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AN OPERATOR SCHEME FOR COMPUTATION
WITH TURING MACHINES

CHAPTER I

INTRODUCTION

As a result of the work of Turing, Post, Kleene and Church

[12, 10, 8, 4], it is now widely accepted that the concept of

"computable" as applied to a function (not necessarily defined for all

arguments) of natural numbers is correctly identified with the con-

cept of "partial recursive". The usual proofs [ 6, 7,8] that all par-

tial recursive functions of natural numbers are computable have

consisted of proofs that all recursive functions can be computed by

Turing machines over an alphabet with the stroke symbol, 1, by

representing the natural number n by n+1 strokes.

In this paper, we develop the concept of partial recursive function

over an arbitrary alphabet S (not nec es sar ily the natural numbers ,

although our definition agrees with the definition of recursive function of

natural numbers in the special case where S consists of just the stroke

and space symbols) and show the computability of such functions by

means of some particularly elementary Turing machines. We first

define Turing machines and Turing computability and develop an

operator scheme for composition of machines in Chapter II. The

concept of partial recursive function over an arbitrary alphabet is



developed in Chapter III. Then the computability of these functions

is shown by means of the operator scheme developed in Chapter IL

2



CHAPTER II

TURING MACHINES AND COMPUTABILITY

Introduction to the Concept of a Turing Machine (TM)

In 1936, Turing [ 12] devised a conputational scheme (it has

become known as a Turing machine) having the concept of an

"algorithm" as a strong intuitive basis. In fact, algorithm is often

replaced mathematically by the more precise concept of Turing

machine or other logically equivalent scheme such as the X-defina-

bility of Church [4].

Turing considered a "tape" divided into squares, each capa-

ble of bearing a "symbol" . The machine is only capable of a finite

number of conditions (states). The machine is supplied with a tape

running through it in such a way that at any moment there is just one

square ("the scanned square") bearing a symbol which is "in the

machine" . The symbol on the scanned square is called the "scanned

symbol" . The scanned symbol is the only one of which the machine

is directly aware. However, by altering its states, the machine

effectively remembers some of the symbols which it has "seen"

(scanned) previously. The possible behavior of a machine at any

moment was uniquely determined by the state and the scanned symbol

and could be of the following types:



1. Mark a new symbol on the scanned square;

Erase the scanned symbol;

Change the scanned square by shifting one place to the

right or left;

Change the state of the machine.

Some of the symbols written down on the tape will form the sequence

of symbols of the value being computed. Others are notes to "assist

the memory" .

It was Turing's contention that the above operations include

all those which are used in the computation of a number.

The act of erasing can be eliminated by including the "blank

symbol" as part of the set of symbols and consider erasing as

equivalent to the printing of a blank [ 11].

Where Turing considered a tape infinite in one direction only

[ii] , Kleene [ 8] , Davis [ 6], and Hermes [7] follow Post [10] (as

we will) in using a tape that is infinite in two directions. This pre-

sents no essential restriction.

In our development we shall follow Kleene [ 8] in restricting

the behavior of a machine in a given state scanning a given symbol to

the following triple:

1. Mark a new symbol on the scanned square (which may be

the same symbol);

4



Change the scanned square by shifting left one square,

shifting right one square, or staying in place (center move);

iii. Change to a new state (which may be the same state).

The moves described above will be designated by " 11 " ,

"h" for left, right and center moves respectively.

To carry out the computation of a Turing machine, the

machine is started in a particular state over an "input tape" which is

blank except for at most some finite number of squares. The com-

putation is finished when the machine stops, i.e. when it reaches an

explicit command to halt (e. g. the triple qhs with the machine in

state q scanning symbol s) or a state symbol pair for which

no commands are defined.

With the above intuitive discussion as a basis, we proceed to

give a formal definition of a Turing machine in the next section

following Anderson [1] although some modifications and shifts of

emphasis are made.

Definition of a Turing Machine

Given two sets A and B, by a function f from A to

B (designated by f: A ), we mean a subset of

A X B {(a,b)la in A, b in B} such that if (a, b) is in f

and (a, c) is in f, then b = c.

5



Definition 2. 1. Let Q,M,S be disjoint finite sets as follows:

Q = {q0,q1,

M = r, h};

S = Isi,sz, ,s}

Q is the set of states, M the set of move orders and S the set

of symbols. Let s0 denote the blank symbol, 0 , and let

A = S _., {so } . A is called an alphabet. Let 5, p., X be func-

tions defined on Q X A as follows:

5: Q X A Q;

p,:Q X A M;

X: Q X A A.

5 is the next state function, p. is a move order, and X is the

new symbol function. Let T:Q X A QX MX A be a function

defined on Q X A by means of 8, X as follows: for (q., s.)
1 j

in Q X A define

T(qi,si) (6(q., s.), s.), X (qi, si)).
3

T is called a Turing table.
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T is conveniently represented as a matrix with m+1 rows

and n+1 columns as follows:

0 sl sn
-r

T(q , so) T(q0, si) T(q0, si) T(q0, sn)

T(qi, so) T(qi, si) T(qi,si) T(qi, sn)

T (qi, so)

T(qm, so)

Definition 2. 2.

T(qi si) T(qi, si) -

T(qm, s1) T(q , s,) T(qm, sn)rn j

T(qi, s )

q0 will be called the initial state. If

T(q., s.) = q.hs . for some and j then qi is called a termi-i j j

nal state.

s0, s1, , sn serve as column indices and q as

row indices.

