at top of
each graph indicates average accuracy of kNN ± standard error.

Data set Sine-Wave: Data points were drawn from two two-dimensional sine-

curves with identical periodicity. The curve representing class 1 was slightly offset in
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the vertical direction from the curve representing class 2. This data set requires small

values for k (k 7) for best performance. Another data set that requires very large

values for k is the Waveform-21 data set (Table 4.2). The Waveform-21 data set has

21 input feature. Hence we added 19 features having value 0 to the two-dimensional

data set. When trained and tested on these two data sets, all local kNN methods

performed slightly better than the global kNN algorithm, the better performance of

JocalKNNone k per cluster was statistically significant (Figure 4.5). When trained and

tested on the combination of these data sets, all local kNN methods performed better

than kNN on a statistically significant level (Figure 4.5).
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Figure 4.5. Percent accuracy of local kNN methods relative to kNN on the Sine and
the Waveform-21 data sets (left) and on the combination of these data sets (right).
These differences (*) were statistically significant (p < 0.05). Results are based on
25 repetitions. Shown at the bottom of each graph are sizes of training sets/sizes of
test sets/number of input features. The percentage at top of each graph indicates
average accuracy of kNN ± standard error.

Data set Two-lines: This data set was constructed to display some charac-

teristics of data sets for which we assumed local kNN methods would work best

(Figure 4.6). The data set was constructed such that patterns from two classes were

stretched out along two parallel lines in one part of the input space. The parallel

lines were spaced such that the nearest neighbor for most patterns belonged to the

same class as the pattern itself, while two out of the three nearest neighbors belonged

to the other class. In other parts of the input space, classes were well separated, but

class labels were flipped such that the nearest neighbor of a query would indicate

the wrong pattern, while the majority of the k nearest neighbors (k > 3) would
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indicate the correct class (see also Figure 4.6). The local kNN methods were able to

significantly outperform kNN on this tasks (Figure 4.7).

kNN oo..ot. 69.3% 31.0% 775%

IoOol kNN OOOt 66.9% 84.6% 78.3%

Si,. of U.iolog .t: 480
Total correct: kNN: 70.0% local kNN: 74.8% tt .t: 120

Figure 4.6. Data points for the Two-lines data set were drawn from either of the
two displayed curves (i.e. all data points lie on either of the two curves). Class labels
were flipped with increasing probabilities to a maximum noise level of approximately
45% at the respective ends of the two lines. Listed at the bottom is performance of
kNN and localKNNunrestrjcted within different regions of the input space and for the
entire input space.
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Figure 4.7. Percent accuracy of local kNN methods relative to kNN on the Two-lines
data set. These differences (*) were statistically significant (p < 0.05). Results are
based on 25 repetitions. Shown at the bottom of each graph are sizes of training
sets/sizes of test sets/number of input features. The percentage at top of each graph
indicates average accuracy of kNN ± standard error.

These experiments suggest that local kNN methods can lead to significant im-

provements over kNN in predictive accuracy. The best performing local methods

are localKNNk3 pruned, localKNNk8 unrestricted, and localKNNone k per cluster These
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methods were outperformed by kNN in two of the original data sets. However, the

performance of these methods was clearly superior to kNN in all domains where data

were collections of significantly distinct subsets.

Experiments with Commonly Used Data Sets Twelve domains of varying

sizes and complexities (c.f. Section 2.2) were employed to compare the performance

of the various nearest neighbor algorithms. Results displayed in Figure 4.8 indicate

that in most data sets which are commonly used to evaluate machine learning algo-

rithms, local nearest neighbor methods have only minor impact on the performance

of kNN. The best local methods are either indistinguishable in performance from

kNN (localKNNone k per cluster) or inferior in only one domain (localKNNk5 pruned).

C)

C)

ks pruned irs unresiricted (] one k per class 0 one k per cluster

kNN

Figure 4.8. Percent accuracy of local kNN methods relative to kNN on separate
test sets. These differences (*) were statistically significant (p < 0.05). Results are
based on 25 repetitions. Shown at the bottom of each graph are sizes of training
sets/sizes of test sets/number of input features. The percentage at top of each graph
indicates average accuracy of kNN ± standard error.

The number of actual k values selected varies significantly for the different local

methods (Table 4.4). Not surprisingly, localKNNk5 unrestricted employs the largest
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number of distinct k values in all domains. Pruning of ks significantly reduced the

number of values used in all domains. However, the method using the fewest distinct

k values is localKNNone k per cltster, which also explains the similar performance of

kNN and localKNNone k per cluster in most domains. Note that several clusters com-

puted by localKNNone k per cluster may use the same k.

5

2

2

z
1 ks pnined ks unrestricted one k pet class 0 one k per cluster

Figure 4.9. Bars show number of times local kNN methods used certain k values to

classify test examples from the Sine-Wave data set (Figure 4.5 (Combined), numbers
are based on single run). KNN used k = 1 in this experiment.

Figure 4.9 shows, for one single run of the Sine-Wave data set (see also Fig-

ure 4.5), which k values were actually used by the different local methods. Three

clusters of k values can be seen in this graph, one cluster at k 1, one at k =

7,9,11,12 and the third at k = 19,20,21. It is interesting to note that the second and

third cluster correspond to the k values used by kNN for the Sine and Waveform-21

data sets, respectively. Furthermore, kNN did not use k = 1 in any of the experi-

ments conducted with the Sine or Waveform-21 data sets before these data sets were

combined. This gives insight into why kNN's performance was inferior to that of the

local methods in this experiment: Patterns in the combined data set belong to one

of three categories as indicated by the k values used to classify them (k = 1, k 10,

k 20). Hence, the performance difference is due to the fact that kNN must decide

at training time which single "k-value" category will give the best performance, while



the local methods make that decision at classification time, separately for each query

depending on its local neighborhood.

We can conclude from these experiments that local k-nearest neighbor methods

may achieve classification accuracies significantly superior to kNN's on specific data

sets. Experiments with commonly used data sets, however, showed no significant

differences in performance, in most cases. The most obvious explanation for this

behavior is that data sets which are commonly used to evaluate machine learning

algorithms may all be similar in that attributes such as distribution of noise or

irrelevant features are uniformly distributed across all patterns. In other words,

patterns from data sets describing a certain task generally exhibit similar properties.

Local nearest neighbor methods are comparable in computational complexity

and accuracy to the (global) k-nearest neighbor algorithm and are easy to implement.

In specific applications they can significantly outperform kNN. These applications

may be combinations of significantly different subsets of data or may be obtained

from physical measurements where the accuracy of measurement depends on the size

of the value. Furthermore, local kNN classifiers can be constructed at classification

time (on-line learning) thereby eliminating the need for a global cross-validation run

to determine the proper value of k.

Two methods can be recommended for domains where attributes such as noise

or relevance of attributes vary significantly within different parts of the input space.

The first method, called
localKNNk3 pruned, computes a list of "good" k values for

each training pattern, prunes less frequent values from these lists, and classifies a

query according to the list of k values of a pre-specified number of neighbors of the

query. Leave-one-out cross-validation is employed to estimate the proper amount of

pruning and the size of the neighborhood that should be used.

The other method, localKNNone k per cluster, applies a cluster algorithm to de-

termine clusters of input patterns. One k is then computed for each cluster and

used to classify queries that fall into this cluster. LocalKNNone k per cluster performs

indistinguishably from kNN in all commonly used data sets and outperforms kNN

on the constructed data sets. This method compared with all other local methods
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discussed in this section introduces a lower computational overhead at classification

time, and it is the oniy method that could be modified to eliminate the need for

leave-one-out cross-validation.

The oniy purely local method, localKNNk3 unresiricted, performs well on con-

structed data sets and is comparable to kNN on non-constructed data sets. Sen-

sitivity studies (data not shown) indicated that a constant value of 25 for the pa-

rameter M gave results comparable to those where cross-validation was employed to

determine the value of M. The advantage of localKNNk5 unresircted over the other

local methods and kNN is that this method does not require any global information

whatsoever (if a constant value for M is used). It is therefore possible to construct a

localKNNk8 unrestricted classifier entirely at query-time, which makes this method an

attractive alternative for on-line learning or extremely large data sets.

If the researcher has reason to believe that the data set under study is a collection

of subsets with significantly varying attributes such as noise or number of irrelevant

features, we recommend the construction of a classifier from the training data using

localKNNone k cluster and comparison of its performance to kNN. If the classifier

must be constructed on-line, then
localKNNk3 unrestricted should be used instead of

kNN.

We conclude that there is considerable evidence that local nearest neighbor meth-

ods may significantly outperform the k-nearest neighbor method on specific data sets.

We hypothesize that local methods will become relevant in the future when classifiers

are constructed that simultaneously solve a variety of tasks.
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Table 4.4. Average number of distinct values for k used by local kNN methods.

Task kNN

ks

pruned

local kNN methods

ks one k per

unrestricted class

one k per

cluster

Letter Recognition 1 7.6±1.1 10.8±1.5 6.4±0.3 1.8±0.2

Led-16 1 16.4±2.5 43.3±0.9 9.2±0.1 9.2±0.5

CombinedLL 1 52.0±3.8 71.4±1.2 14.7±0.4 3.0±0.2

Sine-21 1 6.6±1.0 27.5±1.1 2.0±0.0 1.0±0.0

Waveform-21 1 9.1±1.4 28.0±1.5 2.9±0.1 4.2+0.2

Combinedsw 1 13.5±1.5 30.8±1.6 3.0±0.0 4.8±0.2

Constructed 1 11.8±0.9 15.7±0.5 2.0±0.0 5.4±0.2

Iris 1 1.6±0.2 2.0±0.2 2.4±0.1 2.3+0.1

Glass 1 7.7±0.8 11.2±0.7 3.3±0.2 1.9+0.2

Wine 1 2.2±0.4 3.8±0.4 2.0±0.1 2.6±0.1

Hungarian 1 4.1±0.6 12.6±0.6 2.0±0.0 1.0±0.0

Cleveland 1 8.0±1.0 17.2±1.1 1.8+0.1 4.6+0.2

Voting 1 4.1±0.4 6.4±0.3 2.0±0.0 1.3±0.1

Led-7 Display 1 5.6±0.4 7.6±0.4 6.1±0.2 1.0±0.0

Led-24 Display 1 16.0±2.9 37.4±1.6 9.0±0.2 1.6±0.2

Waveform-21 1 9.7±1.3 27.8±1.2 3.0+0.0 4.3+0.1

Waveform-40 1 8.4±2.0 29.9±1.5 3.0±0.0 4.8±0.1

Isolet Letter 1 11.5±2.1 43.9±0.6 16.5±0.5 7.1±0.3

Letter Recognition 1 9.4±1.9 17.0±2.3 6.0+0.3 2.4±0.2



4.2 Should Votes of Neighbors be Weighted by their Distance?

It has been argued that if k > 1, then neighbors further away from a query should

have less influence on the query's classification. Theoretical results show that in

the limit, rio weighted vote k-nearest neighbor algorithm (kNNWIJ, Section 2.1.3) can

outperform the basic kNN algorithm {BJ78]. However, it has been argued that in the

finite sample case kNNWV may be superior to kNN {MLT87, Wo189, AKA91}. The

experiments discussed in this section were designed to determine the conditions under

which kNN (with simple majority voting) and kNNWV show different performance.

The performance of kNN and kNNWV is statistically indistinguishable in 13 of

the 18 domains in Table 4.5. It is noticeable, however, that kNNWV always performed

better than kNN when the average value of k employed by kNN (as determined

during cross-validation) is smaller than approximately 15. This better performance

of kNNWVis statistically significant in 4 domains. The kNN algorithm gave a superior

performance only in the gaussian task.

The better performance of kNNWV for small values of k is caused by the fact

that kNNWV can minimize the risk of misclassifying the query by using a slightly

larger number of neighbors than kNN to classify the query. For example, the aver-

age number of neighbors used by kNN in the banded task is 1.6 while kNNWV uses

5.4 neighbors. A similar increase in the number of neighbors would result in over-

smoothing for kNN, since the additional, more distant, neighbors would have the

same influence on the decision as the nearer neighbors (see also Figure 4.10).

The better performance of kNN in the gaussian task is due to just the opposite

effect: high weight on the more distant neighbors is required for good performance.

In this task, the performance of kNNWV was nearly identical for all values of lc > 5

while the performance of kNN further improved for k > 25 (Figure 4.10).

The kNN and kNNWV algorithms assign identical labels to 94.1% of the test

cases in the Jsolet domain when leave-one-out cross-validation is used to determine

the value of k (Figure 4.11). Approximately 3.2 percentage points of the cases where

kNN and kNNWV disagree, must be attributed to the fact that kNN and kNNWV
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Figure 4.10. Performance of kNN and kNNWV for different values of k in the banded
and gaussian tasks.

often use different k values to classify queries. Although the means of the k values

employed by kNN and kNNWV are equal (5? = 10.3, Table 4.5), these algorithms may

use different values for k in the different repetitions of the experiment. However, the

performance of kNNWV was also superior to that of kNN for all fixed values of k > 1.

In the case of k = 5, the kNN algorithm gave an accuracy of 83.9±0.3% correct,

while kNNWV classified 85.3±0.3% of the test examples correctly. When k is fixed

at k = 5, kNN and kNNWV disagree on only 2.7% of the test cases (Figure 4.12).

All of these disagreements can be attributed to the procedure employed by kNN to

break ties when several classes are equally frequent among the neighbors of a query.

The version of kNN tested in this section breaks these ties quasi randomly. That

is, in favor of the class with the smaller number. If this procedure is changed such

that kNN uses kNNWV to classify the query whenever there are several classes most

frequent among its neighbors, then kNNWV and the amended version of kNN agree

on all test cases in the Isolet domain (with k = 5).

These experiments strongly support the conclusion that the votes of all k nearest

neighbors should have weights inversely proportional to their distances from the

query.



12.5%kNN kNNWV

Figure 4.11. Correlation of errors of kNN and kNNWV in the Isolet domain. The
value of k was chosen via leave-one-out cross-validation. Percentages inside circles
indicate percent correct.

14.0%kNN kNNWV

Figure 4.12. Correlation of errors of kNN and kNNWV in the Isolet domain (k = 5).

Percentages inside circles indicate percent correct.



Table 4.5. The performance of kNN and kNNWV in 18 domains. These (*) differ-
ences between kNN and kNNWV are statistically significant (p < 0.05). Numbers in
parentheses indicate average value of k used by each of the two methods.

Domain kNN kNNWV

Pen. avg. k Perf. avg. k

Quadrants 97.0+0.4 (10.2+4.1) 97.6+0.3 (32.4+5.8)

Diagonal 97.5+0.3
(

6.0+1.9) 97.8+0.3 (20.3+3.2)

Banded 83.0+0.7
(

1.6+0.2) 84.1+0.7 *
(

5.4+0.5)

Sinusoidal 73.2+0.7
(

2.4+1.4) 73.4+0.7
(

2.2+1.2)

Radial 86.9+0.6 ( 1.5+0.2) 87.4+0.6
( 6.6+0.8)

Gaussian 97.4+0.2 (26.7+3.3) 97.0+0.3 * (26.0+3.2)

Iris 95.6+0.4
(

6.9±0.9) 95.6±0.4 (12.4±2.1)

Wine 96.2+0.5 (14.8+2.0) 96.8+0.6 (14.8+1.9)

Glass 65.1+0.9
(

3.2+1.0) 66.3+1.0 *
(

5.6+1.4)

Cleveland 83.1+0.6 (18.5+3.5) 82.9+0.5 (24.1±4.1)

Voting 92.2+0.4
( 5.8+0.5) 92.4+0.4

(
5.7+0.5)

Hungarian 82.1+1.0 (37.6+2.4) 82.5+1.0 (36.4+3.7)

Waveform-21 81.9+0.8 (30.2+3.1) 81.7+0.8 (30.9±3.7)

Waveform-40 80.8+1.0 (42.2+3.6) 81.3+1.1 (43.1+3.4)

Led-7 Display 72.4+0.6
(

4.3+0.4) 73.0+0.6 * (20.4+2.2)

Led-24 Display 69.5+0.6 (72.2+4.7) 70.2+0.6 (64.5±2.3)

Letter ItecognitionBR 97.5+0.1
(

4.1+0.5) 97.6+0.1
(

4.0+0.5)

Isolet 83.6+0.2 (10.3+1.2) 85.5±0.3 * (10.3±1.0)
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4.3 Choosing the Distance Function for k-Nearest Neighbor Algorithms

The experiments described in Section 3.2 have shown that the performance of near-

est neighbor algorithms may improve significantly if the distance metric employed to

compute the neighbors is well chosen. In contrast to some other learning algorithms

such as the multilayer perceptron, the nearest neighbor algorithm with standard

Euclidean distance has no means of assigning lower weights to redundant, irrele-

vant, highly correlated, or very noisy input features. This shortcoming is at least

partly to blame for the inferior performance of kNN that is often reported in the

machine learning literature. In many cases, the performance reported for kNN can

be significantly improved by modifying the distance metric.

For example, Wettschereck & Dietterich [WD92] report in the NETtalk domain

an error rate for radial basis function (RBF) networks that is nearly 20 percentage

points lower than that of first nearest neighbor (GRBF: 26.2% incorrect, l-NN: 46.9%

incorrect). That performance difference can be nearly eliminated by attaching proper

weights1° to each of the input features in this domain (l-NN with feature weights:

29.1% incorrect). This example illustrates the need for a general method for choosing

feature weights for nearest neighbor algorithms.

