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GIBBS PHENOMENON AND LEBESGUE CONSTANTS
FOR THE QUASI-HAUSDORFF MEANS
OF DOUBLE SERIES

I. INTRODUCTION AND TERMINOLOGY AND RESULTS

Introduction

The topic of summability methods has been studied by many
although the name of G.H. Hardy and his classical work ''Divergent

"is best known. Almost all of the early work was done using

Series'
single sequences or series. In the past 30 years research has been
done extending some of these results to double sequences or double
series by Cheng [3] for the circular Riesz means and by Ustina [26]
for the Hausdorff means. In this paper we entend some of these
results for the Quasi-Hausdorff means. The results and methods of
attack closely follow those of Ishiguro [10-14] and Ramanujan [21-23],
who worked with Quasi-Hausdorff means for single sequences and
single series. The terminology is fairly standard although some new
definitions are needed.

We shall first develope the Quasi-Hausdorff transformation of
double sequences and double series, next find conditions to make it a
regular transformation, thirdly apply it to the partial sums of a

double Fourier series to check the Gibbs phenomenon, and conclude by

investigating the Lebesgue constants of the method. It is noted that



the class of weight functions used in the definition of the
Quasi-Hausdorff means contains the probability distribution functions
of two variables. Therefore the results contained in this research

could possibly be used in the area of probability.

Terminology and Results

Definition 1.1. Let §£ consist of all sets

R n={(i,j)|i=0,l,2,...,m;j=0,l,2,...,n}. We say the double

m
series Z a is Pringsheim convergent to A if given any
mn

m,n
positive number € >0 there exists a set Fe ¢ 2 such that if

Fe Q and F€CF then

z a —A! < €.
mn

(m,n)eF

Definition 1. 2. Let f(x,t) be defined on the cell

[al,az]x [bl’bZ]’ and let {Xi}’ {tj} be two sequences such that

If the double sum



‘m,n

~

- - » L. + . :t.
D et -t ) - S0 )+ EGe ot )

i i-
i,j=1
is uniformly bounded for all such sequences and if M is the least
upper bound, and if for some fixed t, respectively fixed x, f(x,t)
is of bounded variation in the variable x, respectively t,
(x,t) ¢ [a;,a,]x [b),b,], then f£(x,t) is said to be of bounded

, bz] in the Hardy-Krause sense,

variation on the cell [a,, az] X [b

1 1

and M is the total variation [9].

Hobson also notes that if f(x,t) is of bounded variation in the

Hardy-Krause sense then

f(x,t) = P(x,t) - N(x,t) - f(al’bl) )

where P(x,t), N(x,t) are the positive and negative variation func-
tions of f(x,t) on [al,az] X [bl’bZ]' If we fix the value of one of

the variables, say t = B, then

f(x, B) = P(x, B) - N(x, B) - f(al’bl)

is by definition a function of bounded variation in a single variable.
It follows from concepts in one variable that f(x, B), P(x,B),
N(x, B) have identical sets of points of discontinuity on the line t = B.

In particular if f(x, B) satisfies



1im+ f(x,B) = f(al,B) for all b, < B <_b2

. 1
xa,
then
1im+ P(x, B) = P(al, B)
X" ay
and
3 = < < .
11m+ N(x, B) N(al,B) for all b1 <B __b2
X" a
1
Definition 1. 3. A function f(x,y) 1is said to be normalized if
we have

fa.b) = (1/4){fa", b )+fat b )+e(a b )+ b))

where (a,b) is inthe domain of £(x,y); and if one of the coordi-

nates is fixed, say vy, then
+ -
fla,y) = (1/2){f(a , y)tf(a ,y)} .

Definition 1.4. Let {e n} be a sequence of positive numbers

such that

and let {pk} be sequence of natural numbers such that

lim P\ = 0,

Jk ™



Let {Sm n(x,y)} be a sequence of real valued functions defined for

?

0 < ’x—xol + iy-yO' < en .

Then

: = 1 s ? > ?
lim sup Smn(x,y) lim [sup{Sm,n(X Y)|m n > P
m,n—" © k —

—

(X: Y) (XO: YO)
0< |X_X0‘ + |Y_Y0| < ek}] ’

with lim inf Sm n(x,y) defined in a similar manner.

?

Definition 1. 5. If the sequence {Sm n(x,y) converges

?

pointwise to a limit function f(x,y) in the region

0 < lx-xoi + Iy-y0| <e¢, then {sm n(x,y)} is said to exhibit the

?

Gibbs' phenomenon at (x ) if one or both of the following

0’7o

inequalities hold.

1 B > i f ’
lim sup Sm,n(x y) lim sup (x,y)

m,n— ® (x,y)"(xo,yo)
(x, Y) - (XO: YO)

liminf S_ (x,y) < liminf  f(xy).

m,n—x (x, Y)*(XO:YO)
(x, Y) - (XO: YO)

Ustina [26] was able to show the following:

Lemma 1. 6. Let f(x,y) be a normalized function, periodic in

each variable, and of bounded variation in the Hardy-Krause sense inthe



period rectangle. The Gibbs' phenomenon for f(x,y) atthe point

(x,y) = (0,0) 1is the same as the Gibbs' phenomenon for the function

X(E 3, y) = (c/m)o(x)oly) + g (0)4(x) + g,(0)4(y)

where
-

0 t=20

$lt) =4 (w-t)/2 0 <t<2n

b(t+2kr) k= #1,%2,. ..
+ 4+ + - -+ - -
C:f(O ,O ) -f(O ,O ) -f(O ;O )+f(0 :O );

= (1 /m){E07, y)-£07, y)} - (c/2m) sgny

i
_
=
|

(1/m){£(x, 07)-£(x, 07)} - (c/27) sgn x -

aQ
W]
X
1

Definition 1. 7. The forward difference operator 4 is given

by
Ahn ) hn ) hn+l ?
and
Ap+lhn = A(Aphn)
We note that A distributes across addition and thus we can
write
A h = A = A (a h)=a A h ),
P al p—lhn) k( p-k n p—k( k n)

thus showing that the operator & commutes with B for integers
r



The double forward difference operator A is given by

- - + .
rs rs hr+1,s hr,s+1 hr+l,s+l

If we let Al 0 represent the forward difference operator which

obeys
Al,Ohrs hrs —hr+l,s

then

Ahrs B Al, O(hrs—hr,s+l ’

If we also let AO 1 be given by

AO, lhrs rs hr,s+l

then we see

ah ( ) -

rs  21,0%0, 1Prs

Hence we shall denote the double forward difference operator

A by

1,1 %1,0%0,1 %0,1%1,0°

A=A

In light of this we make the following definition.

Definition 1.8. The double forward difference operator Ai i

is given by



& Mes T84 0%0,5rs T 20,55, 0%rs

whe re Ai 0’ respectively AO ., is the (single) forward differ-
2 ,J

ence operator acting on the first, respectively second, variable sub-

script.
1 2
We note that other authors have used the symbols A Aj to
write
1 2
A, .=A.DL, .
i,j i j

Using the definition of the (single) forward difference operator

we see the following identities are valid:

Ap+l,0— (

(1) Al,OAp,O):Ap,O(él,O)

G a5 41 720,1%0,¢' ~20,4%0, 1

1ii) A A - = =
(111) 0,1, s Ap+r,q+s i,jAp+r_i’ qts-j Ar, sAp:q
p
(iv)a h = Z (-1)°(P)n
m stm
s=0
(v)a h = ( -



s’ 'r’ stm, rin ’

s, r=0
Here, of course, (Is)) is the binomial coefficient, which obeys the
identity
+1
=B P
S S s -

From the identities

+ h
8, Pmn = 24, iPm+l,n " i+l mn
a. h + A
i,j mn i, j m,n+l i, jt1 'mn

Hildebrandt and Schoenberg [8] have shown that

p P
h z 2(p'm>(p‘“)A h .
mn r-m’  s-n p-r,p-S IS

r=m s-=n

Hence
p
_ PP
hO,O z (r)(s)Ap—r,p—shrs'
r, s=0

Adams [1] improved the result to show
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h .
0,0 r s p-r,Qq-s rs

The concept of the mean value of an almost periodic function is

contained in the following lemma [5].

Lemma 1.9. If f(x) is an almost periodic function, then

there exists

lim % S f(x)dx =/’L{f(x)},

- o0
T [a, a+T]

uniformly with respect to a. )’({f(x)} is independent of a and is

called the mean value of the almost periodic function f(x).

Ishiguro used the mean value of an almost periodic function when
he investigated the Lebesgue constants corresponding to the one
dimensional Quasi-Hausdorff sequence to sequence transformation

which is defined in the following manner:

Definition 1. 10. The Quasi-Hausdorff summability matrix

transforms the sequence {sk} into the sequence {hn} by means of

the equation
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where g(r) 1is of bounded variation on [0,1]. This transformation

is regular if and only if

g dg(r) = g(1) - g(0) =1 (Reference [21]).
[0, 1]

As the above is a Lebesgue-Stieltjes type integral we have need

of two theorems stated in a Lebesgue-Stieltjes setting.

Dominated Convergence Theorem. If {fn(x)} is a sequence of
functions defined and g-measurable on a set E, and thereis a
function h(x) defined and g-summable on E such that
Ifn(x)| < h(x), and the functions fn(x) converge in measure or
almost everywhere on E to a finite-valued limit function f(x),

| then f(x) is g-summable, and

and

n

|
| lim gfn(x)dg(x) = gf(x)dg(x),
n—
E E
lim S |f (x)—f(x)ld‘r(x) =0,
— 0 n
E

where T(x) is the total variation function corresponding to g(x) [19].
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Bounded Convergence Theorem. If

(a)

(c)

the functions fn(x) are defined, finite and g-summable on
a set E* of finite g-measure;

the functions fn(x) converge in measure (or almost
uniformly, or almost everywhere) on E* toa limit func-
tion f(x);

for every positive ¢ thereisa & >0 such that

S‘ |fn(x)‘d'r(x) < ¢ forall n and for every subset E

E

of E* with m-rE < §;

either the integrals S‘ lfn(x)id'r(x) are bounded, or f(x)

Ex*
is finite almost everywhere;

then f(x) is g-summable over E%*, and

and

lim S‘ Ifn(x)—f(x)ld'r(x) =0 (Reference [19]).
n—’OO
E *

Since the Quasi-Hausdorff means of a single sequence is defined

by using two dimensional matrices it is to be expected that the means

of a double sequence will be defined by using four dimensional

matrices.



~Definition 1. 11. The matrix (D= (p

termed a transposed difference matrix.

Definition 1. 12. Let {Hmn} be a given (double) sequence and

1et/v( = (Hmnkl) be a "diagonal" matrix, the only nonzero elements

being ¢ = . The transformation matrix

0= EHE

is called a Quasi-Hausdorff matrix corresponding to the sequence

{p

mn

We are able to show that the elements of any Quasi-Hausdorff
matrix B corresponding to the sequence {Hmn} must have the
form

k4L

b = .
mnk{ (rn n Ak—m, y —nHmn

By specializing the given sequence {Hm.n} to be a sequence of
double moment constants corresponding to a weight function g(u,v)
we are able to find conditions for regularity of the resulting Quasi-
Hausdorff transformation. Following Adams [2], Hildebrandt and

Schoenberg [8] we have

Definition 1. 13. The sequence {Hm.n}’ where
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M = S'S umvndg(u,V), m,n = Oals 2,...
mn
[0, 11x[0, 1]

is said to be a sequence of double moment constants corresponding to

the function g(u,v). Here g(u,v) is of bounded variation in the

sense of Hardy-Krause. If, in addition,

+ + .
g(u,0) = g(u,0 ) = g(0,v) =g(0 ,v) =0, 0<uv<l

g(ls 1) - g(ls 0) - g(O: 1) + g(O: 0) = 1,

then is said to be a regular moment constant.

This places us in a position to prove

Theorem 2. 25. The Quasi-Hausdorff matrix H*(pmn), which

corresponds to the sequence {0 }, isan aO matrix (series to
mn
series regular) for convergent double series with bounded partial

sums if {p } is a sequence of regular moment constants.
mn

Theorem 2.26. A Quasi-Hausdorff matrix A is a T-matrix

(sequence to sequence regular) if and only if

(a) w is a moment constant
mn
(b) g‘g‘ delwv) .y,
uv
(0, 11x(0, 1]

where g(u,v) is a function which generates the sequence {pmn}.
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This theorem leads us to investigate the connection between

Quasi-Hausdorff T-matrices and Quasi-Hausdorff a matrices. We

find the following definition to logically follow from previous wo rk:

Definition 1. 14. The sequence to seguence Quasi-Hausdorff

matrix. corresponding to the real double moment sequence {Hmn}’

is given by means of the equation

o0
+ -m n+l,. [A-
e = > () (1 o™ ™ v Pagavs
mn m’''n k2
k,! =m,n [0, 1]x[0, 1]
o0
) z fmnklskl ’
k,{=m,n

where {skl} is the sequence being transformed into {h;ln} The

matrix

) s

which will be denoted by

H*(H ) ,

m+l,ntl

is the sequence to sequence Quasi-Hausdorff matrix.

Relations between H*(p ), the series to series matrix, and

H"\(Hm+l, n+l)’ the sequence to sequence matrix, lead to conditions

for regularity of H*(p ).

m+l,n+tl
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We apply this transform to the sequence of partial sums of a
double Fourier series of a function which is of bounded variation in
the sense of Hardy-Krause, and study the convergence properties of
the transformed sequence.

If x=A 1is a jump discontinuity of a function then the
sequence of graphs corresponding to the partial sums of the Fourier
series of the function seem to ''condense'' on a line which is orthogonal
to the x axis and passing through this point of discontinuity. If the
length of this interval of ""condensation'' is larger than the jump of the
function then the Gibbs' phenomenon is said to be present. Fejer [30]
was able to show that if one considers the Cesaro (C,1) sums of the
Fourier series then the Gibbs' phenomenon was not present at the
point of discontinuity and in fact the Fourier series converges uni-
formly on every compact interval on which the function is continuous.
We treat the corresponding problem for the Quasi-Hausdorff method.

We find

Proposition 1.15. The regular Quasi-Hausdorff means of the

partial sums of the Fourier series of f(x,y), where f(x,y) 1is of
bounded variation in the sense of Hardy-Krause, do not exhibit the

Gibbs' phenomenon at any point of continuity of f(x,y).

Proposition 3.9. For the two dimensional regular Quasi-

Hausdorff means of the function ¢(x,y) we have
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lim hr';m(tb; L Yn)
m,n—®

_ S‘S { g sin;z/u) dy }{ S' sin;y/v) dy} dg(u, v)

[0, 1Ix[0, 1] [0, 7] [0, 7]

provided g(u,v) is continuous at the axes,

A
mx — T <, ny — 1T<®
m - n -
2 2
mx — 0, ny —0 as m,n " ®.
m

Here h* (¢;x ,y ) is the transformed sequence of partial sums
mn m’ ‘n

of ¢(x,y)-

We conclude this research into the Quasi-Hausdorff means by
finding a representation for the Lebesgue constants for this method.

It is well known that the growth rate of the Lebesgue constants
for Fourier series plays a key role in the convergence properties of
such series. For instance, the fact that these constants diverge
implies, by the Uniform Boundedness Theorem, that there exists a
continuous function whose Fourier series diverges at some point.
Likewise the asymptotic behavior of the Lebesgue constants for the
Quasi-Hausdorff method plays a basic role in the convergence
properties of the Quasi-Hausdorff means.

The next theorem describes the growth rate of the Lebesgue

constants for the Quasi-Hausdorff method.



the regular Quasi-Hausdorff matrix as sociated with the Lebesgue
constant L*M,N;g) is a function which is continuous and zero on
some cross neighborhood {{x,y)]0 <x <8 or 0<y< 8} for some

5, then

L*M,N;g) =C*g)lnMIn N +o(ln MInN), MN™x®,

18
Theorem 4.23. If the weight function g(u,v) which generated
‘ where

‘ C*(g) = (4 /nz)l SS dglu, v)|+ (2/n3){M{f1}+M{f2}+(v /2)/"k{f3} 1,
{1px{1}

where
fl(w) = S‘S‘ sin(w/v) dg(u, v)
{1}x[s, 1)
fz(z) = S‘g sin(z /u) dg(u, v)
[6, 1)x{1}
fZ(Z’W) = S‘S‘ sin(z/u)‘.sin(w/v)dg(u,v)

[6, 1)x[8, 1)
and it is assumed that these mean values exist.

Upon specializing the function g(u,v) to be a countable linear
combination of two dimensional interval functions we derive the two

dimensional analogue of the one dimensional theorem proved by Ishiguro.
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II. QUASI-HAUSDORFF MEANS AND REGULARITY
OF THE TRANSFORMATION
In this chapter we give a development of the Quasi-Hausdorff
means for the double sequences. Proofs are provided only for those
theorems for which we have no references. In general, the theory is
a logical extension of the corresponding theory for Quasi-Hausdorff

means of a simple sequence.

Definition 2. 1. Let A = (a ) be a four dimensional

mnk/
matrix, and let S = (smn) be a two dimensional matrix whose
elements are the elernénts of the double sequence {srnn} The two
dimensional ﬁlatrix
T = AS (A-2)

whose elements are the elements of the double sequence {tmn}’

where

©0

= - m,n=0,1,2,... -3
tmn z amnklskl ; myn=0 2 (A-3)
k,£2=0

is meaningful for every m, n is a transformation of the matrix S.

The matrix A is said to provide a sequence to sequence transforma-
tion or a series to series transformation or a series to sequence

transformation according as it converts
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{smn} to {tkl} orz smn to Z tkl or Zsmn to {tkl}'
k, £

m, n m,n

Definition 2.2. The sequence {smn} is said to be summable

by the matrix A to the sum t if tmn exists for every m,n

and if

1im t =t <®
mn
m,n— ®

where convergence is in the sense of Pringsheim.

Definition 2. 3. The transformation (A-2) is said to be

(i) convergence preserving if every convergent sequence

b

{s } is transformed into a convergent sequence {t
mn mn

(ii) regular if in addition

lim tkl lim s n (A-6)
k, £ —© m,n "% m

(iii) totally regular if (A-6) holds even when s diverges to
positive or negative infinity.
Similar terminology is used for series to sequence and series to

series transformations.

Definition 2. 4. The matrix A = (a } is said to be a
mnk/

(i) K-matrix if it is sequence to sequence convergence pre-

serving,
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(ii) T-matrix if it is sequence to sequence regular,
(iii) B-matrix if it is series to sequence convergence preserving,
(iv) y-matrix if it is series to sequence regular,
(v) ©&-matrix if it is series to series convergence preserving,

(vi) a-matrix if it is series to series regular.

