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An asymptotic expansion of an integral of the inverse Laplace

transform type

c+ioo
1 f(s) estdsF(t) -

2,Tr1
c-icc

for large t is given under the assumption that f(s) is analytic

in a right half-plane. The thesis represents generalizations of the

cases considered by A. Haar [16] and Hull and Froese [18] . As

Haar has shown, the asymptotics for F(t) are completely deter-

mined by the character and location of the singularity(ies) of f(s)

furthest to the right. Haar considered only singularities of alge-

braic logarithmic character; later, Hull and Froese extended this

work to include essential singularities of f(s) of rather simple charac-

ter. The thesis presented here extends the latter work to cover a variety
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of cases where f(s) has essential singular points of a more compli-

cated nature, primarily Whittaker functions of the first and second

kinds. The cases considered by Hull and Froese follow readily as

special cases of the functions considered here.
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AN EXTENSION OF THE METHOD OF HAAR FOR DETERMINING
THE ASYMPTOTIC BEHAVIOR OF INTEGRALS OF THE

INVERSE LAPLACE TRANSFORM TYPE

INTRODUCTION

Integrals of the inverse Laplace transform type,

F(t) -

occur frequently in problems of applied mathematics or mathematical

physics, especially boundary value problems. Numerous examples of

the use of inverse Laplace transforms may be found in electrical cir-

cuit theory [5] , in problems in the theory of heat conduction [4] and

wave propogation [19] .

Best known perhaps is the procedure to make a partial differ-

ential equation with given boundary and given initial conditions subject

to a Laplace transform. The result of this operation is the reduction

to an ordinary or partial differential equation with given boundary con-

ditions. Suppose the latter problem can be solved. The Laplace in-

verse of this solution then yields the solution of the original problem.

Other applications center around pulse diffraction and pulse propoga-

tion problems. While in the well known classical problems only time

harmonic phenomena were considered, it has become more and more

important in recent times to investigate such phenomena under the

1

,carr c-ix
c+ico

f(s)etsds (1)



influence of arbitrary time dependency (signals).

For instance, denote by G1 (P,Q,y) the two Green's functions
2 2of the "modified" Helmholtz equation A u -u = 0, where P and

Q are the locations of the point of observation and the unit source

respectively. (This equation is obtained from Helmholtz's equationi

Au + k2u = 0, when the wave number k is replaced by -iy [20]),

Then the solution for the case of a "Dirac" pulse stimulation of the

source is given by

1
c+ioo

-
2Tri G1

(P, Q, y) eytd
D(t)

From this the case of an arbitrary time dependency of the source

stimulation can be obtained by a further integration [21] . Finally,

the corresponding Green's function, GI ' for the heat conduction

equation can be obtained from those
G1

of the modified Helmholtz
2

equation as an inverse Laplace transform,

-6-

1 2Tri
2

s.c+iooc-ioo

G1 (F), Q, 4:y ) ey(kt)
dY

(2)

(3)

(k is the heat conduction constant).

The parameter t in the inversion integrals usually repre-

sents the time. Since it is often not possible to give the solution of

such inverse Laplace integrals in a closed form it is desirable to
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obtain approximate solutions. For instance, a method for asymptotic

evaluation for large t would then lead to an approximate solution

for the afore mentioned physical problems after the lapse of a suf-

ficiently long time. Various methods of finding approximate solu-

tions of F(t) for large t have been employed. The method of

stationary phase [9], the method of steepest descents [9], and cer-

tain other types of contour integration [3] can be used rather gen-

erally. For specific forms of f(s) other methods are possible.

Carson [6] determined an asymptotic expansion of F(t) for large

t when f(s) is represented by a series of the form

f(s) ao + + a/s2 + (4)

or

(6)

f(s) ao + a1/s1/2 + az/s + a3 s2 + (5)

Similar representations were also given by Stachoi [24] and Amerio

[2] . If f(s) is of the form

f(s) = + ((s) , p. <0, n < 1, I 41(s) I < M
sn

as s oo, and satisfies certain other conditions, then Obreschkoff

[22] gives an estimate of F(t) valid for complex t. More gen-

eral forms of asymptotic representations of Laplace transforms are

given by ErdLyi [10, 13] .



It is the method of Haar [16] which we shall consider. In

this method we consider the singularity of f(s) furthest to the

right in the complex s-plane, and show that this singularity de-

termines an asymptotic value of F(t) as t 00.

In Chapter I we generalize Haar's method and give a theorem

for determining an asymptotic estimate of a function which is repre-

sented by an integral of the inverse Laplace transform type.

In Chapter II we apply the method to some specific compari-

son functions having essential singularities. We use functions involv-

ing Whittaker functions of the first and second kind for comparison

functions.

In Chapter III we show how the previous result can be made

valid for complex values of t.

In Chapter IV we tabulate the special cases which follow as a

result of using Whittaker functions as comparison functions.

4



n=0

5

CHAPTER I

ASYMPTOTIC ESTIMATES OF FUNCTIONS REPRESENTED BY
INTEGRALS OF THE INVERSE LAPLACE TRANSFORM TYPE

PART 1: DARBOUX'S METHOD

The method for the determination of the asymptotic behavior

of an integral of the Laplace inverse type (1) for large t as devel-

oped by Haar [16] has its origin in the famous investigations by

Darboux [25] The latter's method is concerned with the determina-

tion of an approximate expression for a given sequence of numbers,

an, for large n.

Suppose that

lim I anl 14.1
= r (7)

is finite. Then the function f(z) defined by the power series,
CO

f(z) = anzn (8)

n=0

represents an analytic function for Izi< r. For z peix/3(p <r)

we may write
00

f(peici)) = anpneincl)
(9)



and for the /th derivative we may write
oc

f (pe )=i ann p eiti) n incia (10)

n=0

(The differentiation in the expression is taken with respect to for

fixed p). Then the properties

5,2Tra

p
m

21Tf(p e d4)

0
and

and

a mIpm = 0(1) (12 = I, 2, 3, (14)

hold as The second estimate is, of course, a refinement

of the first estimate. Since the above statements are improved as

p approaches r, the question arises whether it is possible to let

p become equal to r. It is clear, likewise, by the Riemann-

Lebesgue lemma, that the more precise estimates

2Tri am p =
m f(1)2Tr

p e e irrtd.c1), (12)
0

which are the coefficients in the Fourier expansion of f(p ei4)) and

f("12 )(p ei4), tend to zero as m 00 by the Riemann-Lebesgue

lemma; and the asymptotic estimates

a p = 0(1) (13)



and

also hold if

a illr = o(1)

ma m r = o (1)

g(z) =

m=0

with given coefficients, b , is constructed such thatrn

lim I b I

-1/m = lim am! -1/m.

If, furthermore, the boundary function f(z) - g(z) is continuous,

then

-b )r rn o(l)m m

b zmLi m

as co (15)

as m---" co (16)

as co , (20)

lim f(p eic1)) (17)

(which is called the boundary function of f(p ))) is a continuous

function of 43, or if its first I derivatives with respect to 4>

have the same property as far as the second esimate is concerned.