An issue closely related to the metric is the effect of high input dimensionality

on nearest neighbor algorithms. One effect of the "curse of dimensionality" [Be161,

Hub85} is that feature space in high dimensional tasks is mostly devoid of training

examples. As a consequence, a given query may not have any exemplars very close

to it, but it may have a large number of exemplars that have similar, large, distances

to it. Hence, it is conceivable that a reduction in the number of input dimensions

could lead to improved performance for nearest neighbor algorithms.

Only very few methods addressing these issues have been proposed in the liter-

ature. Dasarathy summarizes some of the results that have been published in the

pattern recognition literature {Das9l, Chapter 9].

10How these weights can be computed will be explained in Section 4.3.2
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In this section, we will first compare the performance of kNN when distances

are computed via the Euclidean L2-norm versus the performance obtained when the

L1-norm is employed. The main contribution of this section is the development and

evaluation of two methods that can be applied to continuous as well as symbolic

features to learn the weights of these features. Finally, in Section 4.3.4, a method

that can be used to de-correlate or remove continuous features is presented.

Table 4.6. The performance of the nearest neighbor and k-nearest neighbor algo-
rithms in respect to the norm used. Shown is the absolute performance when the
L2-norm is used and the relative difference between the performance obtained with
the L1-norm and that obtained with the L2-norm. These differences

( a")
are statis-

tically significant (p < 0.05).

Domain NN

L2-norm L1-norm

kNN

L2-norm L'-norm

Quadrants 97.7±0.4 0.4 * 96.8±0.4 0.4
Diagonal 97.9±0.3 0.1 97.2±0.5 0.2
Banded 83.5±0.7 0.5 83.0±0.7 0.3
Sinusoidal 73.6±0.6 0.7 * 73.2±0.7 0.6 *

Radial 87.0±0.6 0.7 86.9±0.6 0.4
Gaussian 96.0±0.3 +0.1 97.5±0.2 +0.1

Iris 95.2±0.4 1.2 * 95.6±0.5 0.7

Cleveland 77.8±0.9 +0.0 83.4±0.5 +0.0

Hungarian 75.9±0.8 +0.0 82.1±1.0 +0.3

Waveform-21 75.2±1.1 +0.1 81.8±0.9 0.2
Waveform-40 69.4±1.0 +2.0 80.7±1.1 +0.4

Letter RecognitiollBR 97.7±0.1 +0.1 97.5±0.1 0.1

4.3.1 L1-Norm versus L2-Norm

The Euclidean or L2-norm is the norm most commonly applied to compute distances

for nearest neighbor algorithms. The L2-norm is more heavily influenced by large dif-
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ferences in a small number of dimensions than by small differences in a large number

of dimensions. This may cause inferior performance in domains with many irrelevant

features or with an extremely large number of input features. An alternative norm

would be the L'-norm (see also Section 2.4.5). Results indicate that the performance

of NN and kNN generally suffers slightly if the L'-norm is used instead of the L2-

norm (Table 4.6). The only improvement for both algorithms was observed in the

Waveform-40 domain. This gives weak evidence to the hypothesis that the L1 norm

may give superior results in the presence of many irrelevant features.

4.3.2 Mutual Information Feature Weights

The mutual information procedure, as explained in Section 2.4.4, can be applied

to estimate the amount of information that each separate input feature provides

about the classification labels. This method can be applied without pre-processing

to symbolic and nominal features. For continuous features, the probability function of

these features must be estimated from the training data through a density estimation

technique [Si186] (see also Section 2.4.4). A feature that perfectly determines the class

of its corresponding output has mutual information proportional to the log of the

number of classes, while random features have mutual information close to zero.

When used as the weights in a weighted Euclidean distance metric for first near-

est neighbor (NN FWMI) and k-nearest neighbor (kNN FWMI), the mutual informa-

tion values improved NN's and kNN's accuracy by a statistically significant amount

in 9 out of 17 domains (Table 4.7). The largest improvements in performance for NN

and kNN were observed in domains with many irrelevant features. The decrease in

performance in the Led-7 Display domain was probably due to the fact that features

in this domain are highly correlated, which violates one of the assumptions made by

the mutual information procedure.
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Table 4.7. The performance of the nearest neighbor and k-nearest neighbor algo-
rithms with and without feature weights. Feature weights were computed via the
mutual information procedure. These differences (*) between the performance with-
out feature weights (NN, kNN) and the performance with feature weights (NN FWMI,
kNN FWMI) are statistically significant (p < 0.05).

Domain NN NN FWMJ kNN kNN FWMI

Quadrants 97.7+0.4 97.6+0.4 97.0+0.4 97.0±0.4

Diagonal 97.9+0.3 97.9+0.3 97.5+0.3 97.7+0.3

Banded 83.5+0.7 89.2+0.5 * 83.0+0.7 88.8±0.6 *

Sinusoidal 73.6+0.6 75.1+0.7 * 73.2+0.7 74.6+0.9 *

Radial 87.0+0.6 86.7+0.6 86.9+0.6 86.6+0.6

Gaussian 96.0+0.3 96.0±0.3 97.4±0.2 97.9+0.1

Iris 95.2+0.4 95.5+0.4 95.6+0.4 95.6+0.4

Cleveland 77.8+0.9 79.9+0.9 * 83.1+0.6 83.2±0.5

Hungarian 75.9+0.8 77.0±0.7 82.1±1.0 83.9+0.8 *

Voting 86.9+0.8 88.1+0.8 * 92.2+0.4 94.6+0.4 *

Waveform-21 75.2+1.1 76.5+0.9 81.8+0.9 81.8±1.0

Waveform-40 69.4+1.0 73.8±1.0 * 80.8±1.0 83.3±0.8 *

Led-7 Display 70.5+0.6 68.3±0.5 * 72.4+0.6 70.1±0.6 *

Led-24 Display 48.5+0.7 63.1+0.6 * 69.5±0.6 73.2+0.7 *

Letter RecogiitionBR 97.7+0.1 98.3+0.1 * 97.5+0.1 98.2±0.1 *

Isolet 83.1+0.3 84.4+0.3 * 83.6±0.2 85.1±0.2 *

NETtalkt 55.9 70.9 * 55.9 70.9 *

t Numbers are based on a single experiment
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4.3.3 A Weighted Nearest Neighbor Algorithm with Learned Feature Weights

Lowe [Low94] suggested a method for learning the distance metric to improve the

classification accuracy of nearest neighbor algorithms. Based on his ideas, a nearest

neighbor algorithm identical to kNNWV (Section 4.2) with a weighted distance metric

is introduced in this section. Feature weights are learned by this algorithm via a

gradient descent method. The algorithm will be denoted by kNN FWVSM to

indicate that the votes of the neighbors are weighted inversely proportional to their

distance from the query during classification and that it uses a version of Lowe's

variable kernel similarity metric [Low94J to learn the weights of input features.

Lowe [Low94}'s VSM algorithm (see also Section 2.1.5) passes the distances of

the k nearest neighbors of a query through a Gaussian that is centered at the query

point. This activation of each of the k nearest neighbors determines the weight of the

vote of the neighbor when the query is classified. One of the advantages of passing

the distances of the neighbors through a Gaussian is that one can then compute the

derivative of the error function with respect to the distance metric used. However,

any function that properly combines the votes of the nearest neighbors and possesses

a derivative could be used instead of the Gaussian. The k-nearest neighbor algorithm,

where the votes of the nearest neighbors have weights inversely proportional to their

distances to the query, is such an algorithm. This section describes the kNNWV

FWVSM algorithm and the experiments that were designed to determine whether

Lowe's VSM could be successfully applied to kNNWV.

Computation of the Gradient of kNNWV The gradient with respect to the

feature weights can be computed as follows: Let Vih be the i' output of the h

neighbor of q, then the i output of q, denoted by p, is computed as follows:

where:

:i::= vh/d(q, uh)2
Pt

1/d(q,uh)2

d(q, u)2 w(qj ui)2
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Define the output error E as the squared sum over all exemplars j and all outputs

i of the difference between the desired output (v) and the computed output (pjj):

Lm
E = p)2

j=1 i=1

Then the derivative of E with respect to feature weight WI can be computed as

follows:

= 2 >i2 1(v -u Pu) OWL

OWL >i::1 d(q,uh)2
Od(q,uh)2 = 1 x d(q, Uh)4 ><

O(2 w(qLuL)2)
Owj Ow

&d(q,u)2 = 2 x d(q, u4)4 x wj(q,Owg

8d(q,u)2 2 X
OWL

Experiments with ICNNWV FWVSM The experiments described in Section 3.2

indicate that kNN is more sensitive to the proper choice of the distance function

than first nearest neighbor. Hence, a distance metric that leads to good results

for k > 1 should, in general, also give good results for k = 1. However, when k

is chosen too large, then the error (and therefore the gradient) computed may be

substantially different from the error that would be computed for the optimal k.

Initial experiments showed that good results can be obtained in most domains with

k 25. A general method for determination of the optimal number of neighbors that

are necessary to compute the error and gradient while feature weights are learned

("vsm-training") should be the topic of future research.

A modified version of the conjugate gradient module by Barnard and Cole [BC89]

was used in this research to adjust the feature weights during vsm-training. The

number of training epochs was limited to 10. For each training example, the first 100

nearest neighbors were initially determined and stored in a priority queue according

to their distances from the example. Only the distances of the first k neighbors
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of the example were re-computed during each epoch while all 100 distances were

re-computed whenever the conjugate gradient procedure started a new line search.

Leave-one-out cross-validation was used after feature weights were learned to

estimate the optimal value of k.

Results indicate that this procedure is very effective in estimating good feature

weights (Table 4.8). Particularly the results obtained in the banded and sinusoidal

tasks are substantially better than those obtained with the mutual information pro-

cedure. The vsm-training procedure currently employed appears to be unable to

learn the proper feature weights in the Waveform domains. This deficiency may be

due to the fixed value of k used during vsm-training. The procedure also appears

to be inferior to the mutual information procedure in domains with symbolic fea-

tures (Cleveland and Hungarian domains). Nonetheless, the performance of kNNWV

FWVSM was never significantly worse than kNN's. It was significantly superior to

kNN in 7 out of 18 domains. The kNNWV FWVSM algorithm performed significantly

better than kNNWV FWMI in 2 domains, while kNNWV FWMI was superior in 2 other

domains. These results suggest that the VSM feature weight learning procedure is a

reliable procedure for learning feature weights in a general setting and that it should

be employed in all domains with continuous features and in domains with symbolic

features if there is evidence that features are highly correlated.

4.3.4 De-correlation and Removal of Features via Principal Component Analysis

Input features that are highly correlated can cause distance-based algorithms to com-

pute distances that may not reflect the optimal distance between two data points.

For example, two input features may be identical. The effect of these two identical

input features is equivalent to a single feature with twice the weight during distance

calculations. The feature's larger weight is only justified if it contains more infor-

mation with respect to the desired outputs than the other features. Otherwise the

larger weight will result in a degradation in classification accuracy. De-correlation

of input features may therefore improve the classification accuracy of distance-based
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Table 4.8. The performance of the weighted vote kNN algorithm without feature
weights (kNN), with computed feature weights (kNN FWMI), or learned feature
weights (kNN FWVSM).

Domain kNNWV kNNWV FWMI kNNWV FWVSM

Quadrants 97.6±0.3 97.4+0.4 97.3+0.4

Diagonal 97.8+0.3 97.7+0.3 97.8+0.4

Banded 84.1±0.7 89.5+0.7 * 95.7±0.3 *

Sinusoidal 73.4+0.7 74.6±0.7 * 83.5±0.8 *

Radial 87.4+0.6 87.4+0.6 87.3±0.7

Gaussian 97.0+0.3 97.1+0.3 97.1+0.2

Iris 95.6+0.4 95.6+0.4 95.0±0.6

Cleveland 82.9+0.5 83.7+0.6 82.7+0.7

Hungarian 82.5+1.0 83.9+0.8 * 81.6±1.0

Voting 92.4±0.4 94.7±0.4 * 95.0±0.4 *

Waveform-21 81.7+0.8 82.2±0.9 81.9±0.9

Waveform-40 81.3±1.1 83.4±0.8 * 81.0±1.1

Led-7 Display 73.0+0.6 71.3+0.6 * 72.8±0.6

Led-24 Display 70.2+0.6 73.5±0.6 * 72.9±0.6 *

Letter RecognitionBR 97.6+0.1 98.2+0.1 * 98.2±0.1 *

Isolet 85.5+0.3 86.1±0.3 * 86.1+0.3 *

NETtalk 55.3 71.8 * 70.4 *

algorithms and specifically of nearest neighbor algorithms. The method of principal

component analysis (PCA, Section 2.4.3) can be used to transform continuous input

features into features that are mutually independent from each other. Henceforth,

the new features resulting from principal component analysis will be referred to

as "pca-features". Pca-features are mutually de-correlated and they generally have

substantially different variances (as indicated by each pca-feature's eigenvalue).

In this section, we will investigate the issue of whether principal component

analysis can be successfully applied to classification tasks. Two conditions must be



satisfied for this method to succeed in supervised learning tasks: (I) The pca-features

with the largest eigenvalues must also carry the most information with respect to

the classification. (2) The linear transformation applied to the data must not over-

shadow any structure that was present in the data before PCA was applied. Such

structure may assist the algorithm in learning the task.

Four methods for incorporating pca-features into the k-nearest neighbor algo-

rithm are compared in this section.

1. Each pca-feature can be normalized into the range [0. . . 1]. This is the standard

method as used throughout this research.

2. Each pca-feature can be normalized and then weighted by its eigenvalue. Each

pca-feature's elgenvalue indicates the amount of "structure" from the original

data that was transferred into this pca-feature. The eigenvalue may thus be a

good indicator of the feature's relevance.

3. Pca-features can be left un-normalized.

4. Pca-features can be left un-normalized and be weighted by their eigenvalues.

Method 1. can only be recommended in domains that have symbolic as well as

continuous features (Figure 4.13). In such domains, un-normalized (or weighted)

pca-features would dominate all distance calculations due to the fact that the largest

eigenvalue is generally very large. For example, the largest eigenvalue in the Cleve-

land and Hungarian domains is generally larger than 2000.

When kNN was trained on the normalized pca-features in domains that have

oniy continuous features, performance was never inferior to kNN trained on the

original features (Figure 4.13). In the Iris domain, a significant improvement in

predictive accuracy was obtained when method 2. was applied to the pca-features

(Figure 4.13). In both Waveform domains, a significant improvement in performance

was observed for methods 2. and 4., as well as for method 3. in the Waveform-40

domain (Figures 4.13 and 4.14). In the Letter RecognitionBR domain, performance

was significantly inferior to kNN trained on the original features when pca-features
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were not normalized. This inferior performance may be due to the fact that features

in the Letter Recognition domain are nominal and not continuous. These results

indicate that PCA can be applied to the features of tasks with solely continuous

features, and that pca-features should not be normalized (method 3.). This procedure

may lead to a significant improvement in performance in domains with irrelevant

features.
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Figure 4.13. Change in classification accuracy as an increasing number of features
that have been transformed via PCA are removed from non-synthetic data sets.
The four lines in each graph show the performance of kNN when features are (not)
normalized and/or weighted by their eigenvalues. In the Cleveland and Hungarian
domains, PCA was only applied to the 5 continuous features. The solid line in each
graph indicates the performance of kNN when trained and tested on the original
features.

The fact that pca-features should not be normalized for best performance mdi-

cates that those p ca-features with the largest eigenvalues do indeed carry the largest

amount of information with respect to the classification. This implies that it may

be possible to remove some of the pca-features with low eigenvalues. For example,

all but the 2 p ca-features with the largest eigenvalues were removed in the Wave-
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Figure 4.14. Accuracy of kNN in Waveform-40 domain when an increasing number
of features with the lowest eigenvalues is removed after initial features have been
transformed with PCA.

form domains without any loss in predictive accuracy (Figures 4.13, 4.14, and 4.15).

Through removal of 38 pca-features a significant gain in accuracy as compared to

the performance of kNN on the original data was obtained. Best performance was

obtained in the Iris domain when 2 of the 4 pca-features were removed (Figure 4.13).

Further, 5 out of 16 pca-features in the Letter Recognition domain (trained and

tested on letters B and R, only) were removed without any significant loss in predic-

tive accuracy. A surprising result in the Cleveland and Hungarian domains was that

all continuous features could be removed in these domains without any significant

loss in predictive accuracy. In a selected experiment in the Isolet domain, the same

predictive accuracy was achieved with 117 of the 617 pca-features (not normalized)

as with all original features.

These results strongly support the conclusion that principal component analy-

sis should be used as a preprocessing method for distance-based algorithms. This

method can be successfully applied to remove irrelevant features in order to improve

the performance and speed of the final classifier. In an attempt to develop a general
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Figure 4.15. Location of training examples of the Waveform-40 domain as indicated
by the two features with the largest eigenvalues after PCA has been applied to initial
features.

method for determining the number of pca-features that should be removed for best

performance, we compared the eigenvalues computed in the Waveform-40 and Letter

Recognition domains. The eigenvalues of approximately 30 of the pca-features that

were removed in the Waveform-40 domain were larger than the eigenvalue of the

pca-feature with the smallest eigenvalue in the Letter Recognition that had to be

retained for best performance. Similarly, ratios of eigenvalues also failed to provide

any general information. In view of these results, further research is necessary to

obtain a general method to determine the proper number of pca-features that should

be removed for best performance.

Principal components analysis has two main disadvantages. Firstly, its demand

on computational resources is high when the number of dimensions is high. Secondly,

the transformed features have no apparent relation to the original features and can,

thus, often not be assigned a meaning.
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4.3.5 Combining PCA and Feature Weight Learning Methods

One significant assumption made in Section 4.3.2 is that features are independent

from each other. Hence, mutual information can be computed for each feature inde-

pendently from all other features. Naturally, this may not always be true. However,

we have already seen in Section 4.3.4 that input features can be de-correlated without

any significant loss of information via the principal component analysis procedure.

