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NONPERIODIC SAMPLING THEOREMS AND FILTER BANKS

1. PRELIMINARIES

1.1. INTRODUCTION

In this section, we give a short history of the problem and the dissertation

summary.

1.1.1. A BRIEF HISTORY OF THE PROBLEM

The majority of signals encountered in engineering and scientific environ-

ments can be viewed as analog signals, i.e., functions of a continuous variable.

However, transmission, storage and manipulation of signals are easily permitted

when signals are digital which can be presented by discrete functions. Thus, it was

inevitable to find a means to convert analog signals to digital ones. In 1949 the clas-

sical sampling theorem was introduced to information theory by Shannon. Before

Shannon, others have derived the theorem in different contexts, and the general idea

has even been attributed to Cauchy; for a detailed review see [17]. In the literature

on signal processing, the classical sampling theorem is roughly stated as follows.

Suppose f E L2(IR) and the Fourier transform PO vanishes outside K =

(W W). Then f (x) is completely determined by its values on H = {n/2W : n E

Z} by the formula



f (x) = f (n/2147)
sin 7(2W x n)

(1.1)
7(2147x

From above, one can see that the sampling theorem provides a reconstruction for-

mula for a band-limited function of one variable from its sampled values. This

theory has been extended to higher dimensions and to nonuniform sampling sets;

see the reviews [2, 22, 23, 17, 15]. We are specifically interested in three branches

of advancement.

The first branch of advancement is Kluvanek's important generalization

which resulted from replacing IR by an arbitrary locally compact Abelian (LCA)

group G [19]. The sampling set is then a coset of a closed discrete subgroup H of

G. The Fourier transform of the function f is assumed to vanish almost everywhere

outside a set KCRC 0, where R is a fundamental domain of HI, i.e., a measur-

able subset R of C such that every c C can be uniquely written as r+n, where

r E R and i E (see (1.2.12) in 1.2 below). One can view R as a complete

set of coset representatives of 0/H-1-. Here C and are the dual group of G and

the annihilator subgroup of H respectively. The following is the sampling theorem

proved in [19]:

Theorem 1.1.1 Suppose f E L2(G) and :f-() = 0 for almost all V R. Then f is

equal almost everywhere to a continuous function. If f itself is continuous, then

neZ

f (x) =
1

f(Y) 5'CR((x

2

(1.2)

uniformly on G and in the sense of the convergence in L2(G) where " R(z) is the

inverse Fourier transform of the characteristic function of R. Furthermore,

II f 112= 1 If OW*
CH

yeH

CHI yEH
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We note that in Kluvanek's paper, cHi_ = 1 and in our normalization cHi = mo(R),

the Haar measure of R. If we choose G = R, K (-117, W) and H = (1/2W)Z,

then
sin 7(2Wx n)

5. R((x n/2147))
7(2147X n)

Thus, if f E L2(lR) and ,1= 0 outside K, then we obtain (1.1).

We note that in Kluvanek's theorem, the support K of f is contained in a

fundamental domain R of HI. This means that in the case of the classical sampling

theorem, H and K must be chosen so that the translated sets K + 77 with 77 E H-L

are disjoint. But it is important to also consider the case where these translated

sets are not disjoint. This case is part of the second branch of advancement which

was first considered by Kohlenberg in [20] and its now known as periodic sampling.

Consider G = IR, H (1/2W)/, = 2WZ and K = (W0 W, W0) U

(Wo Wo + W). Since the (Lebesgue) measure of K is 2W, we expect the optimal

sampling rate to be 2W. The classical sampling theorem allows exact reconstruction

at this optimal rate only if Wo is an integer multiple of W, since otherwise the

translates (K +21W), 1 E Z are not disjoint. Kohlenberg overcame this restriction

by considering sampling sets of optimal density which are no longer subgroups, but

unions of cosets of a subgroup, e.g., by sampling the values of f on the subgroup

= W-I-Z and on x1 + H1. Note that the set lit U (x1 + H1) has the average

density of 2W. He gave the following reconstruction formula.

Theorem 1.1.2 For any function f (x) with i(e) 0 for all e K = (Wo

WO U (W0, W0 + W), the exact interpolation formula is

f (x) = E f (-1-1 k (x ;'T7I +f (xi + .14/n k (11-' -w + x) (1.3)
nEZ nEZ
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k(t) =
cos[27(Wo +W)t (r + 1)7rItrxi] cos[27(rW 1/170)t (r + 1)7rWxi]

27rWt sin(r + 1)7r-Wxi
(1.4)

cos[27(rW Wo)t r7rWxi] cos[27tWot r7FT47xt]

27rWt sinr7W

We need to require that xl n/(Wr), .x1 n1 (W (r +1)) where r is an integer such

that (2W0/W) < r < (2W0/W) + 1.

Since the sampling set is invariant under shifts by elements of the subgroup H1,

this area of sampling theory is known as periodic sampling. Further studies of

nonequidistant but periodic sampling on lR can be found in [18, 25, 30]. General-

izations to higher dimensions include [4, 11]. Further results for IRS x [0, 27)r [6]

with their applications to computed tomography can be found in [5, 6].

In his paper [7], Faridani gives a general and unified treatment of periodic

sampling in the framework of LCA groups. He considered sampling sets which are

unions of finitely many cosets of a closed subgroup H with K an arbitrary compact

subset of G to be the support of the Fourier transform of the function f. In case of

periodic sampling the sets K + i, ii E are usually not disjoint. This induces a

decomposition of the set K into disjoint subsets K1, where each K1 consists of the
(1)points which are overlapped by the same translates, i.e., K + ij,. . . ,K + 76(1),_1.

Faridani uses the characteristic functions xici of these sets as the building blocks

for his reconstruction formula. We will review the details of this decomposition at

the beginning of the § 2.1.2 below. Another important difference to note is that the

subgroup used by Faridani does not need to be discrete. We refer to the following

theorem in [7] at various parts of the present work. It gives a reconstructed version

of f from the knowledge of f on cosets xn+ H, mm= 0, , N 1.

Theorem 1.1.3 ( [7]) Assume that f E Li (G) is continuous, every function y

f(x + y) belongs to Li(H), and that I vanishes outside a compact set K C
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Let M1 = ,77,m(1_11, 1 = 1,.. . , L be the values assumed by M6. = {Ti E

HI\ {0} : e E K + 71} as runs through K. Let xKi be the indicator function of

K1 = E K: Mt = Assume x0 +H, , XN-1 +H EGIH are such that for

1 = 1, , L the systems of equations

N-1

= 1
n=0 (1.5)

E/3(1),27,<713(/)>
0, j = 1, .

n.=-0

admit solutions (1 , n 0, , N 1. Then

and

N-1 L

Pe) = E E
n=0 1=1

(1) xK1() f f (xn + y)e-2<x"+Y dmif(y) (1.6)

N-1

f (x) = f f (x, + g)kn(x xn y)dmH(g)
n=0

with

k(z) Ki(Z). (1.8)
1=-1

We note that the case with N = 1 and L mi = 1 yields the classical

sampling theorem [19]. This requires that the sets K + 77, 97 E H-L- be mutually

disjoint. In the case where G = IR, H Z/W with K = (W0 W, W0) U

(W0, Wo + W), Theorem 1.1.3 gives Kohlenberg's result (1.3).

The third branch of advancement is the case of sampling theory with nonpe-

riodic sampled data but with partial structure. In this case, sampling sets are unions

of cosets of possibly different subgroups and therefore no longer periodic. Walnut's

paper on nonperiodic sampling of bandlimited functions [28] falls into this category.

In [28], Walnut considered sampling sets in IR to be the union of different subgroups,

(1.7)
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i.e., A = Ui{n/2ri}nEz where rift. is irrational if i j. As part of his work in

[28], Walnut proves a uniqueness theorem for this case and higher dimensions. We

quote the uniqueness theorem in one dimension.

Definition 1.1.4 : Given a finite set of positive numbers p, define Rp =

ErE, r, Ip=[Rp,Rp], and Ap {n/2r : n {0}, r E

Theorem 1.1.5 (128J)Let 1 < p < Do, let 0 < r1 < r2 < < r, be such that

ri/ri is irrational if i j, and let p = {r2}1. Suppose that f E L(I) vanishes

almost everywhere outside Ip and f satisfies:

f) = 0 for all A E Ap,

f(j)(0) = 0 for j = 0, , m 1.

Then f (x) = 0 for almost every x c IR.

The condition b on the derivatives of f at zero is required since the sampling sets

{n/2r, : n E Z} have zero as a common point. Walnut generalized these results to

higher dimensions using tensor products. The Fourier transform of f is supported

in the hypercube I = fx = (x1,... ,xd) : x, E Lol and the sampling sets are

Actl, = {A = (A1, , Ap) Ai E A0}, see Theorem 4.1 in [28, p. 445]. Walnut also

constructed a collection of Lagrange-type interpolation functions which in principle

would yield a reconstruction formula. However, Walnut also proved that this collec-

tion is unbounded in L2(IR) (see Proposition 3.1 in [28, p. 442]). In a recent paper

[29], Walnut used the results from nonperiodic sampling proved in [28] to compute

explicit, compactly supported solutions, {v24,}".11, to the deconvolution equation

Ezrn_i * 111,4, = 1, where (I) is a given function and JL= = 1, , m with

ri as above.

