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Quadrotors are unique among Micro Aerial Vehicles in providing excellent maneuverability

(as opposed to winged flight), while maintaing a simple mechanical construction (as opposed

to helicopters). This mechanical simplicity comes at a cost of  increased controller complex-

ity. Quadrotors are inherently unstable, in the sense that they are essentially unflyable by

a human without stability assistance. Prior work has developed model-based controllers

that successfully control quadrotors operating near hover conditions, but small quadrotor

dynamics make such control more difficult.

In this thesis, we present a hierarchical neuro-controller for small (0.5 kg) quadrotor control.

The first stage of  control aims to stabilize the craft and outputs rotor speeds based on a

requested attitude (pitch, roll, yaw, and vertical velocity). This controller is developed in

four parts around each of  the variables, initially training them to achieve results similar to

a PID controller. The four parts are then combined and the controller is trained further



to increase robustness. The second stage of  control aims to achieve a requested (x, y, z)

position by providing the first stage with the appropriate attitude.

The simulation results show that stable quadrotor control is achieved through this control

architecture. In addition, the results show that the hierarchical control approach recovers

from discrete angle disturbances over an order of  magnitude faster than a basic PID con-

troller, and can even recover from a disturbance that knocks the craft upside down. Finally,

using the average volume used to maintain a stable hover, we show that the hierarchical

controller provides stable flight in the presence of  5 times more sensor noise and 8 times

more actuator noise as compared to the PID controller.
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Chapter 1 – Introduction

The ability to safely and accurately gather information about an environment is critical to

the rapid and safe deployment of  personnel in response to many military or civilian needs.

Successful incident response, from search and rescue to armed combat, often requires the

need for situational awareness about an unknown environment. The need to acquire this

information, is what drives the field of  mobile robotics.

Traditionally, this information may have come from local experts. This first hand informa-

tion is often incomplete especially in extenuating circumstances such as a natural disaster,

when the terrain may have changed, or when the information needed is about the immediate

location of  trapped or injured persons. With the advent of  satellite technology, we can ac-

quire pictures of  an area that are both recent, and can be overlaid with information like heat

sensitive maps showing potential locations of  people. Although these pictures present more

accurate and immediate information than relying on local guides, they are limited by the

overhead viewing angle and the difficulty of  getting a satellite into place at just the right time.

In the end, these alternate sources cannot compete with real-time, low-altitude images. This

is why search and rescue missions use spotter planes and large numbers of  people to scan

territory. Similarly military missions employ surveillance aircraft and ground scouts.

Although immediate information from the field is often what is required, acquiring it may
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involve putting humans at risk. As the field of  mobile robots advances, we are learning to

send them where humans cannot safely go. Since their first major field test at the site of

the collapsed World Trade Center, ground based search and rescue robots have garnered a

lot of  interest [18, 19]. Ground based robots have the advantage of  being able to roll inside

buildings, or into small enclosed spaces. However, for many needs a slightly bigger aerial

picture is important. In addition, sometimes access to a building can best be done through

an open window, another situation more suited to an aerial vehicle.

The recent growth in interest of  Micro Aerial Vehicle (MAV) platforms is a testament to their

increasing strategic importance. Small, light, and versatile crafts will dominate the field of

reconnaissance, be it military intelligence, or search and rescue [10]. MAVs biggest strengths

and weaknesses lie in their size. Being small, MAVs are easier to transport, harder to detect,

and cheaper to operate. However, it also makes them more unstable, harder to control, and

requires greater miniaturization of  payload sensors and controller hardware.

Traditional MAVs have been miniaturized airplanes due to their greater inherent stabil-

ity [14]. However, advances in controller technology has allowed the development of  rotor-

craft MAVs [31]. With full size aircraft, rotorcraft offer a clear advantage for surveillance

due to their ability to hover. At the slow speeds of  MAVs, this advantage is not as pro-

nounced. However, many missions do still benefit from this hovering ability, especially as

it results in increased maneuverability. In cluttered environments, whether these be urban

streets or forested mountains, the ability to move backwards or laterally remains a signifi-

cant advantages. Another advantage that rotorcraft have over other MAV platforms, is the

ability to perform vertical take-offs and landings. To deploy, space is only needed to pull the
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craft out of  a backpack and place it on the ground. Even in the micro size scale, the runway

demands of  airplane based MAVs can be tricky to meet in crowded environments.

The advantages of  MAV rotorcraft are often lost when the disadvantages of  certain designs

are examined. Helicopters, for example, are the most common style of  rotorcraft but suffer

on the micro-scale due to their mechanical complexity. Helicopters generate lift through

their single overhead propellor. An additional propellor is located in the tail to counteract

the torque from the main propellor. Instead of  simple mechanical linkages linked to control

surfaces as on an airplane, motion other than lift is controlled by changing the pitch of  the

propellor blades. The need to vary blade pitch on a rotating structure requires complex

mechanical linkages. When these fail, the forces on even a small helicopter are enough to

slice through skin and bone, creating a very dangerous situation.

Quadrotor craft share the same advantages in maneuverability with other rotorcraft, but

without the mechanical complexity of  a helicopter. Instead of  a single main rotor and a

secondary tail rotor, a quadrotor has four equal sized rotors as shown in Figure 1.1. These

rotors are not variable-pitch rotors as on a helicopter, instead, the craft is maneuvered by

adjusting the relative speed between the individual rotors. This makes the quadrotor me-

chanically much simpler, which aids in scaling down to a micro-scale, but makes control

much more complex. A quadrotor is inherently unstable, any motor unbalance requires

constant controller input to keep the craft aloft. Quadrotors also provide for greater safety

with smaller blades and the ability to enclose them within the airframe.

