

AN ABSTRACT OF THE DISSERTATION OF

Max Salichon for the degree of Doctor of Philosophy in Mechanical Engineering

presented on December 4, 2009.

Title: Learning Based Methods Applied to the MAV Control Problem

Abstract approved:

Kagan Tumer

This thesis addresses Micro Aerial Vehicle (MAV) control by leveraging learning

based techniques to improve robustness of the control system. Applying classical

control methods to MAVs is a difficult process due to the complexity of the

control laws with fast and highly non-linear dynamics. These methods are mostly

based on models that are difficult to obtain for dynamic and stochastic

environments. Due to their size, MAVs are affected by wind gusts and

perturbations that push the limits of model based controllers where the linear

approximation no longer holds. Instead, we focus on a control strategy that

learns to map MAV states (e.g., heading, altitude, velocity) to MAV actions (e.g.,

actuator positions) to achieve good performance (e.g., flight time, minimal

altitude and heading error) by maximizing an objective function. The main

difficulty with this approach is defining the objective function and tuning the

learning parameters to achieve the desired results. These learning based

techniques have been used with great success in many domains with similar

dynamics and are shown to improve MAV robustness with respect to wind gusts,

perturbations, and actuator failure. Our results show significant improvements in

response times to minor altitude and heading corrections over a traditional PID

controller. In addition, we show that the MAV response to maintaining altitude

in the presence of wind gusts improves by a factor of five. Similarly, we show that

the MAV response to maintaining heading in the presence of turbulence improves

by factors of three. Finally, we show significant improvements in the case of

control surface actuator failure when using a multiagent system. The multiagent

control system performs up to 8 times better than the PID controller when

tracking a target heading.

c©Copyright by Max Salichon
December 4, 2009

All Rights Reserved

Learning Based Methods Applied to the MAV Control Problem

by

Max Salichon

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Presented December 4, 2009
Commencement June 2010

Doctor of Philosophy dissertation of Max Salichon presented on
December 4, 2009.

APPROVED:

Major Professor, representing Mechanical Engineering

Head of the School of Mechanical, Industrial, and Manufacturing Engineering

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection
of Oregon State University libraries. My signature below authorizes release of my
dissertation to any reader upon request.

Max Salichon, Author

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr Kagan Tumer for his very valuable insight

on multiagent techniques, for his support, and for always pushing me to improve

the quality of my work.

I would like to thank my committee, Dr Belinda Batten, Dr Robert Paasch, Dr

Mike Bailey, and Dr Merrick Haller for their time and patience throughout this

project.

I would like to thank the AADI research group (Adaptive Agents and Distributed

Intelligence) for their help and very useful comments.

I would like to thank Cressey Merrill and the OSU Scuba staff, for being

awesome friends and for letting me be part of the group.

I would like to thank Olivia Pinon for her friendship and encouragements.

I would like to thank Dr Jim Funck for all his help and encouragements

throughout graduate school.

I would like to thank Dr Reeb and Dr Brunner for their encouragements.

I would like to thank all my friends for the great and fun times.

I would like to thank my parents for all their support throughout the years.

I would like to thank my beautiful girlfriend Trista Baxter for all her support, for

her encouragements, for being there for me, and for being an awesome girlfriend.

TABLE OF CONTENTS

Page

1 Introduction 1

2 Literature Review 5

2.1 Micro Air Vehicles (MAVs) . 5
2.1.1 Fixed-Wing/flexible-wing MAVs 5
2.1.2 Rotorcraft . 9
2.1.3 Model-based Control . 11
2.1.4 Neural Networks . 12
2.1.5 Vision Control . 13
2.1.6 Unmanned Air Vehicle (UAV) 13

2.2 Multiagent Coordination for Control of Complex Systems 14
2.2.1 Reinforcement Learning . 15
2.2.2 Evolutionary Computation 25
2.2.3 Auction-based Robot Coordination 27
2.2.4 Collectives . 28

2.3 Multiagent Control Techniques Applied to MAVs 30
2.3.1 Rotorcraft . 31
2.3.2 Flexible-wing MAV . 36
2.3.3 UAV . 40

2.4 Discussion . 42

3 MAV Model, System dynamics, and Basic Control 46

3.1 MAV Platform: GENMAV . 46

3.2 Neuro-control for MAVs . 48

3.3 System Dynamics: AVL / JSBSim 49

3.4 MAV Control . 51

4 A Neuro-evolutionary Approach to Control Surface Segmentation for MAVs 56

4.1 Contribution of this Chapter . 56

4.2 Objective Functions . 56
4.2.1 Minimizing the Drag . 57
4.2.2 Minimizing Actuator Deflection Angles 57
4.2.3 Minimizing Relative Angle Between Control Surfaces 58

TABLE OF CONTENTS (Continued)

Page

4.3 Experimental Results . 58
4.3.1 Neuro-Controller Evolved to Explicitly Minimize Drag: GFd

. 60
4.3.2 Neuro-Controller Evolved to Minimize Actuator Angles: Gω1 63
4.3.3 Neuro-Controller Evolved to Minimize Relative Actuator Angles:Gω2 66
4.3.4 Neuro-controller for Actuator Failure. 66

4.4 Discussion . 71

5 A Learning Based Approach to Micro Aerial Vehicle Control 74

5.1 Contribution of this Chapter . 74

5.2 Objective Functions . 75

5.3 Experimental Results . 77
5.3.1 Altitude Control . 78
5.3.2 Heading Control . 83
5.3.3 Wind Gusts and Turbulence 87

5.4 Discussion . 94

6 A Multiagent Based Approach to Micro Aerial Vehicle Control 97

6.1 Contribution of this Chapter . 97

6.2 Objective Functions . 97

6.3 Experimental Results . 100
6.3.1 Altitude Control . 101
6.3.2 Heading Control . 103
6.3.3 Actuator Failure . 109

6.4 Discussion . 118

7 Conclusion 121

Bibliography 125

LIST OF FIGURES

Figure Page

2.1 Quad-Rotor Configuration [44]. 11

3.1 GENMAV Prototype [78]. 24in wingspan with 5in chord, 17in fuse-
lage, and 7 degree dihedral angle. 47

3.2 GENMAV in AVL, the aerodynamic prediction code. AVL calcu-
lates forces and moments applied to the MAV as well as the lift and
drag coefficients. 52

3.3 PID Controller. The weighted sum of the proportional, integral and
derivative terms is used as the control command. 53

3.4 GENMAV Controller. Desired altitude and heading are provided
by the user or navigation algorithm. The controller calculates the
elevator and aileron commands that are fed to JSBSim which in
return provides the MAV states. 54

3.5 Neuro-controller training. A neural network is selected to control
the system using the MAV state information provided by JSBSim.
The neural network then receives a reward calculated with the ob-
jective function. The loop continues until an optimal solution is
found. 55

4.1 Elevon Angles (Min Drag, Roll Moment = 0.028). Example of
elevon positions with 2 control surfaces. The learning is quicker
than with 8 elevons due to lower level of complexity. Spikes repre-
sent different solutions since the learning is still active. 61

4.2 Elevon Angles (Min Drag, Roll Moment = 0.028). Example of
elevon positions with 8 control surfaces. It takes longer to find
the optimal elevon positions due to the higher complexity of the
configuration. 61

4.3 Drag vs Roll Moment (2, 8 and 12 Ctrl Surf). Configurations with
8 and 12 elevons perform significantly better than the base configu-
ration with only 2 elevons. However, no significant difference is seen
between 8 and 12 elevons . 62

LIST OF FIGURES (Continued)

Figure Page

4.4 Drag between the three objective functions (2 elevons). The objec-
tive function minimizing the drag directly performs better than the
other 2. However, the other 2 objective functions still perform well
and can be used to indirectly minimize the drag. 62

4.5 Elevon Angles (Min Angles, Roll Moment = 0.030). Example of
elevon positions with 2 control surfaces. As was the case for mini-
mizing the drag, the optimal positions are quickly found due to the
lower level of complexity. 64

4.6 Elevon Angles (Min Angles, Roll Moment = 0.030). Example of
elevon positions with 8 control surfaces. The learning with this
objective function is quicker than with the drag objective function.
The elevon positions are also nicely spread out. 64

4.7 Drag with 8 elevons (Min Angles, Roll Moment = 0.030). Example
of drag results when using the 8 elevon configuration. The drag
slowly increases throughout the learning phase until the optimal
solution is found. 65

4.8 Drag vs Roll Moment (Min Angles, 2 and 8 elevons). Unfortunatly,
no significant difference is seen for the drag results between the 2 and
8 elevons configuration. Another solution is presented in Section 4.3.3. 65

4.9 Elevon Angles (Min Rel Angles, Roll Moment = 0.028). Example of
elevon positions with 2 elevons. The learning speed is slightly slower
that when using the previous objective function but the solution is
more symetric. 67

4.10 Elevon Angles (Min Rel Angles, Roll Moment = 0.028). Example of
elevon positions with 8 elevons. The learning phase is fairly quick
and the solution found after about 200 iterations. 67

4.11 Drag vs Roll Moment (Minimize Rel Angles: Gω2). No significan
difference can be seen in the drag results between the 2 and 8 elevon
configurations. These results are similar to what was obtained with
Gω1 . 68

LIST OF FIGURES (Continued)

Figure Page

4.12 Drag: 1st and 2nd objective functions (Gω1 and Gω2). A significant
drag reduction can be seen when using Gω2 instead of Gω1 . Gω2 is
therefore a more efficient objective function for minimizing the drag. 68

4.13 Target vs Actual Roll Moment with failures (Gω1). Even with fail-
ures in the system the neuro-controller using Gω1 was able to adapt,
compensate for the failure and still achieve the desired roll moment
values. 69

4.14 Target vs Actual Roll Moment with failures (Gω2). In the same as
with Gω1 , the neuro-controller using Gω2 achieved the desired roll
moment values. 69

4.15 Drag Results: Failures (Gω1). The drag is not negatively impacted
by failures in the system when the neuro-controller uses Gω1 . In
some instances, drag results are slightly better but it is only an
small indirect benefit. 70

4.16 Drag Results: Failures (Gω2). Drag results here are very similar to
what was obtained with Gω1 . No negative impact of the failure on
the drag and small improvements in some instances as an indirect
benefit. 71

5.1 Desired and actual altitude: Neuro-controller. The control response
is fast with the desired altitude value (dashed-line) followed very
closely. The overshoot is minimal. 79

5.2 Desired and actual altitude: PID controller. The control response is
a little slower than with the neuro-controller and the desired altitude
value isn’t tracked as closely. There is however no overshoot. 79

5.3 Altitude rate: Neuro-controller. The altitude rate is a little higher
than with the PID controller due to the faster response. It is however
still well within acceptable limits. 80

5.4 Altitude rate: PID controller. The altitude rate is minimal for this
controller. The slower response of the PID controller compared to
the neuro-controller minimizes altitude rate. 80

LIST OF FIGURES (Continued)

Figure Page

5.5 Elevon Position (altitude control): Neuro-controller. The faster re-
sponse of the neuro-controller translates into slightly higher range
of actuation of the elevons compared to the PID controller. 81

5.6 Elevon Position (altitude control): PID controller. The slower re-
sponse of the PID controller is explained by the slightly shorter
range of motion of the elevons compared to the neuro-controller. . . 81

5.7 Desired and actual heading: Neuro-controller. The response is sim-
ilar to what was obtained with altitude control: fast response with
very close tracking of the desired value. The overshoot is very small
and negligeable. 84

5.8 Desired and actual heading: PID controller. The response is a little
slower than with the neuro-controller but the tracking of the desired
value is very good. There is also no overshoot. 84

5.9 Elevon Positions (heading control): Neuro-controller. The elevon
range of motion is minimized for the heading neuro-controller which
produces a more efficient heading control while at the same time
providing a quicker response. 86

5.10 Elevon Positions (heading control): PID controller. The PID con-
troller is less efficient than the neuro-controller for heading control:
it is a little slower and uses a wider range of elevon actuation. . . . 86

5.11 Desired and actual altitude (Wind Gusts): Neuro-controller. The
neuro-controller achieves greater performance with wind gusts present
by maintaining the altitude within a foot of the desired value versus
6 for the PID controller (Figure 5.12) 89

5.12 Desired and actual altitude (Wind Gusts): PID controller. The PID
controller does not perform as well as the neuro-controller when
wind gust are present: it stays within 6 feet of the desired value
versus only 1 for the neuro-controller. 89

5.13 Desired and actual altitude (Turbulences): Neuro-controller. The
altitude control is not affected by turbulence. The altitude remains
very close to the desired value for the duration of the experiment. . 92

LIST OF FIGURES (Continued)

Figure Page

5.14 Desired and actual altitude (Turbulences): PID controller. The
altitude control is not affected by turbulence. The small altitude
variations are more important than for the neuro-controller but they
are still negligeable. 92

5.15 Desired and actual heading (Turbulence): Neuro-controller. The
neuro-controller performs better than the PID when turbulence is
present: the heading is maintained within a degree of the desired
value versus 3 for the PID (Figure 5.16) 93

5.16 Desired and actual heading (Turbulence): PID controller. The PID
controller does not perform as well as the neuro-controller in the
presence of turbulence: the heading is kept within 3 degrees of the
desired value versus 1 for the neuro-controller. 93

6.1 Desired and actual altitude: Neuro-controller. In this simple case of
tracking a desired altitude (dashed line), the neuro-controlle is able
to track the desired value very closely. The response is fast with
very minimal overshoot. 102

6.2 Desired and actual altitude: PID controller. After tuning, the PID
controller was able to achieve acceptable performance with a re-
sponse a little slower than the neuro-controller. 102

6.3 Desired and actual heading: Neuro-controller. In this other simple
case of tracking a desired heading (dashed line), the neuro-controller
is able to track the desired value closely. The response is fast with
very minimal overshoot. 105

6.4 Desired and actual heading: PID controller. The response of the
PID controller for this simple task is nearly identical to the neuro-
controller’s response. The response is fast with very minimal over-
shoot. 105

6.5 Desired and actual heading: Multiagent neuro-controllers. The re-
sponse of the multiagent neuro-controllers is the best. The response
is fast and smooth and the tracking of the desired value is near
perfect. There is also no overshoot. 106

LIST OF FIGURES (Continued)

Figure Page

6.6 Desired and actual heading: Neuro-controller with segmented ailerons.
This reponse is the 2nd best. It is fast with a near perfect tracking
of the desired value but it is not quite as smooth as the multiagent
neuro-controllers’. 106

6.7 Aileron positions: Neuro-controller. These positions correspond
to the heading tracking. Very similar results between the neuro-
controller and the PID except for the range of actuation which is
better for the neuro-controller (4 degrees instead of 6) 107

6.8 Aileron positions: PID controller (heading tracking). Very similar
results between the PID and the neuro-controller except that the
neuro-controller optimizes the range of actuation better with a range
of 4 degrees instead of 6 . 107

6.9 Aileron positions: Multiagent neuro-controllers. The range of mo-
tion is minimal for the multiagent neuro-controllers while producing
the best control response which demonstrate the higher efficiency of
this controller. 108

6.10 Aileron positions: Neuro-controller with segmented ailerons. The
range of actuation is the highest for this controller which was not
able to fully optimize its efficiency. However, the control response
is still better than the PID controller. 108

6.11 Failure 1, heading: Multiagent neuro-controllers. The left aileron
actuator 4 failed at around 5 degrees. The multiagent neuro-controllers
still maintain the desired heading very closely which is not the case
for the other controllers. 110

6.12 Failure 1, altitude: Multiagent neuro-controllers. The altitude is not
affected by the failure since the ailerons and elevator are controlled
by independent controllers. 110

6.13 Failure 1, right ailerons positions: Multiagent neuro-controllers.
Aileron segments on the right side are slightly adjusted to com-
pensate for the failure that occured on left actuator number 4. . . . 111

LIST OF FIGURES (Continued)

Figure Page

6.14 Failure 1, left ailerons positions: Multiagent neuro-controllers. The
left aileron actuator 4 failed at around 5 degrees. The other aileron
segments are adjusted to compensate for the failure. 111

6.15 Failure 1, heading: Neuro-controller with segmented ailerons. Aileron
segmentation benefits: The neuro-controller is able to remain within
1/2 degree of the desired heading versus over 2 degrees for the non-
segmented model (Figure 6.16). 113

6.16 Failure 1, heading: PID controller. The PID/non-segmented model
produces the highest heading error (over 2 degrees) compaired to
the other controllers coupled to the segmented aileron version of
GENMAV when failure 1 occurs. 113

6.17 Failure 2, heading: Multiagent neuro-controllers. The left aileron
actuator 4 failed at around -5 degrees. As was the case for failure
1, the multiagent neuro-controllers are still able to maintain the
desired heading unlike the other controllers. 115

6.18 Failure 2, heading: Neuro-controller with segmented ailerons. Greater
heading error than for failure 1 (over 1 degree) but still much better
performance than the PID/non-segmented model (almost 5 degrees:
Figure 6.19). 115

6.19 Failure 2 heading: PID controller. Once again, the PID/non-segmented
model produces the highest heading error (almost 5 degrees) com-
paired to the other controllers coupled to the segmented aileron
version of GENMAV when failure 2 occurs. 116

6.20 Failure 2 left ailerons position: Multiagent neuro-controllers. Aileron
segment L4 failed with an angle of around -5 degrees. The other seg-
ments positions are adjusted to compensate for the failure. 116

6.21 Heading error vs failure angle. The multiagent neuro-controllers
reduce the heading error by up to a factor of 8 times better than
the PID controller when a failure occurs while tracking a desired
heading . 117

Chapter 1 – Introduction

Micro Air Vehicles (MAVs) have recently seen more attention due to the large num-

ber of missions and tasks that they can accomplish such as surveillance [64, 63],

reconnaissance, sensing [46], search and rescue, and enemy targeting [74]. MAVs

can accomplish such demanding missions without endangering human lives, giving

a very important edge to the organization using them. NOAA (National Oceanic

and Atmospheric Administration) for example uses them increasingly to assess

arctic ice change and affects on ecosystems and coasts, increase safety and suc-

cess in fighting wildfires that threaten people and property, and monitor coasts,

oceans, environments important for fish, and marine sanctuaries. The many ben-

efits resulting from using MAVs pushed researchers into improving this platform

to provide better and more stable flight characteristics. A wide variety of MAV

platforms and control strategies have been studied and show promising results in

this area [49, 92, 93, 48, 29, 56, 68, 36].

The target size for MAVs is typically from insect to bird size and most MAVs

are between 15 and 60 cm (6 to 24 inches). The flight speed of those MAVs is

on average between 5 and 20 m/s (10 to 50 mph)[4, 55] with a range of Reynolds

number similar to that of an insect or bird (103 - 105). MAVs must have a high

maneuverability and an accurate control system to be able to operate at low alti-

tude, around buildings and obstacles, and where wind, wind gusts and turbulences

2

are present [10, 78].

As a consequence MAVs present a number of challenges where integrating all

the necessary components within the volume and weight requirements is not a

trivial task. MAV restrictions include: limited processing power, limited control

surfaces and actuators, limited number and quality of the sensors, and limited

power available. They are also typically unstable and difficult to control due to

fast and highly non-linear dynamics [93]. Large forces and moments that are

difficult to predict as well as unsteady flow conditions are typically encountered in

the flight environment that MAVs have to operate in. The MAV control system

has to therefore be fast, flexible and robust in order to achieve proper platform

stabilization and guidance.

MAV platforms can be categorized into three main types: flexible-wing/fixed-

wing MAVs, rotorcraft MAVs, and UAVs. Those categories are dependent on a

specific range of applications that the platform is used for. Indoor/urban terrain

use, low speed, and hovering capabilities characterize the rotorcrafts. They are

also highly unstable and difficult to control. Longer range, higher speeds, and

higher altitude distinguish the fixed-wing/flexible wing MAV platform. They are

also unstable, hard to fly, and susceptible to wind gusts. Lastly, long range of

operation at high altitude and high speed designates the UAV platform. They are

much more stable, bigger, and controllers can be designed more easily. They can

however be detected more easily and are not as flexible in their utilization and

configuration.

