


AN ABSTRACT OF THE DISSERTATION OF

Gamika Arun Wickramasuriya for the degree of Doctor of Philosophy in

Mechanical Engineering presented on December 10, 2009.

Title: Reduced Order Modeling of Legged Locomotion in the Horizontal Plane

Abstract approved:

John Schmitt
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function evidenced in experiments. We examine improvements in locomotion

performance obtained by utilizing these strategies in terms of gait stability and

robustness to external perturbations, such as those that might be encountered when

running over rough terrain. Leg positioning strategies examined include leg angle

control based upon previous leg angles and leg recirculation strategies that prescribe, in



a feedforward manner, the motion of the leg as it swings from its lift-off to touch-down

positions. Both these protocols provide control authority in re-orienting system

momentum and are shown to improve gait stability and robustness to external

perturbations. While the original reduced order template models leg dynamics by an

energy-conserving spring, we incorporate energetic variations through leg actuation

that varies the force-free leg length during the stance phase while preserving

qualitatively correct force and velocity profiles. In contrast to the partially

asymptotically stable gaits identified in previous analyses, incorporating leg actuation

in conjunction with the leg positioning strategies produces completely asymptotically

stable gaits in body coordinates. Locomotion performance of the resulting model is

subsequently analyzed by computing the basin of stability of our model in response to

energetic perturbations of the type experimentally implemented on running,
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Chapter 1 – Introduction

Sprawled-posture insects are highly maneuverable, exhibiting a remarkable ability to

rapidly run over complex terrain [52, 14] and quickly recover from large external per-

turbations [24]. In contrast to humans and many larger mammals whose movement is

predominantly in the vertical plane with respect to the ground, insect motion occurs pri-

marily in the horizontal plane. Insects are relatively stable in the vertical plane due to

their sprawled posture and multiple leg supports. Thus, our model will be restricted to

the horizontal plane dynamics of the insect. The sprawled posture employed by these

insects naturally produces large lateral forces, yielding locomotion dynamics that occur

largely in the horizontal plane.

Reduced order modeling of these lateral plane locomotion dynamics has been per-

formed primarily through analyses of the lateral leg spring (LLS) model [43, 42]. The

model has been shown to qualitatively reproduce the force, velocity and moment pro-

files exhibited by the cockroach Blaberus discoidalis during fast locomotion [41], have

relevance to other sprawled-posture creatures via the analysis of non-dimensional model

parameters [44], and exhibit partially asymptotically stable gaits without utilizing neural

feedback [43, 42, 41, 44].

Reduced order models have been utilized to effectively represent the underlying

dynamics of legged locomotion in both the sagittal [4, 5, 50, 18] and lateral planes

[43, 42, 41] for a variety of animals and insects. Analyses of these reduced order mod-
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els have often focused on the dynamics and stability of periodic gaits for a fixed leg

angle touch-down protocol, where the leg touch-down angle is fixed to the same value

at the beginning of each stance phase. While utilizing this protocol produces stable gaits

for appropriate choices of the relevant system parameters for both the sagittal [50, 18]

and lateral [43, 44] plane models, implementing a similar leg touch-down protocol in

a three dimensional spatial reduced order model produces only unstable periodic gaits

[47]. Prescribing fixed leg touch-down angles in the bipedal spatial model evidently

precludes proper reorientation of the system momentum in response to perturbations,

leading to gait instability. While the foot placement control law proposed for the spatial

reduced order model is capable of stabilizing the periodic gaits [47], it utilizes sensory

information that may not either be readily available or easily sensed.

While the existing LLS models are capable of recovering from external perturbations

in the velocity heading angle and body angular velocity these models are unable to

recover mass center velocity and leg touch down angle values of the original periodic

gait. This is due to energy conservation and fixed leg touch down protocol respectively

which are inherent in the existing LLS models. Also, none of the previous LLS model

formulations have specified the motion of the leg during the swing phase required to

attain a specific touch-down angle which would contribute to stability by re-orienting

momentum.

In this research we endeavor to introduce biologically inspired control mechanisms

for leg touch down angle control, swing leg recirculation and muscle actuation to ulti-

mately obtain complete asymptotic stability for the point mass LLS model by combining

the control strategies stated above. Thus, we show that the point mass model is capable
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recovering the original gait when subjected to energetic perturbations as in [24, 6].

The purpose of our leg angle control work is to develop a method for systemati-

cally varying the leg touch-down angle to aid in recovering from external perturbations,

utilizing easily sensed variables. To that end, we utilize the simple models of insect

locomotion in the horizontal plane, examined in [42, 43, 44, 31], to obtain analytical

and numerical results concerning the stability properties of gaits utilizing a prescribed

leg touch-down angle control law. Consistent with the limited sensory feedback evi-

dently utilized by sprawled-posture insects during locomotion [52], the leg touch-down

angle control law developed in this work will depend upon a limited number of vari-

ables that are easily sensed by insect mechanoreceptors and will apply control at only

a single point during a stance phase rather than continuously during stance. Experi-

mental studies on the cockroach Blaberus discoidalis suggest that while the intrinsic

force-length properties of muscles produce mechanical feedback that is largely respon-

sible for perturbation recovery within a stance phase, stride to stride gait variations can

occur as a result of neural reflexes [24, 34, 52]. Additionally, when recovering from

significant external perturbations, experimental studies suggest that cockroaches change

foot touch-down positions from those utilized during unperturbed strides [23]. While

gaits of the original horizontal plane model benefit from a simplistic model of preflexes

via the elastic leg spring, the model has no prescription for varying the leg touch-down

angle in response to external perturbations. In our leg angle control work, we wish to

combine the effect of preflexes with low level neural control to improve gait stability by

modifying the leg touch-down angle based upon previous leg angle measurements. In

future studies, we intend to utilize the insight gained from this study, as well as a similar
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one for the sagittal plane model [37, 38], to design a leg touch-down angle control to

stabilize gaits of the spatial model in a similar manner.

While previous LLS model formulations have employed a constant [43, 42, 31] leg

touch-down angle, none have specified the motion of the leg during the swing phase

required to attain a specific touch down angle. However, the development and incorpo-

ration of leg recirculation strategies into a reduced order model of vertical plane loco-

motion, the spring loaded inverted pendulum (SLIP), has yielded performance benefits.

Seyfarth et al. [51] demonstrated that retracting the leg of the SLIP model at a constant

angular velocity, beginning at the apex of the flight phase, improved both gait stability

and the basin of stability. Altendorfer et. al [2] showed that an open-loop controller, sim-

ilar to that developed for the hexapedal robot Rhex [36], utilizing piecewise-linear leg

angle trajectories yielded stable gaits for appropriate parameter ranges of both the point

mass and rigid body SLIP models. It appears that no such studies of leg recirculation

have been performed for the LLS model.

Recent experimental investigations into cockroach locomotion over rough terrain

suggest that leg activation during swing and stance is prescribed primarily in a feed-

forward manner, with neural reflexes serving to modulate activation levels on a longer

timescale [52]. Variations in foot touch-down positions evidenced experimentally in re-

sponse to external perturbations [23] may therefore arise largely from this feedforward

action rather than neural control. Based upon these analyses and experimental results,

we extend the original LLS model by developing a leg recirculation policy that specifies

the angular velocity of the leg during its swing phase in a feedforward manner. From a

theoretical perspective, this study was motivated by the stability improvements obtained
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for small, controlled changes in leg touch-down angles for the LLS model in response

to external perturbations in our leg angle control work introduced above and by the in-

stability of all periodic gaits in the spatial spring loaded inverted pendulum model for a

constant leg touch-down protocol [47]. In this work, we combine the simplistic model

of preflexes of the LLS model with low level neural control required for feedforward leg

recirculation, and determine the effects of this policy on gait stability and robustness. It

is hoped that the results of this swing leg recirculation work will provide insight into the

importance of leg recirculation in insect locomotion and the design of leg recirculation

policies for multi-legged and spatial reduced order models.

The original LLS formulation is energetically conservative, with an elastic leg serv-

ing to store and return energy during the course of a stance phase, yet no physical mech-

anisms have been identified in animals or insects that function in this manner without

also dissipating or producing energy[12]. Instead, the apparently conservative opera-

tion during steady state locomotion results from a variety of muscles working in concert

to produce both negative and positive work during a stance phase, with the net result

resembling dynamics that are well represented by the LLS model. While the origi-

nal LLS model yields force and velocity profiles representative of steady state animal

locomotion, transitions to different speeds and recovery from external energetic pertur-

bations requires non-conservative leg function. Recent experimental investigations into

leg function in insects [12] have begun to provide insight into how non-conservative

leg function may impact gait stability and robustness to external perturbation. Further

insight into leg function in the presence of external perturbations is obtained from exper-

iments with cockroaches running over rough terrain [52]. While locomotion over uneven
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terrain would seem to require significant neural feedback, muscle activation evidenced

in cockroaches running over rough terrain appears to be prescribed in a feedforward

manner; a leg that misses the ground continues to retract, exhibiting muscle activation

levels similar to those employed by legs in contact with the ground [52]. We utilize these

insights into leg function and develop an energetically non-conservative LLS model ca-

pable of recovery from energetic external perturbations via mechanisms similar to those

of its animal counterparts. In our work, energy variations are introduced into the LLS

model through clock-driven actuation of the force-free leg length during each stance

phase. The actuation protocol investigated is employed in a feedforward manner, simi-

lar to the consistent muscle activation patterns evidenced for cockroaches running over

rough terrain.

Stability and robustness to external perturbations is investigated for the point mass

LLS model with leg actuation and a fixed leg touch down angle. Finally we investigate

improving gait stability and robustness by combining leg actuation with leg angle con-

trol, thus obtaining complete asymptotic stability of periodic gaits for the point mass

LLS model.

The thesis is structured as follows. Chapter 2 provides a review of the offset pivot

lateral leg spring (LLS) model [31], which is an extension of the original horizontal

plane model that produces qualitatively correct yawing motions without a moving leg

attachment point. Chapter 3 details the construction of a simple control law that pre-

scribes the leg touch-down angle based upon previous leg angle measurements. Analyt-

ical stability criteria are developed for periodic gaits and are used to confirm the results

obtained from numerical simulation. Numerical simulations are subsequently utilized
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to investigate the performance of the leg angle control law in response to significant

external perturbations in the heading angle. We also numerically investigate the per-

formance of the leg angle control law for the rigid body model with the leg attachment

offset from the center of mass, and show that improved performance is also attained

in this instance. Chapter 4 details the construction of a simple leg swing protocol that

prescribes the leg touch down angle primarily in a feedforward manner during stance.

Similar analytical and numerical analysis as described above for leg angle control is also

carried out for leg swing in Chapter 4. We later modify the swing protocol in order to

better match the more “insect like” swing protocol as calculated from experimental data

and carry out numerical simulations to show improved performance with this refined

swing protocol. Similarity between leg touch down angles employed by the refined leg

recirculation protocol and the leg touch down angle control law developed earlier in

Chapter 3 is examined via perturbation simulations. Chapter 5 details the incorporation

of leg actuation. The leg actuation protocol is discussed in detail followed by stabil-

ity and robustness results obtained numerically for the actuated point mass model with

fixed leg touch down control. Lastly in Chapter 5 we combine leg actuation with leg

angle control to further improve stability and obtain complete asymptotic stability for

the point mass model. Results of gait stability and robustness to external perturbation

for this combined strategy is presented in Chapter 5. We draw conclusions and present

avenues for future work in Chapter 6.
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Chapter 2 – Lateral leg spring (LLS) model

Nomenclature

k spring stiffness

m body mass

I body moment of inertia

l force-free leg length

d distance between center of mass and leg attachment point

η spring leg length (η(0) = l)

ζ distance between foot placement and center of mass

ψ angle ζ makes with local horizontal axis

v center of mass velocity

δ velocity heading angle

θ body rotation angle

θ̇ body angular velocity

β leg angle with respect to body axes

tdes desired swing phase duration

βdes desired leg angle at t = tdes

Terms used in Chapter 4:

β̇ leg angular velocity with respect to body axes

ω leg recirculation amplitude

a leg recirculation frequency

φ leg recirculation phase shift

β̇des desired leg angular velocity at t = tdes
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Hexapedal insects, such as the the cockroach Blaberus discoidalis illustrated in Fig.

2.1, run and climb in an alternating tripod gait with at least three legs in contact with

the ground at any instant. The left tripod consists of the left front, left rear, and the

right middle leg, while the right tripod is comprised of the contralateral legs. While

cockroaches run in an alternating tripod gait, experiments have shown that the forces

produced by these legs during each stance phase may be represented by a single effective

force [17, 15, 54]. This result, in conjunction with the fact that the mass of all the legs

of the insect constitute less than 6% of the total mass, suggests modeling each tripod

of legs by a single, massless effective leg represented by a linear, elastic spring with

force-free length l. In the offset pivot LLS formulation [31], the leg attachment point

is laterally offset from the center of mass by a distance d. For d > 0, as illustrated

for the left stance phase in Fig. 2.1 (b), the leg is attached to the right of the center

of mass. In the corresponding right stance phase for d > 0, the leg attachment point

is reflected about the center of mass. Attaching the leg laterally offset from the center

of mass results in the effective leg force moving fore to aft across the body centerline

during stance, thereby yielding qualitatively correct moment and yawing profiles. As

illustrated in panel (b) of Fig. 2.1, the resulting LLS model is comprised of a rigid body

of mass m, moment of inertia I, and a pair of massless legs, each represented by an

elastic spring. The rigid body represents the head, thorax and abdomen of the insect,

and each effective leg represents the collective effect of the tripod of legs in contact with

the ground during a stance phase. Each effective leg is modeled by a tangentially rigid,

axially-elastic linear spring with force-free length l and spring stiffness k.

A full stride consists of a left and right stance phase. Each stance phase begins when



10

e

e

1

2

d

x

y

G
P

θ

ζ η
ψ

δ

β

β

β

β

δ

n

TD

n

LO

n

TD

n+1

n+1

LO

δTD

n+1

TD
n+2

vn
TD

TD
vn+1

TD
vn+2

(b) (c)

TD

(a)

Figure 2.1: (a) Cockroach morphology (b) LLS rigid body model and (c) illustration of a
single stride (left and right stance phases) for d = 0. Relevant quantities are as explained
in the text: velocity magnitude (v), velocity direction defined from the vertical body axis
(δ ), leg angle (β ), leg length (η), distance from the foot placement to the center of mass
(ζ ), and angle of that ζ makes with respect to the horizontal axis (ψ). Superscripts TD
and LO denote lift-off and touch-down events, while subscripts indicate the particular
stance phase. Leg touch-down and lift-off angles are measured from the body axes but
are illustrated with respect to the inertial axes for clarity. Locomotion occurs in the
positive y direction, from bottom to top in each panel.

one effective leg, extended at its force-free length l, touches the ground at an angle β T D
n

with respect to the body centerline. Superscripts of TD and LO denote values at touch-

down and lift-off respectively, whereas subscripts identify the specific stance phase.

The foot placement point remains fixed during the stance phase and is represented by

a moment free pin joint. Under the influence of its own momentum, the body moves

forward during the stance phase, compressing and extending the elastic leg. When the

force in the leg returns to zero, the leg is lifted from an angle β LO
n and the opposite

stance leg is placed down at an angle β T D
n+1. A duty factor of 0.5 is employed, such

that the next effective leg touches down at the instant the previous leg is lifted. While

simple feedback control is utilized for leg placement in this work, no energy is required

to move the leg to the prescribed position since the leg has no mass. As a result, energy
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is globally conserved, since no impacts or impulses occur.

The equations of motion for each stance phase are derived via Lagrange’s equations

in [31] and summarized here, implemented with a linear spring leg:

ζ̈ = ζ ψ̇2− k(η− l) [ζ +d cos(θ − (−1)nψ)]
mη

(2.1)

ζ ψ̈ = −2ψ̇ζ̇ − (−1)nk(η− l)d sin(θ − (−1)nψ)
mη

(2.2)

Iθ̈ =
k(η− l)dζ sin(θ − (−1)nψ)

η
(2.3)

As illustrated in second panel of Figure 2.1, η is the spring leg length, ζ is the distance

between the foot placement point and the center of mass, d is the distance between

the leg attachment point (P) and the center of mass (G), θ is the body rotation, and ψ

denotes the angle ζ makes with the lateral inertial axis. Superscripts of n in the equations

of motion denote the stance phase, with n even corresponding to left stance phases and

n odd corresponding to right stance phases.

While the equations of motion (2.1-2.3) are essential for locomotion simulations of

the model, insight into the stability properties of the resulting periodic gaits are more

easily obtained with the state of the system defined at each leg touch-down and lift-off

instant by (v,δ ,θ , θ̇ ,β ). Here, v represents the center of mass velocity and δ represents

the velocity heading angle with respect to the body centerline, as illustrated in the third

panel of Fig. 2.1. A Poincaré map is defined, as in previous studies of stability of lo-

comotion models [32, 28, 43, 18, 2, 9], to identify periodic orbits and characterize gait

stability. In this work, the Poincaré section is defined as the instant of leg touch-down.

Since no external torques or forces act on the system, both system energy and angu-
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lar momentum about the foot placement point are conserved. Using these conserved

quantities, in conjunction with the stance phase geometry illustrated in the third panel

of Figure 2.1, yields the following Poincaré map for d = 0 and a fixed leg touch-down

angle:

vT D
n+1 = vT D

n (2.4)

δ T D
n+1 = δ T D

n +β LO
n −β T D

n +(−1)nωτ (2.5)

θ T D
n+1 = θ T D

n +ωτ (2.6)

β T D
n+1 = β T D

des (2.7)

where ω = θ̇ T D
n , β LO

n = π−∆ψ−β T D
n and β T D

des denotes a constant, desired leg touch-

down angle for a periodic gait. For the point mass case (d = 0), a fixed point of the

mapping, which represents a periodic orbit in the continuous system, requires ω = 0

and β T D
n = β LO

n . Linearizing the mapping about a fixed point yields the Jacobian matrix,

whose eigenvalues govern local stability of the orbit.
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Chapter 3 – Improving horizontal plane locomotion via leg angle control

While utilizing a fixed leg touch-down angle protocol produces stable gaits for the planar

LLS model [43, 42, 44, 31], improving the stability and disturbance rejection properties

of the spatial spring loaded inverted pendulum (SLIP) model requires a protocol for sys-

tematically varying the leg touch-down angle in response to perturbations. Objectives

guiding the development of a leg touch-down angle control for the LLS model include:

enabling stabilization of previously unstable periodic gaits, producing improvements in

periodic gait stability, improving gait robustness to external perturbations, and incorpo-

rating easily sensed variables and limited neural feedback. Pursuant to the last objective,

the control formulation proposed in this work utilizes variables that are easily sensed by

insect mechanoreceptors, such as the chordotonal organs that provide information re-

garding joint angles [55], rather than those that would prove more difficult, such as

heading angle. Developing a control formulation based upon joint angles defined in the

body frame also simplifies sensing and control in practical applications [2], increasing

the relevance of this work for legged robotic applications. Given the limited neural feed-

back apparently utilized by the insect during stance, control is applied only at the start

of each stance phase, through the leg touch-down angle, rather than continuously dur-

ing stance. The construction and analysis of such a protocol for the LLS model can be

viewed as a first step in the development of a similar protocol for the spatial LLS model.