Lemma 2.5. The matrix A = (a ) is a K-matrix, for

mnk/{

bounded convergent sequences {x } into bounded convergent

sequences {ypq}, if and only if

(1) lim 3k = Gkﬂ (each k and £)
m,n —~ ®
[o0]

.. 1 -
(11) im Z amnkﬂ B

m,n —

k,£2=0
@]
(iii) riuy; | 3 | is finite
Tk, 2=0
@]
i 1i - B =0, f h £
(iv) im Z ‘amnkﬂ 'kﬂ‘ (for eac )
Mmoo
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where

the series z ‘Bkﬂ(xkﬂ_x) being always absolutely convergent. The

k, 4
matrix is a T-matrix, if, in addition, ﬁkﬂ =0 and B=1 [24].
Lemma 2. 6. The matrix A = (a ) transforms bounded
. mnk£

sequences {xmn} into bounded sequences {ykl} if and only if

¢ ]
lrilup z |amnkﬂ‘ if finite [24].
'k, 2=0

ILemma 2.7. The matrix A = (a ) is a P-matrix for
- mnk/{

convergent double series with bounded partial sums if and only if

[>¢]
(i) Z IA“amnijl <){mn (m,n=0,1,2,...)
i,j=0

(i) lim a,.a .. =0, (forall i m,n=0,1,2,...)
j— @ 0 mnij

(iii) lim A 0, (forall j; m,n=0,1,2,...).

e 01%mnij

The matrix A 1is a y-matrix if and only if, in addition,

[>0]

(iv) lim Z|A a__..| =0, (forall i)
11" mnij

- 00
m,n J:O
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o0
(v) lim ZIA a_ ..|=0, (forall j)
11 " mnij
T

(vi) lim a .= 1, (i,j=0,1,2,...)
mnij
m,n=—"x

0
(vii) Z lAl lamnijl <)/{ , (independent of m,n, but only

i J=0 for m >M, n>N) [20].

Proposition 2.8. The matrix A = (a ) is an a-matrix if
mnk/

and only if the matrix G = (g ) is a y-matrix, where the ele-

mnlf

ments'of G are defined by

m,n
gmnkl - Z ars]td
r,s=0
Proof. Let
0
= 4.1
an Z amnkl ukl ( )
k,£=0
exist for m,n=20,1,2,...
and
pP:-q
g = z v (4 2)
jole] mn
m,n=0

But




=~ 8
>
:

z
=

24

k,£=0 m,n=0
Let
P.q
= 4.3
Epqks Z *mnk! (4.3)
m, n=0
Then
0
= . 4.4
qu Z gquﬂukﬂ ( )
k,£=0

Thus (4. 1) implies the existence of (4. 4).

Conversely if (4. 4) exists for each p,q then

o0
= - - +
Z {gmnu €m,n-1,kf Sm-1,nks gm-l,n-l,u}uu

k,£2=0

[>0]

= Z 2 ea%en by using (4. 3)

Hence the existence of (4.4) implies the existence of (4. 1) and the

validity of (4.2), (4. 3).
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Now let A be a regular series to series transformation of

u into Zv , and let Zv = s. Using (4. 2) we then see
k4 mn mn

g s as p,q ™ ©, so that the matrix G whose elements are
Pq

given by (4. 3) defines a regular series to sequence transformation
given by (4.4). On the other hand if G defines a regular series to

sequence transformation then (4.4) yields

and so by (4.2)

m, n=0

hence A defines a regular series to series transformation.

Definition 2. 9.

(i) An a-matrix with lim a =0 for all m,n 1is
mnk/{
k,f
said to be an ao—matrix.

(ii) A y-matrix with lim g =0 forall m,n is

said to be a yo-ma’crix.

Corollary 2.8. The matrix A is an aO-matrix if and only if

the matrix G 1is a yo—ma’crix.

Proof. If lim a = 0 then (4.3) implies
- I, 0 — 00 mnk/
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lim g = 0. On the other hand if litn g = 0 then
K, L — mnk{ K, 4 — mnk 4
since
= a (4. 5)

- - +
gmnkﬂ gm,n— 1, k¢’ gm—l,nkﬂ grn—l,n-l,kﬂ mnk/{

we see that lim a Kl 0
K, 2 — o0 mn

Definition 2. 10. The matrix Q = (p ), - whose elements
mnk/{

are defined by

)( ): kZm,fZ_n

0, otherwise

we shall term a transposed difference matrix.

Proposition 2. 11. The transposed difference matrix is its own

inverse.
Proof. Let
o0
- . s m:=0P.
mnrs Z pmnkﬂ pkﬂ rs thus
k,£2=0

We shall apply the matrix H to the double sequence {urs} and

show that the transformed sequence is the same. We find
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0 00 0
Z mnrs rs - Z Z pmnkﬂpkﬂrsurs
r,s=0 r,s=0 k,£=0
o0 o0
+ k+e k  { s
= Z a (-l)mnz DS CHOE)E)
rs m' n k' #
r,s=0 k,f=m,n
0 r,s
+ k+f r-m,,s-n
= Z a_ (-DTEND) Z CHITCETYETD
rs n m ' k-m’ £-n
r,s=0 k,2=m,n
= u
rs
since
+
r,s (_l)m n, r=m, s=n
k+f r-m,,s-n
(-1) ( ) ) =
k-m” £ -n .
. 0, otherwise
k,f=m,n

Definition 2. 12. Let {p n} be a given sequence and let
m
/U = (p ) be a ''diagonal matrix'' whose only nonzero elements
mnk/

are W = . The transformation matrix
mnmn mn B

e - QO

is called a Quasi-Hausdorff matrix corresponding to the sequence

{is

mn

The sequence {smn} is said to be summable to s in the

}, if the

Quasi-Hausdorff sense corresponding to the sequence {Hmn




seque nce {tmn}s

approaches s as

The matrix
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where

H*

T = H*S,

m,n become infinite.

is well defined since if we let:

(iy H* = Q[),( Q] then the elements of [}.{ e] are given by

¥

r,

0

kﬂrs rsmn HkJZkJZ kaZmn

because }.,( is a 'diagonal'' matrix. Thus the elements of

p U.,( Q] are given by

)

k,

0

p P

P skt Mok tPromn ~ Z PrsksMkeksPremn

k,f=m,n

(ii) H* = [Q)J(]Q then similarly

(0]

Z prsmn“mnklz - prskJZ
m,n=

0

M

?

kL kt

and so [@M]Q has elements given by

%

k,

=0

r,Ss

rskJZ kJZkJZkaZmn - Z prskJZHkJZklZkaZmn'
k,£=m,n
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~We note since the matrix }/( defined above has its ''diagonal
elements'' described by p that if we define the transpose of
mnmn

the four dimensional matrix A = (a ) by
mnk{

t
Alc = (amnkﬂ) = (akﬂmn)’ then (H*)t, where H¥* 1is as previously
defined, is a Hausdorff two dimensional transformation matrix. We
also note that since the transposed difference matrix is its own
inverse it is trivial to show that Quasi-Hausdorff matrices commute.

The following is an example of a Quasi-Hausdorff matrix:

ks ) where

1/(k+1)(£+1), k>m, £ >n
0, otherwise.

To show that this is a Quasi-Hausdorff matrix consider the sequence

L= = 1/(m+1)(n+1).

Let C be the Quasi-Hausdorff matrix corresponding to this

sequence. Then its elements are of the form

[>¢]

“mnk - Z pInnrsprsprskﬂ ’
r,s=0

We shall show that C = A.
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We apply the matrix C to the double sequence {urs}. We

find

00 00 o0

Z Cmnkl'ukﬂ B z Z pmnrsprsprskﬂukﬂ
k,£2=0 k,£=0 r,s=0

) ©

_ m+tn rts, r s k. 1

- Z Z COPTPEDTE OO )y,
2

0 k, £
- Z (-ny™hey Z (-prrekemydomyy

kf{im n r-m s-n rs
k,£2=0 r,.sm,n
(A-13)

k, £
- Z 0™ () Z (Tt dony 1

r-m’ s-n r+l s+l

k,ﬂ:m,n r,s-m.n
0 k, £
k. 4 +s-m- k-m,,f-n
z () Z(-l)r TETHYETD
m n kit r-m S-n
k,f=m,n r,s=m,n

X g u’du g vodv
0,11  [o0,1]

0
- z K gum(l—u)k_mdu gvn(l-vf_ndv
m n ki
k,ﬂ =m,n [O, 1] [O, 1]
0
_ k. 2
= z a. ( )()B{mtl,k-m+1)B(n+l,£-ntl) =
kf'm n
k,f=m,n

where B(, ) is the Beta function



Hence
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o0
n 2 S
Yieg k+1 £+1

k,f=m,n
upon using B(p.q) = L(p)I{q)
I'(ptq)
c = , and we now see that A is a Quasi-

mnk/{ amnkﬂ

Hausdorff matrix.

arbitr

The above example also helps to generate the form of an

ary element of a Quasi-Hausdorff matrix.

Theorem 2. 13. A matrix B = (b ) is a Quasi-Hausdorff

mnk/{

matrix corresponding to the sequence {Hmn} if and only if its ele-

ments

have the form

k-m,£-n
k. £ rts k-m,, £-n
= -1
mnk{ (m)(n) Z (-1 ( r) s rtm, s+n
r,s=0
k1
- (m)(n)Ak-m,ﬂ—n mn

Proof. Let B = @)J Q be a Quasi-Hausdorff matrix.

Applying this to a double sequence matrix S we have T = BS

where

o0
tmn: z bmnkﬂskﬂ'
k,£=0
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Using (A-13) of the example with 514 replacing u ., we find

k, £
k, £ p-m+q-n/k-m, £-n
= -1 s
t Z (m)(n) Z (-1) (p_m)(q_n)Mpq 1t
k,£=0 p.q=m,n
L k-m,{-n
k. ¢ rts k-m,, £-n
- Z (In)(n) Z (-1) ( r | s ) r+m, s+n skﬂ
k,£=m,n r,s=0
Therefore
k-m,f-n
_ k. 1 rts k-m, £-n
mnk{ (In)(n) Z (-1) ( r ) s ) rtm, s+n
r,s=0
k1
B (m)(n)Ak-m,ﬂ-n mn

by definition of the difference operator.

Then upon reversing the steps we have the remaining part of

the statement.

Definition 2. 14. We call

e = gg umvndg(u,v), m,n=0,1,2,...

o [0, 1}x[0, 1]

a sequence of double moment constants corresponding to the function

g(u,v), if glu,v) is of bounded variation in the sense of Hardy-

Krause in [0, 1]x [0,1]. If in addition.
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g(u,O) = g(u, O+) = g(0+,v) = g(0,v) =0, for (u,v) in [0, 1]x [0, 1]

and {g(1,1)-g(l, 0)-g(0, 1)4g(0,0)} = 1, then b is said to be

regular [2]

For notational purposes we will write H*(pmn) to represent

}-

the Quasi-Hausdorff matrix which is generated by a sequence {Hmn

We now find conditions for H*(pmn) to be a regular matrix

(Theorem 2.25).
We shall show that when Mo is a regular moment constant

‘ then H*(p ) is a regular series to series matrix. We use Propo-

sition 2.8 and Lemma 2. 7.

Proposition 2.15. If
m,n
= h ,
gm;nij Z rsij
r,s=0
where h .. is an element of H?%*, then
rsij
- (D)
llgmnij m n i—m,j-npm+1,n+1 )
Proof. By definition
|
=D, e -
rsij r's i-r,j-s rs

Thus




| - (] C(hydt
Allhrsij (r)(s)Ai—r,j-ers r- s i—r,j+1-—s“rs
itL i+1, j+1
- +
( r )(S)Ai'l-l-r,j-sprs r s A'1+l-r,j+l-sprs
= (1) +(2) +(3) +(4) .
. . qtl q q .
Making use of the relation ( ” ) = (Z) + (z-l) we rewrite
_ 1y 1]
2) = + A
(2) (r)(s)Ai-r,j'I-l-ers (r)(s—l)Ai—r,j'i'l-ers (8)
and
itl, itl,
4) = + )
(4) = r s i+l-r,j+l-s“rs r )(s-l Ai+l-r,j+l—sprs (B)

We now use the relation A 1, t+1 = A l,t(AO, 1) on the first

:erms of (A) and (B) to arrive at

(Al) - (i)(i)Ai-r,j-ers ) (;)(sj)Ai-r,j-er,si'l
¥ (i)(sj-l A'1—r,j‘|'l-ers
and
(B)) = (izl)(i)AiH—r,j—ers - ‘iil ; i+1-r,j-s"r, s+l
+(i:1Ns{1 Ai+1-r,j+1-s“rs'

We note that the first terms of (Al) and (Bl) are precisely

terms (1) and (3).

34
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Combining these results, making use of the relations between

binomial numbers we arrive at

PR A 1 j
Allhrsij r)(s)Ai—r,j-er+l,s+l (r)(s-l)Ai—r,j+l~er+l,s

C(E fE
(r—l)(s)Ai+l-r,j-er,s+l (r—l)(s—l)

A i+l-r,j+l—sprs ’

We sumon r,s:

m:n n m
- j i
Z Allhrsij z (s) z { (r)Ai—r,j—er'i'l,S"'l
r,s=0 s=0 r=0
i
B (r-l)Ai+l-r,j-er,s+l
n m
j i
- 2 (s-l) 2 {(r)Ai—r,j+l—er+l,s
s=0 r=0
i
) (r—l)Ai+1-r,j+l-ers}
n
- (! j :
(m) Z { (s) i-m,j—spm+l,s+l
s=0
- (e bl
s-1""i-m,jtl-s mtl,s
Ly
(m)(n)Ai-m,j—nHm'i'l,n'i'l ’
Proposition 2.16. If g is as defined in Proposition 2. 15

mnk/

then
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Proof. By definition

m,n
. _ . i,
Hm g nij lim (r)(s)Ai-r i-s"rs
m,n=—"® J m,n—"® ')
r, s=0
i,j
= ZU)(J)A. B
r S l'r,J'S rs
r,s=0
~ Moo

by definition of the difference operator and binomial numbers.

Proposition 2.17. If B on is a regular moment constant then

. i,] _ .
lim (_)(7)a, .M =0, fixed q
j— oo m''q i-m,j-q mtl,q

. i, j _ .

lim ()(7)a 0, fixed p.

i—w P B i-p,j-npp,nﬂ B

Proof. Considering the first relationship we have

ﬁ () jl ™0 o A0 v) gy

i,
A =
m’' q i-m,j—quH,q
[0,1x[o0, 1]

Now
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- - j - .
Owdi-vP < Z(J)vqu-vﬂ'q =1,
q - q

q=0

so that for a & chosen such that 0 < 6 <1 we can write

iy
0= (m)(q)iAi—m,j-qpnﬁl,q‘
< SS uldglu,v)| + S‘g u(gl)(l—ii)j'qldg(u,v)l
[0, 1]x[o0, 8] [0, 1]x[5, 1]

< S‘S {dP(u, v)+dN(u, v)}
[0, 1]x[0, 8]

+ §§ (cjl)(l-ﬁ)j "YdP(u, v)+dN(u, v)}
[0, 1X[6, 1]

where P(u,v) and N(u,v) are
the positive and negative variations

of the function g(u,v).

< {P(1, 8)-P(1, 0)+P(0, 0)-P(0, §)*+N(1, 6)-N(1, 0)
+N(0, 0)-N(0, 8)} + (;)(l-&)J-anr g .
Because ( )(1—6)3—q — 0 as j ™ % and by the continuity of

j
q
P(1, 6), P(0, §),N(1, 6),N(0, 8) at & =0 it follows that
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= 0.
g m Ai-m,j-qumﬂ,q‘

A symmetric argument yields the second relationship in the theorem.

Continuing we have a theorem which will yield the result that the
only Quasi-Hausdorff matrices which are regular come from moment

sequences.

Theorem 2. 18. In order that {p s} be a sequence of double
r

moment constants it is necessary and sufficient that

0
r,,s
<
! sup z (rn)(n)‘Ar-m,s-nHm+1,n+1‘ (A)
w m,n _
r,s=m,n
‘ 0
r
Sup 2 (rn)lAr-m,OHm+1,0‘ < (Al)
m p—
r=m
0
s
< ©
Slrtp z(n)lAO,s-nHO,rﬁ'lI (AZ)
s=n

Proof. Hildebrant and Schoenberg [8] have shown that {prs}

is a sequence of double moment constants if and only if
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Ramanujan [21] has shown that {pr} is a sequence of moment

constants if and only if

00
sup z (o _p_ | <o (a)
m r-m mtl
=m

m
r

while Kuttner [16]has shown this is also true if and only if

sup (E)lA rHr‘ < 00, (b)

p_

’T, M’U

0

We first show that (A), (Al)’ (AZ) imply (B). By a series of

propositions we will show that (A) implies

P
sup z (ri)(i)lAp-m,p-nHm,n < o . (B,)
P m,n=1

Proposition 2.19. If 0 <k, <p-1 and M >2p-k-1,

N >2p-£-1 then

m-1 q-1
( )b p
p-£-1""m,q p»P

m-1 N-ptl
+
( s-£+1 Am,N-sHp, s+1



Proof.

For N

(1a)

(1b)

(lc)

(1d)

= 2p-4-1,

1

i
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p-2 N-ptl
M p+l
+
r k+l Z (p ﬂ-l M-r,t“r+l,p
r=k-1 t=p-4
p-2 p-2
M-ptl N-ptl
+ .
(r-k+l) (v—£+l)AM—r,N-vHr+l,v+1
r=k-1 v=f -1

By induction on

(la) +

M = 2p-k-

M and N. Call the right hand side

(1b) + (1c) + (1d).

1 we see that

,p-4"pp
p-4

)(s-1+1)Ap_k, 2p-4 -l-sHp, st1l
p-k

)(r-k+l)A2p-k— l-r, p-lHr'i'l, P

(r k+1Mv 1+1)2p k-1-r,2p-2-1-v r+1,v+1"

Summing we find the above yields
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z z (1‘ k+1 V f‘l‘l) 2p-k—1-r,2p—£—l-vHr+1,v+1
r=k-1 v=£-1

Aok, p-2Tke

Now let us assume the result is true for N and show true for
N+1; by symmetry of M and N in the statement of the proposi-

tion this will also establish the result for M. Consider (1b):
m-1 N-p+l
A
z (p-k—l)(v-£+1) m,N-va,v+1
m-1 N-pt+l
= z z ( (P A p
p-k-1"v-£+1'"m,N-v+1l p, vtl

m-1  N-ptl
+
z z (pfk-l)(v—ll‘l'l)Am:N'VHP’V'i'Z

= (1bl) + (1b2) say.

In (1bl) we let T = v, while in (1b2) T = vtl. With these substi-

tutions and some rearranging of terms we find
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M-ptl p-2
m-1 N-p+l  N-ptl
= +
(1) Z E (k1% m, N-T+1Mp, T+ (g4t Cp 1)

m=p-k T={

M-p+l

m-1 N-ptl
¥ Z (p-k~l){( 0 Pm,N-2+1+1%p, 2-1+1
m=p-k
N-p+tl
g )Am,N_p+1+1“p,p+1-1}

M-ptl p-

E z (N p+2)

(k- 1 A, N-T+1"p, T+H1'T -2 +1

m=p-k T=4

M-ptl

m-1 N-ptl
+ + A )
Z (p-k—l){Am,N—ﬂ'i-ZHp,ﬂ (p-ﬂ-l) m,Nr-Ap+2Hp,p}
m=p-k

We call this last result (1B).

Now proceeding with (1d) we find in a similar manner

p-2 p-2
(1d) = Z Z (I\f._lf:ll)(l;zfﬁ)AM-r,N-T+1“r+1,T+1
r=k-1 T=4{ i
p-2
¥ (1\;1:5:11) {AM-r,N—ﬂ 21’ E—-ﬂpj-ll)AM-r,N-p+ZHr+1,J'
r=k -1

We call this result (1D).

Shifting to (la) we find, upon adding a term and then subtracting

it back out,



M-p+l (N+1)-p+l
m-1 q-1
(1a) = Z Z ( ) )a__ p
p-k-1"p-£-1"m,q p,p
m=p-k q=p-4
M-p+l

z (-1 )(N+l-p+l-l)A
il p-k-1"" pog-1 ®m,N-pt2¥p,p-
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We note that the second term above is the negative of the last term in

(1B).