Several control techniques have been implemented on MAVs and can be divided

3

into two general groups: model-based, and learning-based control methods. Model-

based control techniques are a more classical control methods where the system

is studied and modeled in a first phase, and then a controller is designed based

on the model. They are well suited for systems where models can be constructed

without too much difficulty and the controller designed on a linearized version

of the model can still perform well on the real system without excessive tuning

or optimization. Model-based techniques such as PID and state space control

can be applied to UAVs with success but more difficulties are encountered when

those techniques are applied to the highly non-linear and unstable MAV platform.

Tuning and optimization are required to achieve more stable flight characteristics

and better performance. Learning-based control techniques as opposed to model-

based control techniques do not require a model of the system to be designed.

The idea behind learning methods is to learn an optimal mapping between inputs

and outputs provided to the control system. The selection of the correct types of

inputs provided by the sensors is critical to achieve optimal results. Those learning

methods are well suited for non-linear systems such as the MAV platform.

Multiagent control techniques have been used for a wide range of problems and

many different types of techniques have recently been introduced. The main multi-

agent control methods can be classified into reinforcement learning techniques, evo-

lutionary computation techniques, auction-based methods, and collectives which

are a higher order type of methods that can be applied to previously cited meth-

ods. Reinforcement learning and evolutionary computation techniques have been

modified and improved depending on the needs of specific applications. They are

4

well suited for MAV control problems that are highly non-linear and complex prob-

lems. These methods provide a high flexibility to the control system that adapts

and learns when a particular configuration is modified such as adding an agent to

the system or increasing the number of actions that an agent can take. These con-

trol systems also prove very useful when noise and/or failures occur in the system.

Also, the selection of the inputs to the control system plays an important part in

the resulting speed and efficiency of the multiagent control system.

The three contributions of this work are as follows. We first show (Chapter

4) that neuro-evolutionary techniques can be used to control multiple surfaces to

improve the flight characteristics of an MAV by designing appropriate objective

functions (e.g. roll moment value). We then show (Chapter 5) that learning

based methods can improved wind gust robustness of MAVs when compared to a

PID controller and that learning based methods coupled with segmented control

surfaces increases robustness to actuator failure. Finally, we show (Chapter 6) that

multiagent techniques further improve the robustness of the MAV platform and

provide better recovery solutions in the case of actuator failures.

5

Chapter 2 – Literature Review

2.1 Micro Air Vehicles (MAVs)

2.1.1 Fixed-Wing/flexible-wing MAVs

A classic approach to MAV design is the fixed-wing MAV design. The fixed-wing

configuration allows for a simpler design that is usually quicker to design and im-

plement than a flexible-wing approach where the dynamics evolve with the position

and shape of the wing. Those types of MAVs are also more suited for a classical

model based approach of control where a model of the system is needed in order

to design the controller. Successful implementation of such a platform was demon-

strated in [68, 56] where an MAV platform as well as a controller were developed

and showed good performance in fully autonomous flights including take-off and

landing maneuvers. Fixed-wing MAVs are also easier to test in a simulator due

to their better know flight characteristics and dynamics. Experiments of this na-

ture were presented in [66] where several specific features are implemented in an

MAV simulator. Fixed-wing MAVs are constantly being optimized and the design

of better more efficient configurations is an active area of research. Some design

experiments are shown in [55, 92, 50]. Fixed-wing MAVs are well suited for a large

number of applications and can be modeled and managed with classical control

methods. They are however susceptible to wind gust due to their low maximum

6

speed, small size, and small weight. Even though classical model-based control

methods were successfully applied on this type of vehicle, the high non-linearity

and very unstable flight characteristic result in less than optimal classical control

solutions that usually require important and lengthy tuning and optimization pro-

cedures. In addition, their lack of flexibility does not allow other more intelligent

methods of control to be easily applied to improve the performance of the system.

The flexible-wing MAV design has recently seen more interest and was used

to improve stability of the vehicle as well as improve its wind gust resistance. In

most cases, the payload capacity of the MAV was also improved. The wing in this

case deforms continuously throughout the flight and absorbs the energy created by

the instabilities of the air flow. Intelligent methods of control could more easily be

applied and tested due to the higher flexibility of the platform.

Carbon fiber prototypes have been under development for several years at the

University of Florida and the Air Force Research Laboratory Munitions Direc-

torate. Abdulrahim et al [4] presents an overview of the development of different

flexible-wing MAVs with sizes between 6 and 24 inches. The design of the shape

and form of the flexible-wing is discussed for different size MAVs, and flight test

comparison were conducted between their first 2D wing design, a later 3D wing

design, and a standard fixed-wing MAV. The 3D version showed to be more sta-

ble, maneuverable, and with an overall better efficiency than the 2D and standard

versions. The fuselage, and propulsion system were also optimized to improve the

performances of the MAVs. This study showed some important advantages of the

flexible-wing MAV concept. Using carbon fiber as a building material allows an

7

important design flexibility. This in returns allows for improvements of the flight

characteristics of the MAVs by modifying the wing design and configuration. The

wing can be made more or less flexible, and have different shapes and lengths de-

pending on the size and flight characteristics needed for a particular application.

MAV improvements based on design modifications include a higher maximum air-

speed, higher climb rate, improved turning capability, and a higher lift to drag

ratio. The higher lift to drag ratio is particularly important for MAVs as it im-

proves their gliding capabilities. This feature would prove very useful if the control

strategy uses a reinforcement learning or evolutionary algorithm [86] that could

control the MAV in case of motor failure. In this situation, the controller would

adapt and control the MAV as a glider, that could be landed safely.

Fundamentally, flexible-wings of MAVs deform and absorb energy from wind ir-

regularities leading to better performance and flight characteristics as passive form

of control. It is also possible to use this characteristic as an active form of control

by using actuator to change the shape of the wing during flight. A study based on

a similar platform was conducted by Garcia et al [36] to shows that roll control of

such a MAV can be achieved by actively morphing the wing. The morphing of the

wing mainly creates a roll motion that allows for more stable maneuvers compared

to using the standard control surfaces. Wing morphing is obtained by attaching

a string to the trailing edge of each wing. Those strings are attached to a single

servo and therefore only one of the wings can be morphed at a time. Preliminary

tests and simulations show that wing-morphing cannot be used directly to con-

trol the MAV. A controller was built to integrate wing-morphing with the other

8

actuators (elevator and rudder) in order to provide regular control actions to the

pilot or flight controller. This study shows the potential of using wing-morphing

as an active mode of control for MAVs. Only one actuator was used to modify

the shape of the wing but such a concept could be extended to having multiple

actuator morphing the wing in different places. This would provide a better con-

trol over the shape of the wing and therefore a more flexible way of controlling

the MAV. Another extension from this study would be to use a different approach

as far as the control strategy used to control the MAV. It was shown that wing-

morphing cannot be used directly to control the MAV and a specific controller for

integrating wing-morphing with the other modes of control was needed in addition

to the regular flight controller. It seems like this configuration could be better ap-

proached with a control strategy that would not require a model of the dynamics

and could use wing-morphing with multiple actuators directly without the need

of an intermediate controller that would be difficult to design for optimal perfor-

mance and stability. Such a control strategy could be a multiagent reinforcement

learning control strategy [8] where each actuator would be an agent. Each agent

would base its actions on information received about the system such as position,

orientation, speed, and acceleration. Each action could correspond to an actuator

position. An added advantage would also be the ability of the control system to

adapt and perform well in conditions where noise and/or failures are present in

the system. These techniques will be discuss in Section 2.2 of this chapter.

Waszak et al [93] also conducted a study on an elastic membrane wing to im-

prove flight characteristics of MAVs. As seen previously, the flexible wing increases

9

stability of the MAV and results from this study show that the vehicle was capable

of higher angles of attack than its fixed wing counterpart. This study shows the

potential of the flexible-wing concept and its advantages over fixed-wing MAVs.

Flexible-wing MAV show significant improvements over more classical fixed-

wing MAVs. Wing morphing allows for more stable flight characteristics, higher

resistance to wind gusts, and an improved payload capacity. Furthermore, learning-

based control techniques that do not require a model of the system could be imple-

mented more easily than on fixed-wing vehicle due to the higher platform flexibility

of flexible-wing MAVs. Additional actuators could be implemented to morph the

wing and provide more control options. This approach would be better suited for

this type of platform where classical model-based methods would require important

tuning procedure to achieve better results and more stable flight characteristics.

Even though, the design process is more complicated than more conventional ap-

proaches, the benefits of the flexible-wing approach are worse investing into.

2.1.2 Rotorcraft

Another approach to MAV design is the rotorcraft approach. This platform is

highly unstable but has the benefits of being able to stop and hover as well as being

better suited for an indoor/urban terrain types of missions. Helicopters due to their

high instability are a very challenging control problem. Many control techniques

have been applied to keep the system under control with some very successful

implementations. Helicopter dynamics can be modeled without excessive difficulty

10

and the system can therefore be modeled to design a classical type of controller.

Learning-based control methods can also be applied and have also shown impressive

results such as the successful implementation of a learning technique by Ng [1, 62,

61]. The control system is not based on a purely reinforcement learning method

since the controller learned from a model of the system that was obtained from real

flight data. Difficult maneuvers where performed by the controller and demonstrate

the efficiency and robustness of learning-based control strategies. Other helicopter-

based implementations are presented in [26, 24, 25, 27].

A similar platform was also used in several studies to achieve same kinds of

objectives as the helicopter platform. Quad-rotor vehicles advantages include a

higher payload, and a simple configuration. They are however very unstable with

extremely fast open-loop dynamics leading to an even more challenging problem.

An example of quad-rotor configuration can be seen in Figure 2.1. Modeling,

simulation and platform implementation of the quad-rotor concept in shown in

[44, 17, 59].

Quad-rotor dynamics models can be obtained and used for designing model-

based controller but results have been limited due to the extreme instability of the

platform. This platform can however be easily modified and an intelligent type

of controller would be well suited for controlling the system. Providing adequate

inputs to the system and establishing a learning procedure would be key to the

success of such a technique.

11

Figure 2.1: Quad-Rotor Configuration [44].

2.1.3 Model-based Control

Model-based control technique are a classical type of control methods that are

based on obtaining the detailed dynamics of the system being studied, construct-

ing a model based on those dynamics, and design a controller based on the model.

Those techniques can be applied to non-linear systems but require linearization of

the model and tuning and optimization of the controller to achieve good perfor-

mance. PID (Proportional Integral Derivative) controllers are based on a control

loop with feedback mechanism and have been extensively used in the industry. PID

controller are also used in MAV applications [68, 44, 56, 94, 97, 65]. PID controller

perform well on simpler MAVs such as fixed-wing MAV where the dynamics are

better understood and where models of the system are better representation of the

real MAV. For more complex systems such as flexible-wing MAV, PID controller

require a more in-depth tuning and optimization to obtain the desired results. PID

12

gain tuning as also been improved using neural networks [65].

State space control techniques are also based on a model of the system and

have been applied with success to MAV control [46, 45]. State space control pro-

vide robust controllers that perform well on non-linear systems. Similarly to PID

controller, state space controllers require optimizations when applied on highly

non-linear systems such as flexible-wing MAVs. The state space model of the

system under investigation as the form shown in Equation 2.1.

ẋ = Ax+Bu

y = Cx+Du
(2.1)

Where x is the vector of state variables, u is the vector of inputs, and y is the

vector of output variables or sensed quantities.

2.1.4 Neural Networks

Neural network (NN) controllers are based on mapping a set of inputs to set of

outputs and do not require a model of the system being controlled. This mapping is

learned by the controller using different methods. Neural networks are well suited

for systems where a straight-forward model of the system cannot easily be obtained.

Learning is achieved based on a cost function that provide information on how far

the NN is from the optimal solution to the problem considered. The NN learns

by minimizing the cost function. Learning can be done using different strategies:

supervised learning, unsupervised, and reinforcement learning. Supervised learning

13

is done by having the NN learn form the actions of a pilot that is familiar with

the vehicle. In unsupervised learning, the NN learn from a set of data. And

in the case of reinforcement learning, the NN learns form its interaction with

the environment based on an action-reward system. Several examples of neural

network implementations are shown in [41, 72, 26, 24, 25, 27].

2.1.5 Vision Control

Vision-based control can also be applied to an MAV platform. The high processing

requirements of vision algorithms require in general processing of the information

in a ground station with the information transmitted between the two units. Vision

can be for multiple purposes that include obstacle avoidance, path planning, and

state estimation. Many studies were conducted to include vision in a form or the

other in the control loop of MAVs/UAV [34, 47, 75, 98, 77].

2.1.6 Unmanned Air Vehicle (UAV)

Unmanned Air Vehicles (UAVs) are a broader class of vehicles that include Micro

Air Vehicles (MAVs) as well as bigger aircrafts that have a more conventional

design. Larger UAVs are over 24 inches and are usually either fixed-wing airplanes

or helicopters. They have a greater stability and a higher resistance to wind gusts.

The payload capacity is also increased due to their size. It is therefore much easier

to add more and better sensors and navigational equipment than on MAVs where

14

space and weight is very limited.

Larger UAV can be controlled with a conventional control method such as

PID control or state space control without the need of extensive tuning. Dynam-

ics models can be developed and represent the real system with accuracy than

MAV models. Learning-based control methods could also be implemented and

the controller is very likely to show expected performances. Several UAV control

techniques are presented in [72, 69, 15, 14, 3, 5].

2.2 Multiagent Coordination for Control of Complex Systems

Classical control methods require the system to be modeled accurately enough to

design the system’s controller. For an important number of systems, the informa-

tion for building the model is either unavailable or not accurate enough. Some

systems can also be too complex and the potential models would either be too

big to build or would represent a too simplistic representation of the real system.

For a large number of systems, classical control methods can’t be applied very

efficiently and require important modifications and tuning to achieve reasonable

performances. Non-linear systems are particularly difficult in that respect and the

design of a robust and efficient controller present some challenges. An alternate

approach to solving the control problem of those systems is the learning approach

that do not require a system model. Learning techniques have been used and

are getting more attention to solve multiagent coordination problems for control

of complex systems. Solutions for this kind of problems can be found using a

15

wide range of methods and techniques that can be grouped in multiple areas of

research. Those research areas include reinforcement learning, evolutionary com-

putation, auction-based algorithms, and collectives. Detailed surveys of the field

can be found in [67, 80].

2.2.1 Reinforcement Learning

Reinforcement learning is a learning method based on an action/reward system

where there is no plant model and the algorithm learns from its environment. At

each time step, agents receive information about the environment through their

sensors and decide on the next action they need to perform. Each action modifies

the environment and each agent receives a reward based on the overall goal that

the system needs to achieve. The agents keep learning by trial and error until the

solution to the problem is optimal or near optimal. Assigning rewards to agents

is done using a reinforcement function that maps system state to agent actions.

Agents will try to maximize that function in their learning process. The design of

the reinforcement function varies depending on the environment and the goal that

needs to be achieved. The performance of the algorithm is measured based on the

convergence to the optimal solution and the speed of convergence.

Designing the reinforcement function (also called value function) is a difficult

problem and many techniques have been developed to design a reinforcement func-

tion that provides optimal results for the problem being handled. Several algo-

rithms for multiagent reinforcement learning are presented by Guestrin et al [43].

16

A variation of Q-learning and a variation of Least Squares Policy Iteration (LSPI)

are used as a starting point. Those methods are then combined with policy search

methods to obtain better results.

An example of experiments in simulation for a group of robots is presented in

[28]. Two communication strategies are also presented and results show that those

strategies significantly improve the learning of the robots. This chapter demon-

strates the possibility of improved group performance through group organization

based on the environment.

An application of reinforcement learning can be found in the RoboCup simu-

lated soccer competition [51, 79]. This competition presents many challenges and

provides a good test ground for experimenting new learning algorithms, techniques,

and strategies. Some of the difficulties of the competition include multiple agents

playing against multiple adversaries, real-time computing, large number of possible

actions, noisy inter-agent communication, and limited sensing capabilities. In [51],

a SARSA (State-Action-Reward-State-Action) algorithm used for defense strate-

gies is applied to an offense strategy. Several tests showed that this method did

not provide optimal results for this particular configuration and an optimization

method based on inter-agent communication was then tested and provided better

results. Those tests illustrate the difficulty of designing reinforcement learning

algorithms. An algorithm performing well in a particular scenario might not pro-

vide optimal results in another more complex scenario. Optimizations are however

possible and can be applied to improve performance of algorithms when they do

not provide optimal results.

17

As seen previously, reinforcement learning algorithms can always be used to

solve a particular problem but implementing an efficient algorithm can be difficult

depending on the problem under investigation. Large multiagent problems are

particularly challenging and many reinforcement learning methods become slow

and inefficient when applied to those kinds of problems. The QUICR-learning

approach [8, 7] was proposed to solve multiagent coordination problems in a faster

and more efficient way. The QUICR-learning approach is described below.

In a multiagent system, agents use a reward to determine their next action.

This reward is a function of the states of all the agents which are a function of

all the previous actions (Equation 2.2). In large multiagent systems the reward is

affected by a high number of actions which slows down the learning process.

Rt(st(a)) =
T−t∑
k=0

rt+k(st+k(a)) (2.2)

A standard method for this kind of problem is the standard Q-learning ap-

proach. Q-learning algorithms works by learning the value of the state-action

pairs stored in Q-value tables. Those values correspond to the sum of the future

rewards that needs to be maximized. Each Q-value pair is updated with the rule

in Equation 2.3.

Q(st, at) = rt +maxaQ(st+1, a) (2.3)

The main drawback of this approach is that for large multiagent systems, the

algorithm is slow. This is due the global reward system where the reward of each

18

agent is highly dependent on the actions of all the other agents. As the number of

agents, actions, and time-steps increase in the system, the global reward depends

on an increasingly large number factors making the learning process very slow.

An improvement over the standard Q-learning approach is the Local Q-learning

method. It is based on the assumption that the agent’s actions are independent.

The reward can then be linearly separated so that each agent will be rewarded

based on its actions only. Equation 2.4 shows the reward for the Local Q-learning

method.

rt(st) =
∑

i

wirt,i(st,i(ai)) (2.4)

This approach speeds up the learning process and works well as long as the

agent and their actions are relatively independent. Otherwise, the agents maxi-

mizing their reward might maximize the system’s overall objective.

QUICR-Learning was introduced to provide a faster algorithm than the stan-

dard Q-learning algorithm while at the same time maximizing the overall system’s

objective. The reward is not assumed to be linearly separable but it still provides

feedback to each agent based on its own actions.

Equation 2.5 shows the difference reward that is used in the QUICR-Learning

methods to maximize the system’s goal and provide specific feedback to each agent.

Di
t(st(a)) = Rt(st(a))−Rt(st(a− at,i)) (2.5)

Where a− at,i is a counterfactual state where agent i has not taken the action

19

it took in time step t. Equation 2.5 can be rewritten as shown in Equations 2.6

and 2.7.

Di
t(st(a)) =

T−t∑
k=0

rt+k(st+k(a))− rt+k(st+k(a− at,i)) (2.6)

Di
t(st(a)) =

T−t∑
k=0

dt+k(st+k(a)), st+k(a− at,i) (2.7)

Some assumptions need to be made to overcome the problem created by dt(s1, s2)

being usually non-Markovian. Those assumptions are as follows:

1. The counterfactual action a− at,i moves agent i to an absorbing state, sb

2. sb is independent of the agent’s current (or previous) state(s)

The new reward can then be written as a Markovian function. Equation 2.8

shows the reward where st − st,i + sb indicates that agent i’s state was replaced

with state sb.

di
t(st) = rt(st)− rt(st − st,i + sb) (2.8)

The QUICR-Learning rule can than be written and is shown in Equation 2.9

and 2.10.

QUICR(st, at) = rt(st)− rt(st − st,i + sb) +maxaQ(st+1, a) (2.9)

20

QUICR(st, at) = di
t(st) +maxaQ(st+1, a) (2.10)

Showing that QUICR-Learning maximizes the overall system’s objective is done

by showing that agent i maximizes di
t(st). Equations 2.11, 2.12, 2.13, and 2.14

demonstrate that agents maximizing their customized reward will also maximize

the overall system’s objective.