If the boundary function f(reil)) is not continuous, one proceeds in

the following manner : a new function,
00



and if the first derivatives of f(z) - g(z) have the same proper-

ty the above estimate is refined to

(a -b )rmMe = o(1)m

F(t) -

PART 2: HAAR'S METH OD

The general procedure developed by Darboux can be carried

over in an analogous manner to find an asymptotic estimate of an

integral of the inverse Laplace transform type. Consider the integral

stc+i00
1 f(s)etsds ,ari

c - ioo

F(t) =
rc+ioo

f(s)estds1

2.Tri j
c-1.00

ect
co

cof(c + iy) eiTt dy,
21T

as m- 00 (2 1 )

(22)

(24)

8

where f(s) is a known function. We have an analogous estimate

of F(t) for large t which follows from the Riernann-Lebesgue

lemma for Fourier integrals [26], which may be stated as follows:

let
oo

g(Y) eiyt h(t) dt (23)
_oo

be uniformly convergent for lyl > Y, then for t > T, g(y)

as lyl 00.
Now let s = c + iy in equation (22), so that



then ,by the Riemann-Lebesgue lemma we have

oo
, iytTheorem 1. If f(c +iy)e dy converges uniformly for t> T,

-oo

then
c+i00

1F(t) = f(s)estds = o(ect) as 00 (25)
Ziri

c-i00

Theorem 2. If f(c+iy)eitYdy converges uniformly for
-oo

t > -T, then

Pb c+i00
1F(t) = f(s)estds = o(e-ct) as t. -00 . (26)

21Ti c-i00

We see from Theorem 1 that the further we can shift the

path of integration to the left, the better the estimate of F(t) as

t becomes a large positive number, For large negative t a better

estimate of F(t) is obtained by shifting the path of integration as

far to the right as possible.

In investigating the behavior of F(t) for large positive t,

the question arises as to how far one can shift the path of integration

to the left. By Cauchy's theorem we can shift the integral to the left

until the new path of integration reaches the singular point of f(s)

furthest to the right. It should be noted, that in some cases, we

may be able to shift the path of integration beyond the abscissa of

9
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convergence of the integrand. This differs from the analog to power

series where it is necessary that there be a singularity on the radi-

us of convergence.

Denote by xo the abscissa of the singular point or points of

f(s) which is furthest to the right. Can we shift the path of integra-

tion onto the line Re s xo? The answer is yes,if we can construct

a function g(s) which is analytic inside the strip x0 <Re s < c

and two dimensionally continuous on the line Re s = i. e. g(s)

is continuous on the line Re s = x0 as we approach the line in any

direction from the inside. The less severe condition of continuity on

the boundary is an improvement of Cauchy's theorem first given by

Pollard [ 23], and then refined by Heibronn [ 17].

Haar stated conditions under which a comparison function,

having a singularity of the same character as f(s) and at the same

point as the singularity of f(s), could be used to estimate F(t).

In his paper Haar considered only functions, f(s), which were results

of Laplace transforms, i. e. f(s) is given by

oc

f(s) = F(t)e dt.-st (27)
0

Furthermore, the comparison functions which he assumed were of

algebraic character, (s_50 )a,
'

where a 4 1, 2, 3, and algebraic

logarithmic character, (s-s0 )alog(s-s0 ). For functions, f(s), pos-

sessing these types of singularities at the point s = s0, an



asymptotic estimate of F(t) can be given for large t.

More recently another comparison function was given by

Hull and Froese [18] . If f(s) has a singularity of the above type

multiplied by exp(1/s), then F(t) has an asymptotic expansion

for large t.

We now generalize the method developed by Haar to obtain

asymptotic expressions for functions, F(t), represented as inverse

Laplace transforms whose image functions, f(s) have essential

singularities. Furthermore, F(t) will be assumed to be defined

by an integral of the Laplace transform type,

c+ioo
1F(t) = 2Tri f(s)estds,

c-ioo

but f(s) itself isn't necessarily the result of a Laplace transform.

We shall also show later that we do not need to restrict ourselves to

real t. We first give a theorem which is the basis for results which

shall follow.

Theorem 3. Let F(t) be represented by an inverse Laplace

transform type integral

F(t) - 1 Cc+i00f(s)estds
2Tri jc-ioo

Assume that f(s) has the following properties:

(28)

(29)

11



f(s) is analytic for all values of s =x+iy whose

real part is larger than some number a. Further-

more, the function f(x+ iy) is for real y at y=± 00

and large t of Fourier character, i.e.

-Y ity
iand f(x+ y)e dy 0 (30)

uniformly for all t> T, x> a .

F(s) is two dimensionally continuous on the line

Re s =a, and is of Fourier character for large t

at y=± 00 on this line.

The integrals

C+

a+io.)
and

sc-iw
f(s)estds (31)

12

tend to zero for large values of t as co 00

for any finite c> a

then, under these conditions

F(t) = 0 (eat) as t-- 00 (32)

If in addition we have the further condition that



(iv) f(a+ iy) is . times differentiable and each of

the derivatives are continuous and such that

f(a+iy), f'(a+ iy), * f(e -1)(a+ iy)

)tend to zero as y.± oo, and f (a + iy) is

of Fourier character for large t at y = co,

then under conditions (i)-(iv) we have the asymptotic formula

atF(t) = o(t e ) as 00 (33)

The proof is based on an extention of Cauchy's theorem where

we allow the function f(s) to be two dimensionally continuous on the

boundary [17]. Consider the integration around the closed path in

Figure 1. When we let condition (iii) requires the contribu-

tions on parts
C2

and
C4

to vanish. Hence,by Cauchy's theorem,

c+i00 a+ico
1 f(s)estds 1 f(s)estds (34)

2TriJc-ico a-ico

Now apply Theorem 1 and the result follows immediately.

When condition (iv) also holds, we write

13

co

f(na+iy
-oo

and integrate by parts to obtain

)eitydy = lim f (a+ iy)eit ydy
co.00 -co

(35)



* sexeiYo

A

s-plane

Figure 1. Contour ofintegration for determining F(t)
when t is real.

14



lim ,rf(I) (a+ iy)eitydy = lim
co--,-00 -co -co

15

-t gC;) eity,02-1)(a+iy)dy , (36)
-co

The first term on the right vanishes by condition (iv). Now, repeat

the operation until

F(t) = a+ iy)eity.dy
(teat) )

arr
(37)

_oo

Apply Theorem 1 and the theorem is proved.

When f(s) has a singularity on the line Re .s = a, we

follow the procedure of Darboux to obtain an asymptotic estimate of

F(t) for large t. If f(s) has more than one singularity, it will

be the singularities on a line furthest to the right which will concern

us. If we can form a difference function by introducing a new func-

tion cl)(s) having the proper singularity (or singularities if f(s)

should have more than one singularity on this line) such that the

difference function satisfies Theorem 3, then the behavior of F(t)

is essentially determined by the inverse Laplace transform of Os).

Let F(t) be a function represented as an inverse Laplace

transform type of integral whose asymptotic behavior is desired.

Assume that f(s) has a singularity at so = xo + iyo, and it can



be decomposed into two parts, a singular part and a continuous part,

f(s) = f(s) + f.c(s) , (38)

where f(s) is analytic in x0 < Re s < c and where c is

some real number greater than x0.
0

4D(s), whose inverse Laplace transform is known, namely,

c+ i°°
1

(1. (t) = ets1)(s)ds..
c-ioo

Furthermore, let 11)(s) be analytic in x < Re s < c and continu-
0

ous in x0 < Re s < c (save at the point s = so)

Now define a new function,

(39)

and at spossess0

a singularity of the same character as f(s). Now let g(s) denote

the difference function

g(s) = f(s) - cl)(s) (40)

If g(s) behaves suitably at infinity, i. e. fulfills the conditions

(i)-(iii) of Theorem 3, then by the generalized Cauchy theorem we

can shift the path of integration from the line Re s = c to the

abscissa Res =x0. Hence,

1 ei +i-°° ts 1 g 0 etsesG(t) =. e g(s)ds - )ds, (40)27r

c -ioo x -ioo
0

so finally,

16



17
x t

0F(t) = 1)(0 + o(e ) as t co (42)

In addition, if g(s) satisfies condition (iv), then

x t0 -1F(t) (T)(t) + o(e t ) as t 00 (43)



part is larger than x0.
0

such that the integrals

CHAPTER II

ASYMPTOTIC ESTIMATES OF INTEGRALS OF FUNCTIONS
HAVING ESSENTIAL SINGULARITIES

Let us now consider the following Whittaker functions

k a/2(s-s )
cfrl(s) (s-so) e Mk, ti[a/(s-S0)) (44)

R (k-p.) <-42

cl°2(s) (s-s0) Wk,IJ,[a/(s-s (45)

Re (k±p. ) <1/2

k -1/2(5-so)-
4)3(s) =

e Wk,
[1/(s-s )] (46)

Re(k±ii) > - 1/2

a/2(s-so)
(PIP) = (s-s0)°"e Wk [a/(s-s0 )] (47)

,

Re (1/2 ±u+o-)> 0

We shall show that these functions, (s) = 1, 2, 3, 4,

which have essential singularities at s = S' are suitable to use
0

as comparison functions in the theory previously developed. We

start by stating four lemmas.