The purpose of the present work is to consider sampling sets which are finite

unions of cosets of closed discrete subgroups in the framework of locally compact



are continuous functions f3 E L2(G) such that supP(h) C K j = 1, . . . ,N and for

almost every x E G

7

Abelian groups. In particular, we call H a lattice if GIH is compact. In our theory,

we use admissible lattices which are lattices so that the annihilator subgroup H'

of H is also a lattice with R as fundamental domain of HI. We assume that f

vanishes outside a precompact subset K of C which is constructed of the unions of

fundamental domains of different His. By a precompact set, we mean a set whose

closure is compact. Furthermore, K has a telescopic shape, i.e., for R1 C . . . C RN,

let Ki = and for j = 2, ... , N

R3 U (77 ± R3 _ u. . . U ((l73 ± 712) ± R1) (1.9)

_K1 C R3

with 7i3 E . Then K = KN. Using the classical sampling theorem, we first

reconstruct a version off, SHNf, with respect to HN. Thus f and SHA, f coincide

on xN + HN and their difference vanishes on xN + HN and using Theorem 2.1.4 can

be represented by a function whose Fourier transform vanishes outside the set KN

One can continue with this procedure till K1 = Ri is the only set left. This produces

a recursive reconstruction formula to give f. To complete the introduction, we

include the main result of the present work at this point. For definitions of admissible

lattices and admissible subsets of C with respect to Hz see Definition 1.2.12 and

Definition 2.1.7 respectively.

Theorem 1.1.6 : Suppose that Hi, i = 1, . . . , N are admissible lattices with Ri as

a fundamental domain of for each i such that R1 C . . . C RN. Assume that K is

an admissible subset of o' with respect to H1, HN and K as in Definition 2.1.7.

Let f e L2(G) be continuous so that I vanishes outside almost everywhere K

Assume that (z x3,713) 0 for z e (x2 + Hi) and 1 <j < N Then there



with

1
SHig(x) m(R) yEH

fi(x) = SHifi(x),

g(xi + y))?R,((x xi y)), E G. (1.13)

This recursion provides an algorithm to compute f from the sampled values f (z), z E

U1 (x + Hi).

We can differentiate this work from periodic sampling by the following points.

Using nonperiodic sampling sets.

Under certain conditions, it is advantageous to treat a periodic sampling set

as union of cosets of different subgroups. Example 2.1.21 shows one such case.

The set K which is considered here needs to satisfy certain conditions which are

not necessary in periodic sampling. Furthermore, in periodic sampling sampling

sets need not to be discrete. We also differentiate the work here from Walnut's

nonperiodic sampling in the framework of G lRd by the following points.

Using the general setting of locally compact Abelian groups.

Using the cosets of the subgroups instead of the condition on the derivatives

of f at zero.

Sampling sets are not built by using tensor products of lower dimensional sets.

fi(x) - fi(x) (
) (1 e27,(x-xj,ni>) j 2, N,

fN = f (1.12)
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The support of the Fourier transform of the function that needs to be recon-

structed does not need to be a hypercube.

A recursive formula is provided that can reconstruct a bandlimited function

under certain conditions.

On the other hand, the theory developed here requires a compatibility condition

involving the support K of f and the sampling sets which are not necessary in

the nonperiodic theory presented by Walnut. We also make a note that the theory

provided here is not general enough to treat the general case of nonperiodic irregular

sampling. This is the case where the sampling set only needs to meet some density

requirements. For a treatment of this case see, e.g., [2, 9, 10, 12, 21] and the

references given there.

The classical sampling theorem is only one method in which data can be

extracted from a function and still contain sufficient information to reconstruct the

function. Shannon also noted that one could reconstruct the function from the

knowledge of the function and its first derivative at every other sample point. This

idea was extended to higher derivatives. These and other reconstruction ideas were

remarkably unified in a generalization of the sampling theorem by Papoulis [25].

The generalization concerns reconstruction of a signal with data sampled at 1/Nth

the optimal rate from the output of N filters through which the signal has been

sent. The result is a generalization of the reconstruction from the filtered signal's

samples. On Ft, this is an analogue of what is called filter bank in a discrete setting.

Since the area of filter banks is vast, we won't be able to give a comprehensive

introduction. However, the following should suffice to serve our purpose.

A digital signal is a function defined on the integers, denoted by a doubly

infinite vector. The delay operator S is given by S x(m) = x(m 1) where m E 1.
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The inverse of the delay operator is called advance. A digital filter is a linear

combination of delays and advances. The N-fold decimator (N being an integer) is

presented by the relation (4. N) x(m) x(Nm), which indicates that only the input

samples occurring at times that are multiples of N are saved. The symbol (4. N)

indicates downsampling or decimation. The expander is described by the relation

if m is a multiple of N;
(t N) x(m) = x(7111 N)'

t0, otherwise.

That means, the expanders insert N 1 zeros between adjacent components of

x(m). The symbol (-1- N) indicates upsampling or expansion. Upsampling and

downsampling are not shift-invariant operators. A filter bank is a set of filters,

which are linked by sampling operators and sometimes by delays. An analysis bank

consists of two steps, filtering and downsarnpling. A synthesis bank which follows an

analysis bank has also two steps, upsampling and filtering. When the reconstructed

output X(n) from the synthesis bank is identical to the original input x of the analysis

bank(with only a time delay), the reconstruction is called "perfect reconstruction".

We see that a filter bank is the analogue of the generalization of the sampling

theory defined on R given by Papoulis. Our purpose is to give a general definition

of the concept of a filter bank which can be used as a unifying tool in areas such as

periodic sampling theory.
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1.1.2. DISSERTATION SUMMARY

A brief outline of the dissertation is as follows.

In § 1.2, we introduce the necessary facts about Fourier analysis on locally

compact Abelian groups (LCA groups). We will also provide lemmas and conven-

tions such as normalization of the Haar measures which will be used in the next two

chapters.

The main results are proved in chapters 2 and 3.

In chapter 2, we prove a uniqueness theorem and introduce a recursive

method as a reconstruction formula for a class of nonperiodic sampling sets. In

§ 2.1, we prove theorems and lemmas which facilitate our work for proving unique-

ness and reconstruction. Of those, Theorem 2.1.4 contributes results which are

significant on their own. Consider a function f which vanishes on a closed discrete

subgroup H and its Fourier transform vanishes outside a precompact subset K C C.

If K + 7), ijE are disjoint, the classical sampling theorem implies that f must

vanish almost everywhere. Theorem 2.1.4 tells us what can be said about f, if the

translated sets are not disjoint.

A uniqueness theorem for the case of nonperiodic sampling sets is proved in

§ 2.1.1, i.e., if f vanishes on a union of cosets of finite number of different admissible

lattices and Ivamshes outside a precompact set K C 0, then f vanishes everywhere

on G. An example in 2 dimensions is given.

In § 2.1.2, we assume the same hypotheses as uniqueness with the exception

that f does not vanish on H. A recursive formula is found which can reconstruct

f. In case of H1= H2 = H, it is shown that this recursive formula has consistent

results with Theorem 1.1.3 by Faridani (cf. [7]). Further examples in one dimension

are furnished.

12
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In chapter 3, we consider how to generalize the notion of filter banks to use

it as a unifying tool for periodic sampling theory and multi-sensor deconvolution.

In § 3.1.1, upsampling and downsampling are generalized in the framework of LCA

groups. By appropriate choices of LCA groups, we showed that the results of our

generalization are consistent with the results found in the area of filter bank theory.

These results are used in § 3.2 to prove a generalized form of what is known as

perfect reconstruction in signal processing. We applied these results to two different

areas, periodic sampling and multi-sensor deconvolution problem.

1.2. STANDARD DEFINITIONS AND THEOREMS

We present some useful notation, definitions, and theorems which will be

used throughout the course of the next two chapters. Let 1R,, Z, C, denote the

reals, integers, and complex numbers respectively. If S is any set, we define the

characteristic function (indicator function) Xs of the set S to be the function given

by
1, if x E S;

xs(x) =
0, if x V S.

We use g, OS, and IS! to denote the closure, the boundary, and the number of

elements in S respectively. In the next two chapters, the setting of our work is

based on locally compact Abelian groups and elementary locally compact Abelian

groups. We use the abbreviations LCA and ELCA for them respectively. We recall

that a topological space is locally compact if every point has a closed compact

neighborhood. We follow the definitions given in [13]. Recall that ELCA groups are

defined through their topological factors as:

Gr")=- Rd x TP x T x Fm (d> 0, p > O, q> 0, m > 1), (1.14)
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where Rd is the Euclidean d-space, ZP is the p-dimensional lattice of integers, Tq

is the q-dimensional torus group and I'm is a finite Abelian group with cardinality

m. The product topology inherited from the factors makes G a LCA group. If

G is an ELCA group, then L2(G) is separable. Unless the contrary is explicitly

stated, throughout the next two chapters G represents a LCA or an ELCA group

with binary operation of addition. A character of a group G is defined to be a

homomorphism of G into the group I = R/Z. We use the notation (x, -) to denote

the character e EC at the point x E G. The group of all continuous characters of

G is called the character group or the dual group of G and is denoted by C. It is

also an LCA group if it is equipped with a natural addition and a natural topology,

see [26, p. 10]. This can be used to prove the famous Pontryagin duality theorem.

Theorem 1.2.1 (Pontryagin) If G is a LCA group, then the dual group of G- is G.

Proof For a proof, see [26, p. 28] El

Classic examples are: G = lR, R; C=T -= 1R/Z, Z; G = z, C=T.