∂

∂si

di
t(st) =

∂

∂si

(rt(st)− st,i + sb)) (2.11)

∂

∂si

di
t(st) =

∂

∂si

(rt(st))−
∂

∂si

(rt(st − st,i + sb)) (2.12)

∂

∂si

di
t(st) =

∂

∂si

(rt(st))− 0 (2.13)

∂

∂si

di
t(st) =

∂

∂si

(rt(st)) (2.14)

A similar algorithm, DU (Difference Utility) used in other types of problems

was converted and is show in Equation 2.15. In this equation, ct is independent of

state si.

DU i
t (st) = r(st)− r(st − st,i + ct) (2.15)

A comparison between standard Q-Learning, Local Q-Learning, QUICR-Learning,

21

and the DU (Difference Utility) algorithms is then obtained when testing those

algorithms on two specific problems. The first problem is a traffic congestion ex-

periment where drivers can take different road to get to their destination, with

each road having its own capacity. The other experiment is a multiagent grid

problem where agents can move on a grid square and where they have to observe

tokens placed on some of the squares. Results for both experiments showed that

QUICR-Learning was faster and more efficient than the other algorithms.

QUICR-Learning is an elegant solution to the multiagent coordination prob-

lem. It was shown to be faster and more efficient than other reinforcement learning

methods. QUICR-Learning provides a customized reward to each agent that de-

pends primarily on its actions. The idea behind this reward system is to subtract

actions that are not the agent’s to the standard Q-Learning reward. This reward is

more agent specific and allows agents to learn rapidly. QUICR-Learning does not

assume that the agent’s actions are independent and therefore provides rewards

that maximize the overall system’s objective. QUICR-Learning can be applied

effectively to any multiagent coordination and can also be extended to other rein-

forcement learning methods. A potential application of this technique could also

be for the control of flexible-wing MAVs as was mentioned in section one of this

chapter [36]. Each actuator could be an agent that would obtain information about

the system through the MAV sensors and the possible actions of the agent would

be the actuator’s position. Coordination between agents would be an important

factor in keeping the MAV stable and performing flight maneuvers.

A method for improving the speed of reinforcement learning algorithms was

22

proposed by Ahmadi [9]. This method can be used with any value function rein-

forcement learning algorithm and is based on having the RL algorithm learn on

an incremental number of subsets ordered by importance instead of leaning on

the full set of features at once. The Incremental Feature-Set Augmentation for

Reinforcement Learning Tasks (IFSA) is presented below.

IFSA is a general purpose algorithm that uses some information about the do-

main of the problem in order to increase the speed of the RL algorithm used to

solve the problem. IFSA needs to be customized for the problem under consider-

ation and the domain expert has to decide on how to organize the agent’s state

spaces into different feature sets.

As stated previously, IFSA can be used with any value function reinforcement

learning algorithm but this chapter demonstrate the efficiency of the method using

a Sarsa algorithm (state, action, reward, state, action). Equation 2.16 is used to

update the Q(s, a) function.

Q(st, at)← Q(st, at) + α[rt+1 + γQ(st+1, at+1)−Q(st, at)] (2.16)

The key to the successful implementation of the IFSA method is to first separate

the agent’s state spaces into feature sets and then reorganize those sets by their

importance. If the organization of those feature sets is done incorrectly, then

IFSA may not lead to the expected speed increase of the RL algorithm being used.

Once the feature sets are organized, the next step is to start the learning with the

most important feature until the algorithm converges to a policy very close to the

23

optimal policy. The second most important feature is then used to augment the

feature set used by the algorithm. The value obtained when learning on the initial

feature set is used as the initial value for the new augmented feature set. This

allows the algorithm to use use the learning from a reduced feature set and refine

the learning with the new feature set. The algorithm learns rapidly on a basic

set of features and the build-up with additional details provided by the additional

features. Pseudo-code for the IFSA algorithm is shown is Algorithm 1.

Algorithm 1: Pseudocode for IFSA algorithm [9]

Let Φ = (φ0, φ1, ..., φm−1 ⊆ F) can be an ordered augmentation of the feature-set

of the problem.

for i = 0 to m− 1 do

Learn V ∗(φ0...φi) until reasonably converged

for all φ0 ... φi+1 do

V ∗(φ0...φi+1) = V ∗(φ0...φi)

end for

end for

IFSA has the advantage of being usable with any value function reinforcement

learning algorithms on a wide range of problems. The main drawback is that its

application is highly dependent on the domain of the problem. Someone needs to

have a good knowledge of that domain in order to be able to build those feature

set from the agent’s state spaces and most importantly organize them based on

their importance. If this not done correctly, the improvement on the speed of the

24

algorithm may not occur. Also, some problems might not lend themselves very

well to a representation by subsets of features and in those cases, IFSA cannot be

applied.

Another approach that improves upon standard reinforcement learning algo-

rithms in presented in [21] and is based on the WoLF Policy Hill-Climbing (WoLF-

PHC) which corresponds to the principle of ”learn quickly while losing, slowly

while winning”. This technique is applied in multiagent environments based on a

stochastic game framework. The WoLF-PHC as the name implies is an improved

version of Policy Hill-Climbing. PHC is an extension to Q-Learning that was dis-

cussed earlier where the algorithm still updates the Q-values but in addition the

agent selects its next action based on a mixed strategy. This mixed strategy is

maintained and improved based on a learning rate δ which increase the probabil-

ity that the action with the highest Q-value will be selected. WoLF-PHC builds

on this technique by adding the ”Win or Learn Fast Principle”. The idea is that

agents learn faster when selecting a wrong action, and learn slower when selecting

a good action. The standard PHC is modified to incorporate the new principle

which implies using two different learning rates, a winning and a loosing learning

rate. The agent determines if he is winning or loosing by comparing the results of

the current policy versus the average policy. If the results from the current policy

are lower, then the agent is loosing and the loosing learning rate is used by the

algorithm. The WoLF-PHC algorithm provided very good results when tested on

several stochastic games, and it also out-performed other multiagent reinforcement

learning algorithms. WoLF-PHC shows interesting characteristics that could prove

25

useful in an MAV application where the reinforcement learning algorithm needs to

correct its actions very quickly if those could lead to a very unstable situation and

potentially a crash of the MAV.

Further application of the WoLF algorithm can be found in [19, 22, 20]. An

in-depth description of the algorithm is provided in [18].

Similar applications of reinforcement learning techniques can be found in the

following chapters: [87, 2, 37, 82, 85].

2.2.2 Evolutionary Computation

Evolutionary computation (EC) is a technique based on a guided random search

among a population of solutions. The algorithm starts with randomly generated

solutions that are then graded and selected for breeding and mutating individual

solutions in order to produce new solutions that will replace older ones. It is similar

to biological evolution: reproduction, mutation, recombination, and selection. At

each breeding cycle or generation, solutions are improved until an optimal or near

optimal solution is found or until the time constraint has been reached.

Evolutionary computation could prove highly beneficial in systems where fail-

ure can occur. Agents in the system would evolve to the next optimal or near

optimal solution in the event of an agent failing in the system. The system would

then be able to recover and use the newer solution to optimally control the sys-

tem. Similarly, when modifications and improvement are performed on the system

(adding new agents or new actions), the system can evolve and use previously

26

learned information to adapt to a new system configuration without changes to

the control system.

Evolutionary computation is well suited for multi-rover exploration tasks. Rover

configuration changes when new information about the environment is discover and

the control algorithm needs to be able to evolve to a new optimal solution. Fur-

thermore, failure of one or multiple rovers does not cause failure of overall system,

EC algorithms are therefore robust and can overcome many challenges.

[86] presents an application of evolutionary computation to a multi-rover prob-

lem as well as a method for shaping evaluation functions used by the rovers. The

evaluation function play an important role on the performance of system and at

the same time needs to provide specific information to a rover about its control pol-

icy, and to optimize the overall system’s objective. A evaluation function meeting

those criterions is shown in [86]. Also introduced in [86] is a study of the impact

that different types of failures have on the system. Mobility, communication, and

controller failures are tested on the multi-rover system and shows high performance

of the control system when those failure occur. Similar studies [6, 70] also show

analogous results.

Evolutionary computation algorithms are very robust techniques that can adapt

to changing configurations as well as failures in the system. They would therefore

represent a stable and dependable multiagent control technique that could be im-

plemented on an MAV platform where configuration modification of the platform

can be used to achieve better performance of the system and where the system

needs to be able to recover and adapt from possible failures of elements of the

27

system.

2.2.3 Auction-based Robot Coordination

Auction-based algorithm for the control of multiagent systems have been used for

the control and coordination of groups of robots exploring an unknown environ-

ment. Those techniques demonstrate strong robustness and efficiency and many

methods have been proposed to solve specific exploration tasks [52, 54, 33, 53, 32,

58, 81, 31, 57, 12, 39, 38].

The concept of auction-based robot coordination relies on having each robot

place a bid on a target, and then visiting the target that they won. Advantages of

the method include high robustness, if a particular robot fails, the system continues

exploring the terrain and adapt to the new robot configuration. Additionally,

communications are efficient since only the bids on the targets are communicated.

Another benefit is computation efficiency through parallel bid computation.

Most auction-based control methods proposed define their own set of bidding

rules depending on the robot configuration, the environment, the targets, and that

tasks that need to be accomplished. Since no standard method on generating

bidding rules existed, Koenig [81] proposed a method for systematically producing

those rules.

[81] investigates three possible team objectives that could be accomplished:

MiniSum corresponding to minimizing the sum of the path costs over all robots,

MimiMax corresponding to minimizing the maximum path cost over all robots,

28

and MiniAve corresponding to minimizing the average per target cost over all

targets. Optimizing those objectives is a complex problem that is not directly

computationally feasible.

Bidding rules to achieve the previously mentioned objectives are presented in

[81], and need to be approximated using a greedy method to obtain the desired

results. Those rules provided good performance for the selected objective and were

reasonably close to the optimal solution.

Auction-based robot coordination methods provide robust decentralized method

for coordinating large teams of robots for exploration of unknown environments.

The system can quickly adapt to changing robot configuration has terrain is pro-

gressively discovered and target reassignments can be achieved to satisfy the sys-

tem’s objective. Additionally, the system can adapt to particular robot failure and

reorganize the search in the most effective manner.

2.2.4 Collectives

Collectives are a set of entities that aim at conjointly maximizing an overall sys-

tem’s performance function and at the same time maximize their own performance

function. They represent a higher level of multiagent control techniques that can

be applied to lower level methods such as reinforcement learning and evolution-

ary computation techniques. Distributed intelligence performs better and is more

robust for a wide range of multiagent systems than a single central intelligence

and is therefore used extensively in multiagent control problems. [91] presents a

29

survey of collectives where the different characteristics of collectives are analyzed.

The wide range of areas of application of collectives is also introduced and includes

multiagent systems, and reinforcement learning.

[86, 83] show an application of collectives to a multi-rover control problem where

evolutionary computation is implemented with the collectives concept. The algo-

rithm showed high performance compared to other methods but was also proven

very efficient when different types of failures occurred in the system such as mo-

bility, communications, and controller failures.

[84] presents another example of implementing the collectives idea to a multi-

rover control problem. The studies shows high performance of the collectives prin-

ciple in a noisy and evolving environment where communications are limited be-

tween agents. Also addressed is the investigation of efficient reward method in

order to achieve optimal system’s performance.

Additional investigations on collectives are completed in [15, 14, 95, 96]. [89]

shows how concepts of collectives can be applied to reinforcement learning meth-

ods with great success. The reinforcement learning rewards are designed to give

the agent specific feedback based on its actions but also to maximize the overall

system’s reward.

Collectives are an important higher level tool that can be used in many differ-

ent artificial intelligence (AI) and machine learning problems. The main concept

of collectives is provide reward or evaluation functions to agents that are both

specific to the agent and that also lead to maximization of the overall system’s

reward/evaluation function. This method was proven very reliable, and robust

30

and works well in noisy environments as well as when failures occur in the system.

Applying this concept is therefore well-suited for MAV systems where configura-

tions are flexible and where the control system needs to be able to operate in noisy

environment and recover of potential failure of elements in the system.

2.3 Multiagent Control Techniques Applied to MAVs

The first section of this chapter gives an overview of the the different MAV con-

figurations (fixed-wing, flexible wing, rotorcraft) and of the different MAV control

strategies (PID, Neural Network, Vision Control). Many different solutions exists

for designing and controlling an MAV. The second section of this chapter surveys

the advances achieved in the field of multiagent coordination for control of complex

systems. Many standards methods were improved upon to obtain better results in

more complex problems. The potential use of multiagent coordination for control

of MAV was briefly discussed when looking at a particular platform or technique

but before exploring the subject in more details, it is important to know for kind

of application the vehicle will be used for. If it is for indoor flight and requires

hovering capabilities, then a rotorcraft would probably be a good platform, if it is

for low altitude, medium speed (10-50 mph) and requires drawing minimal atten-

tion, then a flexible-wing MAV should be considered. Finally, if the application

requires covering large distances at higher altitude and faster speed, the UAV plat-

form could fit those needs. Each application has specific platform needs, and each

platform has different requirements, capabilities and challenges. It is for those

31

reason that three different kinds of platforms will be presented with different ideas

for applying multiagent techniques. The following sections will cover rotorcraft,

flexible-wing MAV and UAV platforms and present possible new implementations

of control strategies.

2.3.1 Rotorcraft

As stated previously, rotorcrafts are better suited for conditions where flying inside

buildings and hovering to gather information are required for a particular missions

or applications. Rotorcraft can fly at very low speed, stop, and hover to gather

information. They are however typically harder to fly and stabilize and present

important control challenges. An interesting platform for this type of environment

would be a quad-rotor MAV. Advantages of this platform would be a higher pay-

load, and a simple configuration. Quad-rotor vehicles have however unstable and

extremely fast open-loop dynamics which are very difficult to control. Current

research on control of quad-rotor MAV has mainly been a model-based approach

which resulted in more or less success.

A good starting point for implementing new techniques on a quad-rotor vehi-

cle would be to use one of the commercially available quad-rotor MAV such as

VeraTech X-PRO Flyer (RC with auto-leveling and auto landing) or the RCToys

Draganflyer (RC only). Those would provide a base that is ready to use which

would eliminate the designing time of the vehicle and sensor package for a prelim-

inary study. Different multiagent control techniques could then be implemented

32

such as QUICR-Learning [8] or IFSA (Incremental Feature-Set Augmentation) [9]

which have been proven fast and successful for solving complex problems. Each

rotor would be an agent that would receive information about the system through

the onboard sensor package. The actions that agents would take could be repre-

sented by the direction and speed of rotation of a rotor. Additionally the WoLF

Policy Hill-Climbing [21] could be a value as it would allow the control algorithm to

learn quicker when a bad action is taken by an agent. Furthermore, other possible

algorithms could be evolutionary computation algorithms that would also perform

well in case of failures in the system as demonstrated in [86].

Future works on this type of platform could include modification of the platform

itself but also a study of the sensor package onboard the vehicle. Modifications

on the platform could include longer or shorter links between the rotors and the

base to find an optimal length, improved stiffness of the material linking the rotors

to the base to potentially reduce vibrations and improve stability, and different

shapes, materials, and configurations for the rotor blades. Pushing the quad-rotor

concept further, additional rotors could be added to the platform. Those rotors

could either be of the same size, or could be smaller depending of the function

those additional rotors would perform. Extra rotors would be well suited in the

case of a multiagent type of controller since adding rotors would translate to adding

agents to the system and could easily be implemented on an existing controller.

Additional rotors would provide an added payload capacity as well as redundancy

in case of a failure of one or more of the rotors that multiagent control systems

could handle without fully loosing control of the system. An important question

33

would then be where to add the rotors in order to have an optimal configuration.

They could be placed in between the existing rotors keeping a square shape or

maybe they could be placed closer to the center of the vehicle. Simulation test

could be performed to find an optimal position. Going along with the same logic,

some or all rotors could have an extra degree of freedom where the could slide closer

or further from the center of the vehicle. The added degree of freedom could be

incorporated in the control strategy where some agents could have an extra action

that they could perform which would be getting closer or farther from the center.

The optimal configuration would then be learned by the multiagent control system

which in turn could use this extra degree of freedom in case of a failure from one or

more rotors. The control system would then modify the placement of the different

rotors depending a particular flight maneuver or failure of one of the components.

A potential way to increase the flight speed and make some maneuvers go smother

would be to add the possibility of tilting the rotors in one or two directions. As

before simulation tests could be run to find good orientation but that would be

better approached by having the control system learn the optimal orientation of

the rotors depending on the maneuver and/or failures.

Several features or configurations could therefore be implemented on this plat-

form either by adding them individually and testing the system or by adding several

at a time and conducting tests. Those potential features are four or more rotors

(an even number of rotors would probably lead to better results) with either the

same size or a different size blade, the possibility to modify the position of the

rotors in the 2D plane, and the possibility to tilt the rotors in two different direc-

34

tions. The multiagent control system could then learn how to use those feature

in an optimal fashion. Agents would then choose between the following actions:

rotor speed and direction, position of the rotor in 2D space, and orientation of the

rotor along two axis.

Another important aspect to consider for this problem is the sensor package.

The outputs of the control system have been defined previously and correspond to

the actions that the agents can take. The inputs of the control system play critical

role in whether or not the controller will be able to stabilize the system and perform

the different flight maneuvers. It is therefore very important to choose what kind

of inputs to feed to the control system and also what kind of sensors to use. As for

the configuration of the platform, it would be best to start with a ready to use con-

figuration and then modify or add sensors depending on the configuration needs.

On such a platform, size and weight of sensors will be some of the limitations in

choosing the sensors. Some of the base sensors include Micro-Electro-Mechanical

Systems (MEMS [42]) based inertial sensors that include accelerometers and gyro-

scopes, as well as sonar-based sensors. A small onboard computer also needs to be

included in the electronics package. An example of MEMS inertial measurement

unit would be the Crista IMU that was used in [44] for the study on quad-rotor

MAVs. Those sensors could be used in a preliminary study for providing inputs to

the control system. If results are good, those sensors could be kept as the base of

the sensor package, and if not, further investigation would be needed to find more

efficient and better quality sensors that still meet the size and weight requirements

of the quad-rotor platform. Later on, a good addition to the sensor package would

35

be one or more small, light-weight, black and white cameras. Those could be used

as an input to the control system to improve stabilization of the vehicle, avoid

obstacles, and provide information about the environment to the ground station.

A GPS system could potentially be used but if the use of the vehicle in mainly

indoors, the GPS system will provide limited or no information to the system. If

the application requires the identification of heat sources (vehicles, persons) then

a heat sensor could be added if size and weight requirements are met.

Challenges for such a problem would mainly be the learning process of the

control algorithm. The platform is commercially available, and the modifications

discussed could be implemented without too much difficulty and would therefore

pose only minor problems. The platform is however very unstable with very fast

dynamics that would present important difficulties to the reinforcement learn-

ing techniques. Several simulations, tests, and tuning would be necessary before

achieving any results on this kind of platform. A dynamic model and simulation

environment is presented in [44] and could be used to start the learning process

on the basic quad-rotor configuration. Modifications on the platform could be im-

plemented with modifications of the quad-rotor simulator. Reinforcement learning

applied directly would probably take a very long time to learn and speeding up the

learning process would be necessary to obtain meaningful results. This could be

improved by having the algorithm first learn the existing stabilization controller

from commercially available platforms and then extending the learning from there.

Setting guidelines for the algorithm and restricting the range of actions of each

agent could also possibly speed-up learning. Another way to speed up the learning

36

would be to use a similar learning technique as Ng [1] where the algorithm learned

to fly a helicopter from a model obtained from real flight data.

Overall, the quad-rotor platform presents a very high degree of flexibility and

the configuration can be modified extensively. This platform also lends itself very

well to the application of diverse multiagent control techniques. Standard control

methods only saw limited results on this kind of platform and no study has been

conducted on using multiagent techniques on this type of vehicle. Also existing

quad-rotor vehicles could be used as a first approach for implementing multiagent

techniques and the platform could be highly modified in future studies to improve

performance and efficiency with a control system that would adapt very well to

those kinds of modifications.

2.3.2 Flexible-wing MAV

Other types of missions such as surveillance, reconnaissance, search and rescue,

enemy targeting could require a vehicle still small in size (under 24 inches) to

avoid detection but that would have a longer range, higher maximum speed, and

higher maximum altitude. MAVs would be well suited for those types of missions

and could provide very valuable information.