The principal component analysis procedure also decreased the number of relevant

input features in all of the experiments described in Section 4.3.4. The two meth-

ods for determining the weights of input features discussed in the previous sections

substantially improved the performance of kNN in data sets with irrelevant features.

Hence, it is conceivable that these feature weighting methods may substantially im-

prove the performance of kNN trained in pca-features.

The following experiments were conducted. Mutual information feature weights

were computed for the normalized pca-features and kNN was trained on the pca-

features with these feature weights. The performance of kNN FWMI (pca-features)

was significantly inferior to the performance of kNN FWMI (original features) in 5

out of 12 domains and significantly superior in only 1. The drop in performance in

the Waveform domains is especially disappointing since we know that most of the

pca-features in these domains are irrelevant and could have weight 0. It appears

that the density estimation technique employed was unable to estimate the proper

distribution of the features in these domains. Further research is therefore necessary

to obtain satisfactory performance with this technique.

Better results were obtained when kNNWV FWVSM was trained on the un-normalized

pca-features. Performance was significantly inferior only in the banded and sinusoidal

tasks and significantly superior in the two Waveform domains and the diagonal task.

The poor results in the banded and sinusoidal tasks are not surprising. The data used

to generate these tasks were drawn from uniform distributions. Hence, there was no

structure whatsoever in the input data. The feature weighting algorithms were able

to determine in the banded task, for example, that the horizontal dimension of the



original data was irrelevant. However, that information was not preserved when PCA

was applied, which explains the poor performance. The relatively good performance

of kNNWV FWVSM on the non-synthetic data sets, on the other hand, is encouraging.

The results suggest that in most tasks, principal component analysis should preserve

or even enhance (as it did in the Waveform domains) the structure that was present

in the original data. A good feature weighting algorithm such as FWVSM can then

reduce the number of effective input dimensions and thus significantly improve the

performance of distance-based algorithms.

Table 4.9. The performance of the k-nearest neighbor algorithms with and without
features weights when trained on the original features or the pca-features. Feature
weights were computed via the mutual information procedure (L1 norm) or learned
(LSM norm).

Domain

Quadrants

Diagonal

Banded

Sinusoidal

Radial

Gaussian

Iris

Cleveland

Hungarian

Wave-21

Wave-40

Letter R.BR

Isolet

original features

kNN kNNWV

FWVSM

97.3±0.4

97.8±0.4

no FW

97.0±0.4

97.5±0.3

83.0±0.7

73.2±0.7

86.9±0.6

97.4±0.2

95.6±0.4

83.1±0.6

82.1±1.0

81.8±0.9

80.8±1.0

97.5±0.1

83.6±0.2

FWMI

97.0±0.4

97.7±0.3

88.8±0.3

74.6±0.7

86.6±2.1

97.9±0.2

95.6±0.5

83.2±0.4

83.9±0.9

81.8±0.9

83.3±0.8

98.2±0.2

85.1±0.2

95.7±0.3

83.5±0.8

87.3±0.7

97.1±0.2

95.0±0.6

82.7±0.7

81.6±1.0

81.9±0.9

81.0±1.1

98.2±0.1

86.1±0.3

pca-features

kNN

no FW

97.0±0.4

97.5±0.3

82.8±0.8

73.3±0.9

86.8±0.6

97.3±0.1

95.5±0.4

84.0±0.5

82.1±1.8

82.3±0.9

83.0±0.8 *

97.1±0.1 *

83.5±0.3

FWMI

96.8±0.4

98.3±0.3 *

83 0±0 7 *

72.6±0.7 *

86.6±0.6

97.3±0.3

95.2±0.7

83.2±0.5

81.9±0.9 *

81.0±1.0

80 9±1 0 *

97.6±0.1 *

kNNILJV

FWVSM

97.6±0.3

98 4±0 2 *

84 6±0 7 *

76.6±0.8 *

87.0±0.6

97.0±0.3

95.6±0.6

82.3±0.7

81.0±0.8

85.2±1.0 *

85 1±0 9 *

97.1±0.3 *



4.4 Summary

An extensive study of the k-nearest neighbor algorithm has been conducted in this

chapter. We have shown that for best performance it is necessary to conduct cross-

validation on the value of k. Several methods of cross-validation were compared and

it was found that, in general, the best estimate of the optimal value of Ic is obtained

by leave-one-out cross-validation. However, one-fold cross-validation was shown to

be a competitive alternative to leave-one-out cross-validation if the time required to

determine the value of k is of concern. It was also shown that the performance of

kNN is not sensitive to the exact choice of the value of k when k must be large.

This, in turn, led to the observation that for best performance it is necessary to

conduct cross-validation on a restricted number of values for k only. We suggest to

conduct cross-validation for k on these values: 1,3,5,7,9,13,17,27,35,41. The smaller

values were chosen, since it was shown that cross-validation on all values of k and

cross-validation odd values only leads to statistically indistinguishable results. The

larger values were chosen arbitrarily due to kNN's insensitivity to the exact choice

of k when Ic is large.

Four methods for the determination of the value of k from local data were pre-

sented in Section 4.1.2. It was shown that local kNN methods can significantly out-

perform kNN on data sets where noise or relevance of features varies substantially

in different parts of the input space.

The kNN algorithm with majority voting (denoted by kNN) was compared to the

kNN algorithm where the votes of the neighbors have weights inversely proportional

to their distance from the query during computation of the query's classification

(denoted by kNN). The kNN algorithm was found to perform significantly worse

than kNNWV in 4 out of 18 domains, and was superior only in the gaussian task. We

recommend to employ kNNWV instead of kNN in all domains.

The issue of how to estimate the proper distance metric for nearest neighbor

algorithms is investigated in Sections 4.3.2 and 4.3.3. A procedure based on the mu-

tual information between input features and output classes was shown to give results



significantly superior to that of kNN with standard Euclidean distance in 9 out of

17 domains. This procedure is very fast and can be applied directly to symbolic and

nominal features. The mutual information procedure requires estimation of the prob-

ability distribution of contilluous features. The quality of this estimate can greatly

affect the quality of the feature weights computed. A second method, called FWVSM,

which learns feature weights via gradient descent, was developed. It was shown to

significantly improve the performance of kNNWV in 7 out of 17 domains, and never

to perform significantly worse than kNNWV without feature weights. Finally, princi-

pal componeilt allalysis (PCA) is evaluated as a method for reducing the number of

relevant dimensions in supervised learning tasks. It was showil that in domains with

continuous features, a large number of input features could be removed without any

significant loss in predictive accuracy after PCA has been applied. This method,

when combilled with the FWVSM feature weight learning algorithm, boosted the

performance of kNNWV in the Waveform domains from 81% correct to 85% correct

which is very close to the Bayes optimal classification rate of 86% correct [BFOS84].

We conclude that either the mutual information or the VSM feature weight learning

algorithms should be employed whenever nearest neighbor algorithms are used and

that features should be pre-processed via PCA in domains with solely continuous

features.

4.5 Related Work

Nearest neighbor algorithms have been the subject of interest in a variety of research

areas for many years. An excellent survey of many of the publications relevant to

nearest neighbor algorithms has been published by Dasarathy [Das9l]. An important

area of research discussed by Dasarathy relates to reducing the storage requirements

of kNN [Das9l, Chapter 6]. Hart's [Har68] condensed nearest neighbor (CNN) algo-

rithm only stores training examples if they are misclassified by the previously stored

examples. The CNN algorithm is very similar to Kibler and Aha's 1B2 [KA87].

Wilson [Wi172] and Tomek [Tom76a, Tom76b] discuss several methods for removing



training examples from the design set. All of these methods generally result in a

substantial decrease in the storage requirements of kNN. In some tasks, editing can

improve the performance of the classifier [Wi172, Tom76a, Aha9O].

Aha [Aha9O] investigated the nearest neighbor algorithm in detail from a machine

learning perspective. He presents several modifications of the basic algorithm which

he terms IB1, 1B2, 1B3, and 1B4, indicating four different instance based machine

learning algorithms. He mathematically analyses the simplest algorithm, IB1, and

presents theorems proving its convergence. IB1 is identical to kNNWV (Section 4.2).

1B2 was designed to reduce the storage requirements of IB1 by storing only those

training examples that would be misclassified during incremental learning by the

already stored examples. 1132 is rather sensitive to noise in the data, necessitating

the development of 1B3, a noise-tolerant version of 1B2. 1B3 maintains a prediction

record with each instance, and uses only those instances with good records during

prediction. Instances with very poor prediction records are deleted from the set of

stored exemplars. 1B4 is an extension of the 1B3 algorithm that also learns feature

weights in a manner similar to that used by Salzberg [Sa191] (see also Chapter 4,

Section 5.7). Aha [Aha9O} reports substantially superior performance for 1B4 over

lB 1 in the presence of many irrelevant features. However, this superior performance

was only obtained when k was kept fixed at lc = 1 for IB1. This confirms the results

from Section 3 where we have shown that an increase in the value of k can be used

to compensate for some noisy instances and/or irrelevant features. Hence, in a fair

comparison, one would have to compare 1B4 with kNN.

An alternative approach to improving the performance and/or reducing the stor-

age requirements of nearest neighbor algorithms was presented by Kohonen [KBC88,

Koh89, Koh9Ob, Koh9Oa]. Kohonen termed his method Learning Vector Quanti-

zation (LVQ, see also Section 2.1.6). The LVQ algorithm stores a subset of the

training data. The stored exemplars are iteratively moved to different input loca-

tions until a termination condition is satisfied. None of the LVQ methods presented

in the literature to date learns or computes the weights of the different input di-

mensions explicitly. However, one could argue that LVQ-type algorithms implicitly



learn the relevance of the different features by adjusting the coordinates of irrelevant

input features for all stored exemplars such that they are identical. The result of

such an adjustment would be that all stored exemplars have identical distance to

all queries at that feature thereby effectively eliminating that feature. This effect is

illustrated for Generalized Radial Basis Function networks [PG89] by Wettschereck

& Dietterich [WD92].

Stanfili & Waltz's [SD86] present a method for computing meaningful distances

between symbolic features. They termed their metric the Value Difference Metric

(VDM). The Value Difference Metric computes a distance for each pair of the different

values a symbolic feature can assume. It essentially compares the relative frequencies

of each pair of symbolic values across all classes. Two feature values have a small

distance if their relative frequencies are approximately equal for all output classes.

Cost & Salzberg [CS93] present a nearest neighbor algorithm that uses a modification

of VDM. The main difference between Cost & Salzberg's method and VDM is that

their method's feature value differences are symmetric. This is not the case for VDM.

Finally, a data-dependent metric is suggested by Short & Fukunaga [SF80, SF81]

and Fukunaga & Flick [FF84] in the case of two class problems and by Myles &

Hand [MH9O] for the multiclass problem. Fukunaga & Flick [FF82] also present an

approach to computing the distance metric if the underlying probability distribution

of the data can be estimated.



Chapter 5
An Evaluation of Nearest Hyperrectangular Algorithms

One of the main disadvantages of the algorithms discussed in Chapter 4 is the large

amount of memory they require to store the training data. The algorithms discussed

in this chapter attempt to find more compact representations of the training data

by constructing hyperrectangles that represent a collection of training examples that

belong to the same class. More compact representations of the training data lead

to faster classification times and may increase the ability of the user to understand

decisions made by the classifier.

Salzberg [Sal9lJ describes a family of learning algorithms based on nested gen-

eralized exemplars (NGE). In NGE, an exemplar is a single training example, and a

generalized exemplar is an axis-parallel hyperrectangle that may cover several train-

ing examples. These hyperrectangles may overlap or nest. The NGE algorithm

grows the hyperrectangles incrementally as training examples are processed. Once

the generalized exemplars are learned, a test example can be classified by computing

the Euclidean distance between the example and each of the generalized exemplars.

If an example is contained inside a generalized exemplar, the distance to that gener-

alized exemplar is zero. The class of the nearest generalized exemplar is output as

the predicted class of the test example.

The NGE approach can be viewed as a hybrid of nearest neighbor methods

(Chapter 4) and propositional Horn clause rules [SS86}. Like nearest neighbor meth-

ods, a distance metric is applied to match test examples to training examples. But

like Horn clause rules, the training examples can be generalized to be axis-parallel

hyp errect angles.

Salzberg [Sa191] reported promising classification results in three domains. How-

ever, as reported below, when NGE was tested in 11 additional domains, it gave less



accurate predictions in many domains as compared to the k-nearest neighbor (kNN)

algorithm. The goal of this chapter is to demonstrate this performance, understand

its causes, and test algorithm modifications that might improve NGE's performance.

The first part of this chapter is devoted to a study that compares NGE and kNN.

To equitably compare these algorithms, it was necessary to find optimal settings for

various parameters and options in NGE and kNN. Thus, we first describe a series

of experiments studying how the performance of NGE is determined by several key

parameters and options. These include the number of starting seeds, the treatment

of un-generalized exemplars, and the treatment of nominal feature values. We then

present results showing that NGE (under the best parameter settings) is substantially

inferior to kNN in 9 of the 11 domains tested and superior to kNN in 2 of these

domains.

The second part of this chapter attempts to diagnose and repair the causes of

this performance deficit. We present several hypotheses including (a) inappropriate-

ness of the nested hyperrectangle bias, (b) inappropriateness of the overlapping of

hyperrectangle bias, and (c) poor performance of the search algorithm and heuristics

for constructing hyperrectangles. Experiments are then presented that test each of

these hypotheses. A version of NGE (called NONGE) that disallows overlapping

rectangles while retaining nested rectangles and the same search procedure was uni-

formly superior to NGE in all 11 domains and significantly better in 6 of them. A

batch algorithm (OBNGE) that incorporates an improved search algorithm and dis-

allows nested rectangles (but still permits overlapping rectangles) was only superior

to NGE in one domain (and worse in two). These and other experiments lead us to

conclude that a major source of problems in NGE was the creation of overlapping

rectangles.

We also present a batch version of NONGE, called BNGE, that is very efficient

and requires no user tuning of parameters. We recommend that BNGE be employed

in domains where batch learning is appropriate. The amount of memory required by

NGE algorithms can be further reduced after the classifier is constructed by pruning

hyperrectangles that were not generalized during the training period. These trivial
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hyperrectangles contribute little to NGE's predictive accuracy, but consume memory

and increase the time needed for classification.

The ideal behavior for a hybrid algorithm like NGE would be to take advantage

of axis-parallel rectangles where appropriate to find concise, interpretable representa-

tions of the learned knowledge. However, in domains where axis-parallel rectangles

are not appropriate, NGE would behave more like a nearest neighbor algorithm.

The versions of NGE that we developed do take advantage of hyperrectangles, but

they perform poorly in domains where hyperrectangles are inappropriate. Hence, the

potential advantages of NGE algorithms (data compression, fast learning and clas-

sification, interpretability of exemplars) are significant, but classification accuracy

is still not satisfactory. An additional modification to the NGE algorithm is pro-

posed and tested in Section 5.6. To achieve better classification accuracy, a hybrid

algorithm that uses BNGE in areas of the input space that are covered by hyper-

rectangles and that uses kNN otherwise, is introduced and evaluated. We call this

algorithm KBNGE. While BNGE was significantly inferior to the kNN algorithm in

7 out of 11 domains, KBNGE was inferior to the kNN algorithm in 4 domains and

yielded better predictive accuracy in 2 other domains. Furthermore, KBNGE was

faster than kNN in all domains. The KBNGE algorithm can be seen as a generalized

Nearest Neighbor algorithm. Nearest Neighbor algorithms play an important role in

inductive machine learning because of their simplicity and their ability to give highly

accurate predictions after a short learning phase (see also Chapter 4). The KBNGE

algorithm shares these advantages and offers, in addition, fast classification and a

compact representation of those parts of the task learned that clearly belong to a

certain class.

The third part of this chapter takes up the issue of learning feature weights for a

weighted Euclidean distance. Salzberg [Sa191] proposed an online weight adjustment

algorithm. Data are presented showing that this algorithm often performs poorly and

erratically. An alternative feature weight algorithm, based on mutual information

(c.f. Section 2.4.4), is shown to work well with NN, NGE, and BNGE.
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Section 5.8 compares the best version of NGE (BNGE FWMI) and the hybrid

algorithm developed in Section 5.6, KBNGE FWMI, to the best version of kNN

(kNN FWMJ). The comparison showed that despite the improvements in NGE,

it still was significantly inferior to kNN in 7 domains and significantly superior in 2

domains. When compared to single nearest neighbor (NN), the best version of NGE

fared slightly better: it was significantly superior in 3 domains and significantly

inferior in 5. The hybrid algorithm with feature weights was significantly inferior to

kNN with feature weights in 3 domains and superior in the two rectangular domains

while it was superior to first nearest neighbor with feature weights in 7 domains and

inferior in only 2.

5.1 The NGE algorithm

Figure 5.1 summarizes the NGE algorithm closely following Salzberg's [Sa191] defi-

nition of NGE. NGE constructs hyperrectangles by processing the training examples

one at a time. lEt is initialized by randomly selecting a user-defined number of seed

training examples and constructing trivial (point) hyperrectangles for each seed.

Each new training example is first classified according to the existing set of hyper-

rectangles by computing the distance from the example to each hyperrectangle. If

the class of the nearest hyperrectaugle and the training example coincide, then the

nearest hyperrectangle is extended to include the training example, otherwise the

second nearest hyperrectangle is tried. (This is called the second match heuristic.)