The essence of  quadrotor control is simple. The speed difference between two pairs of
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motors is adjusted to change the attitude of  the craft. For example, increasing the speed

of  rotor 1 while at the same time decreasing the speed of  rotor 3 by the same amount will

cause the craft to pitch up. Adjusting in the opposite direction causes the opposite motion.

Roll adjustments are similarly made using rotors 4 and 2. Finally, the difference in rotation

directions between the pairs of  motors can be used to cause the craft to rotate about the

z-axis. Although control of  each axis independently is simple, the change of  speed in any

one rotor will affect multiple axis, and this coupling introduces instability and complexity to

the platform requiring advanced control methods.

Figure 1.1: Quadrotor layout: Roll (rotation around the x axis) controlled by adjusting speeds
of  rotors 2 and 4 by opposite amounts. Pitch (rotation around the y axis) similarly adjusted
using rotors 1 and 3. Yaw (rotation around the z axis) controlled by adjusting 2 and 4 together
by an equal and opposite amount to adjustments done to 1 and 3.

This thesis explains the development and testing of  a hierarchy of  neuro-controllers for MAV

quadrotor flight. The aim of  this work has been to overcome this complex control problem

and develop a controller capable of  maintaining quadrotor stability during motion in three

dimensions. We hypothesize that the adaptive controller developed will be robust and main-

tain this stability in several types of  conditions: un-modeled disturbances (to represent wind

gusts), sensor and actuator noise (as is present in all physical environments), and paramet-
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ric differences (to show the range in design parameters describing a craft capable of  being

stabilized by this controller).

Chapter 2 provides background material covering previous work to control quadrotors. It

also covers some of  the literature on neuro-controllers and their successful application in

other domains.

Chapter 3 explains the quadrotor physics model used to develop the simulator. This chapter

also explains both PID controllers as well as neuro-controllers, both of  which were used in

this work.

Chapter 4 discusses the formulation of  the specific controller architecture we developed.

It goes through details of  each of  the steps taken to develop a controller for the quadro-

tor model we had. The reasoning behind some of  the necessary trade-off  decisions is also

explained.

Chapter 5 is a summary of  our key experimental discoveries with the final controllers. In this

chapter, we provide compelling results showing the increased robustness in our controller

compared to a more traditional model-based PID controller.

Chapter 6 provides concluding remarks and a reiteration of  the contributions of  this work.

In this chapter, we also explore some of  the potential future avenues for this work.
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Chapter 2 – Background & Related Work

This chapter has two focuses, one is to present background on previous methods used to

control quadrotors, most of  which have not been adaptive in nature. The other focus is

to present successful applications of  adaptive control. The goal of  this thesis has been to

apply this type of  control to quadrotors and develop a controller that takes advantages of

the robustness of  adaptive methods.

2.1 MAV Flight Control

Previous work on quadrotor controllers have used traditional model-based controllers. The

simplest of  these are Proportional Integral Derivative (PID) controllers [7,13]. This type of

controller is explained in more detail in Chapter 3, but it is a relatively easy to implement

controller that operates on the error between a desired setpoint and the current value, as

well as on how that error changes. The goal is always to try to minimize that error and the

work mentioned was able to track the roll, pitch, and yaw angles using this method.

More commonly, quadrotors are controlled using modern and optimal model-based tech-

niques [3–5, 8, 17, 30]. These groups have been able to develop linear quadratic regulators

based around a linearized model of  the quadrotor dynamics. Although their controllers
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had some success, they were tied very closely to the model, and could not handle some

of  the non-linearities and disturbances experienced in outdoor flight conditions or in flight

positions that did not approximate a hover.

These methods have been entirely model-based and MAVs are very susceptible to distur-

bances and unknown dynamics, making accurate models very difficult and leading to the

exploration of  adaptive methods for control. A primarily model-based controller, with the

addition of  neural networks to account for non-linearites in the dynamics and unknown pa-

rameters, has proven successful [9, 11, 21, 23]. All of  these solutions attempt to capture the

non-linearities and adjust the model-based controller to handle them.

Adaptive control methods are often more successful than model-based methods where the

operating domains are known to be non-linear. Along these lines, using both neural net-

works and reinforcement learning to train an entire controller from data points taken dur-

ing human controlled flight has been explored [12, 30]. However, because of  the inherent

instabilities of  quadrotors, they are not flyable by a human without some stability assistance.

Since the previous work uses data taken under human pilot control, it creates an artificial

constraint of  needing to use these smoothing and stability routines even after the adaptive

controller is trained.
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2.2 Successful Learning Control Applications

Model-free adaptive control techniques are often used in such challenging and non-linear

domains. For more than 40 years, the inverted pendulum, or pole balancing problem has

been a standard benchmark for control techniques [1]. In this problem, a cart must move

back and forth to keep a pole balanced on end. This is a task doable by almost any hu-

man, and yet is a challenging control problem. Traditional control can solve this problem,

because the physics of  the system can be fully described. The advent of  neural networks

and reinforcement learning soon made balancing a single pole an entirely trivial problem,

solvable without any model of  the dynamics of  the pole. Adaptive control techniques have

moved on to the double-pole problem, where the second pole must remain balanced on top

of  the first, and even a 2-D pole where a cart may move anywhere on a plane [16].

One subset of  adaptive control that has shown strong promise in unknown mobile robot

domains, is neuro-evolution. Using neuro-evolutionary techniques very similar to those

used in this work, fully autonomous controllers have been implemented and shown to work

well with physical land-based robots [15, 20]. Adaptive control was also a critical aspect to

Stanley, the successful DARPA grand challenge autonomous vehicle [28]. It has also been

used and has shown great promise on board NASA’s Deep Space 1 probe [24]. This type of

model-free control has been taken into many domains and has a proven success rate, from

robotic manipulators [29], to single robot navigation [20], to coordination between multiple

autonomous vehicles [25].