Flexible-wing MAVs have several advantages over fixed-wing MAVs including

more resistance to wind gusts, improved payload, and a much more flexibility of the

platform that could be modified based on application requirements. Flexible-wing

MAVs would therefore be a good platform for implementing multiagent control

37

techniques. As discussed in the previous section, speeding up the implementation

and testing process could be done by using an already existing platform. A plat-

form well suited for this purpose could be the GENMAV platform discussed in

section 1. This platform has been studied, and tested and provided good prelimi-

nary results. Also, several research teams will use this platform in the future and

more test results and possible modifications and improvements will therefore be

available.

Multiagent control methods could be applied to the GENMAV platform with

minor modifications and further improvements could be investigated once the

project is under way. GENMAV would be a challenging platform due to unstable

flight characteristics but the high flexibility would be a great leverage for improv-

ing stability and performances. A preliminary research could focus on applying

multiagent control techniques with agents on the tail section of the vehicle. The

rudder could be cut in 4 segments with an actuator on each section. Similarly,

the elevator could have four sections with actuators on each. Each actuator could

then be used as an agent and his possible actions would be the orientation of

the elevator or rudder section. The onboard sensors would provide information

to the agent that would then use it to stabilize the system and perform flight

maneuvers. Reinforcement learning and evolutionary computation are a natural

approach for a problem where an explicit model of the system and its environment

cannot be obtained which results in the optimal solution being unknown. Several

standard reinforcement learning method could be used as a first approach but in

case those methods weren’t able to provide expected results, improved method

38

could be applied to achieve better performance such as QUICR-Learning [8], IFSA

(Incremental Feature-Set Augmentation) [9], and WoLF Policy Hill-Climbing [21].

The first configuration could then be compared with a modified configuration

that would include adding two more actuators to morph the shape of the wing with

a string attached to the end of the wing as was done in [36]. The two additional

actuators would add two more agents to the system and their actions would be

how much to pull on the string which would result in more or less morphing of

the wing. Morphing the wing was shown to improve and stabilize maneuvers and

combined with the previously defined control system could provide very interesting

results and improvements. More flexibility could be provided by attaching more

strings in different parts of the wing to provide different modes of deformation

providing more agents to the control system and possibly a better configuration

for some particular flight maneuvers.

Another similar approach could involve morphing the wing with a different

method. Carbon fiber bands are used on the wing to reinforce it and provide rigid-

ity. Those could be replaced by materials that could be extended or contracted by

the control system. Morphing of the wing would then be done without additional

strings which would provide a more natural morph of the wing with potentially

better results during flight maneuvers. A possible material could be a piezoelectric

material (crystals and some ceramics) that stretch an contract when an electric

potential is applied. Another idea would be to install either a micro-hydraulic arm

or a set of very thin strings in order to morph the wing.

A potentially useful platform flexibility could be the possibility to change the

39

dihedral angle and the orientation of the wings during flight. Both wings could

attach to the fuselage through a pivot point and two additional agents would have

the task of orienting the wings for maximal stability and efficiency during flight

and maneuvers.

Similarly to the quad-rotor problem, the sensor package will play a important

role in how fast and efficiently the algorithm will learn to control the system, the

efficiency of the controller after the learning process, and in how well the controller

will perform flight maneuvers. The basic sensor package should include small and

light-weight accelerometers, gyroscopes, and GPS system. Additionally, a small

black and white or color camera could be added for providing information to the

user as well as to be potentially used by the control system to navigate, stabilize

the vehicle and avoid obstacles. The potential usefulness of sonar-based sensors

could also be investigated and potentially used by the control system.

Challenges of the flexible-wing platform include a platform that is not very

stable. The algorithm would have to learn on an unstable platform with a fair

amount of information available. Selecting what information could be more im-

portant could also help with the learning process. Similarly to the quad-rotor

problem, simulations and tests would need to be performed before achieving rela-

tively stable flights. Most platform modifications should not be too difficult except

for the bands used for wing rigidity that could expand and contract. Several dif-

ferent materials would need to be investigated for a potential application to the

GENMAV platform. This type of materials would need to be light-weight with the

property of expanding and contracting when necessary. A modified F16 simulator

40

is used to simulate the GENMAV platform and could also be used with minor

modification to start implementing multiagent control techniques. Some platform

modifications could be implemented in the simulator while some others could be

tested with a simpler configuration (wing in a wind-tunnel for example).

GENMAV would be a good flexible platform form implementing a multiagent

control strategy. Minor modifications would allow an almost immediate imple-

mentation of a reinforcement learning algorithm that should provide interesting

results and potentially really good flight performance. Further research could in-

clude deeper modifications of the platform with a control strategy that could adapt

and keep learning to improve the overall performance of the system.

2.3.3 UAV

Some missions or application may require a long range and high altitude of op-

eration. For those types of conditions, large UAVs should be considered. Large

UAVs are the size of a small aircrafts and are much bigger than MAVs. Large

UAVs have a more conventional style and are less flexible than MAVs. The idea

of using a multiagent form of control on large UAVs is not new but hasn’t been

fully developed and there is still room for improvements.

A UAV with segmented control surfaces was tested by Abdulrahim [5]. The

UAV used had a similar shape to a Russian MiG-27 with a wingspan of 5.5ft, and

was only remote controlled. The wing ailerons were divided into 16 independent

control surfaces that each had their own actuator. A reconfigurable controller was

41

developed to actuate all 16 servos depending on the configuration used. Flight

tests shown promising results and improved performance over the unmodified air-

craft. An actuation mode was chosen for each flight test and programmed into

the controller in between the flights. Those tests demonstrate the concept of seg-

mented control surfaces and provided good preliminary results but provided no

method for finding an optimal actuation modes and an optimal controller for the

system. Testing one configuration at a time is a very tedious process that would

take a very long time and the optimal solution may never be achieved with this

approach. The potential of segmented control surfaces was however demonstrated

and would provide very good results with a better approach.

A better approach for controlling segmented control surfaces was presented

in [15, 14] where the control technique was based on the theory of collectives.

The device under investigation is called MiTE which stands for Miniature Trailing

Edge Effector. Those devices are actuated with a deflection angle of up to 90

degrees and are 1-5% of the chord in height. The UAV used for the experiment

was a flying wing with 6ft wingspan and 30 degrees of leading edge sweep. Basic

probability collectives (PC) were implemented and are based on agents consisting

of a actuator, sensor, and logic package taking actions and receiving rewards based

on those actions. Up to 8 actuators were implemented on the platform. Two

controllers were developed using PC and aimed at augmenting the vehicle stability,

and lightening the longitudinal response to random vertical wind gusts. Promising

results were obtained and are an encouraging step toward multiagent based control

of UAVs.

42

Even though advances have been made in the area of multiagent control of

UAV platforms, much more can be accomplished and investigated. Results are

encouraging and proved that this approach works and can produce very good

results. Further work in this domain could include a more conventional platform

such as the UAV presented in [3] with many control surfaces (16 could be a starting

point). Form there, different reinforcement learning algorithms could be applied

using each actuator as an agent that would work toward achieving the global system

goal which could be improving stability in a first step and then improving flight

maneuvers and recovering from potential individual actuator failures in the system.

Once again, a simulator would be needed such as the one presented in [71] to run

multiple simulations and have the control algorithm learn from it. Simpler tasks

would allow the algorithm to learn faster and then more complex tasks could be

introduced to improve the controller. The UAV platform is a good starting point

to test and show the value and potential of a new technique that could potentially

be scaled down later on for applications on a smaller MAV platform.

2.4 Discussion

This chapter reviewed the different MAV/UAV platforms and the different control

strategies implemented to control such vehicles. The rotor-based vehicle is mainly

be used indoor or in urban environment at low speed for short range missions.

Advantages of the vehicle are a high configuration flexibility (quad-rotor vehicle),

and its ability to hover and maneuver at very low speeds. Disadvantages would

43

include high instability and difficulty to control as well as relatively low speed of

operation. The fixed/flexible-wing MAV is used for a longer range of operation

at higher speeds and on longer distances. Benefits of the vehicle include platform

flexibility (higher flexibility for the flexible wing MAVs) and more stable flight

characteristics than rotorcrafts. Its drawback include higher flight speeds that

require faster processing of information and its size makes it susceptible to wind

gusts. Finally, the UAV platform is used for long range reconnaissance at high

altitude and faster speeds. Its advantages include stability of the vehicle, easier to

obtain a mathematical model, and implementation of distributed effectors easier

than on MAVs. Drawbacks of UAVs include its size making it easier to detect and

harder to launch from any location.

Control strategies implemented on MAV/UAV platforms include model based

controllers such as PID and state space control methods as well as techniques

based on learning algorithms. Model-based methods work well when the system

is well known and can be modeled. For non-linear systems, approximations are

needed and do not always provide optimal results. Model-based control techniques

provide good results on platforms such as UAV where the dynamics are know and

understood and accurate models can be obtained. For MAV control, where the sys-

tem is highly non-linear and very unstable, those methods require approximations

and tuning which could be a laborious process and may not provide an optimal

controller. In these situations, a learning method such as reinforcement learning

that do not require a model of the system provides better results. The goal of the

technique is to map a set of inputs provided by the sensors to a set of outputs

44

which are actuator positions in order to achieve an optimal solution. Learning

methods are shown to provide promising results in the MAV control domain.

Several multiagent control methods were also reviewed. A wide range of meth-

ods have been explored but the primary techniques can be classified as reinforce-

ment learning, evolutionary computation, and auction-based algorithms. Collec-

tives are also part of the main techniques and are a higher level of multiagent

methods that can be applied to lower level methods such as evolutionary tech-

niques. Those learning methods have proven robust and efficient for controlling

multiagent systems and have the added benefit of being applicable to non-linear

systems without requiring a model of the system. As mentioned before those tech-

niques are based on agents learning the correct actions based on a reward system.

This reward system depends on the technique used and has a high influence on the

speed and efficiency of the algorithm. Many improvements have been proposed on

classical learning methods leading to faster and more robust algorithms that can

also work in noisy environments and when failures occur in the system.

These multiagent control techniques are therefore well suited for MAV control

where the system is highly non-linear, unstable and where obtaining an accurate

model of the system is not a trivial task. The configuration of these platforms is

flexible and provide many parameters that can be used by the multiagent control

system to stabilize the system and perform flight maneuvers. In this dissertation,

multiagent control techniques are applied to a fixed-wing MAV platform with agent

represented by actuators where control surfaces are segmented into multiple ele-

ments. Learning is done with a simulator (JSBSim) on a basic architecture to

45

provide a working control system. Chapter 3 describes the MAV platform (GEN-

MAV), the system dynamics, and the basic controllers used in the experiments.

Chapter 4, 5, and 6 present the results for the different experiments conducted.

46

Chapter 3 – MAV Model, System dynamics, and Basic Control

3.1 MAV Platform: GENMAV

The platform selected for these experiment is GENMAV [78], an MAV developed

by the Air Force Research Laboratory Munition Directorate (AFRL/RW). GEN-

MAV was developed to provide a base configuration that researchers could use

and modify when implementing design and/or control techniques. GENMAV is a

good MAV reference designed to be used for future research where a wide range

of techniques can be applied and tested while some of the basic characteristics are

known and available. GENMAV is also a flexible platform that could be modified

depending on a particular application or technology.

Characteristics of GENMAV (Figure 3.1) include a 24 inch wingspan with a 5

inch chord, circular fuselage 17 inches long, and a dihedral angle of 7 degrees. The

wing design was modified from previous versions in order to improve low speed

performance. The tail section, originally a V-tail, then conventional tail, is now an

elevon tail. An electric motor is used combined with a lithium polymer battery.

Aerodynamic characteristics were obtained using the vortex-lattice method aero-

prediction code AVL (Athena Vortex Lattice) and detailed data can be found in

[78]. Similarly to other MAV platforms, GENMAV was designed for a flight speed

of between 10 and 50 mph with an average flight speed around 30mph.

47

In Chapter 4, we modified GENMAV to include a greater number of control

surfaces. This version of GENMAV includes a conventional tail with a rudder and

elevator. As a first step, only the tail section was modified with the elevator broken

down into multiple control sections. Test configurations include 4 control sections

on each side of the elevator, for a total of 8 control surfaces. A configuration with

12 control surfaces was also tested (6 control sections on each side of the elevator).

In Chapter 5, the elevon tail version of GENMAV is used. No modifications

are done and the different controllers use both elevons for altitude and roll control.

In Chapter 6, the GENMAV model uses ailerons and an elevator. GENMAV

was modified so that simulation experiments with segmented ailerons could be

conducted. Six ailerons were added to each wing. In span, ailerons extend from

the 50% to the 90% span points on the wing with each aileron 1” wide and 20%

chord. The tail section was not modified.

Figure 3.1: GENMAV Prototype [78]. 24in wingspan with 5in chord, 17in fuselage, and
7 degree dihedral angle.

48

3.2 Neuro-control for MAVs

The control of GENMAV is achieved through a feed-forward neural network using

a neuro-evolutionary algorithm [6, 40, 60, 83]. The neuro-controller learns the op-

timal control commands through the system objective function that is designed to

minimize the error between the desired parameter value and the actual parameter

value as well as keep the control inputs within acceptable values using the param-

eter’s derivative. The near optimal neuro-controllers are then saved and used for

flight control where different desired altitudes and heading are achieved.

A simple neuroevolutionary algorithm was developed using the techniques out-

lined in [86]. The algorithm maintains an initially empty pool of neural networks

that are paired with some measure of their utility. While the pool is not full,

the algorithm generates new random networks as seeds for future mutation, using

values sampled from a Cauchy distribution. After this initial seeding period, the

algorithm uses ε-greedy selection from the pool of networks and selectively mutates

the chosen network using a different Cauchy distribution. In both cases, the new

network is stored in the pool only after an agent has used it and sampled their

resulting performance, with the poorest performing network begin discarded.

In Chapter 4, the single hidden-layer, feed forward neural network [16] used has

6 inputs which correspond to the total forces and moments applied to GENMAV.

The 8 outputs of the neural network are the angles of the elevator control surfaces.

The experiment was conducted with 8 and 12 control surfaces on the elevator, each

of which could move independently between -30 and +30 degrees.

49

For experiments in Chapter 5 and 6, the single hidden-layer, feed forward neural

networks [16] have 2 inputs which correspond to the parameter value and param-

eter derivative (e.g altitude and altitude rate) retrieved from JSBSim. The single

output of the neural networks is the control command or desired roll angle (e.g

elevator down 20%). The experiments were conducted with three neuro-controllers

for the basic configuration (no segmentation): altitude control, roll control, and

heading control. Each neuro-controller output provides the elevator command,

aileron command, and desired roll angle. For the segmented version of genmav,

two different setups were used. The central controller setup is similar to the basic

configuration except that the roll controller has 10 outputs corresponding to the

10 aileron segments. The multiagent controller setup includes additional neuro-

controllers so that each control surface is adjusted by its own independent con-

troller. A total of 14 neuro-controllers are used for the control surfaces and an

additional neuro-controller is used for heading control.

3.3 System Dynamics: AVL / JSBSim

In Chapter 4, the neuro-controllers are coupled to the Athena Vortex Lattice (AVL)

software package which is an aerodynamic prediction code based on a vortex-lattice

method. AVL is used to estimate the aerodynamic characteristics of GENMAV un-

der different conditions and configurations. The output of AVL includes the forces

and moments for the entire configuration as well as the lift and drag coefficients.

The simulation runs consist of providing forces and moments as inputs to the

50

neuro-controllers, obtaining angles for elevator control surfaces from its outputs,

running AVL to provide the resulting aerodynamic parameter values, computing

the objective function, and having the neuro-controllers learn from the objective

function.

The JSBSim experiments are conducted in Chapters 5 and 6. To conduct the

experiments, the neuro-controller and PID controllers were coupled to JSBSim [13],

a 6 DOF (Degrees Of Freedom) flight dynamics model (FDM) software library.

JSBSim is a lightweight, data-driven, non-linear, six-degree-of-freedom (6DoF),

batch simulation application aimed at modeling flight dynamics and control for

aircraft. JSBSim is a collection of program code mostly written in the C++

programming language, but some C language routines are included. Some of the

C++ classes that comprise JSBSim model physical entities such as the atmosphere,

a flight control system, or an engine. Some of the classes encapsulate concepts or

mathematical constructs such as the equations of motion, a matrix, or a vector.

Some classes manage collections of other objects. Taken together, JSBSim takes

control inputs, calculates and sums the forces and moments that result from those

control inputs and the environment, and advances the state of the vehicle (velocity,

orientation, position, etc.) in discrete time steps.

The simulation runs consist of providing the error between desired heading and

actual heading as well as the error between desired altitude and actual altitude

as inputs to the neuro-controller, obtaining angles for the control surfaces from

its outputs, running JSBSim to provide the MAV state for the next time step,

computing the objective function, and having the neuro-controller learn from the

51

objective function. Figure 3.4 and 3.5 show the overall control system setup and

the neuro-controller training diagram respectively.

The JSBSim model of GENMAV was obtained by computing the aerodynamic

coefficients using the Athena Vortex Lattice software package (AVL)[30, 11, 23, 73,

35]. Vortex lattice methods are based on Prandtl’s classical lifting line theory and

assume an incompressible, irrotational, inviscid flow. AVL uses a file containing the

geometry of Genmav where lifting and control surfaces are defined. Flow around

the GENMAV model made of flat vortex panels is then simulated using 3D vortex

lattice methods.

The JSBSim model is described in an XML (Extensible Markup Language)

file so that model information and specifications can be organized in a structured

document. The XML file is divided into several sections including: general section,

metric section, mass balance section, ground reaction section, propulsion section.

The engine and thruster information is located in 2 separate xml files which makes

it easy to switch between different engines and thrusters. The JSBSim GENMAV

model [76] is then loaded at the beginning of the simulation and used for the

different experiments.

3.4 MAV Control

The controllers presented is this section are used in Chapters 5 and 6. The MAV

PID control is achieved through three different controllers, one for altitude, one for

roll, and one for heading control. The altitude control PID used the error between

52

Figure 3.2: GENMAV in AVL, the aerodynamic prediction code. AVL calculates forces
and moments applied to the MAV as well as the lift and drag coefficients.

desired altitude and actual altitude as well as altitude rate for its inputs, and it

outputs the elevator command. Similarly, the roll and heading PID controller take

the error between desired and actual roll, and the roll rate as inputs for the roll

control PID and the error between the desired and actual heading as inputs for

the heading control PID. The outputs of the roll and heading PID controller are

aileron command and desired roll respectively.

Figure 3.3 shows a block diagram of a PID controller where the control com-

mand is calculated with three separate parameters: the proportional, the integral

and derivative values. The proportional term (Equation 3.1) is directly propor-

tional to the error, the integral term (Equation 3.2) is based on the sum of previous

errors and is used to correct small drift over time, and the derivative term (Equa-

tion 3.3) is based on the error rate of change. The weighted sum of these terms is

the control command. Tuning of the PID controller is achieved by adjusting the

53

three constants: KP , KI , and KD called PID gains.

P = KP .e(t) (3.1)

I = KI .
∫ t

0
e(τ)dτ (3.2)

D = KD.
de(t)

dt
(3.3)

Where KP , KI , and KD are constants (PID gains), and e(t) is the error.

Figure 3.3: PID Controller. The weighted sum of the proportional, integral and deriva-
tive terms is used as the control command.

Figure 3.4 shows the control system block diagram that includes interactions

with the simulator and the user or navigation algorithm. The user or naviagtion

algorithm provides the desired altitude and heading to the controllers as well as the

throttle command to JSBSim. The elevator and aileron commands are provided

by the controllers. The elevator command deflects the elevator up or down, while

54

the aileron command deflects the ailerons in opposite directions.

Figure 3.4: GENMAV Controller. Desired altitude and heading are provided by the user
or navigation algorithm. The controller calculates the elevator and aileron commands
that are fed to JSBSim which in return provides the MAV states.