Should both the first and second nearest hyperrectangles have different classes than

the training example, then the training example is stored as a new (trivial) hyper-

rectangle. A query is classified according to the class of the nearest hyperrectangle.

Distances are computed as follows: If an example lies outside of all existing hyper-

rectangles, a weighted Euclidean distance to the nearest side of each hyperrectangle

is computed. If the example falls inside a hyperrectangle, its distance to that hy-

perrectangle is zero. If the example is equidistant to several hyperrectangles, the

hyperrectangle that is smallest in area is chosen.
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1. Build an NGE classifier (input: number s of seeds):
2. Initialization: /* assume training examples are given in random order */
3. for each of the first s training examples E5 call createHyperrectangle(E)
4. Training:
5. for each remaining training example E:
6. find the two W with D(E, Hi) minimal
7. /* in case of ties, choose the two H1 with minimal area
8. call these hyperrectangles Hd0585t and H507i closest
9. if (compare(HdloseSt ,E)) generalize(Hdosest ,E)

10. else if (compare(H80n Closest ,E)) generalize(H50 clOsest,E)

11. else createllyperrectangle(E)

12. Compare classes of a hyperrectangle and an example:
13. compare(H, E)
14. if (class(E) == class(H)) return true else return false

15. Generalize a hyperrectangle:
21.

16. generalize(H, E)
22.

17. for all features of E do:
23

18. Hupper,f, = max(Hupper,11, E1)
24

19. Hiower,ji min(Hiower,11 , E1)
25.

20. replMissFeatures(H,E)
26.

Create a hyperrectangle:
createllyperrectangle(E)

Hupper = E
Hlower = E

Hrea = 0
replMissFeatures(H, E)

27. Replace missing features in a hyperrectangle:
28. replMissFeatures(H,E)
29. for all features of E do:
30. if (feature i of E is missing)
31. Hupper,j, = 1

32. Hlower,fi = 0

33. Classification of a test example:
34. classify(E)
35. output: class(H2) with j = argminj D(E,H1)
36. /* in case of ties, choose H1 out of all ties with minimal area

Figure 5.1. Pseudo-code describing construction of an NGE classifier and classifi-
cation of test examples. H generally denotes a hyperrectangle and E an example.
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In our implementation of NGE. we first make a pass over the training examples

and normalize the values of each feature into the interval [0,1] (linear normaliza-

tion [Aha9O]). Features of values in the test set are normalized by the same scaling

factors (but note that they may fall outside the [0,1] range). Aside from this scaling

pass, the basic algorithm is entirely incremental.

Each hyperrectangle H is labeled with an output class. The hyperrectangle is

represented by its lower left corner (Hf,wer) and its upper right corner (Hpper). The

distance between H arid an example E with features fi through fnFeatures is defined

as follows:

nFeatures
D(E,H) WH x (w1 x d(E,Hi)2)

j=1

where:

Hpper,f if Ef > Hpper,ji

df(E,H3) IPower,f Ef if Hfower,fj > E

0 otherwise

weight of feature i (see Section 5.7)

WHJ weight of hyperrectangle §, computed as the ratio of

the number of training examples classified by H3

by the number of training examples correctly classified by H2:
number of times compare(H3, E) was called

number of times compare(H, E) returned true

The original NGE algorithm was designed for continuous features only. Discrete

and symbolic features require modifications of the distance and area computations

for NGE. We adopted the policy that for each symbolic or discrete feature, the set

of covered feature values is stored for each hyperrectangle (analogous to storing the

range of feature values for continuous features). A hyperrectangle then covers a

certain feature value if that value is a member of the covered set. If a hyperrectangle

is generalized to include a missing discrete or symbolic feature, then a flag is set such

that the corresponding feature of the hyperrectangle will cover any feature value in

the future.
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The area of non-trivial hyperrectangles is then computed as follows:11
nFeatures

area(H) = JJ size(H1)

with size(H11) computed as follows:

37. if (H11 has been generalized to include a missing feature) size(H11) 1

38. else if (f is continuous)
39. if (Hupper,.f, Hiower,jj) size(H11) = 1

40. else size(H11) = ffupper,js Hiower,,
41. else /* f is a discrete or symbolic feature */

42 .sizeH number of values of f covered by H
" number of possible values of f1

Note, therefore, that the maximum possible area of a hyperrectangle is 1. Fur-

thermore, the probability of line 39 being executed should be very low, since it is

unlikely that two continuous feature values match exactly. Hence, we deemed it

unnecessary to adjust the area of hyperrectangles for this case.

The original NGE paper also did not specify a policy for handling examples con-

taming missing features. In the context of nearest neighbor algorithms, Aha [Aha9O,

Section 5.2.1] evaluated three methods for distance computation with missing fea-

tures. We adopted his Ignore method. This is one of the simplest methods for dealing

with missing features: If a feature of an example is missing, then the distance for

that feature is 0. Furthermore, the total distance over all features is divided by

the number of known features to distinguish a perfect match from a missing feature

(both have distance 0).

We incorporated this methodology into the generalization procedure of NGE as

follows: Whenever a hyperrectangle in NGE is extended to include an example with

missing features, then the range of the hyperrectangle is extended to cover the entire

input space for each missing feature (see lines 20, 25, and 27-32 in Figure 5.1).

5.2 Experiments on Parameter Sensitivity

We explored the sensitivity of NGE to its user-specified parameters. For NGE, the

parameters of interest are (a) the number of starting seeds, (b) the treatment of Un-

"The size of trivial point hyperrectangles is assumed to be 0.
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generalized exemplars, and (c) the order of presentation of the examples. For kNN,

the oniy parameter of interest is the number of nearest neighbors (k). See Chapter 4

for a discussion of kNN's sensitivity to the choice of k.

5.2.1 Number of starting seeds

Figure 5.2 shows the performance of NGE on the quadrants, diagonal, and banded

tasks for several different numbers of starting seeds. The performance is shown rel-

ative to the performance of simple nearest neighbor. For the quadrants and the

diagonal tasks, where the number of classes is small, NGE's performance is partic-

ularly poor for small numbers of seeds. This contradicts Salzberg's findings [Sa191]

that the performance of NGE was not sensitive to the size of the seed set.

Not surprisingly, NGE performed better on the quadrants and banded tasks,

where the decision-boundaries are axis-parallel, than on the diagonal task, where

the boundary is diagonal (Figure 5.2). On the diagonal task, simple first-nearest

neighbor outperformed NGE.

At the right end of the figure (over the label "cv"), we show the performance

that is obtained if leave-one-out cross-validation [WK91] is employed to determine

the optimal number of seeds. This strategy worked very well, so we adopted it

in all subsequent experiments (unless otherwise noted).12 The following number of

seeds was tested during each leave-one-out cross-validation run: 3, 5, 7, 10, 15, 20,

and 25. Cross-validation is inherently non-incremental, so a disadvantage of using

cross-validation is that it destroys the incremental nature of NGE.

Note that if NGE is given a sufficiently large number of seeds, the algorithm

becomes the simple nearest-neighbor algorithm. In the limit, there is one seed for

every data point. This limit is not reached in these three tasks, however. NGE needed

only approximately 6% (quadrants task), 13% (diagonal task), and 28% (banded task)

12Leave-one-out cross-validation is computationally very expensive for NGE since
even the smartest implementation would have to process approximately n(n-1)

examples for each cross-validation run.
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Figure 5.2. The performance of NGE relative to NN when NGE is initialized with
varying numbers of seeds (cv: leave-one-out cross-validation). Base performance for
NN is 97.6% correct in the quadrants task, 97.0% in the diagonal task, and 82.4% in
the banded task. Data points represent means over 25 replications with 350 training
examples and 150 test examples. See Table 5.6 for detailed numbers.

of the storage that was required by NN to store the entire training set (detailed

numbers are provided in Table 5.6).

5.2.2 Treatment of ungeneralized exemplars

In NGE, hyperrectangles are initialized to points in the input space and should,

therefore, have size 0 before they are generalized to non-trivial hyperrectangles. We

have found that in the Led-7 Display domain, however, initialization of the size

of hyperrectangles to 1 (the maximal size any hyperrectangle can have) led to a

significant performance improvement (from 43.0+1.4% correct to 59.8±1.0%). This

was an artifact of the Led-7 Display domain that specifically resulted from the fact

that Led-7 Display has large numbers of training examples with identical feature

vectors belonging to different classes. It that case, each query falls inside of several

hyperrectangles and will be classified with the class of the smallest hyperrectangle it

falls into. If the size of hyperrectangles is initially set to 0, then ungeneralized, trivial

hyperrectangles cannot be distinguished from generalized, trivial hyperrectangles.
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However, generalized, trivial hyperrectangles should be preferred over ungeneralized,

trivial hyperrectangles, since they are more likely to be correct.

The initial size of hyperrectangles had no effect on NGE's performance in any

of the other domains. In the experiments reported in the remainder of the paper, we

chose to initialize the size of the hyperrectangles to 0, except in the Led-7 Display

domain, where we initialized the size to 1.

5.2.3 Order of presentation of training data

NGE is sensitive to the order in which the training examples are presented. Table 5.1

shows the results of an experiment in which the training set/test set partitions were

fixed while the order of presentation of the training set was randomly varied. We

can see that the performance varies widely across these domains. This is a serious

drawback of the NGE algorithm.

Table 5.1. The performance of NGE on one specific training/test set partition.
Numbers shown indicate the performance of NGE when run on 25 random permu-
tations of the same training set.

Domain Mean Median Mm Max

Iris 91.8+0.8 93.3 84.4 97.8

Huiigarian 78.0+0.5 77.3 71.6 83.0

Voting 93.3+0.4 93.1 89.2 96.2

Unfortunately, it is difficult to choose a "good" order for the training set. We

could not find an effective way to apply cross-validation methods, for example, to

select a good order. In the results reported below, a random order was selected for

each run of NGE, and (as with all of the other algorithms) the mean of 25 runs is

reported.



5.3 Comparison of NGE and kNN

The performance of three versions of the NGE algorithm is compared in Figure 5.3 to

the performance of the k-nearest neighbor algorithm (kNN). The three NGE versions

use different methods for choosing the number of initial seeds during training. In

NGECV the number of seeds is chosen via leave-one-out cross-validation, NGE3 seeds

is always initialize with three seeds,13 and in NGEijmii the number of seeds was

increased to at most 50% of the training data. The rationale behind NGEiimit is

that the amount of storage required for each hyperrectangle is twice the amount of

storage required for a single data point. Hence, when the number of seeds equals

50% of the training data, the total space required by NGE equals the space required

by kNN (assuming that similar methods for dealing with ties and missing features

are used). Beyond that point, NGE has no data compression advantage over kNN.14

The k-nearest neighbor algorithm outperforms NGECV by a statistically signifi-

cant amount in all of the eight non-constructed domains (Figure 5.3). In all domains,

NGECV achieved a significant (i.e. between 60% and 85%) compression of the data.

By substantially increasing the number of seeds (NGEjjmtt in Figure 5.3), it was

possible to significantly improve the performance of NGECV in the diagonal task,

and in the Led-7 Display, Cleveland, Hungarian, and Letter Recognition domains.

However, NGEijmjj is still significantly inferior to kNN in performance in all but one

non-constructed domain. The drop in performance in the Voting domain and the

quadrants task is due to the fact that in these domains, leave-one-out cross-validation

over a small number of different seed set sizes is more beneficial than increasing the

size of the seed set.15 However, the improvement in performance by NGEiimit comes

13The results for the Iris domain differ slightly from those reported by
Salzberg [Sal9l}, because accuracies obtained during leave-one-out cross-validation
rather than repeated train/test partitions were reported. The results with leave-
one-out are 95.3% for nearest neighbor and 92.8% for NGE.

'4One could improve on this by allocating space for the lower and upper corner of
each hyperrectangle only if the hyperrectangle is non-trivial.

15Leave-one-out cross-validation over more than, approximately, 10 different numbers
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at a high cost: In all cases where NGE's performance improved, it also used more

memory than kNN.

The learning curves for kNN and NGE have generally the shape that we expect

from most inductive learning algorithms: Performance increases with the number

of training examples and the increase levels off after the training set has reached a

certain size (Figure 5.4). In the Waveform, Led-7, and Letter Recognition domains,

the performance of NGECV levels off much earlier than kNN's. Furthermore, the

graphs for the Cleveland, Hungarian, and Voting domains show some erratic behavior

for NGECV. In the Hungarian and Voting domains, NGECV reaches its (near) peak

performance after only 25 training examples have been seen. For more than 25

training examples, performance of NGECV varies within two standard errors in these

domains. In the Cleveland domain, the performance of NGECV peaks also at 25

examples with 72.6±1.9% correct, but then drops down to 66.9±1.8%. Through

of seeds is not computationally feasible.
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inspection of the number and sizes of hyperrectangles constructed by NGECV in these

domains, we were able to determine the cause of this unusual behavior. The number

of hyperrectangles stored by NGECV grows only sub-linearly with the number of

training examples. Although that is a desirable property of any machine learning

algorithm, it may cause problems for NGECV, since existing hyperrectangles may

be generalized (extended) too often. This means that every time a hyperrectangle

is enlarged it may actually become less relevant. We conclude that this behavior

constitutes a serious deficiency in NGE's search and generalization procedure.

5.4 Possible Explanations for Inferior Performance of NGE

Given the close relationship between NGE and kNN, it is surprising that NGE per-

forms so much worse than kNN. With any learning algorithm, there can be two

fundamental sources of problems. First, the bias of the algorithm may be inappro-

priate for the application domains. Second, the implementation of that bias may be

poor (e.g., because poor search algorithms are employed).

Salzberg never formally defines the bias of NGE. Let us define it to be "find the

minimum number of axis-parallel hyperrectangles (possibly nested or overlapping)

that correctly classifies the training data."

There is some evidence that this bias is inappropriate. We know that in the

diagonal task (non-axis-parallel decision boundary), the axis-parallel bias is inap-

propriate (see Figure 5.2), but this is an artificially-constructed domain. However,

Aha [Aha9O] reports the performance of C4.5 [Qui92] in six of the domains which

are also used in this thesis. C4.5 also has a rectangular bias and performs, under

similar conditions, significantly better than NGE in these six domains (Aha {Aha9O},

Section 4.3.3).16 This suggests that the axis-parallel bias is not the cause of NGE's

poor performance.

'6There are many other differences between NGE and C4.5. However, Aha's results
indicate that a rectangular bias may be of no hindrance given the proper search
algorithm.
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Figure 5.5. Number of exemplars stored by NGE when trained with 25 seeds on
differently sized training sets from the Letter recognition task. Shown is the total
number of hyperrectangles that were stored during training (x) and the number of
hyperrectangles which were generalized at least once (o). Each data point denotes
the mean over 25 experiments.

Examination of the learned hyperrectangles in several of the other domains sug-

gests that permitting rectangles to nest and overlap is a problem. The most common

form of nesting is that a large, generalized hyperrectangle is created and then many

single-point rectangles are nested inside it as exceptions. This can be seen in Fig-

ure 5.5, which plots the number of hyperrectangles created and the number that are

actually generalized to be non-point rectangles. We can see that the overwhelming

majority of hyperrectangles are never generalized.

These single-point hyperrectangles are virtually never used for classifying new

test examples, because if a test example falls inside a large hyperrectangle, the dis-

tance to that hyperrectangle is zero. A single-point hyperrectangle will not be used

unless either (a) the test example exactly coincides with the single-point rectangle

or (b) the single-point rectangle is not nested inside another rectangle.

NGE also permits generalized rectangles to overlap, even if they don't nest.

This may be a problem as well. One situation in which overlapping rectangles will

be created is if the distributions of examples from two classes, A and B, overlap. The

optimal decision rule (under a uniform loss function [DH73}) is to place the decision

boundary at the point where the probability density of examples from class A equals

the probability density of examples from class B. However, NGE instead arbitrarily

assigns all examples in this overlapping region to one of the classesthe one which

has the smaller rectangle.
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In addition to these hypotheses about the bias of NGE, there is considerable

evidence that the bias is not implemented well by NGE's incremental heuristic pro-

cedure. From the sensitivity experiments, we know that NGE is very sensitive to the

order in which the training examples are presented. For some orders, it does very

well.

In the quadrants and the banded task, we can determine the optimal set of hy-

perrectangles by inspection (4 and 10, respectively). NGE does not find this optimal

solution, but instead constructs an average of 10.8±1.1 and 49.6±1.2 rectangles (Fig-

ure 5.6). In the diagonal task, on the other hand, the optimal solution involves a

large number of rather small, overlapping rectangles (one for every training example

that lies near the decision boundary). However, NGE does not find this solution

either. It constructs some rectangles that are too large, and then nests the smaller

ones in them (Figure 5.6).

Quadrants Diagonal Banded

Figure 5.6. Rectangles constructed by NGECV in the quadrants, diagonal, and
banded tasks in one representative experiment. In the quadrants and diagonal tasks,
dashed (solid) lines indicate the location of rectangles representing positive (nega-
tive) examples. In the banded task, digits indicate the class each rectangle repre-
sents. Trivial (point) rectangles not displayed. Note that in the quadrants task a
single rectangle of class 0 covers the entire input space.
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In summary, we have three hypotheses that can explain why NGE is performing

poorly relative to kNN:

Hi. nested rectangles,

H2. overlapping rectangles, and

H3. poor search algorithm.

To test these hypotheses, we conducted a series of experiments in which we

modified NGE to eliminate one or more of these suspected problems and measured

the resulting change in performance.

In the first experiment, we tested Hi by modifying NGE so that it produced

relatively few nested rectangles but still permited overlapping rectangles. We did

not otherwise change the search procedure.