With every LCA group G, there is associated a non-negative regular measure

TTIG, the so-called Haar measure of G. This measure is not identically zero and is

translation invariant. That means mG(E + x) = mG(E) for all x E G and every

Borel set E C G. The Haar measure is unique up to multiplication by a positive

constant. mG(G) is finite if and only if G is compact. In this case we normalize

TnG so that mG(G) = 1. If G is discrete, Inc will be a multiple of the counting

measure. If G is discrete but not compact, mG can be normalized so that it equals

the counting measure. For a more detailed discussion, see [26, pp.1-2].

Theorem 1.2.2 If G is discrete, then a is compact. If G is compact, then d is

discrete.

Proof For a proof, see [26, p. 10]. 0



15

As part of the proof for Theorem 1.2.2, we have the following useful fact

which gives an orthogonality relation.

Lemma 1.2.3 If G is compact and its Haar measure is normalized so that mG(G)

{
1, if = ();e27,i(x,

)drnG(x) 0, if e 0.

Proof. For a proof see e.g., [14, Sec. 23.19] or [26, p. 10]. 0

Definition 1.2.4 : Suppose H is a closed subgroup of an LCA group G and Hi-

is the set of all n E a' such that (y, 71) = 0 for all y E H. 11' is called the annihilator

of H.

Theorem 1.2.5 With the above notation H' and d/ Hi are isomorphically home-

omorphic to (GI H)^ and H respectively, i.e.,

(G I H)^ arid = a/ H'.

Proof For a proof see [26, p. 35]. 0

Lemma 1.2.6 If Hi- is the annihilator of H, then H is the annihilator of H-1-, i.e.

(111)-L = H.

Proof For a proof see [26, p. 36]. E

If mG is the Haar measure associated with G and 0 <p < co, L(G) denotes

the set of all Borel functions f on G such that the norm

Ilf Ilp = (f If(x)IP drn,(x)

is finite. If p = oc, the L is the space of all bounded Borel functions on G, normed

by

Hf110,,, = ess supxeG (x)1;

ylp

1, then

fG
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where the essential supremum of I fl is defined to be the smallest number A such

that max f (x) > A}) = 0.

For all f E Li(G), the continuous function f defined on C by

f(e) ==)( f(x)e2' ° draG(x) (1.15)

is called the Fourier transform of f. From now on, we will always assume that the

Haar measures of G and C are normalized so that the following inversion theorem

holds.

Theorem 1.2.7 If f E Li(G) is continuous and f e Li(o), then

f (x) = fof()e'Kx'e) dm) (-h(x). (1.16)

The Fourier transform can be extended to a linear isomorphism of L 2 (G) onto L2(G)

by means of the Plancherel Theorem.

Theorem 1.2.8 The Fourier transform is a linear isometry of L2(G) onto L2(G),

and the inverse Fourier transform is a linear isometry L2(a) onto L2(G). These

two transformations are inverse of each other.

Proof For a proof see [14, Sec. 31.18]. 0

Lemma 1.2.9 If f E L2(G) and has compact support, then TE L2 n Li(o) and

f is equal almost everywhere to a continuous function.

Proof f E L2 (0) by the Plancherel Theorem. Thus fe L1 (C) since I has

compact support. Since I E Li (o), f is also the inverse Fourier transform of lull

the L1 sense, i.e.,

f(x)f:{()e27r2Kx'°dmo() a.e.

Since the right hand side is continuous, the proof is complete. 0



17

Remark 1.2.10 : If f E 2(G) and f has compact support, then by Lemma 1.2.9

f is equivalent to a continuous function T. If we define the restriction of f to H C G

to be the restriction of f to H, then this restriction is well defined.

For the remainder of this section and the next two sections, we will assume

that G is an ELCA group. This choice is broad enough to cover almost all applica-

tions.

Definition 1.2.11 : A closed discrete subgroup H of an ELCA group G is called

a lattice, if the quotient GIH is a compact group.

Definition 1.2.12 : An admissible lattice is a lattice which satisfies the following

two conditions:

.11' is also a lattice, and

there exists a measurable precompact subset R of 6 such that OR has measure

zero and every E a can be uniquely written as r+7, where r G R and 77 E

We call such a set R a fundamental domain of H'.

Remark 1.2.13 : Suppose that H is an admissible lattice and R a fundamental

domain of H-L. Then mil- and mHL equal non-zero constants CH and cHi times the

counting measure respectively. For 1E Li (a) define the function RH L a/H-L

C by

RH_LI(e + HI) =

We notice that the sum on the right-hand side does not change when is replaced

by + 77 with 71 E 11-1-, so RH Li is indeed a function of the coset + HI. According

to Theorem 28.54 in [14], Rn±f belongs to Li(allii). Throughout this thesis, we

use the following convention.

Convention 1.2.14 : Let H be an admissible lattice. We normalize the Haar

measures on G, G, H, GIH and GIH' so that



We have

F(y) = f F(c)e27"(mC)cl
G/H-1-

mom, (o/111) = 1.

fomi
RH-±:f( + Hi) dma-mi (r +

fyni CHI + 71) dMa _L(' +
o /ICH ±

We note that such a normalization is possible [26, section 2.7.3]. Below, we will

show that CH = 1 and cHi_ = rno(R).

The next lemma establishes an identification between alH , om, and

R,mo respectively, where R is a fundamental domain of HI-. This identification is

used throughout the next chapter.

Lemma 1.2.15 Assume that H is an admissible lattice and R a fundamental do-

main of H-L. For g E L1(a1H-L), define the function E Li(0) by 4() =

xR()g(e+ H-L). Then the following equality holds:

f
fo/Hi g( me + HI) dmoi( + HI) =

1 g() din().
CThr R

Proof. Define .1 in Remark 1.2.13 to be xR()-.-0(0. Since for e R and

E H-L

11, if 77 = 0;

1 0, if 77 O.
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i) The Fourier inversion formula (1.16) holds.

An analogue inversion formula holds for the Fourier transform on H, i.e., for

F e Li (H) with FE Li (o1HI) so that

(1.17)

d7716() -

G

(1.18)



p_ (XR.-9)( + HI) = ± XR( + 71)-.4( + T1) = cH L79(0
nEH-L.

Thus, for e E R

fR79(Ocirna(0 = f XR()79(e) thilo(0

f± HI) drno/IP-( HI)
G/H-L

=CH f g( clm _Lo/H( +

where (L21) and (1.22) follow by (1.17) and (1.19) respectively. 0

We are ready now to determine the two constants ell and CH'.

Note 1.2.16 : To find cm consider the function f e L2(H) whose Fourier trans-

form satisfies 1(0 = 1. Then by the inverse Fourier transform, we have

f (y) =e27ri('Y)drnom,(()
Gm]

1, if y = 0;
(1.23)

1 0, if y O.

Note that (1.23) follows from Lemma (1.2.3) and the fact that d/Hi is compact.

Now by the Fourier transform, we have

1 = 1(c) = CH
f (y)e-27i((,y)

YEH
CH.

Furthermore, if in Lemma 1.2.15, we let g 1, then cHL is equal to m(R) 0.

The following version of the Poisson summation formula is given by Grochenig

in [13, p. 217].

Theorem 1.2.17 Suppose H is an admissible lattice with R as a fundamen-

tal domain of HI. If -1 E Li(o), then the periodization + H-L)

ma(R) EncH, + 77) is in Li(oIH') and for y E H

19

(1.19)



yEH

where the equality (1.25) holds almost everywhere and the right hand side converges

in L2(a H-L).

Proof For a proof, see [13, p. 217]. El

20

= f(11). (1.24)

If furthermore EyEH f(y)2 < 0 , then RH_LI E L2(61111) and

RH-L-1( + HI) = me(R) E +77) = f (Y)e-2"Ti(Y' ) (1.25)



2. NONPERIODIC SAMPLING THEOREMS

2.1. SAMPLING THEOREMS

In this chapter, we prove a uniqueness theorem for nonperiodic sampling sets.

We present a reconstruction formula for this case as well. We will assume throughout

the next two chapters that H is an admissible lattice and R a fundamental domain

of H-L. We normalize the required Haar measures according to Convention 1.2.14.

With this normalization, we have found CH = 1 and cHL = ma(R). Furthermore, we

assume that f E L2 (G) is continuous, and that f vanishes almost everywhere outside

a precompact subset of C. In earlier sections, we mentioned a decomposition of K

into disjoint subsets K1. This decomposition plays an important role throughout this

work. To motivate the abstract theory, we will give an example and then present

the decomposition as it is introduced in 171.

Example 2.1.1 : Let G = IR, H = Z. Then C=IR, HI = Z, and H =

= T. Hence fundamental domain R of Hi can be chosen to be [0,1). Thus

m(R) = 1. Assume that K = [0, 3/2], and f E L2(TR) such that the hypothesis

of Theorem 1.2.17 holds. Define F = Eriez f (n)e-2Irzne. Following Poisson

summation formula (1.25), we have

F f (n)e-27rin f + (2.1)

nEZ nEZ

where n E HI. Since /vanishes outside K, (2.1) becomes

1() + + I), if E [0, 1/2] = K21

F() 1(), if E (1/2,1) =

1) + :1(), if E [1,3/2] = K3.