The neuro-controllers configuration is done similarly with the same inputs and

outputs as the PID controllers. Training the neuro-controllers is achieved using the

different objective function from Section 6.2. Figure 3.5 shows the training cycle

for one controller where the neuroevolutionary algorithm selects and mutates a

neural network from the pool, the neural network controls the system for a short

period of time using state information from JSBSim as input and outputing a

control command to the simulator. The objective function is then used to calculate

the reward that the neural network receives based on its flight performance. The

algorithm then repeats this cycle until a near optimal solution is found. The neuro-

controllers are then saved and used directly in the control loop with JSBSim.

55

Figure 3.5: Neuro-controller training. A neural network is selected to control the system
using the MAV state information provided by JSBSim. The neural network then receives
a reward calculated with the objective function. The loop continues until an optimal
solution is found.

Control of the segmented aileron version of GENMAV is similar to the un-

segmented version except that the roll neuro-controller includes 6 outputs corre-

sponding to the control commands sent to each aileron segment pairs instead of

the single output. Altitude and heading control do not change with a two inputs,

one output neuro-controller for each controlled parameter.

The multiagent neuro-controllers are setup with each neuro-controller com-

manding an aileron segment. Inputs are the same as before but the output di-

rectly control the position of a control surface. Twelve neuro-controllers control

the aileron segments while two control the elevons for a total of fourteen neuro-

controllers giving maximum flexibility to the control system.

56

Chapter 4 – A Neuro-evolutionary Approach to Control Surface

Segmentation for MAVs

In this chapter with use the GENMAV platform described in Section 3.1, the neuro-

controller described in Section 3.2, and the aeroprediction code AVL decribed in

Section 3.3 to implement segmented control surfaces on an MAV.

4.1 Contribution of this Chapter

In this chapter, we show that neuro-evolutionary techniques can be used to control

multiple surfaces to improve the flight characteristics of an MAV by designing

appropriate objective functions (e.g., roll moment value). Section 4.3 shows the

experimental results where drag on the MAV was reduced by up to 4%, and Section

4.4 discusses the relevance of the results and highlights directions Chapter 5.

4.2 Objective Functions

An important part of using neuro-controllers consists of designing an objective

function that allows the neuro-controller to learn at a satisfactory rate and at

the same time achieves the system’s objective. The objective function used for

these experiments is divided between meeting the target value of the desired

57

forces/moments and minimizing the actuator angles of the different control sur-

faces of the elevator (8 and 12 controls surfaces total). For all results presented,

the lift does not vary significantly throughout the different experiments.

4.2.1 Minimizing the Drag

The first objective function GFd
(See Results in Section 4.3.1) is calculated using

the drag and roll moment desired value.

GFd
= αC1

[
C −

(
La − Ld

Ld

)2
]

+ (1− α)C2[FdM
− Fd]2 (4.1)

Where C, C1, and C2 are normalization constants with values of 9, 200, and

484000 respectively, Fd is the force of drag, FdM
is constant and equal to 0.142, Ld

and La are the desired and actual roll moment values. In this case, the optimal

value of α is also 0.998. The drag calculation is done internally in AVL.

4.2.2 Minimizing Actuator Deflection Angles

The second objective function Gω1 (See results in Section 4.3.2) used is calculated

using the actuator angles and roll moment target value.

Gω1 = αC3

[
C −

(
La − Ld

Ld

)2
]

+ (1− α)C4

N∑
i=1

[ωM− | ωi |]2 (4.2)

Where Ld and La are the desired and actual roll moment values, ωi is the

58

deflection of the control surface (with a maximum deflection of ωM = ± 30 degrees

for each actuator), and C, C3 and C4 are normalization constants with values of

9, 200, and 2/N respectively, and N is the number of control surfaces. For these

experiments, α needs to be 0.998 or above, otherwise the roll moment target value

cannot be reached.

4.2.3 Minimizing Relative Angle Between Control Surfaces

Another similar objective function Gω2 that was used was designed to minimize

the actuator deflection angles relative to each other.

Gω2 = αC5

[
C −

(
La − Ld

Ld

)2
]

+ (1− α)C6

N−1∑
i=1

[
ωM −

| ωi − ωi+1 |
2

]2

(4.3)

Where C, C5, and C6 are normalization constants with values of 9, 200, and

2/N respectively, Ld and La are the desired and actual roll moment values, ωi is

the deflection of the control surface (with a maximum deflection of ωM = ± 30

degrees for each actuator), and N is the number of control surfaces.

4.3 Experimental Results

In order to evaluate the impact of using multiple control surfaces and training a

neuro-controller to optimize the control surface angles, we performed the following

experiments:

59

• The basic configuration consisted of a GENMAV with one control surface

each for the elevator (2 control surfaces). This was used to obtain the aero-

dynamic parameter values that are used as a reference.

• A neuro-controller was used to control multiple control surfaces to explicitly

minimize the:

– drag (Section 4.3.1)

– actuator angles (Section 4.3.2)

– relative actuator angles (Section 4.3.3)

• Finally, a neuro-controller was used to control the system if the event of an

actuator failure.

These results are based on 12 runs. A sweep of the neuro-controller parameters

was conducted as a preliminary study in order to find values of the neuro-controller

parameters that provided satisfactory results in terms of learning and optimization

of the objective function. The neuro-controller is configured with 12 hidden units,

a pool size of 4, an epsilon-greedy selection probability of ε = 0.05, a level of initial

weights of γ = 0.1, a level of mutations of mutate γ = 0.05, and a probability that

a weight will be mutated of 0.02. Those parameters were then kept constant for

the experiments described in section 4.4.

60

4.3.1 Neuro-Controller Evolved to Explicitly Minimize Drag: GFd

We explored the potential to explicitly reduce drag by incorporating a drag term in

the objective function that the neuro-controllers aims to optimize. This objective

function (described in Equation 4.1) directly accounts for drag and roll moment

target values but does not include the actuator angles.

Figures 4.1, 4.2, 4.3, and 4.4 present the results for the drag data with GFd
.

Figures 4.1 and 4.2 show an example of the elevon positions for the configuration

with 2 and 8 control surfaces. While those solutions are similar to the ones found

with Gω1 and Gω2 , the solution provided by GFd
shows more symmetry in the

elevon configuration.

Figure 4.4 shows the results for the drag with the 3 different objective functions

GFd
, Gω1 , and Gω2 . Gω2 produces results that are similar to GFd

, which indicates

that minimizing the relative angles in between control surfaces can be used to

indirectly minimize the drag. This is a particularly important result since the

drag was available through the use of AVL, the aero-prediction code each time

the elevon configuration is modified. The drag calculation for those configurations

takes a significant amount of time and is usually not available directly when using

flight simulators, and would not be possible for real flights of an MAV platform.

Minimizing the relative deflections of the elevons can therefore provide a very good

alternative to using the drag directly in the objective function calculations.

This solution is the intuitive solution that we would expect when trying to

induce roll on the MAV while trying to minimize drag.

61

Figure 4.1: Elevon Angles (Min Drag, Roll Moment = 0.028). Example of elevon posi-
tions with 2 control surfaces. The learning is quicker than with 8 elevons due to lower
level of complexity. Spikes represent different solutions since the learning is still active.

Figure 4.2: Elevon Angles (Min Drag, Roll Moment = 0.028). Example of elevon posi-
tions with 8 control surfaces. It takes longer to find the optimal elevon positions due to
the higher complexity of the configuration.

62

Figure 4.3: Drag vs Roll Moment (2, 8 and 12 Ctrl Surf). Configurations with 8 and
12 elevons perform significantly better than the base configuration with only 2 elevons.
However, no significant difference is seen between 8 and 12 elevons

Figure 4.4: Drag between the three objective functions (2 elevons). The objective func-
tion minimizing the drag directly performs better than the other 2. However, the other
2 objective functions still perform well and can be used to indirectly minimize the drag.

63

4.3.2 Neuro-Controller Evolved to Minimize Actuator Angles: Gω1

Minimizing the control surfaces angles provides improved MAV flight characteris-

tics such as smoother flight maneuvers which is an important benefit for MAVs.

This section shows the results of experiments where several roll moment target

values are achieved while at the same time the actuator angles are minimized.

Figures 4.5 and 4.6 show an example of the elevon angle values for a target

roll moment value of 0.030. The elevon angles are progressively minimized as the

neuro-controller learns the optimal solution for a particular desired roll moment.

To achieve a roll moment target value of 0.030 with the standard configuration (2

control surfaces) requires the right and left elevons to move to 15 and -30 degrees

respectively as shown in Figure 4.5. Figure 4.6 shows the elevon angles with the 8

control surfaces MAV configuration. This configuration reduces the elevon angles

which allows for smoother maneuvers and does not require as much effort from the

actuators.

A second and arguably more important benefit of segmented control surfaces is

the potential for drag reduction. An example of drag results is shown in Figure 4.7

while Figure 4.8 shows the drag results for the configurations with 2 and 8 elevons.

This particular MAV configuration coupled with the first objective function Gω1

(Section 4.2.2) does not exhibit any significant drag reduction suggesting that

another objective function might provide better results. Another intuitive solution

would be to minimize the relative angle between a control surface and its 2 direct

neighbors. This solution is presented in Section 4.3.3.

64

Figure 4.5: Elevon Angles (Min Angles, Roll Moment = 0.030). Example of elevon
positions with 2 control surfaces. As was the case for minimizing the drag, the optimal
positions are quickly found due to the lower level of complexity.

Figure 4.6: Elevon Angles (Min Angles, Roll Moment = 0.030). Example of elevon
positions with 8 control surfaces. The learning with this objective function is quicker
than with the drag objective function. The elevon positions are also nicely spread out.

65

Figure 4.7: Drag with 8 elevons (Min Angles, Roll Moment = 0.030). Example of drag
results when using the 8 elevon configuration. The drag slowly increases throughout the
learning phase until the optimal solution is found.

Figure 4.8: Drag vs Roll Moment (Min Angles, 2 and 8 elevons). Unfortunatly, no
significant difference is seen for the drag results between the 2 and 8 elevons configuration.
Another solution is presented in Section 4.3.3.

66

4.3.3 Neuro-Controller Evolved to Minimize Relative Actuator Angles:Gω2

Figures 4.9 and 4.10 show similar results as Section 4.3.2 with the second objec-

tive function Gω2 presented in Section 4.2.3. The actuator angles are minized for

smoother flight maneuvers. As with the first objective function Gω1 , no significant

drag reduction can be observed between the configuration with 2 and 8 control sur-

faces (Figure 4.11). However, Gω2 induces significantly less drag than Gω1 for some

of the lower values of the roll moment as can be seen in Figure 4.12. Gω2 would

therefore be a better objective function than Gω1 because it effectively minimizes

the actuator while at the same time inducing less drag.

The results presented in this chapter are promising and show the potential for

improving MAV flight characteristics by using a larger number of control surfaces.

The control of such a modified MAV is possible with the use of a neuro-controller

that if properly tuned and trained can provide optimal solutions to the MAV

control problem.

4.3.4 Neuro-controller for Actuator Failure.

Results in this section show that it is possible for a neuro-controller to learn and

adapt to changes in the environment, in this case failure of an actuator which

changes the system’s dynamics in order to remain in control of the MAV. First

Figures 4.13 and 4.14 show that the target roll moment can still be achieved when

an actuator fails by finding a new solution that compensates for the failure. This

is the case for both objective functions, Gω1 and Gω2 .

67

Figure 4.9: Elevon Angles (Min Rel Angles, Roll Moment = 0.028). Example of elevon
positions with 2 elevons. The learning speed is slightly slower that when using the
previous objective function but the solution is more symetric.

Figure 4.10: Elevon Angles (Min Rel Angles, Roll Moment = 0.028). Example of elevon
positions with 8 elevons. The learning phase is fairly quick and the solution found after
about 200 iterations.

68

Figure 4.11: Drag vs Roll Moment (Minimize Rel Angles: Gω2). No significan difference
can be seen in the drag results between the 2 and 8 elevon configurations. These results
are similar to what was obtained with Gω1

Figure 4.12: Drag: 1st and 2nd objective functions (Gω1 and Gω2). A significant drag
reduction can be seen when using Gω2 instead of Gω1 . Gω2 is therefore a more efficient
objective function for minimizing the drag.

69

Figure 4.13: Target vs Actual Roll Moment with failures (Gω1). Even with failures in
the system the neuro-controller using Gω1 was able to adapt, compensate for the failure
and still achieve the desired roll moment values.

Figure 4.14: Target vs Actual Roll Moment with failures (Gω2). In the same as with
Gω1 , the neuro-controller using Gω2 achieved the desired roll moment values.

70

Figures 4.15 and 4.16 show the results for the drag that result when comparing

the system with and without failures. Results show that the drag is not negatively

impacted when a failure occurs in the system. Drag is even slightly lower when a

failure occur in some cases depending on how and where the failure occurs. This is

primarily due to the objective function that in these cases minimize the actuator

angles or relative angles between actuator which indirectly reduces the drag but

does not necessarily always find the optimal solution for minimizing the drag.

Figure 4.15: Drag Results: Failures (Gω1). The drag is not negatively impacted by
failures in the system when the neuro-controller uses Gω1 . In some instances, drag
results are slightly better but it is only an small indirect benefit.

These results demonstrate that the control surfaces segmentation can be con-

trolled by a neuron-evolutionary based controller in the event of an actuator failure

therefore increasing the robustness of the platform. To be applicable on an actual

platform, it is important to note that actuator failures need to be detectable by

71

the system through some type of sensing mechanism.

Figure 4.16: Drag Results: Failures (Gω2). Drag results here are very similar to what was
obtained with Gω1 . No negative impact of the failure on the drag and small improvements
in some instances as an indirect benefit.

4.4 Discussion

MAVs present a new and promising platform for collecting information in new and

in some cases previously inaccessible environments. Yet, they typically present a

challenging control problem which limits their applicability to the domains in which

they are the most needed (e.g., dangerous search and rescue or reconnaissance).

This chapter presents a novel approach to control MAVs and provides improvement

of the flight characteristics of such a platform by introducing a larger number of

control surfaces on the elevon control sections.

Sections 4.3.1, 4.3.2,and 4.3.3 showed that controlling an MAV with a neuro-

72

controller was possible through segmented control surfaces. Using segmented con-

trol surfaces allows for smoother flight characteristics and flight maneuvers through

minimization of actuator angles. Additionally, drag reduction of up to 5% can be

seen for the larger values of the roll moment. If drag reduction is the objective, and

if the drag is directly available the direct use of the drag in the objective function

calculations provides the best results. However, if the drag is not available, min-

imizing the deflection between control surfaces still provides similar results and

could be used instead. Results showed a drag improvement of up to 5% which

was obtained by a gradual deflection of each actuator which lead to a smoother

control effort. Also, simulations conducted with 8 and 12 control surfaces showed

no significant differences between the 2 configurations which indicates that for this

particular problem and configuration, 8 control surfaces is already the optimal con-

figuration and increasing the number of control surfaces will not improve the drag

or efficiency of the MAV. The solutions provided by the neuro-controller matches

the intuition that a gradual actuator deflection would provide close to optimal so-

lutions. Results presented in this chapter show the potential of such configurations

to improve flight characteristics of MAVs that are inherently difficult to control.

Neuro-controllers can effectively learn from the system and provide an optimal

system’s configuration therefore allowing such modifications on an MAV platform.

Furthermore, such a configuration would provide a higher level of robustness to the

system that could recover and adapt from potential failures of some elements in

the system which is critical for completing the assigned missions as seen in section

4.3.4. The neuro-controller was able to learn and adapt to the new MAV configu-

73

ration that had a failure in the system and was able to provide a new solution for

the control strategy in order to stay in control of the vehicle.

The results presented in this chapter are a first step that shows the potential of

leveraging learning methods to accommodate a larger number of control surfaces

on an MAV. Using these methods allow improvements in the flight characteristics

of MAVs as well as provide more robust control strategies where recovering from

potential failures is critical. A significant improvement is obtained with the use of

multiagent techniques applied to the MAV control problem [6, 88, 90] and results

are presented in Chapter 6. The system consists of independent agents (control

surface actuators) that learn to maximize a reward that is specific to each agent

but that also benefit the overall system. Another important goal is to provide

a controller that increases the robustness of the MAV to wind gust and various

perturbations. This is achieved in Chapter 5 with a dynamic simulation that

provides important changes in the environment so that different control strategies

can be established to maintain control of the vehicle in situations where the learning

based controller outperforms the PID based controller when high instabilities are

encountered.

74

Chapter 5 – A Learning Based Approach to Micro Aerial Vehicle

Control

In this chapter we use the GENMAV platform described in Section 3.1, the neuro-

controller described in Section 3.2, and the flight simulator JSBSim decribed in

Section 3.3 to improve the control response when compairing to a PID controller

for altitude and heading hold when conditions are optimal as well as when wind

gusts and perturbation are present.

5.1 Contribution of this Chapter

In this chapter, we show that neuro-evolutionary techniques can be used to ease

the implemention of a controller on different MAV platforms by adjusting itself

to the platform characteristics. We also show that the neuro-controller can in-

crease the robustness of the platform to wind gusts and turbulence by adapting

to unknown environments. Section 5.3 shows the experimental results where the

neuro-controller’s altitude and heading control are compared with a PID controller

[56] as well as the improved robustness of the neuro-controller that can maintain

a better tracking of a target altitude when wind gust’s magnitude increases com-

pared to a PID controller. Better heading tracking was also achieved when the

level of turbulence is increased. Section 5.4 discusses the relevance of the results

75

and highlights directions for Chapter 6.

5.2 Objective Functions

An important part of using neuro-controllers consists of designing an objective

function that allows the neuro-controller to learn at a satisfactory rate and at the

same time achieves the system’s objective. The objective functions used for these

experiments are designed to minimize the error between the control parameter

(altitude, roll, and heading) and its desired value.

The objective functions can be fairly simple as is the case for GZ , GΦ1 , and GΨ

in Equations 5.1, 5.2, and 5.4 where simple information about the error is used,

to more complex for GΦ2 in Equation 5.3 depending on the response that we want

to achieve. The more complicated objective functions were used to improve the

system response when wind gusts and perturbations were present.

Three different controllers were created for altitude, roll, and heading control.

Each controller uses his own objective functions that are specifically designed for

that particular controller. Their respective objective functions are GZ for the

altitude controller, GΦ1 and GΦ2 for the roll controller and GΨ for the heading

controller.

Objective Function for Altitude Control: GZ

GZ was designed to minimize the error between the desired altitude and the

actual altitude. (GZ)2 was also tested and gave very similar results without sig-

nificant improvements so GZ was used in the experiments section.

76

GZ =
αz

T∑
t=0

[Zd − Za]

(5.1)

Where αz is an arbitrary constant, Zd and Za are the desired and actual alti-

tude, and T is the simulation time.

Objective Functions for Roll Control: GΦ1 and GΦ2

Similarly, GΦ1 and GΦ2 were designed to minimize the error between the desired

roll and the actual roll. As before (GΦ1)
2 and (GΦ2)

2 were also tested and provided

no significant improvements over GΦ1 and GΦ2 .

GΦ1 =
αΦ1

T∑
t=0

[Φd − Φa]

(5.2)

GΦ2 was designed to improve the system response in presence of wind gusts

and perturbations by including the roll derivative to the objective function. GΦ2

provided better results than GΦ1 for these conditions and was kept for this part of

the experiments.

GΦ2 =
αΦ2

T∑
t=0

[
(Φd − Φa) +

dΦ

dt

] (5.3)

Where αΦ1 and αΦ2 are arbitrary constants, Φd and Φa are the desired and

actual roll, and T is the simulation time.

Objective Function for Heading Control: GΨ

77

GΨ was designed to minimize the error between the desired heading and the

actual heading. (GΨ)2 was tested but provided no significant improvements over

GΦ, therefore GΦ was used for the experiments.

GΨ =
αΨ

T∑
t=0

[Ψd −Ψa]

(5.4)

Where αΨ is an arbitrary constant, Ψd and Ψa are the desired and actual

heading, and T is the simulation time.

5.3 Experimental Results

A sweep of the neuro-controller parameters was conducted as a preliminary study

in order to find values of the neuro-controller parameters that provided satisfactory

results in terms of learning and optimization of the objective functions. The neuro-

controllers are configured with 8 hidden units, a pool size of 20, an epsilon-greedy

selection probability of ε = 0.05, a level of initial weights of γ = 0.1, a level of

mutations of mutate γ = 0.05, and a probability that a weight will be mutated

of 0.02. Those parameters were then kept constant for the experiments described

in section 5.3. Altitude, roll, and heading neuro-controllers were trained using the

objective functions from Section 5.2. Training time for the altitude and roll neuro-

controllers was 5 seconds while training time for the heading neuro-controller was

12 seconds.