Lemma 1. The functions 1)1(s) = 1, 2, 3, 4, as defined by

equations (44)-(47) are analytic for all values of s =x+iy whose real

18

Furthermore, the functions 4:1)i (s) are



and C-Y+Y-0 Rx-x ) + i(y-y0)] eiytdy
0

(48)
_

Y+YO
co

tend to zero uniformly for t> T and for some finite Y > 0 and

any finite x> xo #

Proof Since the functions 4,1(s) = 1, 2, 3, 4, are the

Laplace transforms of functions (t) = 1, 2,3,4 [12] , they

are analytic in their half-plane of convergence, namely Re s> xo

[8] .

To establish the Fourier character of these comparison

functions we point out the relation of the Whittaker functions to the

Kummer or confluent hypergeornetric functions. The Kummer func-

tions are defined as

where

M(a,b,z) =
n=

U(a, b, z) - Tr

sin Trb

(a)n zn

(b)n
n!

r(a+n)
(a)n - r(a) , (a)0 = 1

19

M(a,b,z) zl-bM(l+a,2-b,z)
I r(l+a-b)r(b) r(a) r(2-b)

The Kummer functions are related to the Whittaker functions by

(50)



where

m,
(z) = e z

-V2z1/2+p. 1V1(1/2+ p-k, 1+ 2p., z)
R,

W (z) = e-1/2 zz1/2+ UW2+ p, -k, 1+2,k,

Hence we may express our comparison functions as Kummer func-

tions
1 1

a2
acys) = (s-s

0)
141(+ p, -k, 1+ 2p., ) (53)

2 s-s
0

a
1 1 ..1 s-s-2 2 0 1

432(s) = a2 (s-s0) e U(+ p.-k, 1+2p., a )
2 s-s

0
1

1 1 (54)
s-s0 1

(I) (5) = (s-s0) e U(7+ p.-k, 1+2p., ]/s-s0) (55)

cb4(s)

1 1

= a2 (s-s0 u-(-1+ p.-k, 1+2p, 1,4-s).
2

We may further express the cl(s) in terms of the first Kummer

function by equation (50); hence,

(I)/
) = a1/2+ e-5/ /(s-s0) s-s0)-

+ 1+2p., a/(s-s0) - (s-s0)-P/

MW2+ -k, 1-2p,, a/(s-s0)] (57)

(56)

20



Al =1

A2 = A3 = A4 -

0

= V2 -P,-k

= V2 -p.+k

V2 - 14+ (r

'IT 1 1

sin[iT(1+2p.)] r (.1 ro.+20

(58)

21

= 1/2 + p.-k
131

= V2 + 11-k
132

= V2 + p.+k 133

= V2 + 11+ (7 (34

1
0

Tr 1 1B2 = B3 = B411sin[Tr(1+4.)j r(1-2)
2

We note from the restrictions on k, p. and CF in equations

(44)-(47) that Re af > 0 and Re13 > 0. Since the confluent

hypergeometric function, M(a, b,z), is an entire function of

and tends to unity as I z I tends to zero, the behavior of (1),e (s)

at s = so is simply

-
lirn (1) (s) = A I s-s0 I

Xf
1 /

S
So

where Re X > 0.

Consider now the integral

1
=0 al

52 = az

53
= 1/2

a3

54 = 0 a4



A eity -XI
[(x-x0 ) + i(y-y0 )]

Y+YO

A
XI

1-X-
eity[(x-xo + i(y-y0)] dy. (61)

Now the first term on the right can be made arbitrarily small by

taking Y to be large, and the second term on the right now con-

verges absolutely to zero.

A similar argument holds for the integration from -co to

y0 -Y. This proves the lemma.

Lemma 2. The functions 41(s) I = 1,2,3,4 as defined by

equations (44)-(47) are of Fourier character on the line Re s xo.

The proof is exactly the same as for Lemma 1 except that

we take s = + iy.

it

22
oo

I = .1:11 (s-so)eitYdy for t> T (59)

Y+YO

when Y is large, I behaves like

co -X
A.

SI
eity[x-x0) + i(y-y0)] dy .

Y+YO

The above integral is absolutely convergent when Re X > 1.

For the case where 0 < a < 1 we may use partial integration,

oo -X

AI erty[(x-x0) dy =

Y+YO

(6P)



I A eitY
,e

lim
cc *51 x

xlt -X
< Ale (c-x0) urn {(x1-x0)+ i 0)] x0 <X < c

-x
<M lim (

1.

X
0

+ i(w-y)] 0 if Re > 0. (64)
co--. 00

-Xi0 xt[(x-x0) + ie (co-y0)] dx I

(63)

23

The condition e > 0 was shown in lemma 1.

Lemma 3. The functions 431(s) J2 = 1, 2, 3, 4 as defined by

equations (44)-(47) are such that the integrals

sbxe
0icolirn and lim cl) (s)estds (62)

00 c+ico co.00 c-iw

tend to zero for t > T and 00 for any finite c > x0"

The proof of the lemma follows from the known asymptotic

behavior of the confluent hypergeometric functions when the argu-

ment tends to zero. Let s = x+ i, then

x0+iwlim Sb
43.0 (s)estds

co.00 c+ico

iyt . x0 . xt
e lim 12.0 (x+ iw)e dx

c

-XFor large 0) we can replace 431(x+iw ) by Al [(x-x0)+ (co -yo)] ,

then,



m=0 (c)m m!
s-s0)-i-Xt

we see that their derivatives tend to zero more rapidly than the

(I) (s) themselves, hence the Fourier character is clearly estab-

lished.

Theorem 4. Let gl (s) = 1,2,3,4 be defined as

gk(s) = f1(s) -(1)(s) (66)

where f (s) =f s(s) +
ff c(s) such that (s) is continuous in

the strip xo < Re s < c save at the point S = so, and analytic

in x0 < Re s < c, and
f1 c

is analytic in x < Re s < c. The
0

44),e (s) are the functions defined by equations (44)-(47). Further-

more, let

gf(s0 c
) = ff(s0) (67)

be two dimensionally continuous at s = s. If f(s) satisfies the
0

conditions (i)-(iv) of Theorem 3, then

(65)

24

Lemma 4,
43.k

(s) and its first n-1 derivatives tend to zero as

y .-±00, (where n may arbitrarily be chosen) and (13.(n) (s) is of

Fourier character.

Since the (I) (s) are essentially of the form

co
(b) mml a



1 1-k- xnt
F (t) - aV2rup.+1 t 22p, (2a t )+ o(t-ne ) (68)

1 1
1-(p. -k-

1 1-k- 1

2aV2t 2K (2a-2" t2) x t
2p, -n 0

=F2(t) 1 1
+ o(t e ) (69)

.-k+)r(-- k - )
2 2

F
3(t)

= -tk- V2
{J21j.

(2tV2)s in[(p, -k)Tr] (70

V2 xOt-+ Y (2t )cos [GI -kjcTr] } + o(t ne )
2p,

-1 r(-20(at)i-L-F1/2

1F( V2-k+p. ; 1+2p. , 1/2 + p. +o; at)

r(2Fi)(at)-11+1/2
+ r(1/2-11+cr)

xOt
1F2( V2-k- p. ; 1-2, 1/2- p.+cr ; at)] + o(t-ne ).