For E K1 = (1.12,1), .1() can be recovered from f (n) with Ti E Z. However,

21

for E K2 U K3, Re) can not be recovered uniquely from f (n). The Poisson
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summation formula gives an equation which relates points in K2 with points in

K3. Thus in general, given K, the Poisson summation formula gives an equation

of the form F(e) = Eim-01 ( + 7)i) where the only nonvanishing terms have jj for

which + ij E K and there are m such riis. Let Me be the set of all such Th, i.e.,

Me -= E : E K1. For a given the set K consists of all points E K

for which Me, Me. Furthermore, for 71 E Me, we have ri E K KK, i.e.,

E HI n (K K). Keeping this example in mind, next we go through the formal

theory.

Lemma 2.1.2 Suppose H is an admissible lattice and K a precompact subset of C.

Then there is a decomposition of K into finitely many subsets K,k with the following

properties:

i) The sets K j,k are mutually disjoint for j 1, , J, k = 0, . . . , ni 1 and

n3-1

K U U
k=0

ii)There are 717(-,3'k) E 111-, j = 1, . . , J; k , n 0,..,n 1 such that for ri E

(-K j,k n K 0 if and only if iiE {0 77(())'k) 71(n31k)1} Aj,k)

(j, k) (j', k'), then Aj,k) ,ki)

With the lki'k) as in one has K j,k =K,0 + r fixed j, the sets

K j,k are translates of K

Proof. For E K, define Me to be the set (1/1\101) n (K 0 which is

contained in H-L. n (K K) where K K = JEK (K e). Since K K is contained

in the compact set K K, by Lemma 2.3 in [7] H-L n (K K) is a finite set. Thus,

we let AA = , Th11- where E K and in 1 represents the cardinality of

the set _K. Since the finite set HI n (K K) has only finitely many subsets, as



j' =1

1,) + 1 + k , k = 0, , 1. (2.4)

We can describe this arrangement by a double index (j, k), where j identifies the

equivalence class and k is as in (2.4). Thus using this correspondence between 1
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e runs through K, 11A will assume only finitely many values, say MI, , AIL. The

relation e e' <#.M = Me, gives an equivalence relation on K induced by the

subgroup H. The equivalence classes are

E K : Me = mil, = L. (2.2)

The sets K1 are mutually disjoint and K =Uf' 1K1. Furthermore, each K1 consists of

the points e for which e+77 E K if 77 E /1//1 U {0}, and e+77 K if 77 E HI\ U On.

To facilitate the notation, we let

A = 1 = 1,...,L (2.3)

be the values assumed by (HI \ fon n (K e) as e runs through K, and let

=M1 U {0} = {0 = 4)1) , , 7-41),_11 . We have that (K1+ 71) C K if 77 E

and (Kt+ 77) n K =-- 0 for 71 E H-'-\M1. Hence, for each 77 E AY; there must be an

E {1, , L} such that K1, = K1+ 77, and M1= M, IT It follows that we can

define an equivalence relation on the set of indices {1, , L} by letting l' if and

only if there is n c Mi such that K1, = K1 + 77. Let J be the number of equivalence

classes for the set S = 11,...,LI where 1 < J < L. Assume that each equivalence

class S3 for j = 1, , J contains 773 elements. We rearrange the sets K1 so that the

sets which belong to the same equivalence class are grouped together. This gives

KL= Kl, Kni, , Kni+n2, Kni++nj_i+17 ni++nj
F=1 j=2 J=J

Note that for each j E {1, ...,
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and (j, k), we write K j,k for K1,ri7(il'k) for ThC,1) and IT I ci,k) = {0 = 710(j'k) 74(iji.'k)

for MI = {0 = 771}. Furthermore, one can order the sets K1 in each

equivalence class in such a way that K j,k + lik(3,0) and '1k 7 -"OM

1, J, k = 0, , ni 1.

To clarify the abstract notation, we continue by giving an example in one

dimension.

Example 2.1.3 : Let G T = IR/Z, a = = {jIN : j = 0, , N 1} with

addition modulo 1 where N > 5 is a positive integer. It follows that Hi- = N.

Let K {P,. , N + Pl where P < 1 is a positive integer. Then for E K,

we have

(HI \ {0}) n (K - K)= {N, N}.

It follows that K1, K2, and K3 are the sets {P + 1, , N P - 1}, {P, ...,P},

and IN P,. . . , N + Pl respectively. Hence, L = 3 and M1 for I = 1, 2 and 3 is

respectively {O}, {N}, and {N}. The equivalence relation on the set of indices

gives the double indices as follows:

S1= {1} with 4,1,0)

S2 = {2,3} with TI(2,0) N and ri2,1) N.

Furthermore, the compact sets can be reindexed and defined as

K1= K1,0, K2 = K2,13 and K3 = K2,1

where

K2 = K2.0 + r/i2.0)

The following theorem tells what can be said about f if the function vanishes

on an admissible lattice H but the translated sets K+, j E 11-1- are not necessarily

disjoint.



1

E j-ce +17) = mo(R)
nEH-1- yCH

where (2.8) converges in L2(o/Hi). Since f vanishes on H, the right hand side of

(2.8) is equal to zero and hence for almost every e E
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Theorem 2.1.4 : Suppose H is an admissible lattice and R a fundamental do-

main of HI. Assume that f E L2(G) is continuous, f vanishes on H, and that

f' vanishes almost everywhere outside a precompact set K C C. Let KI,k be the

sets of the decomposition of K according to Lemma 2.1.2. Then there exist contin-

uous functions hi,k E L2(G) withhi,k vanishing almost everywhere outside K,k for

j = 1,...,J, k = 1, 1 such that

J nj 1

1(0 = ,k rtj (2.5)
j=1 k=1

for almost every EC and

j n1-1
f (x) = h (x) (1 e-27ri(x,71(ki'°))) (2.6)

j=1 k_---1

for almost every x E G.

Note that if K+77, r E HI are disjoint, then J = 1, n1 = 1 so (2.6) reads f(x) = 0

which is consistent with the classical sampling theorem.

Proof Let hi,k E L2(G) be a continuous function such that -h (e) =

xKi,, -fio for j = 1, , J and k = 0, , ni 1. Then

nj 1

( , (0 a.e. (2.7)
j:=1 k=0

Since -/E L1(0) and f, I f (Y)12 (Y) = 0 by hypothesis, the Poisson summation

formula (1.25) can be applied. Thus, we have

f (y)e-271-2(y,e) ac. (2.8)



.1=1 k=1

nj-1

j=1 k=1

ni--1

g(x) =12,
j=i k=1

where 7/0(3'°) -- 0 and j = 1, , J. Combining (2.7) and (2.9) gives

n3-1

(e) 11j,k(e j; '°)77) 0
k=1

for almost every e E Ki3O. If e ko, then e ri(ki'°) K3, for fixed j and

k = 1, ... ,ni 1. Hence, (2.10) holds for almost every e E C. We solve for ko in

(2.10) and substitute in (2.7) to get

n -13
n-13

1(e) (+ (e))
k=1

C1,0)
rik )

for almost every e E C. The inverse Fourier transform of (2.11) gives (2.6). 0

Corollary 2.1.5 : Assume that the hypotheses of the Theorem 2.1.4 holds except

the condition that f vanishes on H. Assume instead that f vanishes on ce H,

where a E G.

Then there exist functions hJ,k C L2(G) withhj,k vanishing almost everywhere out-

side K j,k for j 1, 1, , ni 1 such that

j n3-1
f(x) h ( )(1 C-27r'Kx-a °))) (2.12)

k=1

for almost every x E G.

Proof. Define g(x) = f (x a). Note that vanishes almost everywhere

outside K and g vanishes on H. Thus Theorem 2.1.4 can be applied to g to give

(2.10)

(2.11)

)(1- C-27i";")))

77EH k=0
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n3-1

E T1) :1(&- +71/') = 0 (2.9)



Define hi,k(x) = hi,k(x a). Then

f (x) g (x - a)
J 713 -1

-h(a, co (1 e-27r,(x-0043'°)))

j=1 k=1
ni -1

li.),k(x)(1
e-27ri(x--"(3 X)) )

3=1 k=1

This completes the proof. 0

The following example treats a specific case which will be important for the

remainder of the chapter.

Example 2.1.6 : Assume H is an admissible lattice with R a fundamental domain

of HI. Suppose K' is a nonempty precompact subset of R. Let K = RU (ii' K')

where 77 E {0}. Then the decomposition of K yields

K1 = 71, K2 = K' and K3 = R\K'.

We obtain two equivalence classes:

K1,0 j + K', K1,1= K' and K2,0 R\K'.

e,0)Hence n1 = 2, n2 = 1 and n. Equation (2.12) implies that

f (x) = h(x)(1 e27i(x-.n))

27

(2.13)

with h vanishing almost everywhere outside K1,1 = K'.

In Theorem 2.1.4, K was an arbitrary precompact subset of G. For the re-

mainder of this section, we consider K to be a union of shifted copies of fundamental

domain of different His. We will treat this formulation here in detail and use it

thereafter.
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Definition 2.1.7 : Suppose that H1,. HN are admissible lattices and Ri a

fundamental domain of H for each i such that R1 C . . . C RN. If K1 = R1, and

for j = 1, . . . , N 1

Kj+1 = Rj+1 U (71)+1 + Kj) with 7)j+1 E H1 \ {0}, and

Ki C

then K = KN is called an admissible subset of G with respect to the subgroups

HN.

Note that this gives

= Ri u + Ri_i) u ((in + 17j_i) + Ri_2) u u ((7) + 772) + R1) (2 . 1 4 )

where j 1, . . . , N.

2.1.1. UNIQUENESS

In the next theorem, we prove the uniqueness for generalized sampling the-

orem with nonperiodic sampling sets. We also give an example in R2.