78

5.3.1 Altitude Control

Figures 5.1, 5.2, 5.3, 5.4, 5.5, and 5.6 show the results for several random desired

altitudes with each time a comparison between neuro-controller results and PID

results. The altitude is shown in Figure 5.1 and 5.2, the altitude rate in Figures

5.3 and 5.4, and the elevon positions in Figures 5.5 and 5.5.

The altitude control PID was fairly straightforward to implement but required

some tuning to achieve the desired results. Figure 5.2 shows the MAV altitude

with the dashed representing the desired altitude and the solid line representing

the actual altitude. The controller is able to track the desired altitude well with

no overshoot. The MAV gets within a foot of the target altitude in a few seconds

and trying to improve it further does not yield a very good behavior. Therefore,

the PID altitude gains producing these results were kept for the duration of these

experiments.

Figure 5.1 shows MAV altitude when the neuro-controllers are in control using

the same desired altitude than for the PID altitude control. Objective function

GZ from Equation 5.1 was used in the training of the neuro-controller but (GZ)2

was also tested and showed very similar results. The training consisted several

thousand 5 seconds flights where the altitude neuro-controller was flying the plane.

The objective function was used to grade the performance of the neuro-controllers

and the best neuro-controller was kept for the testing part of the experiment.

Looking at the altitude from Figure 5.1, the altitude neuro-controller performs

very well. The target altitude is reached very quickly and efficiently with only a

79

Figure 5.1: Desired and actual altitude: Neuro-controller. The control response is fast
with the desired altitude value (dashed-line) followed very closely. The overshoot is
minimal.

Figure 5.2: Desired and actual altitude: PID controller. The control response is a little
slower than with the neuro-controller and the desired altitude value isn’t tracked as
closely. There is however no overshoot.

80

Figure 5.3: Altitude rate: Neuro-controller. The altitude rate is a little higher than with
the PID controller due to the faster response. It is however still well within acceptable
limits.

Figure 5.4: Altitude rate: PID controller. The altitude rate is minimal for this controller.
The slower response of the PID controller compared to the neuro-controller minimizes
altitude rate.

81

Figure 5.5: Elevon Position (altitude control): Neuro-controller. The faster response
of the neuro-controller translates into slightly higher range of actuation of the elevons
compared to the PID controller.

Figure 5.6: Elevon Position (altitude control): PID controller. The slower response of
the PID controller is explained by the slightly shorter range of motion of the elevons
compared to the neuro-controller.

82

very minimal overshoot. The neuro-controller’s behavior is a little more aggressive

than the PID’s behavior which allows for better and faster tracking of the desired

altitude without compromising the behavior of the system and without creating

instabilities in the system.

The altitude rate for both neuro-controllers and PID controllers is shown in

Figures 5.3 and 5.4. This provides additional information regarding the behavior

of the system and is very helpfull when designing the controllers. The altitude

rate should be kept within acceptable limits to avoid destabilizing the system and

having too sharp of a response. The PID controller keeps the altitude rate with

10ft/sec (Figure 5.4) while the neuro-controller keeps it within 16ft/sec (Figure

5.3) which is still within the range of values providing a good behavior of the

system. The difference between the two controllers is explained by the fact that

the neuro-controller is a little more aggressive controller due to the form of the

objective function.

The elevon positions corresponding to the altitude changes for both neuro-

controller and PID controllers are shown in Figures 5.5 and 5.6. These graphs are

also an important tool to assess the behavior of the system as they give information

on the amplitude and frequency of the controller’s response. Both controllers keep

the elevon positions within ±30 degrees while keeping oscillations to a minimum.

The altitude neuro-controller and PID controllers provide good authority over

GENMAV and produce a good flight behavior. One interesting difference in the

implementation of the controllers is the constant trim value. GENMAV’s char-

acteristics tend to pitch it up when the electric motor is on which makes it gain

83

altitude. In the PID controller case, a constant trim value needs to be added to the

elevator control input to keep the MAV flying at the desired altitude. This trim

value was found by experimenting and trial and error until the correct behavior

was achieved. This necessitates additional tuning time before the MAV can fly

correctly. In the neuro-controller case, however, no trim constant is needed. Once

the neuro-controller is properly trained, no additional tuning or training is neces-

sary to achieve good flight behavior. This is an advantage of the neuro-controller

implementation where the neuro-controller adapts to the exacts specifics of a plat-

form and where tuning and adjustments are made automatically during training.

This, therefore, greatly reduces the amount time required to achieve MAV flight

capability which becomes invaluable when several different variations of a platform

are considered.

5.3.2 Heading Control

As mentioned in section 3.4, heading control is achieved with two cascaded con-

trollers. The first one using heading information to produce the desired roll angle

while the second one uses the roll information to produce the aileron control input.

Figures 5.7 and 5.8 show the results for several random desired headings with each

time a comparison between neuro-controller and PID results with the dashed line

representing the desired heading and the continuous line representing the actual

heading.

The heading control implementation was done in a very similar way as the

84

Figure 5.7: Desired and actual heading: Neuro-controller. The response is similar to
what was obtained with altitude control: fast response with very close tracking of the
desired value. The overshoot is very small and negligeable.

Figure 5.8: Desired and actual heading: PID controller. The response is a little slower
than with the neuro-controller but the tracking of the desired value is very good. There
is also no overshoot.

85

altitude control and likewise, this operation was fairly simple with an important

amount of tuning necessary for the PID controller. Both controllers were able

to track the desired heading closely while providing good system behavior. Both

responses are fast with the desired heading reached within seconds. The neuro-

controller was once again slightly more agressive and reached its a little quicker

than its PID counterpart but with a very minimal amount overshoot while the

PID controller reached its objective without any overshoot.

The heading control PID was tuned in an analogous fashion as the altitude

control PID from Section 5.3.1 with the PID gains pushed so that the response is

as fast as possible without compromising the system. Once the desired behavior

was obtained the gains were kept for the rest of the experiments.

Heading and rollneuro-controllers were trained using GΦ1 and GΨ from Equa-

tions 5.2 and 5.4. (GΦ1)
2 and (GΨ)2 were also tested and produced very comparable

results. Both heading and roll neuro-controllers adapted well to the MAV platform

and provided good system behavior.

The elevon positions corresponding to the heading changes for both neuro-

controllers and PID controllers are shown in Figures 5.9 and 5.10. Results here are

very much alike except for the elevon angle range that the controllers use. Even

though the heading/roll neuro-controllers are a little more aggressive in trying to

achieve their objective, the neuro-controllers kept the elevon angle range within

±30 degrees while the PID controllers used a wider range of elevon motion that is

a little over ±40 degrees. The difference is likely due to the speed and magnitude

of the controller’s response to a change in the error between the desired and ac-

86

Figure 5.9: Elevon Positions (heading control): Neuro-controller. The elevon range of
motion is minimized for the heading neuro-controller which produces a more efficient
heading control while at the same time providing a quicker response.

Figure 5.10: Elevon Positions (heading control): PID controller. The PID controller is
less efficient than the neuro-controller for heading control: it is a little slower and uses a
wider range of elevon actuation.

87

tual heading. The neuro-controllers being a little more aggressive, tend to react a

little quicker with more elevon deflection than the PID controllers which leads to

achieving the target heading slightly faster while requiring smaller elevon deflec-

tion. This difference is however somewhat minimal and does not greatly impact

the overall behavior of the system.

As we can see in both Figures 5.9, and 5.10, the position of the left and right

elevon is not at exactly zero in between the changes in altitude. This offset is nec-

essary to compensate for the torque created by the electric motor so that straight

and level flight can be achieved. This is similar to the altitude control case where

an altitude trim constant had to be added to the elevator control input from the

PID controller. Since two controllers, heading and roll controllers, are cascaded

to achieve heading control, two different trim constants need to be added to the

desired roll angle obtained with the heading control PID and to the aileron con-

trol input obtained from the roll control PID. As before, each trim constant is

obtained by experimenting and trial and error while, the heading and roll neuro-

controllers automatically adjust and do not need further tuning beyond the basic

neuro-controller training. Once again, a significant advantage is gained when im-

plementing controllers for similar platforms that have different specificities.

5.3.3 Wind Gusts and Turbulence

Wind gusts and turbulence are still experimental in JSBSim but provide nonethe-

less interesting changes in the enviroment. Wind gusts can be represented by a

88

force acting on the MAV with in this case a constant upward direction. Wind gusts

were created at 4 seconds interval with the intensity of the wind gust increasing at

every step. Turbulences are similar except that the direction of the force changes

randomly. The objective of the controllers was to keep the MAV altitude and

heading as close as possible to the constant desired values which were in this case

2000 feet for the altitude and 90 degrees for the heading. Wind gusts start after

20 seconds of normal flight. Results for maintaining the altitude constant can

be found in Figures 5.11 and 5.12 where the dashed line represents the desired

altitude.

The neuro-controller and PID controller altitude curves have a very similar

shape but the main difference is in the altitude value itself. The neuro-controllers

are able to maintain the MAV altitude within 1 foot from the desired altitude while

the PID controllers can only maintain it within about 6 feet.

To achieve these results, the neuro-controllers were trained in a similar way

as in Sections 5.3.1 and 5.3.2 to start with but in this case objective function

GΦ2 from Equations 5.3 was used. These new objective functions provide more

control over the roll response since they include the roll rate in addition to the

error between desired and actual roll. Having a tighter control was important for

the next part of the training as it incorporated changes in the environment. These

environmental changes were small wind gusts at various time intervals. The neuro-

controllers adapted to these changes and provided the resulting control behavior

seen in Figures 5.11 and 5.12.

Similar results could not be obtained by tuning the PID controllers differently

89

Figure 5.11: Desired and actual altitude (Wind Gusts): Neuro-controller. The neuro-
controller achieves greater performance with wind gusts present by maintaining the al-
titude within a foot of the desired value versus 6 for the PID controller (Figure 5.12)

Figure 5.12: Desired and actual altitude (Wind Gusts): PID controller. The PID con-
troller does not perform as well as the neuro-controller when wind gust are present: it
stays within 6 feet of the desired value versus only 1 for the neuro-controller.

90

and in similar conditions as the what as been used for training the neuro-controllers.

The PID controller is not a flexible controller that can adapt to new conditions,

instead is specific to a particular platform and tuning conditions. The neuro-

controllers required several thousand simulation runs to achieve these results but

the changes to the controller were done automatically using the neuro-evolutionary

algorithm. Running several thousand simulations and stopping in between each

set to tweak the control parameters would be impossible within reasonable time

constraints. Also, the training of the neuro-controllers was conducted within a

particular set of environmental conditions. One can easily imagine, that these

conditions are far from representing the wide variety of conditions that MAV en-

counter in the real world. Many other experimental and training conditions could

be implemented to further improve the flexibility and robustness of the MAV plat-

form. The neuro-controllers could also be trained for particular environmental

conditions if some of these are known in advance, for example flying in urban

environment versus flying in coastal areas.

Although, the difference in maintaining the altitude constant is not huge be-

tween the PID and neuro-controllers, some application could require maintaining

a fairly narrow altitude range in various conditions to achieve acceptable results.

It is therefore important to keep as tight of a control as possible on the MAV so

that good results can be obtained even if environmental conditions change or are

unknown.

Experiments including turbulence were also conducted. The neuro-controllers

were trained and tested in the same way as when performing the wind gust exper-

91

iments with increasing levels of turbulence instead of wind gusts. Results showing

the MAV altitude and heading with increasing turbulence for both the neuro-

controllers and PID controllers are presented in Figures 5.13, 5.14, 5.15, and 5.16.

Altitude remains fairly constant throughout the experiment and no significant

difference is seen between the neuro-controllers and PID controllers. Figure 5.13

and 5.14 shows the altitude within half a foot of its desired value for both neuro-

controllers and PID controllers. The small altitude variations are not relevant

and altitude can be assumed near constant throughout the experiment for both

controllers.

A difference is however visible for heading control where neuro-controllers were

able to remain closer to the desired heading. Figure 5.15 shows that the heading

stays within about a degree from the desired heading using the neuro-controllers

while Figure 5.16 shows a difference of about three degrees. Once again, the

difference between the two controllers is not very big but could make a difference

depending on the the required accuracy of a particular application. This difference

could also become much more important as the flight time of the vehicle increases

while flying conditions are not optimal and present some level of turbulence as is

the case in the majority of real world missions. Keeping a tighter control over

the MAV heading could possibly slightly increase the range if deviations from the

desired flight plan are kept to a minimum.

The adaptation capability of neuro-controllers can provide improvements on

a variety of parameters such as flight time as well as increase the robustness of

the platform in known or unknown environments. The training process in fairly

92

Figure 5.13: Desired and actual altitude (Turbulences): Neuro-controller. The altitude
control is not affected by turbulence. The altitude remains very close to the desired
value for the duration of the experiment.

Figure 5.14: Desired and actual altitude (Turbulences): PID controller. The altitude
control is not affected by turbulence. The small altitude variations are more important
than for the neuro-controller but they are still negligeable.

93

Figure 5.15: Desired and actual heading (Turbulence): Neuro-controller. The neuro-
controller performs better than the PID when turbulence is present: the heading is
maintained within a degree of the desired value versus 3 for the PID (Figure 5.16)

Figure 5.16: Desired and actual heading (Turbulence): PID controller. The PID con-
troller does not perform as well as the neuro-controller in the presence of turbulence: the
heading is kept within 3 degrees of the desired value versus 1 for the neuro-controller.

94

straightforward and acceptable results can be obtained quickly. The main difficulty

remains the design of the objective function that can lead to a significant difference

in the results. The great advantage is that the objective functions can be tailored to

a specific objective that needs to be achieved such as minimizing heading variations

or maximizing flight time and the resulting training should produce controllers that

are optimal with respect to that objective.

5.4 Discussion

Micro Air Vehicles present a new and encouraging platform for collecting infor-

mation in new and in some cases previously inaccessible environments. Yet, they

typically present a challenging control problem which limits their applicability to

the domains in which they are the most needed (e.g., dangerous search and rescue

or reconnaissance). This chapter presents a novel approach to the MAV control

problem and provides improvements in the implementation of controllers as well

as adds robustness to wind gusts.

Sections 5.3.1 and 5.3.2 showed that implementing a controller on an MAV with

neuro-controllers was possible and required less tuning that a PID controller. Ad-

ditional trim constants were also not necessary for the neuro-controllers as these

controllers automatically adapted to the specifics of the platform. The neuro-

controllers were also ready to use right after training without any further adjust-

ments. Unlike model based control methods, no model analysis was needed to

create these controllers which gives great flexibility in the implementation as they

95

are not platform specific and could automatically reconfigure themselves to the

particularities of a different platform.

Section 5.3.3 presented a first set of experiments where the neuro-controllers

were trained beyond the basic flight objectives to see if they could adapt to harder

flight conditions and improve MAV robustness when wind gusts are present. Re-

sults were encouraging and showed improvements in maintaining the target altitude

when using a slightly more complex objective function during training. Experi-

ments with increasing levels of turbulence were also presented and showed better

performance of the neuro-controllers that were able to stay closer to the desired

heading. Neuro-controllers can effectively learn and adapt from the system and

its environment and provide an optimal system’s configuration that improves per-

formances. This flexibility provides an important advantage as MAV control can

be improved and custom made for a particular platform or known and unknown

environmental conditions without requiring any significant amount of tuning as

long as the objective function is designed correctly.

The results presented in this chapter are a first step that shows the potential of

leveraging learning based methods to improve MAV control implementation and

MAV performance. This methodology is applied to MAVs with segmented control

surfaces in Chapter 6.

Chapter 6 focuses on leveraging learning based and multiagent based methods

to control a modified version of GENMAV that includes segmented control surfaces.

Experiments are conducted using GENMAV with six aileron segments on each

wing for a total of twelve aileron segments. A central learning based controller

96

is then coupled with the modified GENMAV to start the learning process in a

similar way as what was conducted in this chapter. Multiagent techniques are

also implemented and tested and further improve the controller by increasing its

robustness to actuator failure.

97

Chapter 6 – A Multiagent Based Approach to Micro Aerial Vehicle

Control

In this chapter with use the GENMAV platform described in Section 3.1, the neuro-

controller described in Section 3.2, and the flight simulator JSBSim decribed in

Section 3.3 to control an MAV with segmented ailerons and improve the robustness

of the controller when failures occur in the system.

6.1 Contribution of this Chapter

In this chapter, we show that neuro-evolutionary and multiagent techniques can

be used to control multiple surfaces to improve MAV performance in terms of

robustness and MAV response to control inputs by designing appropriate objective

functions (e.g. altitude error value). Section 6.3 shows the experimental results,

and Section 6.4 discusses the relevance of the results and highlights directions for

future work.

6.2 Objective Functions

An important part of using neuro-controllers consists of designing an objective

function that allows the neuro-controller to learn at a satisfactory rate and at the

98

same time achieves the system’s objective. The objective functions used for these

experiments are designed to minimize the error between the control parameter

(altitude, roll, and heading) and its desired value.

The three controllers were designed for altitude, roll, and heading control. Each

controller uses his own objective functions that are specifically designed for that

particular controller. Their respective objective functions are GZ for the altitude

controller, GΦ for the roll controller and GΨ for the heading controller.

For the multiagent system, a neuro-controller commands each individual aileron

segment and receive its own specific reward. This reward is presented in Equation

6.4.

Objective Function for Altitude Control: GZ

GZ was designed to minimize the error between the desired altitude and the

actual altitude. (GZ)2 was also tested and gave very similar results without sig-

nificant improvements so GZ was used in the experiments section.

GZ =
αZ

T∑
t=0

[
βZ |Zd − Za|+ γZ |

dZ

dt
|+ δZ |ωE|

] (6.1)

Where αZ is an arbitrary constant, βZ , γZ , and δZ are tuning constants, Zd

and Za are the desired and actual altitude, T is the simulation time, and ωE is the

elevator angle.

Objective Functions for Roll Control: GΦ

Similarly, GΦ is designed to minimize the error between the desired roll and

99

the actual roll. As before (GΦ)2 was also tested and provided no significant im-

provements over GΦ.

GΦ =
αΦ

T∑
t=0

[
βΦ|Φd − Φa|+ γΦ|

dΦ

dt
|+ δΦ|ωA|

] (6.2)

Where αΦ is an arbitrary constant, βΦ, γΦ, and δΦ are tuning constants, Φd

and Φa are the desired and actual roll, and T is the simulation time, and ωA is the

aileron angle.

Objective Function for Heading Control: GΨ

GΨ was designed to minimize the error between the desired heading and the

actual heading. (GΨ)2 was tested but provided no significant improvements over

GΦ, therefore GΦ was used for the experiments.

GΨ =
αΨ

T∑
t=0

[
βΨ|Ψd −Ψa|+ γΨ|

dΨ

dt
|
] (6.3)

Where αΨ is an arbitrary constant, βΨ and γΨ are tuning constants, Ψd and

Ψa are the desired and actual heading, and T is the simulation time.

Multiagent Objective Functions

Ojective functions GZ and GΨ for altitude and heading control remain the

same but GΦ changes to reflect the aileron segmentation. Aileron neuro-controllers

receive a custom reward GΦi
that include the angle of the aileron segment that

they control.

100

GΦi
=

αΦ

T∑
t=0

[
βΦ|Φd − Φa|+ γΦ|

dΦ

t
|+ δΦ|ωAi

|
] (6.4)

Where αΦ is an arbitrary constant, βΦ, γΦ, and δΦ are tuning constants, Φd

and Φa are the desired and actual roll, and T is the simulation time, and ωAi
is

the aileron segment position.

6.3 Experimental Results

A sweep of the neuro-controller parameters was conducted as a preliminary study

in order to find values of the neuro-controller parameters that provided satisfactory

results in terms of learning and optimization of the objective functions. The neuro-

controllers are configured with 8 hidden units, a pool size of 20, an epsilon-greedy

selection probability of ε = 0.05, a level of initial weights of γ = 0.1, a level of

mutations of mutate γ = 0.05, and a probability that a weight will be mutated

of 0.02. Those parameters were then kept constant for the experiments described

in section 6.3. Altitude, roll, and heading neuro-controllers were trained using the

objective functions from Section 6.2. Training time for the altitude and roll neuro-

controllers was 5 seconds while training time for the heading neuro-controller was

12 seconds.