The composition of the left and right stance phase locomotion dynamics result in a
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hybrid system. As in previous analyses of the LLS model [43, 44, 31], it is anticipated

that even controlled periodic gaits of the system will exhibit, at best, partial asymptotic

stability. As long as the control formulation introduced does not destroy the symmetries

(rotational invariance) and conserved quantities (energy) of the model, periodic gaits

will retain one or more neutral eigendirections with a unity eigenvalue. Perturbations to

partially asymptotically stable gaits in these neutral eigendirections will therefore result

in convergence to a new gait rather than re-stabilization to the unperturbed gait. For

example, for an energetically conservative system such as the LLS model, energetic

perturbations that change the touch-down velocity of the center of mass will result in

the attainment of a new periodic gait characteristic of a different energy level, since the

LLS model contains no mechanism by which energy can be added or removed from the

system. However, perturbations in the direction of the eigenvectors of stable eigenvalues

will result in convergence to the unperturbed gait.

3.1 Leg touch-down angle control for d = 0

3.1.1 Control law formulation

The leg touch-down control law is developed by representing the Poincaré map (2.4-

2.7), linearized about the fixed point, in a standard linear control formulation as

x̄T D
n+1 = Ax̄T D

n +BuT D
n (3.1)

uT D
n = β T D

n −β T D
des (3.2)
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where A is the Jacobian matrix, x̄ = [(v− vdes) (δ −δdes)]T , and B represents the effect

of the control parameter (un) on the system dynamics. As in traditional state feedback

control, the control is formulated based upon the deviation from a desired operating

point

β T D
n −β T D

des =−
[

j k

]



vT D
n − vT D

des

δ T D
n −δ T D

des


 (3.3)

where (vT D
des,δ

T D
des ,β T D

des ) represent the fixed point values of the linearization, or the initial

conditions of a periodic orbit in the continuous system. Since no mechanism exists in

this model formulation to add or remove energy during a stance phase, vT D
n = vT D

des, such

that

β T D
n −β T D

des =−k
(
δ T D

n −δ T D
des

)
. (3.4)

This intuitive control law is similar in nature to that utilized by Seipel and Holmes for

stabilization of gaits in the spatial SLIP model [47]. As the heading angle deviates

further from the desired value, the leg touches down at an increased angle from the body

centerline to properly reorient the momentum. However, stabilization via this control

law still requires sensing of the heading angle at the beginning of each stance phase,

as well as explicit knowledge of the desired heading angle. To eliminate this explicit

dependence on the heading angle, we first apply control to successive iterates of the

mapping, yielding

x̄T D
n+1− x̄T D

n = A(x̄T D
n − x̄T D

n−1)+B(β T D
n −β T D

n−1) (3.5)

β T D
n −β T D

n−1 = −k(δ T D
n −δ T D

des )+ k(δ T D
n−1−δ T D

des ) =−k(δ T D
n −δ T D

n−1) . (3.6)
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Subsequently, we employ the heading angle map (2.5) to remove the dependence of the

control law on the heading angle such that

β T D
n = β T D

n−1− k(β LO
n−1−β T D

n−1) . (3.7)

While this representation yields a control law in terms of leg touch-down and lift-off

angles that are easily sensed by insect mechanoreceptors, it removes any dependence

on the reference leg touch-down angle that identifies the desired periodic gait. Utilizing

this control law for appropriate values of k results in gaits that are Lyapunov stable;

perturbations in δ T D
n or β T D

n result in stabilization to a nearby periodic gait rather than

re-stabilization to the original periodic gait. To ensure convergence to the original gait

in response to external perturbations, we reintroduce the dependence on a desired leg

touch-down angle and generalize the control law as

β T D
n+1 = c1β T D

n + c2β LO
n + c3β T D

des (3.8)

where c1, c2 and c3 are constants.

While periodic gaits exist such that β T D
n+2 = β T D

n = β T D
des with β T D

n+1 6= β T D
n 6= β LO

n ,

we seek to stabilize only reflection symmetric periodic gaits in this generalized control

formulation. For reflection symmetric periodic gaits, the right stance phase is a mirror

image of the left, which requires β T D
n+1 = β T D

n = β LO
n = β T D

des . To ensure that the gener-

alized control formulation proposed in (3.8) admits reflection symmetric periodic gaits,
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we substitute this symmetry relationship into the control law to obtain the constraint

c1 + c2 + c3 = 1 . (3.9)

As a result, only two of the three constants are free parameters, with the third derived

from the above relationship.

3.1.2 Periodic gait stability with control

Both analytical and numerical analyses are performed to determine the effectiveness

of the proposed control law in terms of gait stability and robustness to external per-

turbations. The analytical periodic gait eigenvalue approximations developed in this

section serve to validate our numerical computations. Numerical model simulations

are performed using the Runge-Kutta integrator ode45 in Matlab, with leg lift-off

events determined numerically to a precision of 10−11 using the events functionality

of ode45. Periodic orbits of the continuous system are identified by examining the

difference between the initial states (vT D
n ,δ T D

n ,β T D
n ) and those at the next leg touch-

down (vT D
n+1,δ

T D
n+1,β

T D
n+1). Utilizing this difference in a Newton-Raphson iteration, im-

plemented in fsolve in Matlab, results in the periodic gaits presented in this paper.

As in previous analyses [32, 28, 18, 43, 42], gait stability is governed by the eigen-

values of the Poincaré map linearized about the fixed point. Numerically, central dif-

ference approximations are utilized to generate the Jacobian matrix. Eigenvalues of the

resulting matrix determine gait stability, with unstable gaits having at least one eigen-
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Figure 3.1: Family of periodic gaits (v,δ ) for d = 0 and β T D
des = 1 as a function of

(a) the touch-down velocity, vT D
n and (b) the mean forward speed throughout the stride

< v >. Stable and unstable periodic gaits of the gait family are denoted by solid and
dashed lines, respectively (c) Eigenvalue magnitudes of each periodic gait, with the gait
identified by the mean forward speed. All other model parameters are held constant at
values characteristic of Blaberus discoidalis, as described in the text.

value greater than unity in magnitude. Stable gaits have all eigenvalue magnitudes less

than or equal to unity, with unity eigenvalues identifying directions of neutral stability.

As explained previously, due to conserved quantities, stable gaits are therefore only par-

tially asymptotically stable and cannot recover to the original fixed point if perturbed in

the direction of a neutrally stable eigenvector.

Analytical and numerical investigations are performed with model parameters set to

values similar to those utilized in previous locomotion studies of the cockroach Blaberus

discoidalis [54, 25, 26, 42, 41]: spring stiffness (k) of 2.25 N/m, mass (m) of 0.0025

kg, force-free leg length (l) of 0.01 m, moment of inertia (I) of 2.06× 10−7 kg m2,

and a desired leg touch-down angle (β T D
des ) of 1.0 radians. Model parameters are chosen

to accurately reproduce insect force and velocity profiles, as well as stride length and

frequency [54] at the desired running speed of the insect, 0.25 m/s.

For the standard parameter set, a one parameter family of periodic gaits exists, pa-
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rameterized by the touch-down velocity vT D
n . For each touch-down velocity, numer-

ical computation of the fixed point of the Poincaré map and the associated eigenval-

ues of the Jacobian lead to the plots of Fig. 3.1. While periodic gaits exist over the

whole speed range utilized by Blaberus discoidalis, not all gaits are stable for the nom-

inal leg touch-down protocol used, β T D
n+1 = β T D

n . As illustrated in panel (c) of Fig. 3.1

for (c1,c2,c3) = (1,0,0), the only non-unity eigenvalue for these gaits corresponds to

the heading angle (δ ). As a result, periodic gaits for the leg touch-down policy of

β T D
n+1 = β T D

n cannot recover from perturbations in β T D
n or vT D

n , due to the unity eigen-

values corresponding to these states. As illustrated in panel (a), the family of periodic

gaits is divided into upper and lower branches that differ in terms of gait stability. As

the touch-down velocity decreases along the lower branch, the heading angle increases

to overcome the potential energy of the spring and move the body forward past the

foot placement point. For a given touch-down angle, the gaits of the lower branch ulti-

mately destabilize via a saddle node bifurcation at a critical touch-down velocity, below

which no periodic gaits exist. To achieve periodic gaits with average forward velocities

below that of the bifurcation point requires larger touch-down velocities and heading

angles. The upper branch of the gait family is comprised of these unstable gaits, which

have larger lateral oscillations that cannot be stabilized by a fixed leg touch-down angle

protocol. However, incorporating the leg touch-down protocol based on previous leg

angles will enable modification of gait stability. Since periodic gait symmetry requires

β T D
n = β LO

n = β T D
des , changes in the parameters ci will only change the stability of each

gait, since each periodic gait remains periodic for any choices of ci that satisfy the gait

symmetry constraint (3.9).
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We validate our numerical eigenvalue results by computing the eigenvalues analyt-

ically from the linearized Poincaré map. Since knowledge of the leg touch-down angle

is required to fully define the state of the system, we augment our system state with the

leg touch-down control law, such that the linearization of the Poincaré map about the

fixed point for a single stance phase yields

D f =




1 0 0

· · · 1− ∂∆ψ
∂δ T D

n
−

(
2+ ∂∆ψ

∂β T D
n

)

· · · −c2
∂∆ψ
∂δ T D

n
(c1− c2)− c2

∂∆ψ
∂β T D

n




. (3.10)

In the above, · · · represent values that do not enter into the eigenvalue computation and

∆ψ represents the leg angle swept during stance. The mapping above represents the

mapping for a single stance phase; the full-stride map consists of a composition of the

stance phase maps for a left and a right stance phase. Since only symmetric periodic

gaits are investigated in this work, the stance phase maps for left and right stance phases

are equivalent. As a result, while analytical expressions for the single stance phase map

are computed below, eigenvalues for the full-stride mapping are simply the square of the

eigenvalues for the single stance phase map. We determine the characteristic equation

governing the eigenvalues, as detailed in Appendix A, as

z(λ ) = (λ −1)
[

λ 2 +
(
−c1 + c2 + c2

∂∆ψ
∂β T D

n
−1+

∂∆ψ
∂δ T D

n

)
λ+

c1

(
1− ∂ ∆ψ

∂δ T D
n

)
− c2

(
1+

∂∆ψ
∂δ T D

n
+

∂∆ψ
∂β T D

n

)]
= 0 (3.11)

One eigenvalue of (3.11) is unity, corresponding to energy conservation, while the other
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two emerge from the inner quadratic equation. The inner quadratic equation explic-

itly depends upon the leg angle swept during stance, ∆ψ , an expression for which is

constructed from the conservation of angular momentum and energy during the stance

phase in [43], as summarized in Appendix A.

The characteristic equation (3.11) can be simplified further since, as detailed in Ap-

pendix A, ∂∆ψ
∂β T D

n
= − ∂∆ψ

∂δ T D
n

, yielding the following expression for the two potentially

non-unity eigenvalues

λ 2 +
[
−c1 + c2 +(1− c2)

∂∆ψ
∂δ T D

n
−1

]
λ + c1

(
1− ∂∆ψ

∂δ T D
n

)
− c2 = 0 (3.12)

This characteristic equation governs periodic gait stability for the LLS model with any

leg representation; spring laws other than the linear one considered here simply result

in a different definition of ∆ψ . While straightforward, computing the derivative ∂∆ψ
∂δ T D

n

required for the analytical eigenvalue computation is lengthy and left to Appendix A.

With the approximation for ∂∆ψ
∂δ T D

n
developed in Appendix A, the analytical eigenvalue

approximation is evaluated and compared to numerical results in Fig. 3.2. As illustrated,

the analytically computed eigenvalues compare well with those computed numerically

over almost the entire speed range, despite the approximation utilized in computing

∂∆ψ
∂δ T D

n
.

In contrast to the nominal leg touch-down protocol β T D
n+1 = β T D

n , changes in the

values for (c1,c2,c3) result in a second eigenvalue, corresponding to the leg touch-down

angle, moving within the unit circle. Periodic gaits under this leg touch-down protocol,

for appropriate choices of (c1,c2,c3), are therefore able to recover from perturbations to
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Figure 3.2: Comparison between numerical and analytical eigenvalue computations
along a gait family for d = 0 and β T D

des = 1. (a) Stable (solid) and unstable (dashed)
periodic gaits for a gait family for (c1,c2,c3) = (−0.25,−0.1,1.35) (b) Stable (solid)
and unstable (dashed) periodic gaits for a gait family for (c1,c2,c3) = (0.2,1.0,−0.2) (c)
Eigenvalues of the periodic gaits of the gait family for (c1,c2,c3) = (−0.25,−0.1,1.35)
(d) Eigenvalues of the periodic gaits of the gait family for (c1,c2,c3) = (0.2,1.0,−0.2).
Numerical and analytical computations of the eigenvalues in panels (c) and (d) are rep-
resented by solid and dotted lines, respectively. All other model parameters are held
constant at values characteristic of Blaberus discoidalis, as described in the text.

the leg touch-down angle. As well, the panels of Fig. 3.2 illustrate that gait stability can

be dramatically affected through the choice of (c1,c2,c3). Specifically, as illustrated in

panels (b) and (d), appropriate choice of the ci values can result in stabilization of gaits

at the lower end of the speed range, which were previously unstable. However, choices

of ci that result in stabilization of the lower half of the speed range destabilize gaits at

higher speeds. This result is expected, since while two fixed points exist for a given

(vT D
n ,β T D

des ) combination, as illustrated in the first panel of Fig. 3.1, only one can be

stable for a given choice of ci.
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Figure 3.3: Recovery of a periodic gait, (vT D
des,δ

T D
des ,β T D

des ) = (0.2186,0.87,1) from
an external perturbation in the heading angle, δpert = −0.3 rad., for (c1,c2,c3) =
(0.2,1.0,−0.2), d = 0. (a) Forward velocity (b) Lateral velocity (c) Leg touch-down
angle (β T D

n ) at the beginning of each stance phase (d) Leg touch-down and heading an-
gle at the beginning of each stance phase. All other model parameters are held constant
at values characteristic of Blaberus discoidalis, as described in the text.

An example of the performance of the control protocol in stabilizing a previously

unstable periodic gait is illustrated in Fig. 3.3. The panels of Fig. 3.3 illustrate recov-

ery of a periodic gait (vT D
n ,δ T D

n ,β T D
n ) = (0.2186,0.87,1.0) from a significant external

perturbation in the heading angle, δpert = −0.3 radians. While this periodic gait is

strongly unstable for the previously studied leg touch-down protocol of β T D
n+1 = β T D

n ,

with a heading angle eigenvalue of 26.4, utilizing the leg touch-down protocol (3.8)

with (c1,c2,c3) = (0.2,1.0,−0.2) produces gait stabilization with a maximum non-unity

eigenvalue magnitude of 0.031. While the magnitude of the perturbation moves the or-

bit outside of the range of applicability of the linearized Poincaré map, for which the

leg touch-down angle control was designed, the leg touch-down protocol is still able to

recover the original periodic gait within approximately 14 stance phases. Stabilization
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in this instance, and in other simulations, is achieved through relatively small (< 0.3

radians) deviations from the desired leg touch-down angle. Such magnitudes are con-

sistent with the natural variation in foot placement exhibited by individual legs during

both steady state locomotion [27] as well as during recovery from rapid impulse per-

turbations [23]. While the recovery rate exhibited in this instance is slower than that

predicted by the linearized mapping eigenvalues, smaller perturbations, for which the

linearized mapping has more relevance, demonstrate recovery rates closer to those pre-

dicted by the eigenvalues of the linearized Poincaré map. The stabilization illustrated

in Fig. 3.3 is not unique to this instance, perturbations to other previously unstable peri-

odic gaits also result in re-stabilization for appropriate choices of ci, as will be examined

further in section 3.1.4.

3.1.3 Gait stability for variations in ci

While choices for ci have a significant effect on periodic gait stability, insight into appro-

priate bounds for these parameters is difficult to obtain from the characteristic equation

in the form given by (3.12). To determine bounds on ci that ensure stability, we trans-

form (3.12) via a bilinear transformation to obtain the characteristic equation

z(s) = z(λ =
1+ s
1− s

)(1− s)2

= (2− ∂∆ψ
∂δ

)(1+ c1− c2)s2 +2(1− c1(1− ∂∆ψ
∂δ

)+ c2)s+

∂∆ψ
∂δ

(1− c1− c2) . (3.13)
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The characteristic equation in this form provides necessary and sufficient conditions

for all eigenvalues of the mapping to remain within the unit circle. Specifically, for a

second order characteristic equation, the Routh-Hurwitz criterion requires that all coef-

ficients of the orders of s present in the characteristic equation be greater than zero for

all eigenvalues to have magnitude less than unity. Since ∂∆ψ
∂δ < 2 [43], the following

three conditions must be satisfied to obtain stable gaits

1+ c1− c2 > 0 (3.14)

1− c1 +
∂∆ψ
∂δ

c1 + c2 > 0 (3.15)

∂∆ψ
∂δ

(1− c1− c2) > 0 (3.16)

Values for c1, c2 and ∂∆ψ
∂δ that yield an equality in any of the above conditions result in

a stability boundary, since at least one eigenvalue will have unity magnitude. While the

first and third conditions produce stability boundaries in the (c1,c2) plane independent

of ∂∆ψ
∂δ , the second condition produces a stability boundary whose slope is 1− ∂∆ψ

∂δ .

Examining these conditions reveals that regions of stability or stability boundaries in

the (c1,c2) plane are qualitatively different for 1 < ∂∆ψ
∂δ < 2, 0 < ∂∆ψ

∂δ < 1, and ∂∆ψ
∂δ < 0.

Determining appropriate bounds on ci to ensure for stability of a particular periodic gait

requires identifying the association between ∂∆ψ
∂δ and branches of periodic gaits of the

gait family, to which we now turn.