Theorem 2.1.8 : Suppose that H1, . HN are admissible lattices and Ri a funda-

mental domain of for each i such that R1 C . . . C RN. Assume that f E L2(G)

is continuous and vanishes on Si = xi+ Hi for i = 1, . N, where xi E G. Assume

that .1 vanishes almost everywhere outside an admissible subset K of -a with respect

to the subgroups H1,. HN. If (z x3, nj) o for z E Uji S where 1 < < N ,

then f vanishes almost everywhere on G.

Proof. The proof is by induction on N. If N = 1, then K = R1 = K1. Since

f vanishes on a coset of H1 and supp(f) C R1, by the standard sampling theorem

f vanishes on G. For N > 1, assume that the theorem holds with N replaced by

N 1. Now HN is an admissible lattice and RN a fundamental domain of H.
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Furthermore, KN-1 is a nonempty subset of d such that K = RN U (TIN + KN-i)

Since K. N-1 C RN by Example 2.1.6 and Corollary 2.1.5, there exists a function

hN E L2(G) with hN vanishing almost everywhere outside K N_i such that

f (x) = hN(x)(1 627"(x-TN'")). (2.15)

N-1Let S'N = Ui=i Si. If z E S'N, then z E Si for some i = 1, , N 1. Thus,

by the hypothesis, 0 = f(z) hN(z)(1 e'rz(z-xN-">). Since (z xN,T)N)

0, h(z) = 0 Vz E S 1, , N-1. Now hN E L2(G) vanishes on S, x,+H,

for i = 1,..., N 1 where x, E G and (z x3,773) 0 for z E U3,111 S, where

1 <j < N 1. Furthermore, 'fr,N vanishes almost everywhere outside K N _1. Thus,

hN satisfies the hypotheses of the theorem with N replaced by N 1. Hence, by

the induction hypothesis hN(x) vanishes almost everywhere on G. Following (2.15),

f vanishes almost everywhere on G.

We continue by giving an example on the group G = IR2.

Example 2.1.9 : Let G = IR2, and let Hi, H2 and 113 be closed subgroups of G

generated by the matrices W, i = 1, 2, 3 where

(ri 0
=

0 di )

with ri, d E IR+. Furthermore, assume that d3 < d2 < di and r3 < r2 < ri such

that 1 < Let to be a fundamental domain of Hi" for i = 1, 2, 3. Hence
d '

Ri
3 d2

Ri = {(vi, ai) E IR x lR : 0 < ai < 1/di, 0 < < 1/ri}

for each i. It follows that R1 C R2 C R3. Let

(2.16)

K = R3 U ((
0

1lr3 + R2)
1/d2

U 1/1'3) + Ri) . (2.17)



z E Si. Note that here q3 =
(

0

1/r3 )
7 0and 772 = )I. Following Theorem 2.1.8,
\ 1/d2

K2 R2 U ( ( 0
lic/2 )

+
R1

and K1 = R1. Since K2 C R3, f vanishes almost

everywhere on G by Theorem 2.1.8. Note that K1,---- R1 C R2-

/-
1'1 r2 r3

FIGURE 2.1. R1 C R, C R3 with K2 C R3

R3

FIGURE 2.2. K -= R3 U (7)3 + K2) U ((i73 ± 772) ± R1)
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Suppose f E L2(1112) is continuous and vanishes on Si = { + H i .
1,2 and H3. Assume that i vanishes almost everywhere outside K. Suppose

(zi

0 \\
)) for z E S = 1,2. and (z

( ;22 ) (1/0d2 )1/d2 ')
0 for

R3 113+112+R

113+P-2

1 ,
d3

1

d2

1

d1

R2

Ri



2.1.2. RECONSTRUCTION

In the next Theorem, we consider the following: Let f be defined on an ELC A

group G such that Ivanishes almost everywhere outside an admissible subset K of -a

with respect to HI. Using the classical sampling theorem, we find a reconstructed

version of f, say SH f, such that f and Slif are equal on the coset of H Now

applying the Theorem 2.1.4 to the difference g = f SH f , we can find a function

h with It vanishing outside KN_i. By repeating this procedure with the knowledge

of f on a finite union of cosets of different subgroups of G, one can reconstruct f

recursively.

Remark 2.1.10 : Assume that H is an admissible lattice with R a fundamental

domain of Then R±i7 are disjoint for g HI since R is a fundamental domain

of If f E L2(G) is continuous and supp(h C R, then

+ Mb) = 717 a(R) 12 .1(e + 77)
riEH-L

rria(R) 1(0. (218)

To be more specific on SR f and its properties, we need the following technical

lemmas.

Lemma 2.1.11 Assume that H is an admissible lattice and R a fundamental do-

main of HI. Let f E L2(G) be continuous so that f vanishes almost everywhere

outside K where K is a precompact subset of G. Assume that there exist P E IN such

P-1that K C Ui=0 (R+77) where 77 are distinct elements of HI. If F is the restriction

of f to the subgroup H, then F E L2(H) and as an operator, this restriction is

continuous.
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Proof If P = 1, then K is contained in R. Thus, it suffices to show that F

is the inverse Fourier transform of a function in L2( IHi). Then by the Plancherel
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theorem the result will follow. By (1.24), F is the inverse Fourier transform of

RH_L/ Furthermore,

IRH-Lf( + H1)12 d + HI)

= (rnO(R))2 f Cf()12 dmolxi(+ HI) = ma(R) faXR(0 li(e)12drna()
GlHi

where the first equality follows from Remark 2.1.10 and the second one follows from

the Lemma 1.2.15. The right hand side is finite since fE L2(0). The continuity

follows from Lemma 1.2.9.

If P > 1, then we let f, E L2(G) be continuous functions such that f2(e) =

XRA-Th (0-A0 =-- 0, , P 1 where K R + rh. Then

P-1

:/(0 1g)- (2.19)

But for each function f, P 1 and the above argument applies to show that the

restriction of each f, to the subgroup H is in L2(H). Thus, F E L2(H).

To show the continuity of the restriction as an operator, we will show its bounded-

ness. Suppose

Hfil = max IlfilHH2

where 0 <j < P 1. Since the functions fi are mutually orthogonal, we have

P-1 P-1

= H fH = (2.20)
i=0 i=0

where Pythagoras lemma is used for the first equality. Hence

(filH)112)2 P211.f.ilA = P2rna(R)!!fig (2.21)

< P2m,a(R)11f11 (2.22)

where the last equality in (2.21) follows from Kluvanek's Theorem 1.1.1 and (2.22)

follows from (2.20).

P-1 P-1

= II ( I
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Lemma 2.1.12 Assume that H is an admissible lattice and R a fundamental do-

main of H'. Then for y e H

Proof. Since H is a lattice, aI is compact. Thus, Lemma 1.2.3 can be

applied. The proof is now complete by Lemma 1.2.15. 0

To give a description of S H f , assume that the hypotheses of Lemma 2.1.11

hold. Let F be the restriction of f to the subgroup H. It follows from Lemma 2.1.11

that I' E L2(ii) = L2(a7 Hi). Thus, for E O/H-L,

P() = F(y)e2" )
yell

= f (y)e-27"KY' ) (2.24)
yCH

Hence,

f (y) = F (y) f d

GlHi
1

m(R) Jo XR(OP(0e27"Y' ) (1)700 (2.25)

where E o'/H-L and (2.25) is true by Lemma 1.2.15.

Remark 2.1.13 : Define

{mo(R), if y 0;
i'R(Y) = Ie-272(Y'° dm()

0, O.

where F E L2(ii). Hence, (SH E L2(0)

C/H'

S H f (x) =
1

mo(R)
foxR() fr(e) e2dm-a-(e).

Following (2.25), for all y E H, SH f (y) = F(y) = f (y). Furthermore,

1(s f) = ma(R) xR() fr

(2.23)

(2.26)



where

sH2f (x) =

Upon substitution of P from (2.24) into (2.26), we get

f (x)

sH f (x) =
1

m(R)
1

ma(R)

1 e271-2(X,712

Tito (Ri
yeTil

+S H2 f (x)

xli() f (we-277,0) e277-z(x;Odino

yEH

E f() xR() e272(x-Y'')drna-())
yEH G

f (AR(-(x - y))
yEH

f (X1 + Y) SH2f (xl Y) XR1((x - -1 e2R-z(x1+Y,172)

f(y)R2((x y))
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We note that P has compact support and hence is in Li (1-/). The interchange of

integration and summation in (2.27) is based on convergence in L1 (H) of the sum

in (2.24) and on the fact that the bounded function e2''Kx,0 does not violate this

convergence.

The following theorem gives a reconstruction formula for the case of nonpe-

riodic sampling with two different subgroups.

Theorem 2.1.14 : Assume that H1 and H2 are two admissible lattices with Ri a

fundamental domain of Hzi- for each i such that R1 C R2. Assume that K is an

admissible subset of G with respect to H1 and H2, i.e., K R2 U (72 + R1) , where

712 C {0}. Let f E L2(G) be continuous so that f vanishes almost everywhere

outside K. Let S1 = x1 + H1 with x1 E G be so that for all z e S, (z, 772) 0.