For notational convenience, we will often write q.ms. for

anarbitraryelement(q .,m,s.) in QX MX A.
i



go will sometimes be denoted by qT. qT, by convention,

will always be the first state appearing in the table T.

Definition 2. 3, Let Tr.: I A be a function defined on the

integers I with values in A. Tr is called a tape. A tape Tr

such that Tr(i) -= so for all but a finite number of i in I is

called a Turing tape.

An alternative definition of the blank symbol might be obtained

from the functions Tr as follows:

Let TT: I- A be a function defined on I with values in A.

An element in A which is the image of an infinite set of integers

will be called a "blank". Only tapes which define one blank element

would be admitted as Turing tapes.

The arguments i in I of IT may be regarded as squares

of a tape as shown

considering cell i as containing the symbol 7r(i). A square con-

taining s is said to be blank.

From the above definition, we see that a Turing tape contains

a finite word over S or a finite sequence of words over S sep-

arated by blanks. In the remainder of this paper, we will consider

Tr(i-2) Tr (1+2)

i- 1 1+1 i+2
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only Turing tapes and will denote the set of all Turing tapes over A

by TrA.

In order to introduce change into our so far static picture of

a Turing machine, we want to indicate in a single expression the en-

tire condition of a Turing machine at a given instant. We do this with

the concept of a complete configuration.

Definition 2.4. A complete configuration is a triple

(qi, Tr, n) with qi in Q, Tr in TrA and n in I.

Let X -= Q X ITA X I, i.e. X is the set of all complete

configurations. Tr(q.n) gives a description of the machine at a

given instant, i.e. the internal state q., the tape Tr upon which

the machine acts, and the cell n under scan at the instant.

A complete configuration x (qi, ii, n) in the history of a

Turing machine leads to the application of T(qi, Tr(n)) of the Turing

table T to determine the next complete configuration. This results

in the natural definition of the function F: X X defined on X by

means of the Turing table T as follows:

Definition 2. 5. Let F: X X be defined by

F (qi, Tr, n.) = ( (qi, Tr(n)),17, ) if T (qi, Tr(n)) is defined
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where

if p(qi,Tr(n)) =

n if p,(qi, Tr(n)) = h

n+ 1 if p, (qi, Tr(n)) = r

and

Tr(k) = Tr(k) if k/ ;

Fr(k) = X (qi, Tr(n) if k n

F(qi, Tr, n) is undefined if T(q.,Tr(n)) is undefined. F is called
1

the consecutive configuration function.

Given a Turing tape Tr and a Turing table T, successive

applications of F beginning with the initial state qT describes

the transformation of a given (input) tape into another (output) tape

(provided F reaches a complete configuration involving a terminal

state qi and symbol s such that T(q., s.) = q.hs.).
3

If ch is terminal and T(q., s.) = q.hs. where s. is the
3

scanned symbol, then further application of F does not change the

tape. This suggests the following theorem:

Theorem 2. 1. If qi is terminal and T(q., .) = q.hs.
3 3

TrwhereTr(n) = s ; then F (q.,Tr,n) = ( .n) for m> 1 where

F Tr1=F and F (q. n) = F(Fm-1(q., Tr, n)) for m> 2.



Proof: Let q. be terminal and T(q., s.) = q.hs. where
j 3

Si = Tr(n). Then F(q.n) (q., Tr, n) by Definition 2. 5. Further,
i

F(q., Tr, n) = F(F(q.,Tr,n)) = F(q .Tr n) (q., Tr, n). The result now
i

follows by induction on m.

Theorem 2. 1 leads us to make the following definitions.

Definition 2.6. If F(qi, Tr,n) (qi, Tr, n) then the Turing

machine is said to have halted. The tape at the time of a halt is

called the output tape.

Definition 2.7. The triple < T,TrA,F> is called a Turing

machine over the alphabet A.

To illustrate the above definitions, consider the Turing

machine Z1 = < T,TrA,F> with alphabet A = Iso, s1, s2, 831,

Turing table T, input tape
TT0

and initial configuration x0 as

shown below.

11



determined by Definition 2. 5, we have the following sequence of

transformations of
Tr0

into an output tape:

Tr1
so IT

o

x1 - Try n-1) = F(x0) since q , s3) = q s3 ;

Tr ow
2 TrO

xz (q0, Trz, n-2) = F(xl) since T(qi,s s ;

12

TIs
0 Si s

2 s3

q0 q2hs0 q1.1 s1 ql 1 s2 qli s 3

1 q2hs1 q0/ s1 q0 /s2 q0.fs3

q2 q2hs0 q2hs1 q2hs2 q2hs3

Tr INN

0 0
S2 Si S3

0

n-3 n-2 n- 1 n n+ 1

xo (q0,Tr,n) .

The remaining squares of Tro contain the symbol s and the
0

initial scanned symbol is
53 in square n. Then applying F as



Tr3
=

Tr0

x3 ra (qv Tr3,n-3) = F(x2) since T(q0,s2) = ci1es2

Tr4
EE S2 S3

13

x4 (c12' 1T4' n- 3
= F (x3) since T (q , so) = q 2hs

Tr4

x5 x4 F(x4) since T(q , si) = q2hs1 .
7-4 -=----

If the Turing machine
Z1 is in state qo scanning the

right most symbol of a non-empty finite sequence w of symbols

of S on an otherwise blank tape, then Z1 will halt after a

finite number of steps over s or s depending upon whether the
0 1

number of symbols in w is even or odd. This can be observed by

examining the Turing table T. Z1
passes to the left over the

symbols of w alternating between states qo and q1 searching

for so. It will reach so in either state qo or cll. Depending

on which, so or s1 will be marked on the tape and Zi will

pass to state q2 which is terminal for all s.. Note that T(q2,s2)

and T(q2, s3) need not be defined in order that Z1 operate

properly.