In the second experiment, we tested 112 by modifying NGE so that it produced

no overlapping rectangles of different classes (with the exception of rectangles entirely

nested inside one another). We did not otherwise change the search procedure.

In the third experiment, we tested 113 by making a simple modification to incre-

mental NGE to improve upon the second-match heuristic, with the goal of finding

fewer hyperrectangles.

Finally, in the fourth experiment, we tested all of the hypotheses simultaneously

by implementing an entirely different search procedure that completely eliminated

nested rectangles and overlapping rectangles and also reduced the total number of

rectangles constructed.

These experiments and their results are described in the remainder of this sec-

tion.

5.4.1 Greedy NGE (avoid nesting)

To test Hi, it is necessary to construct a variant of NGE that avoids nesting rect-

angles. A major cause of nested rectangles is the second match heuristic (line 9 in

Figure 5.1). If the nearest rectangle is of the wrong class but the second nearest
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rectangle is of the right class, then the second-nearest rectangle is expanded to cover

the new example. In many cases, it will also cover the nearest rectangle (which could

be a single point), and thus create nesting.

Salzberg [Sa191, Section 3.5] introduced and tested a version of NGE, called

Greedy NGE, that does not have the second match heuristic. This greedy version

stores an example as a new hyperrectangle whenever the closest previously stored

hyperrectangle is of a different class than the example. According to Salzberg, the

second match heuristic in NGE is necessary to construct nested or overlapping hy-

perrectangles. This is not true: NGE may still construct overlapping or nested

hyperrectangles even if its second match heuristic is disabled, because it can "grow"

a hyperrectangle until it overlaps or covers another hyperrectangle. In fact, Greedy

NGE did construct overlapping hyperrectangles (quite frequently) and nested hyper-

rectangles (in a few cases) in the experiments that we conducted (data not shown).

The predictive accuracy of Greedy NGE was significantly better than NGE's in

three domains (Cleveland, Hungarian, and Voting) and significantly worse in 4 others

(the quadrants and banded tasks, and the Waveform-21, and Waveform-40 domains).

The results in the banded task and the Waveform-40 domain were particularly poor

(Figure 5.7).

Based on these, there is not much evidence that nested rectangles are a major

problem for NGE.

5.4.2 NGE without Overlapping Hyperrectangles (NONGE)

To test H2, we want to construct a variant of NGE that avoids overlapping rectan-

gles. This can be accomplished as follows. Let us define P to be the potential new

hyperrectangle that is constructed by the calls to "generalize" in lines 9 and 10 of

Figure 5.1. Rectangle P is the rectangle formed by extending either the first match

or the second match rectangle so that it covers the training example.

In No-Overlap NGE (NONGE), we construct P and then check whether it would

intersect with any hyperrectangle from any other class. If P would intersect another



20-

z10-
0

a)

.4. 5_.

a)

0-

-8 -

I[II

Greedy NGE - NGE F2+NOC - NGE E NONGE - NGE
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rectangle, then we reject P and create a new, single-point rectangle instead. However,

if P would be completely contained within another hyperrectangle, we accept P. This

way, nested rectangles are permitted, but overlapping (non-nesting) rectangles are

forbidden.

In Figure 5.7, we see that NONGE was significantly better than NGE in 6 of the

11 domains, and it was never significantly worse than NGE. This strongly supports

hypothesis H2that overlapping rectangles cause problems for NGE.

5.4.3 A better merge heuristic for NGE?

NGE stores a training example as a new hyperrectangle whenever the two nearest hy-

perrectangles have different output classes than the example. In some cases, however,

this can create unnecessary new rectangles. Consider Figure 5.8. Here, rectangle C is

further away from point P than either rectangle A or rectangle B. However, because
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rectangle C has the same class as point P, it could be extended to cover point P

without overlapping either of rectangles A or B. By extending rectangle C in this

way, we avoid creating a new generalized exemplar for point P.

We developed a modified version of NGE, called F2+NOC, that detects this

situation. If the first two matches (to the nearest and second-nearest hyperrectan-

gles) fail, F2+NOC finds the nearest hyperrectangle having the same class as the

example. It then extends that nearest hyperrectangle to include the new example

if the expanded hyperrectangle would not cover any hyperrectangles from any other

classes. Otherwise it stores the example as a new hyperrectangle. This gives NGE

another chance to generalize and should, in general, reduce the amount of memory

required by NGE.

j A

class=3 L'] class2
C B

Figure 5.8. Example showing that rectangle C can be extended to cover point P

F2+NOC can be considered as a weak test of hypothesis H3 (that the search

algorithm of NGE needs improvement). Tables A.1 through A.5 indicate that this

additional matching heuristic indeed achieves a reduction in storage in most domains.

Hence, it is a better implementation of the NGE bias. However, as shown in Fig-

ure 5.7, F2+NOC performs significantly better than NGE only in the banded task,

while the reduction in storage is directly related to a loss in predictive accuracy in

five domains.

Hence, this improvement to NGE's search algorithm does not explain the poor

performance of NGE relative to kNN.



5.4.4 Batch NGE

To obtain a better test of H3, we constructed two batch algorithms (OBNGE and

BNCE) for the NGE bias. These algorithms begin with all training examples in

memory as point hyperrectangles and progressively merge them to form generalized

hyperrectangles. At each step, the two hyperrectangles are merged subject to one of

the following constraints:

OBNGE Only merge if that merge would not cause misclassification of any training

examples. This algorithm requires testing of the entire training set for each

potential merge. It permits overlapping but no nesting of rectangles. We call

it OBNGE (Overlapping Batch NGE).

BNGE Oniy merge if the new hyperrectangle does not cover (or overlap with) any

hyperrectangles from any other classes. This algorithm requires intersection of

each potential merge with all hyperrectangles from all other classes. It does

not permit overlapping or nesting. We call it BNGE (Batch NGE).

The merging process in both algorithms is repeated until no more merges can be

found (Figure 5.9). Note that these algorithms are somewhat dependent on the order

in which potential merges are considered. They are greedy in that a merge is accepted

as soon as the above mentioned conditions are satisfied. The break statement on

line 60 of Figure 5.9 ensures that the rectangles representing different classes are

grown at approximately equal rates. It is necessary to balance the growth of the

rectangles to avoid generating hyperrectangles from a single class that would cover

most of the input space. These overly large hyperrectangles would then prevent

hyperrectangle from the other classes from growing. For reasons of computational

complexity, arbitrarily chosen hyperrectangles from each class are grown alternatively

until they cannot be extended further. An alternative search strategy for BNGE will

be discussed in Section 5.5.

These algorithms are more conservative in generalizing beyond the training data

than the original NGE algorithm, since they generate hyperrectangles only in those
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60.
61.
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64.
65.
66.
67.

68.

Initialization:
for all training examples E:

q[class_of(E)] .push(E);
Training:
repeat

for each output class C
T = q[C].pop;
i = 1;
if (q[C] .empty) final[C] .push(T);
while (not(q[C] .emptyO))
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/* skip class C if q[C] is empty */

N = q{CJ.ithClosest(T,i); /* N is the hyperrectangle in q[C] that has the */
/* ith smallest distance to T. */

/* Check if the hyperrectangle built by T and N would overlap /
7* with any hyperrectangles from any other classes. /

if (not(overlaps(hyperrectangle(T,N) ,otherClasses(C))))
q[C] .remove(N);
q{C] .push(hyperrectangle(T,N));
break; /* move on to next class */

else
i=i+1;
if (i > q[C].length)

final[C} .push(T);
T = q[CJ.pop;
i=1;

until (q[C].empty for all C)

/* There exists no other hyperrectangle *7
/* That T could be merged with */

/* Add T to final queue */
7* Try to merge next hyperrectangle in this class *7

Figure 5.9. Pseudo-code describing the construction of an BNGE classifier.

parts of the input space which clearly belong to a certain class. Furthermore, due

to the fact that BNGE and OBNGE repeatedly pass over the training data, they

may also significantly reduce the number of hyperrectangles that remain at the end.

BNGE is also faster and easier to use than NGE, since no cross-validation of free

parameters is required. OBNGE requires an organization of the training data in

k-d trees [FJF77}, for example, such that the cost of repeatedly testing the entire

training set is minimized.

Numbers displayed in Figure 5.10 and Tables A.1 through A.5 show that BNGE

significantly outperformed NGE in 7 of the 11 domains tested. In all cases, the perfor-

mance of BNGE was better than NGE. On the other hand, OBNGE was significantly

better than NGE only in the banded task, and significantly worse than NGE in three

domains (the quadrants and diagonal tasks, and the Hungarian domain).
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Figure 5.10. Performance of OBNGE and BNGE relative to NGE. Shown are per-
centage point differences between OBNGE and NGE and between BNGE and NGE.
A * indicates that the performance difference between NGE and its modification is
statistically significant (p < 0.05). See Tables A.1 through A.5 for detailed numbers.

This provides additional strong evidence that overlapping rectangles are an in-

appropriate bias for these domains (H2).

To test 113, we can examine first whether BNGE implements a better search

algorithm. For the quadrants task, BNGE attains the optimal solution of 4 hyper-

rectangles. Furthermore, BNGE also uses only one hyperrectangle to cover the Iris

Setosa class in the Iris domain. This is good evidence for the quality of the BNGE

search procedure.

The incremental version of NGE most similar to BNGE is NONGE (NGE

without overlapping rectangles). By comparing Figures 5.7, 5.10, and Tables A.1

through A.5, it can be seen that BNGE out-performed NONGE in four domains,

while NONGE out-performed BNGE in two domains. This gives only weak evi-

dence that the improved search algorithm of BNGE is responsible for the improved

performance.
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5.4.5 Discussion

From these experiments, we can see that there is weak support for 113 and strong

support for 112 as explanations for the poor performance of NGE relative to the

nearest neighbor algorithm. There is no support for Hi. Versions of NGE that

do not permit overlapping rectangles perform consistently better than NGE in all

domains tested. The batch algorithm, BNGE, which does not permit nested or

overlapping rectangles of different classes, performs quite well and avoids the need

to choose the number of seeds for NGE by cross-validation.

5.5 Batch NGE revisited

The search algorithm employed by BNGE during training (Figure 5.9) is a very ad-

hoc procedure, since it randomly picks one training example from each class and

grows these (while alternating between classes) to the largest possible sizes. In some

domains the algorithm will, therefore, construct a small number of very large rectan-

gles in each class and will be left with some number of very small rectangles. There

are many alternative methods of constructing a set of non-overlapping rectangles

from a set of training examples. Finding the optimal set of rectangles with respect

to some optimality criterion such as smallest combined size or smallest total number

of rectangles is NP-complete. One method that may construct a better set of rect-

angles is Omohundro's best-first model merging technique [Omo92]. This technique

dynamically chooses the structure of a classifier by iteratively combining "small"

subcomponents of the classifier into larger components that typically cover a larger

part of the input space and therefore more training examples. The process of merging

is repeated until some criterion is satisfied. The best-first model merging technique

can be used to construct a BNGE classifier (Figure 5.11). We call this algorithm

BNGEMM for BNGE with model merging. The basic idea behind the algorithm is to

initially construct all hyperrectangles that would result from merging each training

example with every other training example of its class and to sort these candidate

hyperrectangles into a priority queue according to their sizes. Each element of this
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queue is then either accepted into the final classifier or rejected. Two means for

accepting potential hyperrectangles into the final classifier are described. The first

method accepts hyperrectangles only if they have no contact whatsoever with any

hyperrectangles from other classes (nesting.allowed = FALSE). The second meth-

ods allows nested hyperrectangles under certain circumstances. This version may

increase BNGE's performance in the presence of noise.

5.5.1 Pruning

One of the main advantages of NGE and its variations when compared to the Nearest

Neighbor algorithm is that NGE often finds a more compact representation of the

data. For example, if all training examples of one class can be described by a single

rectangle, then BNGE will find that rectangle. Often, however, NGE and BNGE

store trivial point-hyperrectangles. Since these hyperrectangles cover no significant

part of the input space, they may contribute little to the generalization accuracy of

NGE while using up memory and slowing down the classifier during classification.

Pruning of exemplars that cover only one training example (i.e. were never gen-

eralized, denoted by BNGE1) had no significant effect on the performance of BNGE

in any of the eleven domains used in the experiment described in Figure 5.12. A

significant reduction in storage was observed in all domains except in the quadrants

task, where BNGE had already found the smallest possible representation of the

training data without pruning. Across all other domains, approximately 30% of the

hyperrectangles stored by BNGE covered only a single training example and were

removed by BNGE1 (Table 5.2).

Pruning of exemplars that cover only two training examples (denoted by BNGE2)

leads to a statistically significant decrease in performance in the diagonal task and

the Letter Recognition domain (letters B and R, only). A further reduction in the

storage required was achieved by BNGE2 when compared to BNGE1 (again, with

the exception of the quadrants task). The amount of compression of the original
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69. Initialization:
70. for all training examples E:
71. for all other training examples EN:
72. H = hyperrectangle(E,EN)
73. priority_queue.insert(H) /* smallest elements first */
74. final_queue.insert(E);

75. Training:
76. while (not(priority_queue .empty))
77. T priority_queue.popQ;
78. if (merge_can_be_accepted(T, final_queue))
79. final_queue.insert(T);
80. finalqueue .remove(covered_by(T) and sameclass_as(T));
81. for all elements E in priority_queue:
82. if (class(E) == class(T)
83. H = hyperrectangle(T,E)
84. priority_queue.insert(H)

85. merge_can_be_accepted( T, final_queue) {
86. if (T does overlap with any hyperrectangles from other classes)
87. return FALSE;
88. else if (T does not cover any hyperrectangles from other classes)
89. return TRUE;
90. else if (nesting_allowed){
91. Let T1 and T2 be the hyperrectangles T is composed of
92. s = number_of_training_examples_covered_by(Ti)
93. t = number_of_training_examples_covered_by(T2)
94. m = min(s,t)
95. S=0;
96. for all hyperrectangles H covered by T in final_queue with class(H) class(T)

97. S += sum(number_of_trainingexamples_covered_by(H)
98. if(S<m)
99. return TRUE;

100. return FALSE;
101. }
102.

Figure 5.11. Pseudo-code describing the construction of an BNGE classifier with
best-first model-merging.
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Figure 5.12. Performance differences between BNGE without pruning and BNGE
with different levels of pruning on the test set. The subscript px indicates that
hyperrectangles which cover at most x training examples were removed before the
classifier was tested. Performance relative to BNGE without pruning is shown. These
differences (*) are statistically significant (p < 0.05).

training data achieved by BNGE2 was substantial. Its data compression rate was

more than 80%17 for all domains in which it was tested.

Larger levels of pruning can lead to an unacceptable degradation in performance

in some domains and is not be recommended unless memory (and computational

resources) are very sparse.

It is important to note that the main purpose of the pruning technique described

here is to find a more compact BNGE classifier with somewhat similar classification

accuracy. Since this approach is a modification of BNGE's bias, it may also suffer

from the same problems as other pruning techniques [Sch93a] with respect to classi-

fication accuracy. However, pruning never increases the amount of storage required

by BNGE.

Pruning of hyperrectangles that cover only a few training examples can also be

used to obtain a simplified description of the training data. This description may then

17Note that each hyperrectangle consumes approximately twice as much memory as
a single training example.
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Table 5.2. Number of hyperrectangles stored by BNGE without pruning (column 1)
and when different levels of pruning were employed. Numbers in parentheses indicate
ratio of the number of hyperrectangles stored to the number of training examples.
The subscript px indicates that hyperrectangles which cover no more than x training
examples were removed before the classifier was tested.

Domain BNGE BNGE1 BNGE2 BNGES

Quadrants 4.0±0.0 (1%) 4.0±0.0 (1%) 4.0±0.0 (1%) 4.0±0.0 (1%)

Diagonal 19.7±0.5
( 6%) 15.0±0.3 (

4%) 13.2±0.3 (4%) 10.1±0.3 (3%)

Banded 24.0±0.6 ( 7%) 14.9±0.3 (
4%) 13.0±0.3 (4%) 11.3±0.2 (3%)

Iris 7.0±0.3
(

7%) 4.8±0.2 ( 5%) 3.8±0.1 (4%) 3.2±0.1 (4%)

Cleveland 38.6±0.5 (18%) 25.5±0.6 (12%) 18.5±0.4 (9%) 10.0±0.4 (5%)

Hungarian 39.0±0.6 (19%) 27.0±0.5 (13%) 19.0±0.5 (9%) 9.2±0.2 (4%)

Voting 22.7±0.8 ( 7%) 14.8±0.3 ( 5%) 10.8±0.3 (4%) 6.5±0.2 (2%)

Waveform-21 44.3±0.8 (15%) 29.6±0.9 (10%) 21.0±0.7 (7%) 10.3±0.4 (3%)

Waveform-40 47.0±0.9 (16%) 30.7±0.8 (10%) 20.2±0.6 (7%) 9.2±0.4 (3%)

Led-7 Display 72.2±1.0 (36%) 31.8±0.6 (16%) 17.6±0.4 (9%) 9.4±0.2 (5%)

Letter Recog.BR 62.2±1.4
(

6%) 46.4±0.9 ( 5%) 37.3±0.8 (4%) 24.1±0.6 (2%)

be used to evaluate the amount of information that each input feature carries. For

example, we inspected the hyperrectangles in the Hungarian domain that remained

after all hyperrectangles covering five or fewer training examples were removed from

the classifier (denoted by BNGES in Figure 5.12). From these hyperectangles we

could determine that 4 of the 13 input features in this domain were completely

irrelevant. These hyperrectangles could be further interpreted to describe the typical

patient who is likely to suffer from heart disease as a middle-aged male experiencing

atypical angina or asymptomatic chest pains with exercise-induced angina and a

medium to high ST depression induced by exercise relative to rest. After pruning

in the Voting Records domain., only one hyperrectangile for Republicans and one

for Democrats was left to describe the voting patterns of the members of the US

congress in the legislative period described in that data set. In particular, the votes
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on adoption of the budget and the physician fee freeze were most informative, and

11 of the 16 features were irrelevant.