Working without complete a priori knowledge of  the system is especially advantageous when
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the system has complex non-linearaties that will either be a challenge to control, or are dif-

ficult to model accurately. In quadrotor flight, both are true. The dynamics of  the craft

are inherently non-linear. Beyond this, several effects, including ground effects, blade flap-

ping, and dynamics within the motors were not included in the simulator. A controller

developed and tested on this simulator would thus need to be shown to be robust in or-

der to maintain control when implemented on actual hardware. This has shown to be the

case with supervised reinforcement learning control in the case of  autonomous helicopter

control [6, 22].

The last few controllers mentioned in the previous section did indeed used model-free tech-

niques for controlling quadrotors. However, they either used them as an add-on to a model-

based controller and were targeted at accounting for one set of  un-modeled disturbances,

or they were used with a pilot providing supervision to the controller to teach it the correct

actions. Both of  these approaches have drawbacks and require significant knowledge of  the

system to maintain control.

In this work, instead of  using supervised learning and a recorded set of  datapoints to de-

termine the correct actions, we use a neuro-evolutionary algorithm to arrive at a trained

controller. This work uses the real-time NeuroEvolution of  Augmenting Topology (NEAT)

algorithm [26,27]. This particular algorithm, explained further in Chapter 3, allows modifi-

cations to controllers in complex domains that make the design process more efficient.
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Chapter 3 – Modeling & Controllers

This chapter develops the model used to simulate the quadrotor flight for both training and

testing purposes. The physical parameters of  the craft used are also presented. This chapter

explains the controller used to solve the problem of  stable quadrotor flight, as well as the PID

model used in training. Finally, Neuro controllers in general, as well as the particular NEAT

algorithm used, are explained in detail.

3.1 Quadrotor Physics Model

The mathematical quadrotor model is based upon the previously developed model [4]. We

briefly summarize that development here. As a starting point, there are two coordinate

systems to be aware of, that of  the earth, and that of  the craft. These are related through

three successive rotations:

Roll: Rotation of ϕ around the x-axis

Pitch: Rotation of θ around the y-axis

Yaw: Rotation of ψ around the z-axis

The main aerodynamic effects, Ui, applied by the rotors in the body frame are proportional
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to the square of  the rotor speeds Ωi:

U1 = b (Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4)

U2 = b (Ω2
4 − Ω2

2)

U3 = b (Ω2
3 − Ω2

1)

U4 = d (Ω2
2 + Ω2

4 − Ω2
1 − Ω2

3)

(3.1)

where U1 is the total thrust due to all four rotors, U2 is the difference between the thrusts

of  rotors 2 and 4 (i.e. the roll moment), U3 is similarly the difference between the thrusts

of  rotors 3 and 1 (i.e. the pitch moment), and U4 is the difference between the thrusts of

oppositely spinning motors (i.e. the yaw moment). The thrust and drag coefficients, b and

d respectively, are craft dependent values. There are also gyroscopic effects proportional to

the difference in rotor speeds Ω:

Ω = Ω2 + Ω4 − Ω1 − Ω3 (3.2)

In order to reach the equations of  motion, we start with a force balance,

ma = R
∑

Fb (3.3)

where R is the rotation matrix and Fb are the body forces. This yields the x, y, and z

acceleration of  the craft in earth coordinates. To find angular accelerations we also require

a torque balance,

Iα = −ω × Iω − Jr(ω × ẑ)Ω + τb (3.4)



12

where I is the body inertia matrix, Jr is the rotor inertia, α is the angular acceleration, ω is

the angular velocity, and τb are the airframe torques.

This leads to the equations of  motion in terms of  the above applied forces and torques:

ẍ = (cosϕ sin θ cosψ + sinϕ sinψ)
1

m
U1

ÿ = (cosϕ sin θ sinψ − sinϕ cosψ)
1

m
U1

z̈ = −g + (cosϕ cos θ)
1

m
U1

ϕ̈ = θ̇ψ̇

Iy − Iz

Ix

−
Jr

Ix
θ̇Ω +

l

Ix
U2

θ̈ = ϕ̇ψ̇

Iz − Ix

Iy

+
Jr

Iy
ϕ̇Ω +

l

Iy
U3

ψ̈ = ϕ̇θ̇

Ix − Iy

Iz

+
1

Iz
U4

(3.5)

where x, y, and z represent the craft’s position in the earth reference frame, and ϕ, θ, and

ψ are the roll, pitch, and yaw angles as explained above. The other variables, not including

Ui and Ω, are parameters of  the craft. The values of  these parameters, as used in this work,

are in Table 3.1 [2].

Assuming a constant acceleration over some small time step, we can determine the changes

in velocity and position during that timestep. An appropriate choice of  timestep provides us

with a relatively accurate simulation based on a few parameters of  the quadrotor.
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Table 3.1: Physical Quadrotor Parameters
Variable Value Description

m 0.4794 kg mass
l 0.225m craft diameter
b 3.13 × 10−5N s2 thrust factor
d 9 × 10

−7N ms2 drag factor
Jr 3.74 × 10−5 kg m2 rotor inertia
Ix 0.0086 kg m2 moment of  inertia along x
Iy 0.0086 kg m2 moment of  inertia along y
Iz 0.0172 kg m2 moment of  inertia along z

3.2 Controllers

In this work, we use two type of  controllers that regulate inputs to a system in order to affect

a desired change in the system’s output. We develop a neuro-controller, however in order to

train this neuro-controller we use a PID controller. Both types are explained below.

3.2.1 PID Controllers

PID stands for Proportional Integral Derivative and is a type of  closed loop feedback con-

troller. The operation of  a PID controller is shown in Figure 3.1. A separate controller is

developed for each output variable that must be controlled. When the inputs to the system

are coupled, this can cause trouble as two different controllers try to adjust the same inputs

to affect different outputs. As will be explained later, the dynamics of  a quadrotor can be

separated and this coupling removed.
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Figure 3.1: Showing the form of  a PID Controller, Kp, Ki, and Kd are tuned so that the
sum shown (the input to the system) drives the output towards the desired setpoint.