As a further example, consider the problem of evaluating the



function f (a variation of Ackerman's function [7: 82-88]) for

given natural numbers m, n where

f (0, n) = n+1

f(m+1,0) = f(m, 1)

f (m+1 , n+ 1 ) f(m, f (m+1 , n))

and the natural number n is represented by n+1 strokes.

(m, n) is initially on an otherwise empty tape as shown below for

the case (3,3). The machine is to replace (m, n) with the value

of f(m, n), halting over the blank square in front of f(m,n).

We proceed to describe a machine to compute the function f.

Let Z = < T,.TrA,F> with alphabet A = {so, (, ), 1, U},

Turing table T, input tape Tr and initial configuration x0 as
0

shown below.

14



0

q12r, q12r1 cl4r1

q13r, c1131. I ci16r

) SO

15

cl12

cl13

(1.14

cl15

q16

0
11=12

q12r(

q13r(

q0r( q141)

q15.e(

qhs160 qOr(

c11411 '4141.1

c11511 c115".

c1161 I q14r'

n-5 n-4 n-3 n-2 n-1 n n+2 n+3 n14 rx1-5

E 1T0'11-5)
xo
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Some remarks about T are necessary. U is used as a dummy

symbol in place of E. T
(ql'

) is used to determine if m = 0;

if not, Z changes into state
q7

which leads to an application of

T(q9, I ) if n = 0; otherwise Z changes into state
q10

and

proceeds to open the string of symbols on the tape in order to develop

f(m,f(m+1,n)); then the entire strategy is repeated on f(m+1,n.)

by means of
T(q16,

( ). The process continues very straightforward

much as a hand calculation of f would. The remaining squares of

ITO
contain the symbol s0 and the initial scanned symbol is ( in

square n- 5.

Applying F 230, 021 times we transform Tro into an output

tapeTr230 and terminal configuration x230, 021
as follows:,021

F---

Tr230, 021

n-6 n-5n-4 n+54n+55n+56 n+57

62 l's

x230,021 ---- (q16'71.230,021' n-6)

One probably suspects that the determination of 1T 230, 021

was not carried out by hand. When the author first began to program

and study the behavior of Turing machines, it became evident that it

is useful and necessary to have a reliable way of simulating the action

so
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of Turing machines. The human as a simulator is prone to error

after not too many applications of F in a Turing computation.

Further the number of applications of F to transform an input tape

to an output tape may be very large (e. g. ir determining f(3,3), F

was applied 230,021 times).

The first description of a Turing machine simulator for a

digital computer is due to Coffin, Goheen. and Stahl [5]. It was

designed for the Scientific Data Systems 920 Computer for the primary

purpose of simulation of the operation of biological cell systems.

A later effort was due to Brady [3] and made use of the International

Business Machines 1620 Computer. The simulator of Brady was used

in our study of Turing machines primarily because of availability of

the IBM 1620 during the preparation of this paper. Brady's simulator

was modified for our use because of differences in the memory size

and the instruction set of the particular model of the 1620 that we

were using.

The Composition of Turing Machines

It is very difficult to understand the behavior of a Turing

machine from its Turing table, especially by an individual unfamiliar

with the strategy of the designer. Therefore it becomes desirable to

formulate complex Turing machines from more simple machines.

Our aim in this section is to describe a technique for the



composition of Turing machines. This technique will be developed

later as an operator scheme. Some ideas of Hermes [ 7] are used,

but conditional branching is greatly restricted. In fact, we allow

branching only on the basis of the answer to the question: Is the

final scanned symbol s0?
0

Definition 2. 8. Let X and Y be Turing machines with a

common alphabet A and disjoint state sets
QX

and Q

respectively. Define a Turing machine XY as follows:

XY:(Q k_joc) )XA.-(Q )XMXA
X Y X Y

definition, we have

X(Qx X A)

Y(Qy X A)

Intuitively, as a Turing table for XY from the above

18

where

q hs if j = 0 and X(qi, so) = qihso
Y 0

X(qi, if j = 0 and X(qi, so) / qihso

XY(q., s.)=-
1 j s.) if j / 0 and qi in Qx

Y(q., s.)i j if in Q
Y

.
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except that all entries of the form X(qi, so) = qihso are replaced

with q hs0 . The remaining entries remain unchanged. Thusy
XY operates as X would, but then follows Y if the final scanned

symbol under X is s0; otherwise a halt under X occurs in the

usual manner.

Definition 2. 9. Let X, Y and Z be Turing machines with

common alphabet A and disjoint state setsQ Q and Qz'X' Y

respectively. Define a Turing machine T X Y Z as follows:

T: (Qx L.) Qy Qz) X A (Qx Qy Qz) X MX A

where

q hs if j 0 and X(q. , s ,) = q .h sy o 3 3. 3

Zhsj if j 0 and X(q,,s.) = q.hs.
3 3

T(qi, si)= X(q., s.) if X(q., s.) q.hs.
3. 3 3 3

Y(q., s.) if q. in Q

Z(q., s.) if q inQ
3

Intuitively, as a Turing table for T from the above

definition, we have



A

X(Qx X A)Q X

Y(Qy X A)

Q Z
Z(Qz X A)

except that all entries of the form X(q., s.) = q.hs. are replaced
a 3 i 3

with q hs. provided s. / s0 and X(qi, so) = qihs is replaced
Z 3 3

with qyhso. The remaining entries are left unchanged. Thus T

operates as X would, but then follows Y if the final scanned

symbol under X is s0 or Z if the final scanned symbol is not

Definition 2.10. Let X, Y and Z be Turing machines

with a common alphabet A and disjoint state sets QX Q and
Y

Q , respectively. Define a Turing machine T X Y Z as

follows:

T: (Qx L.)Qz)XA-- (Q Qj XMXA
X Y Z

20



T q , s
i 3

Intuitively, Definition 2. 10 serves to reverse the condition

for a jump in Definition 2. 9, i. e. the passage to Z occurs if the

final scanned symbol under X is s0, otherwise Y is per -

formed.