Finally (lc) yields in an analogous fashion

p-2 (N+1)-p+l
M-p+l  t-1
1 =
(1c) (r-k+1)(p—ﬂ-l)AM-r,tHr‘H,p

r=k-1 t=p-{

M-p+1 N+1-p+l-1

B (r-k+l p-f—l

r=k-1

)A

Again the second term is the negative of the last term in (1D).

Hence in recombining the terms (la, B, c, D) we find

M-ptl (N+1)-ptl

m-1 q-1
A =
p-k,p-fpk,ﬂ z (p—k-l)(p ﬂ—l) m, qu,p
m=p-k q=p-4

M-p+l p-2

M-r, N-p+2"r+1,p

(N-H) ptl
+
}: }: (ookc- 1 T-g+1 2m,(N41)-T%, T4

m=p-k T=f-1
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p-2 (N+1)-p+l

M-p+l,, s-1

+ A
Z G o 18 Mer, %41, p

r=k-1 s=p-{
p-2 p-2

M-p+1_ (N+1)-p+1
+ .

Coer1 0 rogr1 PMar,NtTh el TH

The result obtained is precisely the statement in the lemma with N

replaced by (N+1). Hence the lemma is true for all M,N.

Proposition 2.20. If {Hkﬂ} is a sequence of constants then

(2.0}
m
< ©
Sl:lp Z (n)‘Am-n,an'i'l,t
: =n
if and only if
R
R .
sup Z (m)‘AR—m, me:t < oo, flxed Z,t )
R
m=0
Similar results hold for |A l and lA

z,m—npt,n+l z,R—mHt,m

Proof. The proof is a straight forward modification of a proof
by Kuttner [16] for a sequence of constants {Hk} and will not be

given. In his proof Kuttner was able to establish the result for p > 1.



45

p o0
P rtp-1
Z(k)l bk, 0k, pl S Z(pl)l 0" op| (24)
k=1 r=1
and
p o0
p stp-1
Z(IH 0,p-4 p,l' - z( p-1 )l 0,s pp| (2B)
2=1 s=1

Proposition 2.21. If {Hmn} is a double sequence and (A)

is true and the conditions of Proposition 2. 19 are satisfied then

M-p+tl -

N ptl
1b
Z Z (- k 1 (p_g41%m, N-T"p, T+ (1b)

m=p-k T=£-1
and

p-2 N-p+l

(M—p+l s-1 (lc)

r-kt+l ' 'p-4 —l)AM-r, shr+l, p

both tend to zero as M, N tend to infinity, for fixed p,k,Z.

Proof. We will only show that (1b) tends to zero as M, N
tend to infinity for fixed p,k,Z as (lc) follows by a similar argu-

ment.
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To this end we observe that since (A) is assumed true then

[>0]

o0

N z I

s ) R-z,N-s z+1 s+1
R:

V4

N=s

is finite. Hence

o0

. N R

lim (s) z(z)‘AR—z,N—st+l,s+l
R=z

is zero for fixed s,z. Therefore any finite sum

00
R
) z (z)‘AR—z,N—sHZ'i'l, s+1
R:

s=f -1 z

tends to zero as M, N tend to infinity for fixed. z,Z{.

let Q= z-k+tl, hence Q will be fixed when z,k are

fixed. The finite sum becomes

z N z (B y)a I
s Q+k-1 1 *R_(Q+k-1),N-s"Q+k,s+1
s=-1 R=Q+k-1

which is identical, upon letting m = R-(Qtk-1), to

Qtk- 2

¢ ]
m+Q+k-1
z ( Q+k"‘1 )lAm:N"SHQ-'-k: S+1‘
m:

S 1 0



This double series still tends to zero as M, N tend to infinity for

fixed k,£,Q. But since

(m)< m+Q+k-1)
Q" - Q+k-1
we find
Q+k-2 00
z Z (] a n |
Q m, N-s' Q+k, s+l
s=£-1 m=0

tends to zero as M, N tend to infinity for fixed k,£,Q.

Consider now (1lb). Since

m m-1 N N-p+l1

> >

(boid) 2 p-k-l) and  (p) 2 (g _g4y)

we see
p-2 ©
N m
1b)| <
[ap)| < () Z (p—k)l m, N-T p,T+1‘

0

_ N m

i () Z (p—k)IAm,N-T“p,THI '
m:

Wtk -

2 ©0

_ N m

- z () E(W”Am,N-T“W+k,T+1
1 m=

0

Substitute W = p-k, or p = W+k, to yield
T=1-

47
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As M,N tend to infinity we have previously found this double series
tends to zero for fixed W,k,{, hence for fixed p,k,4. Thus (1lb)

tends to zero as M, N tend to infinity for fixed p,k,ZL.

Proposition 2.22. If {Hkﬂ} is a double sequence and (A) is

true and the conditions of Proposition 2. 19 are satisfied then
p-2 p-2
M-p+l N-ptl
1
(r—k+1) 2 (v—£+1)AM-r,N—vHr+1,v+1 (1d)
r=k-1 v=f-1
tends to zero as M, N tend to infinity for fixed p,k,Z.

Proof. Since (A) is assumed true then

N, M

M,li.\]m_’oo(v)(r)|AM_r,N_V|J‘r+1,V+1‘ -0
But with
(I\f) = (I;/I:lf:ll) ’ (1;]) > (f_'f::)
we see )
p-2 p-2
|(1a)] < (T) 2 (S)lAM-r,N-v“rﬂ,vﬂl

where the right hand side tends to zero as M,N tend to infinity for

fixed k,{Z,p. Therefore (1d) tends to zero also under those condi-

tions.
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Proposition 2.23. If {Hkl} is a double sequence and (A} is

true and the conditions of Proposition 2. 19 are satisfied then

0
r-1 s-1
Ap—k,p-l“k,l - z (p-k-l)(p-l-l Ar,sHp,p
r=p-k
s=p-4

tl

for fixed k,? and p >1.

Proof. Follows immediately by taking the limit as M,N tend
to infinity of the result in Proposition 2. 19 and applying the results

of Propositions 2.21, 2.22.

Proposition 2.24. If the conditions of Proposition 2.23 are

satisfied than

p-1 )
pP,P r+p-1 stp-1
<
z (m)(n)l p“m:p'n m,n - z ( p—'l )( p—l )I rSHp, p|
m,n=1 r,s=1

Proof. It follows from Proposition 2.23 that

p-l
Z (Py®)|
m n p-m,p-n m,n
m,n=1
p-l 00
-1 -1
:z(p)(p)z(rlsl <
n p-m-1"p-n- r,s p;p

m:nzl




p-1 *
-1 -1
< z (Py(P z (T ® T
m n p-m-1 "p-n-1 r,s p,p
m,n=1 r=p-m
s=p-n
0 p-1
P.P r-1 s-1
< la_ v | (") ) )
r,s p,p m’ ' n’ p-m-1"p-n-1
r,s=1 m=max{l, p-r}
n=max{l, p-s}
o0 p_l .
P./P r-1 s-1
< la  p | (CICNH ) )
r,s p;p m' n’ p-m-1"p-n-1
r,s=1 m=max{0,p-r}
n=max{0,p—s}
)
rtp-1, ,st+p-1
leAul(pMp).
r,s p,p p-1 " p-l
r,s=1l

We are now in a position to finish the first part of the proof of

Theorem 2. 18.

We consider the double series in (B3)'.
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It follows from (2A), (2B) that the last two terms obey

P 2 r+p l
A
z (rn)l p-m, OHm,p ( r,OHp,pl

m=1

and

7hile by Proposition 2.24 the second term obeys

p-1 o

Z P plA Z rtp-1 s*l'p-l)lA
m n pm,pnm,n p-1 p-1

m,n=1 , 8=

‘hus

< Z (r'l'p-l)(S'I'p-l)lA " I .

p-1 7 p-1 r,s p,p
r,s=0

rs'p.p
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Since (A) is assumed true we know there exists a constant K
such that

©0

S
< .
2 (A)(B)IAR-A,S-B“AH,BHI K

et R-A=r, S-B=s, A=B, p-= A+1l. Then (A) implies

o0
r+p—1 s+p—l
< ; >1
z N O L L e
r,s=0
Therefore we see
P
PP
A < .
z (m)(n)\ p-m, p-npm, n\ - K
m, n=1
Thus (A) implies (B3).
By hypothesis
o0
sup ) C0lay g ol <% (A )
m k-m,0 m+1,0 1
m
k=m
o0
sup Z(E)IA " | < . (A,)
n n O,I—n 0:n+1 2
£=n

Using Ramanujan's result in one dimensional theory then yields that

{Hm 0} and {HO n} are sequences of moment constants, i.e., there

?
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exist two functions of bounded variation xl(t), XZ(W) such that

m n
= = s s =0,1,2,...
oo S" t dxl(t), HO,n S w dXZ(w) m,n =20

[0,1] [0, 1]

and furthermore

{ ax,o - § axy = ugy

[0,1] (0, 1]

Let X3(t, w) be any function of bounded variation in the sense
of Hardy-Krause which satisfies
= _ + < <
x3(t,0) xl(t) xl(O), 0<t<l1

= . < < 1.
X5(0,w) = -x,(w) +x,(0), O <w=

One such function is given by defining it to be zero for all other
values in the unit square. Define a sequence of moment constants

corresponding to such a function X3(t,W) by

1% = §S thndX (t, W), m.,n = O:I:Z:---
m,n 3
[0, 1]x[0, 1]
Then
vm,O B Hm,O and VO,n: HO,n
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By the theorem of Hildebrant and Schoenberg the sequence

{v } satisfies
m,n
P
sup Z B a v < .
m n p-m,p-n m,n
P m,n=0
Hence
P
P, P < 00
sup Z (m)(O)lAp—m,p m,Ol
P m=0
and

P
wp ) BrPla vyl <

n=0
Replacing Vv 0’ vO,n by Hm,O’ HO,n respectively we find that
for m =20

P

P
K
z (n)‘ p,p—nHO,n‘ -
n=1 ‘

while for n=0

When both are zero we see



1 55
|
1%
- _ PP
Ap,p 0,0 HO,>O Z (m)(n p-m,p-n m,n
m,n=1
P 1%
_ P Pya
Z (n) p,p—nHO,n Z (m) p-m,p m,0
n=1 m=1
Therefore
+K+K+
| & ,puo,ol <lwg ol FR+HKFK
Hence combining these results we find
P
Z (PP
m n p-m,p-h m,n
m,n=0
1%
= | | + Z )P
p,p 0,0 m n p-m,p-n m,n
m,n:1
1% P
P - (P
+ +
2 (n)l p:p-n O,n‘ z (m)l p-m,p m,O'
| n=1 m=1
|
| < +
6K + |1y ol
|
‘ Taking the supremum of both sides yields
\ P
| sup Z (P& a i | < o. (B)
m n p-m: p—n m, n
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Now to show that {(B) implies {A), (Al)’ (AZ)' From the identity

R-k+m+1,R-£+n+1
i (RE G (RL
A m,d-n"mtl,n+l tom-1{s n-1"°R+1-t,R+1-s"t,s

t=m+l
s=n+l

we find the partial sum

R

)
m n k—m,ﬂ—n“m‘!"l,n‘i'l
k,{=m,n

R R-k+m+1,R-£+nt+l
k. £ R -k R-/
<
- z (m)(n) Z (t—m-l)(s—n—l)lARH—t,RH—sHt,s
k,£=m,n t=m+1, s=n+l
R+1
R+1. R+1
<
= Z CoC o500 ¢ re1-sM, s
t=m+1
s=ntl

Since (B) is assumed true this last double series is bounded for

all R. We let R tend to infinity and obtain

o0
k. !
< 0.
Sup z (m)(n)i Ak—rn, J —nHm+l, ntl

Thus (B) implies (A).



On the other hand (B) also implies that the double sequence

{p } is a moment constant sequence so that
m,n
1! = Sg umvndx(u,v), m,n=0,1,2,...
m,n
and so
M0 = S\g u dx (u,v) = S\ umd(x(u, 1)-x(u, 0))
[0, 1]X[0, 1] [0,1]
HO n = S‘S v dX(u, v) = S vnd(x(l,v)-X(O,v)) .
[0, 1]x[0, 1] [0,1]

Since X(u,v) is of bounded variation in the sense of Hardy-Krause
we know that both x(u, 1) - x(u,0), x(l,v) - x(0,v) areof bounded

variation and so {Hm O}’ {HO } are single sequences of moment
3 n

?

constants. Ramanujan's results (a) then imply
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(v 0]
k
< o0
sup z m Ak-m, 0"m+1, O] (A))
m
k=m
0
sup (ﬂ)lA " | < (A,)
n 0,f-n 0,n+1 2
n
| £=n
|
‘ are both true. Thus (B) implies (A). (Al)’ (AZ); Theorem 2. 18 is

now proved.
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Theorem 2.25. The Quasi-Hausdorff matrix H*(}.Lm n) is an

a. -matrix for convergent double series with bounded partial sums if

{p } is a sequence of regular moment constants.
m, n

Proof. By Proposition 2. 8 we see that H*(pm n) is an

?

a-matrix if and only if

m,n

G=1(g_..= Z h ..)
mnij rsij

r,s=0

is a y-matrix. Thus we need to satisfy the conditions of Lemma 2.7
with out elements g ... We find
mnij

a) conditions (i) and (vii) are true by Theorem 2. 18 and

Proposition 2.15,

b) conditions (ii) and (iii) are shown true by using the arguments

in the proof of Proposition 2.17. We have

m.n
A = h
l,Ogmnij Z 'A‘l,O rsij
r,s=0
where
_ o
rsij (r)(s i—r,j—er,.s

1]

Sg <ir>(1>ur(1-u>i‘rvs<1-v)j‘sdg(u,v) .
[0, 11x[o0, 1]
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By the techniques used in Proposition 2. 17, it follows that

o< M), . n
r s 1-r,j-s r,s

< SS' {dP(u, v)+dN(u, v)} + (js)(l_é)j_sVar g
[0, 1}x[0, 1]

and by continuity that

. iy -
Lim =0.
,_,s;pl(r)(s)Ai-r,j—er,sl
J

A simi .
similar argument holds for AO, lgmnij

c) conditions (iv) and (v) are trivially true since for m >1i or
n >j we have

= O,
llgmnij

d) condition (vi) uses Proposition 2. 16 and is satisfied if

Moo

By th lari f h
y the regularity o Hmn we have

?

0,0 ~ gg dglu,v) = 1.

[0, 1]x[0, 1]

Hence H*(ptm n) is an a-matrix. In order to be an aO—ma’crix we

need G to be a yo—matrix. But by definition G is a yo—ma’crix if



and only if
lim g .= 0.
i,j—= o0 mnij
This is valid whenever
lim h =0,
i,j— o rsij

which follows again by arguments analogous to those in Proposition
2.17.

Thus for regular moment constants b, We do have

3

H (. ) being an a . -matrix.
m,n 0

Theorem 2.26. A Quasi-Hausdorff matrix A 1is a T-matrix

if and only if

(a) p is a moment constant
(b) 55 dglu:v)
uv ’
(0, 11x(0, 1]

where gl(u,v) 1is a function which generates the sequence {}.Lm n}'

Proof. We show that (a), (b) true implies the Quasi-Hausdorff
matrix A is a T-matrix. Since A 1is Quasi-Hausdorff we know

its elements have the form
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. k>m, £ >
A )Ak-m,ﬂ-num,n' -m n

0, otherwise,

We first show that (a) implies

)
D tur {f s

mnkﬂ uv ’
k,£=0 (0, 1]x(0, 1]

if it exists.

Case one. Ag(u,v) > 0. Then using the definition of &

pg mn
we find
b © k-m,f -n
_ k. 2 r+s k-m_ £ -n
z Bkt ” z ()0) Z CDTEETHE Y
k,2=0 k,2=0 r,s=0
X S“S\ r+m S+ndg(u,v)
[0,1}x][0, 1]
0
Z (k)(ﬂ) S‘S‘ M(1-u) mvn(l-V)jz—ndg(u,v)
m’ n
k,£2=0 [0, 1]x[0, 1]

_ gg z T ) TG (1) Pdg(a, v)
m Il

[0, 11X[0, 1] k,2=0

n
= SS )( E g(u,v) =
m+1 n+l

61
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- gg dg(u:V)
uv )
(0, 1}x(0, 1]

Case two. &g(u,v) not always positive. Here we cons ider the

two series

[o 6]
Z ¢ SS )T (1 APy, v) (13. 1)
m n
k,£=0 [0, 1[0, 1]
and
o0
Z ) §S W) T (1 vy RN (s v) (13.2)
m n
k,£=0 [0, 11x[0, 1]

where P(u,v) and N(u,v) are the positive and negative variations
of g(u,v). Using the same techniques as in Case one we find these

to be equal to

S’g dpl(lli’,v) and gg dNu,

(0,1]x(0, 1] (0, 11x(0, 1]

Now these integrals both exist if and only if

uv
(0, 1]x(0, 1]

exists, which by a theorem in Lebesgue-Stieljes integration [19], will
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exist if and only if

gg dg(u: V)
uv

(0, 1x(0, 1]

exists. Since (13.1), (13.2) both converge absolutely we can subtract

to find
o0
- f-
Z kvl Sg m oy gEmong o Rap g, v)-dN(u, v
m n
k, £=0 (0, 1}x(0, 1]
o0
- Z  mnk
K, 220

On the other hand

1]

dP(u. v) 55‘ dN(u, v)
B uv

(0, 1]x(0, 1] (0, 1}x(0, 1]

S‘S dg(u,ﬁv)
uv ’
1]x(0, 1]

(13.1) - (13.2)

1l

Thus again

Yewwssw 7 s
mnk{ uv

k,£=0 (0, 1]x(0, 1]

if the integral is finite.
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~ Now we show that if (b) is also true then A 1is a T-matrix.

Considering the conditions for a T-matrix, Lemma 2.5, we see that

. 1 _ . .. isfied;
(1) im a4 0 is trivially satisfied
m,n-—®
o0
(ii) lim Z a = 1, because (b) is assumed true and
. 1 — 00 mnk{
’ k,£2=0
o0
f5 et
= a 3
uv mnlk/{
(0, 11x(0, 1} k,£=0
o0
(iii) Iilup E }amnkﬂ finite. Since
B, 2=0

z 2 e S Sg Egé_:lr_,yﬂ
1=

k, £=0 (0, 11x(0, 1]

and since

uv

ﬁ‘ dg(u,v) _

(0, 1]x(0, 1]

implies

gg dgl(u, v)
uv

(0, 1]x(0, 1}

exists we find (iii) is satisfied;
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oC
(iv), (v) lim Z |a | =0 for each
m, p— o mnk/!
’ k=0
¢ ]
mlh:«»oo Z !amnkﬂ =0 for each k
2 ﬂ:O ‘

are trivially true for elements of A.
Thus conditions (a), (b) imply that A is a T-matrix.
On the other hand if A is a Quasi-Hausdorff T-matrix then by

Lemma 2.5(iii) we see

o0
{
Sup Z (;)(n)lAk-m,ﬂ—npm,n
ﬂ:

m,n
k, m,n

is finite. Define a sequence {v__} by
mn

1 m>1, n>1

m’lan"l,

0, either or n = 0.