The basic calculation for nearly any feedback controller is to calculate an error value for

every timestep. This is just the difference between the desired setpoint, and the actual out-

put. Both the integral and derivative of  this error term is calculated in order to provide

information about how the error is changing. The error, its integral and derivative are then

each multiplied by a different gain Kp, Ki, and Kd respectively. The results are summed

together and this is used as the input into the actual system. The system is treated as a black

box, and the PID makes continual adjustments as it attempts to drive this error term to zero

and make the output equal the desired setpoint.

When this is broken down into a system with discrete timesteps it becomes:

I0 = KpE(t0) +Ki

(∑
t

E(t)∆t

)
+Kd

E(t0) − E(t−1)

∆t
(3.6)
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where E(t0) is the error at the current timestep, E(t−1) the error at the previous timestep,

∆t is the size of  the timestep, Kp, Ki, and Kd are the controller gains, and I0 is the input to

be set for the system for the current timestep.

The system gains, Kp, Ki, and Kd, are tuned to get the desired performance. This per-

formance is often described in terms of  the following four variables: rise time, overshoot,

settling time and steady-state error. All of  these are measured in response to a step change in

the setpoint. Rise time is a measure of  how long it takes to reach a new equilibrium. Over-

shoot is a measure of  how much the output overshoots the desired setpoint before returning

to the equilibrium. Settling time is a measure of  how long the system oscillates before reach-

ing equilibrium. Finally, the steady-state error is how far off  the final equilibrium is from

the desired setpoint.

There are several formalized methods for tuning the system gains, however for many sys-

tems, the most efficient method for an initial set of  gains is an order of  magnitude manual

estimation. Once the parameters are in the ballpark, further refining is possible with the

guidelines shown in Table 3.2.1.

Table 3.2: Effect of  Increasing PID Gains
Parameter Rise time Overshoot Settling Time Steady-State Error

Kp Decrease Increase - Decrease
Ki Decrease Increase Increase Eliminate ∀Ki ̸= 0
Kd - Decrease Decrease -
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3.2.2 Neuro Controllers

Neuro-controllers develop from a stochastic search of  a population of  neural networks. A

neural network is a function approximator that maps inputs to outputs. A typical topology

for a neural network is shown in Figure 3.2. It consists of  three inputs, each connected to six

hidden nodes, which are in turn connected to two outputs. This example is referred to as

a fully connected network because each node on any layer has a connection to every node

on the previous and next layer. Each of  this connections, often called links, is associated

with a weight. Each node then has a value equal to the weighted sum of  the outputs of

the nodes of  the previous layer, all evaluated by some activation function. This activation

function is generally a non-linear scaling, which is what gives the neural network the ability

to approximate almost any function.

Neural networks are often trained by adjusting the values of  the weights for each link. This

affects how important each input, or combination of  inputs is to each output. When the

desired outputs are known for a given set of  inputs, the value for these weights can be cal-

culated. However, in many real-world domains, the desired output is not known. For this

type of  domain, quadrotor control being an example, the use of  an evolutionary algorithm

is a good way to search through the possible weight values in order to find a useful mapping

from the inputs to the outputs.

An evolutionary algorithm is essentially a search method. It starts from a population of

neural networks, evaluates each of  these networks against some metric, and higher per-

forming networks are then mutated with some probability, in order to search for an optimal
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Figure 3.2: Shows a typical, single hidden layer, fully connected, neural network

solution. The following algorithm explains the steps involved in a generic evolutionary al-

gorithm:

1. Randomly initialize the weights of  a population of  networks
2. For each network in the initial population
3. Control the system with the network for some number of  timesteps
4. Evaluate the network
5. Repeat steps 6-11 until a good enough solution is found
6. Select the best network with some probability
7. Mutate this network
8. Control the system with this network for some number of  timesteps
9. Evaluate the network

10. Insert network into the population
11. Remove the worst network
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12. Use found solution for actual control

This remains very generic; different algorithms have very different methods to select the

best network as well as different methods for mutating the network. The amount of  time to

test a controller and how to evaluate it are going to be domain specific choices. Also domain

specific are: the size of  the initial population, the topology selected for the network, and the

diversity in the randomness of  the initial population.

For most neuro-controllers, the topology is determined by the designer up front. However,

in complex domains, this is often challenging and requires significant testing to determine

the correct topology. There is a tradeoff  between having too many nodes, and therefor too

many links, which makes training very slow, and too few nodes, such that there is not enough

flexibility to accurately capture the dynamics of  the system.

The complexity of  the quadrotor system means that determining the topology upfront would

be challenging. To overcome this, we use the NeuroEvolution of  Augmenting Topologies

(NEAT) algorithm. This algorithm allows mutations to change the topology in addition to

the weights. The number of  nodes, and the existence of  links between them can change with

each mutation. This allows for complicated structures to evolve that capture the dynamics

of  the system.
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Chapter 4 – Controller Formulation

Flying a quadrotor, even in simulation, is a difficult problem because of  the sensitivity to

differences in rotor speeds. One shortcoming of  neuro-evolutionary algorithms is that in

large search domains, they require many iterations before even a mediocre solution is found.

Although neuro-evolution work done with land-based robots has been very successful, a poor

solution in that domain means the robot does not move towards the goal but may still provide

enough information for learning [20]. A poor solution in an aerial vehicle means a crash

and provides little useful information for learning. Although, theoretically, the information

needed for learnability could be encoded in a single objective function, the search space is

very large, and the solution space of  successfully flying controllers is very small. Since we

have an understanding about the way the craft responds to speed differences in the four

rotors, we used this knowledge in the development of  our controller.