Definition 2. 11. Let X be a Turing machine. Define a

Turing machine [ Xn] , n> 1 as follows:

2 1-4x, [ x =x x, [ xn] x[ x .

Intuitively, Definition 2. 11 yields a Turing machine [ Xn]

which acts just as an n-fold application of X without regard to

whether the terminal scanned symbol is or not. The output
0

tape of X (if it halts) becomes the input tape of X in the next

step.

Definition 2. 11 can be extended to include n = 0 by con-

sidering [ X0 ] to be the Turing machine with Turing table

q hs0 if j = 0 and X(q, s.) = q.hs.
Z i 3 i 3

q hs. if j / 0 and X(q., s.) = q.hs.
Y 3 i 3 i 3

= X(q., s.) if X(q., s.) / q.hs.
i 3 i 3 i 3

Y(q.,
q

s.) if . in Qyi 3 i

Z(q., s.) if q. in Q
1 3 i Z

21



[ 0halts on the initial scanned square and does not change state

or symbols. [ X°I serves as an identity machine.

Some Elementary Machines

In this section, we introduce three especially simple Turing

machines from which more complicated machines will be later, con-

structed. These machines can be constructed for any alphabet.

Definition 2.12. Let A ="Is s be an alphabet
0' 1 n

a state set. Define 3 Turing tables for Turing

machines R, L, and P as follows:

q0

q ihs q1hs1 qihsi qihsn

q0 q1is0

q1 q1hs0 q1hs 1

q hs q hs
0 0 0 1

hq0 s
3

cll."; cilisn

q1hs. qihsn
3

sn

qohsn

22

and Q =

0 sl s.
__L sn

qirso qirsi qlhs. q rs

0 sl S. sn



q0

1

1 sn

23

q1hs 1 q1hs2 ci1hsj+1

qihso qihsi qihsj qihsn

R is called the right machine. L is called the left machine. P

is called the print machine.

R when initially scanning an arbitrary square of a Turing

tape, moves one square to the right and halts. There is no change

in the tape.

L when initially scanning an arbitrary square of a Turing

tape, moves one square to the left and halts. There is no change

in the tape.

P when initially scanning an arbitrary square of a Turing

tape containing the symbol s. replaces S. with sj+1 modulo n+1

(sn is replaced with so) and halts still scanning the initial square.

There is no change in the remainder of the tape. This machine was

suggested by an idea of BOhm [ 2] about a partially defined function

in the set of tape configurations.

Note that [ pn-i+1] has the effect of erasing a square

(printing s0) containing the symbol s..

Using the three machines R, L, P of Definition 2. 12 and the

composition techniques of Definitions 2. 8-2.11, we can formulate a



Turing machine called the search machine as follows:

n
nSRPLPR[Pl RPL[P]

f-1 n f-1 n
R [ P L L[ P]R

S searches out a square on an arbitrary tape that contains a symbol

s so, i.e. S finds a non-blank square if one exists. The search

alternates to the right and then the left, back and forth until a square

containing a symbol s different from0 is encountered at which

time S halts scanning the symbol s.

An Operator Scheme for Composing Turing Machines

In this section we develop an operator scheme involving just

the three elementary Turing machines R, L and P, in which we

can compose any arbitrary Turing machine. This operator scheme

relates in some ways to Lyapunov's operator programming method

[9L

Definition 2.13. Let E = 1, XE E,i1\11,

E2 = {XiIXEE, iEN}, E3 X=1Xid EE,i,jeNI. The set

0 = E El v E2 vE3v {; } is called the set of operators over E.

We interpret a lower subscript as the beginning of an arrow

and the superscript as the end of an arrow as used in Definitions

El El

24
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2. 8-2. 11. Further a semicolon (; ) appearing after a machine

indicates that there is no transfer to the machine on its right as is

normally indicated by juxtaposition (see Definition 2.8). It is clear

that in view of Definition 2.13 and its interpretation, we can eliminate

the arrows used in Definitions 2.9-2. 11. Compositions of Turing

machines become words over the infinite alphabet 0 of operators.

Definition 2. 14. Let 0 be the set of operators as defined

above. A finite word over 0 is called' an operator description of a

Turing machine if for every subscript i there is a unique appear-

ance of a superscript i and for every superscript i there is at

least one appearance of a subscript i.

For example the search machine S described earlier now

appears as

n
S =.P1 LiP3 -1V[Pri]lt4 P5 IS[Pn

l']
--IR 2[P]6 L L [P ]7R7

2 3 5 2 6 4

It is evident from the definitions and examples above that the

following theorem holds:

Theorem 2.2. Let X = < T,TrA,F> be any Turing machine

over an alphabet A. Then there is a word over 0 which is an

operator description of X.