Then b @ = Vi+l,n+1 204
[oe]
k. 4
sup (m)(n)lAk-m,ﬂ Vil ntl o (A)
m,n
k,f =m,n
[oe]
k
= <
4P Z(m)lAk—m,ovm‘H,Ol 0 < (A)
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o0
yi _
sup z (n)‘AOJ-nVO,rH-l =0< (AZ)
n
£=n

Thus Theorem 2. 18 states that {vmn} is a sequence of moment
constants, and by a theorem of Hildebrant and Schoenberg [8], a
function h(u,v) of bounded variation in the sense of Hardy-Krause

exists such that

v = S'S' umvn,dh(u,v), mmn=0,1,2,...
mhn
[0,11x[o0, 1]}
But then
_ _ m n .
I vm+1,n+1 SS u v (uv dh(u, v)).
[0, 1]x[0, 1]

We define a function g(u,v) by

glu,v) = S‘S‘ Endh(g, n).
[O’U]X[O’V]

This function is of bounded variation since

dg(u,v) = uv dh(u, v)

and



({ g o) = (0 Javanw, vl

[0, 1}x[o, 1] [0, 1}x[0, 1]

<___ 55 |dhu,v|<B<°°

[0, 1]

Hence since h(u,v) is of bounded variation in the sense of Hardy-

Krause then so is g(u,v). Then also

e = Sg u v dg(u,v), m,n=20,1,2,...
mn
[0, 1 }x[0, 1]

and so g(u,v) generates the sequence {an} which is a moment
sequence. We also note that g(iu,v) is continuous at the axes and

zero on them.

Finally Lemma 2. 5(ii) states

0

1i =1,
uioo Z amnk£

Bt WA
where

= )a

a k
mnk { m

)
n

k-m, £ -npmn

) )a

g =

= ( 4
n

k-m, 4 —nvm+1, ntl

g =

()¢ § SR g P h )
[0, 1}x[0, 1]
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when A is a Quasi-Hausdorff T-matrix. Since the integral is zero
when u and/or v equals zero this integral can be taken over
(0, 11x (0, 1].

Consider the sequence of functions {qu} where
P-q

+1 - +1 £ -
f (u,v) = z (k)(l)um (l—u)k mn (1-v) B0 <uw < 1.
Pq m n

Then

lf (u.v)| <1 and lim f (u,v)=1
Pq - p,q—c0 P9

By the Dominated Convergence theorem we have

lim S‘S\ f (u,v)dh(u,v) = S'S‘ lim qu(u,v)dh(u,v)
P47 %[0, 1)x[0, 1] [0, 1]x[0, 1] P47 %
or
N (1 GG aw ™ 0w Pan, v
m n .

k,2=m,n [0, 1[0, 1]

- S:Sb dh(u, v

(0, 11x(0, 1]

Thus because A is a T-matrix,
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o0
1 +1
lim Z gS ky ot k=t g o b, v)
— 00
m.n k,£=m,n [0, 1[0, 1}

f-—
11

o0
. k2
= lm Z (2% o0 mt1, ntl
m,n—"
ksﬂ m.n
- ﬁ dh(a, v) = §5 delu-v)
[0, 1]x[o0, 1] (0, 11x(0, 1]

and Theorem 2.26 is proved.

Corollary 2.26. A Quasi-Hausdorff matrix is boundedness

preserving if and only if b is a moment constant defined by a
function g(u,v) such that

SS lde(u.v)| _ o

uv

(0, 1}x(0, 1]

Proof. It is well known that a matrix A maps bounded

sequences to bounded sequences if and only if

is finite. The proof of the one dimensional case easily extends to the

two dimensional case.
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In the proof of Theorem 2. 26 we found condition (*) to be
sufficient for {Hmn} to be a sequence of moment constants gener-

ated by a function g(u,v}) which satisfied the inequality

(0, 1}x(0, 1] [0, 1}x[0, 1]

(¢ leetwwl o (0 janww] < .

On the other hand if we assume {Hmn} is generated by a

function g(u,v) such that

ff el
uv
(0, 11x(0, 1]

then again the proof of Theorem 2.26 shows that (¥) is satisfied.

In the one dimensional case Vermes [28] has established a
connection between series to series transformations and sequence

to sequence transformations. He proved

Lemma 2.27. Given an ao-matrix H defining a transforma-

tion of the series Zan to the series me, there exists a .

K-matrix F which transforms the sequence {sn} of partial sums

of Za into the sequence {t_} of the partial sums of Zb and
n m m

conversely.
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We shall do the same for two dimensions (Proposition 2.31).

First we prove an intermediate result.

Proposition 2.28. Let F = (f ) be a T-matrix, Zc
mnk{ mn
be a series with bounded partial sums Skﬂ’ and
0
= ? ? = ? 1’2’ LR 5- 1
“mn Z fonkeSke @ R0 - 1)
k,2=0

define a sequence to sequence transformation. Then the matrix

) where

©0

b = 5.2
mnk/{ Z frnnr s ( )

r,s=k, 4

defines a series to sequence transformation

(o]
= 5.3
O-rs Z brskﬂckﬂ ( )
k,£2=0
of the series Zc with bounded partial sums into the sequence

k!

{O-mn} defined in (5.1). Furthermore the matrix B 1is a yo-matrix

hich by C 2.8 i - i = defined
which by Corollary induces an a matrix A (amnkﬂ) efine

by
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¢ ]
= - - +
dmnk Z (fmnrs fm,n—l,rs fm—l,nrs frn-l,n—l,rs
r,s=k,{
(5.4)
m,n = 0,1,...; negative subscripts
indicate the elements are zero.
Proof. Using the definition of Skﬂ we see
R k, £
= f
o.mn Z mnk{ Z Cpq
k,2=0 p,q=0
¢ ]
) Z P nke Skt
k,2=0
where b is as defined by (5. 2), the interchange being valid

mnk/
because of the absolute convergence of Z fmnkﬂ and the boundedness
k, 4
{Skl}' The fact that B is a YO -matrix follows from F Dbeing a

T-matrix.
To satisfy the conditions of Lemma 2.7 for a y-matrix we use

b and find

5.2
( ) to compute A 11Pmnkcs

Allbmnkﬂ - fmnkﬂ ’ (5.5)

Since F is a T-matrix we have
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[o0]
a) z If | < ; hence Lemma 2.7(i),(vii) are satisfied.
mnij
i, j=0
[o0]
b) z [t ] < implies
mnij
i,3=0
[o0] o0
Z z ‘f < o implies
mmJ
i=0 j=s
[o0]
z l£ ] < © implies
mnij
j=s
[o0]
lim Zf .. =0 for each i
mnij
s~ |
Jj=s
and similarly
= 0, for each j .

)

lim Zf ..

w — 0 mnij
i=w

Thus Lemma 2. 7(ii), (iii) are satisfied.

[o0]

c) lim z lfmnkﬂl

m,n—"®

k=0

it

0 for each £

[o0]

lim z |fmnk£| =

m,n—~

£=0

1
(@]

for each k ,
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and again this implies Lemma 2. 7(iv), (v) are true for the matrix B.

d) The last condition needed to be satisfied is Lemma 2. 7(vi);

0
lim b . =1= lim Z f .
m, n— ® mnij m, n— » mnrs
r,s<i,]
Now from Lemma 2. 5(ii) we have
0
lim Z f =1,
mnrs
m,n"—>®
r, s=0

and by Lemma 2.5(iii) the series converges absolutely. So we can

write

0 ) i-1 0
D tmees ™ D e ) D
mnrs mnrs mnrs

r,s='1,j r,s=0 r=0 S:j
o j-1 i-1,j-1

S5 S e D e

mnrs mnrs
r=i s=0 . r,s=0

We show that as m,n tend to infinity the last three series

tend to zero. By repeated use of Lemma 2.5(v) we find

i-1
33 s
mnrs

r=0 s=j
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by repeated use of Lemma 2. 5(iv) and the concept of absolute

convergence we have

-1
D Dbanes "0
mnrs

s=0 r=i
by use of Lemma 2. 5(i) we have

i-1 j-1

S Yo -0
mnrs

r=0 s=0

Thus the last condition for B to become a y-matrix is now satisfied
when F is ba T-matrix.

Using Proposition 2.8 we know that B generates a a-matrix
which we will term A. In addition Corollary 2.8 states that if B
is a Yo -matrix then A 1is an ao-matrix. But since F is a

T-matrix we know

o0
Z | £ | < K for all m,n and therefore
mnrs
r,s=0
o0 o0
I ZS f < jg | £ | —o0
mnrs | — mnrs

r,s~k,{ r,s~k, !

as k,{ tend to infinity for all m.n. Hence
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o0
lim b kﬂ_ lim Z rs:O
K. g — mn K, 4 — o0 mn
r, s=kf

and so B is in fact a yo—matrix when F 1is a T-matrix. We also
have that a T-matrix induces an a, -matrix under the correspondence

(5.4), (4.5).

Definition 2.29. The matrix B, respectively A, defined

by (5.2), respectively (5.4), is called the yo-matrix, respectively

ao—matrix, corresponding to the T-matrix F.

We consider now whether conversely a T-matrix can be derived

from an ao—matrix.

Proposition 2.30. Let A = (a ) be an a_ -matrix for the
| mnk! 0
series 2Za with bounded partial sums, and let F = (f ) Dbe
mn mnk/{

defined by

m,n

= ’ 2 = ’ 1’ Z’ CE .
fnks 25 8112 qre » TR0 (5. 6)
p,q=0

Assume that A satisfies

m,n

=1
A112pqks

=0 p,qg=0

(aa) lim

m,n-—"®
k,

1 8

=
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0,

Then F 1is a T-matrix, and if A transforms 2Xa to Zb__,
mn rs
both series having bounded partial sums, then F transforms the

sequence of partial sums of 2Xa to the sequence of partial sums
mn

of Zb
rs

Proof. Let B be the Yo-matrix generated by A as detailed

in Proposition 2.8 and Corollary 2.8. Using (5. 6) and (4. 3) we see

foanks - 211°m, ke (5.7)

We use this last relationship and the assumption that A 1is an
a, -matrix, or B isa yo—ma’crix to verify that F 1is a T-matrix.

0
(a) Lemma 2.7(vi) yields

1i =1,
1 brnnkﬂ
m,n "

so by using this with (5.7) we have

1im f =0 forall k,£.
mnk{
m,n "

Thus Lemma 2. 5(i) satisfied with Bkﬂ = 0.

(b) condition (ii) of Lemma 2.5 is satisfied as it is condition (aa),
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(c) condition (iii) of Lemma 2.5 is satisfied as it is condition
(bb),

(d) Lemma 2.7(iv), (v) and (5.7) yield

0

lim z lfmnkﬂl

— 0
m. k=0

it

0 for each {

=0 for each k.

3
g
BH-.
=}

g

Thus conditions (iv), (v) of Lemma 2.5 are satisfied.
Hence F 1is a T-matrix.

The last assertion of the lemma is easily verified.

Combining Proposition 2. 28 with Proposition 2.30 we have a

result analogous to Lemma 2. 27.

Proposition 2. 31. Given an ao-matrix A, with (aa), (bb)

satisfied, defining a transformation of the series z 2 4 to the

m, n
series Z bm ,  both series having bounded partial sums, there
0

m,n
exists a T-matrix F which transforms the sequence of the partial

sums of Za into the sequence of partial sums of Zb and
m, n m,n

conversely.
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 Definition 2.32. The sequence to sequence Quasi-Hausdorff

transformation corresponding to the real double sequence {Hn’m} is

given by means of the equation

00
hrfiln - Z fmnkﬂskﬂ ’
k, £=m,
where
frnnkﬂ - (rl;)( )8 k-m, £- nFmtl,ntl
If

mn 55 a v dg(u,v)

(0,10, 1]

-
T

is a moment sequence defined by a function g(u,v) of bounded
variation in the sense of Hardy-Krause, then the transformation

matrix will be denoted by

HH 41,01

This definition is analogous to the one dimensional case. It is

motivated by

Theorem 2. 33. Let the Quasi-Hausdorff matrix H*(p )s

mn
with regular, define a transformation of the series Zc to
mn mn
the series =d , both series having bounded partial sums. Then

rs
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the Quasi-Hausdorff matrix H*(p ) is a T-matrix
mtl,ntl

transforming the sequence of partial sums of 2Xc into the

sequence of partial sums of 2d s
r

Proof. By Theorem 2.25 H*(pmn) is an ao-matrix, and for

this matrix there corresponds a series to sequence matrix B which
is Yo The sequence to sequence matrix F which corresponds to

H*(Hmn) is a T-matrix if and only if Proposition 2. 31 is satisfied,

i.e., conditions (aa), (bb) need to be valid when

= ()

. k I)A
4 mnk{ m 'n k—m,l—npm,n'

We note that (aa) can be rewritten as

. . + =0
lim lim (bmn: O: q+1 bmn: p+1: O)

"~ since
¢ ]
Z Allbrnnld
k,£2=0
= li b - -b +b
pqllril_oo mn, pt+1,q+l bmn,O,q+l mn, ptl,0 mn,0,0)

and the first and last terms tend to 0 and 1 respectively because

B is Yo Then by using
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m, n
bmnk! - Z arskﬂ
r,s=0
we can write {(aa) as
m, n
lim Z lim (ars,O,q+l+ars,p+1,0) = 0.

— 0 - o0
By arguments analogous to those used in Proposition 2. 17 we find

lim sup Ia =0

k— o

rnnk,OI

lim sup ]a
£

= i lar.
mn,O,ﬂl 0 when M, 1S TgY ar

This then implies condition (aa) is satisfied.
Condition (bb) can be written for this case, after consulting

Proposition 2. 15, as

e o]
k. £
sup l(m)(n)Ak—m,ﬂ-nHm+l,n+l|
m,n
k;f=-m,n
is finite. Theorem 2. 18 states this to be true whenever ¢ is a

m,n

regular moment constant. Hence F is a T-matrix corresponding
to the a matrix H*(p ).
0 m,n

We note that the elements of F are precisely the terms

inside the absolute value signs,
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=

k
mnk/ m

)

o
n

A m,f-n"m+l,n+l -

Thus F is, by Definition 2. 32, the Quasi-Hausdorff matrix

H*(p ) .

mtl,ntl
Corollary 2.31. If {Hmn} is a moment sequence then the
Quasi-Hausdorff matrix H*(p ) is boundedness preserving.

m+l,ntl

Proof. Using the results in the proof of Corollary 2.26 we see

that we need to show that

is finite where

)4

k
m n A]t<—m,£-npm+1,n+l )

h* = (

mnk !

But using Theorem 2. 18 we find that {p n} being a sequence of
m

moment constants yields this result.
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III. GIBBS' PHENOMENON AND QUASI-
HAUSDORFF TRANSFORMATION

Throughout this chapter we assume that f(x,y) is periodic
with period 2w in each variable, and of bounded variation in the

Hardy-Krause sense in the period cell.

Lemma 3.1. If f(x,y) is periodic with period 2w in each
variable, then the Fourier series corresponding to it converges at

(x,y), interior to the cell [-w,w] x [-w, w], to the value
+ o+ + - - 4 - -
1/4‘{f(x Y )H(x 'Y )+f(x 'Y y+H(x 'Y )} ’

provided that the function

Z f(x+s, y£t)

s, t

is bounded and can be expressed as the difference of two functions,
each of which is monotone non-decreasing (or monotone non-
increasing) with respectto s and t in some cross neighborhood

of the point (x,y). [9].

Remark. Hobson [9] states that a cross neighborhood of the
point (x,y) 1is the set {(s,t)} such that (s,t) belongs to

[—TT,TT] X {-TT, TT], and for some & >0, at least one of the conditions
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(i) |s-x| <8

or (ii) lt—yl <&

is satisfied.
We also note that a periodic function which is of bounded
variation in the sense of Hardy-Krause satisfies the conditions of

Lemma 3.1 everywhere.

Corollary 3. 1. If, in addition to the assumptions already on

f(x,y), we also assume that f(x,y) is normalized, then the partial
sums of the Fourier “series of f(x, y) converge to f(x,y) every-
where. In particular, the partial sums of the Fourier series of

f(x,y) converge to f(x,y) at every point of continuity of f(x,y) [26].

Lemma 3.2. Let (s,t) be a point of continuity of f(x,y) and

let S\ be the kﬂth partial sum of the Fourier series of f(x,y).

Then for every ¢ >0, there exists a positive integer ple) and

an open neighborhood of (s,t), say U(e), such that

|'s (;)-f(x)l<e, ;Z(x,y)

ki

for all x in U(e) and k, £ > p(e) [26].

Corollary 3.2. If D is a closed set of points in the period

cell such that f(x,y) is continuous at each point of D, then the

Fourier series of f(x,y) converges uniformly on D to f(x,y) [26].
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Corollary 3.2A. The partial sums of the Fourier series of

f(x,y) do not exhibit the Gibbs' phenomenon at any point of continuity

of f(x,y) [26].

Lemma 3.3. Let f(x,y) be a normalized, periodic function
of bounded variation in the period cell. The partial sums of the
Fourier series of f(x,y) will exhibit the Gibbs' phenomenon at

every point of discontinuity of f(x,y) and only there. [26].
As an immediate consequence of these results we have

Proposition 3.4. If f(x,y) is periodic with period 2 in

each variable, and is summable in the period cell, then the regular
Quasi-Hausdorff means of the partial sums of the Fourier series
corresponding to f(x,y) converges at (x,y), interior to the cell

[-TT,TT] X [-TT,TT], to the value
1/4{f(x+, y+)+f(x+,y')+f(x',y+)+f(x',y')}

provided that the function
Z f(xts, y£t)
s,t

is bounded and can be expressed as the difference of two functions,
each of which is monotone non-decreasing (non-increasing) with respect

to both s and t in some cross-neighborhood of the point (x,y).
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Corollary 3. 4. If, in addition to the previous assumptions on

f(x,y), we assume f(x,y) to be normalized, then the regular
Quasi-Hausdorff means of the partial sums of the Fourier series of
f(x,y) converges everywhere to f(x,y), in particular, atevery

point of continuity of f(x,y).

Proposition 3.5. Let (s,t) be a point of continuity of f(x,y),

and let tkﬂ[f;x,y] be the kﬂth (regular) Quasi-Hausdorff trans-
form of the partial sums of the Fourier series of f(x,y). Then for
every ¢ >0, there exists a positive integer R(¢), and an open

neighborhood of (s,t), call it Ufe), such that

Itkﬂ[f; X, y]-f(x,y)l < ¢

for all (x,y) in U(e), and k,£ > R(e).

Proof. We first note that for the regular Quasi-Hausdorff

transformation
o0
. 13 - d
(i) m:il’oo z amnkﬂ 1 an
’ k,£=0

(ii) there exists M >0 such that

Z la_ ] <M, mmn=012...
K, £=0
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Second, we see that f(x,y), being of bounded variation, is

bounded at the point (x,y) of Ul(e). say

lf(x,y)| < T.
Now consider
o0
f; 2 - 2 = - B
|tk£[ XY] flx Y)| l Z akﬂmnsrnn f(xy)
m, n:k,ﬂ
o0
= 2 = 2 +f 2 -f 2
Z akﬂmn{smn(x y)-f(x, y)+(x, y)}-f(x, y)
m, n=k, 4
o0
=’ Z akﬂmn{smn(x,y)—f(x,y)}
m,n=k, {
o0
+ - )
f(x,y) Z 2 gmn f(x,vy)
m, n:k,ﬂ
o0
< 2 - 2
S S PP | PR e C0]
m, n=k, £
o0
+ ' -1
I f(x y)| Z akﬂmn
m,n=k, !