Since each gait family, such as that illustrated in Fig. 3.1, is defined for a constant

leg touch-down angle, the choice of ci does not influence the value of ∂∆ψ
∂δ for any of the

periodic gaits comprising the gait family. However, the association between ∂∆ψ
∂δ and
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branches of the gait family is best illustrated for the nominal leg touch-down protocol

of (c1,c2,c3) = (1,0,0), for which the characteristic equation (3.12) simplifies to

(λ −1)
(

λ −
(

1− ∂∆ψ
∂δ

))
= 0 . (3.17)

It is clear from (3.17) and the gait family illustrations of Fig. 3.1 that ∂∆ψ
∂δ = 0 at the

saddle node bifurcation point, which corresponds to the point separating the lower and

upper branches of the gait family in the first panel of Fig. 3.1. For the lower branch of

the gait family, ∂∆ψ
∂δ > 0, and for the upper branch ∂∆ψ

∂δ < 0. As a result, the sign of ∂∆ψ
∂δ

identifies which branch of the gait family the periodic gait belongs to, which is essential

in identifying values of ci that stabilize gaits of either the lower or upper branches via

(3.14-3.16).

Contour plots of the maximum non-unity eigenvalue magnitude variation for repre-

sentative periodic orbits as a function of (c1,c2) are presented in Fig. 3.4. Panels (a)-(c)

illustrate eigenvalue magnitudes as computed from the analytical approximation for pe-

riodic orbits with 1 < ∂∆ψ
∂δ < 2, 0 < ∂∆ψ

∂δ < 1, and ∂∆ψ
∂δ < 0, respectively. Panels (d)-(f)

present numerically computed eigenvalue magnitudes for comparison purposes. In all

plots, the dotted lines indicate the stability boundaries of conditions (3.14-3.16). Since

∂∆ψ
∂δ differs for each periodic orbit of a gait family, these plots are only representative of

the stability regions for the range of ∂∆ψ
∂δ considered; the slope of the bottom stability

boundary as well as the specific eigenvalue variation within the stability boundaries is

specific to a particular fixed point.

The panels of Fig. 3.4 when viewed from left to right correspond to moving along
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Figure 3.4: Contour plots of the maximum non-unity eigenvalue for representative pe-
riodic orbits, with d = 0, as a function of (c1,c2). Panels (a)-(c) illustrate the ana-
lytical approximation of the maximum non-unity eigenvalue, while panels (d)-(f) rep-
resent the numerical eigenvalue calculation for the periodic orbits of (a)-(c), respec-
tively. (a) (vT D

des,δ
T D
des ,β T D

des ) = (0.256,0.09,1.0), ∂∆ψ
∂δ T D

n
= 1.34 (b) (vT D

des,δ
T D
des ,β T D

des ) =

(0.192,0.2,1.0), ∂∆ψ
∂δ T D

n
= 0.83 (c) (vT D

des,δ
T D
des ,β T D

des ) = (0.175,0.64,1.0), ∂∆ψ
∂δ T D

n
= −0.81.

Dashed lines in each plot represent the stability boundaries determined by equations
(3.14-3.16). All other model parameters are held constant at values characteristic of
Blaberus discoidalis, as described in the text.

the gait family of Fig. 3.1 from higher to lower average velocity. Examining panels

(a) and (b) of Fig. 3.4 with this knowledge reveals that a large range of values of ci

stabilize the periodic gaits of the lower branch, although the lower bound of stabilizing

c2 values varies as determined by c2 = c1(1− ∂∆ψ
∂δ )−1. Considering the limiting cases

of ∂∆ψ
∂δ = 0 and ∂∆ψ

∂δ = 2, we can conclude that values of (c1,c2) within the diamond

defined by the lines c2 = c1 +1, c2 =−c1 +1, c2 = c1−1 and c2 =−c1−1 will ensure
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stability for all gaits of the lower branch of the gait family. Examination of panel (c)

reveals that the previously unstable periodic gaits of the upper branch can be stabilized

through choice of ci within the stability boundaries. Unfortunately, a region of ci that

guarantees stability for gaits of the upper branch cannot be constructed, since decreases

in ∂∆ψ
∂δ result in continual increases in the slope of the bottom stability boundary, thereby

reducing the range of ci values that yield stable gaits. While a wide range of ci will

therefore stabilize gaits of the upper branch near the saddle node bifurcation (where ∂∆ψ
∂δ

is small), the range of stabilizing ci values decreases as one considers gaits further away

from the saddle node bifurcation. In all instances, comparison of the analytical results

of panels (a)-(c) with the numerical computations of (d)-(f) confirm that the analytical

eigenvalue approximation remains relatively accurate over a wide range of ci.

Additionally, these figures illustrate that gait stability can be improved from that of

the nominal leg touch-down protocol of β T D
n+1 = β T D

n or β T D
n+1 = β T D

des through appropriate

choice of ci. For any periodic gait, values of ci resulting in maximum stability (i.e. two

zero eigenvalues) can be determined from (3.12) by setting the coefficients of the lower

orders of λ to zero, yielding

c1 =
1− ∂∆ψ

∂δ
∂∆ψ
∂δ

(
∂∆ψ
∂δ −2

) (3.18)

c2 = c1−
1− ∂∆ψ

∂δ
∂∆ψ
∂δ −2

(3.19)

c3 =
1

∂∆ψ
∂δ

. (3.20)

While these relationships provide a means of calculating values of ci that result in maxi-
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mum stability for a particular periodic gait, they require knowledge of ∂∆ψ
∂δ and therefore

the full state of the system, thereby limiting their practical utility.

Determining additional information about the qualitative behavior of gaits as a func-

tion of ci requires analysis of the possible bifurcations that may occur as ci values cross

stability boundaries. To determine the types of possible bifurcations that may occur, we

substitute equalities for (3.14-3.16) into the original single stance phase characteristic

equation and examine the square of the resulting eigenvalues. For the boundaries de-

fined by c1 + c2 = 1 and c1− c2 =−1, a single eigenvalue passes through 1, indicating

a saddle node bifurcation. For the bottom boundary defined by 1−c1 + ∂∆ψ
∂δ c1 +c2 = 0,

a pair of complex conjugate eigenvalues pass through the unit circle, indicating a Hopf

bifurcation. Simulations for ci just outside of this stability boundary did not reveal any

stable quasi-periodic gaits. Rather, while oscillations in stride variables appear quasi-

periodic, they grow in magnitude with time.

3.1.4 Periodic gait recovery from perturbations

While eigenvalues of the linearized Poincaré map provide gait stability information, they

do not indicate the range of perturbations for which the system will recover the original

periodic gait. To determine the robustness of the control law to external perturbations,

we subject each periodic gait of the gait family to a range of perturbations in the heading

angle, δ T D
n . For a gait family defined for a particular β T D

n , limiting values of δ T D
n occur

at δ T D
n = β T D

n (mass directly compresses the spring) and δ T D
n = β T D

n −π/2 (glancing

contact). For each fixed point of the gait family, the starting value of δ T D
n is varied
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Figure 3.5: Contour plots of the number of stance phases required for recovery from
external perturbations in δ T D

n for d = 0 and β T D
des = 1. Panels (a) and (b) illustrate the

basin of stability for periodic gaits of the lower branch for (a) the nominal leg touch-
down protocol (c1,c2,c3) = (1,0,0) and (b) the applied leg touch-down control law
with (c1,c2,c3) = (−0.25,−0.1,1.35). Panel (c) illustrates the basin of stability for
periodic gaits of the upper branch for the leg touch-down control law with (c1,c2,c3) =
(0.2,1.0,−0.2). In each plot, the original periodic gait family is indicated with a dotted
line. All other model parameters are held constant at values characteristic of Blaberus
discoidalis, as described in the text.

between these limits and simulations are run for 100 stance phases. The number of

stance phases required for the system to recover the original periodic gait (if applicable)

is subsequently recorded. For the purposes of this work, recovery is defined as all stride

variables returning and remaining within 1% of the original periodic gait. Simulations

are conducted with a fixed set of ci values representative of values that stabilize either

the lower or upper branches of the gait family.

The panels of Fig. 3.5 illustrate the basin of stability for the nominal leg touch-down

protocol (c1,c2,c3)= (1,0,0) as well as the control law with (c1,c2,c3)= (−0.25,−0.1,1.35)

and (c1,c2,c3) = (0.2,1.0,−0.2). Perturbations in the heading angle considered in these

simulations typically move the system out of the range for which the linearized Poincaré

map has relevance, and for which the control law was designed. The basin of stability
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for periodic gaits comprising the lower branch of the gait family is illustrated in the first

two panels of Fig. 3.5 for both the nominal leg touch-down protocol and the leg touch-

down control law, respectively. The results of these panels reveal that the control law is

not only able to reproduce the large basin of stability evidenced by the fixed angle leg

touch-down protocol, but is also able to improve the recovery rate for a large number of

the gaits of the gait family. This improved recovery rate for higher speeds comes at a

cost of a slightly reduced recovery rate for gaits at the lower end of the speed range. The

third panel of Fig. 3.5 illustrates that not only is the control law capable of stabilizing

the previously unstable periodic gaits of the upper branch of the gait family, but that the

resulting stabilized gaits have a relatively large basin of stability.

3.2 Control effectiveness for d 6= 0

While attaching the effective leg laterally offset from the center of mass produces yaw-

ing motions that qualitatively resemble those of the insect [25, 41], it also couples the

translational and rotational dynamics. This dynamic coupling creates difficulties in de-

veloping analytic solutions describing gait stability in a manner similar to the d = 0

case. As a result, numerical simulations are utilized to analyze the effectiveness of the

leg touch-down control law for the d 6= 0 case.

As in the d = 0 case, a one parameter family of periodic gaits exists for each leg

touch-down angle, parameterized by the touch-down velocity, vT D
n . As illustrated in

Fig. 3.6 for β T D
n = 1, periodic gaits are significantly less stable as a result of the cou-

pling of the translational and rotational dynamics, with the eigenvalue corresponding to
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Figure 3.6: (a-b) Periodic gait family (v,δ ,θ , θ̇) for d = 0.002 and β T D
des = 1 as a function

of the touch-down velocity, vT D
n . Stable and unstable periodic gaits of the gait family

are denoted by solid and dashed lines, respectively (c) Eigenvalue magnitudes of each
periodic gait, with the gait identified by the touch-down velocity. All other model pa-
rameters were held constant at values characteristic of Blaberus discoidalis, as described
in the text.

angular velocity remaining at a value near 0.8 for each gait of the lower branch. As a

result, recovery rates evidenced for the d 6= 0 case are significantly slower than those of

the d = 0 case. Additionally, since the system has a unity eigenvalue corresponding to

body rotation, non-energetic gait perturbations result in stabilization back to the original

gait in body coordinates, but not in inertial coordinates.

Dynamic coupling also significantly changes the Poincaré map of the system, upon

which the original leg touch-down control law was based. While the original control law

does not explicitly account for the presence of rotational dynamics in the heading angle

map (and vice-versa), prescribing leg touch-down angle changes with respect to the

body frame may still have utility for the d 6= 0 case. We therefore proceed with analyses

similar to those utilized for the d = 0 case, first determining the effect of variations

of (c1,c2) on gait stability. As illustrated in the panels of Fig. 3.7, gait stability can

also be improved for d 6= 0 through the use of this control law. Each panel illustrates
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Figure 3.7: Contour plots of the maximum non-unity eigenvalue variation
for representative periodic orbits with d = 0.002 as a function of (c1,c2).
(a) (vT D

des,δ
T D
des ,θ T D

des , θ̇ T D
des ,β T D

des ) = (0.253,0.09,0.0015,0,1.0), ∂∆ψ
∂δ T D

n
= 1.57

(b) (vT D
des,δ

T D
des ,θ T D

des , θ̇ T D
des ,β T D

des ) = (0.189,0.2,0.0034,0,1.0), ∂∆ψ
∂δ T D

n
= 0.96 (c)

(vT D
des,δ

T D
des ,θ T D

des , θ̇ T D
des ,β T D

des ) = (0.172,0.64,0.015,0,1.0), ∂∆ψ
∂δ T D

n
= −1.03. All other

model parameters are held constant at values characteristic of Blaberus discoidalis, as
described in the text.

the performance of the control law for d = 0.002, for representative cases similar to

those investigated for d = 0. While the maximum non-unity eigenvalue for the nominal

leg touch-down protocol remains at about 0.8 for the entire lower branch, panels (a)

and (b) illustrate that a maximum non-unity eigenvalue of magnitude 0.5− 0.6 can be

attained by placing increased emphasis on the leg lift-off angle (i.e. increasing c2) with

c1 slightly positive. Unlike the d = 0 case, maximal stability (two zero eigenvalues)

cannot be attained through implementation of this control law. The third panel, however,

illustrates that a maximum non-unity eigenvalue of approximately 0.1 can be attained

to stabilize a gait of the upper branch of the gait family through appropriate selection

of (c1,c2). It appears that the larger forces generated by gaits of the upper branch of

the gait family provide more control authority than the forces generated for gaits of the

lower branch, which aids in improving the stabilization of the rotational dynamics.
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Figure 3.8: Contour plots of the number of stance phases required for recovery from
external perturbations in δ T D

n for d = 0.002 and β T D
des = 1. Panels (a) and (b) illus-

trate the basin of stability for periodic gaits of the lower branch for (a) the nomi-
nal leg touch-down protocol (c1,c2,c3) = (1,0,0) and (b) the applied leg touch-down
control law with (c1,c2,c3) = (−0.1,0.3,0.8). Panel (c) illustrates the basin of sta-
bility for periodic gaits of the upper branch for the leg touch-down control law with
(c1,c2,c3) = (0.2,1.0,−0.2). In each plot, the original gait family is indicated with
a dotted line. All other model parameters are held constant at values characteristic of
Blaberus discoidalis, as described in the text.

The recovery of periodic gaits from significant external perturbations in the heading

angle δ T D
n is illustrated in the panels of Fig. 3.8 for d = 0.002. Similar to the d = 0

case, implementing the leg angle control law enables recovery of the original periodic

gaits for a wide range of perturbations, even though the control law was designed for the

linearized, point mass system. Additionally, for periodic gaits of the lower branch of the

gait family, implementing the control law significantly improves the recovery rate and

enlarges the basin of stability. Periodic gaits for the upper branch of the gait family are

not only stabilized through the control law, but actually exhibit a larger basin of stability

than those of the d = 0 case. The recovery rate exhibited by these gaits is also better

than that exhibited by gaits of the lower branch. This result lends further support to

the argument that the larger forces exhibited for gaits of the upper branch provide more
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Figure 3.9: Body frame foot touch-down positions for (a) individual legs of the cock-
roach Blaberus discoidalis, obtained experimentally from six runs (S. Revzen, 2008,
personal communication, Polypedal Lab, University of California at Berkeley) and (b)
the controlled rigid body model recovering from perturbations in the heading angle. In
each figure, dots indicate foot touch-down positions, an angle of zero degrees denotes
the fore-aft body axis, circles indicate distance in cm, x values denote the mean foot
touch-down position and dotted lines indicate the standard deviation in the leg touch-
down angle. Model simulations utilized d = 0.002 and (c1,c2,c3) = (−0.1,0.3,0.8),
with all other parameters characteristic of Blaberus discoidalis.

control authority over the rotational dynamics, leading to improved stabilization rates.

Variations in foot touch-down positions employed by cockroaches running over flat

terrain are compared to those utilized in simulations in Fig. 3.9 and Table 3.1. Foot

touch-down positions utilized by Blaberus discoidalis while running on a treadmill were

extracted from experimental data collected and provided by S. Revzen (S. Revzen, 2008,

personal communication, Polypedal Lab, University of California at Berkeley). In these

experiments, video tracking was employed to capture both the center of mass motion

and individual leg position relative to the center of mass throughout each run. The

first panel of Fig. 3.9 illustrates the foot placement distributions of individual legs as

determined from data sets of six different runs, with each run having an average fore-aft
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velocity between 22−30 cm/s. The second panel illustrates the foot placements utilized

in simulations of the controlled rigid body model recovering from external perturbations

in the heading angle. In these simulations, ten periodic gaits from the gait family for

d = 0.002, with average fore-aft velocities between 20−30 cm/s, were each subjected

to external perturbations in the heading angle. The range of the perturbations imparted

were identical to those investigated the perturbation recovery simulations of Fig. 3.8.

Leg touch-down angles utilized during recovery from each of these perturbations were

used to produce the second panel of Fig. 3.9.

Table 3.1: Leg touch-down angles from experimental runs and controlled simulations
Left tripod Right tripod Model

Foot Front Middle Hind Front Middle Hind Left Right
Min. angle (deg.) 12 -44 105 -14 42 -105 45.5 -45.5
Max. angle (deg.) 28 -76 137 -36 72 -155 76.2 -76.2
Mean angle (deg.) 21 -55 119 -23 52 -125 57.7 -57.7
Standard deviation (deg.) 3.4 5.6 6.2 3.5 4.3 9.5 3.3 3.4

As illustrated in the panels of Fig. 3.9 and summarized in Table 3.1, variations in

leg touch-down angles employed by the controlled model in recovering from external

perturbations are similar to those employed by individual legs of the insect running over

flat terrain. While a wide range of touch-down angles is evidenced in both experiment

and simulation, a majority of the leg touch-down angles utilized fall within a smaller

range, as indicated by the standard deviation. The similarity in leg touch-down angle

distribution between simulation and experiment does not indicate that such a control law

is employed by running cockroaches, but rather that use of such a law remains plausible.

Since small changes in leg touch-down angles are responsible for improvements in both
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gait stability and robustness in reduced order model locomotion simulations, they may

also prove beneficial for their insect counterparts.

3.3 Biological relevance

While the control strategy investigated in this work improves gait stability of a reduced

order bipedal model of a hexapedal insect, insight into the possible biological relevance

requires analyzing both the model assumptions and insect function. The reduced or-

der model considered here is highly simplified; rather than modeling individual multi-

jointed legs, the cumulative effect of three legs during a stance phase is represented by

an elastic spring. Additionally, no leg recirculation strategy is employed to govern mo-

tion of the leg during the swing phase. Instead, the effective leg is positioned at the

angle prescribed by the control law at the start of each stance phase. As a result, the

leg touch-down protocol developed for the effective leg does not immediately translate

to the touch-down angle of any single leg in the tripod, unless the legs are coordinated

to reproduce the touch-down angle prescribed for the effective leg [33]. However, the

improvements in gait stability and robustness evidenced by the simple leg angle ad-

justments investigated in this work invite the question of whether such a control law is

employed in a decentralized fashion by individual legs during locomotion. Specifically,

is the touch-down angle of a contralateral leg influenced by the initial leg touch-down

angle and the leg angle swept by the corresponding leg of the opposite stance phase?