Proof: Let X be in the complete configuration (qi, Tr, j)



and let T(qi, Tr(j)) = qiimiisii so that F(qi,Tr, j) = (qii, Tr, j )

where 7r-r(k) = Tr(k) if k j, Tr- (j) = sii and j = j+1 if

m.. = r, = j- 1 if mi.j= , =
. if rn.. = h. Further let

13= j. Then the portion of X involving the passing from

to F(qi, Tr, j) is given by

)mod n+1

Pt
3.3

Utm..
13

where Ur =R, U L, In this way X can be built

as a word over 0.

Turing Computability

Intuitively, a Turing machine calculates values of certain

functions. For example, see page 11-13 (Z1), where f(w) = s
0

Or s depending on whether the number of symbols is even or odd.
1

We want to formalize these intuitive notions about computing functional

values in this section.

We generally follow the definition of Turing computability

given by Hermes [ 7] (called standard Turing computability by

Hermes when treating recursive functions of natural numbers),

although modifications in definitions and terminology are made.

Definition 2.14. A word w over the set of symbols S is

26



a finite sequence s. s. (r > 1) of symbols in S.
11 12 ir

For example, if S = 1, s 2, s 3, s4 } then s2 s1 s3 and s1

and s2 s2 s3 are words over S.

Definition 2.15. Let XI' (S) be the set of all words over S.

Let A be the empty word and let E(S) = Z' (S) . (S) is

the free semigroup under concatenation generated by S with

identity A (wA = A w = )
Since S is used throughout this paper for the set of symbols,

it will be omitted so that is written for E(S).

It will be convenient later to exclude the use of the empty word

for arguments and values of functions. We can do this without loss of

generality in view of

Theorem 2.3. There exists a 1-1 mapping of onto

Proof: Let f: E.' be defined by f(A ) = S i;f(w) = s lw

if w is of the form w sisi- f(w) w otherwise. Clearly

f has the properties required.

We proceed to define what we mean when we say a certain

Turing machine computes the value of a function.

Let S = {s1,s2,s31. Let w = s2s1s3 be a word in E(S).

We say w is onan otherwise blank Turing tape to mean, there is a

Turing tape Tr such that Tr(i) s2, 1r(i+1) = sl, Tr(i+2) = s3,
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Tr(k) = s0 if k i, 1+1, 1+2 for some i in I.

Definition 2.16. i. Let 1: be a function defined on E.

f is a function of a single variable. f is Turing computable if there

exists a Turing machine X over an alphabet A with S C A

such that if w in E is on an otherwise blank tape and X is

scanning a given square of the tape, then X will halt after finitely

many configurations behind the word f(w) in E so that the output

tape has the form s0 ws0 f(w)s0
and is otherwise blank.

Let f:E X EX..- XE be a function defined
n factors

on f: EX EX E. f is a function of n> 1 variables. f is
n factors

Turing computable if there is a Turing machine X over an alpha-

bet A with SCA such that if w1,w2' in E are on

an otherwise blank tape in the form w1s0w2s0 sOwn and X

is scanning a given square of the tape, then X will halt after

finitely many configurations behind the word f(w1,w2, ,w )

E so that the output tape has the form

w1s0w2s0 sOwnsOf(wl'w2' ,wn) and is otherwise blank.

Let f :E0 E be a function defined on the

0empty class E . f is a function of 0-variables with a single

value w (i. e. f is a constant) which may be any word in E.

f is Turing computable if there exists a Turing machine X over
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an alphabet A with S C A such that if X is initially scanning

an arbitrary square of a blank tape, then X will halt after finitely

many configurations behind w in E so that the output tape has

on it, but otherwise blank.

Before turning to the development of the recursive functions,

we prove two theorems which will simplify our results on Turing

computability. In view of these theorems, without loss of generality,

we can assume our Turing machines are initially scanning the blank

cell to the right of wn where w1s0w2s0 sOwn
appears on an

otherwise blank tape.

Theorem 2.4. There is a Turing machine X which when

started operating, scanning an arbitrary square of a tape containing

only w1s0w2s0 sew, will halt behind (to the right) the lastn

symbol of wn without altering the tape.

1Proof: Let X -= S R1R1L. Clearly X is the desired
1machine. S finds a marked square; R1 R1 passes over

w1sOw 2s0 w ending on the second blank square to the rightn

of wn; L moves back to the left one square to the first blank

square behind w .

Theorem 2. 5. Let X be a machine which computes

f(w1 ' w2' ,w ) provided the initial scanned square is an arbitrary
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square j(wi,w2, ,wn) defined in terms of In, w2, ° ,wn and

let J be a Turing machine which locates j when it is started

initially scanning the square behind w1s0w2s0 sOwn. Then

is Turing computable by a machine Z which starts scanning

initially an arbitrary cell.

Proof: Let Z = S1 R IR1 L2 J
2

X3, S1R 11R 1 L2 leads to
1 3

the square behind wsws w1020 0 n
22.4; J, 3

as indicated by Theorem

leads to the square j(w1 , w2' ,wn) which X

initially scans in order to compute f(w1, w 2, ,wn).



CHAPTER III

RECURSIVE FUNCTIONS OVER AN ARBITRARY ALPHABET S
AND THEIR COMPUTABILITY

Definition of the Recursive Functions over S

We want to consider certain classes of functions over S

0(i. e. defined on E or En) by generalizing previously stated

definitions of recursive functions of natural numbers. There are

several equivalent formulations available, but we prefer that of

Kleene. In particular, we modify the concept of partial recursive

function (general recursive if defined for all n-tuples) of natural

numbers as formulated in the Corollary to Theorem XIX, Part III

of Kleene [ 8] to allow the domain of definition to be words over the

arbitrary set S of symbols, yet still agree with partial recursive

functions of natural numbers (where S contains only the stroke

symbol).