The proof of the theorem follows as an immediate consequence

of Lemmas 1-4 .

(71)
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CHAPTER III

AN EXTENSION OF THE METHOD FOR COMPLEX ARGUMENT

The extension of Haar's method to include complex values of

is given by Doetsch [9], but only for a function, f(s), whose

behavior at s = s
0

is algebraic, or algebraic-logarithmic.

Doetsch gives two theorems related to these particular com-

parison functions. The first theorem requires the function f(s) to

be analytic in the sector I arg (s-s0 )1 <41(Tr/2 < < IT) and near

= S with the exception of S = S itself ; furthermore, f(s)
0 0

Imust be integrable in every finite interval on the line arg(s -s 0) I =11J,

and f(s)-,-A(s-s0 )X uniformly as S S in the sector (X is

arbitrarily complex). Then under these conditions
s t

0 -X - /1,F(t),Ae t (- X) for t tending to infinity in the sector

I arg t I < - Tr/2.

To prove this he considers a transform W(t) defined as

W(t) = f(s)ets ds, (72)

where C is the contour shown in Figure 2. By considering the

separate segments of the contour, each integration is shown to be less
X- -than Ket 1

, thus proving the theorem.

The second theorem allows f(s) to have one of the three

26



S-pIane

Figure 2. Contour path for W(t).

C' denotes that part of
s-s R

0

27



following expansions near s = s0:
0

f(s) cv(s-s0)Xv(ReX <ReX <
v

cc

f(s) log(s-s0)v(s-s0 )v

v=0

f(s) log(s-s0 ) c (s-s0 )Xv(ReX <ReX )
v

v=0

ReX 4 0,1,"

If f(s) satisfies the other conditions of the previous theorem, then

as t

sotAL F(t) e

s t
B'. F(t) -eo

V=

r(-xv)

c(-1)vv! t
V

-v-1

-X v-1
cvt [logt -r(-x F(-X v)

where the expansions are now valid for I arg t I < 7./2

Hull and Froese [18] give a theorem similar to Doetsch's,

showing that under suitable conditions on f(s), the contributions

28

-X -1
00

cvt

co

C' . F(t) -e sot

v=0
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on the part of C for which is-sol > R > 0, tend to zero, i. e. the

integral

2-rri

1
e stf (s)ds o (e- et) (73)

C'

for some c > 0. We shall now show that the comparison functions

used in Chapter II are suitable to allow the asymptotic representa-

tions for F(t) to be extended to complex t.

Theorem 4a Let g(s) satisfy the following conditions:

(i) g( s) is an analytic function of s for I arg (s - so) I < LIJ

and continuous in larg(s-s0)1 <4i where Om.< qi< IT ,

except possibly for a singularity at s = so =x0+ iyo .

P
ps (n)

) eP g(s), e g'(s), g (s) are continuous and tend

to zero as I sj 00 in the sector fir < arg(s-s0 )1 < LP,

where p is real and finite.

1 a+i°°e stg(s )dsG(t) -
2..fr i

a-ic0

exists for some real a > x0

g(s), g'(s), g(n)(s) tend to zero uniformly in

as y ± 00 in the strip 0 < Re s < a 4

Then, under these conditions,

(74)



and since

we have

a+ i00
g(s)estdsG(t) = = .51 g(s)estds, (78)

a-ioo

Theorem 4b Define the functions gf (s) = 1, 2, 3, 4 to be

SC 5C2C- +
C3

+

C4

= 0, (76)

1

c3
= = 0 ,

C4

(77)
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G(t) -
2Tri

estg(s)ds, (75)

where C is the contour shown in Figure 3.

The proof of this theorem follows as an immediate conse-

quence of Cauchy's integral theorem. By condition (iv) the contribu-

tions to the integral over paths C1 and C4 vanish. The inte-

gration also vanishes on paths Cz and C3 by condition (ii). By

Cauchy's integral theorem,



2

C3

4

a

C4

.>

A

Figure 3. 3. Contour of integration for determining
F(t) when t is complex.
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a
1

k (s-s
g1(s) f1 (s)-(s-s0 ) e a

) C79)s - s
0

Re (k-p.,) <
2

a
g2(s) f (s)-(s-s )kW (

2 0 k,
0

Re (k±p..) <
2

1
1

-k --2
s -so 1g3(s) f3(s) -(s -so) e Wk,(s-s ) (81)

0

1
Re (k±p.) > -

2

a
1 s-s-0-2 0 a

g4(s) = f4(s)-(s-s0) e
Wk,

11( s-s ) (82)
0

1Re (-±L+0-)+cr) > 0.

Furthermore, let the gi (s) satisfy the conditions of Theorem 4a,

then,

(80)
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F4(t) = tor-1

x t
1/2 -n 0+ Y211(2t)cos[(p.-k)Tr] }+ o(t e )

11+1/2
r(-2p.(at)
r(1/2-k-p.)I-(1/2+p.+cr )

1F2W2 -k+p. ; 1+2p., 1/2+1-1+0-;

r(2p.) (at)-11+1/2
+1-(1/2-k+II) r(1/2-11+(r)

-n
1

xOt
F2 (1/2-k-p. ; 1-2p., 1/2-+o_; at)] +o(t e )

where the asymptotic representations, Fl(t), are valid for

I arg t I < Tr/2, Tr < < Tr/2 .

Again we assume fl (s) is composed of a singular and a

regular part such that f1(s) is continuous in the region

-41 < arg(s-so) < qi and analytic in the region - < arg(s-s0)<LIJ

except possibly in the point s = so; fcs(s) is analytic in the

at)

(86)
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1 1 1
-k--2- 2 2 -n xotaV2r(21+1)1.

F1(t) - (83)t
I2p,

(2a t )+o(t e )
1r(II-k- 7 )

1 11
-

-lc

F 2(t) =

V2 - ZZa tK (2a
-n-n

x t
2p. 0

'
(84)+ o(t e )

1r(i-k+11)1-(-- k-11)
2 2

F3
(t) = -tk-1/2 {J (2t)sin[(p.-k)Trj (85)



where R is a large positive real number. Let us allow t to be

iPcomplex and denote it by t = T then the above integral

(88)
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region -11i < arg (s-s0 ) <

That the integration of ei)/(s) along the line a-i°° to

a+ieo may be replaced by the integration on the contour C is easily

seen. By lemma 3 the integrals over
.01(s)

vanish on paths

C1 and C4. On paths C2 and C3 the integrals

_stlim
e

(s)ds and lim e5t4(s)ds (87)g0.)--00

-
vanish for X > 0 sincek(s-s0) for large s, where

X. > 0, and since the exponential term is never positive.

Since fi(s) = (1)1(s) + g(s) we see that f(s) satisfies the

assumptions of Theorem 4a, hence,

(t) = [ (s) +(s) etsds
C

x t-n 0
= (t) + o(t e )

We now establish the domain of t for which the above equa-

tion holds. To do this consider the integration along the line
iqi

s

oc

g(re i4r) etredr , (89)



be

oo
g(reiqi) eTr cos (i+ P)

eibir+
rTsin(iii+ p )]

Co

g(re )
Tr

cos(qi+P)dr .e

By condition (iv) of the theorem this integral is finite as long as the

exponential term in the integrand is negative. This leads to the

condition

Tr/2 -LIJ <13 < _ip (91)

Considering the integration along the line s = re , we are led by

a similar argument to the simultaneous condition on p that

3Tr
+ <13< - Tr/2

The common domain for the argument of t is

+ Tr/2 < p = arg t < - Tr/2 . (93)

For the functions .4)12( ) we may let qi extend to Tr , hence the

asymptotic representations for F (t) are valid for -Tr/2 < arg t <TT/2.

In a similar manner we can find the asymptotic estimate of F (t)

as t tends to minus infinity in any direction in the left half-plane.