5.6 A Hybrid Nearest-Neighbor and Nearest-Hyperrectangle Algorithm

The evaluation of the hypotheses regarding the reasons for the relatively poor per-

formance of NGE when compared to kNN has led to the design of an improved

NGE algorithm that we termed BNGE. This algorithm outperformed NGE in 7 of

the 11 domains tested (Figure 5.10); It also outperformed the first-nearest neighbor

algorithm in 5 of the 11 domains, and was outperformed by NN in only two do-

mains (Figure 5.13). However, when compared to the k-nearest neighbor algorithm,

BNGE's performance is still significantly inferior to kNN's in 7 of the 11 domains

and superior to kNN's in only 2 domains (Figure 5.13)

z

C

-

U

E

'-p

U NN - kNN BNGE - kNN

Figure 5.13. Performance of NN and BNGE relative to kNN. An * indicates that
the performance difference between kNN and the other algorithms is statistically
significant (p <0.05). See Tables A.1 through A.5 for detailed numbers.

The following experiment was conducted to determine the cause of this remaining

performance difference: the accuracy of the classifications assigned to the test cases
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Table 5.3. Comparison of correctness of classifications made by BNGE inside versus
outside of hyperrectangles. Numbers are based on a single repetition.

Percentage of test examples

classified classified

Domain inside of these incorrect outside of these incorrect

Quadrants 93.3 0.0 6.7 20.0

Diagonal 80.7 4.1 19.3 10.3

Banded 76.0 0.9 24.0 38.9

Iris 80.0 0.0 20.0 22.2

Led-7 89.4 26.0 10.6 56.6

Waveform-21 26.0 11.5 74.0 33.8

Waveform-40 12.0 8.3 88.0 35.2

Cleveland 30.8 3.6 69.2 33.3

Hungarian 45.5 12.5 54.5 22.9

Voting 83.0 2.8 17.0 13.6

Letter recognition 68.4 1.0 31.6 32.8

by BNGE was measured separately for queries that were covered by at least onehy-

perrectangle and those that fell outside of all hyperrectangles. Results indicate that

BNGE's predictions are substantially more often correct for queries that are inside of

hyperrectangles than for queries that are outside of all hyperrectangles (Table 5.3).

Displayed in Table 5.3 are the percentages of test examples that were covered by

at least one hyperrectangle (column 2), the percentage of these test examples that

were misclassified (column 3), the percentage of test examples that were outside of

all hyperrectangles (column 4), and the percentage of these "outside" -test examples

that were misclassified (column 5). The table clearly shows that BNCE commited

more errors when predicting the class of test examples that were not inside any

hyperrectangles, than when predicting the class of test examples that were inside

hyperrectangles. Thus, we decided to use a different classifier for any queries that

were not covered by hyperrectangles.
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Table 5.4. Values of k used by KBNGE. Leave-one-out cross-validation was used in
each of the 25 repetitions of the experiments to determine the value of k.

k value

Domain mm max average

Quadrants 1 99 24.7±6.7

Diagonal 1 27 6.5±1.5

Banded 1 5 1.6±0.2

Iris 1 18 8.0±0.8

Led-7 Display 2 7 4.3±0.4

Waveform-21 7 92 34.4±4.2

Waveform-40 14 93 43.3±5.0

Cleveland 3 57 18.6±3.5

Hungarian 21 57 37.2±2.3

Voting 3 10 6.1±0.5

Letter recognition 1 1 1.0±0.0

In the experiments described in Figure 5.15, the k-Nearest Neighbor algorithm

was used as that classifier.18 Un-generalized exemplars were pruned to accelerate the

classifier. We call this hybrid method KBNGE to indicate that it is a combination

of BNGE1 (as defined in Section 5.5.1) and kNN.

The KBNGE algorithm has two main advantages over kNN: (1) Areas that

clearly belong to only one class are represented by only one hyperrectangle. This

can often lead to significantly faster classification times. The computationally more

expensive kNN classifier is only used to classify queries in areas with complex deci-

sion boundaries or high levels of noise. (2) The hyperrectangles constructed can be

inspected and interpreted by the user. This quality of user interpretability may lead

'8Once again, k values were determined via leave-one-out cross-validation [WK91.
Values of k varied significantly across domains and for different random partitions
of the training data within most domains (see also Table 5.4).
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to a greater acceptance of decisions made by KBNGE as compared with those made

by kNN or neural networks.

KBNGE is faster than kNN at classification time if the following rough formula

is satisfied:

#(training examples) >
x #(hyperrectangles) + (1 x) x #(training examples) (1)

where x is the percentage of test cases classified by BNGE. All other (1 - x)% of

the test cases are classified by the kNN classifier. The value of x differs from domain

to domain (see Table 5.3) and must be determined empirically. The justification

for the formula is that kNN has to compare each query to all training examples,

while KBNGE must compare each query to all hyperrectangles (a comparison to a

hyperrectangle is approximately twice as expensive as a comparison to a training

example), and if the query is not covered by any hyperrectangles (which happens in

(1 x)% of the cases), KBNGE must compare the query to all training examples.19

Formula (1), evaluated with the data displayed in Table 5.3, shows that KBNGE

is faster than kNN in all domains tested. In domains with large amounts of noise

(Waveform, Cleveland, and Hungarian) kNN is used very often (Figure 5.14), which

indicates that a noise tolerant version of BNGE should help to improve the speed of

KBNGE even further.

The number of training (and test) examples covered by any hyperrectangle differs

widely within and across domains. For example, a single hyperrectangle is always

constructed in the Iris domain to cover all instances of Iris Setosa, while in the

Cleveland and Hungarian domains a single hyperrectangle never covers more than

approximately 30% of the training (20% of the test) examples of its class.

The classification accuracies achieved by KBNGE are comparable to those of

kNN in most domains, and superior or indistinguishable from the accuracies obtained

'9Formula (1) assumes that retrieval of training data is not conducted more efficiently
with methods such as k-d trees [FJF77] or box-trees [0mo89]. In domains with
many relevant features, neither k-d trees nor box-trees provide significant speedups
over serial search. In domains where they do provide speedups, KBNGE could also
be accelerated by storing the hyperrectangles in a box tree.
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Figure 5.14. Ratio of test examples classified by the BNGE1 part of the KBNGE
classifier (a). All other test examples were classified by the kNN part of KBNGE.
The ratio of hyperrectangles stored by BNGE1 to the number of training examples
(+) is shown for comparison.

by BNGE in all domains (Figure 5.15). The rectangular bias of BNGE enables KB-

NGE to significantly outperform kNN in domains where that bias is most appropriate

(the quadrants and banded tasks). A superior accuracy is also achieved in the Voting

domain. The inferior performance of KBNGE (when compared to kNN) in the diag-

onal task, the Cleveland and the Hungarian domains, and in the Letter Recognition

domain (letters B and R, only) indicates that BNGE's strong bias may lead to over-

generalization in some domains. In the diagonal task, for example, BNGE generates

rectangles with empty corners that reach into the space that belongs to the other

class (Figure 5.16). Future should therefore investigate how this over-generalization

can be avoided.

To summarize, the hybrid algorithm of kNN and BNGE successfully combines

the classification accuracy of kNN and the classification speed of BNGE.



z
z

0

I
.1

121

NN - kNN BNGE- kNN KBNGE - kNN

Figure 5.15. Performance of NN, BNGE, and KBNGE relative to kNN. An * in-
dicates that the performance difference between kNN and the other algorithms is
statistically significant (p < 0.05). See Tables A.1 through A.5 for detailed numbers.
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Figure 5.16. Rectangles generated by BNGE in the diagonal task. Plotted for
comparison are also the original data points (+: class 0, o: class 1) and the decision
boundary used to generate the data.
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5.7 Feature Weights

The choice of the distance metric can significantly influence the performance of any

distance-based machine learning algorithm in domains with continuous features (see

also Section 4.3). Euclidean distance (L2-norm) was used for NGE in all experiments

reported in the previous sections. Note that the decision whether a query is inside

or outside of a hyperrectangle is independent of the metric. On the other hand, the

metric may heavily influence the number and shape of hyperrectangles constructed.

In all of the experiments we have conducted thus far, we have treated all features

as equally important in computing the Euclidean distance to the nearest hyperrect-

angles (and nearest neighbors). However, many of the 11 domains involve noisy or

completely random features. A way to improve performance of both NGE and kNN

is to introduce some mechanism for learning which features are important and which

unimportant (or noisy) features should be ignored in all distance computations.

Salzberg [Sa191, Section 3.3, last paragraph] describes a method for online learn-

ing of feature weights in NGE. Assume that a new example E is misclassified by an

exemplar H. For each input feature f, if matches H11, the weight of f (w11) is

increased by multiplying it by (1 + z1); if does not match H11, the weight

is decreased by multiplying it by (1 /.j is the global feature-adjustment rate

(usually set to 0.2). If E is classified correctly by H, then the feature weights are

adjusted in the opposite direction.

There are two problems with this heuristic. First, consider tasks in which one

class is much more frequent than another. In such tasks, new examples will tend to

be classified correctly by chance, and the feature weights will change exponentially:

features that always match will have weights of zero, and features that are random

will receive infinite weight. Salzberg (personal communication & [Sa191, pseudo-

code]) suggested adjusting feature weights oniy after both matches (to the nearest

and second-nearest hyperrectangles) failed. We found empirically that with this

policy, feature weights were adjusted quite infrequently. For example, in the Iris task,

feature weights were adjusted for only 1% of the training examples. In Waveform-40,
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Table 5.5. Percentage of (non-seed) examples covered by at least one hyperrectangle
when NGE was initialized with 3 (25) seeds.

Domain training testing

3 seeds 25 seeds 3 seeds 25 seeds

Iris 64 29 87 57

Led-7 Display 79 81 93 91

Waveform-21 43 38 72 68

Waveform-40 23 20 51 45

Cleveland 80 62 97 91

Hungarian 83 52 98 81

Voting 97 93 100 100

Letter recognition 79 79 95 94

feature weights were adjusted for 7% of the training examples.

The second, more serious problem with the use of feature weights in NGE is

that a high percentage of the test cases fall inside at least one hyperrectangle. The

distance to the nearest hyperrectangle is zero in such a case, and feature weights

would have no effect on the distance calculation (Table 5.5). This suggests that

there are limits to the performance improvement that can be obtained by using

feature weights with nested hyperrectangles.

In experiments with Salzberg's method for computing feature weights, we found

that performance was almost always decreased (see below). Therefore, we considered

another procedure for computing feature weights that has given promising results in

other exemplar-based learning methods ([Bak9l] and Section 4.3). This procedure

is the Mutual Information procedure (Section 2.4.4).
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Figure 5.17. Performance of NGE FWMI and NGE FWSalzber relative to NGE
without feature weights. Shown are percentage point differences between NGE
FWM1 and NGE, and between NGE FW&üzberg and NGE. A * indicates signifi-
cance of difference between NGE and its modifications. See Tables A.1 through A.5
for detailed numbers.

5.1.1 Experiments with Feature Weights

Figure 5.17 (and Tables A.1 through A.5) shows the effect of including feature weights

and compares the two different procedures for computing the weights. Salzberg's

method gave a statistically significant increase in performance in the Hungarian do-

main, a statistically significant decrease in the banded task, and had no significant

effect in any of the other domains. The mutual information feature weights generally

give slight, and statistically insignificant, improvements in domains without irrele-

vant features, but the improvements can be substantial in domains with irrelevant

features. They give a statistically significant improvement in the Cleveland, Hungar-

ian, Voting (p < 0.01), and Waveform-40 domains as well as in the banded task. A

small (p < 0.05) decrease in performance is observed for mutual information feature

weights in the Letter recognition domain. Mutual information feature weights had

a similar positive effect on the performance of simple nearest neighbor and, to a
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lesser extent, kNN (see Tables A.1 through A.5). The mutual information weights

were very small for irrelevant inputs in all domains. Furthermore, feature weights

did not differ substantially from one random partition of the data sets to another.

In contrast, the weights computed by Salzberg's method differed substantially from

one partition to another (varying by as much as a factor of 1000). Within a given

training set/test set partition, the features were more or less equally weighted.

From the experiments in Section 5.7, we conclude that Salzberg's weight pro-

cedure has no significant impact on NGE's behavior in most domains and that the

mutual information weight procedure performs well in domains that have a large

number of irrelevant features. Furthermore, since the mutual information weight

procedure is independent of the algorithm it is used for, it is a procedure that could

be used effectively by many inductive learning algorithms to filter out irrelevant

features.

5.8 Comparison of the Best Variants of NGE and kNN

We have now developed several modifications to NGE that uniformly improve its

performance. The algorithm that best combines these is batch NGE with mutual

information feature weights (BNGE FWMI). The best corresponding version of the

nearest neighbor algorithm is k nearest neighbors (with cross-validation to determine

k) and mutual information feature weights (kNN FWMI). Finally, the hybrid algo-

rithm introduced in Section 5.6 with mutual information feature weights, KBNGE

FWMI, combines the advantages of both forementioned algorithms.

In this section, we compare these three algorithms to determine whether the

modifications to NGE make it competitive with kNN. Figure 5.18 shows the results

of this comparison. The main conclusion to draw is that BNGE FWMI was signifi-

cantly inferior to kNN FWMI in 7 domains and significantly superior in oniy 2. The

two domains are both domains where we know that the axis-parallel rectangle bias

is appropriate. This shows that when such hyperrectangles are appropriate, BNGE

FWMI is able to exploit them. However, in domains where such rectangles are ev-
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Figure 5.18. Performance of NGE FWMI, BNGE FWMI, and KBNGE FWMI
relative to kNN FWMI. Shown are percentage point differences between NGE FWMI,
BNGE FWMI, and KBNGE FWMI and kNN FWMI. These differences (*) were
statistically significant. See Tables A.1 through A.5 for detailed numbers.

idently not appropriate, BNGE FWMI's performance suffers, while kNN FWMI is

robust. The KBNGE algorithm with feature weights achieved an accuracy compara-

ble to kNN FWMI in 7 of the 11 domains, but was significantly inferior to the kNN

algorithm with feature weights in three domains.

5.9 Summary and Discussion

An extensive study of the NGE algorithm has been conducted. The basic algorithm

and a number of modifications were evaluated in eleven domains. NGE was found

to be quite sensitive to the number of starting seeds and to the order of presentation

of the examples.

The performance of NGE was compared to the performance of the k-Nearest

Neighbor algorithm and found to be substantially worse in several domains, even

when cross-validation was applied to optimize the number of starting seeds in NGE.
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Three hypotheses were introduced to explain this difference in performance: (a)

nested rectangles provide a poor bias, (b) overlapping rectangles provide a poor bias,

or (c) the incremental search algorithm of NGE needs improvement. Experimental

modifications of NGE were made in order to test these hypotheses. Two versions of

NGE that avoid nested rectangles (but permit overlapping rectangles) did not per-

form substantially better than NGE itself. However, an algorithm, called NONGE,

which permits nested rectangles but avoids overlapping rectangles, performed uni-

formly better than NGE in all eleven domains (the improvement was statistically

significant in 6 of the domains). A batch algorithm, BNGE, that implements a

better search algorithm and does not allow nested or overlapping rectangles also per-

forms uniformly better than NGE. It performs better than NONGE in 4 domains

and worse in 2.

From these experiments, we conclude that overlapping rectangles are the primary

source of difficulty for NGE and that BNGE was the best variant of NGE that we

studied.

All versions of NGE were effective at compressing the data when compared to

kNN. The amount of storage required by NGE and BNGE can be further reduced

by employing a simple pruning technique (Section 5.5.1). This pruning technique

removes exemplars that were never generalized from the classifier. This significant

simplification of the classifier had no negative effect on the predictive accuracy of

BNGE in any of the 11 domains tested (and in 10 of the 11 domains tested for

NGE). A very compact representation of the training data is found after a classifier

is constructed with BNGE and pruned. This representation can be used to do the

following:

Re-evaluate the representation. For example, we were able to determine that

some of the input features were irrelevant in several domains through inspection

of the hyperrectangles after training and pruning.

Learn about the task. If only a few hyperrectangles are necessary to describe

a task, then it can be said that it has a low level of noise. This small set of
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hyperrectangles could then be used to construct a rule-based system to solve

the task. If a large number of small hyperrectangles is necessary, then the task

at hand is either extremely complex or the input representation is not powerful

enough and should be modified.

Assign levels of confidence to decisions. Queries that fall inside of hyperrectan-

gles constructed by BNGE are significantly more likely to be classified correctly

than queries outside of all hyperrectangles.

Determine which regions of the input space are not adequately covered by train-

ing examples. This could prompt the experimenter either to collect more data

or to clearly define which inputs can be processed by the system and which

should be rejected. The ability for the user to easily interpret exemplars as

prototypes of the task to be learned is a significant advantage of hyperrectan-

gular based methods over such methods as kNN, neural networks, or decision

trees.

A hybrid method, called KBNGE, that uses BNGE in areas that clearly belong

to one output class and kNN otherwise was introduced and shown to have accuracy

similar to kNN at improved classification speed in a large number of applications

(Section 5.6). In the majority of the domains tested, over 70% of the test exam-

ples were classified by the hyperrectangular based part of KBNGE, thus making it

significantly faster than kNN at classification time and enabling the system to jus-

tify most of its decisions in a manner that can be easily understood by the user.