Definition 3. 1. Let g1, g2, g be given functions ofrn

n variables over E and h a given function of m variables. Let

f be given by

w2, =h(gi(wi,w2, 1 w 2' wn)).

Then f is said to be defined by the composition of g1'g2'
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with h.

Definition 3. 2. Let g be a given function of n variables,

h. be a given function of n+2 variables. Let f be given by

f(w ,w2, ,wn,A) = awrvv2, wn)

f(wl' w2 , ,w ,ws.)=h.(w1 ,w2 , ,w,f(wi,w2,n n

Then f is said to be defined by primitive recursion from g and

Note that f depends on i, that is, there is an f for

each s. in S.
1

Definition 3. 3. The initial functions are the following:

f.(w) ws. (i = 1, 2, ,n)

f.(w w ) = w. ( = 1, 2, ,n)112 2' n 1

fn (wl'w2' ° ,w ) = w
fl

The functions given in i are called the successor functionsk those

in ii are called projection functions, and those in iii are called

constants. We allow n = 0 in iii so as to include functions of

0 variables with a constant value.

Definition 3. 4. A function over S (i. e. with arguments in
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0 orn and values in Z) is a primitive recursive function

if it can be generated from the initial functions by a finite number of

applications of composition and primitive recursion.

Definition 3.4. Let g be a given function of n+1 varia-

bles. Let f be given by

f(w w 2, wn) = w 2, , wn, w) Al (i = 1, 2, n)

where[u..w g(w1 ,w2' wn, w) = A] means the shortest word

w A of the form w = s.s. such that g(w 1, w2, wn,w)=A

and g(w1,w2, , wn, w' ) is defined and not A for all w' having

the same form as w, but shorter than w. Then f is said to be

defined by an application of the p. -operator.

We could define a p. -operator yielding the first word w in

some fixed ordering of Z which satisfied the condition

g(w1'w2' wn, w) = A. But this would require us to assign order

to We prefer not to do this here.

Definition 3.5. A function over S (with arguments in

0 or Zn and values in Z) is a recursive function if it can be

generated from the initial functions by a finite number of applications

of composition, primitive recursion, and the pc-operator.



Further Turing Machines

Using the operator scheme developed in Chapter II, we now

introduce some further Turing machines to be used in establishing

the Turing computability of the recursive functions over S.

The first machine required is one to copy a word to the right

of a given word (without altering it) leaving so between the original

word and its copy, assuming the tape is blank to the right of the

original word.

Lemma 3. 1. There exists a Turing machine K (copy

machine) which copies a given word to the right of it with a blank

square gap between the original word and its copy, when it is

started initially scanning the square behind the word to be copied.

Proof: Let K be given by the following word over

K 7-r-= L 1R 4R'3' P2[ (R 6)2][ Pn] [ 77 )2 1 [ Pn ]
1 2 3 5 6 4'

5 9 2 _n_P[ (R9) iiP 0[(400)2i[pn-11 4;

P3n--1[(R 3n+3)21P [ (L 3n+4)2I P4 .
3n+3 3n+4 3n+4

1 4
Ll leads to the square in front of the given word w; R2 leads
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to the machine scanning the first symbol si in w; successive

2 5 3(n-i+1)-1
applications of P5 P8 ' - - ,P3(n-i+1)+2 change s. to so;

1

rR , 3(n-i+1)+3
)2i,

I ' 3(n-i+1)+3
leads to the second blank square to the right of

s.'s original position; [ Pri-(n-i)l p nrintsS. o this cell;

r (L3(n-i+1)+4 )21
' 3(n-i+1)+4

s. was originally located (it presently contains s )°, [P11-(n-i)1
i 0

4replaces so with s. ;i
R

2
starts the cycle again on the next

symbol to the right in w unless a blank symbol is reached in which

3case R3
leads to a halt behind the copied word.

Another useful machine operates similarly to K, but

.thcopies the 3 word w. in a string of words of the form
3

NV S \V s -w.s w over to the right in the formn 0 n-1 0 OjO 01

wns Own- 1s 0 s0 w.s0 s0 w1 s0w. leaving the original string of
3 3

words unaltered, assuming the tape is blank to the right of the

original word.

Lemma 3. 2. There exists a Turing machine KT (j-copy

h.tmachine) which copies the word (from the right) in a string

of words wnsOwn-1s0 w.s0 sOwl
to the right of the string

3

with a blank square gap between w1
and the copied word w..

Proof: Let KT be given by the following word over 0 :

returns the machine to scanning the square where



K-7 P-- [

3n-1 3n+ 3 j+lP [ (R
3n+3

1.1.3n+4),j+lip
3n+4143n+4

K7 works in a fashion analogous to the working of K, but the h.t

word is copied instead of the first word encountered.

We use one further machine for computing the recursive func-

tions. This machine is used for cleaning up intermediate calculations

and bringing the result forward so that it appears in the correct posi-

tion in agreement with the definition of Turing computability.

Lemma 3. 3, Let a sequence of words w1, wa, ,w

be on a tape in the form s0s0w1s0w2s0 w s w with the tape0 n 0
blank to the right of w. Then there exists a Turing machine C

(clean up machine) which erases the words w , w 2, wn and

moves the word w so that its left most symbol is contained in the

square in front of w1.