The comparison functions introduced in Chapter II are not the

only functions,having essential singularities:that can be used for

(92)
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a n

of the theorem and verify that exists.
a pn

(95)

36
comparison functions. In fact, any function whose inverse Laplace

transform is known and which also satisfies the conditions of

Theorem 3 or Theorem 4a can be used as a comparison function.

A general procedure for estimating a function F(t) which

is represented by an integral of the inverse Laplace transform type

would be to first determine the singularities of f(s) furthest to the

right and determine the character of these singularities. Secondly,

we would check a table of inverse Laplace transforms and see if

there exists a function (or functions) .4:1(s) having singularities of

the same character as f(s) which are located at the same points

or can be translated to the same points as the singularities of f(s).

Thirdly, the function Os) must satisfy the conditions of either

Theorem 3 or Theorem 4a; if it does satisfy these conditions, then

an estimate of F(t) can be given.

When it occurs that a comparison function is of the form

(s) sP 4)(s) , (94)

we can often obtain logarithmic comparison functions by differentia-

tion with respect to p,

cl)(s) = (log s)n sP LP(s)a pn

One must check to see if this new comparison satisfies the conditions
an it.(t)
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An interesting problem still to be investigated is that of finding

an estimate of F(t) when f(s) has an infinite number of singulari-

ties spaced on a line Re s xo



CHAPTER IV

SPECIAL CASES OF THE GENERAL COMPARISON FUNCTIONS

The advantage of choosing Whittaker functions for compari-

son functions is evidenced by the large number of functions which

can be obtained from the Whittaker functions by specializing their

parameters. By suitable choice of k and we obtain as com-

parison functions Bessel functions, parabolic cylinder functions,

error functions, Hermite functions and several other functions.

The number of examples of comparison functions previously

given by Haar [16], is extended to several types of functions having

essential singularities. The results of Hull and Froese [18] also

follow as a special case.

We first list the functions which are obtained from M (s)

and Wk, [1(s) by specializing the parameters k and P. These

are listed in Tables 1 and 2. We then apply Theorem 4b to each of

special cases which lie in the range of validity of the theorem. These

special cases and their inversion formulas are listed in Tables 3

through 6. The numbers in the left hand column identify the special

case which is numbered in Tables 1 and 2.

The notation is the same as that used in the Handbook of Math-

matical Functions [1] , and the properties of the functions listed

may be found there.
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Table 1. Special cases of Mk (z) .
,11

Mk, 11(z)

Relation Functionk P- z

1. v 2iz

1 1
v

22v -I- 2 .2
1 F(l+v)z-iJv(z) Bessel

2. 0 -v 2iz

1 1-2v -v
2 .

2. 12 F(1-v)z1/2

[ Jy(z)cos(Trv)-Tv(z)sin(rrv)]

Bessel

3. 0 v 2z

1

22+2vz-2- r(l+v)Iv(z) Modified Bessel

4. 0
1

n+-2
2iz 22n2 . 3.n+1 3r(-+ n)z1/2J 1(z)2 n+ 7

Spherical Bessel

5. 0
1-n--2 2iz -n 12-2n-1/2 i 11-i-n)z1/2Jv2(z) Spherical Bessel

6. 0 n+-1
2

2z

12n+
2

2 3
r( -2+n)z1/2I (z)

1

n+-2

Spherical Bessel



Table 1. (Continued)

Mk, u(z)
k FL z Relation Function

7. 0 n
1/2-2(iz)

1 1 , .,2n+ n+ y4
2 22 i Tr-nr(l+n)

1 1
Kelvin

1/2 n+
-2Trz+(iz) x2 4(bernz + ibeinz)e

8. in L+.2--
2

2iz (21)L+
1

FL(ii, z)/ CL (n) Coulomb Wave

9.
1 1--a+--+n la

2
z

1 1 1---z a+n! 2 2 2 (a) Laguerre
(a+ 1 )n e z Ln (z)

1. 1 1

10.
1 1

--2a+ - 2-
1a
2

-z
--rrr(a+ 1) -2-z ---i a+ 1/2

ae 2
e z (a, z) Incomplete Gamm

1 1

11.
1

2( 1+v+n)
1(v...n)
2

z
(1)1/2 ---2-z -iv + 1/2

Poisson-Charlier(l+v) e z pn(v, z)
-nn

1 1- -
1 1

CL Z
2 2

12. - -2- a (a- 1)
2

z z e Exponential



(z)

FunctionP. z Relation
13.

-2-
-2iz -2i sin. z Trignometric

14. 0
I

-27
2z 2 sinh z Hyperbolic

15. 1-4- T , I.
2

---z
2

-3/4 1/2 (0)
2 z Ev (z) Weber or Parabolic

Cylinder

Weber or Parabolic
Cylinder

Hermite

18.
34+ fl 1

7i
1 2-z
2

12
n!nn-3/4 --zrz

3/2 Hermite(2n+ 1 !

) 2
z He

2n+ 1(z)

19.
1- 1- 2-z

3 1 2
-11/2 i-zill. "iz 1/2 erf(x)2 e ze Error Integral

20. 1 1-n --m
2 2

1
-2-n

2
12-z

n! 2 -n-m Torontoe z T(m, n, z)
1r(-m + 1/2)
2

Table 1. Continued)



Table 2. Special cases of W (z) .k,

Wk
(z)

FunctionN. z Relation

21. 0 v 2z Tr- V2 V2z K (z)
v

Modified Bessel

22. 0 v -2iz 2- 2 . +07
2e'iTr(v+

V2- +izz 2(1)(z) Hankel

23. 0 v 2iz - v +1/2 V2 e-iTr(v +1/2- -iz
z V2H(2)(z)Tr

v
Hankel

24.
1n+
2

2z 7
2- 2

K
1

(z)
n+-2-

Spherical Bes s el

25. 0
1 4 3/2

2Tr V2 z V4 Ai(z) Airy

26. V2

1 1 2n+ (iz)-n. 4 -1/2 2
2 1 Tr e z (kernz+ ikeinz) Kelvin

27. 1(a+ 1)+n
2

1a
2

1 1 1--z
(-1 n! z22 e

2 ( )(z) Laguerre

28. 1 1a--
2 2

1a
2

z

..1 1 1
-2- --i a . z

z e n a, z) Incomplete Gamma



Table 2. (Continued)

Wk, (z)
p.

Function11 z Relation

29. 1

--2-
0 -z

1--z
2 V2- e ) Ei(z) Exponential Integral

30. _1
0 Z

1

e-2z z1/2 izI
i

Exponential Integral

31.
-2-

0 -lnz - z 2 - ln z)1/2 / i (z) Logarithmic Integral

32. n
2

1

-2-in
z

1-iTr(m-n)
1 z

r(l+n--2m) e

47 (m+1) 1z
z` e2

con, m( )

Cunningham

33. 1v
2

2z
1r(1+v)k (z) for z > 0
2 v Bateman

34. 0 iz
1/2 -2- iz

1(iz)ii e [--Tri + iSi(x)- Ci(z )]
2

Sine and Cosine
Integral

35. o -iz

1 1

--2
iz

12(-iz) e [ Tri - iSi(z) - Ci(z)]
2

Sine and Cosine
Integral



Table 2. (Continued)

Wk,
(z)

p.

k 11 z Relation Function
1 1 1

36. +
2 v 4

1 2
2

2 4 z2 D ( )

Weber or Parabolic
Cylinder

v
1 1 1 1 2 2 Weber or Parabolic

37. -2-v+ .71.

71
z3/2 Dv(z) Cylinder

1 2--z
38.

1 1

2n+
-n 3/2

2 e2 z H(z) Hermite

1 2

39. -
1

74

1

71
z2 -2-zTr1/2 e2 erfc(z) Error Integral



Table 3. Inversion formulas for special cases of first comparison
functions.