Instead of  having a single controller with inputs of  a desired position and outputs of  the

required rotor speeds to move towards that point, we developed a hierarchy of  controllers.

At the highest level, the position controller is responsible for moving the craft by suppling the

attitude controller with the desired roll, pitch, and yaw angles as well as the vertical velocity.

This attitude controller is further decomposed into several simpler agents that each make

adjustments to the rotor speeds to independently control the four attitude variables.
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4.1 Attitude Controller

The attitude controller is responsible for stability and movement of  the craft. It adjusts the

rotor speeds to place the craft into a desired attitude and corresponding trajectory, described

by roll, pitch, and yaw angles, and a vertical velocity. Due to the quadrotor’s attitude being

sensitive to small variations in rotor speed, training the attitude controller directly proved

challenging. Instead, it was broken down into the four agents, adjusting the roll, pitch, and

yaw angles and vertical velocity independently using the appropriate three inputs. Figure 4.1

shows the incremental steps taken to develop, train, and select the final attitude controller.

These steps are explained later in detail.

Figure 4.1: Showing each step taken in the process of  developing the attitude controller.
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As described previously, neuro-evolutionary controllers involve an undirected stochastic

search. For an aerial domain, this shortcoming makes learning very challenging due to

the large search space and narrow range of  controllers capable of  maintaing flight. To over-

come this, instead of  training neuro-controllers from scratch and ranking them based on

how successfully they achieved the desired attitude, we developed PID controllers capable

of  maintaing flight and trained the neuro-controllers to match the output from the PID for

the same inputs.

The four agents of  the attitude controller receive the same inputs that a PID controller does,

shown in Figure 4.2. These agents receive information about the desired attitude as well

as sensory information in the form of  an error between the desired and actual, as well as

the derivative and integral of  that error for all four attitude variables. This provides the

controller with information about the absolute error, and how that error is changing. From

this, the controller sets the desired rotor speeds for all four rotors.

This parallels the operation of  a PID controller. PID controllers were selected to be trained

against, over other model-based controllers, due to their mathematical simplicity, and their

ability to be roughly tuned online in short order. Prior work has shown that PID controllers

are successful at controlling the attitude of  quadrotors, but had difficulty controlling altitude.

For this reason, the altitude controller was trained differently, as will be explained further

below.

With the goal of  seeding the neuro-controller search with a working PID controller we can

explore the steps shown in Figure 4.1 in more detail. The first step was to develop a baseline
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Figure 4.2: Showing the structure of  the attitude agents which independently generate ad-
justments to the rotor speeds to control the roll, pitch, and yaw angles as well as the vertical
velocity. Each agent receives as input a difference from the desired setpoint as well as the
difference’s integral and derivative.

PID controller that would provide stable flight. A separate set of  weights Kp and Kd were

developed for each of  the three angles. Initial testing indicated no steady-state error so

there was no need for an integral term, so Ki = 0 to prevent integral windup concerns.

Tuning was done online, making increasingly finer adjustment to the parameters to achieve

rise times on the order of  3 seconds. Overshoot upon reaching the desired angle was kept

under 10 %. Final PID values used in later steps, are shown in Table 4.1. The resulting

PID controllers were by no means fully tuned, but they kept the quadrotor in a stable flight

pattern for pitch and roll angles in the range of [−π
3
, π

3
]. Achievable yaw angles, allowed

pointing the craft in any direction [−π, π].

The next step was to train the neuro-controllers for all three angles from these PID values.

As mentioned, the realtime NEAT algorithm was used for this. A population of  100 po-
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Table 4.1: PID Parameters
Kp Kd Ki

Roll Controller 0.0005 0.08 0
Pitch Controller 0.0005 0.08 0
Yaw Controller 0.005 0.18 0

tential controllers was created. Each started with zero hidden nodes and an otherwise fully

connected network with random weights between -3 and 3. For each mutation, the NEAT

algorithm allowed hidden nodes and additional links to be added with 3 % and 5 % prob-

ability respectively. The remaining time, mutations changed the weight values, but not the

structure of  the controller. Because the adjustments made to the rotor speeds would need to

be both positive and negative depending on the sign of  the desired attitude variable, a hy-

perbolic tangent was used as the activation function, giving activated nodes values between

-1 and 1.

In order to start from a stable hover, the rotor speed was first set to a level that just overcame

gravity. Each agent was trained separately, with the developed PID controllers making ad-

justments to eliminate rotation along the axes not currently being used in training.

Figure 4.3 shows, in detail, how training occurred for each of  the three attitude angles. The

paragraph numbers below refer to the lines in this figure.

Steps 1-3: Each training iteration, the worst controller was removed. The best controller

was selected with some probability (i.e. some chance of  selecting a random controller from

the population rather than the best). The selected controller was then mutated as described

above. This new controller then needed to be evaluated.
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Figure 4.3: Showing the process of  training each of  the angular agents.
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Step 4: This evaluation involved running the controller for ten seconds each, through a se-

ries of  different angles. For the roll and pitch agents, these angles were (−1,−0.5,−0.1, 0, 0.1, 0.5, 1)

radians. For the yaw agent, the angles also included (−2, 2).

Steps 5-9: During those ten seconds of  simulation for each angle, the controller was asked

to make adjustments every 50 ms. Each neuro-controller adjustment was compared to the

adjustment the PID controller would have made, and this comparison was stored as a re-

ward.

Step 10: The final fitness was based on these comparisons:

F = e−
P

|Ann−Apid| (4.1)

whereAnn is the adjustment from the neuro-controller andApid is the adjusted for the same

inputs as calculated by the PID controller. This fitness is based on the distance between the

PID and neuro-controller rotor speed changes. The fitness was the negative exponential

of  this distance so that small distances would equate to large fitnesses near one and large

distances to a fitness near zero.