Note that the pruning technique used by KBNGE (un-generalized hyperrectangles

are removed) influences the classification accuracy of KBNGE only for queries that

perfectly match a given trivial hyperrectangle and only if k 1. In all other cases,

pruning only affects the speed of KBNGE.

A flaw of the current version of BNGE is that it constructs hyperrectangles only

in those parts of the input space that contain no noisy data points. Future work

will introduce noise tolerance into the BNGE algorithm by introducing a mecha-

nism for accepting merges of hyperrectangles even if examples of other classes are
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covered. A conceivable approach would be Omohundro's bottomup model merging

approach [0mo92], for example (see also Section 5.5).

The KBNGE algorithm exhibits classification accuracies comparable to the best

known accuracies, it is fast in training and testing time, and it is easy to use. We

believe KBNGE is an important tool to include in the set of commonly used machine

learning algorithms.

We also studied whether the NGE algorithms could be improved by incorporat-

ing feature weights into the distance metric computed by the algorithms. The feature

weight mechanism introduced by Salzberg [Sa191] was shown never to provide a sig-

nificant improvement over the performance of NCE without feature weights. Indeed,

it was significantly worse than simple NGE in three of the domains. On the other

hand, a feature weight mechanism based on computing the mutual information be-

tween each feature and the output class was shown to be significantly better than

NGE in five domains and significantly worse in only one. This mechanism is inde-

pendent of NGE and can therefore be used as a pre-processing step for any inductive

learning algorithm.

5.10 Conclusions

The data presented strongly support the conclusion that the NGE algorithm as

described by Salzberg [Sa191] should be modified in a number of ways. Firstly,

construction of overlapping hyperrectangles should be avoided. Secondly, if the entire

training set is available at once and can be stored in memory, then the classifier should

be trained in batch mode to eliminate computationally expensive cross-validation on

the number of initial seeds. Thirdly, mutual information should be used to compute

feature weights prior to running NGE.

With these modifications, NGE gives superior performance in domains where

the axis-parallel hyperrectangle bias is appropriate. However, in other domains,

NGE does not perform as well as kNN. Performance can be further improved when

NGE is amended with a rejection criterion (KBNGE). The classifier will then reject
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all queries that fall outside of all hyperrectangles. These queries should then be

classified with the kNN classifier. This hybrid approach matches kNN's classification

accuracy in most domains and is superior in domains where the axis-parallel bias is

appropriate. Hence, if generalization performance and robustness are critical, kNN

is the algorithm of choice. If, on the other hand, understandability and memory

compression are important, then BNGE or KBNGE can be recommended as fast,

easy-to-use inductive learning algorithms.

5.11 Related Work

5.11.1 Fuzzy Mm-Max Neural Networks

Simpson {Sim92} introduced an incremental algorithm which is extremely similar

to NGE called Fuzzy Mm-Max Neural Networks. There are three main differences

between NGE and a Fuzzy Mm-Max Classifier (FMMC). (1) Hyperrectangles in

FMMC are bounded in size. (2) The FMMC classifier always extends the nearest

hyperrectangle that belongs to the same class as the training example to include

that example. The extension of the nearest hyperrectangle is rejected when it would

exceed a user-defined size. In which case, a new hyperrectangle is generated. (3) The

FFMC classifier shrinks hyperrectangles to eliminate overlap of hyperrectangles from

different classes.

We have seen in Section 5.4.2 that overlapping hyperrectangles from different

classes are the primary cause for NGE's poor performance. Since FFMC avoids gen-

eration of overlapping hyperrectangles, it can be expected to generally perform better

than NGE and comparable to BNGE. One potential problem with FFMC's hyper-

rectangle contraction process is that it cannot be modified to account for symbolic

features. For continuous features, the hyperrectangle contraction process employed

by FFMC may make it more robust than BNGE against noise in the data. However,

the contraction process may cause erratic behavior in some cases. The reason for this

being that FFMC first expands the nearest hyperrectangle to include the new train-

ing example, and then shrinks the new hyperrectangle and any other hyperrectangles
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from other classes it overlaps with at approximately equal rates until all overlap is

eliminated. This shrinking process does not take the number of training examples

covered by each of the hyperrectangles into account. It may therefore cause FFMC

to shrink a hyperrectangle that covers several hundred training examples because of

a single noisy example. Furthermore, just as for BNGE, FFMC would suffer when

irrelevant features are present in the data. These irrelevant features may fool FFMC

into believing that two hyperrectangles do not overlap although they overlap in all

relevant dimensions, or that two hyperrectangles from the same class are distinct

from each other just because they have different values in at least one of the irrele-

vant features. I hypothesize that it may be more important to eliminate overlap on

a dimension by dimension basis while allowing hyperrectangles to cover the entire

range of other dimensions thereby effectively removing these dimensions.

Both, NGE and BNGE, can be easily modified to provide fuzzy membership

outputs instead of the crisp classifications that are assigned to queries currently.

The most obvious possibility would be to return the (possibly normalized) inverse of

the distance of the query to the closest hyperrectangle from each class.

To summarize, FFMC is nearly identical to NGE despite the different vocabulary

that was used to describe it. It should therefore suffer from similar shortcomings as

NGE, and can be expected to perform generally inferior to KBNGE or kNN.

5.11.2 Fuzzy ARTMAP

Carpenter et al. [CGM+92] introduced a neural network architecture based on fuzzy

logic and adaptive resonance theory (ART) neural networks. The category boxes used

by fuzzy ARTMAP with complement coding are comparable to hyperrectangles. Hy-

perrectangles in fuzzy ARTMAP with complement coding grow monotonically during

learning; their maximum size is bounded by a vigilance parameter. Carpenter et al.

report a performance of 94.7% correct for Fuzzy ARTMAP in the Letter Recognition

domain. That would be approximately 5 percentage points better then the perfor-

mance that was observed for BNGE. However, this number is a performance that
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was observed in one particular experiment for optimal settings for Fuzzy ARTMAP's

free parameters as obtained from the test set. In a fair comparison, Fuzzy ARTMAP

could be expected to perform comparably to BNGE. The main advantage of BNGE

over Fuzzy ARTMAP is that BNGE has no free parameters while Fuzzy ARTMAP

has at least two parameters that must be set by the user. Carpenter et al. [CGM92]

state in a short discussion comparing NGE, Fuzzy ARTMAP, and FMMC; that NGE

allows hyperrectangles to shrink as well as to grow. This is not true for the present

version of NGE described by Salzberg in {Sal9l]. NGE's hyperrectangles can only

grow in size. They further criticize that FMMC constructs only a single hyperrectan-

gle for each output class. This statement is inconsistant with Simpson's description

of the algorithm [Sim92J.

Fuzzy ARTMAP may be able to outperform the other rectangular-based methods

and even kNN if its free parameters are well chosen. However, it may be difficult to

choose these values in a general setting.

Neither FMMC nor fuzzy ARTMAP use feature weights in the same sense as

discussed in Section 5.7. They may therefore suffer more severely than BNGE FWMI

or kNN FWMI when a large number of irrelevant features are present in the data.

Table 5.6. Percent accuracy (± standard error) of nearest neighbor (NN) and NGE
on sythetic data sets. Numbers in parentheses show: number of seeds (first column,
cv: leave-one-out cross-validation), average number of hyperrectanglies constructed
in all other columns.

Method

Nge (3)

Nge (5)

Nge (7)

Nge (10)

Nge (15)

Nge (20)

Nge (25)

Nge (cv)

NN

quadranis Task

Accuracy Num Rect.

86.8±4.0 (4.4±0.2)
97.2±1.4 (7.0±0.3)
97.8±0.7 (8.5±0.3)
98.8±0.3 (11.6±0.3)
98.0±0.4 (16.7±0.3)
97.9±0.3 (21.8±0.3)

97.8±0.3 (27.4±0.3)
99.3±0.2 (10.8±1.1)
97.6±0.3

diagonal Task

Accuracy Num Rect.

75.6±1.7 (3.5±0.1)

85.1±1.3 (6.1±0.2)

86.3±1.3 (8.1±0.3)

89.8±0.7 (11.1±0.3)

92.4±0.5 (16.5±0.3)

93.2±0.5 (21.6±0.3)

93.7±0.6 (26.7±0.3)

94.1±0.5 (22.6±1.0)

97.0±0.2

banded Task

Accuracy Num Rect.

87.4±0.5 (47.4±1.1)

86.7±0.5 (48.8±1.0)

86.2±0.5 (49.9±1.0)

86.1±0.5 (49.8±1.0)

85.6±0.5 (53.4±1.3)

86.1±0.5 (57.0±1.1)

85.3±0.5 (59.8±1.1)

86.9±0.5 (49.6±1.3)

82.4±0.6
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Chapter 6
Summary, Conclusions and Future Work

In this final chapter, the results obtained from the experiments conducted in Chap-

ters 3, 4 and 5 are summarized. These results are interpreted with regard to their

impact on development, evaluation, and use of inductive machine learning algorithms

in general and distance-based machine learning algorithms in particular. This dis-

sertation is unique in that it attempts to explore the specific design decisions that

control algorithm behavior and to provide a knowledge base for improved use of this

family of algorithms in machine learning. Finally, some issues that deserve further

investigation are discussed.

6.1 Summary

The objective of this dissertation was to develop a general framework for a family

of inductive learning algorithms that we termed distance-based algorithms, and to

present a detailed study of two members of this family, the nearest neighbor algorithm

and the nearest-hyperrectangle algorithm. The specific results obtained from these

detailed empirical evaluations are summarized below.

Six constructed data sets were employed in Chapter 3 to determine the cir-

cumstances under which the k-nearest neighbor algorithm achieves a classification

accuracy superior to that of the first nearest neighbor algorithm. It was shown that

in the noise-free case or for very small data sets, first nearest neighbor always per-

forms better than kNN. In the presence of class or feature noise, values for k that

are larger than 1 can lead to superior performance in certain data sets. These data

sets must contain clusters of data from single classes that are wide enough along

each dimension such that for larger values of k the majority of the newly included
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neighbors belong to the same cluster. Hence, the optimal value for k depends not

only on the amount of noise present in the data, but also on the shape of the deci-

sion boundaries within the data. A good distance metric should, therefore, rescale

each input dimension to maximize for each data point the number of neighbors that

belong to the same class as the data point. This also indicates that kNN is more

likely to outperform NN when. the distance metric is well chosen, while first nearest

neighbor is the best we can do when the metric is poorly chosen.

The issue of how to estimate the optimal value for k from the training data was

investigated in Chapter 4. It was determined that cross-validation on the value of k

is necessary for best performance. A variety of cross-validation methods were com-

pared. It was shown that while leave-one-out cross-validation on all possible values

of k generally gives the best performance, comparable performance can be achieved

if only one-fold cross-validation on a restricted number of values for k is conducted.

These values for k should include a number of small values (k = 1,3,5,7,9,13,17) and

only a few larger values (k = 27,35,41). These larger values were chosen arbitrarily

due to the fact that kNN's performance was shown not to be sensitive to the exact

choice of k when k is large. Several methods for choosing the value of k from local

data alone were also suggested and examined. These methods gave good results on

constructed data sets that were a combination of data sets with significantly varying

attributes. The use of local nearest neighbor methods as studied in Chapter 4 can be

recommended for data sets that exhibit substantially varying attributes for different

subsets of their data points.

The experiments described in the second part of Chapter 4 support the conclu-

sion that the votes of the k nearest neighbors should be weighted by their distances

to the query when the query's classification is computed. This algorithm, termed

kNNWV, can be expected to give superior classification accuracy as compared to kNN

with simple majority voting, particularly in domains where the optimal value of k is

relatively small (< 25).

The potential of the method of Principal Component Analysis (P CA) for im-

proving the performance of distance-based algorithms was studied in Section 4.3.4.
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Principal Component Analysis offers three potential advantages for inductive learn-

ing algorithms: (1) It de-correlates input features. (2) It can be used to reduce

the number of input dimensions. (3) It may represent the data in a manner that is

more useful to inductive learning algorithms. It was shown in Section 4.3.4 that the

method of Principal Component Analysis can be used to pre-process the input fea-

tures of data sets with continuous features. Simple pre-processing with PCA has in

general no significant effect on the performance of kNN. However, it was also shown

that in many domains a relatively large number of features that resulted from PCA

("p ca-features") can be removed. A general method for determining the number

of pca-features that can be removed should be the topic of future research. The

results presented here suggest that PCA may be used to remove a large number of

input features to significantly reduce the time nearest neighbor algorithms require to

classify queries. This may help to overcome one of the main disadvantages of nearest

neighbor algorithms over neural networks, i.e. the fact that neural networks are in

general substantially faster at classification time.

It is well established that the performance of any distance-based algorithm falls

and rises with the choice of the distance function used to retrieve the most similar

instances. The final part of Chapter 4 concerns the issue of how to find good feature

weights to improve the classification accuracy of distance-based algorithms. Two

methods were shown to compute good feature weights: (1) the method of mutual

information, where the mutual information between each input feature and the out-

puts is computed and used as the feature weight, and (2) a method where feature

weights are learned via gradient descent search. Both methods gave results superior

to kNN without feature weights in a variety of domains. The largest improvements

were observed in domains with many irrelevant features.

In Chapter 5, a method that combines data points into multidimensional rectan-

gles (nested generalized exemplars, or NGE) is compared to the k-nearest neighbor

algorithm and found to perform much worse in a variety of domains. The causes

for this inferior performance were investigated, and it was found that performance

of NGE can be substantially improved upon if generation of overlapping rectangles
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from different classes is prohibited. A batch version of NGE, called I3NGE, was de-

veloped. The BNGE algorithm constructs hyperrectangles only in areas of the input

space that contain data points from a single class. It achieves substantial compression

of the training data in all test domains and has classification accuracies that were

either indistinguishable from or superior to NGE's. However, BNGE was superior

to kNN only in tasks where decision boundaries were axis-parallel. Hence, a hybrid

algorithm that combines the advantages of BNGE (fast classification, justification of

classifications) with the accuracy of kNN was designed. The hybrid, called KBNGE,

uses BNGE in areas where BNGE constructs byperrectangles and kNN otherwise.

The KBNGE algorithm was found to be substantially faster than kNN at classifica-

tion time in all domains. Its generalization performance was comparable to kNN's

in most cases, superior in domains where decision boundaries were axis-parallel, and

inferior in some domains where BNGE over-generalized due to the fact that some of

the input space did not contain any training examples.

6.2 Conclusions

The results of this dissertation have a number of practical implications on how

distance-based algorithms should be modified. These modifications should enable

any researcher (or user of one of these algorithms) to obtain good results in a vari-

ety of domains by choosing that combination of sub-biases of these algorithms that

would seem most appropriate for each domain. Several new methods for determining

some of the free parameters of any of these algorithms are proposed and shown to

give good results in a number of domains. These domains are often characterized in

detail so that the method's applicability to other domains can be predicted.

6.2.1 Recommendations Regarding Use of the k-Nearest Neighbor Algorithm

The k-nearest neighbor algorithm is an extremely powerful and versatile inductive

learning algorithm. Its short training times and the fact that new training examples

can simply be stored along with the old training examples makes this algorithm a
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prime candidate in environments that continuously change, or when the user is unable

or unwilling to invest a large amount of effort in setting parameters to obtain the best

performance. Nearest neighbor algorithms are also good for probing a representation:

researchers have often already acquired a number of data points and would like to

know whether these data points (or the specific representation used) are sufficient

to obtain the desired results. A kNN classifier is quickly and easily trained and can

be used to answer just that question. If the kNN algorithm achieves results that are

close to the desired results, then it may be worthwhile investing time to train and

test other, more complicated classifiers.

We recommend the following procedure for training a k-nearest neighbor clas-

sifier: If features are symbolic, compute the mutual information feature weights for

each input feature. If they are continuous, use the VSM training algorithm to learn

the feature weights. Selection of the proper feature weights is the most important

factor influencing the predictive accuracy of kNN. Parts of the training set should be

set aside as test data for the 10 values of k listed above to determine the value of k

that should be used to classify future test cases. The votes of the k nearest neighbors

should have weights inversely proportional to their distances from the query when

classifying the query.

6.2.2 Recommendations Regarding Use of the Nearest-Hyperrectangle Algorithm

We would recommend use of one of the modifications of NGE, as discussed in Chap-

ter 5, in the following setting: Classification accuracy is not of primary concern, but

an understanding of the decisions made by the classifier is very important. Whenever

a specific rectangle is used to classify a query, then this rectangle can be translated

into a human-readable rule. Such rules can then be employed not only to classify

the query, but also to provide information with the classification, saying "this query

was classified as belonging to class X since it satisfies the following conditions:..."

An additional advantage of methods such as BNCE is that they can achieve a

substantial reduction in the amount of storage required compared to kNN.
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A nearest hyperrectangle classifier should be constructed as follows: If trained

incrementally, then a sufficient number of seeds (>25, and at least one example from

each class if the number of classes is known beforehand) should be stored without

processing. During training, construction of overlapping rectangles from different

classes should be avoided. If all training data are available before training, then the

BNGE classifier should be constructed as described in Figure 5.9. If at all possible,

then all training data should be retained and used to classify test examples that fall

outside of all hyperrectangles. Previously seen training examples might also be used

to split and reconstruct hyperrectangles during incremental training if it turns out

that these hyperrectangles are too large.