45

General comparison formula

C51(s)
.1) (t)

1

1 a
ske2 s Mk, (a/s)

Re(k-p,) <1/2

1

a2 1-(4.+1) za1/2t1/2)t-k-1/2
1 2i.t.

Special cases

1

1 la-- --
2

e
2 s

'T

a
s v( -27; )

1Rev
2

1 1 1-- --iTrv --
2Tr.

2
e t I (2a2 2 1/2 t1/2)

2v

2

_1 1 a

a-ie7 s[J
1 1

- -1/ 2 2 1/2 1/2-2v1 2
Tr e t I

(2a2v
t )s ( )cos(Trv )

v 2is

a-Y ( )sin(Trv)1
v 2is

Rev <1/2

..1 la
s 2e2;Iv 2s

1Re v> --
2

2Tr-1/2t-1/2 I2v(2a1/2t1/2)

_

4

_1 1 a

s 2e2 s J
1 2isn+-
2

n > -1

1-iTr(n+1/2)
e 2 t-1/2I (2aV2tV2)2Tr

-

2n+1

_1 la
7 2 s a -1/2 -1/2 z1/2 1 2

)2Tr t
2n+1s e I ( 11' 2s'n+-

2

n > 0



Table 3. (Continued)
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Ys) .1,1
(t)

7

1 1 a2.TT a
n-2 2i-72 + ;

s e

a 2
2

i bei

1 1

1/2t1/2)-n+1 n 2 -n 2 (2a
2 a Tr i t I2n

(her 2- a+ 7 )

n 4is n 4is"'

n > 0

8

1 a
in s a a1/2(2i)- L+

1CL(v)
1-in--

1-(2L+2) Z1/21/2
seFL(-I, 2is)

Re L + ling > 1
t (2a t

r(L+1+i1)
I in )

10
(a, -a/s)

Re a> 0

1a-1
a 2

e- iTr t2 Ia(2a1/2t V2)

12

a_
s
-a es

Re a> 0

1-a -.7; a- 1)
t`' Ia- 1

(2aV2 tV2)

3

1 a__ ..._

-ae25 sin ( )
2is

1 1--ii-r --
V2 V2- a 2e2 t2

I1
(2a )

2

4

1 a
ae2 ssinh()2is

1

1aV2 t2 I1(2aV2 tV2 )
2

15

1 1 a
2 v 7 --; (o) 2 V2a V2

1

2 V2 -2 v V2V2)Evs e ( )0

Re v <0

1
t s inh,( 2a t

F(-- v )
2



Table 3. (Continued)
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(1)1(s) 1 t)

16

1 1 a
2 e 2 s(1) V2a1/

1
1

2-2 --2
v-1

t s inh( 2a1/2tV2)
sE

v O )
S

Re v < 1

1 I
I" ( i - - -2 ,-.

19 aerf[ (- ) V2]

_

1-t sinh( 2a1/2t1/2)

20

S4
4 4 es T(m,n,a1/2s-0)

m> -1

1 12 2 r - + V2) -- n - 3/4
2 4 4t

1 1 1
+ +

In( 2a 1/2t1/2)
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Table 4. Inversion formulas for special cases of second comparison

function.

el, (s) c't (t)
2

skWk, ju( is)

Re(k±p.) > V2

a
1

211(2a1/2t1/2)
1 1

r(-2 - k + II) r(-2- k - II)

Speeial cases

21

2 a
Kv(T;)

1 1
- <Re v <-2

27- 2cos(Trv)

t-1/2K (2a1/2t1/2)
2v

22

1 a
7 ; (IT 1/2- ( -ae s H1) )

v 2is

21

1-- <Re v <

1

iirr(v+1/2) 3/2 -.-2.n-i
4e Tr e cos(Trv)

t-0K2v(2a1/2t1/2)

23

a

e
Ts (7-1) -1/2 (2) a

H ()
v 2is

1
- <Re v < 1/2

2

1

iTr(v + 1/2) e24e e cos(Trv)

-
t 2aV2t1/2)

v

25
-1/6

Ai[(-4s) j -1/6 -1/3 -3/2 -1/2 a1/2 V2s.3 a Ti- t K2/3(2 t

28

1 a
a-1 s

S e2 r(a, a/s)

Rea< 2/3

1 1

2a2 t2 0V2)K 2 tr(1-a)

29

1 a_-
- 1 se2 Ei( -)

s
e2 Ko(2a1/2 1/2)

30

1 a

s-1 e2 s
E1 (a/s)

2K0
(2a0ti/z)

General comparison for ia



Table 4. (Continued)
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(2(s) 2(t)

31

la
-a/s

s
-1 e2 s / i (e )

1

2Tri
2e

K0
(2a1tV2)

32

1 lan --rn --
2 e2 s

G.) (-1)s n,m s
1n ±m < 0
2

1--m i.7(1-m-n)
2 -1

e
2

Za

F(-n--1--1--1-) csc[Tr(rn/2-n)]
2

t-n-1K(2a1/2t1/2)m

33

1

as2 kv (-2-s-)

Rev <0

1(v+1)
2a1/2t-2 K1(2a1/2tV2)

11-v/2) F(1-v/2) r(l + v/z)

34

1 a
-1 2 s 1

s e [ - Tri + iSi(-2-- )
2 is 2K (2a V2t V2)

0

is

35

1 a
-1 2 2 1 -a

s e [--2-Tri - iSi(Ts-)

i-:-)]

ZK (2a1/2t I/2)
0

36

,
1v 1/2
2 a

1 1
+ 1/2

e-2aV2tV22-i v71/2t--.
.1,

s [(- ---D ) 1
V s

Re v < 0
1 1 F(-iv)
2 2 2

37

1

2v - V2
2a 1/2

s D [ ( ) ]
V s

Re v < 0

1 1 1

2-2+-2v
1/2 --2v-1 V2 V2

Tr t e-2a t

r(-1- -1v) r(-1-v)
2 2

39

1 1 a-- --
2 2s 1/2

s e erfc [ (-.1) ]
S

- v2 - v4 -2a 1/2t
1/2

27 t e



Table 5. Inversion formulas for special cases of third comparison
function

General comparison formula

50

cict (s) 13,(t)

1 -1
--s-k 2

s e W (s -I)k, p.

Re(k±p.) > - 1/2

k - 1/2
( 2tV2)sin[ (p.-k)Tr]-t

{J21

2p.,(2t1/2)cos[(11-k)Tr] }

Special cases

21

_1 1 .1

s
2- e-2. s K (-1)

v 2s

-1/2 < Re v < 1/2

- 2[J2v(2t1/2)sin(Trv)

+ Y2v (2t1/2)cos(Trv)]

22

1
-1)

-1-1/2H (1)(e s
v 2is

-1/2 < Re v < V 2

) - 2e
-iTr(v + 1)(-i)- 11Tr - 1/2t- 1/2

2v(2tV
in(Trv)+Y2v(2ti/z)cos(Trv)]

23

1

17- 1
1

; 1 1 -i/2
H(2) (1---- ) -2eiTr(v+1) v -1/2t-1/2(i) Tr

2v (2tilz)sin(Trv)+Y2v(Ztilz)cos(Trv)]

s
v 2is

-1/2 < Re v < 1/2

25

1 1

-1/2 -1/6 - 2/3[32J
_ 3 2.

2v(2t1/2)+Y2v(2t1/2)]
6 2s 3a 2/3s e Ai[ ( Ts) i

27

1

-n s (a) -1s e Ln (s )

-2(n+1) < Re a< 2n

tn+1/2 J1/2(2t)an!