Then for almost every x E G

(2.29)

( 2 . 2 7)

(2.28)
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Proof Let g f S H2 f where S H2 f is defined by (2.28). Then supp(g) C

supp(1) U supp(S H2f)^ K U R2 = K and g vanishes on 112 following Remark

2.1.13. Note that g E L2(G) since (S H2 E L2(0). Since K = R2 U (712 + R1)

and R1 C R2 following Theorem 2.1.4 and Example 2.1.6, there exists a continuous

function h E L2(G) with h vanishing almost everywhere outside R1 such that

g() = h(x)(1 _ e27/(X772)) a.e. (2.30)

It follows from (2.30) that for all z E

h(x + Y) = g(xl y)1 e27z(x1±Y072).

Using the classical sampling theorem, Theorem 1.1.1, we have

1

mo(Ri)
h(xi + AR, ((x y))

YEHi

1

.rno(Ri) 1 _ e27ri(X1 -1-y,972)
XR1 (x X1 y))

g (xi + y)

h(x) (2.31)

m(R1) yEHi

It follows that

f (x) = g(x) + SH2 f (x)

= h(x) (1 e27"("72)) + S 11-2 f (x)

1 e27rix,7/2) f (X1 ± y) SH2 f (x1 + y)
mo(Ri) 1 e27i(x1+Y,112) AR1 X1 Y))

YE H1

+S H2 f (x) El. (2.34)

(2.32)

1 f (xi + y) - SH2f(xi +

- e27ri(X1 jnY77/2) XR1 y)). (2.33)

To compare the result of Theorem 2.1.14 with Theorem 1.1.3 by Faridani (see [7]),

we assume that the subgroups in the hypotheses of Theorem 2.1.14 are the same,

i.e., H = H = H2 . We assert that in this case the two theorems give consistent

results. We need the following lemma.
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Lemma 2.1.15 Suppose H is an admissible lattice with R a fundamental domain

of HI. For x,a E G and y, z c H

R) 2_, XR((a + z)A'R((x - G y)) = iTR((x z)). (2.35)

L'` yen'

Proof. Let f (t) = j(R((a t)). Then f E L2(G) and supp(f) = R. Thus,

for y' = y z Theorem 1.1.1 applies to give

Corollary 2.1.16 Assume that the hypotheses of Theorem 2.1.14 hold with the ad-

ditional condition that H1= H2 = H. Then

1
f (x) = JR) E f (x. + y) kn(x xn y) (2.36)

/ n=0 yEH

with

xo = 0, and xi = a.

Here

where IV) =

ko(x y) = i3(1) R((x y)) + i3O2)5('n2+R((x y))

ki(x a y) = 13NR(-(x - a y)) + i@i2)2?2+R((x a y))

Z((a + Y z))'R((x a y))

1

ma(R)
OVR((x _ a

= f (x - a z)

= + x a z))

(2) and /V) 1 = 1, 2.(I)
1 ^

z y'))

1

mo(R)
yEH



Hence

f (x) =

where

R(l) 1

1-° 1 _ e-27cz(a,T12)

and

Proof. Following Theorem 2.1.14, we have

1 e27"(X'712)
f (x)

f +
u)(5('R(-(x - CA Y)) +

j'672+R( (x - a - y))1

m(R) (1 e27i(cx,n2)) (1 e-27rz(ct,772) )

YEH
(1 e271-i(x,772)) 1

(1 - C27i(ce,n2)) [Ma (R) >2, Trl (R)yEif G zeki

+ S H f (x)

where (2.37) follows because

e27rz(x,772)

(1 _ e27ri(c1,772))
(X y)) 77772+R( (X y))

e-27ri(c072)

and the definition of S H f (a + y) respectively. -Using Lemma 2.1.15, (2.37) can be

written as

1

e27ri(x,7/2)) 1

f (z) 7R(-(x - z)) + SH f (x)
(1 - e27i(72)) m

EG(R)z H

=-_ 1

ma- (R)
f(z)( 72+R(-(x - 2)) (R(

(1 e2Tri(a,712))

1
f (z)(-

2+R(-(x - z))
(1 (Im(R)

f(a + - SH,f(G+ Y)-
1 627rz(ce+y,772) a - y)) + SH (x)

0(1) 1

1 1 - e27ria,n2)

1

f(z)5(-R(-(a + y- z)))]5'(R(-(x - a

z3(2)

1 -

- (x - z))
, ) + SH f (x)e2\a7T1 s/)2 /)

(x - z))

(2.38)

1

27i(a,n2)

37

(2.37)

f( + Y)0i1)271?(-(x - - y)) '312)277/2+R( (X - - y)))

f (Y)G3O1)5'CR(-(x - +/3O2)- 2+R(-( -

ma (R) yeti

A(2)

1 -
1
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This is consistent with the results of Theorem 1.1.3 by Faridani (see [7]) with N = 2

and K as above with the exception of the extra constant m1(R) in the above. This

constant is resulted from the fact that H is an admissible lattice and with the

normalization of the measures given in [7].

The following example illustrates a case where nonperiodic sampling is pre-

ferred over periodic sampling because of higher efficiency.

Example 2.1.17 : Suppose that G = IR, H1= NZ, and H2 = (N /(N 1))I for

1 <N e E. Then C= JR, H 1/N, and HP = ((N 1) I N)Z. Furthermore,

R1 and R2 can be chosen to be [0, 1/N) and [0. ((N 1)1N)) respectively. Hence

Ri C R2. We have Ki = Ri C R2 and K2 = K = R2 U (712 + R1) = [0, (N 1)1 N)) U

RN 1)1N, 1) = [0, 1) where Th = (N 1)1N. Let S1 = + H1 with a E IR so

that (a + H1) CI H2 = 0. Now if f E L2(R) is continuous and f vanishing almost

everywhere outside K, then we can find an explicit reconstruction formula.

f (x) = N(1 e27rix N

1EZ

+sH2 f (x)

where

f + SH,f (a 4 N1)
e2(l)/NX[0,1/N)( (X a 1))

(2.39)

AT sin((2ff/N) (Nkl(N 1))))f (Nk I (N 1))(e27"x
7r (x (Nk I (N 1)))

(2A0)

-i{o,i/N)((X 1)) (e(7,i1N)(x_a_No)sin((27T/N)
(X

(x a Ni)

Note that Example 2.1.21 can use the theory for periodic sampling with H = NZ.

However, as N gets larger, the number of sampling cosets increases which in turn

creates a larger systems of equations in (1.5) to be solved.

SH2I(x) = N _
kEZ

and
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The result of Theorem 2.1.14 can be generalized to N subgroups. The proof

is by induction.

Theorem 2.1.18 : Suppose that Hi, i = 1, , N are admissible lattices with Ri as

a fundamental domain of H for each i such that R1 C C RN. Assume that K is

an admissible subset of a with respect to Hi, . . . HN and Kij as in Definition 2.1.7.

Let f E L2(G) be continuous so that f vanishes outside almost everywhere K.

Assume that (z xj,77i) 0 for z E (xi + Hi) and 1 <j < N. Then there

are continuous functions fi E L2(G) such that supp(f 3) C KJ, j = 1, , N and for

almost every x e G

fi(x)= sH,fi(x), (2.41)

h(X) sHifi( (X)(1 e27r1(x- '7/.} )) (2.42)

fN = f (2.43)

with

1

SHig(x) = 77,0(Ri)
yEHi

g(x, + y))7R,((x xi y)), x E G. (2.44)

This recursion provides an algorithm to compute f from the sampled values f (z), z E

U2N-1(xi +Hi).

Proof. The proof is by induction on N. If N =- 1 , then K = R1 Ki.

Since supp(i) C K = R1, by Theorem 1.1.1, f = SH, f . For N > 1, assume

that the theorem holds with N replaced by N 1. Let g = f SHN f . Then

supp(y) C supp(hU supp(SH, = K URN K and g vanishes on SN XN

following Remark 2.1.13. Furthermore, g E L2(G) since (SHN E L2(a). Since
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K = RN U (71N + KN_1) and K1 C RN following Example 2.1.6, there exists a

continuous function f N_i E L2(G) with supp(f N_1) C KN_i such that

g(x) = f (x) f (x) = f N_1(x)(1 e2iri(xxN,,7N)). (2.45)

With fN = f, this gives the recursion formula for j = N. Now fN_i E L2(G)

satisfies the hypothesis of the theorem with K and N replaced by KN_i and N 1

respectively. By the induction hypothesis, we assumed that the theorem holds for

N-1. Hence, we can apply the theorem to fN_i to find a recursion for j = 1, ...

1. We note that fN_1(z), z E U1,\T11(x,+ Hi) can be found from the sampled values
f(z)-SHN f(z)since fN_1(z) = and (2' - XN1 71N) 0 for z E LIN_11(x, ± Hz). D

This is a description of the recursive algorithm.

Algorithm 2.1.19 If N = 1 then f = SHN f ;

else do;
f (z)-SHN f (z)

compute sampled values of g(z) =

N-1for z E Ui=1 (x3 + 11j);

Call algorithm with N, f replaced by N 1, g, to compute g(x), x E G;

f = 1 e27"(xx'"IN)g + SH, f ;

end;

end;

We consider the case N 3 and give an example for this case as well.

Corollary 2.1.20 Suppose that H1,112, H3 are admissible lattices with Ri as a fun-

damental domain of for each i such that R1 C R9 C R3. Let K be an admissible

subset of C with respect to Hi, i = 1, 2, 3. Let f E L2(G) be so that f vanishes

almost everywhere outside K. Assume that (z xj,77i) 0 for z E Uji=-11(xi ± Hi)

and j = 2, 3. Then for every x E G



1 f2(x + y) SH, j2(xi y)

mo(R1 1 e27ri(x1+yx2,n2)
XR1((x y)) (2.48)fi (X) =

yEHi

1

S f i(x) mo(Ri)
yEH

f (x) S H3 f (x)
f2(x) == 1 e2,rzKx-x3,773)

where x E (x1+ H1) U (x2 + H2) and h f.