6.3 Future Work

Some methods described in this dissertation represent only initial attempts aimed

at improving the generalization accuracy and/or interpretability of results provided

by distance-based algorithms. These methods, however, constitute a significant con-

tribution to the research conducted in the fields of machine learning and pattern

recognition. A complete understanding and robust implementation of these methods

may assist researchers of distance-based algorithms in developing better algorithms,

and users of distance-based algorithms in solving difficult real-world problems.

The mutual information procedure has improved the performance of kNN in

nearly all domains. The largest improvements have been achieved in domains with

irrelevant features or in domains where some features were substantially more im-

portant than others. However, in some domains with irrelevant features, the mutual

information procedure has failed to assign weight 0 (or at least close to 0) to these

irrelevant features. We suspect that this failure is mainly due to the procedure

employed to estimate the probability distribution of continuous features. Silver-

man [Si186] lists a number of methods for density estimation. Determination of
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the most appropriate method from these techniques, and modification of the mu-

tual information procedure currently used could improve the usefulness and general

applicability of this method even further.

The training procedure employed by kNN FWVSM to learn feature weights has

two parameters that were kept constant in this research: the number of neighbors

used to compute the gradient and the number of training epochs. An investigation

of 1cNN FWVSM'S sensitivity to the proper choice of these parameters, and the devel-

opment of a method to choose the best values for these parameters should establish

this method as an alternative method for learning the weights of features when the

mutual information procedure is not applicable.

The mutual information feature weight estimation and the VSM feature weight

learning techniques have been shown to improve the performance of the k-nearest

and first-nearest neighbor algorithms quite substantially in domains with irrelevant

features. An interesting issue is whether such improvement in classification accuracy

could also be achieved when these methods are employed by other distance-based

machine learning algorithms.

The experiments presented here have shown that many of the features output by

principal component analysis (P CA) could be removed without a significant loss in

classification accuracy. In some cases, removal even improved performance. A general

method that reliably estimates the number of pca-features that can be removed

without a loss in accuracy would prove extremely helpful, particularly in domains

with very large numbers of input features such as speech recognition tasks. The

primary purpose of this method in tasks with many input features would be to speed

up the retrieval process during classification.

To this date, a greedy algorithm has been used to train the BNGE classifier. The

algorithm is computationally very efficient, but it is possible that it does not construct

the set of hyperrectangles that would in general result in the best performance.

Implementation and evaluation of the BNGE Model Merging technique, as proposed

in Section 5.5, can be used to determine whether the greedy procedure is sufficient

for training BNGE.
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The KBNGE algorithm had a classification accuracy that was inferior to kNN's

in several domains. Apparently, these domains have large pockets in the input space

that contain no training examples. The lower level of accuracy achieved by KBNGE

in these domains must be attributed to the fact that BNGE over-generalizes by

creating hyperrectangles that cover these empty pockets of the input space. This

over-generalization should be avoided. A possible solution to this problem might be

to limit the ratio of each hyperrectangle's size to the number of training examples

it covers so that a hyperrectangle can only grow to large if it covers enough training

examples.

The Euclidean L2-norm was used in all experiments described in the fifth chap-

ter. A different norm, such as the L1-norm might cause rectangular based methods to

generate different rectangles. A comparison of the rectangles constructed by BNGE,

for example, when different norms are employed might further enhance our under-

standing of these algorithms and suggest further improvements.

This study has been limited to two basic algorithms, the nearest-neighbor algo-

rithm and the nearest-hyperrectangle method. Many of the techniques investigated

could also be applied to other distance-based algorithms such as Radial Basis Func-

tion Networks or Learning Vector Quantization. For example, it would be interesting

to see whether principal component analysis could be used to improve the perfor-

mance of RBF networks. These are interesting areas for future research.
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Appendix A
Summary of Data

This appendix contains a summary of all the data that has been obtained from the

experiments described in this dissertation. Some of the numbers reported here may

differ from numbers reported in the main body of the dissertation. This difference

is in general due to the use of a different random seed and should not have any

significant effect on the relative performance of the methods compared.
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Table A.1. Percent accuracy (± standard error) on test set in the quadrants, diag-
onal, and banded tasks. Shown is mean performance over 25 repetitions, standard
error (S.E.), and amount of memory (in percent of training data, if less than 100%)
required by NGE (M column).

Method Domain

Quadrants Diagonal -__Banded

Perf.±S.E. M Perf.±S.E. M Perf.±S.E. M

NN 97.7±0.4 97.9±0.2 83.5±0.7

kNNCV 97.0±0.4 97.5±0.3 83.0±0.7

kNNWV 97.6±0.3 97.8±0.3 84.1±0.7

NGECV 99.3±0.2 6 94.1±0.5 13 86.9±0.5 28

NGE386d8 86.8±4.0 3 75.6±1.7 2 87.4±0.5 27

NGEiimit 98.8±0.3 7 96.8±0.2 87.4±0.5 27

Greedy NGECV 98.1±0.2 15 94.5±0.4 23 83.4±0.6 60

F2+NOCCV 99.2±0.2 6 93.3±0.6 12 93.4±0.3 6

NONGECV 99.5±0.2 5 94.7±0.4 18 86.9±0.5 28

OBNGE 97.3+0.5 2 91.4±0.5 12 93.3±0.2 7

BNGE 99.8±0.1 2 95.2±0.4 12 93.6±0.5 3

KBNGE 99.1±0.2 96.3±0.4 94.3±0.4

NGECV FWMI 99.0±0.2 5 94.4±0.5 13 94.9±0.3 10

NGECV FWs 99.3±0.2 6 93.9±0.5 13 83.0±0.7 32

BNGE FWMI 99.8±0.1 2 95.5±0.4 12 95.4±0.2 6

NN FWMI 97.6±0.2 97.9+0.2 89.2±0.4

kNNCV FWMI 97.0+0.3 97.7±0.3 88.8±0.4

kNNWV FWMI 97.4+0.4 97.7+0.3 89.5±0.7

kNNWV FWVSM 97.3±0.4 97.8±0.4 95.7±0.3

KBNGE FWMI 99.0±0.3 96.2±0.4 95.3±0.3
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Table A.2. Percent accuracy (± standard error) on test set in the sinusoidal, radial,
and gaussian tasks. Shown is mean performance over 25 repetitions, and standard
error (S.E.).

Method

Sinusoidal

Domain

Radial Gaussian

NN 73.6±0.6 87.0±0.6 96.0±0.3

kNNC,J 73.2±0.7 86.9±0.6 97.4±0.2

kNNWV 73.4±0.7 87.4±0.6 97.0±0.3

KBNGE 81.0±0.6 87.6±0.5 97.3±0.2

NN FWMJ 75.1±0.7 86.7±0.6 96.0±0.3

kNNCV FWMI 74.6±0.9 86.0±0.6 97.9±0.1

kNNWV FWMI 74.6±0.7 87.4±0.6 97.1±0.2

kNNWV FWVSM 83.5±0.7 87.3±0.7 97.1±0.2
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Table A.3. Percent accuracy (± standard error) on test set in Iris and Led-7 Display
domains. Shown is mean performance over 25 repetitions, standard error (S.E.), and
amount of memory (in percent of training data, if less than 100%) required by NGE
(M column).

Method Domain

Iris Led-7 Led-24

Perf.±S.E. M Perf.±S.E. M Perf.±S.E. M

NN 95.2±0.4 70.5±0.5 48.5±0.7

kNNCV 95.6±0.5 72.3±0.6 69.4±0.6

kNNWV 95.6±0.4 73.0±0.6 70.2±0.6

NGECV 93.7±0.6 31 59.8±1.0 67

NGE3seeds 92.0±0.6 9 56.0±1.2 61

NGEiimit 94.4±0.6 50 64.2±0.7

Greedy NGECV 94.7±0.5 31 62.7±0.9 87

F2+NOC 93.7±0.7 33 57.6±1.1 50

NONGECV 94.0±0.6 33 62.7±0.9 71

OBNGE 93.2±0.6 8 62.1±0.9 84

BNGE 94.7±0.5 12 69.5±0.5 73

KBNGE 95.8±0.4 72.1±0.6

NGECV FWMI 94.7±0.5 34 59.8±1.1 64

NGECV FWs 94.0±0.6 35 61.9±1.2 66

BNGE FWMI 94.7±0.6 11 68.6±0.4 74

NN FWMI 95.5±0.4 68.3±0.5 63.1±0.6

kNNCV FWMI 95.6±0.4 70.1±0.6 73.2±0.7

kNNWV FWMI 95.6±0.4 71.3±0.6 73.5±0.6

kNNWV FWVSM 95.0±0.6 72.8±0.6 72.9±0.6

KBNGE FWMI 95.6±0.3 70.6±0.7
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Table A.4. Percent accuracy (+ standard error) on test set in Waveform and Cleve-
land domains. Shown is mean performance over 25 repetitions, standard error (S.E.),
and aniount of memory (in percent of training data, if less than 100%) required by
NGE (M column).

Method Domain

Waveform-21 Waveform-40 Cleveland

Perf.+S.E. M Perf.+S.E. M Perf.+S.E. M

NN 75.2+1.1 69.4+1.0 77.8+0.9

kNNCV 81.9+0.9 80.8+1.0 83.4+0.5

kNNWV 81.7+0.8 81.3+1.1 82.9+0.5

NGECV 70.0+0.9 17 64.6+1.2 24 66.9+1.8 29

NGE3seeds 69.3+0.8 9 64.2+1.2 14 55.0+1.2 5

NGEiimit 71.5+0.9 56 64.9+1.2 14 76.3+1.2

Greedy NGEV 68.1+1.6 65 56.0+1.1 86 72.6+1.3 63

F2+NOC 70.3+0.9 10 65.1+1.1 15 64.5+1.5 23

NONGECV 74.1+1.0 77 64.5+1.4 23 78.5+0.8 54

OBNGE 70.3+0.9 6 64.5+1.2 3 71.3+1.2 59

BNGE 69.8+1.5 66.7+1.4 91 77.5+1.1 71

KBNGE 81.3+0.8 80.4+1.0 80.6+0.7

NGECV FWMI 70.0+1.1 13 70.1+1.0 13 74.6+1.4 34

NGECV FW 70.5+0.8 16 62.6+1.2 20 69.0+1.3 33

BNGE FWMI 71.0+1.1 97 69.2+1.2 90 77.5+0.9 50

NN FWMI 76.3+0.7 78.3+0.8 77.9+1.0

kNNCV FWMI 82.6+0.9 82.4+0.6 81.7+0.6

kNNWV FWMI 82.2+0.9 83.4+0.8 83.7+0.6

kNNWV FWVSM 81.9+0.9 81.0+1.1 82.7+0.7
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Table A.5. Percent accuracy (± standard error) on test set (Hungarian, Voting,
and Letter Recognition domains). Shown is mean performance over 25 repetitions,
standard error (S.E.), and amount of memory (in percent of training data, if less
than 100%) required by NGE (M column).

Method

NN

kNNCV

kNNWV

NGECV

NGE3seeds

NGEiimit

Greedy NGECV

F2+NOC

NONGECV

OBNGE

BNGE

KBNGE

NN FWMI

kNNCV FWMI

kNNWV FWMI

kNNWV FWVSM

NGECV FWMI

NGECV FWg

BNGE FWMI

Hungarian

Perf.±S.E.

75.9±0.8

82.0±1.0

82.5±1.0

76.5±0.9

61.3±2.4

79.3±0.8

78.6±0.9

73.7±1.1

79.3±0.7

71.6±1.4

76.7±1.0

80.6±0.9

78.9±0.6

82.2±0.9

83.9±0.8

81.6±1.0

78.1±0.6

77.8±1.0

78.2±0.8

M

30

7

49

21

43

40

36

28

30

31

Domain

Voting

Perf.±S .E.

86.9±0.8

92.0±0.4

92.4±0.4

88.4±1.2

64.5±3.2

84.8±1.1

88.8±1.2

88.4±1.2

88.3±1.6

88.8±2.4

93.2±0.5

94.1±0.4

89.0±0.8

95.4±0.4

94.7±0.4

95.0±0.4

90.8±0.8

88.7±1.1

94.7±0.4

Letter Recognition

M Perf.±S.E. M

95.8±0.1

95.8±0.1

16

13

22

34

14

22

25

47

70.2±0.4

68.6±0.4

87.4±0.2

70.1±0.4

63.9±0.4

88.0±0.2

89.1±0.1

96.6±0.0

96.6±0.0

41

43

63

24

39

39

15 69.2±0.4 35

16 68.1±0.5 45

30 91.3±0.1 32



158

Table A.6. The performance of the k-nearest neighbor algorithm in synthetic tasks
(noise-free) for different methods of determining the value of k. The subscript k i
indicates that k was fixed at i, where best indicates the best average performance
that was obtained by any single fixed value of k during 25 repetitions. Numbers
in parentheses in the row denoted by kNNkbesj indicate the range of k values that
resulted in a performance within one standard error of the best performance. The
subscript cv indicates cross-validation. The superscript to cv indicates the kind of
potential candidates for k, and the subscript indicates the type of cross-validation.
Significance of difference to kNNkl (kNN4u ) is indicated by *

(*).leavei out

Method Quadrants Diagonal Banded

kNNkl 97.2±0.3 98.2±0.2 86.9±0.6

kNNk=3 97.0±0.2 98.1±0.2 85.6±O.5

kNNk=l7 95.6±0.4 97.4±0.2? 77.4±0.6

kNNk=31 95.2±0.4 97.3±0.3. 65.3±0.7

kNNk=b8t 97.2±0.3 (14) 98.2±0.2 (1-3) 86.9±0.6 (1-1)

kNNd 96.9±0.2 97.8±O.2 86.1±0.6
1fold

kNNcv0u
97.0±0.2 98.1±0.3 86.2±0.6

leav e-1 -Out

kNNd 96.8±0.2* 98.2±0.2 86.2±0.6
leaveiout

kNN 1,3,17,31,47 96.8±0.2** 98.2±0.2 86.4±0.6
CVleave_1_out

Method Sinusoidal t Radial Gaussian

kNNkl 84.1±0.4 90.3±0.6 97.3±0.2

kNNk=3 80.3±0.7* 89.3±0.5 97.5±0.2

kNNkl7 62.8±0.8 83.9±0.9** 97.9±0.2

kNNk=3l 57.3±O.8'' 64.0±O.9* 97.9±0.2

kNNk=best 84.1±0.4 (14) 90.3±0.6 (1-1) 97.9±0.2 (543)

kNN odd 82.9±0.7** 90.4±0.6 97.6±0.3
Id

kNN all 84.1±0.4 89.3±0.5 97.8±0.3CV11out
kNN oddCV11 84.1±0.4 89.4±0.4* 97.8±0.2 A

out
kNN 1,3,17,31,47

CV1
84.1±0.4 89.7±0.6* 97.7±o.3**

lout __________

t 850 training examples, 150 test examples

500 training examples, 150 test examples

*****p <0.001, ****p < 0.005, ***p <0.01, **p < 0.05, *p <0.1
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Table A.7. The performance of the k-nearest neighbor algorithm in non-synthetic
tasks for different methods of determining the value of k. The meaning of the terms
used is the same as in Table A.6.

Method Iris Voting Cleveland

kNNkl 95.2±0.4

kNNk3 95.3±0.4 91 .9±0.3*** 82.2±0.6?*

kNNk=17 95.5±0.5 90.6 ±0.4 *****
82.9±0 5**

kNNk=31 93.2±0.8** 89.8±0.4 83.7±0.5

kNNk=best 96.3±0.4 (513) 92.5±0.4 (59)' 84.0±0.5 (1957)'

kNN 95.2±0.4 91.8±0.4 82.5±0.8**
CV1_f old

kNN alL 95.6±0.5 92.0±0.4 83.4±0.5*
CVi600i0t

kNNodd 95.6±0.4 92.2±0.4' 83.1±0.6
Leaveiout

kNN 1,3,17,31,47 95.0±0.4 92.3±0.4* 83.2±0.6**
CV1 lout

Method Hungarian Isolet Led-7 Display

kNNkl 83.1±0.3

kNNk,3 79.2±0.7 * *
83.4±0.3 72.4±0.5**

kNNkl7 81.5±0.9 83.6±0.3 64.8±1 *****

kNNk3l 82.0±0.8** 82.3±0.3 59.0±1 3**********

kNNk_bes 83.8±0.9 (3771) 84.0±0.4 (513) 72.6±0.5 (35Y°

kNN
CV1 80.9±0.9 83.4±0.3 71.2±0.6*

fold
kNN all 82.0±1.0*** 83.6±0.2* 72.3±0.6out
kNN odd 82.1±1.0 83.6±0.2** 72.4±0.6'

leavel out

kNN 1,3,17,31,47 82.6±1.0* 83.8±0.2 71.9±0.6*CVleaviout
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Table A.8. The performance of the k-nearest neighbor algorithm in non-synthetic
tasks for different methods of determining the value of k. The meaning of the terms
used is the same as in Table A.6.

Method Led-24 Display Waveform-21 Waveform-40

kNNk1

kNNk3

kNNkl7

kNNk3l

kNNkbest

kNNodd

kNN0i
e 1out

kNNd out

kNN,l,l,l7,ll,47

712 J_fl 7*****JU.J_u.

-7 1+n 7***k*
01.1. U.

68.9+0 .6*

69.9+0.6 (43-67)

68.3+0.7***k***

69.4+0. 6**

69.5+0 .6**

69.6+0 5*****

7Q 0-4--Il Q****
* *

81.8+0.8'

81.9+1

82.1+0.8 (1755)*

81,6+0 .8*

81.9+0.9*

81.8+0 9*****

81.6+0 .8''

73.2+0. 7*****

78.6+0.

79.7+0.8*

79.7+0.8 (2l55)*

79.6+1.0*
80.7+1.1***

80.8+1.0*

80.4+1.