Prerequisites of any such law being employed by the insect include: the existence

of mechanoreceptors that sense joint angles, a neural pathway through which the reflex



38

action acts, and sufficient time for signal transmission, processing and corresponding

muscle action to occur. In the cockroach, the tonic signals emanating from hair plates,

multipolar receptors and chordotonal organs effectively encode joint angles [57]. Since

leg control in insects is handled locally, signals from these sense organs need only travel

to the local thoracic ganglion to influence leg reflexes [7, 11]. Experiments in some in-

sects suggest that information influencing leg coordination may be provided by interneu-

rons that connect nearby ganglia [11, 6, 13]. Since these intersegmental reflexes appear

weak, though, it seems more likely that the signals may instead affect contralateral leg

coordination by modifying the amplitude and timing of leg movements as prescribed by

the central pattern generator [29]. Such inter-leg reflexes have been exhibited in cock-

roaches, with stimulation of the tarso-pretarsal chordotonal organ producing a response

in contralateral leg muscles [29]. It is unclear, however, if sufficient time exists for the

communication and processing of these signals to affect the leg touch-down position of

a contralateral leg in a means similar to that proposed in this work. Experiments suggest

that the time required between sensing and muscle action ranges between 25− 50 ms,

a significant portion of the duration of a stance phase of Blaberus discoidalis running

at its preferred stride frequency of 10 Hz [24, 20]. Yet quicker neural pathways evi-

dently do exist for some insect motions, as evidenced by the turning reflex exhibited in

cockroaches in response to antennal sensing [8].

Ultimately, further experimental investigations are required to determine if inter-leg

reflexes influence leg touch-down angles in high speed insect locomotion. These exper-

iments will require accurate determination of individual leg joint angles, either through

video tracking or appropriate leg angle sensors, such as those developed by [30]. While
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correlations between the leg angles employed by the active and contralateral legs can be

determined via external perturbation experiments, evidence of a reflex pathway respon-

sible for the correlation will likely require neurobiological experiments. Specifically,

an investigation in which the sense organs encoding joint angle are induced to produce

erroneous signals may provide insight into this issue by revealing how the contralateral

leg angles vary in response.
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Chapter 4 – Leg recirculation in horizontal plane locomotion

4.1 Modeling leg recirculation

Models characterizing locomotion dynamics exist in forms of varying complexity. Full

and Koditschek [16] have classified minimal models as templates and complex models

that include more realistic representations of the physiology and morphology of the an-

imal as anchors. Templates encapsulate the locomotion dynamics of the body using a

minimum number of variables and serve as a target for control. Anchors, while more

accurately reflecting animal structure and function, also embed the behavior of an asso-

ciated template within it. In so doing, control effort applied to the anchor can result in

the realization of the lower dimensional template dynamics.

In this study, leg recirculation protocols are developed and implemented in the LLS

template to determine their impact on gait stability and robustness. Specifically, based

upon results from previous experimental and analytical studies, this investigation exam-

ines the following three hypotheses:

H1 Feedforward specification of the swing-leg angular velocity can produce stable pe-

riodic gaits

H2 Swing-leg angular velocity and acceleration at leg touch-down provide control au-

thority to reorient system momentum in response to perturbations, thereby en-

abling selection of gait stability and robustness characteristics
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H3 Gait stability and robustness is improved via leg retraction at leg touch-down

By considering leg recirculation in the context of the LLS template, we intend to gain

insight into the mechanics by which swing-leg recirculation impacts gait stability and ro-

bustness, which may be obfuscated in more anchored representations. More constitutive

lateral plane models have been developed that include more anchored representations of

leg function [27, 49], but neither of these multi-legged models incorporate swing-phase

leg dynamics. We hope that the guiding principles identified in this study will help

inform the design and implementation of swing-leg recirculation in such anchored rep-

resentations.

Utilizing bio-inspiration from sprawled-posture insect locomotion, feedforward leg

recirculation is developed for the LLS template to produce natural variations in the leg

touch-down angle in response to perturbations away from a periodic orbit. The utiliza-

tion of a primarily feedforward leg recirculation protocol, modulated by the leg angle

and angular velocity values at the start of the swing phase and those desired at the end,

is inspired primarily by the results of recent investigations into cockroach locomotion

over rough terrain. For cockroaches running over rough terrain, a leg that misses the

ground during a stance phase continues to retract, with muscle activation levels similar

to those observed for legs in contact with the ground [52]. The subsequent delay in leg

protraction after a missed step suggests that while leg recirculation is prescribed primar-

ily in a feedforward manner, neural reflexes act on a stance-to-stance basis to modulate

muscle activation levels [52].

The proposed feedforward control of the swing-leg angular velocity is also inspired

by experimental studies showing that motor neuron activity is correlated with joint an-



42

gular velocities [56] and that leg velocity is controlled during swing [10], perhaps to

follow a prescribed velocity and position [3]. Such control may result from the contin-

ual firing of motor neurons during the swing phase, as evidenced for stick insects and

other smaller animals, which is evidently required to produce the required leg move-

ment [21]. The results of cockroach locomotion over rough terrain [52] suggest that the

resulting muscle activation may be prescribed in a feedforward manner, thereby yield-

ing the swing leg motion observed without feedback control. Employing feedforward

leg angular velocity control during swing also presumably requires relatively accurate

sensing of leg joint angles and their rate of change at the beginning of the swing phase.

Cockroaches possess a multitude of sense organs in their legs, of which several (hair

plates, multipolar receptors and chordotonal organs) combine to effectively tonically

encode joint angles and their rate of change [57, 29]. Signals from these sense organs

may influence the amplitude and timing of leg movements as prescribed by the central

pattern generator [29], and may thus play a role in modulating the swing phase dynamics

at the initiation of the swing phase.

The broader concepts revealed by these experimental studies are employed in the

model of leg recirculation developed in this study. In this formulation, accurate sensing

of the leg angle and angular velocity at lift-off, in conjunction with a desired leg touch-

down angle and angular velocity, is utilized at the instant of leg lift-off to prescribe the

leg angular velocity for the entire swing phase. The functional form of this feedforward

profile remains the same for all swing phases, but differences in the leg angle and angu-

lar velocity at lift-off produce in differences in swing frequency, magnitude and phase

for individual swing phases. The model of leg recirculation developed in this study
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Figure 4.1: (a) Recirculation protocol illustrated for the right leg (grey) during the swing
phase. Qualitative differences in the leg touch-down angle achieved for t 6= tdes for (b)
β̇des < 0, (c) β̇des = 0 and (d) β̇des > 0

therefore prescribes leg angular velocity in a feedforward manner, with feedback on a

stance to stance basis producing small variations in the profile.

Development of an accurate leg recirculation model requires matching the leg angle

and angular velocity at specific instants of the swing phase. As illustrated for the swing

phase of the right leg in Fig. 4.1, the swing phase begins with the leg at an angle β LO
n−1 and

an angular velocity of β̇ LO
n−1. The leg must reverse its initial rearward angular velocity

to swing forward, and our recirculation model requires that the leg attains a desired

angle (βdes) with angular velocity (β̇des) at a specified time, tdes. With a duty factor of

0.5, the actual swing phase duration is determined by the stance phase duration of the

opposite leg. As a result, the swing phase duration can differ from tdes, resulting in a leg

touch-down angle and angular velocity different from those desired. For a symmetric
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periodic orbit, both left and right stance phase durations will equal tdes, yielding a leg

touch-down angle and angular velocity of βdes and β̇des, respectively.

In rapidly running cockroaches, the swing leg eventually reaches a minimum angle

at which point it begins swinging rearward. A function that qualitatively matches the

baseline characteristics of the leg swing profile with sufficient free parameters to match

both the initial conditions and those at tdes is

β̇ = ω sin(at +φ) , (4.1)

where a, φ and ω represent the swing frequency, a phase shift, and the magnitude of

the angular velocity, respectively. While leg recirculation in the insect occurs in three

dimensions, this recirculation protocol can be viewed as a projection of the fully three-

dimensional motion of the leg during swing onto the horizontal plane.

Utilizing this leg recirculation protocol in conjunction with the initial conditions and

those at tdes produces three equations for the free parameters (ω,a,φ). Without loss

of generality, each swing phase is assumed to commence with t = 0 in the equation

governing leg recirculation. Matching the lift-off angular velocity of the leg yields an

expression for the required phase shift

φ = sin−1

(
β̇ LO

n−1

ω

)
. (4.2)

Matching the angular velocity at t = tdes yields

β̇des = ω sin(atdes +φ) (4.3)
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= ω (cos(φ)sin(atdes)+ sin(φ)cos(atdes)) (4.4)

= ω




√
1− (β LO

n−1)2

ω2 sin(atdes)+
β̇ LO

n−1

ω
cos(atdes)


 . (4.5)

Rearranging (4.5) to solve for ω results in

ω =

√√√√(β̇ LO
n−1)2 +

(
β̇des− β̇ LO

n−1 cos(atdes)
sin(atdes)

)2

. (4.6)

An equation governing the recirculation frequency a results from matching the desired

leg touch-down angle βdes at tdes. Integrating the angular velocity profile (4.1) from

t = 0 to t = tdes yields

βdes = β LO
n−1−

ω
a

[cos(atdes +φ)− cos(φ)] (4.7)

= β LO
n−1−

ω
a




√
1− (β LO

n−1)2

ω2 (cos(atdes)−1)− β LO
n−1

ω
sin(atdes)


 . (4.8)

Utilizing (4.6) and simplifying yields

βdes = β LO
n−1 +

β̇des + β̇ LO
n−1

a
tan

(atdes

2

)
. (4.9)

At the beginning of the swing phase, a is determined from (4.9), and values for ω and

φ are determined from (4.6) and (4.2), respectively. Once determined, these variables

prescribe the angular velocity of the leg undergoing swing via (4.1), resulting in a leg
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touch-down angle of

β T D
n+1 = β LO

n−1−
ω
a

[cos(at +φ)− cos(φ)] . (4.10)

The equations governing leg recirculation are developed with respect to the body frame,

and can therefore be applied to both the point mass and rigid body LLS models.

As in previous work on the LLS model, periodic gaits exist for a range of desired leg

touch-down angles, βdes. While a periodic orbit associated with a particular βdes will not

vary, as a function of β̇des, β̇des will directly impact gait stability and robustness through

its effect on the leg touch-down angle for swing phase durations different from tdes.

Qualitatively, the differences in the expected leg touch-down angle, as a function β̇des,

are illustrated in panels (b)−(d) of Fig. 4.1. For a periodic orbit with β̇des < 0, the swing

leg is moving forwards when it is placed down, such that swing phase durations less than

tdes result in leg touch-down angles greater than βdes. If t > tdes, then the resulting leg

touch-down angle is smaller than βdes for small deviations in t from tdes, but larger than

βdes for sufficiently large deviations away from the desired swing phase duration. For

β̇des > 0, t > tdes results in leg touch-down angles larger than the desired value. Similar

to the previous case, variations in the leg touch-down angle for t < tdes depend upon the

magnitude of the deviation away from tdes; small deviations lead to smaller leg touch-

down angles than desired while much larger deviations lead to larger leg touch-down

angles. A desired leg angular velocity at touch-down of β̇des = 0 presents a unique case.

In this instance, any deviation in the stance phase duration of the opposite leg leads to a

larger leg touch-down angle. The qualitatively different variations in the leg touch-down
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angle that occur in each of these cases provide a means to investigate the impact of leg

recirculation on gait stability and robustness.

4.2 Model simulations

Analytical and numerical investigations are conducted to determine the effect of leg re-

circulation on gait stability and robustness for the LLS model. Analytically, as presented

in Appendix B, eigenvalues governing periodic gait stability are calculated for the point

mass (d = 0) case and serve to validate our numerical results. Numerical simulations

are subsequently employed to determine periodic gait characteristics, gait stability, and

gait recovery from external perturbations.

All numerical simulations are performed utilizing the Runge-Kutta integrator ode45

in Matlab. The instant of leg lift-off is determined, via the events functionality of ode45,

to an accuracy of 10−8 by monitoring the force developed in the leg. Once the leg force

returns to zero, the leg is lifted and the opposite stance phase begins. A Levenberg-

Marquardt algorithm, as implemented in fsolve, is employed to identify initial states

for the left stance phase (vT D
n ,δ T D

n ,θ T D
n , θ̇ T D

n ,β T D
n ) that result in an identical state for

the subsequent left stance phase (vT D
n+2,δ

T D
n+2,θ

T D
n+2, θ̇

T D
n+2,β

T D
n+2). The set of initial states

identified by this algorithm are fixed points of the Poincaré map and periodic orbits of

the continuous system. Gait stability is determined from the eigenvalues of Poincaré

map linearized about the fixed point. Unstable gaits have at least one eigenvalue greater

than unity in magnitude, while stable gaits have all eigenvalue magnitudes less than or

equal to unity, with unity eigenvalues identifying directions of neutral stability.
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Locomotion dynamics are governed by a composition of the left and right stance

phase dynamics, resulting in a hybrid, piecewise-holonomic system [35]. While hybrid

locomotion systems can display asymptotic stability [40], they are often best described

in terms of partial asymptotic stability [18]. For these systems, fixed points and the

corresponding periodic motions typically exhibit one or more neutral eigendirections

(with Floquet multiplier = 1) which are often associated with conservation laws (e.g.

energy conservation) or symmetries such as rotational invariance. For eigenvalues asso-

ciated with such conservation laws, perturbations in neutral eigendirections do not result

in recovery of the original gait, but rather the attainment of a new gait. For example,

energetic perturbations to a periodic gait for the conservative LLS model result in the

selection of a new touch-down velocity, since no means exists within the model to add

or remove energy. However, perturbations in an eigendirection with an eigenvalue of

magnitude less than one, such as the velocity heading angle, result in restabilization

to the original periodic gait. Stability of periodic gaits considered in this work will be

characterized in this manner.

In the results that follow, LLS model parameters are set to values representative of

the cockroach Blaberus discoidalis [54, 25, 26, 41]: spring stiffness (k) of 2.25 N/m,

mass (m) of 0.0025 kg, force-free leg length (l) of 0.01 m, moment of inertia (I) of

2.06× 10−7 kg m2. Because gait stability is improved by varying the stride frequency

and length to match that observed experimentally in the cockroach [41, 49], a quartic

polynomial curve fit is constructed from experimental stride length and frequency data

[54] for the cockroach Blaberus discoidalis as a function of tdes. This fit is employed at

each tdes, in conjunction with an approximation of the stride length of a periodic orbit
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from stance phase geometry as Ls = 4l cos(βdes) (see Fig. 2.1), to determine variations

in βdes that approximately match stride length variations. The average forward velocity

of the resulting gaits for this range of tdes is < v >= 0.11− 0.43 m/s, which encom-

passes the preferred running speed of Blaberus discoidalis. Other model parameters,

such as the spring stiffness and leg length, are chosen to adequately reproduce insect

force and velocity profiles at the desired running speed of the insect, 0.25 m/s. Periodic

gaits identified utilizing Matlab’s fsolve algorithm are determined within an accuracy of

10−7. Eigenvalues associated with these periodic gaits are computed from the linearized

Poincaré map, the entries of which are computed numerically via central difference ap-

proximations.

Locomotion performance with leg recirculation is examined for both the point mass

(d = 0) and rigid body (d 6= 0) models in the following section. Results for the point

mass case are included in this study due to their possible relevance for other sprawled-

posture animals and insects, as well as robotic implementations. While the center of

pressure moves from fore to aft during a stance phase in the cockroach [54] and is not

generally aligned with the center of mass, this is not necessarily true for other sprawled-

posture creatures. Scaling relationships derived from dynamic similarity principles, as

developed in [44], can therefore be utilized to extend these results for parameter ranges

characteristic of other animals or insects.
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Figure 4.2: (a-c) Family of periodic gaits (< v >,δ T D
n ,θ T D

n , θ̇ T D
n ,β T D

n ) for d = 0 (solid)
and d = 0.002 (dashed) as a function of the average forward velocity. All periodic
gaits have ˙θ T D

n = 0. (d-e) Comparison of experimental stride frequency data on running
cockroaches (dots) [54] to that of the illustrated gait families (lines). (f) Eigenvalue
magnitudes |λ | for each periodic gait of the gait families.

4.3 Results

4.3.1 Gait behavior for variations in tdes

A one-parameter family of periodic gaits exists for the LLS model with leg recircula-

tion, parameterized by the desired stance phase duration (tdes). As illustrated in Fig. 4.2,

families of periodic gaits (vT D
n ,δ T D

n ,θ T D
n , θ̇ T D

n ,β T D
n ) are identified numerically for both

d = 0 and d 6= 0 for tdes = 0.093− 0.036 seconds and β̇des = 0. Employing the leg

recirculation protocol, for both the point mass and rigid body models, produces stable
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periodic gaits, thus supporting our first hypothesis. Variation in gait stability over this

speed range has similarities to that of the original LLS model for both d = 0 and d 6= 0.

In both cases, as tdes increases the touch-down velocity decreases, and the associated

periodic gaits destabilize as the velocity heading angle eigenvalue passes through the

unit circle in a saddle-node bifurcation. For d 6= 0, the introduction of yawing dynam-

ics decreases gait stability, with an eigenvalue corresponding to body angular velocity

remaining near 0.8 for most of the gait family. As a result, recovery rates from small

perturbations for the rigid body model occur over a much longer timescale than that

required by gaits of the point mass case. While periodic gaits of both the original LLS

model and the recirculation protocol share a unity eigenvalue corresponding to energy

conservation, the eigenvalue corresponding to the leg touch-down angle is zero for leg

recirculation as compared to the unity value of the original LLS model. This zero eigen-

value for the entire gait family is unique to the case of β̇des = 0; non-zero values of β̇des

result in an eigenvalue different than zero. Periodic gaits for values of tdes beyond that

associated with the saddle-node bifurcation yield unstable gaits. However, unlike the

original LLS model, gait stability and the location of the saddle-node bifurcation can

be modified through appropriate choice of β̇des. Previously unstable periodic gaits for

the original LLS model can therefore be stabilized, as examined in further detail in both

Appendix B and the following section.
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Figure 4.3: Variations in gait stability with β̇des for d = 0 (top row) and d = 0.002
(bottom row). (a,d) Maximum non-unity eigenvalue contours for each periodic gait of
the gait family as β̇des is varied between −20 and 20 rad/sec for (b,e) Value of β̇des that
yields a minimum non-unity eigenvalue for each gait of the gait family. (c,f) Eigenvalue
magnitude at the optimal value of β̇des (solid) as compared to that for β̇des = 0 (dotted).

4.3.2 Gait behavior for variations in β̇des

With numerical eigenvalue calculations validated by analytical results, as detailed in

Appendix B, we utilize numerical calculations to investigate gait stability as a function

of β̇des. Eigenvalues of the full-stride Poincaré map, linearized about each fixed point,

are numerically computed for β̇des values between −20 and 20 rad/sec for the gait fam-

ilies of Fig. 4.2. For each fixed point and β̇des, the maximum non-unity eigenvalue is

retained.