By Lemma 3.2 and (ii) above the first term can be made smaller than
e/2 for all (x,y) in Ule), an open neighborhood of (s,t) and

for all m,n >P(e). By (i) above and the fact that f(x,y) 1is of
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bounded variation we can make the second term smaller than e /2

for all m,n >Q(¢) and for all (x,y) in Uf(e). Letting

R(c) = max{P(e), Q(e)}

we see that the result in the theorem is established.

Corollary 3.5. If D is a closed set of points in the period

cell such that f£(x,y) is continuous at each point of D, then the
regular Quasi-Hausdorff means of the partial sums of the Fourier

series of f(x,y) converge to f(x,y) uniformlyon D.

Proof. Let ¢ >0 be given. With each point (s,t) of D,
associate a neighborhood U(e;s,t), anda number Ple;s,t) such
that

Itka[f; x, yl-f(x,y)| < €/2

whenever k,f >P(e;s.,t) and (x.,y) belongs to Ule;s,t). Then

the family

{U(e;s s, t)|(s. t) in D}

is an open cover of a closed, compact set D and thus contains a

finite subcover

{U(e;si,tj)l(s.l,tj) inD;i=1,2,...,m,j=1,2,...,n}
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Let P(e) be the largest of the numbers which are associated with

the sets of the subcover. Then

Itkz[f;x,y]—f(x, y)| <e

whenever (x,y) in D and k¢ > Ple).

Corollary 3.5A. The regular Quasi-Hausdorff means of the

partial sums of the Fourier series of f(x,y) do not exhibit the

Gibbs' phenomenon at any point of continuity of f(x,vy).

Using the above results it is clear that a function f(x,y), of
bounded variation having no removable discontinuities, will always
exhibit the Gibbs' phenomenon at a point of discontinuity. If we
express f(x,y) by its Fourier series, form the sequence of partial
sums {Smn(f; x,y)}, apply a summability method to this sequence,
then it is natural to ask if the transformed sequence will also exhibit
the Gibbs' phenomenon. For the two dimensional case this question
has been answered by Cheng for the circular Riesz means and by
Ustina for the Hausdorff means.

We will extablish some results pertaining to the study of the
Gibbs' phenomenon for the Quasi-Hausdorff means of the double series.
The work is a natural extension of Ramanujan, Ishiguro, and Kuttner
for the one dimensional case. We use their results and manner of

approach freely.
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As has been shown by many, to investigate the Gibbs' phenomenon
for the arbitrary normalized function of bounded variation in the one

dimensional case, it is sufficient to determine the Gibbs' phenomenon
of the function

1/2 (w-x) 0 < x < 2w
(21.1)

+1,+2,%3,...

b
"
+
(8%
A
5
-
I

so that

i

Since X(x), Sm(X;x) are odd, periodic functions of period 2m
we need only to investigate the function in the interval 0 < x <.
For the Gibbs' phenomenon for the Quasi-Hausdorff means, of

one dimension, of the Fourier series of X{(x), Ishiguro and

Kuttner [16] obtained the following:

Lemma 3.6. For the regular Quasi-Hausdorff means of the

Tourier series of the function defined by (21.1) we have



91

lim h*(t ) = S dg(u) g sin y/u dy ,
n n y

[0, 1] [o, 7]

provided that the weight function g(u) is continuous at u =0,
2
nt — 7<% and nt_ " 0.
n - n

Using the results of Ustina [26] we know that to study the Gibbs'
phenomenon for an arbitrary normal ized function of bounded variation
in the Hardy-Krause sense in the two dimensional case, it is sufficient
to study it for the functions X(x), X(y), and &(x,y) = X(x)X{y),
where X(t) is as defined by (21.1). As before it is also sufficient
to investigate on the domain 0 < x,y <7w. We henceforth assume

this restriction.

h
Proposition 3.7. If h* (X;x), h* (X;y) denote the rml’c
mn mn

regular transform Quasi-Hausdorff transforms of the functions X(x),
respectively X(y), corresponding to the weight function g(u, v),
then

h* (X;x) =h

* (X5%)
mn m

B3 :yv) = h*(X; ,
h* (X5y) h*(X;y)

h
where the right hand sides denote the mlc (nth) regular one

dimensional Quasi-Hausdorff transforms corresponding to the weight
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functions g(u, 1), respectively g(l,v).

Proof. From the Fourier series representation of X(x) we

find
m
_ sin kx
S (X;x) E ———‘——k
k=1
sin(m+*1/2)s
= +
(1/2)x Sz 2 sin(1/2)s ds
[O! X]
Then
00
h;;:m(X;X) - Z hmnk!Z k(X %)
k,Z=m,n
00
sin(k+1/2)s
= _ + sinixT /el g
25 B nke ) ~(H/2)x j; 2 sin(1/2)s °°
k, £=m,n [0, x]
- k ﬂ sin(kt1/2)s
= -(1/2)x + (1/2) , m n sin( 1/2)s ds
k, z =m, n {0, x]
+ - +1 g -
X S\ um 1(l—u)k mn (1-v) ndg(u,v) ,

[0, 1x[o0, 1]

| s
1 by using the definition of the transform and its regularity. Since

h;:;ln(X; x) converges absolutely and uniformly in x,



h*

(X;x)

1

i

1

§ sin(kt1/2)s ds

—(l/Zx+(1/2 z sml/z

0
« gg G gy Z(i)vm-l(l—v)ﬂ—ndg(u,v}

[0, 1]x[0, 1] £=n

e}
(k+1/2
-(1/2)x + (1/2) Z { SISnlnl/Z))s ds
[o, x

% gg e (l)dlg(u,v)}>

[0, 1[0, 1]

sin( k+1/2)
-(1/2)x + (1/2) jg {j 51n(1/2 ds
[0, 1]

x g JoH G R g (a, l)—dg(u,O)]}

[0, 1]

o0
~(1/2)x + (1/2) Z f sin(1/2)s O

k=m [O,X]

+ -
X § unllﬂ—uﬁ Paglu, 1),

[0, 1]

since dg(u,0) = 0,

h* (X;x) .
m

93
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We used the fact that the transform was regular, so that
dg(u,0) =0 and g(u,1) is a weight function for the regular one
dimensional Quasi-Hausdorff transform.

Finally the other half of the theorem is proved similarly.

We now turn to examine the Quasi-Hausdorff transforms of the
sequence of partial sums of the Fourier series representations of the

function ¢(x,y) = X(x)X(y). We have then

sin kx sin £y

Definition 3.8. The circle means of the Fourier series of

o0
Z sin kt
k
k=1
are given by
[0 0]
N v +1 -
o () = oH(t) - Z( e (1) s (1)
n, r n n v
V=n
where
1%
sin kt
SV(’C) = m (Reference [10] ).
k=1

Now the two dimensional analog of Lemma 3. 6 becomes
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Proposition 3.9. For the two dimensional regular Quasi-

Hausdorff means of the function ¢(x,y) we have

1' sk .
im hmn(¢', X Y )
m,n—"

= ‘g\ _1n"( /u d { ‘g‘ Sin(y /V) dY dg(u,V)
[0, 1]><[o 1]\ [0, 7] [0, 7]

provided g(u,v) is continuous at the axes,

Proof. Consider the partial sums of the function ¢(x,y). If
either m or n is zero we shall call the partial sum zero, while

otherwise

m, n(<1>; X,y) = Sm(X; X)Sn(X, y) -

We see that the Quasi-Hausdorff transform becomes

m (¢a X,y) Z S\S um+1(1—u)k_mvn+1(l-v)l-ndg(u,v).
k,f=m,n [o,1]><[o, 1]
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We break the integration into three parts,
(i) over the cell [0,1]x [0, 8),
(ii) over the cell [&,1]x [6,1],
(iii) over the cell [0,8)x [6,1], for 0 < &< 1.
We note that all three sums created by integrating over these cells
exists since {Skﬂ} is bounded, H* 1is a T-matrix, and thus each
sum is in fact absolutely convergent. We let the bound on {Skﬂ} be
denoted by M.

Considering the first integration we see

o0
(i) ' Z (k)(ﬂ)s gg um+1(1—u)k—mvn+1(l—v)ﬂ—ndg(u,v)
m n ki
k, £=m, n [0, 1]x[0, &)

o0
VD TS S C R i SR e LR
k,£=m,n fo, 1}x[o0, &)

<M Sg {dP(u, v) + dN(u, v)} ,
[0, 1Ix[0, &)

where again P(u,v), N(u,v) are the positive and negative variations
of glu,v). By continuity arguments similar to the work in Proposi-
tion 2. 17 we find that the integration over the first cell can be made
arbitrarily small by proper choice of §&. Doing the same for cell
(iii) we find an analogous result.

Thus we are left with only cell (ii) to consider. We find
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o0
> (0 s o o™ 00 Mgt )
k,2=m,n [&, 1]1X[6, 1]
- {Z (s, 06 0™ 1) T
[s, 1]x[6 1]
o0
x Z (i)SQ(X;Y)vn-I-l(l—v)g-n dglu, v)
£=n

by the use of the absolute convergence of the double series.

If we now

use the definition of the circle means of one variable we further find

that this summation is precisely equal to

gg {G;*;l(u; X)G;‘;(v; y)}dg(u,v) .
[s, 1]x[6, 1]

Ishiguro [10] shows that

" - siny
Gk(r, t) g v dy
[O, T/r]

as k — %, uniformlyin r for 6 <r <1, with

2
lim ktk =T <™ and lim ktk = 0.

k— k— @
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. Thus we have our second integral tending to

{ S ﬂ_yd}{ g _S__l_Ydy dgla, v)

[o, 7 /u] 0,7/v]

[8, 1]><[5 1]

as m,n —~ ©, where

2
mx —T<%, mx 0,
m - m
ny —"?<00 nyz—’O as m,n " 9.
n -’ n
Hence
1 \
1mh (¢ X n)
m,n
= { 5 il—Yd g -s-'l—l;—ydy} dg(u,v) + O(8)
[s, 1]><[5 1]~ [0, 7 /u] [0, % /v]
and (*)

1i h* ; )
2 n((1> *m yn)

= { g S—I—Yd 5 s—i'i_Ydy}dg(u,v)+O(6)

[s, 1]><[5 1]™ [0, 7/u] (0,7 /v]

Except for the bottom limit on the double integral this is
essentially the desired result. If we replace the bottom limit by zero,

the desired limit, we make an error which is given by the value of
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[0, T/u] [0 2 /v]

+ { S ——Xdy ‘81 E‘I;l—Y } dg(u, v)
(6, 1]>< 0,6) - [0, t/u] [0, 7 /v]

N { S\ sin y dy ‘S‘ sir;ydy} dg(u,v) -
x[6, 1]~ [0, T/u] [0, 2/v]

Since for all Y we have

g siny 40| <w,
y

[0, Y]

say, we find the above error to be less than

N2 S\S‘ dg(u, v) +N2 58‘ dglu, v) S\g dg(u, v).
[0, §)X[0, &)

[6, 1]x[0, 6) [06[61]

Again by the continuity conditions we can make this error arbitrarily
small by making & small. Thus in (*) the lower limit in the double
integral may be replaced by zero and the resulting O(8) error
incorporated in the O(8) term already appearing in (¥). Then (%)

implies the desired result.
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IV. THE LEBESGUE CONSTANT FOR THE
QUASI-HAUSDORFF TRANSFORMATION
In this chapter we shall investigate the Lebesgue constants for
the two dimensional sequence to sequence Quasi-Hausdorff transfor-
mation corresponding to a regular moment sequence. More precisely
this chapter developes the two dimensional analogues of the results in

Ishiguro [14].

Definition 4. 1. The Lebesgue constants for the double Fourier

series are given by

_ 4 sin(m+1/2)s sin(nt+1/2)t
Lim,n) =5 gg 1% simis/2) 2 sin(t/2) 19598
[O,TT]X[O,TT]
4
== S‘ ‘Dmn(s,t)[dsdt .

[0, w]x[0, w]

If the sequence {Dmn(s, t)} is transformed by some summability
method and we denote this transformed sequence by {Kmn(s, t)}

then the sequence of constants

4

— SS ‘Kmn(s, t)|dsdt
" [o,w]x[o0,]

are said to be the Lebesgue constants for that summability method.
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Without loss of generality we may assume the integration is over the
set (0,m]X (0,7] because the points deleted form a set of measure
zero.
We investigate these constants for the Quasi-Hausdorff sequence
to sequence transformation given in Theorem 2.33, when g(u,v) is

continuous at the axes.

Definition 4.2. For the Lebesgue constant L*(m,n;g) of

the Quasi-Hausdorff sequence to sequence transformation

H*(Hm‘i'l,n‘i'l) we have
(v 0]
N k. £ mtl
Kn’m(s’t) = Z (m)(n)Dkﬂ(s’t) S‘S u
k,2=m,n [0,1]x[0,1]
x (1 —u)k'mvnﬂ(l —v)jZ _ndg(u,v),
where
_ sin(k+1/2)s sin(£+1/2)t
Dk,ﬂ(s’t) © 2sin(s/2) 2sin(t/2)

We now consider this term K n(s,’c) just defined. Since the
m.

sine function is the imaginary component of the complex exponential

function we see that Dk 4 (s,t) can be written
ei(k+1/2)s ei(ﬂ+1/2)t
Dk,ﬂ(s’t) = Im{ 2 sin(s/2) } Imi 2 sin(t/2) }
i(k-m)sti(m+1/2)s i(f -n)t+i(ntl/2)t
= Im{ } Im{% }.

2 sin(s/2) 2 sin(t/2)
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Thus
i(m+1/2)s )
k-m . £-n _ el is . k-m
(1-u) (1-v) Dk,l(s’t) = Im{ S sinls/2) sin(s/2) ((1-w)e™ ™) }
ei(n+l/2)t it. £ -n
X Irn{'—‘—‘——2 sin(t/2) ((1-v)e ) 1.
Hence
K (s,t)
m.n
o0
- ) (0 b a0 (s t1kgtam
k,?=m,n [0,1]x[0,1]
< m+1 n+l k (i(mt1/2)s is k-m
= Z SS u v (m)Im{ 2 sin(s/2) ((i-u)e ) }

k,2=m,n [0, 1]x{[0, 1]

i(nt1/2)t

£ e
() Im{3 sin(t/2)

it f -n

Y ((1-v)e ) tdg(u, v).

Now let

P:-q
£ (uyv) = Z Im{<;><<1-u)els)k‘m}um“

k,;£=m,n

% m{()((1-v)e™ T

for (u,v) belonging to [0,1]x [0,1].
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Then
P-q
- g - +1 +1
It (] < Z KOG 1w o T <
Pq - m n
k,£=m,
for all p,q,u,v.
Furthermore
ntl
— Im{ } Im{ ke :
+ +
1s)m 1 (l—(l—v)elt)n 1
= f(u,v) for all (u,v) in [0,1]x[0,1].

Therefore by the Bounded Convergence theorem we have

w0 e (0w

P+47 ® 19 1]x[0, 1] [0,1]x[0, 1]

Thus we may write

m+l ntl
Kmn(s,t) gg "y
[0, 1]x[0,1] 2 sin(s/2)2 sin(t/2)

“ Im {ei(m+l/2)s 1 +1}
(1-(1-u)e )™

i(nt1/2)t 1 }
X Im 4 e ; dglu,v).
{ (l—(l—v)elt)n+l

Now let s = 2z, t=2w, so that
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m+l nt+l ‘ ei(21n+l)z
- u v
Kmn(s’t) h S 2 sin z 2 sin w Im i2z. m+1
[0, 1]x[0, 1] (-i-we )
e'1(211+l)w
X Im I — dg(u, v).

(1-(1-v)e )

Definition 4.3. The functions P"Py: 9,09, are given by

iql(z’u) l
pl(z,u)e = -
(1-(1-u)e”?)
iqz(w,v) 1
pz(w,v)e - 2iw

when 0 < z,w <mw/2.

We note that the functions 9,9, have values in [0,7/2],

and also if

then

This follows by considering the real and imaginary parts of the above

definition. For

implies
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cos
l - cos 2w +t cos 2w =

(a)

sin
sinZw—tsinZw=—-—ci

. (b)
p
Squaring and adding yields
(tp)© = - -
- 2 4(1-
2+ 4(1-t)sinw 1+ (2 t) cinlw

The right hand side is easily seen to be not larger than one Hence,

since p>0 and t >0, we have

0 <tp < 1.

2
The equation for (tp) above implies that

up1=l if and only if u=1 or z=0,

VP, = 1 if and only if v =

t
it
o}
H
€
I
(@]

Using the above definition in K n(s,t),_ we can now write

_ 1
Kmn(s’t) - SS 4 sin z sin w

[0,1]x[0,1]

% (upl)m+l[sin((2m-l)z+(m+l)ql(z,u))]

% (vp,)™ ! [sin((2n+1)w + (n+1)a,(w, v)) dg(a, v).
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Definition 4. 4. The function ¢(M, z,u, Py ql) is given by

d(M, z, u, Py ql) = (upl)M[(sin(ZMz+Mql))(cot z-1/z)- cos(ZMz+Mq1)]

M being a positive integer, 0 <z <w/2, 0<u <1, P, and 9

as defined in Definition 4. 3.

We note that ¢(N,w, v, Py q,) 1is then given by
N, .
(sz) [(Sln(ZNw+Nq2))(cot w-1/w)- cos(ZNw+Nq2)]

where P,:d, are as defined in Definition 4.3, N be a positive
integer, 0 <w < mw/2, 0 <v<l
Since (cot s-1/s) is bounded on [0,w/2] this function $ is

also bounded for all values in its domain.

Proposition 4.5.

1 m+l, .
5‘81 m (upl) {81n((2m+1)z+(m+1)q1(z, u))}
[0, 1)x[0, 1)
X (vp )n+1{sin((2n+1)w+(n+l)q (w,v))dg(u, v)

2 2

= gg (upl)m+1(vp2)n+1{sin(2(m+l)z+(m+1)q1(z,u))}
[0, 1)x[0, 1)

X {sin(Z(n+l)w+(n+1)q2(w, v))}{;l’v;}dg(u,v) +



+ SAS ¢(m+l,z,u,pl,ql)¢(n+l,w,v,pz,qz)dg(u,v)
[0, 1)x[0, 1)
sin(2(m+1)z+(m+1)q. (z,u))
m+l 1
+ SiSi (upl) -
X[

[0, 1)x[0, 1)

X ¢(n+l s W, V, pz’ qz)dg(u,v)

nt1 sin(2(n+l)w+(n+l )qz(w, v))
(VPZ) -

[0, 1)x[0, 1)
X ¢(m+l, z,u, Py ql)dg(u,v) .

Proof. Using the expansion for sin(A-B) we see

sin[(2m+1)z+(m+1 )a, Jsin[(2n+1)w+(n+1 )qz]

= {sin[Z(m+l)z+(m+l)ql]cos z - sin z cos[Z(m+l)z+(m+l)ql]}

X {sin[Z(n+l)w+(n+l)q2]cos w - sinw cos[Z(n+l)w+(n+1)q2]} )

(let 2(m+tl)z - (1rn~l-l)q1

Thus

sin((2m+1)z+(m+1 )ql)sin((2n+l )w+(n+l)q2)

sin z sin w
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=M, and 2(ntl)w + (n'f-l)q2 = N).

= sin(M)sin(N)cot z cot w - cos({M)sin(N)cot w - sin(M)cos(N)cot z

+ cos(M)cos(N).