We note that in above K = R3 U (773 ± R2) U ((/13 + 1)2) ± R1) with K1 = R1 and

K2 = R2 U (172 ± R1) where K1 C R2 and K2 C R3.

Example 2.1.21 : Let G Z18, H1= (9), H2 = (6), H3 = (3). Then

{j/18 : j = o, , 17}, Hi± = (1/9), I-4 = (1/6), H= (1/3) with ad-

dition modulo 1. Thus, we can let R1 = (1/18) {0, 1}, R2 = (1/18) {0, 1, 2}, R3 =

(1/18) {0, 1, 2, 3, 4, 5} where 711 = 1/9, 172 = 1/6 and 773 = 1/3. It follows

that R1 C R2 C R3. Furthermore, K1 =R1, K2 = (1/18) {0, 1, 2, 3, 4} and

K K3 = (1/18) {0, , 10}. Hence, K1 = R1 C R2 and K2 C R3. In order to

satisfy the hypotheses of the Corollary 2.1.20, we choose x1= 1, x2 5 and x3 = 0.

Now the support of the Fourier transform of the function f(l) = 2+2(_1)1 cos(71/9)

is in K. Thus, Corollary 2.1.20 applies. A program written in Matlab shows that

the relative error between f and the reconstructed version of f is 5.4886e-15.

fi(xi + - xi - U))

41

(2.47)

(2.49)

f (x) (1 e2-xt(xx3,7j3)) [(1 e-27r 2 41")) f (X) S f 2(X)] S H3 f (x) (2.46)

where f2, fi and S fi, i = 2, 3 are given respectively as follows:



0'
0 2 4 6

FIGURE 5.3. f (x) 2 + 2(-1)T cos(7/9/)

8 10 12 14 16 18
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3. GENERALIZED FILTER BANKS

In this chapter, we generalize the notion of filters, upsampling and downsam-

piing in the framework of LCA groups. We derive their properties. With appropri-

ate choice of G, we show consistency between our generality and their counterparts

in signal processing context. In § 3.2, we derive the conditions for perfect recon-

struction in a generalized form. These conditions are used to show that they have

consistent results with nonperiodic sampling and multisensor deconvolutuion.

Holschneider in [16] has a similar argument in Wavelet theory where he de-

fines a sampling space V C L2(G) over Abelian groups and what he calls a perfect

sampling operator (cf. [16, pp. 373-377]).

3.1. FILTERS, UPSAMPLING AND DOWNSAMPLING FOR LCA
GROUPS

In the following, let G be an LCA group, and H an admissible lattice with R

a fundamental domain of H-L For a E G, let be the translation operator defined

by Ta f = f (x a). Furthermore, the Fourier transform of the delay is

(Tai)A() = (3.1)

with a E G and e E

Below we define a filter to be the bounded linear transformation where we

abuse the notation by letting the letter M denote both the operator M : L2(G) >

L2(G) and the corresponding function M(7).

Definition 3.1.1 : Let f E L2(G). A filter M is a linear translation-invariant

operator such that its action on f in the Fourier domain takes the following form.

(mf)() = lu() (3.2)



(t H)g(x) =
YE H

g(Y) " K(-(x - y)).
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where M is an element of L(C) and E C.

Throughout this chapter, we assume that K is a precompact subset of a

such that K C U1 (R+17i) where To are distinct elements of H-1- and P E IN.

Definition 3.1.2 Downsampling and upsampling: Suppose H is an admissible lat-

tice and R a fundamental domain of 11'. Let the space of admissible functions be

denoted by

A --= If E L2(G) : f is continuous and ,1() vanishes almost everywhere outside Kl

(3.3)

If f E A, then by Lemma 2.1.11 the restriction of f to H is in L2(H). We define

the downsampling operator (4. H) f : L2(G) L2(H) by the restriction of f to H.

That is

( -11).f =fIH. (34)

By Lemma 2.1.11, (. H) is a continuous linear operator from L2 (G) -4 L2(H). For

g E A, define the upsampling operator (1- H)g : L2(H) ---+ L2(G) to be the adjoint

of the downsampling operator. That is, for g E L2(H), (t H)g = (. H)*g. Hence,

for x E G, we have

(3.5)

In the following the unit impulse S is defined as follows:

(1, if n = 0;

0, n O.

Example 3.1.3 : Let G = Z, H = 2. Then a = T [0, 1), and H-L = {0,112}.

It follows that H is an admissible lattice with R = [0,1/2). Let f, g E L2(Z) be

so that ,Tg,f vanish outside K = O. We write ( 2), (t 2) for ( H) and (-t- H)
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respectively. Then (4, 2) f (n) = f (2n) for n E Z. This result is identical with (3.2)

of [24, pp. 88-89]. Furthermore,

(t 2)g(n) g(y) ( (n
yCH

= g(2l) ". K((n 21))
icz
{g(2l), if n = 2/;

0, if n = 2/ + 1.

If we define a function on by (l) = g(21), we see that this result is identical with

(3.5) of [24, pp. 88-89]. In the Example 3.1.3, H could be chosen to be MZ where

M is a positive integer. This gives the upsampling and downsampling as it is defined

in the signal processing literature. Thus, the general definition of upsampling and

downsampling used here contains the one found in the literature.

In this chapter, we use .FG and .FH to represent the Fourier transform with

respect to G and H respectively. However, to simplify the notation, we will use A

for both .FG and .TH as long as the distinction is possible from the context.

Lemma 3.1.4 : Suppose H is an admissible lattice and R a fundamental domain

of HI. If g E A, then the Fourier transform of (I. H)g with respect to H is given

by

((4. 11)g)( + H') m(R) +2 (3.8)

71efil

with E

Proof Since Theorem 1.2.17 holds, we have

H ((4. _H-)g)( g(y) e-27ri(The)

YE H

m(R) +
//EH

(3.6)

(3.7)
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Lemma 3.1.5 : Suppose H is an admissible lattice. If g E A, then the Fourier

transform of (-r H)g with respect to G is given by

11)0A() = Xx(0' + H-L)

where e E

Proof. For e E a, we have

((t H)g)(e) g(Y) (X

yEH

X1(() 9(Y) e-27'(Th°
yE H

XK(0> g(y)
yc H

XKW .F77g( 4 H')

(3.9)

where the transition from (3.10) to (3.11) uses (y, = (y. H-H-L-) with y E G, E

on the left-hand side, and y E H, e + H-L E ft on the right-hand side. 0

The combined operation of downsampling followed by upsampling is used

frequently.

Lemma 3.1.6 : Suppose H is an admissible lattice and R a fundamental domain

of I-1'. If g E A, then the Fourier transform of (t H)(. H)g with respect to G is

given by

((f H)( H)g)^(e) = m(R)xic() :g(e + 77) (3.12)

71E1 j

with e E

Proof. Substitute (3.8) into (3.9). 0

Example 3.1.7 : Let G = Z, H = NZ where N > 1 is a positive integer. Then

= = {jIN : j = 0, , N 1} with addition modulo 1. Hence H is an

admissible lattice with R = [0, 1IN). Let g E L2(Z). Then by (3.8), we have

(3.10)

(3.11)
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N -1
1

(( 11)9)A( + HI) = + j11\1). (3.13)

Let v =(. H)g. Then by (3.9), we have

((t H)v)A() ="i1( + HI)

= v (y) e-272KY' L)

Y

(3.14)

>2.,ENZ

yENZ

where (3.14) follows since (y, = (y, e) = Nk. Now, let ii(1) = v(N1),1 e Z.

Then becomes (3.14)

e-2rrd (N ..FG. i-j(N

/EZ

This agrees with formula (3.24) in "Wavelets and Filter Banks" by G. Strang and

T. Nguyen [24].

3.2. RECONSTRUCTION

In this section, we present the reconstruction theorem. This theorem agrees

with the perfect reconstruction theorem found in signal analysis literature provided

G and H are chosen appropriately. Throughout the following section, we assume

that H is an admissible lattice with R a fundamental domain of H'. We define a

generalized analysis-synthesis filter bank as follows.



MA)

M

FIGURE 3.1. Generalized form of an N-channel filter bank

Definition 3.2.1 In our case Ho = . = HN_i = H. Assume that g C A. Assume

that 1141i and Fi for j 0, N I are filters. The output of a generalized analysis-

synthesis filter banks pair is given by

N - 1

§g ( x ) =>_.; (F(1' H)( H)11/Iig)(x) (3.15)
j=0

In the following 6H±(71) = 1 if 77 = 0 and SHL (17) = 0 otherwise.

Theorem 3.2.2 : Suppose H is an admissible lattice and R a fundamental domain

of II-L. Let g e A. Suppose D is a filter and MI, Fi for j = 0, N - I are filters

in analysis and synthesis banks respectively. If

N - 1

?N(R) Xic F()( + T1) = Hi(q) D() (3.16)

j=0

with e E and E = {77 E HI : e + E K}, then

48

(Sg)(x) = (Dg)(x) (3.17)

N-1(4)
D g



where (3.21) follows from (3.16) and the fact thats'q(" + = 0 for 77 A.
To see if the condition in Theorem 3.2.2 agrees with the perfect reconstruction

condition found in literature, we recall that perfect reconstruction of an input signal

is the same signal possibly with a shift of the input signal. Thus, D in the above is

the shift of the function g. Thus, we compare the conditions in Theorem 3.2.2 with

the perfect reconstruction conditions found in [24]. We need the following definition.