The eigenvalue contour plots of Fig. 4.3 illustrate the dependence of gait stability

on the leg angular velocity at touch-down for both d = 0 and d = 0.002 and help vali-

date our first two hypotheses. As illustrated, feedforward prescription of the leg angular
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velocity during swing in the LLS model is capable of producing a range of stable peri-

odic gaits. Additionally, gait stability depends upon the value of the leg angular velocity

at leg touch-down. For the point mass model, increasing the rate of leg retraction at

touch-down improves gait stability for each gait of the gait family, which is qualitatively

similar to the results obtained for swing-leg retraction [51] in the LLS model for vertical

plane locomotion. Gaits at the lower end of the speed range, which are nominally unsta-

ble for β̇des = 0, are stabilized for sufficiently large leg angular velocities at touch-down.

While gait stability can be improved by retracting the leg at the touch-down instant, an

optimal value of β̇des exists, beyond which stability decreases until the gait destabilizes.

The optimal choice of β̇des for each gait in the gait family is illustrated in the second

panel of Fig. 4.3. The larger values of β̇des employed by the model at higher speeds may

be a byproduct of explicitly matching the higher leg cycle frequencies utilized by insects

at these higher speeds. At higher speeds, the stance phase durations decrease, and per-

turbations to these periodic gaits result in comparatively smaller deviations in the stance

phase duration from the desired value. As a result, larger leg angular velocities are

required at touch-down to achieve leg touch-down angle variations capable of quickly

restabilizing the gait. At the lowest speeds, gait instability requires larger changes in the

leg touch-down angle to appropriately reorient the momentum in response to external

perturbations, which necessitates increases in the leg angular velocity at touch-down.

The contour plot of gait stability for d = 0.002 m exhibits improved stability for a

different range of β̇des than the point mass case, due to the coupling between transla-

tional and rotational dynamics introduced in the rigid body model. As in the point mass

case, previously unstable gaits at the lower end of the speed range can be stabilized for
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sufficiently large leg retraction velocities at touch-down. While these stability results

and those at the higher end of the speed range qualitatively match those of the point

mass model, gait stability in the middle of the speed range improves for leg protraction

at touch-down, β̇des < 0. In this speed range, the least stable eigenvalue corresponds to

the angular velocity of the body, θ̇ . Improving body angular velocity stability evidently

requires leg touch-down angle changes in response to perturbations similar to those evi-

denced in Fig. 4.1b rather than those employed in Fig. 4.1d that improve the stability of

the velocity heading angle, which dominates stability at the lowest and highest speeds.

We hypothesize that the gait stability improvement obtained by increased protraction

rates for the rigid body model may be limited to this bipedal model; the forces produced

by a combination of legs in a multi-legged model or insect might better compensate

for disturbances in angular velocity without necessitating a forward leg angular velocity

at touch-down. This hypothesis is bolstered by analysis of experimental data for the

angular velocity of cockroach legs during the swing phase, all of which are typically

retracting at touch-down, as examined in more detail in Section 4.3.3.

While gait stability can be improved via changes in the leg retraction or protraction

velocity at touch-down, perturbation recovery simulations are required to determine if

these local results extend to perturbations that move the system outside the range for

which the linearization is valid. As a result, a series of perturbation simulations are

conducted to quantify gait robustness for the recirculation protocol. Perturbations are

applied to the velocity heading angle within the limits of glancing contact (δ T D
n =−π

2 +

βdes) and direct compression of the elastic leg (δ T D
n = βdes). For each periodic gait of

the gait family, the initial velocity heading angle is set to values within these limits and
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Figure 4.4: Contour plots of the number of stance phases required for recovery of peri-
odic gaits from external perturbations in δ T D

n for d = 0 (top row) and d = 0.002 (bottom
row) with (a,d) β̇des = −2.5 rad/sec (b,e) β̇des = 0 rad/sec (c) β̇des = 5 rad/sec and (f)
β̇des = 2.5 rad/sec.

simulations are conducted for 75 (d = 0) or 150 (d = 0.002) stance phases. In total,

17,806 perturbation simulations are conducted for each gait family. In each simulation,

the number of stance phases required for all the system states to return and stay within

1% of the original periodic gait is recorded, if applicable.

The panels of Fig. 4.4 illustrate the numerically computed basin of stability for the

LLS model with leg recirculation implemented for several values of β̇des. Quantitative

comparisons are presented in Table 4.1. For the point mass model, employing leg retrac-

tion with a leg touch-down angular velocity β̇des = 5 rad./s increases the number of gaits

that recover from the applied perturbations by 68.6% as compared to the number that

recover for leg protraction with β̇des =−2.5 rad./s. Part of the expansion of the basin of
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Table 4.1: Basin of stability and recovery basin as a function of β̇des
Recovery percentage Avg. number of steps

required (± standard deviation)
Recirculation model
d = 0

β̇des =−2.5 16.9% 9.8±8.4
β̇des = 0 21.3% 9.1±6.7
β̇des = 5 28.5% 7.3±4.1

d = 0.002
β̇des =−2.5 17.6% 33.9±10.4
β̇des = 0 22.0% 39.2±18.0
β̇des = 2.5 25.7% 44.3±17.3

Original LLS Model
d = 0 80.0% 9.4±9.3
d = 0.002 73.4% 51.7±22.7

stability is due to stabilization of additional gaits at the lower end of the speed range that

were previously unstable. Additionally, the average number of steps required to recover

the original periodic gait drops by 25.5% for the same variation in β̇des. These results

conclusively validate the third hypothesis for the point mass case. For the rigid body

model with d = 0.002, while gait stability improves with β̇des < 0 for gaits in the mid-

dle of the speed range, the number of gaits that recover from the applied perturbations

increases by 46% for β̇des = 2.5 rad./s as compared to that exhibited for β̇des = −2.5

rad./s. This improvement comes at a cost of a decrease in the recovery rate of almost

31%. However, the benefit of the expanded operating range may offset the decrease in

stability that occurs. Employing leg retraction at touch-down for the rigid body model

will therefore remain less stable than other alternatives, but will yield recovery from a

larger range of external perturbations.
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As evident from the results of Table 4.1, the basin of stability is at best 35% of

that obtained for the original LLS model with a fixed leg touch-down angle for both

the point mass and rigid body case. While the basin of stability is therefore much

smaller, the recovery rate is improved by 22.3% and 14.3% for (d, β̇des) = (0,5) and

(d, β̇des) = (0.002,2.5), respectively. The reduction in the stability basin is not unex-

pected, because as the external perturbations in the heading angle increase in magnitude

the deviation in the stance duration from the desired stance duration also increases.

While the difference in the leg touch-down angle from the desired angle therefore in-

creases in magnitude as a result of the recirculation protocol, this difference is larger

than that needed to effect recovery. While enough control authority therefore exists, the

leg touch-down angle employed produces leg forces that are not appropriately directed

to reorient the system momentum, leading to destabilization of the velocity heading an-

gle and continued movement away from the original periodic orbit. As a result, both leg

angular velocity and angular acceleration may play a role in gait robustness. Smaller an-

gular accelerations than those present in the current formulation in the latter portion of

the swing phase may effectively limit the range of leg touch-down angles that occur for

perturbations away from a periodic orbit. Modifications to the leg recirculation protocol

that incorporate this concept are considered in further detail as the recirculation profile

is compared to that observed experimentally in Section 4.3.3.
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4.3.3 Comparison to experimental results

The leg recirculation protocol is developed with the intention of qualitatively matching

the swing profile employed by individual legs of sprawled-posture insects during loco-

motion. The leg angular velocity profiles utilized in the model are now compared to

those employed by running cockroaches to determine both the relative accuracy of the

profile and whether profile refinements that result in better matches to experimental data

positively affect the basin of stability.

Experimental data of individual leg position and velocity, relative to the body frame,

for cockroaches running over flat terrain was collected utilizing video tracking by S.

Revzen (S. Revzen, 2008, personal communication, Polypedal Lab, University of Cali-

fornia at Berkeley). The nominal leg recirculation protocol utilized in this work is com-

pared to the leg angular velocity computed from the experimental data for the middle

leg of the cockroach Blaberus discoidalis over a series of four different runs, with each

run having an average fore-aft velocity between 22− 30 cm/s. The middle leg of the

insect was selected for comparison purposes because, unlike the front and rear legs, the

fore-aft force profile exhibited by this leg resembles that produced by the effective leg

of the LLS recirculation model. While the swing leg angular velocity profiles exhibited

by all legs qualitatively match those of the model, examination of the model and exper-

imental profiles in Fig. 4.5 reveals that the experimental profile has a more complicated

structure in the second half of the swing phase.

Specifically, it appears that a decrease occurs in the leg angular acceleration during

the second half of the swing phase that results in a slower variation in the leg angular
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Figure 4.5: (a) Leg angular velocity during the swing phase for the middle legs of run-
ning cockroaches, as calculated from experimental data collected and provided by S.
Revzen (S. Revzen, 2008, personal communication, Polypedal Lab, University of Cali-
fornia at Berkeley). (b) Calculated leg angular velocity during the swing phase for fixed
points of the d = 0.002 gait family, with average forward velocities < v >= 0.20−0.25
m/s (c) Calculated leg angular velocity during the swing phase for fixed points of the
d = 0.002 gait family, for the modified leg recirculation protocol with c1 = 0.5, c2 = 0.2
and < v >= 0.20−0.30 m/s

velocity before leg touch-down.

The importance of this difference in the swing profile is investigated by including

higher order frequencies in the recirculation protocol to better match that exhibited ex-

perimentally. Specifically, the following leg recirculation formulation is considered

β̇ = ω [sin(at)+ c1 sin(2at)+ c2 sin(3at)+ c3] , (4.11)

where c1 and c2 are chosen to better match the experimental profile. An expression for

c3 results from matching the initial leg angular velocity c3 = β̇ LO
n−1
ω . The conditions on

the leg angle and angular velocity at t = tdes produce coupled equations in ω and a that

are solved numerically at the beginning of each swing phase. As illustrated in Fig. 4.5c,

the refined recirculation protocol with c1 = 0.5 and c2 = 0.2 results in better agreement

with the experimental profile and has a smaller angular acceleration near t = tdes.
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Figure 4.6: Contour plots of the number of stance phases required for recovery of pe-
riodic gaits from external perturbations in δ T D

n for the modified recirculation protocol
with c1 = 0.5 and c2 = 0.2. Recovery simulations are performed for d = 0 (a-c) and
d = 0.002 (d-f) with (a,d) β̇des =−2.5 rad/sec (b,e) β̇des = 0 rad/sec and (c,f) β̇des = 2.5
rad/sec.

The performance of the refined protocol for (c1,c2) = (0.5,0.2) is examined by

conducting perturbation recovery simulations similar to those performed previously for

both the point mass and rigid body models. As illustrated in Fig. 4.6 and detailed in

Table 4.2, the refined recirculation protocol produces a stability basin for both the point

mass and rigid body models that is essentially twice the size of that produced by the

original model. The improved recovery basin indicates that the model can recover from

a larger range of perturbations, similar to its insect counterpart, which is able to recover

from external lateral perturbations of up to 85% of its momentum in only a few stance

phases [24]. While the model in its current form cannot recover from energetic pertur-
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Table 4.2: Basin of stability and recovery basin for refined recirculation protocol as a
function of β̇des

Recovery percentage Avg. number of steps
required (± standard deviation)

d = 0
β̇des =−2.5 37.1% 10.1±9.1
β̇des = 0 44.7% 7.9±6.5
β̇des = 2.5 50.9% 7.3±5.9

d = 0.002
β̇des =−2.5 37.8% 40.9±11.3
β̇des = 0 45.0% 44.4±13.8
β̇des = 2.5 50.5% 50.4±17.3

bations, its ability to recover from half of the perturbations investigated suggests that

the feedforward leg recirculation evidenced in the insect [52] may be a viable control

strategy. The basins of stability for the refined leg recirculation formulation are also

improved from the original formulation, yet variations in recovery rate and the basin of

stability as a function of β̇des remain similar to those obtained for the original protocol.

For d = 0, values of β̇des > 0 enlarge the basin of stability, improving the recovery rate

at lower and higher speeds, while slightly reducing the recovery rate in the middle of

the speed range. For d = 0.002, increasing β̇des > 0 enlarges the stability basin, but

reduces the recovery rate at lower speeds while improving it at higher speeds. However,

the average recovery rate evidenced by the periodic gaits for β̇des = 2.5 rad./s is 23.2%

less than that observed for β̇des =−2.5 rad./s. The basin of stability results for both the

point mass and rigid body models suggest that while leg angular velocity is important

for gait stability, angular acceleration near leg touch-down also influences the basin of

stability. Reducing the angular acceleration during the second half of the swing phase



62

may be beneficial for the insect, since it results in smaller changes in leg touch-down

angles in recovery from external perturbations.

Similarity between leg touch-down angles employed by the refined leg recirculation

protocol and the leg touch-down angle control law developed in Chapter 3 is examined

via perturbation simulations. Perturbation recovery simulations are conducted for the

rigid body model for both strategies, with parameters in the control law set to those

utilized in Chapter 3 for d = 0.002. For simulations in which both strategies recover

the original periodic gait, the first five leg angles utilized in recovery are retained for

comparison purposes. The coefficient of determination (r2 and associated p value),

as derived from the Pearson product-moment coefficient for these values, is employed

as a measure of similarity of the actuation strategies for each protocol. Comparisons

are made for the entire gait family across the entire range of perturbations previously

considered.

As illustrated in Fig. 4.7, the leg angles utilized in restabilization from an external

perturbation for each protocol appear to have a relatively strong correlation for many of

the perturbations simulated. For each β̇des, as the perturbed heading angle δ T D
n increases

from negative to positive the associated correlation coefficient rapidly changes from

a positive value close to 1 to a negative value close to −1, yielding a small band of

perturbations for which the strategies are relatively uncorrelated. Further increases in

δ T D
n yield decreases in the correlation coefficient, until the recirculation strategy is no

longer able to recover the original periodic gait. Additionally, as β̇des decreases, positive

correlations between the leg touch-down angles employed exist for a wider range of

perturbations.
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Figure 4.7: Contour plots of r2 (first column) and associated p value (second column)
determined for the first five leg touch-down angles utilized in recovery from external
perturbations by the leg angle control law and the refined leg recirculation protocol. Per-
turbation recovery simulations are conducted for the rigid body model with d = 0.002,
with leg touch-down angle control law parameters set to (c1,c2,c3) = (−0.1,0.3,0.8)
and leg recirculation parameters set to (c1,c2) = (0.5,0.2). Results are determined for
(a-b) β̇des = 2.5 rad/sec, (c-d) β̇des = 0 rad/sec and (e-f) β̇des =−2.5 rad/sec

These results suggest that the refined leg recirculation protocol produces variations

in leg touch-down angles, in response to perturbations, that are qualitatively similar to

those employed by the leg touch-down angle control law for a relatively wide range of

perturbations. Failure of the recirculation protocol to recover from as wide as a range

of perturbations as the leg touch-down angle control law is certainly due in part to the
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fact that large external perturbations in δ T D
n result in large changes in the duration of

the swing phase, resulting in destabilizing variations in the leg touch-down angle. Such

issues do not exist for the leg touch-down angle control law, since swing phase dynamics

are not included. However, these results also suggest that deviations in the leg touch-

down angles employed by the leg recirculation protocol for larger positive perturbations

in δ T D
n , as compared to those utilized by the leg touch-down control law, may also be

responsible for decreased basin of stability evidenced.
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Chapter 5 – Leg control with actuation

5.1 Incorporating leg actuation

While conservative leg function in the traditional LLS formulation appears to accurately

represent steady state locomotion dynamics, leg structures present in animals and insects

serve to store and return, dissipate, and produce energy during a single stride. Thus, it

appears that the energy variation observed during a stance phase is the result of the

coordination of muscles, joints and tendons producing negative and positive work, the

net result of which are the apparent spring-like dynamics represented by the model.

Recent studies in insects [12] have demonstrated that leg function differs significantly

from its spring-like counterpart in the LLS model, and suggest that the ability of legs to

manage energy absorption and production is important in locomotion.

While the nominal LLS template maintains a constant force-free leg length l = l0

during each stance phase to produce an energetically conservative system, we seek to

actuate the force-free leg length during stance to better model the balance of energy

storage, dissipation and production that must occur.

A simple model for energy absorption and production during each stance phase is

therefore proposed via actuation of the force-free leg length (l(t)). While the actua-

tion protocol is kept simple in an effort to better understand the basic effects energy

absorption and production have on gait dynamics and stability, it is also intended that
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it effectively model the net energetic effect that may result from muscle groups acting

together in a predetermined pattern[53]. To model such patterns, we consider that the

musculature may act in a cyclical fashion; it may absorb energy during the first half of

the stance phase to serve as a braking mechanism, yet actively produce energy to propel

the body forward during the second half of the stance phase. To obtain periodic orbits,

the energy absorption and production must be equal over the course of the stance phase,

such that the energy at the beginning and end of the stance phase are equal. As well,

to retain force and velocity profiles that resemble those produced by the LLS template,

energy absorption and production should be symmetric about mid-stance for periodic

orbits and only slightly out of phase for non-periodic gaits. These requirements are

satisfied by prescribing a model for force-free leg length actuation during each stance

phase of the form

l(t) = l0− ldev sin(
πt
tdes

) (5.1)

similar to that utilized in the lateral plane climbing template[19]. Here, ldev represents

the maximal deviation from a nominal leg length l0, and t represents stance duration.

Selection of tdes implicitly defines the average forward speed of a periodic gait, such

that periodic gaits for a range of forward speeds can be determined by varying tdes. The

fractional length change ldev impacts both the energy change for perturbations away

from a periodic orbit as well as gait stability. While the force-free leg length varies, the

force developed in the leg is still governed by the linear spring law (Fleg = k(l(t)−ζ )).

Without loss of generality, each stance phase is assumed to begin with t = 0, which

yields a constant leg touch-down length of l = l0. Because leg lift-off occurs at the
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instant the force developed in the spring returns to zero, incorporating this actuation

protocol results in leg lift-off lengths (l) that deviate from l0, as evidenced by examining

the actuation protocol (Equation 5.1). It is important to note that while the force-free

leg actuation protocol considered in this paper introduces a non-conservative force, re-

deriving the equations of motion using Lagrange’s equations with generalized forces

results in the same equations of motion as of the original LLS model (Equations 2.1, 2.2,

and 2.3). The equations of motion only differ in that l becomes a prescribed function

of time, as prescribed by (Equation 5.1), and forces developed in the leg therefore arise

from a combination of the clock-driven changes in l and the axial dynamics.