This process was run for 3000 iterations for each angular agent. 3000 iterations were used

after testing revealed that this was a sufficient length of  training to achieve good performance

from the neural network. At this point, the neuro-controllers were performing as well as the

PID controllers they were trained on. In most cases, the neuro-controllers were actually per-

forming better at this point, due to their greater ability for non-linear interpolation through

out the range of  desired angles.
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In order to increase the performance of  the neuro-controllers, they underwent further train-

ing at this point. A new population was developed from the best controllers in the previous

training with up to 20 % mutation of  the weights. This new population was evaluated against

the desired target angle based on the actual rise time and overshoot. This population was

trained for another 1000 episodes at the end of  which, the best controller was selected to be

used in the combined attitude controller. This completed the training for the independent

angular agents.

The final agent, controlling vertical velocity was trained differently. Since previous work

had difficulty in using a PID controller to adjust the altitude, the fourth agent was evaluated

based on the actual vertical velocity seen during the 10 seconds of  simulation. Although the

angles can be controlled independently of  each other, the thrust adjustment will be different

depending on the roll and pitch angles of  the craft. An increase in the thrust adjustment of

a level quadrotor will only increase the vertical velocity, however when the craft is tilted, an

adjustment of  the same amount will result in a smaller increase in the vertical velocity, as

well as an increase in speed in the direction of  the tilt.

To account for this, each evaluation of  a vertical velocity controller included 70 different

configurations, each run for ten seconds. This allowed for a wide range of  roll and pitch

values to be used in any evaluation. This was run for 1000 training episodes after which the

best agent was selected for incorporation into the attitude controller.

When all four agents were trained, they were combined as shown in Figure 4.4. These four
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Figure 4.4: Showing how the inputs and outputs for each of  the agents are combined to
form a single, higher level, attitude controller that outputs the rotor speeds based on the
adjustments calculated by the four sub-agents.

attitude parameters are combined mathematically as follows:

Ω1 = Av − Aθ − Aψ

Ω2 = Av − Aϕ + Aψ

Ω3 = Av + Aθ − Aψ

Ω4 = Av + Aϕ + Aψ

(4.2)

where Ωi is the speed of  each rotor, Aϕ, Aθ, and Aψ are the adjustments to control the roll,

pitch and yaw angles, and Av is the adjustment to control the vertical velocity. This resulted

in a single attitude controller that produces the desired rotor speeds from the original twelve

inputs.
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Once all four agents were trained, they were combined into a single attitude controller as

mentioned previously. Depending on the final operation environment, this attitude con-

troller could be further trained to handle specific types of  disturbances. For this work, fur-

ther training was not provided to the controller and testing showed that training separately

was sufficient to yield a final attitude controller that can be used to stabilize the quadrotor

into any requested attitude.

After training was complete for each of  the agents, they had developed one or two hidden

nodes partially connected to the inputs and outputs. Further training of  the attitude con-

troller did not alter the structure of  the combined controller, but did tweak the weights a

little more.

4.2 Position Controller

To actually move the craft, a higher level controller must provide attitude targets to the

attitude controller. For this work, the higher level controller was only concerned with moving

a craft to a new (x, y, z) position. However, depending on the mission, this may be better

suited by a controller with greater perception of  its surroundings and the ability to perform

path-planning.

In this work, the position controller receives as inputs the difference between the desired and

current positions in the x, y, and z directions, and the current velocity in all three directions.

The controller outputs the attitude needed to move towards the desired position. These are
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both shown in Figure 4.5.

Figure 4.5: Showing the inputs of  the difference between the desired and current positions
as well as the current speeds, and the outputs of  the desired roll and pitch angles as well as
the desired vertical velocity. The desired yaw angle is always set to zero, since full motion is
achievable by setting roll, pitch and vertical velocity.

Due to the quadrotor’s flexibility, only two attitude angles are needed to reach any position.

Although using all three angles would allow various pointing maneuvers (e.g. changing

spatial position through roll and pitch, while the yaw angle aims a solid-mounted camera at

a fixed point), for this work the desired yaw angle was set to 0, allowing the full motion of

the craft to be controlled by only the roll and pitch angles in conjunction with the desired

vertical velocity. This greatly reduces the search space for successful controllers.

Training consisted of  evaluating each potential controller based on the ability to reach a

desired position as well as the total distance travelled in doing so. The set of  training desti-

nations included a grid of  points covering every direction of  travel from the origin. Initial

population and mutation properties were similar to those used for the attitude agents. Train-

ing time however, took upwards of  15 000 episodes to provide a controller with direct travel

towards the destination.
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This training significantly altered the structure of  the position controller. Seven hidden

nodes were added, as well as more complicated links between them, resulting in more than

60% of  the final links being additional links connecting hidden nodes. Over 73 different

nodes were added during the training process with only the seven mentioned remaining

as part of  the final controller. This added complexity shows the power of  using NEAT to

explore mutations to both the structure and the weights during the training process.
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Chapter 5 – Experimental Comparison: Neuro and PID Controllers

Once the development of  the entire hierarchy of  controllers was complete, we performed

multiple experiments to test their robustness. Our testing included basic verification of  our

controller to maintain stable flight through series of  waypoints. It also tested the ability to

reject disturbances, such as wind gusts, and to remain robust in the face of  both sensor and

actuator noise. Finally, we tested how our design would function on a quadrotor of  different

design parameters.