Call these four terms A,BRB,C,D.
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Observe that

cot z cot w = {1 /zw} + {cot z - 1/z}{cot w - 1/w} + {cot z - l/z}{l/w}

+ {cot w - 1/w}{l/z} .

Making this substitution in A yields four new terms, labeled

AI’A JA A .

23 4

We now work with the term B, adding and subtracting 1 /w

from cotw, yielding

-cot w = {-cot w + 1/w} - {1/w} .

This substitution in B yields two new terms, denoted by Bl
and BZ.

In the same manner we work on C to yield two new terms

C and C2 upon substituting
-cotz = {-cotz + 1/z} - {1/z} .

If we multiply the terms AZ’ Bl’ Cl’ and D by

m+l n+l
(upl) (sz)

and integrate over the half open cell [0,1)x [0,1) we find
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gS (upl)m+l(sz)n+l{sin(M)sin(N)[cot z - 1/z][cot w - 1 /w]

[0, 1)x[0, 1)
+ cos(M)sin(N)[-cot w + 1/w]
+ sin(M)cos(N)[-cot z + l/z]

+ cos (M)cos(N)}dg(u, v)

= SS ¢u(m+l,z,u,pl,ql)¢u(n+l,w,v, pz,qz)dg(u,v).
[0, 1)x[0,1)

Denote this integral by El.

In the same manner working with the terms A4 and C2

yields the integral

By= (0 p ™ 22 i1, w v, py, g, v)

[0, 1)x{0,1)

while A3 and B2 yield

E3 = §§ (vpz)n+l sig(N ) ¢(m+l, z, U, pl,ql)dg(u’v) .
[0, 1)x[0, 1)

Hence

= + + +
A+B+C+D Al El EZ E3,

which is the desired result.



Using Proposition 4.5 we can now write L*(m,n;g) as

L*(m,n;g) = —45 gSI

[0,w/21x[0,n /2]

ntl sin{M)sin(N)
up VPZ) pAV
(o, 1><[o 1)

+ ¢(m+l, z, U, Pl, ql)¢(n+l’w’ V, PZ’ qZ)

m+1 sin(M)

+ (upl) ¢(n+l’ W, V, pz’ qZ)

ntl sin(N)

+ (vpz) -

¢(m+l’ z,u, pl’ ql)} dg(u,v)

sin((2n+1)wt+(n+l)q,)

2

. S (sz)n+l sin(2m+1)z

sin z sin w

x {dg(1,v)-dg(1,v)}

‘ m+l! sin((2m+l)z+(m+l)ql sin(2nt1)w
+ (upl)

sin z sin w
[0, 1)
X {dg(u, 1)-dg(u, 1 )}
SS sinGmtl)z sin(Cntbw 4o )l dzdw (4-30)
| sin 2z sin w g ’
‘ ({1}

| We note that the variables u,v were restricted to the cell
[0,1] x [0, 1]. If we further restrict the variables to the cell
[6,1] x [s, 1] then L3*(m,n; g) is transformed into the quantity that

we shall term Lz(m, nyg). Thus L*m,n;g) = ng(m, n; g).
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We shall estimate L:(m, n; g). To work with these estimations

we introduce two lemmas by Ishiguro [11].

Lemma 4.6. If 1 <77‘L < e, then

2 2

lru/ﬁr

rz.ur <7;z

for sufficiently small 0 <u and 0<r <1l

We note here that equality would hold if either r =0, r = 1,
or u=0. Thus

2 2

8(l-u)z /17 u

(wp)* <7m” :
for sufficiently small z >0, 1 >u >0

and
2 2

8(1 V)w /77

<
(sz) 772 )
for sufficiently small w >0, 1 >v >0.
Lemma 4.7. For small u>0,
3
qj(u,r) = 2((l-r)/r)utO(u”) ,

uniformly if 0 < 6 <r <1, fixed 6.

Here Oiqj<_1r/2 if 0<r <1, andagain r =1 or

u=0 imply q=0 by the comments following Definition 4.3. Thus

for our needs
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ql(z,u) =2((1-u)/u)z + O(z3), 0<u<l, small z >0, (4-31)

2((1-v) /Iv)w + O(w3), 0<v<l, small w>0. (4-32)

ft

qz(w, v)

For convenience in Propositions 4. 8-4. 13 we will often replace

mtl by M, ntl by N.

Proposition4.8. If 1I=[0,1)x[0,1) or even [6,1)x[6,1),

0 <&<1, then

§§ I S‘S o (M, q,u,pl,ql)q)(N,w,v,pz,qz)dg(u,v) dzdw
[0, m/2]x[0,w/2] 1

= o(ln M 1In N).

Proof. We have already seen that the function ¢ is bounded

for all values in its domain, thus the integral is also bounded.

Proposition4.9. If 0< 6 <1, then

. sin(2Mz+Mgq )sin(2Nw+Nq_, )
gS dZdWl SS (upl)M(vPZ)N{ b AV : -

[0, w/2]x[0,n /2] [6,1)x[8,1)

ZzW

) sin(2Mz /u)sin(2Nw /v)} dglu,v)

= Sg }A-Al,ldzdw

[0,w/2]x[0,w /2]

= o(1)
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Remark. The notation lA—A and any similar notation is

.|

for future reference.

Proof. Choosinga ¢ so that 0 < z,w <o implies Lemma
4.6 holds and a & so that Lemma 4.7 holds we break the integra-
tion over [0,w/2]x [0,7/2] into integration over the four subcells
[O,cr] X [O,cr], [0,0] % [cr,Tr/Z], [cr,Tr/Z] X [O,cr] and
[cr,Tr/Z]X [cr,Tr/Z]. We term these subcells C CZ’ C C

Let us denote the quantities 2Mz + Mql, 2Nw + qu by a
and P respectively. Then

{ sin a sin B sin(2Mz /u)sin(ZNw/v)}
z w ) ZW

_ {sin ﬁj{sin a in(2Mz /u) ) +{sin(2Mz/u)}{ sin B ) sin(ZNw/v)} '

z z z w w
We make the above substitutions for the integrations over the first
three subcells, calling the resulting integrals Tl’ TZ’ and T3.

Consider first T 1

g . . . 2 /
T, < SSdzdw SS (ap Mvp, (2R L) (sin e sinlZMziu),
[6, 1)x[5, 1)
X dglu, v)

+§§dzdw, SS (upl)M(vpz)N(iﬂz—M) X

z
[5, 1)x[6, 1)
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% <sin _ sin(Zvljw/v) ydg(a, v)

W

11 12 °

We use Lemma 4. 6 for a bound on the quantities (upl) and

(vpz), and since 0 < z,w <o we can use Lemma 4.7 to write
3
a = 2Mz + M{2(1/u)z-22+0(z")}
3
= 2M{(z /u)+0O(z" )}
and
3
B = 2N{(w /v)+O(w™ )} .
Hence
1228 < Moy < & oW, s <v<l
and
1, . . 1 3. 2
I ;{s1n a - s1n(2Mz/u)}| i;{(M)O(z )} = (M)O(z") as =z — 0.
‘Therefore

2 2

S.S.dzdw ﬁ{m (1-0)(M)z” /r° o? 7)?-4(1-v)(N)w /%y

% ‘s1nﬁl| sin a sin(2Mz /u) } ‘dgu v)|

V4

2

Sgdzdw SSM -0z e (30,2

-4(1 v)(N)wz/Tr VZ{Z(N)

: 140 (w9} dglu, v)| -



2,2 2
Now 77Z-4(1-u)(M)a Tu {(M)3O(z2)} tends to zero as M

tends to infinity for all z not zero, while at z equal zero the

product is zero;

2,2 2
AN 20D ) )

m

tends to zero as N tends to infinity for all w not zero.

Using Lebesgue's theorem on dominated convergence we find

— — 0
T11 0 as M,N

Similar reasoning yields

— — 0
le 0 as M,N

and therefore

Considering the integration over the second subcell C2 we find

‘ M N, si i in(2Mz/
T2 = SSdZdW’ SS tap, ) (vpy) {'sﬁﬁ}{s;na' = - gl )

C2 [&, 1)x[s, 1)
+S‘§dzdwl Sg' (“p1)M("pz)N {sin(Zzl\/Iz/u)}
C2 [6, 1)x[5, 1)
% { sinf Sin(ZNW/V)}dg(u,v)
W W
=T +T

21 22

115
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Using the same estimates as previously we easily see that

2 2
ﬁ{(l-u)z(M)z ‘ (I—V)Z(N)w }

' 2
m u v
T21 < SSdZdW SS})Z
C2 I

x {2 }M0 (=) [ dgla, v) |

and

o e (O
C, I
X {Z(M)%}{f’}ldg(u,V)l :

Since by the Dominated Convergence Theorem both of the integrals on
the right hand sides tend to zero as M, N tend to infinity we see

that the second integration is also o(l),

T2 = o(1).

In the same manner the integration on the third subcell C3

satisfies

For the fourth and last subcell C4 we find

M N sinasi in(2Mz /u)sin(2NwhA
T4 < S.S‘dzdw S.§ (upl) (vpz) {SIHZ?NSIHj‘ sin(2Mz uz)\f’ln( W )}
Cy [5, 1)x[5, 1)

X dglu, v)
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integrals are

and
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T, < SSdZdW SS (up, vp2 {““Hdgu ),

T4 0

C

as

ol

[6,1)x[&,1)

M,N — ©, by bounded convergence. Thus all four

) and the result is established.

Proposition 4. 10.

§§

dzdw’ §§ (upl)M¢(N,W,v,p2,q2)

[0,w/2]x[0,w /2] [s, 1)x[6, 1)

5

sin(ZMz-I-Mql
x | : }dg(u, v)

V4

|Cl|dzdw

[0,w/2]x[0,w /2]

H

o(ln M 1In N)

SS dzdw SS (vpz)Nq)(M, Z,u,p;; ql)
[0,w/2][0,w /2] [5, 1)x[8, 1)
sin(ZNw-l'qu
x { }dg(u, v)
W
= S‘S |Dl|dzdw

[0, w/2]x[0,w /2]

= o(ln M 1lnN).
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Proof. We will prove the first assertion, the second is proved
in a similar manner. The function ¢ is always bounded and tends

to zero as N tends to infinity for w positive, while

sin(2Mz+Mq, )
1
‘ < 2M + O(ZZ)
z - &
for small z, whereas for z >0¢ the bound is 1/o.

Thus choose a & so that Lemma 4.7 holds for (upl), and a

¢ suchthatif 0 <z <o then Lemma 4.6 holds.

Then
S‘g dZdW‘ S\S (upl)Mq)(N, W, V, pz’ qz)
[0, w/2]x[0,n /2] [6, 1)x[6, 1)
s'1r1(2Mz‘|'Mq1
x { n }dg(u,v)
< SS { S 4(1-u)z (M)/Tr u2
[0,0]x[0,w /2] ~[6,1 ><[6,1 }
X O(l){g%/t‘ +O(z2)} Idg(u,v)‘} dzdw
* { (1){(‘)_1'}‘dg(u,v) [} dzdw
(o, Tr/2]>< 0,m/2]

= o(ln M 1In N).
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Proposition 4. 11.

SS l { sin( 2m+l)z+(M)ql sin((2nt+1)w)
dzdw S‘g ; .
sin z sin w

[0,w/2]x[0,7/2] [5, 1)x[s, 1)

_sin(2(M)z ) Sin(Z(N)le(up Magla,v)
1 2

gg iEl-Ezidzdw

[0,w/2x[0,n /2]

1

= o(ln M 1In N)

and

S‘S' dzdw' gg Sin((znfl)wﬂN)qz) sin((?mﬂ)z)
sin w sin Z
[o,n/2]x[0,w/2] {1}x[ &, 1)

W

sin(2(N)w &) sin(ZZ(M)Z)} (vpz)ng(u,V)

= gg }Fl-FZ}dzdw

[0,w/2]x[0,w/2]

= o(ln M In N)

Proof. Consider that with a = (Z2Zmtl)z + Mql, B =2Mz + Mq1 )

we have

sin a SlJl = | sin a sin a + sin a s1nﬁ_i
sin z B V4 sin z B Z V4 B Z
. 1 1 . .
| <_‘51nal| . -—‘l+—|s1na-51nﬁ| <
| sin z Z
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< O(1) +=0(1)|sin((a-B)/2)]

- V4

< O(1) + O(1)} a-B| /z
< O(1) + O(1/z)z = O(1) .
Hence
S%n o _sinf, O(1), uniformly in z,w.
sin z Z
Also
| sin((2n+l)w) sin ZNwl
sin W W

_ l sin((2n+1)w) ) sin((2n+1)w) + sin((2ntl)w) sin ZNw '

sin w W W W

1
sin w

< Isin(2n+l)wl l - iw I + ’\i‘/_l sin(Z2nt1l)w-sin ZNWI

< 0(1) +viv0(1)|sin(w/2)| = O(1) .

Thus

sin((2ntl)w) _ sin 2Nw O(l), for all z,w (A)

sin w W

Choose ¢, & so that Lemmas 4.6 and 4.7 are true. If

3
0 <z<oc then q1:2(z/u)—2z+0(z ), §<u<l, and

1

V4

l sin B ) sin(2(M)z /u) I < O(l)‘

Z Z

-2(M)z /u )‘
2

sin(

< O(l/z)(M)O(z3)

(M)O(z") .
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Thus
s'1n a _ sin(2Mz /u) n (M)O(zz) + O(l), for all w. (B)
sin z z
If o< z< /2 then
| sina sin(2(M)z /u) | is bounded
sin z z
or
s%n a _ sin(2Mz /u) + O(l) for all w. (C)
sin z z

For 0<z<g0, 0< w< w/2 we find by using (A), (B) that

sin a sin (2nt1l)w

sin z sin w
_ sin(2Mz /u) sin 2Nw sin(2Mz /u) 2. sin 2Nw
= Z - +0(1) — (M)o(z" ) —
+ (o(z%) + o(1) BEERE 4 o(1) (D)

while for ¢ < z <w/2, 0< w < w/2 we have

s?n a 51n€2n+l)w - s%n a sin 2Nw n O(l)}
sin z sin w sin z w
_ sin a sin 2Nw + o(1) sin a ' (E)

sin z W sin z
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Thus

gg IEl—EZIdzdw

[0, w/2x[0,w/2]

= SS lEl-EZSdzdw + SS |E1-E2!dzdw

[0,0’]X[O,W/Z] [(r,Tr/Z]X[O,Tr/Z]
< SS dzdw{ SS o(1) | sin( ZMz/u | 1)M|dg(u,V)|
fo,ox[0,w/2] [6, 1)x{1}
S‘S‘ (M)0(z) lf—iﬁwﬁ\l"l‘ (up )™ dglu, v)|
(6, 1)x{1}
SS O(z )(up,) ldg(u, v)|
[6, I)x{1}

SS oy 1528wl oy M) gg(a,v)]

[6, 1)x{1}
S?S‘ O(1)( up, ) idg(u,v)l}
[6, 1)x{1}
+ dzdw{ sm asin 2Nw + 0(1) s?n a
51n zZ W sin z
[o, Tr/Z]X[O /2] 6, 1{1}

W

< (0 aawd (§ oo Mw ) Magawl

[0,0’]X[O,TT/Z] [8, x{1}

in 2Nw sin(2Mz/ M
_sin w sin{ . 4 u)l(upl) ldg(u,v)l:}
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§ leintl gy } { ou?
[

[o, 1] [1, Nw] 0,0)

{ 1)M|dg(u,V)9 az
[6,1 ><{1}

i gg { )(upl)Mldg(u,v)I} dzdw
6, 1)x{1}

[0, 0 ]x[0,w /2]

+{ S Ls'itiﬂdﬂ } S. 1)Var(g)dz + O(1)
[0,1] (1, NTr]
+ { S’S‘ (upl)M {1 sin\:Nw ¥ :i: ] sin(ZzMz/u)I
[o, Tr/2]><[o w121 {6, 1x{1}
+ O(1) siln - |dg(u,v)gdzdw,

(where t = 2Nw has been used)

__o(l)+O(1nN)+o(l)+O(lnN)+{S. Ls'i:t de + X %dt}
]

‘[0, 1] [1,Nw

SS O(l){ S.f (upi.)MIdg(u,v)gdz

[o,m/2] [6, 1)x{1}

+ O(1) §S‘ dzdw

[o,m/2}x[0,n/2]

< o(ln M In N).

The second result is established in a similar manner.
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Proposition 4. 12.

+1) Z2ntl
§§ dzdwl S\S {51n (2m+1l)z sin(2ntl)w
sin z sin w

[0,n/2]x[0,n /2] {1}x{1}

) sin 2Mz sin\:Nw }dg(u,v)

Sg 1G1-G|dzdw

[0,7/2]x[0,w /2]

1

= o(ln M 1n N}.

Proof. Since

! sin(2kt1)z

sin 2(k+l)z|
sin z Z

= O(1) uniformly for all k,z

we can write

sin(2'm+1)z S'ln'(2n+l)w _ {sin 2Mz+o(l)}{sin 2Nw +o(1)}
sin z sin w z w

sin 2Mz sin 2Nw

z w
ro(1) sin 2Nw , 8in 2Mz Y+ 0(1) .
w z
Thus
+ +
S:Sz dzdw' Sg {51n(2m 1)z sin(2nt1l)w
sin z sin w
[0,n/2]x[0,w/2] {13x{1}
_ sin 2Mz sin 2Nw }dg(u, v) <
z w
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< SS dzdw S‘S' o(1){ sinvaw + sinZZMz +1}dg(a, v)
[0,w/21x[0,w /2] {1}3x{1}

< O(1) S.S { |sin ZNW! + lsin ZMﬂ + 1)}dzdw

- W z

[0,w/2]x[0,w /2]
{ S. lsnl ZNWI S lsin Zle dz + l}
z
[0,n/2] [O,Tr/Z]
(making the substitutions w = t/2N, z = t/2M we have)

l)£§ sitx:ltl dt + S\ [sitntl dt + S !sitntl dt

0, 1] [1,Nw] [0, 1]

S J——J—Sft dt + 1

[l,MTr]

1{O(1) + In(Nw) + 0(1) + 1n(Mmw) + 1}

o(ln M 1n N} .

Proposition 4. 13. With Py 9Py dpo and g(u,v) as

previously defined, we have

1
Lé(m, n;g) = —45 S.S. dzdw ’ S.S (upl)m+l(vp2)n+

™ lo,w/2[0,w/2] [6, 1)x[5, 1)

sin(2(m+1)z/u) sin(2(ntl)w /v)
x z w

X dg(u,v) | + o(ln M In N).
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+

5

126

Proof. From the definition of Lg((m, n; g) we have

V4

sin(2(m+1)z+(m+1)q))
SS‘ (ap, m+l(vp )n+l 1

[0, w/2x[0,w/2] 6, 1)x[6, 1)
sin(Z(n+l)w+(n+l)q2)
X dg(u, v)

W

gg ¢(m+1,z,u,p1,q1)¢(n+1,w,v, pz,qz)dg(u,v)
[6,1)x[8,1)

¢(ntl,w,v, pz,qz)dg(u, v)

V4

SS ot 1 sin(Z(m+l)z+(m+1)ql)
(up.)