The energy of the non-actuated LLS system is comprised of the kinetic energy of

the mass and the potential energy of the spring. In the non-actuated system, the work

done by the spring on the mass during compression or extension equals the change in

the amount of potential energy stored in the spring, resulting in energy conservation. In

our actuated model, the formulation for the work done by the leg during each stance

phase remains the same as that of the nominal LLS model; the work is the time integral

of the leg force multiplied by the rate of change of the leg length,

W =
∫ t

0
k(l−ζ )ζ̇ dt . (5.2)

Actuation of the force-free leg length during the stance phase, as prescribed by (Equation

5.1), modulates the spring force such that the change in energy stored in the spring does

not equal the work done by the spring in compression or extension. As a result, energy

is no longer conserved and fluctuations in energy occur during the stance phase.
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In the actuated model, energy is removed from the system by leg actuation during

leg compression and is added to the system during leg extension. For a periodic gait

with stance phase duration tdes and ldev > 0, gait symmetry in ζ and ζ̇ about mid-stance

ensures that the energy absorbed during the first half of the stance phase equals that

added during the latter half, such that the energy at lift-off equals that at touch-down.

For non-periodic gaits, symmetry about mid-stance is no longer guaranteed because

the leg is lifted once it returns to the force-free length, which is not necessarily the

touch-down length of l = l0. As is evident from (Equation 5.1), gaits with stance phase

durations longer than tdes have a leg length at lift-off greater than l0. The increased

duration of leg extension results in a net energy increase, thereby increasing the velocity

of the mass at the end of the stance phase and potentially reducing the duration of future

stance phases. In a similar manner, gaits with stance phase durations less than tdes result

in net reductions in system energy, and serve to reduce the system velocity. As a result,

it is expected that incorporating this actuation protocol into the LLS model will stabilize

the center of mass velocity. By the same reasoning ldev < 0 is expected to destabilize

center of mass velocity.

This simple and analytically amenable actuation scheme also has the advantage of

being easily adapted to the energy-dissipation realities of robot instantiation. Simply by

shifting the phasing of the feed-forward actuation the asymmetry of the energy removal

and addition can be adapted to compensate for the inevitable mechanical losses in a

robotic system.

Incorporating the leg angle control protocols considered in the previous chapters

yields improved gait stability, as compared to the original LLS model. Specifically,
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changes in the leg touch-down angle, whether resulting from a leg angle control law

or natural leg recirculation, provide control authority over the velocity heading angle,

enabling modification of the associated eigenvalue. As detailed previously, stability

can therefore be improved through appropriate choice of either the leg angle control

parameters ci or the desired leg angular velocity at touch-down β̇des. With these leg

angle control strategies, the resulting gaits are not only stable with respect to the velocity

heading angle, but are also stable with respect to the leg touch-down angle. As such,

appropriately small perturbations in either the velocity heading angle or the leg touch-

down angle result in re-stabilization to the original periodic gait. While these periodic

gaits can reject disturbances in these states, they remain only partially asymptotically

stable due to energy conservation. Because the model formulation contains no means

to input or extract energy, an eigenvalue corresponding to energy conservation remains

unity in both situations, yielding only Lyapunov stability. As such, applied energetic

perturbations result in recovery to a nearby periodic gait rather than the original gait.

In this chapter, we therefore investigate performance of a prescribed, feedforward

leg actuation strategy (Equation 5.1) developed to approximate the feedforward muscle

activation utilized by insects when running over rough terrain. Ultimately, the goal of

this line of research is to combine prescribed, feedforward leg actuation characteristic

of sprawled-posture insects with the leg angle control and recirculation strategies pre-

viously investigated to produce completely asymptotically stable periodic gaits for the

point mass LLS model. Producing asymptotically stable periodic gaits in this fashion

would lend support to the hypothesis that insects employ a hierarchical control system,

with recovery from transient disturbances resulting from a combination of preflexes,
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prescribed feedforward actuation and low level neural control, such as that required to

place the leg at its next touch-down position. In this hypothesized control formulation,

significant neural feedback only occurs in response to the presence of persistent distur-

bances, such as changes in slope or substrate.

5.2 Leg actuation with a fixed leg touch-down angle

Incorporating leg actuation into the LLS model destroys energy conservation, which has

been critical in developing the analytical approximations of gait stability examined in

both the previous chapters as well as other investigations [18, 39, 48]. While the quali-

tative arguments regarding gait stability under the influence of leg actuation presented in

the previous section still hold, we must resort to numerical simulations to determine the

dynamical behavior, stability and robustness of the model when employing leg actuation

strategies.

As such, we investigate model performance over a wide range of velocity heading

angles between the limits of pure fore-aft motion as the leg touches down (δ T D
n = 0) to

direct compression of the spring (δ T D
n = β T D

des ). Initially, we consider a fixed leg touch-

down angle, as utilized previously, of β T D
des = 1.0 radians. The numerical simulations of

the model with leg actuation and a fixed leg touch-down angle are developed and per-

formed using the Runge-Kutta integrator, ode45, available in Matlab. The event func-

tionality of ode45 is employed to detect instants of leg lift-off and touch-down with a

tolerance of 1×10−8. Periodic orbits are identified by driving the difference between the

initial states (vT D
n , δ T D

n , β T D
n ) and those at the next leg touch-down (vT D

n+1, δ T D
n+1, β T D

n+1)
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Figure 5.1: Surface of periodic gaits with leg actuation and a fixed leg touch-down angle
of βdes = 1.0 radians. Contour plots, from left to right, identify: values of the desired
stance phase duration (tdes) as a function of the average forward velocity (< v >) and
the touch-down velocity heading angle (δ T D

n ), values of the leg actuation amplitude ldev,
and the maximum eigenvalue magnitude. The dashed line in each panel identifies the
gait family for ldev = 0. All other parameters are held at values characteristic of the
cockroach Blaberus discoidalis, as identified previously.

to zero via a Levenberg-Marquardt algorithm, as implemented in fsolve in Matlab.

Numerically determined periodic orbits for the LLS model with leg actuation and a

fixed leg touch-down angle are presented along with the maximum eigenvalue magni-

tude governing gait stability in Figure 5.1. As in previous chapters, we define a family of

periodic gaits as the values of the velocity vT D
n and tdes that yield periodic gaits for a con-

stant leg actuation amplitude ldev and leg touch-down angle β T D
des as the velocity heading

angle δ T D
n is varied between its limits. A single gait family, characteristic of ldev = 0, is

illustrated in Figure 5.1a-b as a dashed line, where each point (vT D
n ,δ T D

n , ldev, tdes,β T D
des )

on the line represents the initial conditions for a periodic orbit of the continuous sys-

tem. Repeating this process for other values of the leg actuation amplitude results in

additional gait families, thereby creating the surface of periodic gaits illustrated in Fig-

ure 5.1a-b.
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In the original LLS formulation (ldev = 0) an eigenvalue corresponding to energy

conservation is necessarily unity, indicating that the model cannot recover the original

periodic gait when subjected to an energetic perturbation. Incorporating the feedforward

leg actuation protocol developed earlier (Equation 5.1) into the model destroys energy

conservation, such that all eigenvalues differ from unity for ldev 6= 0. As hypothesized

previously, the sign of the actuation amplitude is important for stability, as illustrated

in Figure 5.1c. Because ldev = 0 represents the energetically conservative case, con-

tinuity of solutions suggests that deviations in ldev away from zero will yield periodic

gaits with an eigenvalue corresponding to the system energy that deviates from unity.

As illustrated in Figure 5.1c, periodic gaits with ldev < 0 are unstable, while those with

ldev > 0 are partially asymptotically stable. Unlike previous stability analyses, the max-

imum eigenvalue variation illustrated in Figure 5.1c corresponds to the system energy

rather than the velocity heading angle. As a result, energetic perturbations result in

quicker recovery in the velocity heading angle and slower recovery in the system veloc-

ity. While ldev > 0 can yield gaits that stabilize the system energy, leg actuation alone

cannot produce re-stabilization to the original periodic orbit in response to perturbations

in the leg touch-down angle. As a result, periodic gaits with leg actuation alone are only

partially asymptotically stable and perturbations in the leg touch-down angle result in

the attainment of a nearby periodic orbit. Attaining complete asymptotic stability will

therefore require combining this leg actuation strategy with leg angle control strategies,

as investigated later in this chapter.

The periodic gaits identified for a constant leg touch-down angle with leg actuation

possess gait characteristics that resemble those of both the nominal LLS model as well
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Figure 5.2: Illustration of the gait characteristics for a periodic gait (vT D
n ,δ T D

n ,β T D
n ) =

(0.2265,0.04,1) with leg actuation of ldev = 0.0011m and vdes = 0.2251 m/s, tdes =
0.0480 s. All other model parameters are set to values characteristic of Blaberus dis-
coidalis as described in the text. The dotted line in the bottom left panel represents the
variation in the force-free leg length during the stride.

as well as experimentally determined cockroach locomotion profiles, as illustrated in

Figure 5.2. As hypothesized in [1, 12], absorption and production of energy in phase

with the compression and extension of the leg result in force and velocity profiles that

resemble those of a LLS model without energy variations. Yet, as illustrated in the

bottom right panel, energy variations occur during the stride due to the variation in the

force-free leg length. Variations in the force-free leg length also serve to reduce the

amount of force developed in the leg during the stride, thereby reducing the variations

in fore-aft and lateral velocity during each stance phase.
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5.3 Improving gait stability via combined strategies

As evidenced for our results with a fixed leg touch-down angle, producing gaits that are

completely asymptotically stable requires both leg actuation and a strategy for changing

the leg touch-down angle in response to external perturbations. In this section, we there-

fore consider the performance of the point mass LLS model with both leg actuation and

the leg angle control strategy developed previously.

5.3.1 Combined leg actuation and leg angle control

As in our previous analysis of the leg angle control strategy, we only consider choices for

our control parameters ci that satisfy the gait symmetry constraint ∑3
i=1 ci = 1. Choices

of ci that satisfy this constraint preserve gait symmetry and ensure that the periodic

gait surface identified for the LLS model with leg actuation remain periodic when the

leg angle control protocol is included. As a result, our choices of ci only impact gait

stability, to which we now turn.

In the conservative LLS model with leg angle control, it was found that the ci values

could be chosen to improve stability of either previously stable or unstable periodic

gaits. In a similar manner, ci values can be chosen in our combined actuation and leg

angle control formulation to modify stability of our previously stable gaits or to stabilize

those that were previously unstable (i.e. those for which ldev < 0). While we did not

pursue a formal optimization of our ci values for each fixed point of the gait surface, we

were able to identify combinations of ci values that yielded acceptable results for the

cases ldev > 0 and ldev < 0.
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Figure 5.3: Contour plots of the maximum eigenvalue magnitude with leg actuation
and leg angle control, for the surface of periodic gaits previously identified in Fig-
ure 5.1. The left and right panels illustrate results with ci = (−0.25,0.2,1.05) and
ci = (0.24,0.94,−0.18) respectively. The dashed line in each panel identifies the gait
family for ldev = 0. All other parameters are held at values characteristic of the cock-
roach Blaberus discoidalis, as identified previously.

We illustrate the changes in gait stability obtained through our combined strategy in

the panels of Figure 5.3. For ldev > 0, our choice of ci = (−0.25,0.2,1.05) produces a

range of stable gaits similar to that obtained by leg actuation with a fixed leg touch-down

angle. As is evident from Figure 5.3a and summarized in Table 5.1, both the number

of gaits stabilized and the relative stability for our combined leg actuation and leg angle

control strategy is less than that obtained for leg actuation with a fixed leg touch-down

angle. Calculating the maximum eigenvalue magnitude for each gait of the gait surface

with ci = (0.24,0.94,−0.18) reveals that this set of ci values is able to stabilize a large

fraction of those gaits that were previously unstable with ldev < 0. While it would appear
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Table 5.1: Gait stability for leg actuation and combined strategies
All ldev ldev > 0 ldev < 0
% Gaits % Gaits Mean Max. |λ | % Gaits Mean Max. |λ |

Stabilized Stabilized (Stable Gaits) Stabilized (Stable Gaits)
Leg Actuation:
ci = (0,0,1) 24.8 70.5 0.75±0.16 0 NA

Leg Actuation +
Angle Control:
ci = (−0.25,0.2,1.05) 21.5 60.1 0.86±0.11 0 NA
ci = (0.24,0.94,−0.18) 57.7 0 NA 89.0 0.85±0.08

that the gaits stabilized for ldev > 0 are generally more stable than those stabilized for

ldev < 0, both sets of gaits share eigenvalues of a similar magnitude (on the order of

0.85). As such, all gaits stabilized via leg actuation and leg angle control will recover

relatively slowly from small external perturbations.

Comparison of our stability results for the combined strategy with those obtained

from leg actuation alone are a bit misleading, considering that the gaits for the leg

actuation strategy and a fixed leg touch-down angle are only partially asymptotically

stable, due to neutral stability in the leg touch-down angle. In contrast, the gaits iden-

tified for the combined strategy are completely asymptotically stable and are therefore

able to recover from any appropriately small perturbation. The evidenced decrease in

gait stability is due largely to coupling that occurs between the strategies. For exam-

ple, a change in the leg touch-down angle affects the initial leg compression velocity

ζ̇ = vT D
n cos(β T D

n −δ T D
n ), which will therefore result in a change in the work done dur-

ing the stance phase W =
∫ t

0 k(l(t)− ζ )ζ̇ dt. While the coupling between the strategies

does not preclude attaining completely asymptotically stable gaits, it does appear to

slightly reduce the combined effectiveness, as compared to individual control strategies.
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5.3.2 Gait robustness to energetic perturbations

Our gait stability results provide insight into how quickly a periodic orbit will recover

from small perturbations. However, these local stability results do not necessarily pre-

dict how well gaits will recover from larger perturbations that may move the system

outside of the range for which the local Poincaré map has relevance. As a result, we

also conduct simulations of periodic gaits subjected to lateral impulses. These simu-

lations are utilized to determine the range of perturbations from which the system can

recover for both the leg actuation protocol with a fixed leg touch-down angle and the leg

actuation protocol with leg angle control.

Perturbations are applied in numerical simulations in a manner representative of the

perturbation experiments of Jindrich and Full [24]. In these experiments, lateral im-

pulsive perturbations were applied to running cockroaches via a roach-mounted device

that utilized chemical propellants to accelerate a small ball bearing. The experimental

apparatus and the resulting applied force profile from the experimental work are illus-

trated in Fig. 5.4. Perturbations applied in numerical simulations employ a piecewise

linear approximation of the force profile to produce an impulse in the lateral direction.

The perturbation force profile of Fig. 5.4 is applied beginning at an instant tdes/8 into

a left stance phase and lasts for 0.004s. Perturbation force magnitudes are varied to

impart impulses up to 85% of the linear momentum of system, similar to those applied

in experiment, with the peak force occurring 0.0029s after the perturbation begins. A

representative example of gait recovery in one of these perturbation simulations, char-

acteristic of leg actuation and leg angle control, is illustrated in the bottom row of Fig.
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Figure 5.4: Impulse perturbation formulation and recovery from an external perturba-
tion. (a-b) Experimental perturbation impulse apparatus and associated lateral force
produced [24]. (c) Piecewise-linear approximation of the applied perturbation force for
an impulsive perturbation of 25% of the linear momentum for an average speed of 0.225
m/s. (d-f) Recovery of a periodic gait (vT D

n ,δ T D
n ,β T D

n ) = (0.2265,0.04,1) in response
to the impulsive perturbation, with vdes = 0.2251 m/s, tdes = 0.0480 s. All other model
parameters are set to values characteristic of Blaberus discoidalis as described in the
text.

5.4. In this instance, the unperturbed gait corresponds to locomotion at the preferred

speed of the insect (0.225 m/s). A perturbation impulse of 25% of the linear momentum

of the model is applied during the first stance. While the perturbation causes the system

to deviate from the periodic orbit, it appears to recover the periodic gait within eleven

stance phases after the perturbation.

Perturbation simulations are subsequently conducted for a gait family for each of

the control strategies: leg actuation with a fixed leg touch-down angle and leg actuation
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Figure 5.5: Contour plots of the number of stance phases required for periodic gaits to
recover from impulse perturbations of up to 85% of the linear momentum of the point
mass. (a) Recovery with actuation and fixed leg touch-down protocol. (b) Recovery
with actuation and leg angle control (ldev > 0). (c) Recovery with actuation and leg
angle control (ldev < 0).

with leg angle control. The maximum impulsive perturbation applied at each forward

speed is 85% of the linear momentum of the system. The lateral perturbation force is

applied in either the positive or negative direction; signs of the perturbation percentages

in Fig. 5.5 reflect the direction of the perturbation. In each perturbation simulation the

perturbation is applied during the left stance phase at tdes/8. At the end of each stance

phase, the percent deviation from the original periodic gait is computed for all state

variables. The number of steps required (up to 100) for all state variables to return and

stay within 1% of the original periodic gait is subsequently recorded.

Comparison of our perturbation recovery results for the combined control strategy

for (ldev < 0) with those of (ldev > 0) shows that it requires a larger number of steps

for the model to recover when (ldev < 0) even though the eigenvalues are similar. The

eigenvalues no longer accurately predict recovery since the perturbations are outside the

linear range of the Poincaré map. Longer recovery time for (ldev < 0) can be attributed
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Table 5.2: Gait surface recovery from external perturbations for leg actuation and com-
bined strategies

Percent recovered Recovery rate
(stable gaits) (number of steps)

Leg Actuation:
(ldev,ci) = (0.001,1,0,0) 76.3 38.4±23.7

Leg Actuation +
Leg Angle Control:
(ldev,ci) = (0.001,−0.25,0.2,1.05) 80.5 44.2±22.5
(ldev,ci) = (−0.001,0.24,0.94,−0.18) 83.5 56.4±25.1

to the destabilizing effect it has on velocity as explained earlier. The leg touch down

angle control law however has sufficient control authority to overcome this instability.