28

1
r(a, );
Re a> 0

-1 1 3-ta {J (2t1/2)sin[( - )]-a 13 -,,
+ Y-a(2t1/2)cosk - a )_1.1'2 2



Table 5. (Continued)
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4) (s)
.1,3(t)

37

1 1 1
-1/2v-3/2 V21

- t cos(2t+ Trv)
2

---iv - 1 --2s
S Dv(21/2s-1/2)

Rev > -1

38

1 1-- --in.-1 -1/2ei s
Hn(s )

n > 0_

1
1/2 -,;-n

2
2

-n Tr" t"' cos(2tV2+-1-mr)

39 erfc(s- V2) -1 t-1 sin(2t1/2)



General inversion formula

Special cases

52

Table 6. Inversion formulas for special cases of fourth comparison
function

21

1 la
2 e2 s aK()v 2s

Re (o-±v) > - 1/2

1

a
2TrV2cr-1 11-2v)(at)t v+1/2

[r(V2-v)r(V2+v+o-)

1 1
1+2v, 2+v+o-; at)

r(2v)(at)-v+1/2
1rW2+v)

1-(-2
-v+ o- )

F(1/2-v; 1-2v, 1/2 -v+o-; at j

(I) (s)

1 a......._

s-cr e2s W (a/s)
k, p.

1Re (-2+ o-± p.) > 0

tcr-1

1

F(-2-1(441.;

11 +-2
F(-2_p.)(at)

112p.

1 1

-r(-z-k - i.or(-+ la +cr)
2

1+2p., V2 p. +o-; at)

1

-11 + -2-
)(at)

1
r(-2- -k+p,)r(i/2 -p. +cr )

1
(-1 -k-k; 1-24, --p.+cr ; at)

2 2



Table 6. (Continued)
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q54( )

22

Tra

2e -iTr(v+3/2)(-i)-vTr - 1/2a - 2ta-
-1

h v+1/2

s-a- -1/2 e2s H(1) (--a)
v 2is

1Re (±v) > -cr 1_11-2v)(at)

1-(1/2-v)1-(1/2+v+o- )

1 1

F(-2+ v; 1+2v,-2-+ V +0. ; at)

1-(2v) (at)-v+1/2
+

1r(1/2+v) r(-2- -v+ 0-)

F(1/2-v; 1-2v, 1/2-v+o-; at

23

Tra

iTr(v+1/2)..v -1/2 -1/2 b- -12e 1 Tr a t

rx_ 2v)(at)v+1/2

s-o-
-1/2 2s (2) a

e H ()
v 2is

Re(cr ± v) > -1/2
1

2v+cr )r(V2-v) r(+

1 1F(-- + v; 1+2v, + V +o, at)
2 2

- v+ 1/2r(2v)(at)
+

1

1-(1/2+v)r(-2 -v-k)

F(1/2-v; 1-2v, 1/2-v+o- ; at)

24

_1 la
as

°- 7 e-i s Kn4.1/2
(

n <Recr < n+1

a-1/2 Tr1/2t

F(n+1 ; 2n+2, n+1+a-

1-(2n+1)(at)-n

r(- 2n- Mat)n+1
1-(-n)r(n+ 1+ o-)

; at)

+
1-(n+1)1-(-n+cr ) _

IF(-n;

-2n, -n+cr; at)



Table 6, (Continued)

54

(s)

1 a
--o- -/6 2 s , 3ag' e A.4() 14s

-1/6
Tr t

25 [---1--1:-/-11-)1L:61,1--- F(5/6;5/3,5/6+cr;at)I' (1/6) r (5/6 +cr )

1-12/3)(at) V6

( ).17(
F (1/6;1-5/61/6+ty ) -1/3,1/64-cr ;at)]

a

es s ker (---)n is 2
-1

' Tr t
11 -2n)(at)n+1/2

.1
_I( 1/2-n)

r(-2+n+o-
)

2a+ kein(----2-)
is

F(1/2+n; 1+2n, 1/2 + n+; at)

26
Re o- > n -; 1/2 F(2n)(at)-n+ V2

+
1 1

r(-2-+n)r(-2--n+ 01
_

1. 1
-2--n ; 1-2n, -2- - n+ cr; at)

1
1 1

2 2

1- a+ 1/2
2

s
2

L(a)(a/s) (-1)n (r- 1 1-(-a)(at)t
n! 1r( - ci-n)r(-+a+o-)

_ 2

n

1 1Re( ± -a) > - -
2 2

, 1F(n ; 1+a, 1/2, + -2- a+o- ; at)

11
27

F(a)(at)
1 1

F(-n)F(-2--2 au)

F(n-a ; 1- a, li--1- a+o- ; at)

a 1 1 11 -7 a+1/Z-a
s 2 2 2 2 o- - 1 r( o(at)es F(a, a/s ) a t

r(1/2 - 12- a+ cr )

1
2-2 1Re (o- T a) > - F1 (

2-
+ a +Cr , at)



Table 6. (Continued)
55

el) (s) (t, ft)4'

a 1 1-cr +m-- .
2 2

s co n, m(als )

1Re cr > m-3/2

1 1
i . m-n --m-1/2

a 2
e a 'I' (l+n- Om)

1

2m+1/2r T.s(- (at)

32
1 1 11r(-n--n-i)r(+m+a- )

I-- 2 2 2
1 1l+m,_ ( -n+1/2m ; ; at)
2 2

1
- -2- m f 1/2

SI.- (m) (at)
+

111m-n)r( 0 - Vz m +)
2

F(-n- Om ; 1-m, 1/2- 1/2 m+cr , at)]

1 a 1

- - -1/4
e
2. -;D [()2a 1/2}

,

(3

v s
2 a-1/4t o- - 1 71/2(at)1/4

1 1 1

r(-2-- Or (- +0- )
2 4

Re cr >- 1/4 1F(-v; 1/2, 1/4+; ; at)

6
171/2(at)3/4

_
1r( - -v)c(3/4+o- )2_

1 1
11; 3/4+; ; at)



Table 6. (Continued)
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4)4(s) (1)4(t)

37

1 a
3/4s-o- - e2 s D [

V

Re 0- > -1/4

1/2
2a) j
S

1 1--+-v
2 2 -3/4 cr -1

2 a t

F(1--2-- iv; 1, 3/4+;
2 2

TT

1/2 (at) V4

- V2 3/4
-2 7T (at)

1r(--
2

at)

or(-3+ cr)
4

+
1

r(1/2--2v) 1-(1/4+cr )
_

1

F(-2-v; 1/2, 1/4+ at)

38

s-o--3/4 a 1/2
Hn[ (--s) }

Re a- >- 1/4

na- o-- 1

, ii
(-2--in; 1,

Tr 1/2(at)1/4

-271/2(at)3/4
r(- On) r(3/4+

3/4+0- ; at)

(T)

+ F (1/2- On) r(1/4-kr )

1( --zn ; 1/2, 1/4+; ; at)

39

a
-o--1/4

s es erfc (2 ')
s

1
Re o- > --z

1/2
]

-1/4Cr- 1a t

2(at)3/4

(at) 1/ 4 1

4

-

F (-+o-; at)
r(1/4+cr ) 0 1

F1 (3/4+ o-; at)
- r(4/ _,4+ 02) 0



BIBLIOGRAPHY

Abramowitz, M. and J. Stegun, eds. , Handbook of mathematical
functions with formulas, graphs and mathematical tables.
Washington, (National Bureau of Standards Applied Mathe-
matics Ser. 55) 1964. 1046 p.

Amerio, L. Alcuni teorerni tauberiani per la trasformazione
di Laplace. Annali di Matematica Pura ed Applicata
20:159-193. 1941.

Bourgin, D. G. and R. J. Duffin, The Heaviside operational
calculus. American Journal of Mathematics 59:489-505.
1937.

Carslaw, H. S. and J. C. Jaeger. Operational methods in applied
mathematics. New York, Dover Publications, 1963. 359 p.

Carson, J. R. Electric circuit theory and the operational calcu-
lus. New York, McGraw-Hill, 1926. 197 p.