Proof: Let C be given by the following word over 0:



1
C Ll L2LOR R2(n+2) R0P RR L

2n+5 2 4 1

-P64L[Pn]R35; P86L[ Pn-1R37; ; P2(11+
1) 2n+3

P2n+ 3R 3

4(n+1)p4n+3[ L21 p4(n+ R 2(11+2)
p2n+5[ L21[

2(n+3)112(n+2)2n+7

L 1L2 leads to the right most symbol of the word to be erased.
2 3PR R erases this symbol and moves to vi in order to move

2 4

one square to the left which is accomplished by

P6 L[ P];
3

- P2(n+ 1)
2n+3 R

3

n 2n+3

L11
is reached when w has been moved one square to the left;

the cycle begins again with L 1L
1 2' 0

2n+5
P2n+7[ L2 1[P

is reached when a given

37

word has been erased and checks for additional words to be erased;

if there are none, R Tz2(n+2)R leads to w in order to begin
2n+5

the moving of w the remaining two blank squares which is accom-

plished by

2(n+3) P 4n+3
; [ L2 4(n+ 1)

2(n+3) 4(n+1) 2(n+2)

Note that intermediate computations are separated from other

words to the left by at least two blank squares in order that one be

able to recognize the beginning of these intermediate calculations.

With the three additional machines K, C we proceed
J



to prove our final results.

Computability of the Recursive Functions by Turing Machines

Using the operator scheme for computation with Turing

machines as developed in Chapter II, we show in this section the

computability of the recursive functions over an arbitrary alphabet S.

Theorem 3.4. If f is an initial function, there is a Turing

machine X described by a word over 0 which computes f.

Proof: i. Let f(w) = -wsi. Then for X we take

X m. K[ Pi] H. K copies w over to the right; [Pi] marks s.
i

to the right of the copy of w; R moves behind f(w) as required

by Definition 2.16, i.

ii. Let f(w1,w2, - w) = w.. Then for X we
1

take X = K . . K . copies over to the right of
n-1+1 n-1+1

wl'w2' " ' ,w andand halts behind f(wl' .. - , w) = w. as required
1

by Definition 2.16, ii.

Let fww w " ,w) w and letn 1' 2' n

w s. s. s. and s . I j. Then for X we take
11 12 1r

I Si I

1 11
X =R[ P 1R[P

I si

R[P r 1R
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I SO
[ P IClearlyeffects the marking of s. Hence X

Note that we allow n = 0 in iii and that A is repre-

sented by s1 (see Definition 3. 3 and Theorem 2.3).

Theorem 3.5. If f is a primitive recursive function of

n> 0 variables, then there is a Turing machine X described by

a word over 0 which computes f.

Proof: i. See Theorem 3.4 for the computability of the

initial functions.

ii. Let h, gl, g2, gm be given as in Definition

3. 1 and be computed by Turing machines H, G1, G2, G.
Let

f(w1,w2' ,wn)=-11(g w ,w2,-,wn),,gm(w1,w2,,wn))

Then for X we can take

X w-R PiR [ ()n1 2
[

1 2 n+1 3

9
(G )7[ (K---)n] 8(G )

1 8 n+1 9 2 10

34 )fl] L[ n 5 64)P] RR L
5 6 6 6 7

(K
n1 2m+

n+1 2m+
4

(G )2m+
5

5(G 2m+6

)2m+7 )3rn+5 3m+6c 3m+7
(K )2m+6(Km+(m-l)m 2m+7 m+(m-2)m 2rn+8 m 3m+6H 3m+7
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theblank square behind w.

k
marks w on the tape, and in the terminal configuration is scanning



R1P1R2 builds a bridge s0 s1 s0
across which we copy

2 4 n 5

wl, w2' wn by means of [ 3 ; [ (L4) ] 3L5[ Pn] 6 removes

the bridge producing a 3 blank square gap so that we may apply C

at the end of the calculation to clean up intermediate results;
6RR 6L7 leads to the cell behind the copied arguments; the calcula-

tion then proceeds with gi, gz, grn, and finally h using

gi, g2, gm as arguments; C3m+7 erases the intermediate

calculations halting while scanning the square behind f(wl' w 2'

as required by Definition 2. 16.

Let g and hi be given as in Definition 3. 2

and be computed by Turing machines G and H.. Let f be

given by

f(wl' w2'. A = g(w ,w2, ,wn)

f(w1'w2' n' wsi) hi(wl'w2' 'wn'w'f(wl'w2' 'wn'w))

Then for X we can take

X milt
1 2
P1R (K)2[ K )n]3[ (L5)n+ 1] 4L6[ Pn]

6

2 3 n+3 4 5

9 10 n-i+1 11 12 24
R7R L G8(K )L[P ] L C ;

7 7 8 9 n+2 10 11 12 13

14 15 16 17R13[ (K )n ] R [Pi R (K )18
14 n+2 15 16 17 18 n+3 19

(H.)19(K )L20 21[ n-i+11
]
2223

R [(K
)n+1] 25R 1-.226

20 n+4 21 22 23 24 25 n+4 16 26 22

40
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R P1R (K) 2[ (K n [ (Ln+1)
4

L6[
Pn]6R7R L builds a bridge3 5

1 2 2 3 n+3 4 5 7 7 8

as in ii above; G8 computes
9

9 10 n-i+l 11 12
(Kn+2)10 L11[P 112L13

in the copy and moves left one square; if this square is blank, the

calculation is complete and C24 cleans up intermediate calculations

as before; if not, R13 takes us to the right one square to compute
14

successive values of f using the primitive recursion process;

r 14R15r 16R17 18mi. 119
n+2 15 161. J17 18 n+3 )19 '"i'20 copies

prints s
1

(representing A) behind them, copies g(w1,w2,

and computes h. ; now w (with the last symbol erased) is copied

and another symbol erased and the machine moves left one square by

20 21 n-i+1 22 23
means of (K--)21 L22 23

[P L24
if this square is a blank, a

n+4

branch to C24 occurs for clean up; if not we continue the primitive
1+1125

new arguments by R 25r (K0n+41 16

h. again. In this way X computes

recursion process obtaining

and couple back to compute

f.

copies w and erases the last symbol

W W W
1 2 n

Theorem 3. 6. If f is a recursive function of n > 0

variables, then there is a Turing machine X described by a word

over 0 which computes f.