Combined leg actuation and leg angle control with (ldev > 0) may be considered the

better strategy since we obtain complete asymptotic stability with a lower number of

steps for recovery compared to the (ldev < 0) case.
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Chapter 6 – Conclusions

The lateral leg spring (LLS) model has been shown to accurately represent horizon-

tal plane locomotion characteristics of sprawled posture insects such as the cockroach

Blaberus discoidalis. While passively stable periodic gaits result from employing a con-

stant leg touch-down angle for this model, utilizing a similar protocol for point mass

model of locomotion in three dimensions produces only unstable periodic gaits. The

previous LLS models are only partially asymptotically stable since they cannot recover

from perturbations in mass center velocity and leg touch down angle. Further, previ-

ous LLS models have not addressed leg motion during the swing phase. In the leg angle

control work, we develop a simple control law that prescribes variations in the leg touch-

down angle in response to external perturbations. The leg swing protocols we develop

prescribe the angular velocity of the swing leg relative to the body in a feedforward man-

ner, yielding natural variations in the leg touch down angle in response to perturbations

away from a periodic orbit. These leg control mechanisms provide control authority

in re-orienting system momentum thus improving stability and robustness of previous

LLS models. We also introduce energy variations to the LLS model enabling recovery

in mass center velocity. Finally we combine leg angle control with energy variations

for the point mass LLS model, obtain complete asymptotic stability in body coordinates

and examine the basin of stability of our model in response to energetic perturbations

of the type experimentally imparted on running cockroaches. The leg angle control,
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leg swing and energy variation protocols developed are intended to be consistent with

neural activity and muscle activation of running cockroaches.

We have developed a leg touch-down control law for horizontal plane locomotion,

based upon linear state feedback principles applied to the Poincaré map of the system.

Dependence of the control law on the heading angle is removed by considering consecu-

tive iterates of the Poincaré map and using the heading angle mapping. The resulting leg

touch-down protocol depends solely upon leg angles of the previous stance phase and

a desired leg touch-down angle. Incorporating the control law results in a model that

combines the stabilizing effect of preflexes with low level neural control that may be

responsible for leg touch-down angle changes evidenced experimentally in response to

external perturbations. Periodic gait stability is analytically computed by examining the

eigenvalues of the single stance phase Poincaré map. We examine stability variations

as a function of the parameters of the control law and perform numerical simulations

to determine the effectiveness of the control law in the presence of significant external

perturbations to the touch-down heading angle.

For the point mass case, we find bounds on control law parameters that ensure sta-

bility, and show that periodic gait stability can be improved from the nominal, fixed leg

touch-down angle protocol. Additionally, the control law can be used to stabilize previ-

ously unstable periodic gaits through appropriate choice of the control law parameters.

When subjected to an external perturbation in the heading angle, we find that gaits stabi-

lize back to the original gait utilizing relatively small changes in leg touch-down angles.

Systematic investigation of the recovery of each periodic gait of the gait family in re-

sponse to a range of perturbations in the heading angle reveals that the controlled system
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maintains a basin of stability similar in size to that of the fixed leg touch-down protocol.

Recovery rates, when viewed over the entire speed range, are generally better for the

controlled system. As well, previously unstable gaits can not only be stabilized through

application of the control, but also exhibit relatively large basins of stability. The control

law is also shown, via numerical simulation, to improve gait stability, basin of stability,

and recovery rates for the rigid body case (d 6= 0).

In our legswing work, the LLS model for lateral plane locomotion is extended

through the development of a leg recirculation policy. This protocol prescribes the an-

gular velocity of the leg during the swing phase in a feedforward manner, similar to the

functionality evidenced experimentally for cockroaches running over rough terrain [52].

The resulting model combines the stabilizing effect of preflexes, as represented by the

effective elastic leg, with low level neural control governing leg motion during the swing

phase. Incorporating the protocol produces natural variations in the leg touch-down an-

gle in response to external perturbations. A family of periodic gaits is computed for the

model by varying the desired swing phase duration and gait stability is computed ana-

lytically from the single-stance Poincaré map. Variations in gait stability are analyzed

as a function of a desired angular velocity of the swing leg at touch-down, β̇des, and

numerical simulations are employed to determine the performance of the protocol in the

presence of external perturbations in the velocity heading angle.

Specifically, based upon results from previous experimental and analytical studies,

this investigation examines the following three hypotheses:

H1 Feedforward specification of the swing-leg angular velocity can produce stable pe-

riodic gaits
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H2 Swing-leg angular velocity and acceleration at leg touch-down provide control au-

thority to reorient system momentum in response to perturbations, thereby en-

abling selection of gait stability and robustness characteristics

H3 Gait stability and robustness is improved via leg retraction at leg touch-down

Results for both the point mass and rigid body models clearly support our first two

hypotheses and demonstrate the importance of leg recirculation in the LLS template. In-

clusion of feedforward leg recirculation in the template yields a family of periodic gaits,

whose stability and robustness characteristics depend upon the shape of the leg recircu-

lation profile employed. However, gait stability and robustness results for the point mass

and rigid body models provided mixed support for the final hypothesis that leg retrac-

tion at touch-down improves both gait stability and robustness to external perturbation.

For the point mass case, both gait stability and robustness are improved by retracting

the leg at touch-down (β̇des > 0). Increased retraction rates can move the saddle node

bifurcation to lower average forward velocities, thereby stabilizing previously unstable

gaits. While the basin of stability remains much smaller than that obtained for the orig-

inal LLS model with a fixed leg touch-down angle, recovery rates evidenced with leg

recirculation are generally better. Simulation results for the rigid body model with leg

recirculation suggest that gait stability is improved for leg retraction (β̇des > 0) at low

and high speeds while leg protraction (β̇des < 0) improves stability for gaits in the middle

of the speed range. Investigation into recovery from external perturbations reveals that

while the recovery rate is generally better for leg protraction at touch-down, the basin

of stability is larger for cases where the leg is retracting at touch-down. As a result,
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while leg retraction appears to provide a slightly larger basin of stability, leg protraction

provides improved stability for gaits near the middle of the speed range considered. Ul-

timately, the choice of a touch-down leg angular velocity must balance consideration of

both gait stability and robustness to external perturbation.

Because stability basins for both the point mass and rigid body models with the orig-

inal leg recirculation protocol are small in comparison to the range of perturbations from

which the cockroach is able to recover [24], the angular velocity profiles during swing

are compared to those observed experimentally for running cockroaches. Based on this

comparison, higher order frequencies are added into the recirculation protocol to yield

lower leg angular accelerations near t = tdes. Gait recovery simulations conducted for

this modified recirculation protocol demonstrate a basin of stability double that obtained

previously, with recovery rates similar to those demonstrated for the original protocol.

The larger basin of stability evidenced for the refined protocol suggests that feedforward

control of the leg angular velocity may represent a viable control strategy for the insect.

While leg protraction (β̇des < 0) improves gait stability for a large range of gaits for

the rigid body model with d = 0.002, examination of locomotion data for the cockroach

reveals that, on average, each leg is retracting at touch-down. As a result, one avenue

for future work includes examination of gait stability and robustness for a multi-legged

rigid body model, with leg recirculation protocols developed and implemented for each

individual leg. A limitation of the bipedal LLS template has been its inability to produce

forces capable of effectively reproducing the magnitude of yawing motions exhibited by

the insect. This results in reduced control authority for the body angular velocity, which

represents the largest eigenvalue for the rigid body model. We hypothesize that larger,
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net effective forces produced by a multi-legged model might better stabilize the body

angular velocity such that leg retraction at touch-down will help improve gait stability.

The LLS model augmented with leg angle control or legswing protocols is still en-

ergetically conservative thus yielding only partial asymptotic stability relative to mass

center velocity. In our leg actuation work, we investigate the performance of a pre-

scribed feedforward leg actuation strategy developed to approximate the feedforward

muscle activation utilized by insects when running over rough terrain thus destroying

energy conservation. We vary the force free length (l(t)) of the spring in a prescribed

feedforward manner, (l(t) = l0− ldev sin( πt
tdes

)). Our leg actuation work is limited to the

point mass model. A surface of periodic gaits with leg actuation and a fixed leg touch-

down angle were obtained numerically. The numerical eigenvalues were computed for

this gait surface with a fixed leg touch down protocol. Stable gaits were obtained for

ldev > 0 and unstable gaits were obtained for ldev < 0 as expected. We obtain com-

pletely asymptotically stable gaits by combining our leg actuation and leg angle control

protocols. We modify the stability of previously stable gaits and stabilize previously

unstable gaits (ldev < 0 gaits) by choosing ci values appropriately. Slower eigen values

were obtained for the completely asymptotically stable combined leg actuation and leg

angle control strategy compared to the partially asymptotically stable leg actuation and

fixed leg touch down strategy. This can be attributed to the coupling that occurs for

the combined control strategy which results in slower eigen values. This coupling that

occurs for the combined control strategy however does not preclude us from attaining

completely asymptotically stable gaits in body coordinates.

Robustness of this energetically non conservative point mass model to external en-
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ergetic impulse perturbations as done in experiments on running cockroaches were ex-

amined for the partially asymptotically stable model with a fixed leg touch down pro-

tocol and leg actuation. Similarly, robustness of the completely asymptotically stable

point mass model with combined leg angle control and leg actuation was also examined.

These Robustness studies were carried out for the gait family defined by ldev = 0.001m.

The basin of stability for the completely asymptotically stable model incorporating com-

bined leg actuation and leg angle control remained similar to that of the partially asymp-

totically stable model with leg actuation and a fixed leg touch down protocol. The per-

turbations imparted were outside the linear range of the Poincaré map. Finally we carry

out similar robustness studies for the gait family defined by ldev =−0.001m, which was

unstable with the fixed leg touch down control strategy. Incorporating leg angle control

with appropriate ci values yielded a large basin of stability for this previously unstable

gait family. The longer recovery time observed for ldev < 0 can be attributed to the

destabilizing effect it has on velocity as explained in the text.

The energetic control approach proposed and analyzed here also adapts easily to

mechanical robot designs due to the essentially feedforward nature of the actuation pro-

tocol and the simplicity of the sensing requirements. Furthermore, the controller can be

implemented in a simple mechanism and can easily be extended to deal with the me-

chanical losses in the system. This approach to regulating system energy also provides

an alternative to existing actuation schemes, and its analytical tractability may lead to

improved stability properties and move us closer to designing robots that can safely run

over unstructured terrain. In the future we plan to combine leg recirculation with leg

actuation and obtain completely asymptotically stable gaits in body coordinates while
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specifying a feedforward swing protocol. We also plan to include frictional and energy

losses in the model, investigate these control protocols on inclines and embed them in

more anchored models.
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Appendix A – Chapter 3 Appendix

The eigenvalues of the single stance phase Poincaré map with leg touch-down angle

control are determined from det(λ I−D f ) = 0, where I is the identity matrix and D f is

the Jacobian matrix of equation (3.10). Evaluating the determinant yields

[(
λ −1+

∂∆ψ
∂δ T D

n

)(
λ + c2

∂∆ψ
∂β T D

n
− (c1− c2)

)
− c2

∂∆ψ
∂δ T D

n

(
2+

∂∆ψ
∂β T D

n

)]
∗

(λ −1) = 0 . (A.1)

Expanding the interior of this expression and collecting like terms yields the character-

istic equation presented in (3.11).

The characteristic equation can be further simplified by examining the relationship

between ∂∆ψ
∂δ T D

n
and ∂∆ψ

∂β T D
n

. The expression for the leg angle swept during a given stance

phase is developed in [43], as

∆ψ =
∫ l

ζb

2vT D
n l sin(β T D

n −δ T D
n )dζ

ζ
√

((vT D
n )2− k/m(ζ − l)2)ζ 2− l2(vT D

n )2 sin2(β T D
n −δ T D

n )
(A.2)

where ζb is the largest positive root of the equation

ml2(vT D
n )2 sin2(β T D

n −δ T D
n )+ k(ζb− l)2ζ 2

b −mζ 2
b (vT D

n )2 = 0 . (A.3)
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Defining the integrand of (A.2) as

f (ζ ,δ T D
n ,β T D

n ) =
2vT D

n l sin(β T D
n −δ T D

n )

ζ
√

((vT D
n )2− k/m(ζ − l)2)ζ 2− l2(vT D

n )2 sin2(β T D
n −δ T D

n )

=
g
h

(A.4)

Leibniz’s rule can be used to evaluate the expressions

∂∆ψ
∂δ T D

n
=

∫ l

ζb

∂ f (ζ ,δ T D
n ,β T D

n )
∂δ T D

n
dζ − f (ζb,δ T D

n ,β T D
n )

∂ζb

∂δ T D
n

(A.5)

∂∆ψ
∂β T D

n
=

∫ l

ζb

∂ f (ζ ,δ T D
n ,β T D

n )
∂β T D

n
dζ − f (ζb,δ T D

n ,β T D
n )

∂ζb

∂β T D
n

. (A.6)

The development of any relationship between ∂∆ψ
∂δ T D

n
and ∂∆ψ

∂β T D
n

therefore requires comput-

ing ∂ f (ζ ,δ ,β )
∂δ T D

n
, ∂ f (ζ ,δ ,β )

∂β T D
n

, ∂ζb
∂δ T D

n
and ∂ζb

∂β T D
n

. We proceed by first constructing expressions

for ∂ f (ζ ,δ ,β )
∂δ T D

n
and ∂ f (ζ ,δ ,β )

∂β T D
n

, which requires evaluating the following partial derivatives

∂g
∂δ T D

n
= −2vT D

n l cos(β T D
n −δ T D

n ) (A.7)

∂g
∂β T D

n
= 2vT D

n l cos(β T D
n −δ T D

n ) =− ∂g
∂δ T D

n
(A.8)

∂h
∂δ T D

n
=

ζ l2(vT D
n )2 sin(2(β T D

n −δ T D
n ))

2
√

((vT D
n )2− k/m(ζ − l)2)ζ 2− l2(vT D

n )2 sin2(β T D
n −δ T D

n )
(A.9)

∂h
∂β T D

n
=

−ζ l2(vT D
n )2 sin(2(β T D

n −δ T D
n ))

2
√

((vT D
n )2− k/m(ζ − l)2)ζ 2− l2(vT D

n )2 sin2(β T D
n −δ T D

n )
(A.10)

=− ∂h
∂δ T D

n
. (A.11)

Using the above relations in the quotient rule yields the desired expressions for the
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partial derivatives

∂ f (ζ ,δ T D
n ,β T D

n )
∂β T D

n
=

∂g
∂β T D

n
h− ∂h

∂β T D
n

g

h2 (A.12)

=
− ∂g

∂δ T D
n

h+ ∂h
∂δ T D

n
g

h2 (A.13)

= −∂ f (ζ ,δ T D
n ,β T D

n )
∂δ T D

n
. (A.14)

Evaluating ∂ζb
∂δ T D

n
and ∂ζb

∂β T D
n

requires implicit differentiation of (A.3), yielding

∂ζb

∂β T D
n

= −ml2(vT D
n )2 sin(β T D

n −δ T D
n )cos(β T D

n −δ T D
n )

kζb(ζb− l)(2ζb− l)−mζb(vT D
n )2 (A.15)

∂ζb

∂δ T D
n

=
ml2(vT D

n )2 sin(β T D
n −δ T D

n )cos(β T D
n −δ T D

n )
kζb(ζb− l)(2ζb− l)−mζb(vT D

n )2 =− ∂ζb

∂β T D
n

(A.16)

The relationship between ∂∆ψ
∂δ T D

n
and ∂∆ψ

∂β T D
n

is established by substituting (A.14) and (A.16)

into (A.5), which yields
∂∆ψ
∂δ T D

n
=− ∂∆ψ

∂β T D
n

. (A.17)

Utilizing this result in the characteristic equation given by (3.11) yields the simplified

single stance phase characteristic equation presented in (3.12).

Having computed the simplified characteristic equation, it is clear that computing

the eigenvalues governing gait stability requires computing ∂∆ψ
∂δ T D

n
. While [43] presents

an analytical expression for ∆ψ , the complexity of the expression precludes analytical

computation of the derivatives. As in [44], the required derivatives are instead computed

by approximating ∆ψ via the Schwind-Koditschek approximation [46]. This quadrature

estimation method employs a linear approximation in the mean value function to ap-



98

proximate the integral. Using this approximation, ∆ψ is approximated as

∆ψ =
2lvT D

n sin(β T D
n −δ T D

n )(l−ζb)

ζ̂
√

((vT D
n )2− k/m(ζ̂ − l)2)ζ̂ 2− l2(vT D

n )2 sin2(β T D
n −δ T D

n )
(A.18)

ζ̂ =
3ζb + l

4
. (A.19)

We compute an approximation of ∂∆ψ
∂δ T D

n
using our approximation of ∆ψ presented (A.18-

A.19), simplified further as

∆ψ =
p
q

(A.20)

p = 128lvT D
n sin(β T D

n −δ T D
n )(l−ζb) (A.21)

q = (3ζb + l)
√

s (A.22)

s = (16(vT D
n )2− 9k

m
(ζb− l)2)(3ζb + l)2− (A.23)

256l2(vT D
n )2 sin2(β T D

n −δ T D
n ) .

With the expression for ∂ζb
∂δ T D

n
provided in (A.16), calculation of ∂∆ψ

∂δ T D
n

proceeds di-

rectly from the quotient rule

∂∆ψ
∂δ T D

n
=

q ∂ p
∂δ T D

n
− p ∂q

∂δ T D
n

q2 (A.24)

with

∂ p
∂δ T D

n
=−128lvT D

n (cos(β T D
n −δ T D

n )(l−ζb)+
∂ζb

∂δ T D
n

sin(β T D
n −δ T D

n )) (A.25)
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and

∂q
∂δ T D

n
= 3

∂ζb

∂δ T D
n

√
s+

(3ζb + l)(t ∂ζb
∂δ T D

n
− x ∂ζb

∂δ T D
n

+uvT D
n cos(β T D

n −δ T D
n ))

2
√

s
(A.26)

where

t = 6(3ζb + l)(16(vT D
n )2− 9k

m
(ζb− l)2) (A.27)

u = 512l2vT D
n sin(β T D

n −δ T D
n ) (A.28)

x =
18k
m

(ζb− l)(3ζb + l)2 . (A.29)
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Appendix B – Chapter 4 Appendix

B.1 Analytical eigenvalue approximation for d = 0

Analytical investigations into gait stability provide insight into the importance of the

choice of β̇des in the leg recirculation protocol and serve to validate our numerical re-

sults. Analytical computation of the eigenvalues governing local gait stability first re-

quires determination of the Poincaré map. Using conservation of energy and conserva-

tion of angular momentum about the foot placement point, in conjunction with the stance

phase geometry and the leg recirculation protocol, results in the following single-stance

phase Poincaré map

vT D
n+1 = vT D

n (B.1)

δ T D
n+1 = δ T D

n +π−∆ψ−2β T D
n +(−1)nθ̇nτ (B.2)

θ T D
n+1 = θ T D

n + θ̇nτ (B.3)

β T D
n+1 = β LO

n−1−
ω
a

(cos(aτ +φ)− cos(φ)) , (B.4)

where ∆ψ represents the change in ψ during the stance phase. A fixed point of the

mapping requires θ̇n = 0 and a stance phase duration of τ = tdes, such that β T D
n+1 =

βdes = β T D
n . A full stride map consists of the composition of the mappings for a left

and right stance phase. Due to the structure of the Jacobian for d = 0, the full stride
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eigenvalues of the symmetric periodic gaits studied are simply the square of the single

stance phase eigenvalues. As a result, the analytical eigenvalues computed for the single

stance phase map are squared for comparison with those determined numerically.