Carson, J. R The Heaviside operational calculus. American
Mathematical Society Bulletin 32:43-68. 1926.

Doetsch, G. Ein. allgemeines Prinzip der asymptotischen
Entwicklung. Journal fur Reine und Angewandten Mathematik
167:274-293. 1932.

Doetsch, G. Handbuch der Laplace-Transformation. Bd. 1.
Basel, Birkauser, 1950. 581p.

9, Doetsch, G. Handbuch der Laplace-Transformation. Bd. 2.
Basel, Birkhauser, 1955. 436 p.

Erdelyi, A. Asymptotic representations of LaplaCe transforms
with an application to inverse factorial series. Proceedings
of the Edinburgh Mathematical Society, Ser. 2, 8:20-24. 1947.

Erdelyi, A. Higher transcendental functions. Vol. 2. New York,
McGraw-Hill, 1953. 391 ID.

Erdelyi, A. Tables of integral transforms. Vol. 2. New York,
McGraw-Hill, 1954. 391 ID.

57



58
Erdelyi, A. General asymptotic expansions of Laplace integrals.

Archive for Rational Mechanics and Analysis 7:1-20. 1961.

Fox, C. The asymptotic expansion of generalized hypergeo-
metric functions. Proceedings of the London Mathematical
Society, Ser. 2. 21:389-400. 1928.

15. Garnir, H. G. Fonctions de Green des operateurs
2

A-k2, (k 0), A- 1 a 1 a
2 , (c > 0), A - -k a tc2 a t

, (k > 0)

pour les problemes de Dirichlet et de Neumann poses dans
un segment, une bande ou une dalle. Societe Royale des
Science Liege 22:29-46, 1953.

Haar, A. Ilber asymptotische Entwicklungen von Funktionen.
Mathematische Annalen 96:69-107. 1926.

Heilbronn, H. Zu dem Integralsatz von Cauchy. Mathematische
Zeitschrift 37:37-38. 1933.

Hull, T. E. and C. Froese., Asymptotic behavior of the inverse
of a Laplace transform. Canadian Journal of Mathematics
7:116-125. 1955.

Jones, D.S. The theory of electromagnetism. New York,
Macmillan, 1964. 807 p.

Oberhettinger, F. Diffraction of waves by a wedge. Communi-
cations on Pure and Applied Mathematics 7:551-563. 1954.

Oberhettinger, F. On the diffraction of waves and pulses by
wedges and corners. Journal of Research of the National
Bureau of Standards 61:343-365. 1958.

Obreschkoff, N. Sopragli sviluppi asintotici e la transforma-
zione di Laplace. Annali di Matematica Pura ed Applicata,
Ser. 4, 20:137-140. 1941.

Pollard, S. On the conditions for Cauchy's theorem. Pro-
ceedings of the London Mathematical Society. Ser. 2,
21:456-482. 1923.

Stacho, T. Operationskalkul von Heaviside und Laplacesche
Transformation. Szeged Eqyetem Acta Litterarum ac
Scientiarum, Sectio Scientiarum Mathematicarum 3:107-120.
1927.



SzegO, G. Orthogonal polynomials New York, American
Mathematical Society, 1959. 421 p.

Titchmarsh, E. C. Theory of Fourier transforms. London,
Oxford, 1948. 394p.

Wright, E. M. The asymptotic expansion of the generalized
hypergeometric function. The Journal of the London Mathe-
matical Society 10:286-293. 1935.

Wright, E. M. The asymptotic expansion of the generalized
hypergeometric function. Proceedings of the London Mathe-
matical Society, Ser. 2, 46:389-408. 1939.

59



APPENDIX



APPENDIX

Since the behavior of F(t) for large t is determined

primarily by the behavior of the inverse Laplace transform of the

comparison functions, it is helpful to know the asymptotic behavior

of the (t) = 1, 2, 3,4 for large t. For (1)1(s) we found

that
T.1(t) contained the factor t-k-1/2

I211
(2a I/2t1/2). An asymp-

totic expansion of Iv(z) for large z is known [11, p. 86] .

M-1
1-I(z) = (21rz)/2

V
fez{ ()m(v,rn)(2z) rn+odz rm,

60

m=0
M-1

+
z. +inv (v,m)(2z) rn +0(1z1 -1V1)]}

m=0

-Tr/2 < arg z < 3Tr/2

Hence for large t we have

1(t)-- A t-k-3/4 2a1/2t1/2 +.e -2a1/2t1/2+ 2inp,

Similarly, rt.2(t) contains the factor K2[1(2atV2) and

again an asymptotic expansion for the modified Bessel function is

known [11, p. 86]



K(z) =
M

1/2
-1

Tr
) e-z (v,m)(2z)

Zz

m=0

3Tr 3Tr
- < arg z <

2
P

Hence we have for the leading term in the asymptotic expansion of ,1)2(t)

- k- 3/4 - 2a VZt VZ

(1.2(t) A2t

An asymptotic representation of .I.3(t) requires asymptotic

expansions for J(z) and Y(z) for large z [11, p. 85]

-1/2
1J (z) = ( Trz) {cos(z-1/2vTr - 1/4Tr)

M-1

m +0(1z -M)

and

(-1)m(v, 2m)(2z)-2m + 0(1z

m=0

M-1

sin (z-1/2vTr 1/4Tr) [ (-1)m (v, 2m+1)(2z)-2m-1

m=0

-Tr < arg z < Tr
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F (z) =P q

-1/2 1Y (z) ( Trz) {sin(z- - 1/4 Tr)
2 2

M-1

n=

m=0

-2M(-1)m (v, 2rn)(2z)-2m + o( lz )]

M-1
1 1+ cos (z

21TV - -4
IT) [ (- ninr(V, 2m+ 1)(2z)- am-1

m=0

+0( lz 1

2M1)]

Combining the above terms we obtain an asymptotic expression for

.1) (t)
3 '

k-3/4 sin (2t1/2
(1.3(t)--- A. 3t 4

The asymptotic representations for generalized hypergeo-

metric functions have been obtained by Fox [14] and Wright [27 ]

[28] . Defining the generalized hype rgeometric function by the

series

(>0

r(ai+npi)r(aa+nPa) r(a +nP ) n
z

r (p i+no- )r(p z+no- 2). r(pq+no-q) n!

we see that in Table 6, the asymptotic values of F(t) for large

are expressed as hypergeometric functions of the type 11-2(t)
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with Pi = 1 and 0-1 = 0-2 = I. We can specialize the parameters

in an asymptotic expansion for the generalized hypergeometric func-

tion to obtain an asymptotic expansion for
.T,4(t).

by Fox [ 14] we have
1

A (0)
A.2(0)1

1F2(t) - +
2TrV2 {{ (401/2 4t

-a+t+XKx.z

t = (a+.+).).

AN(0)

(4t)
+ o (t -N12)] exp (2t V2

)

A. (1)e -Tri
+ 1 + I

(401/2

A (1) -NTri
N e + o(t
(4t)N/21-N

t-a- X eiTr(a ++ K + o(t 2

X

X =0

where Ax(1) is determined from the expansion

1

4-21T r(i+t) A(C) l(t+ 1)
p1-11-{-01-(p2+.e+t) F(t+21+)+1-0)

X =0

e -1
)

A2(1)e2'
(4t)

1/2 Trexp(2t e +0Tri)}

-Tr < arg t < Tr .

Using a theorem

Denoting the left hand side of the above equation by H(t), then

is the residue of (-t) H(t)/ [Z at the pole

We have further denoted e a - 131 - P2 + V2



and as the largest positive integer such that

Re [ + 2a + 2X] <N, where N is any positive integer. The

leading terms in the expression are then

-V2
Tr

1F2(t)-- [ exp (Zit° + iTre ) + Az -1/2exp (2t
2

Hence we can determine the asymptotic behavior of .I.4(t) and

any of the special cases given in Table 6.
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