Our testing bore out our hypothesis that the developed adaptive controller is robust and

maintains craft stability in several types of  conditions: un-modeled disturbances (to repre-

sent wind-gusts), sensor and actuator noise (as is present in all physical environments), and

parametric differences (to show the range in design parameters describing a craft capable

of  being stabilized by this controller). The success of  the controller in each of  these areas,

as well as the controller’s ability to move the craft through series of  waypoints is explored in

this section.
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5.1 Waypoint Control

The most important test of  the controller was to see if  it is able to perform actual flight. For

this test, a series of  waypoints was selected. Each waypoint was given to the controller and

when the craft had reached stability around that point, a new waypoint was provided. Figure

5.1 shows the craft moving through a selection of  waypoints as well as showing the optimal

path. It is evident in Figure 5.1a that on a very small scale this controller is not finding the

optimal path, but is closer to achieving it than the PID controller. When this same pattern

is followed on a much greater distance scale, the path is much smoother, as seen in Figure

5.1b. The waypoints in the first part of  the figure are roughly a craft diameter apart. It is

thus not surprising that the path is not the direct line, the quadrotor requires greater space

to make a move and re-stabilize in a new position. When the craft is moving farther this is

not as big a concern and it can track a direct route to the waypoint.

Table 5.1 shows a comparison between the total distance traveled when under PID control,

as well as Neuro control. Both of  these are then compared to the optimal, straight line

path. These are for random sets of  waypoints. Although the neuro-controller travels 50 %

more distance then optimal while moving through these waypoints, the PID controller takes

nearly twice the distance on average to move between waypoints. Were this on a physical

system, not only does the quadrotor travel more distance under PID control, but there would

be a direct cost in terms of  energy and the speed to arrive on location as compared to the

neuro-controller. The actual energy savings would depend on the speeds and maneuvers

used to travel that extra distance, but a 35 % decrease in the amount of  circuitous travel will
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translate into significant energy savings.

Table 5.1: Waypoint Tracking Distances Travelled & Percent Over Optimal
Optimal Path Neuro Controller Path PID Controller Path

9.33 12.76 37 % 16.21 74 %
10.60 17.06 61 % 19.47 84 %
10.29 13.97 36 % 16.80 63 %

9.89 15.45 56 % 18.97 92 %
10.32 14.17 37 % 16.82 63 %

8.69 14.85 71 % 18.25 110 %
9.80 15.39 57 % 18.40 88 %
8.49 13.47 59 % 15.25 80 %

10.21 14.15 39 % 18.13 78 %
9.53 15.64 64 % 21.26 123 %
9.71 14.69 51 % 17.96 85 %

5.2 Disturbance Rejection

One major obstacle for MAVs is disturbances. The effects of  even very small wind gusts be-

come quite noticeable due to the craft’s light weight. This same weight and corresponding

small size requires slower controller hardware unable to process that a disturbance is hap-

pening, only to indicate that it has. Disturbance rejection is thus modeled as discontinuous

jumps in attitude and/or position from which the controller must recover.

We tested the controller by knocking the craft about the roll and pitch axes with isolated

disturbances for each axis in addition to disturbances affecting both axes. Figures 5.2 and

5.3 show the effects of  disturbances on the pitch and roll axes respectively. Figure 5.4 shows

the effect of  disturbing in both axis at the same time. In both cases the figure shows the
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Figure 5.1: Final controller and PID controller piloting through a series of  waypoints. The
optimal straight line path is also shown, with the waypoints identified. The top figure shows
waypoints a few crafts lengths away. The bottom figure shows the same pattern of  waypoints
where the distances have been scaled upwards an order of  magnitude. The larger distances
resulted in much smoother quadrotor flight paths, but both cases successfully reach the given
waypoints more efficiently than the PID Controller.
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effects of  disturbances buffeting the craft every 30 seconds, knocking the pitch angle 60◦.

The neuro-controller is very successful at stabilizing the craft, and restoring it to its original

hover position in less than three seconds regardless of  the axis (or axes) disturbed. This is

vastly superior to the PID controller which is unable to restore the craft’s position before

the next disturbance strikes. The PID controller does maintain stability for disturbances

affecting the pitch or roll axes independently, but is not able to quickly restore the craft’s

position. When a wind gust is simulated to affect both pitch and roll axes simultaneously,

the PID is only able to maintain stability for the first few simulated gusts. After that, the PID

loses control, and flight stability is lost, as seen in Figure 5.4.

Figure 5.5 shows that the a 60◦ disturbance is right at the extreme edge of  the envelope

the PID controller can handle for pitch disturbances, and 50◦ is about the limit for roll

disturbances. The neuro-controller however, can still recover after being flipped completely

upside down. In this case, it does require several meters of  altitude in which to recover, but

it performs a complete recovery in under 15 seconds. When a disturbance occurs in both

axes the PID can handle even less of  a disturbance as was evident in the previous position

recovery plots. Combined disturbance were tested for the same amount of  disturbance along

each axes at the same time (e.g. 30◦ of  pitch disturbance and 30◦ of  roll disturbance).

5.3 Robustness

Real world controllers, unlike in simulation, must deal with noisy data. This comes in both

the form of  noisy sensors describing the craft’s position and attitude, and noisy actuators
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Figure 5.2: Showing position recovery for repeated pitch angle disturbances of  60◦ occurring
every 30 seconds. The PID controller stabilizes the craft but would take several minutes to
restore it to the starting location. The neuro-controller is able to stabilize and restore the
position in less than 3 seconds.
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Figure 5.3: Showing position recovery for repeated roll angle disturbances of  50◦ occurring
every 30 seconds. The PID controller stabilizes the craft but would take several minutes to
restore it to the starting location. The neuro-controller is able to stabilize and restore the
position in less than 3 seconds.
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Figure 5.4: Showing position recovery for repeated angle disturbances of  60◦ in both pitch
and roll angles occurring every 30 seconds. The PID controller stabilizes the craft but would
take several minutes to restore it to the starting location. The neuro-controller is able to
stabilize and restore the position in less than 3 seconds.
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Figure 5.5: Time for controller recovery after a)pitch, b)roll, and c) pitch & roll angle distur-
bances of  increasing amounts. The neuro-controller can even handle being flipped upside
down, whereas the PID controller does not recover at all from disturbances greater than 60◦

or less in some cases.
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controlling the rotor speeds. Our simulator was developed with this in mind, allowing for

the addition of  varying amounts of  both types of  noise. Beyond the two sources of  noise,

there are two types of  noise, biased and random. Biased noise will affect the ability to know

the actual position or attitude unless the controller goes through some additional training

with the sensors that will actually be used in flight. Thus in our simulation testing, we focused

on how well the designed controllers could handle random noise of  increasing amounts. We

expected that random variations in values would cancel out, and so as long as the noise does

not swamp out the signal, stability should be maintained.