The Jacobian for a periodic orbit results from evaluating the partial derivatives of

the single stance phase Poincaré map. While the first two rows of the resulting Jacobian

follow easily from the associated derivatives of the velocity and heading angle mappings

(B.1-B.2), the components of the third row are not as easily determined. Expanding the

cos(aτ +φ) term in the leg touch-down mapping (B.4) yields

β T D
n+1 = β LO

n−1−
1
a

[√
ω2−

(
β̇ LO

n−1

)2
(cos(aτ)−1)− β̇ LO

n−1 sin(aτ)

]
. (B.5)

Evaluating the derivative of (B.5) with respect to δ T D
n yields

∂β T D
n+1

∂δ T D
n

=

[√
ω2−

(
β̇ LO

n−1

)2
sin(aτ)+ β̇ LO

n−1 cos(aτ)

]
∂τ

∂δ T D
n

. (B.6)

Substituting the relationship

√
ω2−

(
β̇ LO

n−1

)2
=

β̇des− β̇ LO
n−1 cos(atdes)

sin(atdes)
(B.7)

into (B.6) and evaluating (B.6) at a fixed point (where τ = tdes) results in the expression

∂β T D
n+1

∂δ T D
n

=




(
β̇des− β̇ LO

n−1 cos(atdes)
)

sin(atdes)
sin(atdes)+ β̇ LO

n−1 cos(atdes)


 ∂τ

∂δ T D
n

(B.8)

= β̇des
∂τ

∂δ T D
n

. (B.9)
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The relationship
∂β T D

n+1

∂β T D
n

= β̇des
∂τ

∂β T D
n

(B.10)

follows from (B.5) in a similar manner.

The resulting Jacobian is therefore

D f =




1 0 0

· · · 1− ∂∆ψ
∂δ T D

n

(
−2− ∂∆ψ

∂β T D
n

)

· · · β̇des
∂τ

∂δ T D
n

β̇des
∂τ

∂β T D
n




, (B.11)

where (· · ·) represent terms that do not enter into the eigenvalue calculation. The map is

further simplified by the relationships ∂∆ψ
∂β T D

n
=− ∂∆ψ

∂δ T D
n

and ∂τ
∂β T D

n
=− ∂τ

∂δ T D
n

, as determined

in the Section B.2, yielding the characteristic equation

(λ −1)
[

λ 2 +
(

β̇des
∂τ

∂δ T D
n

+
∂∆ψ
∂δ T D

n
−1

)
λ + β̇des

∂τ
∂δ T D

n

]
= 0 . (B.12)

Conservation principles can be used to develop quadratures for τ and ∆ψ as in [43].

Because these quadratures, as presented in Section B.2, are complex incomplete elliptic

integrals, the partial derivatives required to compute the gait eigenvalues are instead

computed from the Schwind-Koditschek [45] approximation of the quadratures. While

straightforward, the details of the approximation and the development of the required

partial derivatives is left to Section B.2.

As expected, one eigenvalue, corresponding to energy conservation, remains unity

for this model while the other two result from evaluation of the inner quadratic equation.

Because the characteristic equation explicitly depends upon β̇des, the choice of the leg
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angular velocity at touch-down will affect both of the remaining eigenvalues, which

correspond to the leg touch-down angle and velocity heading angle. For the original

LLS model, the eigenvalue corresponding to leg touch-down was neutrally stable (i.e. 1)

and the velocity heading eigenvalue was 1− ∂∆ψ
∂δ T D

n
. Because ∂∆ψ

∂δ T D
n

< 2 for all gaits [43],

gait stability in the original model was determined by the sign of ∂∆ψ
∂δ T D

n
, with ∂∆ψ

∂δ T D
n

<

0 yielding unstable gaits and ∂∆ψ
∂δ T D

n
= 0 identifying the saddle node bifurcation point.

Transforming the characteristic equation (B.12) for the recirculation model by a bilinear

transformation provides additional insight into how the inclusion of leg recirculation

changes gait stability. After the transformation, the characteristic equation becomes

z(s) = z(λ =
1+ s
1− s

)(1− s)2

= (2− β̇des
∂τ

∂δ T D
n

− ∂∆ψ
∂δ T D

n
)s2 +(2− β̇des

∂τ
∂δ T D

n
)s+2β̇des

∂τ
∂δ T D

n
+

∂ ∆ψ
∂δ T D

n

. (B.13)

Applying the Routh-Hurwitz criterion [22] to the characteristic equation in this form

yields the following conditions on β̇des for the remaining eigenvalues to remain within

the unit circle

−1
2

∂∆ψ
∂δ T D

n
< β̇des

∂τ
∂δ T D

n
< min

(
2 , 2− ∂ ∆ψ

∂δ T D
n

)
. (B.14)

While (B.14) provides upper and lower bounds on the values of β̇des for gait stability,

it also reveals that periodic gaits can remain stable for ∂∆ψ
∂δ T D

n
< 0, for sufficiently large

β̇des. As a practical result, this suggests that increasing the leg angular velocity at touch-

down at lower speeds (where ∂∆ψ
∂δ T D

n
< 0) can move the saddle-node bifurcation to a lower
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Figure B.1: Comparison between numerical (solid) and analytical (dashed) eigenvalue
computations (a) along the gait family identified for d = 0; with β̇des = 0 and (b) as
a function of the leg angular velocity at touch-down, β̇des, for the fixed point (< v >
,δ T D

n ,β T D
n ) = (0.138,0.509,0.988) with tdes = 0.08 and d = 0.

speed, thereby stabilizing previously unstable periodic gaits of the original LLS model.

Conversely, negative values of β̇des will move the saddle-node bifurcation to higher

average forward velocities, thereby destabilizing previously stable gaits.

The analytical eigenvalue expression (B.12) is evaluated for each fixed point of the

gait family utilizing the approximations developed for the required partial derivatives,

as developed in Section B.2. As illustrated in the first panel of Fig. B.1, the analytically

approximated eigenvalues adequately match those computed numerically over the entire

gait family, despite the approximations utilized in computing the partial derivatives.

These results also extend to other choices of β̇des which are different from zero although

they are not illustrated here. Note the unity eigen value due to energy conservation and

the zero eigen value due to β̇des = 0. The importance of the choice of β̇des, as previously

discussed, is illustrated in the second panel of Fig. B.1 for a nominally unstable periodic
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gait (|λ | = 1.47) for the recirculation model with β̇des = 0. While this gait cannot be

stabilized in the original LLS formulation, varying the leg angular velocity at touch-

down in the recirculation model modifies the eigenvalues, stabilizing the gait for β̇des > 2

rad/sec.

B.2 Supporting calculations

The characteristic equation governing the eigenvalues (B.12) was determined from the

Jacobian (B.11) and simplified via the relations ∂∆ψ
∂β T D

n
= − ∂∆ψ

∂δ T D
n

and ∂τ
∂β T D

n
= − ∂τ

∂δ T D
n

.

Demonstrating that these equalities hold requires an expression for the leg angle swept

during a given stance phase, which is developed in [43] as

∆ψ =
∫ l

ζb

2vT D
n l sin(β T D

n −δ T D
n )dζ

ζ
√

((vT D
n )2− k/m(ζ − l)2)ζ 2− l2(vT D

n )2 sin2(β T D
n −δ T D

n )
(B.15)

where ζb is the largest positive root of the equation

ml2(vT D
n )2 sin2(β T D

n −δ T D
n )+ k(ζb− l)2ζ 2

b −mζ 2
b (vT D

n )2 = 0 . (B.16)

Defining the integrand of (B.15) as

f (ζ ,δ T D
n ,β T D

n ) =
2vT D

n l sin(β T D
n −δ T D

n )

ζ
√

((vT D
n )2− k/m(ζ − l)2)ζ 2− l2(vT D

n )2 sin2(β T D
n −δ T D

n )

=
g
h

(B.17)
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Leibniz’s rule can be used to evaluate the expressions

∂∆ψ
∂δ T D

n
=

∫ l

ζb

∂ f (ζ ,δ T D
n ,β T D

n )
∂δ T D

n
dζ − f (ζb,δ T D

n ,β T D
n )

∂ζb

∂δ T D
n

(B.18)

∂∆ψ
∂β T D

n
=

∫ l

ζb

∂ f (ζ ,δ T D
n ,β T D

n )
∂β T D

n
dζ − f (ζb,δ T D

n ,β T D
n )

∂ζb

∂β T D
n

. (B.19)

The development of any relationship between ∂∆ψ
∂δ T D

n
and ∂∆ψ

∂β T D
n

therefore requires comput-

ing ∂ f (ζ ,δ ,β )
∂δ T D

n
, ∂ f (ζ ,δ ,β )

∂β T D
n

, ∂ζb
∂δ T D

n
and ∂ζb

∂β T D
n

. We proceed by first constructing expressions

for ∂ f (ζ ,δ ,β )
∂δ T D

n
and ∂ f (ζ ,δ ,β )

∂β T D
n

, which requires evaluating the following partial derivatives

∂g
∂δ T D

n
= −2vT D

n l cos(β T D
n −δ T D

n ) (B.20)

∂g
∂β T D

n
= 2vT D

n l cos(β T D
n −δ T D

n ) =− ∂g
∂δ T D

n
(B.21)

∂h
∂δ T D

n
=

ζ l2(vT D
n )2 sin(2(β T D

n −δ T D
n ))

2
√

((vT D
n )2− k/m(ζ − l)2)ζ 2− l2(vT D

n )2 sin2(β T D
n −δ T D

n )
(B.22)

∂h
∂β T D

n
=

−ζ l2(vT D
n )2 sin(2(β T D

n −δ T D
n ))

2
√

((vT D
n )2− k/m(ζ − l)2)ζ 2− l2(vT D

n )2 sin2(β T D
n −δ T D

n )
(B.23)

=− ∂h
∂δ T D

n
. (B.24)

Using the above relations in the quotient rule yields the desired expressions for the

partial derivatives

∂ f (ζ ,δ T D
n ,β T D

n )
∂β T D

n
=

∂g
∂β T D

n
h− ∂h

∂β T D
n

g

h2 (B.25)

=
− ∂g

∂δ T D
n

h+ ∂h
∂δ T D

n
g

h2 (B.26)
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= −∂ f (ζ ,δ T D
n ,β T D

n )
∂δ T D

n
. (B.27)

Evaluating ∂ζb
∂δ T D

n
and ∂ζb

∂β T D
n

requires implicit differentiation of (B.16), yielding

∂ζb

∂β T D
n

= −ml2(vT D
n )2 sin(β T D

n −δ T D
n )cos(β T D

n −δ T D
n )

kζb(ζb− l)(2ζb− l)−mζb(vT D
n )2 (B.28)

∂ζb

∂δ T D
n

=
ml2(vT D

n )2 sin(β T D
n −δ T D

n )cos(β T D
n −δ T D

n )
kζb(ζb− l)(2ζb− l)−mζb(vT D

n )2 =− ∂ζb

∂β T D
n

(B.29)

The relationship between ∂∆ψ
∂δ T D

n
and ∂∆ψ

∂β T D
n

is established by substituting (B.27) and (B.29)

into (B.18), which yields
∂∆ψ
∂δ T D

n
=− ∂∆ψ

∂β T D
n

. (B.30)

Proceeding in a similar fashion for ∂τ
∂β T D

n
requires the expression for the stance phase

duration developed in [43]

τ = 2
∫ l

ζb

ζ dζ√
((vT D

n )2− k/m(ζ − l)2)ζ 2− l2(vT D
n )2 sin2(β T D

n −δ T D
n )

(B.31)

where ζb once again is determined from (B.16). Defining the integrand of (B.31) as

f (ζ ,δ T D
n ,β T D

n ) =
2ζ√

((vT D
n )2− k/m(ζ − l)2)ζ 2− l2(vT D

n )2 sin2(β T D
n −δ T D

n )

=
g
h

(B.32)
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Leibniz’s rule can be used to evaluate the expressions

∂τ
∂δ T D

n
=

∫ l

ζb

∂ f (ζ ,δ T D
n ,β T D

n )
∂δ T D

n
dζ − f (ζb,δ T D

n ,β T D
n )

∂ζb

∂δ T D
n

(B.33)

∂τ
∂β T D

n
=

∫ l

ζb

∂ f (ζ ,δ T D
n ,β T D

n )
∂β T D

n
dζ − f (ζb,δ T D

n ,β T D
n )

∂ζb

∂β T D
n

. (B.34)

The development of the relationship between ∂τ
∂δ T D

n
and ∂τ

∂β T D
n

therefore requires com-

puting ∂ f (ζ ,δ ,β )
∂δ T D

n
, ∂ f (ζ ,δ ,β )

∂β T D
n

, ∂ζb
∂δ T D

n
and ∂ζb

∂β T D
n

. We proceed by constructing expressions for
∂ f (ζ ,δ ,β )

∂δ T D
n

and ∂ f (ζ ,δ ,β )
∂β T D

n
, which requires evaluating the following partial derivatives

∂g
∂δ T D

n
= 0 (B.35)

∂g
∂β T D

n
= 0 (B.36)

∂h
∂δ T D

n
=

l2(vT D
n )2 sin(2(β T D

n −δ T D
n ))

2
√

((vT D
n )2− k/m(ζ − l)2)ζ 2− l2(vT D

n )2 sin2(β T D
n −δ T D

n )
(B.37)

∂h
∂β T D

n
=

−l2(vT D
n )2 sin(2(β T D

n −δ T D
n ))

2
√

((vT D
n )2− k/m(ζ − l)2)ζ 2− l2(vT D

n )2 sin2(β T D
n −δ T D

n )
(B.38)

=− ∂h
∂δ T D

n
. (B.39)

Using the above relations in the quotient rule yields the desired expressions for the

partial derivatives

∂ f (ζ ,δ T D
n ,β T D

n )
∂β T D

n
=

∂g
∂β T D

n
h− ∂h

∂β T D
n

g

h2 (B.40)

=
∂h

∂δ T D
n

g

h2 (B.41)
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and

∂ f (ζ ,δ T D
n ,β T D

n )
∂δ T D

n
=

∂g
∂δ T D

n
h− ∂h

∂δ T D
n

g

h2 (B.42)

= −
∂h

∂δ T D
n

g

h2 (B.43)

= −∂ f (ζ ,δ T D
n ,β T D

n )
∂β T D

n
. (B.44)

The relationship between ∂τ
∂δ T D

n
and ∂τ

∂β T D
n

is established by substituting (B.44) and (B.29)

into (B.33), which yields
∂τ

∂δ T D
n

=− ∂τ
∂β T D

n
. (B.45)

Computing the eigenvalues governing gait stability from the characteristic equation

(B.12) requires determining ∂∆ψ
∂δ T D

n
and ∂τ

∂δ T D
n

. While [43] presents an analytical solution

for ∆ψ and τ , the complexity of the expression precludes analytical computation of the

derivatives. As in [44], the required derivatives are instead computed by approximating

∆ψ and τ via the Schwind-Koditschek approximation [46]. This quadrature estimation

method employs a linear approximation in the mean value function to approximate the

integral. Using this approximation, ∆ψ is approximated as

∆ψ =
2lvT D

n sin(β T D
n −δ T D

n )(l−ζb)

ζ̂
√

((vT D
n )2− k/m(ζ̂ − l)2)ζ̂ 2− l2(vT D

n )2 sin2(β T D
n −δ T D

n )
(B.46)

ζ̂ =
3ζb + l

4
. (B.47)
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Employing the approximation for τ yields

τ =
2ζ̂ (l−ζb)√

((vT D
n )2− k/m(ζ̂ − l)2)ζ̂ 2− l2(vT D

n )2 sin2(β T D
n −δ T D

n )
. (B.48)

We compute an approximation of ∂∆ψ
∂δ T D

n
using our approximation of ∆ψ presented

(B.46-B.47), simplified further as

∆ψ =
p
q

(B.49)

p = 128lvT D
n sin(β T D

n −δ T D
n )(l−ζb) (B.50)

q = (3ζb + l)
√

s (B.51)

s = (16(vT D
n )2− 9k

m
(ζb− l)2)(3ζb + l)2−256l2(vT D

n )2 sin2(β T D
n −δ T D

n )

. (B.52)

With the expression for ∂ζb
∂δ T D

n
provided in (B.29), calculation of ∂∆ψ

∂δ T D
n

proceeds di-

rectly from the quotient rule

∂∆ψ
∂δ T D

n
=

q ∂ p
∂δ T D

n
− p ∂q

∂δ T D
n

q2 (B.53)

with

∂ p
∂δ T D

n
=−128lvT D

n (cos(β T D
n −δ T D

n )(l−ζb)+
∂ζb

∂δ T D
n

sin(β T D
n −δ T D

n )) (B.54)
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and

∂q
∂δ T D

n
= 3

∂ζb

∂δ T D
n

√
s+

(3ζb + l)(t ∂ζb
∂δ T D

n
− x ∂ζb

∂δ T D
n

+uvT D
n cos(β T D

n −δ T D
n ))

2
√

s
(B.55)

where

t = 6(3ζb + l)(16(vT D
n )2− 9k

m
(ζb− l)2) (B.56)

u = 512l2vT D
n sin(β T D

n −δ T D
n ) (B.57)

x =
18k
m

(ζb− l)(3ζb + l)2 . (B.58)

In a similar fashion, we compute ∂τ
∂δ T D

n
using our approximation of τ presented in

(B.48), simplified further as

τ =
m
n

(B.59)

m = 8
(
l2 +2lζb−3ζ 2

b
)

(B.60)

n =

√
(16(vT D

n )2− 9k
m

(ζb− l)2)(3ζb + l)2−256l2(vT D
n )2 sin2(β T D

n −δ T D
n ) =

√
s

. (B.61)

The calculation of ∂τ
∂δ T D

n
then proceeds directly from the quotient rule as

∂τ
∂δ T D

n
=

n ∂m
∂δ T D

n
−m ∂n

∂δ T D
n

n2 (B.62)
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with

∂m
∂δ T D

n
= (16l−48ζb)

∂ζb

∂δ T D
n

(B.63)

∂ n
∂δ T D

n
=

(t− x) ∂ζb
∂δ T D

n
+uvT D

n cos(β T D
n −δ T D

n )

2
√

s
. (B.64)

The analytical eigenvalue calculation employs these approximations, resulting in the

eigenvalue variation illustrated in Fig. B.1.