101

6.3.1 Altitude Control

Figures 6.1 and 6.2 show the results for several random desired altitudes with

each time a comparison between neuro-controller results and PID results. The

altitude control PID was fairly straightforward to implement but required some

tuning to achieve the desired results. Figure 6.2 shows the MAV altitude with the

dashed line representing the desired altitude and the solid line representing the

actual altitude. The controller is able to track the desired altitude well with no

overshoot. The MAV gets within a foot of the target altitude in a few seconds

and trying to improve it further does not yield a very good behavior. Therefore,

the PID altitude gains producing these results were kept for the duration of these

experiments.

Figure 6.1 shows MAV altitude when the neuro-controllers are in control with

the same target altitudes as when the system is under PID control. Objective

function GZ from Equation 6.1 was used in the training of the neuro-controller.

Looking at the altitude from Figure 6.1, the altitude neuro-controller performs

very well. The target altitude is reached very quickly and efficiently with only

a very minimal overshoot. The neuro-controller’s behavior is a more aggressive

than the PID’s behavior which allows for better and faster tracking of the desired

altitude without compromising the behavior of the system and without creating

instabilities in the system.

The altitude neuro-controller and PID controller provide good authority over

GENMAV and produce good flight behavior. One interesting difference in the

102

Figure 6.1: Desired and actual altitude: Neuro-controller. In this simple case of tracking
a desired altitude (dashed line), the neuro-controlle is able to track the desired value
very closely. The response is fast with very minimal overshoot.

Figure 6.2: Desired and actual altitude: PID controller. After tuning, the PID controller
was able to achieve acceptable performance with a response a little slower than the neuro-
controller.

103

implementation of the controllers is the constant trim value. GENMAV’s char-

acteristics tend to pitch it up when the electric motor is on which makes it gain

altitude. In the PID controller case, a constant trim value needs to be added to the

elevator control input to keep the MAV flying at the desired altitude. This trim

value was found by experimenting and trial and error until the correct behavior

was achieved. This necessitates additional tuning time before the MAV can fly

correctly. In the neuro-controller case, however, no trim constant is needed. Once

the neuro-controller is properly trained, no additional tuning or training is neces-

sary to achieve good flight behavior. This is an advantage of the neuro-controller

implementation where the neuro-controller adapts to the exact specifics of a plat-

form and where tuning and adjustments are made automatically during training.

This, therefore, greatly reduces the amount time required to achieve MAV flight

capability which becomes invaluable when several different variations of a platform

are considered.

6.3.2 Heading Control

As mentioned in section 3.4, heading control is achieved with two cascaded con-

trollers. The first one using heading information to produce the desired roll angle

while the second one uses the roll information to produce the aileron control in-

put. Figures 6.3 and 6.3 show the results for several random desired headings

with each time a comparison between neuro-controller and PID results with the

dashed line representing the desired heading and the continuous line representing

104

the actual heading. Results using the single neuro-controller and the multiagent

neuro-controllers coupled with the segmented aileron model are shown in Figures

6.5 and 6.6.

The heading control implementation was done in a very similar way as the

altitude control. Once again, the process was fairly simple but required tuning for

the PID controller. Controllers for the segmented and unsegmented aileron models

were all able to track the desired heading while providing good system behavior

(Figures 6.3, 6.4, 6.5, and 6.6). Only negligeable differences can be observed for

the simple task of heading tracking when conditions are optimal. The heading

control PID was tuned in an analogous fashion as the altitude control PID from

Section 6.3.1 with the PID gains pushed so that the response is as fast as possible

without compromising the system. Once the desired behavior was obtained the

gains were kept for the rest of the experiments.

The elevon positions corresponding to the heading changes for both neuro-

controller and PID controller on the non-segmented aileron model are very much

alike except for the elevon angle range that the controllers use (Figures 6.7 and

6.8). The range of aileron angles remains within 6 degrees for both controllers and

the small difference is somewhat minimal and does not impact the overall behavior

of the system.

Similar results can be seen on Figures 6.9 and 6.10 for segmented aileron model.

Each control surface moves independently in the case of the multiagent neuro-

controllers while control surfaces move in a symetric fashion for the single neuro-

controller.

105

Figure 6.3: Desired and actual heading: Neuro-controller. In this other simple case of
tracking a desired heading (dashed line), the neuro-controller is able to track the desired
value closely. The response is fast with very minimal overshoot.

Figure 6.4: Desired and actual heading: PID controller. The response of the PID con-
troller for this simple task is nearly identical to the neuro-controller’s response. The
response is fast with very minimal overshoot.

106

Figure 6.5: Desired and actual heading: Multiagent neuro-controllers. The response of
the multiagent neuro-controllers is the best. The response is fast and smooth and the
tracking of the desired value is near perfect. There is also no overshoot.

Figure 6.6: Desired and actual heading: Neuro-controller with segmented ailerons. This
reponse is the 2nd best. It is fast with a near perfect tracking of the desired value but it
is not quite as smooth as the multiagent neuro-controllers’.

107

Figure 6.7: Aileron positions: Neuro-controller. These positions correspond to the head-
ing tracking. Very similar results between the neuro-controller and the PID except for
the range of actuation which is better for the neuro-controller (4 degrees instead of 6)

Figure 6.8: Aileron positions: PID controller (heading tracking). Very similar results
between the PID and the neuro-controller except that the neuro-controller optimizes the
range of actuation better with a range of 4 degrees instead of 6

108

Figure 6.9: Aileron positions: Multiagent neuro-controllers. The range of motion is
minimal for the multiagent neuro-controllers while producing the best control response
which demonstrate the higher efficiency of this controller.

Figure 6.10: Aileron positions: Neuro-controller with segmented ailerons. The range
of actuation is the highest for this controller which was not able to fully optimize its
efficiency. However, the control response is still better than the PID controller.

109

Benefits of control surface segmentation were not apparent in the last 2 sections

(Sections 6.3.1 and 6.3.2) due to the simplicity of the task that needed to be

performed. These steps are however essential to provide the necessary background

before moving on to more complicated tasks that require to train neuro-controllers

beyond basic condiditons. These steps were completed with satisfactory results

allowing for more advanced training in suboptimal conditions such as when a failure

occurs in the system (Section 6.3.3).

6.3.3 Actuator Failure

Actuator failures are not expected to happen on every flight but the risk is how-

ever there and failures caused by mechanical or electrical breakdown due to bad

environmental conditions or factory defects can still occur. Some MAV missions

can be of critical importance where failure is not an option and could mean the

difference between life and death. For such missions, it is therefore essential that

the MAV platform is able to recover from potential failures. Results in this section

show different failures of an actuator for different models: the standard system

controlled by a PID controller and the segmented aileron model controlled by a

single neuro-controller as well as multiagent neuro-controllers.

Figures 6.11, 6.12, 6.13, and 6.14 show the altitude, heading, and aileron po-

sitions when failure 1 occurs for the multiagent neuro-controller. Failure 1 corre-

sponds to actuator 4 on the left side of the MAV failing and stuck at around 5

degrees. The flexibility of the multiagent neuro-controllers allows them to adapt

110

Figure 6.11: Failure 1, heading: Multiagent neuro-controllers. The left aileron actuator
4 failed at around 5 degrees. The multiagent neuro-controllers still maintain the desired
heading very closely which is not the case for the other controllers.

Figure 6.12: Failure 1, altitude: Multiagent neuro-controllers. The altitude is not af-
fected by the failure since the ailerons and elevator are controlled by independent con-
trollers.

111

Figure 6.13: Failure 1, right ailerons positions: Multiagent neuro-controllers. Aileron
segments on the right side are slightly adjusted to compensate for the failure that occured
on left actuator number 4.

Figure 6.14: Failure 1, left ailerons positions: Multiagent neuro-controllers. The left
aileron actuator 4 failed at around 5 degrees. The other aileron segments are adjusted
to compensate for the failure.

112

and reconfiure themselves so that the control objective is achieved. In this case the

multiagent neuro-controllers was still able to track the desired heading that was

generated randomly every 20 seconds (figure 6.11). It is important to note that

the altitude control is not affected by the aileron failure since the controllers and

control surfaces are independent (Figure 6.12).

Figures 6.13 and 6.14 show the left and right aileron positions during failure

1. Aileron segment L4 remains at the failed position of about 5 degrees while the

other aileron segments on each side of the MAV shifted from their usual position

in order to compensate for the new dynamics of the system which allows a good

behavior of the system in the event of an actuator failure.

The control response is not as smooth as before when all actuators were working

correctly but the target value is achieved, the behavior of the system is good and

the performance is significantly better than what was obtained using the other

controllers / configurations. Figures 6.15 and 6.16 shows the desired and actual

heading for the single neuro-controller paired with the segmented aileron model

and the PID controller. A benefit of the control surface segmentation is clearly

visible since the heading error remains within half a degree for the neuro-controller

and goes above 2 degrees for the PID controller.

A different failure scenario was also tested where the failed actuator is the

same as in failure 1 but the failure angle is around -5 degrees. This new failed

position creates bigger differences between the controllers and the benefits of the

multiagent neuro-controllers combined with the aileron segmentation becomes even

more apparent.

113

Figure 6.15: Failure 1, heading: Neuro-controller with segmented ailerons. Aileron
segmentation benefits: The neuro-controller is able to remain within 1/2 degree of the
desired heading versus over 2 degrees for the non-segmented model (Figure 6.16).

Figure 6.16: Failure 1, heading: PID controller. The PID/non-segmented model pro-
duces the highest heading error (over 2 degrees) compaired to the other controllers cou-
pled to the segmented aileron version of GENMAV when failure 1 occurs.

114

Figures 6.17 and 6.20 show the desired and actual heading of the MAV as well as

the corresponding aileron positions. As discussed previously, the control response

is not as smooth when a failure is present but once again, the target heading value

is achieved while the system demonstrate a good behavior.

The heading error is however much more prononced this time for the single

neuro-controller and PID controller. The error is over a degree for the neuro-

controller while it is now close to 5 degrees for the PID controller. In this case the

multiagent neuro-controllers perform up to 5 times better than the PID controller.

Figures 6.18 and 6.19 show the control response for both controllers.

Finally, a comparison between the PID and multiagent neuro-controllers was

done with a wide range of failure positions. Results are presented in Figure 6.21

where the heading error was ploted as a function of the failure angle for both, the

PID and multiagent neuro-controllers.

Unless the failed actuator angle remains around 2 degrees which its normal

position for straight and level flight, the failure affects the PID controller for all

possible angles with the heading error increasing with the higher angles of actuator

failure. The last 2 angles of failure of -18 and -20 degrees are not shown on the

graph for the PID controller because the system becomes unstable in these cases

which is partly due to significant drag and reduced velocity created by the relatively

large aileron deflections.

The multiagent neuro-controllers perform much better and remains unaffected

by actuator failures that remain within ±10 degrees of position for straight and

level flight. Within this boundary, the multiagent neuro-controllers perform up to

115

Figure 6.17: Failure 2, heading: Multiagent neuro-controllers. The left aileron actuator 4
failed at around -5 degrees. As was the case for failure 1, the multiagent neuro-controllers
are still able to maintain the desired heading unlike the other controllers.

Figure 6.18: Failure 2, heading: Neuro-controller with segmented ailerons. Greater
heading error than for failure 1 (over 1 degree) but still much better performance than
the PID/non-segmented model (almost 5 degrees: Figure 6.19).

116

Figure 6.19: Failure 2 heading: PID controller. Once again, the PID/non-segmented
model produces the highest heading error (almost 5 degrees) compaired to the other
controllers coupled to the segmented aileron version of GENMAV when failure 2 occurs.

Figure 6.20: Failure 2 left ailerons position: Multiagent neuro-controllers. Aileron seg-
ment L4 failed with an angle of around -5 degrees. The other segments positions are
adjusted to compensate for the failure.

117

8 times better than the PID controller. Beyond this limit, the heading error is still

kept within the resonable values of 0 to 4 degrees which is still a minimum of 4

times better than the PID controller.

Figure 6.21: Heading error vs failure angle. The multiagent neuro-controllers reduce the
heading error by up to a factor of 8 times better than the PID controller when a failure
occurs while tracking a desired heading

These experiments demonstrate some of the benefits of multiagent neuro-controllers

coupled with an MAV with segmented ailerons. The full potential of aileron seg-

mentation can only be harnessed with a very flexible and adaptable controller

such as the multiagent neuro-controllers used in these experiments. The multia-

gent neuro-controllers were able to successfully adapt to the new system dynamics

created by the failure of an actuator and were able to reconfigure themselves so

that minimal heading error was accomplished.

118

6.4 Discussion

Micro Air Vehicles present a new and encouraging platform for collecting infor-

mation in new and in some cases previously inaccessible environments. Yet, they

typically present a challenging control problem which limits their applicability to

the domains in which they are the most needed (e.g., dangerous search and rescue

or reconnaissance). This chapter presents a novel approach to the MAV control

problem and provides improvements of the flight characteristics of such platform

by introducing a larger number of control surfaces on the aileron section. Robust-

ness to actuator failure is also added to the platform and allows the MAV to stay

in flight and perform manoeuvers with up to two actuator failures.

Sections 6.3.1 and 6.3.2 showed that training a neuro-controller on an MAV

with a neuro-evolutionary algorithm was possible and required less tuning than a

PID controller. Additional trim constants were also not necessary for the neuro-

controllers as these controllers automatically adapted to the specifics of the plat-

form. The neuro-controllers were also ready to use right after training without

any further adjustments. Unlike model based control methods, no model analysis

was needed to create these controllers which gives great flexibility in the imple-

mentation as they are not platform specific and could automatically reconfigure

themselves to the particularities of a different platform.

Aileron control surface segmentation was also implemented. Control through

a single neuro-controller using symetric aileron segment position was shown to be

possible with good behavior. Fully independent aileron control surfaces coupled to

119

a multiagent neuro-controllers were also attained with similar performance between

the controllers for the most basic control tasks.

Section 6.3.3 showed significant improvements in the case of control surface

actuator failure when using a multiagent neuro-controllers. The multiagent neuro-

controllers were shown to performs up to 8 times better than the PID controller

when tracking a desired heading.

The results presented in this chapter show the potential of leveraging multia-

gent based methods to improve MAV control implementation, performance, and

robustness. The neuro-controllers presented in this chapter only use the aileron

and elevator with the throttle set at a constant value for the duration of the exper-

iments. An interesting study could add this functionality to the neuro-controllers

so that different objectives could be achieved such as maintaining close to constant

speed while performing heading or altitude change, or this could also improve the

robustness to perturbations. Openings of various sizes, shapes, and locations on

the wings of MAVs have also been shown to improve the robustness of the vehicle

to wind gusts and perturbation. A multiagent neuro-controllers are a great tool

for finding optimal shapes, sizes, and locations for these openings as well as for

controlling when and how much to open then based on specific sensor information.

Future work in this area will also include improving the robustness of the neuro-

controllers by training it in various environmental conditions so they can adapt

to a broader spectrum of unknown real flight conditions. Experimental training

and testing will also be done for specific environments so that slightly different

controllers can be used depending on the area of operation. Furthermore, it will

120

also be possible to let the multiagent neuro-controllers adapt automatically to any

environment it might end up operating in by keeping the learning active with some

type of limited range of possible control solutions so that the MAV remains under

proper control to avoid crashes.

121

Chapter 7 – Conclusion

Micro Air Vehicles present a new and encouraging platform for collecting infor-

mation in new and in some cases previously inaccessible environments. Yet, they

typically present a challenging control problem which limits their applicability to

the domains in which they are the most needed (e.g., dangerous search and rescue

or reconnaissance). This dissertation presents a novel approach to the MAV control

problem and provides improvements of the flight characteristics of such platform

by introducing a larger number of control surfaces on the control sections. Ro-

bustness to actuator failure is also added to the platform and allows the MAV to

stay in flight and perform maneuvers with up to two actuator failures.

Sections 4.3.1, 4.3.2, and 4.3.3 showed that controlling an MAV with a neuro-

controllers was possible through segmented control surfaces. Using segmented con-

trol surfaces allows for smoother flight characteristics and flight maneuvers through

minimization of actuator angles. Additionally, drag reduction of up to 5% can be

seen for the larger values of the roll moment. If drag reduction is the objective, and

if the drag is directly available the direct use of the drag in the objective function

calculations provides the best results. However, if the drag is not available, min-

imizing the deflection between control surfaces still provides similar results and

could be used instead. Results showed a drag improvement of up to 5% which

was obtained by a gradual deflection of each actuator which lead to a smoother

122

control effort. Also, simulations conducted with 8 and 12 control surfaces showed

no significant differences between the 2 configurations which indicates that for this

particular problem and configuration, 8 control surfaces is already the optimal con-

figuration and increasing the number of control surfaces will not improve the drag

or efficiency of the MAV. The solutions provided by the neuro-controller matches

the intuition that a gradual actuator deflection would provide close to optimal so-

lutions. Results presented in this chapter show the potential of such configurations

to improve flight characteristics of MAVs that are inherently difficult to control.

Neuro-controllers can effectively learn from the system and provide an optimal

system’s configuration therefore allowing such modifications on an MAV platform.

Furthermore, such a configuration would provide a higher level of robustness to the

system that could recover and adapt from potential failures of some elements in

the system which is critical for completing the assigned missions as seen in section

4.3.4. The Neuro-controller was able to learn and adapt to the new MAV configu-

ration that had a failure in the system and was able to provide a new solution for

the control strategy in order to stay in control of the vehicle.

Sections 5.3.1 and 5.3.2 showed that implementing a controller on an MAV

with a neuro-controller was possible and required less tuning that a PID con-

troller. Additional trim constants were also not necessary for the neuro-controllers

as these controllers automatically adapted to the specifics of the platform. The

neuro-controllers were also ready to use right after training without any further

adjustments. Unlike model based control methods, no model analysis was needed

to create these controllers which gives great flexibility in the implementation as

123

they are not platform specific and could automatically reconfigure themselves to

the particularities of a different platform. Section 5.3.3 presented a first set of

experiments where the neuro-controllers were trained beyond the basic flight ob-

jectives to see if they could adapt to harder flight conditions and improve MAV

robustness when wind gusts an turbulence are present. Results were encourag-

ing and showed improvements in maintaining the target altitude when using a

slightly more complex objective function during training. Experiments with in-

creasing levels of turbulence were also presented and showed better performance of

the neuro-controllers that were able to stay closer to the desired heading. Neuro-

controllers can effectively learn and adapt from the system and its environment

and provide an optimal system’s configuration that improves performance. This

flexibility provides an important advantage as MAV control can be improved and

custom made for a particular platform or known and unknown environmental con-

ditions without requiring any significant amount of tuning as long as the objective

function is designed correctly.

Sections 6.3.1 and 6.3.2 showed similar results as Chapter 5 but aileron con-

trol surface segmentation was also implemented. Control through a single neuro-

controller using symmetric aileron segment position was shown to be possible with

good behavior. Fully independent aileron control surfaces coupled to a multia-

gent neuro-controllers were also attained with similar performance between the

controllers for the most basic control tasks. Section 6.3.3 showed significant im-

provements in the case of control surface actuator failure when using multiagent

neuro-controllers. The multiagent neuro-controllers were shown to performs up

124

to 8 times better than the PID controller when tracking a target heading. The

multiagent neuro-controllers showed superior response due to their high degree

flexibility and adaptability.

The three contributions of this work are as follows. We first show in Chapter

4 that neuro-evolutionary techniques can be used to control multiple surfaces to

improve the flight characteristics of an MAV by designing appropriate objective

functions (e.g., roll moment value). We then show in Chapter 5 that learning

based methods can improved wind gust and turbulence robustness of MAVs when

compared to a PID controller. Finally, we show in Chapter 6 that multiagent

techniques coupled with segmented control surfaces further improve the robustness

of the MAV platform and provide better recovery solutions in the case of actuator

failures.