Definition 3.2.3 : The z-transform of a sequence x(n) is defined as
00

X (z) = (n) n. (3.22)
n=-0.0
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for x E G.

Proof. For E a and 77 E the Fourier transform of the output of the

jth-channel with respect to G is

(F] (f H)(4, H)11/1.7.0 F.1(0 FG ((t 11)(1, H) Mig)() (3.18)

= F ,7 (0 (XK M(R) E F.G01.70(± 11)) (3.19)

7/EH

= F3() (Xx 111,0(R) 11/1.1( + 77) + T1)) (3.20)
TIEH L

where (3.19) follows from Lemma 3.1.6, (3.18) and (3.20) resulted from Defini-

tion (3.1.1). For an N-channel filter bank, total output is summed over j =

0, N 1. Thus using (3.20), we have

N 1

(3.21)

If the summation does not converge for any z E C, the z-transform does not exist.

(q.q)A()
[Fi (0 XI( mo(R) M.j( + + 77)]

j=0 nEl J-

N

= (rna(R) )7K () Ys [F)(0 + 11)])-4(e + 11)
j=0

111- (11) D() + 11)

= F (Dg)()
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Example 3.2.4 : Let G = Z, H = NT where N > 1 is a positive integer. Then

= = {jIN : j = 0, , N 1} with addition modulo 1. Hence H is an

admissible lattice with R = [0, 1/N). Let K = a and hence Mt= H'. Let D be

the shift of the function g by 1, i.e., (Dg)^() ="--q( )e-21. Using (3.16), we have

1
N -1

Fi (e) M( (71) e-2" (3.23)
j=0

Let n k e {0, ,N 1} where JH(i) = 1 for k 0 and SH.L(77) = 0 for

k = 1, ...,N 1. Then replacing e27ri with z, (3.23) becomes

N -1
1

N
y=0

Let W = e(2)IN , then (3.24) becomes

1
N -1

Fi (Z) M (Z w k) =
z-1 if k 0;

j-=0 0, otherwise.

That is

1
N -1

Fi(z) 1/13(z) = z-1
j=0

F3(z)M( Wk) = 0, k = 1, N 1.

These are the perfect reconstruction conditions for N channels given in [24, p. 112].

In the setting of LCA groups, the conditions in Theorem 3.2.2 produce con-

sistent results with Theorem 1.1.3 by Faridani (cf. [7]). We gave a simplified version

of the sampling theorem for nonperiodic sampling by Faridani in the introduction.

However, we give the full version of this theorem here.

Theorem 3.2.5 Assume that! E Li (G) is continuous, every function y f (x+y)

belongs to Li(H), and that f' vanishes outside a compact set K C C. Let M1 =

-07m(1),-11, 1 = 1, , L be the values assumed by Mt = {ri E _ELL\ {0} : E

F3( )1v13(
e2Tik / N

if k = 0;

0, otherwise.
(3.24)



51

ij + K} as runs through K. Let xKi be the indicator function of K1 E K

= Mil. Assume xo + H, + H E GIH are such that for 1 = 1, . . , L the

systems of equations

N-1
/37(1)

n=0
N-1

= 1, (3.25)
n=0

admit solutions Jn n = 0, . , N 1. Let Fe L2(G) with supp(F) C K, and

define

N-1 L
fr (e) P >--; xici () f f (x. + y)e-21<xn+m> (Y)

n=0 1=1

and S f (x) = fa(S ()e27z<x'e> dma-() . Then

P(01 (e) = (S i)A for C

(3.26)

(3.27)

and

N-1
F * f (x) = S f (x) f (xT, + y)kr,(x y)dmH(Y) (3.28)

n=

with

k(z) = F * ici(z) (3.29)
1=1

Remark 3.2.6 : Following (3.15) and applying the Poisson summation formula

(1.25), a formulation of the output of a generalized filter bank in the Fourier domain

can be written as

N-1

(e) E [F.(e) AI-0(y)e-27i(y/. (3.30)
n=0 yew
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In periodic sampling the input is g(xn + y), y C H. This can be viewed as (1,

H)M70(y) if Mg(z) = g(xT, + z), i.e., (oVing)A = :g(Oe27riKx') following (3.1).

The reconstruction condition for a generalized filter bank in Theorem 3.2.2 then

requires that the filters FN to satisfy

N -1

MO (R)XK(e) [Fii()e,271x'' +71)] = (511±(7-1)P() (3.31)
n=0

for all n such that e+ 71 E K, i.e., 77 c M. Then the reconstruction function is F *g.

Since supg) C K, 3.31 is equivalent to

N -1

mo(R)>:[Fn(Oe21*xn' ±ri] = 6111 (T)F(O (3.32)
n=0

for all 71 E Tie. Using (3.26) of Theorem 3.2.5 by A. Faridani, the reconstructed

function Sg satisfies

N -1 L
1 \--

(Sg)A(e) = P(e)1:>:),TXKi(e) rn,(R) 2_, g (X n ± Y)e
n=0 1=1 yell

---- , N-1L
=-__

ma (R)

F(0 E /3(1) 1(0 e-272(xn,0

n=0 1=1

Comparison of (3.32) and (3.33), reveals that Sg can be viewed as output of a

synthesis filter bank with the choice of filters

P(oFn(") =
m(R) Xki e-27riK°.

Now upon replacing (3.34) into (3.32), We get

N -1 L

EE i3,C,I)Xk,(0e-27r1(r".° = H± (xi)
n=0 1=1

for e E K and n such that e +ij E K. If einKi, then 71 = 0 or n =

the equations
N
E A(il) 1

n=0

- 27ri ( xn +y)

g(xn 27`*Y'° (3.33)
ye H

(3.34)

This gives



k

Esi * lii =

N -1
V" BM ,27ri(x, ,741) ) 0

n
n=0

for k = 1, ..., m1-1. These are the system of equations (3.25) given in Theorem 3.2.5

by A. Faridani (cf. [7]).

The theory presented here is abstract and will ultimately be useful if it leads

to a better understanding of concrete applications. Thus, one goal is to see that our

results are sufficiently general to cover different areas related to signal processing.

One such area is known as "multi-sensor deconvolution problem". We will give

a short description here; see "System of Convolution Equations, Deconvoiution,

Shannon Sampling, and the Wavelet and Gabor Transforms" by S. Casey and D.

Walnut [3] and references given there. Suppose that a signal or image, g, is detected

via a bank of k linear, translation invariant sensors with impulse responses fitzl,k-01.,

i.e., s(t) = g * p(t) where the vector ji contains /4,i 0, ,k 1. Hence, the

signal g is changed into a vector of data s (So, Ski) where si = g * p, for each

i. The multi-sensor deconvolution problem (MDP) states that given a collection of

compactly supported distributions such as {p,,}ic iol, find a collection of compactly

supported distributions { v,}ik-01 such that

k 1

i=-0

Taking Fourier transforms in (3.35) gives,

k

rli(0 1 (3.36)
i=0

where r, and I can be viewed as band-limited functions. If (3.35) can be solved,

then perfect reconstruction is possible and hence,

g * (pi * vi) = g * v= g * 6 = g.

53

(3.35)

i=0 i=0

k 1 k k 1
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The following theorem is given by S. Casey and D. Walnut in [3, p. 560]. In the
14-,r

following, let 6T(t) = (5-(t nT) and let siney(t) = sin(t)
7rt

Theorem 3.2.7 Let g E L2(n) be so that vanishes outside K = [Q, Q] and

si(t) = g * i = 0, , k I.

Assume that associated with the set of convolvers there exists a set of de-

convolvers Illoplki=-01 such that

k -1

E * = (3.37)
i=0

where W is an arbitrary close approximation of the Dirac S. If T < 112Q, then the

function g * W may be reconstructed from the sampled functions si = g,

DO

>2., ie5nT

n=--oo

by

g * 0(t)=TE E Si(nT)(57,T)
i=1

(sin(t)
* Vi,o) (t).

7rt

With suitable choices of filters in analysis and synthesis banks, we will show

that Theorem 3.2.2 and Theorem 3.2.7 have consistent results.

Remark 3.2.8 : Let G = IR and H = TZ for some T E IR. Then C = lR, HI =

(1171)Z and the a fundamental domain is R = [0,1/T). Let g E L2(R) be so that

vanishes outside K = Q]. In MDP, the input is p * g(y), y E TZ, which can

viewed as output of an analysis filter banks with (1. H)11,g(y) if Hg(z) = g(z).

The reconstruction condition for filters banks requires that the filters F, to satisfy

the condition

1

7-,X[___L- 1

2T 2T

k -1

i=0
+ = 6111--(77)3(e)

(3.38)

(3.39)
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for all j E Z such that e+ (j IT) E [Q, Q]. Then the reconstructed function is g*.

The reconstruction formula for MDP can be viewed as an output of an synthesis

filter banks with the choice of filters

Ft = Ti!,,v)(0. (3.40)

Substitution of (3.40) into (3.39) yields

k -1

+ IT)] = 611]-(11)'(e)

for e E [a, a] and j E Z such that e + (j IT) E [Q, Q]. This gives the equation

k -1

z (074(0 (0.
i=0

This is the condition (3.37) given in Theorem 3.2.7 by S. Casey and D. Walnut [3].

(3.41)
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