Proof: i. See Theorem 3.5 for the computability of the

primitive recursive functions;

ii. Let g be given as in Definition 3.4 and let g

, Wn);



be computed by the Turing machine G. Let f be given by

[f(w1

, -w2' w ) = .w g(w1 ' w2' wn, w) =n

where w = s.s.- s.. Then for X, we can take the Turingii 1

machine

X PM ZR[ R2GLiLC; PliLi[ Pi] 2

where Z is given by

Z R1P 1R
2[ (Kn+ 41)111 23[

(L4)111 3L5[ Pn1 5R 6R L
6 6 6 7.

Z builds a bridge s0 s1 s0 over which w1'w2' ,w is copied

arrl then removes the bridge producing a 3 blank square gap for use

by C as described earlier in Theorem 3. 5d ii; R[ PilR 2 appends

w = Si and leads to the blank square behind w; GL1 computes

g(w1,w2, ,wn,w) and determines if g = A; if yes, LC cleans

1
up the result producing f(wl' w2' n) = w; if no, P1L1

erases g(w 1 w2, wn)
leading to the square behind w;

42

.appends another s. to and branches to the calculation of

again. Thus X computes f.

Theorems 3.4 - 3.6 establish the computability of the recur-

sive functions over an arbitrary alphabet S by an operator scheme

involving basically just three elementary Turing machines (R, L, P)



and a simple unary predicate, testing the terminal scanned symbol

for s0 or not.
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CHAPTER IV

CONCLUSIONS

In this final section, we briefly discuss the implications of

some of the results established in the previous parts of this paper

and suggest a new problem for further study.

Turing's thesis [ 8] is that "every function which would

naturally be regarded as computable (e. g. recursive functions) is

computable by one of his machines" . In all papers (known to the

author) where evidence is given in support of this thesis, only func-

tions with natural numbers for arguments and values are considered.

From results of Chapters II and III, Turing machines apply equally

well to functions of words in any language having a finite set of

symbols.

Turing's thesis might be restated as "all algorithms can be

formulated in terms of certain matrices (Turing tables) and executed

by the corresponding Turing machines. " This does not imply that

all problems should be reduced to their equivalent Turing machines.

However, the fact that any Turing machine can be described using the

set of operators (essentially TM's R, L, P) in a relatively easy way

suggests that certain problems may be profitably reduced to a Turing

machine formulation [5). Also in this connection, the operator pro-

gramming of Turing machines might prove useful in teaching the

44



45

fundamentals of programming.

As far as we know the use of the presence or absence of S0

(blank symbol) as the final scanned symbol in describing the succes-

sion of operators in our scheme is new.

For further study, one might consider the problem of using the

operator scheme developed in this paper to describe Turing machines

for computing e or iT in the sense that these machines print the

expansion of non-terminating decimals on the tape. This process is

not the same as that described in Chapter III. Further the means

taken to represent a real number will determine very much the out-

c ome.



BIBLIOGRAPHY

Anderson, S. E. Some computational schemes equivalent to
Turing machines. Master's thesis. Corvallis, Oregon
State University, 1964. 31 numb. leaves.

Bohm, C. and G. Jacopini. Flow diagrams, Turing machines
and languages with only two formation rules. Communica-
tions of the Association for Computing Machinery 9(5): 366-
371. 1966.

Brady, A.H. Solutions of restricted cases of the halting prob-
lem applied to the determination of particular values of a
non-computable function. Ph.D. thesis. Corvallis, Oregon
State University, 1965. 107 numb. leaves.

Church, A. An unsolvable problem of elementary number theory.
American Journal of Mathematics 58: 345-363. 1936.

Coffin, R. W., H. E. Goheen and W. B. Stahl, Simulation of a
Turing machine on a digital computer. In: Proceedings of
the Fall Joint Computer Conference, Las Vegas, 1963.
Baltimore, Spartan Press, 1963. p. 35-43.

Davis, M. Computability and unsolvability. New York, McGraw-
Hill, 1958. 210 p.

Hermes, H. Enumerability, decidability, computability. New
York, Springer-Verlag, 1965. 245 p.

Kleene, S. C. Introduction to metamathematics. Princeton,
Van Nostrand, 1952. 550 p.

Lyapunov, A. A. On logical schemes of programs. In: Problems
of cybernetics, ed. by A.A. Lyapunov. Vol 1. Moscow,
USSR, State Publishing House for Physico-Mathematical
Literature, 1958. p. 46-74. (In Russian)

Post, E. L. Finite combinatory processes - formulation I.
Journal of Symbolic Logic 1:103-105. 1936.

Post, E. L. Recursive unsolvability of a problem of Thue.
Journal of Symbolic Logic 12: 1-11. 1947.

46



12. Turing, A. M. On computable numbers with an application to
the Entscheidungsproblem. Proceedings of the London
Mathematical Society, ser. 2, 42: 230-264. 1936;
43:544-546. 1937.

47