[8, 1)x[&, 1)

nt1] sin(Z(n+l)w+(n+l)q2)
gg (sz) - ¢(m+l,z,u, plfql)dg(u,V)
[6, 1)x[8, 1)
:si'n((2n+l)w+(n+l)q )
S‘S‘ sin(2Zm+1)z (vp )n+l . T dg(u,v)
sin z 2 sin w

{1}x[s, 1)

' m+l sin((2m+l)z+(m+l)ql) sin{(2nt+1l)w
(up1 dg(u, v)

sin z sin w

[8, 1)x{1}

SS sin{2Zm+tl)z sin(Z2ntl)w

{1p{1}

dg(u, v)

S'S' ( )m+l( )n+l sin(2(m+1)z /u) sin(2(nt1)w/v)
up VPZ z w
[6, 1]x[s, 1]

X dg(u, v) dzdw <




<L
= 2

v
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6 (] 1 o
[0,w/2[0,w /2] [6, 1)x[6, 1)
sin(Z(m+l)z+(m+l)ql) sin(Z(n+l)w+(n+l)q2)
X - o
m+1l ntl sin(2(m+1)z /u)
- (upl) (vpz) .
51n(2(n+1)w/v) dg(a, v)
W
SS $(m+1, Z, U, P q1)¢(n+1,w,v, P, qz)dg(u,V)
6 l)X 5, 1)
11 sin(Z(m+l)z+(m+l)ql
S\j (upl)m 2 ¢(n+l,W,V, PZ: qz)dg(u’v)
6 l)X 5, 1)
11 s'1n(2(n+l)w+(n‘|'l)q2 .
gg vp2 ! - ¢(m+l,z,u,pl,ql)dg(u,V)
[6,1)x[6, 1)
SS up ) sin z sin w
[, 1)x{1}
sin(2(mt*1)z/u) sin(2(nt+1)w) dala,v)
B z W gl
S'S ((sin(@ntwhintla, oo mt),
Vp2 sin w sin z
{1}x[ 8, 1)
sin(2(nt1)w/v) sin(2(mt1)z) dela, v)
- w 2 g 3
S‘S\ sin(2mt 1)z sin('2n+l)w ) sin(2(mt))=z sin(Z(n+l)w]dg(u;v) dz dv
sin z sin w z w
{1)x{1}

<
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4
<=5 S‘S {]A-A1|+|B|+|Cl|+|Dl|+|El—E2|+Fl-F2|
" [o,w/2[0, /2]
+ IG—Gll}dzdw

< o(ln M 1n N)

by Propositions 4.8, 4.9, 4.10, 4.11, and 4.12. (Note: M = m+l,

N = ntl).

st
3

We shall now use this representation of "Lé(m, n; g) to develop

the result

L:(M, N; g) = 4—2 fS l gg sin(z /u) sin(w/v)dg(u, v)
T, NMIX[1,NN] [, 1X[6, 1] |

X (1/zw)dzdw +"'IZ‘I SS dg(u,V)'

T{x{1}
+ % ln M ‘81 gS‘ —X*Sin(y fo) dg(u,v)[dy
T [1,2e8%NN] {1}x[s, 1]
+1n N SS\ l gg E'i"n‘)("m‘)dg(u,v) dy

[1,2e 65N M] [6, 11x{1}

+ o(ln M 1n N).

To this end we consider the representation of L*(m, n;g) given in

Proposition 4. 13 and replace mtl by M, ntl by N. Then
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Lz(m,n; g) = L;;(M-l,N-l;g)-

Straight forward estimates show that

|LE(M-1,N-1;)-LEM, N; g)| = o(in M 1n N).

Because of this equivalence for large M, N we shall work with
L:g(M-l, N-1;g) 1in order to simplify some of the computations.
We next divide [0,w/2]x [0,w/2] into the nine subcells given

in the following diagram:

W
(0, 3)
5 6 9
A
(O’\/'N‘ &%)
3 8 7
€
1 2 4
\ z
€ st A... sl Ir—
6
W o —_—™— < < < .
where 6 N2(1-6) 0<86§<1 and O € 1 A. We further

restrict 0% to satisfy 0 < 6% < min(l/Ze,Tr'\/_I\Z/ZA,TrN/_l\T/ZA),

2A6% > max(1/N'M, 1/NN), in order that the estimates in the
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following propositions are valid for large M,N. The estimates made
below hold for M, N sufficiently large. For convenience the
quantifier "for M, N sufficiently large" will often be suppressed.

We will estimate L:(M-I,N-l; g) on each of the nine subcells.
We also denote the portion of the integral representation of L6
given in Proposition 4. 13 over the subcell (i) by the symbol Ii and

the points of the subcell by Si.

Proposition 4. 14.

I1 :—42 Sf ‘ gf sin(z /u)sin(w/v)dg(u, v) dz dw
z W
T O[1L,NMK[1,NT] 6, 1]x[8, 1]

+ o{ln M In N) + "% Var(g)e2 ln M 1n N.
T

Proof. We first define Ha b by the following

’

HM—l,N—l(Z’W) = S (upl)M(vpz)Nsin(ZMz /u)sin(2Nw /v)dg(u,v)-

[s, 11¥[ 8, 1]

From work at the beginning of Chapter 4 we note that

M/2

1
(ap™ =



N/2
N 1

(vp,)
2
2 4(1-v)sin w

2
v

1+

For (z,w) in subcell S1 and M,N >4 we have

lz(vpz)N 21-62 >0
Thus
| (up )M‘ll 62, I(va)N-ll < 62, and ‘(upl) (vpz) -1] < 2
Hence
l M 1, N- 1(z w)l— ( §§ sin(ZMz/u)sin(ZNw/v)dg(u,v)‘,
[5, 1}x[s, 1]
< SS‘ up1 va)N—l}sin(ZMz/u)sin(ZNw/v)dg(u,v)
(s, 11X[8, 1] "
< gs l(upl)M(vpz)N-ll ldg(u,v)|
[6,1]x[5, 1]

2
< 2¢ Var(g),

or if we replace the sin(2ZMz /u) by (ZMz /u) the bound becomes

262 Var(g)(2Mz /6) .
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Also for all z,w >0 we have

lHM-l,N—l(Z’W)I -( S\g sin(2Mz /u)sin(2Nw/v)dg(u, v) l
(6, 1]x[8, 1]
< S‘S |(upl)M(vp2)N—l| |(2Mz/u)l I(ZNW/V)| |dg(u,v)|
[6, 1]x[6, 1]

S‘S. (2Mz /u)(2Nw /v) | dglu, v)|
[6, 1}x[6, 1]

S8MNzw

< Var(g).
— 2

5
So

4 dz dw

Il ) 11'2 §|HM'1’N'1(Z’W) z w
Sl
dz d
:—42 §§[ gg sin(2Mz /u)sin(2Nw /v)dg(u, v) zZ WW EO
T Sl [6’ 1]X[6’ 1

where

w T w
Sll SlZ

‘Eoi <_% Sg(sMNZW/éz)Var(g) Eiz_é_é_\ﬂ + % Sg 262 Var(g) %@_@_\_Y
™

V4

- SS 2¢% Var(g)(2Nw/5) 2% £ gSZezvar(g)(ZMz/a) dz dw
2 zZ W TrZ

™
513 S 14

132

A\



where
S, ° [0, e8%/M] x [0, e8%/N],
S, = le8%/M, c6xNM] x [¢6+/N, ¢ 6 /NN],
S5 = [e 6%/M, € 6 /NM] X [0, e d%/N],
$14° [0, e8#/M] X [e6%/N, € 6%/NN]

or

4 *e 6%
lEol < ? {(8MN/62) Var(g)[ %6'1\?— ]
+2¢° Var(g)[ln Ml/2 In N’ /2]
+ 2% Var(g)@n/5)lin M* 2 22 )
+ 22 Var(g)(2M/6)[ 61\2* {1n Nl/z]}
2
2e
< —Z‘Var(g) In MInN +o(ln M 1n N).

v

Next observe that

133

ff . ( 55 sin(2Mz /u)sin(2Nw /v)

[eox/NM, 1/2NMX[e §/NN, 1/2NN] [6, 1X[6, 1]

X dg(u, v)

< Var(g){ln 2¢ 6*]2 i

Making the change of variables Z = 2Mz, W = 2Nw, we then see the

following:
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Sg l SSi sin(Z /u)sin(W /V)dg(u,v)

[2NMe 65, NMIX[2N N e 6%,NN] [6, 11x[6, 1]

. 4Z aw

Z W
2
< Var(g)[ln 2¢ &+
For convenience let

M (2, W) ‘81‘81 sin{Z /u)sin(W /v)dg(u, v)-
(6, 11x[5, 1]
Then we can write
4 ( dz dwW
== = —+ :
1= VS lAMN(Z,W)l = w T Eo

[0, 2N Me 6%X[0, 2NN € 6%]

For large M,N and fixed ¢,d%%* we see that

|
4 dz dw
‘ n? SS ey
; [1,2NMes*X[1, 2N Ne 6%]
‘ 4 dZ dw
=2 S‘g lAMN(Z’W)l Z W

| ™ [0, 2NMe 55x[0, 2NN € 5%]

We now integrate AMN(Z, W) over [1,NM] x [1,'\/-N] by the

following decomposition, where we let ".. ." stand for the quantities

behind the integral signs.
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508

T [1,NMX1,NN]

= ) §)

T [1,2NMe 6%X[1, 2N Ne 6%) [1,2NMe 6*X[2NN € 6%, NN]

R S |

T [2NMe b5, NMX[1, 20T e 6%] [2NMe 6%, N MX[2NN € 6%, N N]

:‘Nl'p

and we-shall call these integrals

= A+ +A, .
Aj=A tA TA TA

Estimating AZ’ A3, A4 we find

4 dz dW
Al <5 SS (1)) Var(g) 5 S

T [1,2NMe65X[2NN e 6%,NN]

|
< O(1) In M1n(1/2¢8% = o(ln M1n N) ,

while in a similar fashion

]A3| = o(ln M 1n N)
and

18,1 <& Var@hnzes9) = olin M1nN),

™

as was just shown after making the change of variables.



Thus we can write

§§

[0, 1x[0, 1] [0, I)X[1, 2NN e 6%]

(o]

1
S

N
ﬂN‘,p

) |
—_— ... 1 + .
t SS A TE,

T [1,2NMe 6xx[0, 1]

If we denote the first three integrals as Bl’ BZ’ B3 then

symbolically

(o]
I

B, +B,+B, + A —AZ-A

- +
1 1 2 3 0 A4E

3 0

+
AO ES’

it

where

B ] < 1B |+ [B,] + Byl +[B] + 18,0 + 1450 + [,

We already have bounds for EO, AZ, A3, A4. Thus we now find
4 Z W dzZ dw
< — e sm— — ———
B, | =2 S 5 5 varle) 7w
[0, 1x[0, 1]

136
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4 Z dz dw
|B,| <= Sf = (1) Var(e) 5 55
™ o, 1X[1, 2NN e 6%]
4 1 -
< ) 'gVar(g)O(l) InN = o(ln M 1n NJ),
m
and similarly
4 1 ;
|B,| < =5 5 Var(g)O(1)1n M = o(ln M 1n N).
i

Combining these estimates yields

S

T, NMKX[1,NN]

. dZ dW
S‘S sin% sin%r'dg(u,v) — —+ K

[6, 11x[6, 1]

where

2
2
lES‘ < Var(g)—‘%ln M In N + o{ln M 1n N).

ki
This is the desired result.

Proposition 4.15.

I.=0(n M1nN), and I (ln M 1In N)

2 3 °

Proof.

4 ” .
IZ Y SS !HM-I,N-I(Z’W)‘(I /zw)dzdw =
[e8%/NM, Asx/NMX|[0, e6>:</q'ﬁ]_. i
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S

T [eo%/NM, A8 =/NMIX[0, ¢6%/N]

: )

[e6% /N, A6*/NMIX[e8%/N, 6% /NN]

<% gS‘ (2Nw /6zw) Var(g)dzdw
T [e6*/NM, A& /N[0, e6%/N]

+ gS‘ (1/zw) Var(g)dzdw
[e6% /N M, AS* /N MX[ed%/N, e /INN]

< '% Var(g){z—;\I (f%) In(A/e) + (1/2) In(A/e) In N

ki

= o(ln M 1ln N).

I (In M1n N) follows by symmetry.

37 0©

Definition 4. 16. We define the functions q)l(A), q)Z(A), E(t),

E(t) = exp(-4(1-1)(a6)% /t%n°)
¢ (A) = Sf E(u)|dglu, v)| ,
[6, 1)x[8, 1]
¢,(A) = Sf E(v)|dg(u, v)|

[6, 11x[6, 1)
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Py (A) = ﬁ' E(v)|dg(a, v)| ,
{18, 1)

P, (A) = SS‘ E(u)|dglu, v)| ,
[6, {1}

where g(u,v) 1is usually defined.
Note that ¢.(A) ~ 0 as A-—~o, (A)™0 as A — o,
i i

Proposition. 4. 17.

(l/y)dy

14 = —4? In M g [ S.g sin(y /v)dg(u, v)
T [1, 265N N] {1}x[8, 1]

+ O(ln M In N){¢1(A)+e2} + o(ln M 1n N).

; 15 = '4—3 In N S\ l Sg sin(y/u)dg(u,v)

T [1,2e5%NM] [6, 11x{1}

(1 /y)dy

+ O(ln M 1n N){¢Z(A)+ez} +..o(1n MIn N) .

Proof. For sufficiently large M and N and for

(z,w) in S4 we have (upl)M < E(u) and ‘(va)N—l} < 62- (a)

4 .
For convenience we will "ignore" the factor — in I,. Then

4]




- M N sin(2Mz/u)
(up,) (va) —

[Asx/NM,w/2}X[0, 6% /NN] [6, 11X[6, 1]

X LS-j:llﬂyv—éﬂdg(u,v) dzdw
W
: §§ e 58
[A&%/NM,w/21x[0, 6% /NN] [6, 1)x[8, 1) {1}x[s, 1]
§S‘ .{dzdw
[6, 1)x{1}

] feeer,

[Asx/NM, w/2x[0, 6% /NN] {1}x[6, 1]

where
]POI < Sf ‘ S‘S dzdw
[A6%/NM, w/2]X[0, 6% /NN] [6, 1)X[6, 1)
+ ‘81‘81 ’ S:g . .|dzdw
[As#/NM, w/2X[0, 85 /NN] [6, 1)x{1}
<E, tE,.
Now

140

_ S’S‘ ‘ S‘S‘ M sin(2Mz /u) sin(2Nw)
E =
2 z W

[A&*/NMM, m /2X[0, 8% /NN] [6, 1)x{1}

X dglu, v){dzdw
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since (va) =1 if v=1. Letting y = 2Nw

and by using (a) we find

S

[0, 26N N] [A&%/NM, /2]
{ Isin(ZZMz/u)l ‘dg(u,v)l} dz
[6, 1><{1}
"< {1 +1n 2¢6*VN) S SS E<u)|dg<u,v)|

[Aé*/'\l_I\Z,Tr/Z] [6, 1)x

< {1 +1n 2e8*NN} In(rNM/2A8%)9, (A)

1

=o(lnMInN) + 1/4 ¢1(A) InMIn N .

Now consider that letting vy = 2Nw, x = 2Mz we find

[ [ ff e Lol

[A&x/NM, w/2]X[0, &% /NN] [6, 1)x[6, 1]

X lsin(Zvljw/v)‘ ‘dg(u,v)|} dzdw

i+ § J

[0,1] [1,2e6%NN] [2A86%NM, TM]

{ gg E(u) | sinty /v)| |Sin(j/“ﬂ !dg(u,v)!} dxdy .

y

[8, 1)x[6, 1]




Now for 0 <y <1 and & <v <1 replace (sm;}g/v))
1/6, while for 1 <y < 2e8*VN replace sin(y/v) by I

Finally replace sin(x/u) by 1. Then

E. < {$+1n2e¢8*NNHln (nNM/246%) ¢,(A)}

1 1

on |

H

o(ln M In N)+ 1/4 ¢1(A) In M1InN .

Thus

< o(ln M1ln N) + 1/2 ¢ol(A) In M In N

o(ln M ln N) + ¢1(A) O(ln M 1In N).

Finally

) (vp,)

M N sin(2Mz /u)
2 z

[A6*/N'M, Tr/Z]X[O 6% /NN {1}><[5 1]

% sin(2Nw/v)
w

dg(u, v)| dzdw

- ‘ N sin(2Mz) sin(2Nw/v)
= y (sz) . -

[A&#/NM, m/2]x[0, e8%/NN] {1}x[6, 1]

dzdw

X dgl(u, v)

= S‘g l Sg sin{2Mz) sin(2Nw/v) dglu, v)
z W

[A&*/NM, n/2x[0, 6% /NN] {1}x[6, 1]

X dzdw t P1
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iA

Sf ’ \S‘Si [(va)N-l].S_i&(Z‘_ZA’I.Z_)

[A8% /NN, n/2)X[0, 5+ /NN] {1}x[8, 1]

% sin(Zvljw /v) dg(u, v)

{ [ { } { .| dzdw

[0,e6%/N]  [e6%/N, e6x/NN] 7 [A8%/NM, w /2]

= ﬂj |...|dzdw

[A&x/N'M, n/2X[0, 6% /N]

+ SS .. |dzdw

[As/M, w/2x[e8% /N, 6% /NN]

dzdw

=E, + .
E3 E4

Now for E3 we find by making some obvious replacements

E3 < §§ eZ(l/z)(ZNw/éw) Var(g)dzdw.
[As%/NM, n /2X[0, e6%/N]
€

2 b4
<5 N Var(g){%} In(nN'M/2A6%) = o(ln M 1n N)

while for E4 we find

143
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E4 < SS ’ eZ Var(g)(l/z)(l/w)dzdw
[A&% /N, w/2X[e6% /N, 6% /NN]

2 1 — 2
< ¢ Var(g)(5)InN1In (nNM/2A6%) = ¢ O(ln M 1n N).
Thus

2
P/l <olnMInN) +<“OUnMInN), as M,N—®.

Thus we now find

SS ‘ S‘S’ sin(2Mz) Sin(ZNW/V)dg(u,Vszdw
4 * v

[A&%/NM, w/2X[0, e85 /NN] {1}x[8, 1]

—t
i

+ o(ln M 1n N) + O(ln M 1n N){¢'1(A)+€Z} .

On this integral we again make a change of variables y = 2Nw,

x = 2Mz, to yield

SS ' SS‘ §in x sin( y/v) dglu, v)

[2A6%NM, M Ix[0,2¢8 N N] {1}x[6, 1]

dxdy

-

S R

[2A8%NM, nM] [0,1] [1,2e6*NN]

yg Sin;(r M gga,v)|ay =

{1}x[s, 1]




_ S‘ ]si)? x] S‘ SS sin X/v deg(u, v)

[2A6%NM, Mr] [0, 1] {1}x]s, 1]
N S‘ |sin xxl ~(2/n) o S‘ l S‘S‘ l
[2A8%N M, Mr ] [1,2¢6%N'N] {1}x[6, 1]

N L R B A

[2A6%NM, Mr] [1,2e6%NN] {1}x[8, 1]

“E_+E, +E_ .
E gt B, +E,

Now E5 = O(ln M), for obvious reasons, while because

v
sup S‘ | sin x| - (Z/Tr)d
V>U> 1 X
— U

we have
= O(ln N).