Our simulator does not model the dynamics of  the motors. They were allowed to achieve

great changes of  speed in a single timestep. In noisy conditions this amplified the distance

the quadrotor would travel in maintaing stability. The erratic response to noise may be

filtered by the dynamics in actual motors when this controller is used on hardware.

5.3.1 Sensor Noise

The developed controller needs position, velocity, and attitude sensor data. Our testing

showed that the final controller can withstand large random variations in all of  these read-

ings. The larger the noise level, the larger the sphere of  space the quadrotor would move

through in maintaining a stable hover. Figure 5.6 shows how the noise variation alters the

stability of  the craft. The neuro-controller was able to take about 45 % noise in the sensors

while maintaining a stable hover within 0.5 m. The PID controller on the other hand was

only able to handle about 10 % noise, and even this required a 2 m radius of  space in which
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to hover. The neuro-controller is able to handle nearly 5 times as much noise, and needs

only 1/12 of  the volume to do so.

Figure 5.6: Plot of  random sensor noise versus the average range of  stable motion, showing
the neuro-controller’s ability to handle five time more noise. Noise values outside those
plotted resulted in unstable flight.

5.3.2 Actuator Noise

Actuator noise can stem from various outside influences preventing the rotor from reaching

the desired speed, or it could be the result of  dynamics in the motor itself. In order to explore
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the effects of  this sort of  noise, random noise was added to each of  the actuators. Our test-

ing showed that even 2 % actuator noise with a PID controller caused catastrophic failure.

The trained neuro-controller was able to maintain stability with up to 15 % noise. With

increasing noise, the quadrotor would move through an increasing sphere of  space while

attempting to maintain stability. The average distance from the origin used in maintaining

a hover under increasing amounts of  noise is shown in Figure 5.7.

Figure 5.7: Plot of  random actuator noise versus the average range of  stable motion, showing
the neuro-controller’s ability to handle five time more noise. Noise values outside those
plotted resulted in unstable flight.
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5.4 Parameter Sensitivity

A significant challenge when moving between a simulated controller design and actual hard-

ware is model inaccuracies. Often the controller is being tested before final hardware is as-

sembled, meaning design changes can still occur affecting the parameters of  the system and

thus the simulated system no longer matches the hardware. Even if  the hardware is available

before controller design commences, difficulty in measuring some parameters (drag coeffi-

cients for example) can result in inaccuracies between the simulation and the hardware. A

robust controller, is able to handle a range of  parameter values allowing for stability even

when the hardware and simulation do not match.

To test this aspect of  robustness, the controller, after being trained with the design parameters

was asked to perform a simple move on a simulated quadrotor with adjusted parameters.

The time to complete the maneuver, while changing two key design parameters, the thrust

coefficient and mass are shown in Figure 5.8. The neuro-controller is able to handle roughly

twice the parameter change as the PID controller.
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Figure 5.8: Plot showing the time to complete a simple move, illustrating the ability to han-
dle changes in the design parameters. The neuro-controller is shown being able to handle
roughly twice the variation in both mass and thrust coefficient.
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Chapter 6 – Conclusions

Quadrotors are unique among MAVs in providing excellent maneuverability, allowing hover

flight as opposed to the required forward motion for winged flight, while maintaing a simple

mechanical construction without the need for control surfaces as on an airplane or variable-

pitch propellers as on helicopters. This mechanical simplicity comes at a cost of  increased

controller complexity. Quadrotors are inherently unstable as they are highly sensitive to

even the smallest differences in rotor speeds.

Prior work has developed model-based controllers that successfully control UAV size quadro-

tors operating near hover conditions, but such control becomes more difficult for small

quadrotors. This work has demonstrated a consistent way to develop an adaptive con-

troller for quadrotor craft. It has also highlighted the ability of  this type of  controller to

withstand several shortcomings of  model based controllers when the model does not match

reality.

In this thesis, we explain our physical model and how this was derived. We also explain

both the PID and neuro-controllers we used in the development of  our final hierarchy of

control. We present a hierarchical neuro-controller for small (0.5 kg) quadrotor control.

The first stage of  control aims to stabilize the craft and outputs rotor speeds based on a

requested attitude (pitch, roll, yaw, and vertical velocity). This controller is developed in
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four parts around each of  the variables, initially training them to achieve results similar to a

PID controller. The four parts are then combined such that the controller could be trained

further to increase its robustness. The second stage of  control is to achieve a requested

(x, y, z) position by providing the first stage with the appropriate attitude.

The simulation results show that stable quadrotor control is achieved through this control

architecture. In addition, the results show that the hierarchical control approach recovers

from disturbances over an order of  magnitude faster than a basic PID controller. It provides

stable flight in the presence of  5 times more sensor noise and 8 times more actuator noise

than the PID controller. Finally, although the controller was designed around a single set of

design parameters, the robustness allows for significant variation in these parameters without

retraining the controller.

Further work will be to validate this simulation work with implementation on actual hard-

ware. Current work also includes expanding the high level position controller to not only

track towards a desired position, but to accept sensory input to allow for obstacle avoidance.

This could tie in with navigational algorithms already developed by Knudson et al. Another

route of  evaluation would be to compare these results to a LQR controller which has been

shown by others to have some success at controlling quadrotor flight.
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