Continuation of this work could be done at different levels. First, controllers

could be further improve to increase their performance and robustness through

improved objective functions and with various training conditions. Secondly, mul-

tiagent techniques could be used for MAV navigation as a higher level of control

for the platform to navigate to points of interest and avoid obstacles. Thirdly,

multiagent techniques could be used for the coordination between multiple MAVs

so that different tasks can be accomplished such as observation of points of interest

or coordinated searches to for example find victims of natural disasters. Finally,

implementation of all these techniques in hardware would provide very interesting

feedback on how they perform in the real world.

125

Bibliography

[1] P Abbeel, A Coates, M Quigley, and A Y. Ng. An application of reinforce-
ment learning to aerobatic helicopter flight. In Neural Information Processing
Systems (NIPS), 2006.

[2] P Abbeel, M Quigley, and A Y. Ng. Using inaccurate models in reinforce-
ment learning. In Proceedings of the Twenty-third International Conference
on Machine Learning, 2006.

[3] M. Abdulrahim. Flight dynamics and control of an aircraft with segmented
control surfaces. In 42nd AIAA Aerospace Sciences Meeting and Exhibit, 2004.

[4] M. Abdulrahim and J. Cocquyt. Development of mission capable flexible-wing
micro air vehicle. In 53rd Southeastern Regional Student Conference, 2002.

[5] M. Abdulrahim and R. Lind. Investigating segmented trailing-edge surfaces
for full authority control of a UAV. In AIAA Atmospheric Flight Mechanics
Conference, 2003.

[6] A. Agogino and K. Tumer. Efficient evaluation functions for multi-rover sys-
tems. In The Genetic and Evolutionary Computation Conference, pages 1–12,
Seattle, WA, June 2004.

[7] A. Agogino and K. Tumer. Reinforcement learning in large multi-agent sys-
tems. In AAMAS-05 Workshop on Coordination of Large Scale Multi-Agent
Systems. Utrecht, Netherlands, July 2005.

[8] A. Agogino and K. Tumer. QUICR-learning for multi-agent coordination. In
Proceedings of the 21st National Conference on Artificial Intelligence, Boston,
MA, July 2006.

[9] M Ahmadi, M E Taylor, and P Stone. IFSA: Incremental feature-set aug-
mentation for reinforcement learning tasks. In The Sixth International Joint
Conference on Autonomous Agents and Multiagent Systems, May 2007.

[10] R K. Arning and S Sassen. Flight control of micro aerial vehicles. In AIAA
Guidance, Navigation, and Control Conference and Exhibit, 2004.

126

[11] J Becker. Creating Vortex Lattice Aircraft Models for the Piccolo Simulator
with AVL. Cloud Cap Technology, 2621 Wasco Street, Hood River, OR 97031,
March 2008.

[12] M. Berhault, H. Huang, P. Keskinocak, S. Koenig, W. Elmaghraby, P. Griffin,
and A. Kleywegt. Robot exploration with combinatorial auctions. In Proceed-
ings of the IEEE International Conference on Intelligent Robots and Systems
(IROS), 2003.

[13] J S. Berndt. JSBSim: An open source flight dynamics model in C++. In
AIAA Modeling and Simulation Technologies Conference and Exhibit, 2004.

[14] S. R. Bieniawski. Distributed Optimization and Flight Control Using Collec-
tives. PhD thesis, Stanford University, 2005.

[15] S. R. Bieniawski, I. Kroo, and D. Wolpert. Flight control with distributed
effectors. In AIAA Guidance, Navigation, and Control Conference, San Fran-
cisco, CA, August 15-18, 2005.

[16] C M. Bishop. Neural Networks for Pattern Recognition. Oxford University
Press, November 1995.

[17] S Bouabdallah, A Noth, and R Siegwart. PID vs LQ control techniques
applied to an indoor micro quadrotor. In IEEE/RSJ International Conference
on intelligent Robots and Systems IROS, 2004.

[18] M Bowling. Multiagent Learning in the Presence of Agents with Limitations.
PhD thesis, School of Computer Science Carnegie Mellon University, 2003.

[19] M Bowling. Convergence and No-Regret in Multiagent Learning. In Neural
Information Processing Systems (NIPS), 2004.

[20] M Bowling and M Veloso. Convergence of gradient dynamics with a variable
learning rate. In Eighteenth International Conference on Machine Learning
(ICML), pages 27–34, June 2001.

[21] M Bowling and M Veloso. Rational and convergent learning in stochastic
games. In Seventeenth International Joint Conference on Artificial Intelli-
gence (IJCAI), pages 1021–1026, 2001.

[22] M Bowling and M Veloso. Multiagent learning using a variable learning rate.
Artificial Intelligence, 136:215–250, 2002.

127

[23] A Brzezinski, J Thrower, T C Garza, and B Young. Boeing blended wing
body project. Technical report, 2003.

[24] G. Buskey, J. Roberts, P. Corke, M. Dunbabin, and G.F. Wyeth. The csiro
autonomous helicopter project. In International Symposium on Experimental
Robotics (ISER), 2002.

[25] G. Buskey, J. Roberts, and G.F Wyeth. Online learning of autonomous he-
licopter control. In Australasian Conference on Robotics and Automation,
2002.

[26] G. Buskey, J. Roberts, and G.F. Wyeth. A helicopter named dolly behavioural
cloning for autonomous helicopter control. In Proceedings of the Australian
Conference on Robotics and Automation (ACRA), 2003.

[27] G. Buskey, G.F Wyeth, and J. Roberts. Autonomous helicopter hover us-
ing an artificial neural network. In International Conference on Robotics &
Automation (ICRA), 2001.

[28] T S Dahl, M J Mataric, and G S Sukhatme. Adaptive spatio-temporal or-
ganization in groups of robots. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2002.

[29] A M. DeLuca, M F Reeder, M V Ol, J Freeman, I Bautista, and M Simonich.
Experimental investigation into the aerodynamic properties of a flexible and
rigid wing micro air vehicle. In 24th AIAA Aerodynamic Measurement Tech-
nology and Ground Testing Conference, 2004.

[30] M Drela and H Youngren. Athena vortex lattice (AVL), 2004.

[31] K Dresner and P Stone. Multiagent traffic management: A reservation-based
intersection control mechanism. In The Third International Joint Conference
on Autonomous Agents and Multiagent Systems, pages 530–537, July 2004.

[32] K Dresner and P Stone. Multiagent traffic management: An improved inter-
section control mechanism. In Frank Dignum, Virginia Dignum, Sven Koenig,
Sarit Kraus, Munindar P. Singh, and Michael Wooldridge, editors, The Fourth
International Joint Conference on Autonomous Agents and Multiagent Sys-
tems, New York, NY, July 2005. ACM Press.

128

[33] K Dresner and P Stone. Multiagent traffic management: Opportunities for
multiagent learning. In K. Tuyls et al., editor, LAMAS 2005, volume 3898
of Lecture Notes in Artificial Intelligence, pages 129–138. Springer Verlag,
Berlin, 2006.

[34] E W Frew, J Langelaan, and S Joo. Adaptive receding horizon control for
vision-based navigation of small unmanned aircraft. In American Control
Conference, 2006.

[35] E G Garcia and J Becker. UAV stability derivatives estimation for hardware-
in-the-loop simulation of piccolo autopilot by qualitative flight testing. In 1st
Latin American UAV Conference, 2007.

[36] H. Garcia, M. Abdulrahim, and R. Lind. Roll control for a Micro Air Vehicle
using active wing morphing. In AIAA Guidance, Navigation and Control
Conference, 2003.

[37] A Geramifard, M Bowling, and R S Sutton. Incremental least-squares tem-
poral difference learning. In Twenty-First National Conference on Artificial
Intelligence (AAAI), 2006.

[38] B Gerkey and M J Mataric. Sold!: Market methods for multi-robot control.
Technical report, USC Institute for Robotics and Intelligent Systems IRIS,
2001.

[39] B P Gerkey and M J Mataric. Sold!: Auction methods for multi-robot coor-
dination. IEEE Transactions on Robotics and Automation, special issue on
Advances in Multi-Robot Systems, 18(5):758–786, 2002.

[40] F. Gomez and R. Miikkulainen. Active guidance for a finless rocket through
neuroevolution. In Proceedings of the Genetic and Evolutionary Computation
Conference, Chicago, Illinois, 2003.

[41] U Grasemann, D Stronger, and P Stone. A neural network-based approach to
robot motion control. In Ubbo Visser, Fernando Ribeiro, Takeshi Ohashi, and
Frank Dellaert, editors, RoboCup-2007: Robot Soccer World Cup XI. Springer
Verlag, Berlin, 2008.

[42] M Greene. http://spider.eng.auburn.edu/amstc/organization/Memsinertial.htm.

129

[43] C Guestrin, M G Lagoudakis, and R Parr. Coordinated reinforcement learn-
ing. In ICML ’02: Proceedings of the Nineteenth International Conference on
Machine Learning, pages 227–234, San Francisco, CA, USA, 2002. Morgan
Kaufmann Publishers Inc.

[44] W Guo and J F Horn. Modeling and simulation for the development of a
quadrotor UAV capable of indoor flight. In AIAA Modeling and Simulation
Technologies Conference and Exhibit, 2006.

[45] J. Hall, D. Lawrence, and K. Mohseni. Lateral control of a tailless micro aerial
vehicle. In AIAA Guidance, Navigation, and Control Conference and Exhibit,
2006.

[46] J. Hall, D. Lawrence, and K. Mohseni. Lateral control and observation of a
micro aerial vehicle. In 45th AIAA Aerospace Sciences Meeting and Exhibit,
2007.

[47] Z He, R V Iyer, and P R Chandler. Vision-based UAV flight control and
obstacle avoidance. In IEEE American Control Conference, 2006.

[48] P.G. Ifju, D. A. Jenkins, S. Ettinger, Y. Lian, and W. Shyy. Flexible-wing-
based micro air vehicles. In 40th AIAA Aerospace Sciences Meeting & Exhibit,
2002.

[49] D A. Jenkins, P G. Ifju, M Abdulrahim, and S Olipra. Assessement of con-
trollability of micro air vehicles. Technical report, University of Florida, 2000.

[50] I Kajiwara and R T. Haftka. Simultaneous optimum design of shape and con-
trol system for micro air vehicles. In AIAA Structures, Structural Dynamics
and Material Conference, pages 1612–1621, April 1999.

[51] Shivaram Kalyanakrishnan, Yaxin Liu, and Peter Stone. Half field offense
in RoboCup soccer: A multiagent reinforcement learning case study. In Ger-
hard Lakemeyer, Elizabeth Sklar, Domenico Sorenti, and Tomoichi Takahashi,
editors, RoboCup-2006: Robot Soccer World Cup X, pages 72–85. Springer
Verlag, Berlin, 2007.

[52] S Koenig, J Melvin, P Keskinocak, C Tovey, and B Y Ozkaya. Multi-robot
routing with rewards and disjoint time windows. In Proceedings of the IEEE
International Conference on Intelligent Robots and Systems (IROS), 2007.

130

[53] S. Koenig, C. Tovey, M. Lagoudakis, V. Markakis, D. Kempe, P. Keskinocak,
A. Kleywegt, A. Meyerson, and S. Jain. The power of sequential single-item
auctions for agent coordination. In Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI), 2006.

[54] S Koenig, C Tovey, X Zheng, and I Sungur. Sequential bundle-bid single-sale
auction algorithms for decentralized control. In Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), 2007.

[55] T. Kordes, M. Buschmann, S. Winkler, H.-W. Schulz, and P. Vorsmann.
Progresses in the development of the fully autonomous MAV CAROLO.
In 2nd AIAA Unmanned Unlimited Systems, Technologies, and Operations
Aerospace, 2003.

[56] R Krashanitsa, G Platanitis, B Silin, and S Shkarayev. Aerodynamics and
controls design for autonomous micro air vehicles. In AIAA Atmospheric
Flight Mechanics Conference and Exhibit, 2006.

[57] M. Lagoudakis, P. Keskinocak, A. Kleywegt, and S. Koenig. Auctions with
performance guarantees for multi-robot task allocation. In Proceedings of the
IEEE International Conference on Intelligent Robots and Systems (IROS),
2004.

[58] M. Lagoudakis, V. Markakis, D. Kempe, P. Keskinocak, S. Koenig, A. Kley-
wegt, C. Tovey, A. Meyerson, and S. Jain. Auction-based multi-robot routing.
In Proceedings of the International Conference on Robotics: Science and Sys-
tems (ROBOTICS), 2005.

[59] P McKerrow. Modelling the Draganflyer four-rotor helicopter. In IEEE In-
ternational Conference on Robotics and Automation (ICRA), 2004.

[60] David Moriarty and Risto Miikkulainen. Forming neural networks through ef-
ficient and adaptive coevolution. Evolutionary Computation, 5:373–399, 2002.

[61] A Y. Ng, A Coates, M Diel, V Ganapathi, J Schulte, B Tse, E Berger, and
E Liang. Inverted autonomous helicopter flight via reinforcement learning. In
International Symposium on Experimental Robotics, 2004.

[62] A Y. Ng and H J Kim. Stable adaptive control with online learning. In Neural
Information Processing Systems, 2005.

131

[63] N Nigam and I Kroo. Control and design of multiple unmanned air vehicles
for a persistent surveillance task. In AIAA, 2008.

[64] N Nigam and I Kroo. Persistent surveillance using multiple unmanned air
vehicles. IEEE, 2008.

[65] P Y. Oh, W E. Green, and G Barrows. Neural nets and optic flow for au-
tonomous micro-air-vehicle navigation. In ASME International Mechanical
Engineering Congress and Exposition, 2004.

[66] M W. Orr, S J. Rasmussen, E D. Karni, and W B. Blake. Framework for
developing and evaluating mav control algorithms in a realistic urban setting.
In American Control Conference, 2005.

[67] L Panait and S Luke. Cooperative multi-agent learning: The state of the art.
Autonomous Agents and Multi-Agent Systems, 11(3):387–434, 2005.

[68] W J Pisano, D A Lawrence, and P C Gray. Autonomous UAV control using
a 3-sensor autopilot. In AIAA Conference and Exhibit, 2007.

[69] G Platanitis and S Shkarayev. Integration of an autopilot for a micro air
vehicle. In AIAA Infotech@Aerospace 2005 Conference and Exhibit, 2005.

[70] J Polvichai, M Lewis, P Scerri, and K Sycara. Using a dynamic neural net-
work to model team performance for coordination algorithm configuration
and reconfiguration of large multi-agent teams. Intelligent Engineering Sys-
tems Through Artificial Neural Networks, Smart Engineering System Design,
ASME Press, 16:565–574, 2006.

[71] B Pralio, G Guglieri, and F Quagliotti. Design of a flight simulation soft-
ware tool for educational applications. In AIAA Modeling and Simulation
Technologies Conference and Exhibit, 2004.

[72] V R. Puttige and S G. Anavatti. Real-time neural network based online
identification technique for a UAV platform. In CIMCA ’06: Proceedings
of the International Conference on Computational Inteligence for Modelling
Control and Automation and International Conference on Intelligent Agents
Web Technologies and International Commerce, page 92, Washington, DC,
USA, 2006. IEEE Computer Society.

132

[73] D M. Richwine and J H. Del Frate. Development of a low-aspect ratio fin for
flight research experiments. Technical report, NASA, 1994.

[74] P Scerri, R Glinton, S Owens, D Scerri, and K Sycara. Geolocation of RF
emitters by many UAVs. In AIAA Infotech@Aerospace 2007 Conference and
Exhibit, 2007.

[75] H.-W. Schulz, M. Buschmann, L. Krger, S. Winkler, and P. Vrsmann. Vision-
based autonomous landing for small UAVs first experimental results. In AIAA,
2005.

[76] A Simonis. Six-degree-of-freedom model of the air force research laboratory’s
generic micro air vehicle (GENMAV v2.2). Technical report, Oregon State
University, 2009.

[77] B Sinopoli, M Micheli, G Donatoy, and T J Koo. Vision based navigation for
an unmanned aerial vehicle. In IEEE International Conference on Robotics
an Automation (ICRA), 2001.

[78] K. Stewart, J. Wagener, G. Abate, and M Salichon. Design of the Air Force
Research Laboratory Micro Aerial Vehicle research configuration. In 45th
AIAA Aerospace Sciences Meeting and Exhibit, 2007.

[79] P Stone, R S. Sutton, and G Kuhlmann. Reinforcement learning for RoboCup-
soccer keepaway. Adaptive Behavior, 13(3):165–188, 2005.

[80] P Stone and M Veloso. Multiagent systems: A survey from a machine learning
perspective. Autonomous Robots, 8(3):345–383, July 2000.

[81] C. Tovey, M. Lagoudakis, S. Jain, and S. Koenig. The generation of bidding
rules for auction-based robot coordination. In Multi-Robot Systems: From
Swarms to Intelligent Automata. L. Parker, F. Schneider and A. Schultz, 2005.

[82] K. Tumer. Designing agent utilities for coordinated, scalable and robust multi-
agent systems. In P. Scerri, R. Mailler, and R. Vincent, editors, Challenges in
the Coordination of Large Scale Multiagent Systems, pages 173–188. Springer,
2005.

[83] K. Tumer and A. Agogino. Coordinating multi-rover systems: Evaluation
functions for dynamic and noisy environments. In The Genetic and Evolu-
tionary Computation Conference, Washington, DC, June 2005.

133

[84] K. Tumer and A. Agogino. Efficient reward functions for adaptive multi-rover
systems. In AAMAS-05 Workshop on Learning and Adaptation in Multi-Agent
Systems. Utrecht, Netherlands, July 2005.

[85] K Tumer and A Agogino. Multiagent reward analysis for learning in noisy
domains. In Autonomous Agents and Multiagent Systems, 2005.

[86] K Tumer and A Agogino. Distributed evaluation functions for fault tolerant
multirover systems. In Genetic and Evolutionary Computation Conference,
2006.

[87] K Tumer and A Agogino. Distributed agent-based air traffic flow management.
In Autonomous Agents and Multiagent Systems, 2007.

[88] K. Tumer and A. Agogino. Distributed agent-based air traffic flow man-
agement. In Proceedings of the Sixth International Joint Conference on Au-
tonomous Agents and Multi-Agent Systems, pages 330–337, Honolulu,HI, May
2007.

[89] K. Tumer, A. Agogino, and D. Wolpert. Learning sequences of actions in col-
lectives of autonomous agents. In Proceedings of the First International Joint
Conference on Autonomous Agents and Multi-Agent Systems, pages 378–385,
Bologna, Italy, July 2002.

[90] K. Tumer and D. Wolpert, editors. Collectives and the Design of Complex
Systems. Springer, New York, 2004.

[91] K. Tumer and D. Wolpert. A survey of collectives. In K. Tumer and
D. Wolpert, editors, Collectives and the Design of Complex Systems, pages
1–42. Springer, 2004.

[92] M R Waszak, J B Davidson, and P G Ifju. Simulation and flight control of
an aeroelastic fixed wing Micro Aerial Vehicle. In AIAA Atmospheric Flight
Mechanics Conference and Exhibit, 2002.

[93] Martin R. Waszak, Luther N. Jenkins, and Peter Ifju. Stability and con-
trol properties of an aeroelastic fixed wing Micro Aerial Vehicle. In AIAA
Atmospheric Flight Mechanics Conference and Exhibit, 2001.

[94] S. Winkler, M. Buschmann, L. Kruger, H.-W. Schulz, , and P. Vorsmann.
State estimation by multi-sensor fusion for autonomous mini and micro aerial

134

vehicles. In AIAA Guidance, Navigation, and Control Conference and Exhibit,
2005.

[95] D. H. Wolpert and K. Tumer. Optimal payoff functions for members of col-
lectives. Advances in Complex Systems, 4:265–279, 2001.

[96] D. H. Wolpert, K. Wheeler, and K. Tumer. General principles of learning-
based multi-agent systems. In Proceedings of the Third International Confer-
ence of Autonomous Agents, pages 77–83, May 1999.

[97] J Young and A Ross Price. FPGA based UAV flight controller. In 11 Eleventh
Australian International Aerospace Congress (AIAC), 2005.

[98] JC Zufferey and D Floreano. Toward 30-gram autonomous indoor aircraft:
Vision-based obstacle avoidance and altitude control. In IEEE International
Conference on Robotics and Automation, 2005.