Hence

+ = ] N).
E5 E() o(ln M 1n N)

Finally

E, :% {ln Mr - 1In 2A8%\N M} f ‘ §§ l

[1, 2¢6%NN] {1}x[6, 1]

= o{ln M1ln N) + :lr' In M S ‘ SS EE%’L/"Q dg(u,v)

[1, 2¢6+NN] {1}x[8, 1]

145

dy.
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Hence, collecting results and multiplying by 4/TT2, we find

I =% In M g gg Mdg(u,v) dy

4 y
[1, 2¢65NN] {1}x[6, 1]

™

+0(n M In N){p,(A) + ¢ %Y ¥ o(In M 1n N).

The results for 15 follow by symmetry.

Proposition 4. 18.

16 = o(ln M 1n N)
I7 = o(ln M 1n N)
18 = o{ln M 1n N).
Proof. On all of the subcells 86,87,88 we have
< .
IHM_l’N_l(z,w)[ < Var(g)
Thus
4 {{ dz dw
< . ———
I7 < Var(g) Tr2 g z W
S

7

< Var(g) iz {In(rNM/2A6%) In(A/e)}

™

< o(ln M 1n N).

By symmetry

16 < Var(g) 4—21n(1r'\/-N/ZA6>-'<) In(A/e) = olln M 1In N).

m
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On the other hand

4 ' 4 2
Ig < Var(g) ;‘E SS dz_zd?w = ?Var(g){ln(A/e )}

= o(ln M 1n N).

Proposition 4. 19.

19 =‘ SS‘ dg(u, v)

{1x{1}

4
- +
> InMInN E15

™

where
|E15l < In M1n N &A) + o(ln M In N)
and

$(A) is a function which tends to zero as A tends to infinity.

Proof. Here S =[Aé*/\/—I\Z,W/Z]X[Aé*/’\/_ﬁ,w/Z]. Consider

9
then
SS SS va)Nsin(ZMz {u) sin(ZNw/v)dg(u,v)
[s, 11x[s, 1]
- | sin(2Mz) sin(2Nw) S‘S‘ dg(u,v)l (1/zw)dzdw
{1x{1}
< Sg( Sg up va)Nsin(ZMz/u) sin(2Nw/v)dg(u, v)
[6, 1]x[8, 1]
- sin(2Mz) sin(2Nw) S‘S dg(u, v) (1/zw)dzdw =

{1p{1}
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SS{ S\S\ (upl)M(va)Nsin(ZMz/u) sin(2Nw/v)dg(u, v)
[6 1x[s, 1]

TR A

{1}x[6, 1] [6, 1]x{1}

SS up vp N sin(2Mz /u) sin(2Nw /v)
{13x{1}

- sin(2Mz) sin(2Nw)]dg(u, v) (1/zw)dzdw

gg{ S }1/zwdzdw+§§{ N }1/zwdzdw

L8, 11, 1] {1}x[s, 1]
SS{ SS |- } 1/zw)dzdw
[6, 11x{1}
¥ ‘S"S{ Sf ll} (1/zw)dzdw
S {13x{1}

=D, +D,+D, =D

2 3 4

Now

D, SS { gg )[dg(u,v)l} (1/zw)dzdw

sg [6, 1Ix[6, 1]

= qu)l(A 1/zw)dzdw = S‘g ¢' )(1/zw)dzdw
%9
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nggg{ gg E(v)|dglu,v)| } (1/zw)dzdw

89 {1}x[ s, 1]

= LIJI(A) S‘S (1/zw)dzdw .

%9

Similarly for D3 s

D, < y,(A) § (1/zw)dzdw ,

%9

while

w)
it
o

Therefore

th

D +D, + D, +D, = {$ (At (A)Hy,(A) S\g‘(l/zw)dzdw
59
3(A) In(nNN/2A6%) In(TN M/2A6%)

(1/4)2(A) In M In N + o(ln M 1n N).

+
E10

4 S‘ 51n(ZMZ Sln(zl\lw)l dZdW’ ‘S“S‘ dg(u V)

Z
S, {13x{1}

whe re

|E10| < (1/4)%A) In MIn N + o(ln M In N) = O(ln M 1n N)&(A).
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Considering the integral in this last representation of I9 we see

l gg dgla, v) S‘ | sin(2Mz) sin(2Nw)| dedvw
ZW
{13x{1} Sg
| sin(2Mz) sin(2Nw)| - Z/Tr) | sin(2Nw)|
l S‘S‘ dg(u,v)| == SS + (2 /)] sin(2Nw)| - (4/TT ) dzdw
{1px{1} S, =
l gS dg(u, v) 1—4 SS(I/zw)dzdw
{1x{1} S
= Fl + F2 .

It follows that

o] 55 s

{1p{1}

In(mNR/2A6%) In(rNM/2A8%)

SS dg(u, v) \-42 iInMInN + o(ln M 1n N)
{1)x{1} "

while

4 §|51n (2Nw) | { | sin( ZMZ)'-(Z/TT)}dZdW
z

9

L4 S’g @ I | sin(2Nw)| -(2/n) y dz 4 <
TTZ w z

%9




<_—43 {o(1)(1n N)C +0(1)(In M)C,}

ki

where

v

i
i -(2
C. = sup S ‘mntl (2/3) dt
Yovo>u, > 1|V,
1 1= 1

is finite. Thus

Fl = o{ln M 1ln N).

Collecting the results we find

4
- = +
19 1 1nM1an SS dg(u, v) E15
™

{13x{1}
where

|E._| <0O(1)®A) In M 1n N + o(ln M In N).

15
This was the desired statement.

We are now in a position to prove the result stated on page 128.

Proposition 4.20. Under the same conditions imposed in

Propositions 4. 15, 4.16, 4.17, 4. 18 and 4. 19 we find

151
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L’g‘(M,N;g)

= (4/W2) S\S' i S:g sin(z /u) sin(w/v)dg(u, v)

[1,~MX[1,vN] [6, 11X[6, 1]

+ (4 /1r3) {ln M § i Sg sin(y/v)dg(u,v)l(l/y)dy

[1,2¢6%N W] {1}x[5, 1]
(1 /y)dy}

+1In N ‘Y { SS‘ sin(y/u)dg(u,v)

[1, 2e6%NM] [6. 1Ix{1}

+(4/1r4){ S‘S‘ dg(u, v)

{1<{1}

(1/zw)dzdw

+ o(ln M 1In N).

Proof. We combine the results of Propositions 4.15, 4. 16,

4.17, 4.18 and 4. 19. Therefore

L;;(M,N; g)

= (4/1r2) gg Sg sin(z /u) sin(w/v)dg(u, v) (1/zw)dzdw
(1,NMIX[1,NN] [s, 1]x[86, 1]

+mmﬂanN‘§§ dg (u, v)
{13x{1}

+ (4/n3){1n M § ‘ S‘S sin(y /v)dg(u, v)
]

[1,2e6%NN] {1}x[6,1

+1n N g‘ ‘ S‘\Sﬁ sin({y/u)dg(u, v)

[1,2e85%NM] [6, 1]x{1}

(1/y)dy

(1 /y)dy} +
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+ {(z/nz) Var(g)ez t4,(A)+¢,(A) +2¢ 2}O(m M In N) + o(ln M 1n N)

+
E15 .
Thus
3¢ ’ . 2
lim sup L‘S(M N e) (4/v7) Sg
M, N — o0 InMInN InMIn N

[1,vMX[1,vN]

’ SS sin( E‘ )sin( Y‘v‘)dg(u,v)
u v

[6, 11X[s, 1]

Sg dg(u, v) ‘

{1p{1}

—(4/v3){1nM S l SS sin(%)dg(u,v)

[1,2¢6%NN] {1}x[s, 1]

+In N § l \g'\g\ sin(y/u)dg(u,v)\(l/y)dy}

[1,2e8x0M] [6, 1]X{1}

(1/zw)dzdw

- (a/h

(l/y)dy

E

2 15
< lim sup {(2/1r2 Var(g)e 2+¢1(A)+¢Z(A)+Ze Jo(1) +o(1) + n M In N

M,N—™c

< |o(1){e %4 ¢, (A) +9,(A) +3(A)}] -

Thus this last bound is independent of M,N. We therefore let

¢ = 0, A+ on this bound to arrive at the desired result.

Proposition 4.21. Let




F(z, w) = I SS‘ sin(z /u) sin(w/v)dg(u, v)
[6,11x[6, 1]

and assume M {F} exists then

SS F(z,w)%g"%f'v , (1/4)/\{{1?} In M In N

[1,NMIX[1,NN]

= o(ln M 1n NJ.

Proof. Let

f(p, q) = S:S‘ (z, w)dzdw

[0, pIX[o0, q]

Then

P q"°0

which exists by hypothesis, and so we can write

f(p, q) = qu{F} + olpq), p,q " «©.

Also note from (a) that

0 iﬁgia—(l) < (1/pq) S‘g Var(g)dzdw = Var(g).

[0, pIx[0, q
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(c)
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of
Now from (a) we have f = F(p,q)=f , where f =-—.
jole| P» 4 qp w 0w

Now repeated integration-by-parts yields

| e pene

[1,NMX[1,NN]

{8 aommes

[1,vMK[1, \/—]
§ (1 /NM) —= X dw
w W
[1,vN]

——

f(N M,w) £(1,N'N)
* S NM w)w dw - NN t L)

+ SS (2w (zw) dzdw - (1/4)M{F} ln M1n N
(1,NMNK[1,VN]

fNM,NN)  f(NM, 1) £(1,NN) 5* Var(g)
S8 NS v~ EENS v AR AT B ol I m—
1[1,NN]
’ A% d
fommal] [l e |

[1,NM] -[1,\/’_]><[1«/“]

<
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< o(InM1nN) +O(ln N) + O(ln M)

J (T M new MEN L by using o,

[1,~MNX[1,NN]

where h(p,q) is a function which tends to zero as p,q
tends to infinity. Also | (p,q) I = I—M M{F}I
which is less than or equal to twice the variation of
glu,v), and given € >0 there exists T1 >0 such

that if p,q>T then Ih(p,q)l <e. Here T

1 1

depends upon «.
< o(lnMInN)} +R, where R is the double integral above.

Considering just this last integral R we break the integration

into three parts:

IR| < “ L—Jh‘zzv’vw’ dzdw

[1,NMX[1,NN]

S | A | SR

[1,T ]>< 1,V N] [Tl,'\/_M_]X[l,Tl] [Tl,'\/_I\Z]X[Tl,'\/_N_]

< fg 2Var(g) 4,40 + ES 2 Varlg) 4,44
- ZN } ZW
[1,T ]>< 1,NN] [1,\/T/1]><[1,T1]

+ Sg ] dzdw
ZW

[T, NMK[T VK]
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< Var(g) In Tl(e)[ln N +1n M] + (¢ /4) In M In N.

Thus, given any ¢ >0, it is possible to make

gg Flz,w) 329 _ (1/4)M{F) 1n M 1n N
AV
[1,NMIx[1,NN]

< o{ln M1nN) + Var(g) In T, (e {InN +1nM] +(e¢/4) In MInN

or

< €,

B dzdw
lanan SS F(z, w) - -(1/4)M{F}1annN
[1,vM}X[1,VN]

if M,N are sufficiently large.

Proposition 4.22. If g(u,v) is a bounded variation in the

sense of Hardy-Krause and (u., vj) is a point of discontinuity of
i

g(u,v) which is not on the axes, if

flz,w) = Z sin(z /u,l) sin(w /vj){g(u:, VJ+) —g(u:, vj-)-g(u.l—, V;-)"'g(u.l_, Vj-)}

iy ]

then

//((f) = lim (1/pq) S§ f(z, w)dzdw exists.

2 —’w
P-4 [0,pIx[0, q]
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Proof. Let

Set
k,ﬂ
+ o+ - -
f (z,w) = sin(z /u.) sin(w/v,)glu.,v.;u.,v.)
k4 i i3 1]
i,j=1
and
ekﬂ(z,w) f(z, w) - fkﬂ(z,w)
Let
€ g = SUP Iekﬂ(z,W)I .
Z, W

Since g(u,v) is of bounded variation we find f(z,w) exists

for all z,w, and in fact
0 < f(z,w) < Var(g).

The sum representation of f(z,w) converges both absolutely and

uniformly in (z,w) since

f(z,w) < Z Isin(z/ui) sin(w/vj)] ]g(u:,v;—;ui_,vj_)],

i,
call this sum A,
+ + - -
< Z lglu.,v,;u,,v.)| < Var(g).
1] 1]

i,j
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Note that if Akﬂ is the kfth partial sumof A then Akﬂ

tends to A uniformly in z,w.

Consider now

©0

|€k£(z’w)‘ = | z sin(z/ui)sin(w/vu)g(u:,v;;ui,vj)

i,j=1
k, £
+ + - -
-l z sin(z /u.) sin(w/v )glu. ,v.;u. ,v.)
1 J 1) 1 )
i,j=1
0
+ o+ - -
< z sin(z /u.) sin(w /v, )glu, .v.;u, ,v.)
- 1 J 13 )
i,j=k+1,0+1
£ o 00 k
DDA
j=1i=kt1 j=2+1 i=1
< Z |...|+Z zl...|+z Z]...I
i,j=ktl,2+1 j=1 i=ktl j=2+1 i=1
00 k, 2
Z I Z [...] =A-A -
i, §=1 i,j=1
By the uniform convergence of Akﬂ to A we have
lim e = lim {sup le ,(z,w)|} =0
K, g — o0 k4 K f—© z,w k4

Then
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f (z,w) - ¢ < f(z,w) < f (Z,w) + ¢

ki kf — k{ k4
so that
(1/pq) SS\ z,w)dzdw - ekﬂ < (1/pq) SS f(z,w)dzdw
(B)
< | (1/pq) ‘gg w) + €1l

[o, p]><0 q]

holds. For each k,f we have fkﬂ(z,w) being a finite sum of

. continuous periodic functions, hence fkﬂ(z’ w) is almost periodic,

and so its mean value exists [5] , that is

/\/( {fkﬂ} = lim (1/pq) Slg (z w)dzdw

—

P-4 [0, pIX[0, q]
exists.

Consider now for fixed T,S >0 the difference

| M G, st -M gl

:{ 111rr_1.00 (1/pq) SS k+T 1+S” k B}dzdw l
Pa [0, pIx[0, al
< lim sup (1/pq) SS ‘fk+T 148° k ﬂldzdw.

2 —*w
P-4 [0, pIx[0, ql
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We already know {fk Jq(z,w)} is convergent uniformly in {z,w) so

for any m >0 we have

| £ (z,w)-f,_ (z,w)| < n

k+T, £+S k, 4

for all z,w when k,f are sufficiently large. Thus

lim sup (1/pq) §§ |karT szrS(z,w)-f_k)jz(z,wudzdw< m
P-q7" % [0, pIx[0, q]

for k,{ sufficiently large, or {/\'\{fk 1}} is a Cauchy sequence,

hence 1 )\'\{f exists.
K, 1 —- k, ﬂ

Now from (B) we have

lim sup[(l/pq) Sg f(z,w) dzdw] /\/L{fk s €1

P [O: P]X[O, q]
and also
M{fkﬂ} - €y < lim inf [(l/pq)‘ gS f(z,w)dzdw] .
p,q—™®

[0, pIx[0, q]

Letting k,{ tend to infinity yields

lim )\‘({fkﬂ} < lim inf {:l/pq ‘S‘S‘ f(z, wdzdw] <

k, — ,q—
P9 [0, pIx[0, q]
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< lim sup [l/pq SS‘ f(z,w)dzdw]

- 0
P9 [0, pIX[0, q]

< lim f({fkl

k,{ ™

Hence, there exists

/\/((f) = lim £l/pq 5§ f(z, w)dzdw] = lim M{fk s
k,{—®

P a7 [0, pIx[0, q]

As Corollary 4. 23 shows, the next theorem is essentially the two

dimensional analogue of Ishiguro's result in [14].

Theorem 4.23. If the weight function glu, v) which generates

the regular Quasi-Hausdorff matrix associated with the LLebesgue con-
stant L*(M, N; g) is a function which is continuous and zero on a

cross neighborhood {(x,y)‘O <x<dor0<y< &} for some 6, then

L*M,N;g) = C*g) InMInN + o(ln M In N),

M,N —®,

where

C*(g) = 4/'1' ‘ S\S‘ dg(u, v)

{13x{1}

b @O MU MU e M L5} )

where
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l SS sin(w/v)dg(u, v)
{1}3x[ 6, 1)

§§ sin(z /u)dg(u, v)
[6, I)x{1}

f3(z,w) :‘ Sg sin(z /u) sin(w/v)dg(u, v)
[6, 1)x[8, 1)

and it is assumed that these mean values exist.

Proof. Since g(u,v) is zero on the axes and continuous there,
there exists by hypothesis, a & such that the integration over
[0,1}x [0,1] is identical with that over [8,1]x [6,1] for the
measure generated by g(u,v). Thus L:(M,N;g) = LH(M, N; g).

By Proposition 4. 21 the first term in L:(M,N; g) of

Proposition 4. 20 can be written

(4/1TZ) §§ f3(z,w)(l/zw)dzdw
[1,NMX[1,VN]

= (I/WZ)N{%} InMInN + o(ln M 1n N).

In a like manner, the one dimensional analogue of Proposition 4.21

implies
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(4/11’3) In M f fl(w)(l/w)dw = (2/n3)M{f1} InM1In N
[1, 2¢6%VN] + o(ln M 1In N),

(4/n3) In N S £,(2)(1/z)dz = (2/v3)M{f2} In M In N

1,2e6%N M
(1, 28N M] + o(ln M 1n N).

Combining these results we arrive at the desired result.
We now state the two dimensional analogue of Ishiguro's result in [14].

Corollary 4.23. If the weight function g(u,v) which generates

the regular Quasi-Hausdorff matrix which is as sociated with the

ILebesgue constant L*(M,N; g) 1is a countable linear combination of
two dimensional interval functions with mass points bounded away

from the axes, then

L#(M,N;g) = C*g) lnMIn N +o(ln M 1n ), M,N —x

where

CH(g) = (4/n°) g dglu, v)
{1px{1}

+ (2/1r3))\/k lz sin(y/ri)g(r:, L; ri—, 1_)1
i
3 + - -
+ (2 i l,s;1 ,s,.
(2/w ))\/L tZsm(y/sj)g( s sJ)
J

.I.
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2 + + - -
+(1/x7) )V( {Z sin(z/u,) sin(w/v,)glu, ,v.;u., v, )l
1 J 1] 1]
i,j
Here (u,l,vj) is the (ith, jth) point of discontinuity of glu,v) on
[0, 1) x [0, 1), (r.l, 1) denotes those along [0,1)x {1}, while (I, sj)
are those along {1} x [0,1). The summations extend over all such

(possible countably infinite) values.

Proof. We note by the conditions on the mass points that
u, v, are not zero so that sin(z /ui), sin(w/vj) are well defined.

Then

f3(z,W) :‘ SS sin(z /u) sin(w/v)dg(u,v)
(8, 1)x[8, 1)

+ o+ -
=I Z sin(z /u.) sin(w/v,)glu.,v, ;u. ,v.)
i ] 1 ] 1]

i,j

By Proposition 4. 22 the M{%} exists. Also

s
fl(w) = ‘gg sin(w/v)dg(u, v) :‘ Z sin(w /sj)g(l, sJ;; 1, sj )
{1x[6, 1) j

— S . _ . / + . - 1_
fz(z) = sin(z /u)dg(u,v) |= Z sin(z ui)g(r-l, 1; T )
(6, 1)x{1} i




Using the sam

show that both
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e techniques as in the proof of Proposition 4. 22 we can

M{fl}, /\/({fz} exist.
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