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The topic of summability methods has been studied by many

although the name of G. H. Hardy and his classical work "Divergent

Series" is best known. Almost all of the early work was done using

single sequences or series. In the past 30 years research has been

done extending some of these results to double sequences or double

series by Cheng for the circular Riesz means and by Ustina for the

Hausdorff means. In this paper we extend some of these results for

the Quasi-Hausdorff means. The results and methods of attack

closely follow those of Ishiguro and Ramanujan, who worked with

Quasi-Hs.usdorff means for single sequences and single series. The

terminology is fairly standard although some new definitions are

needed.

We shall first develop the Quasi-Hausdorff transformation of

double sequences and double series, next find conditions to make it a

regular transformation, thirdly apply it to the partial sums of a
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double Fourier series to check the Gibbs phenomenon, and conclude by

investigating the Lebesgue constants of the method. It is noted that

the class of weight functions used in the definition of the Quasi-

Hausdorff means contains the probability distribution functions of two

variables. Therefore the results contained in this research could

possibly be used in the area of probability.
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GIBBS PHENOMENON AND LEBESGUE CONSTANTS
FOR THE QUASI-HAUSDORFF MEANS

OF DOUBLE SERIES

I. INTRODUCTION AND TERMINOLOGY AND RESULTS

Introduction

The topic of summability methods has been studied by many

although the name of G.H. Hardy and his classical work "Divergent

Series" is best known. Almost all of the early work was done using

single sequences or series. In the past 30 years research has been

done extending some of these results to double sequences or double

series by Cheng [3] for the circular Riesz means and by Ustina [26]

for the Hausdorff means. In this paper we entend some of these

results for the Quasi-Hausdorff means. The results and methods of

attack closely follow those of Ishiguro [10-14] and Raman.ujan [21-23],

who worked with Quasi-Hausdorff means for single sequences and

single series. The terminology is fairly standard although some new

definitions are needed.

We shall first deve lope the Quasi-Hausdorff transformation of

double sequences and double series, next find conditions to make it a

regular transformation, thirdly apply it to the partial sums of a

double Fourier series to check the Gibbs phenomenon, and conclude by

investigating the Lebesgue constants of the method. It is noted that



the class of weight functions used in the definition of the

Quasi-Hausdorff means contains the probability distribution functions

of two variables. Therefore the results contained in this research

could possibly be used in the area of probability.

Terminology and Results

Definition 1.1. Let C2 consist of all sets

Rmn = {(i, j) I i = 0, 1, 2, . , m; j = 0, 1, 2, . . . , n}. We say the double

series amn is Pringsheim convergent to A if given any

m, n
positive number E > 0 there exists a set F E S2 such that if

E

F E S-2 and F CF then

If the double sum

(m, n) E F

Definition 1. 2. Let f(x,t) be defined on the cell

[a1,a2] x [b ,b21J) and let {x.}, {t.} be two sequences such that
1

a = l 2 mx0 < x < x < < x = al2
b = t0 <t

1
< t2 < <tln

amn
-Al < E .

2



m, n

1f(x.,t. .
3

) - f(x,t. ) - f(x. , t
3
. i-1 j-) + f(x,t1)1

1 3 -1 1-1
j= 1

is uniformly bounded for all such sequences and if M is the least

upper bound, and if for some fixed t, respectively fixed x, f(x,t)

is of bounded variation in the variable x, respectively t,

(X, t) E [a1,a2]x [131,b2], then f(x,t) is said to be of bounded

variation on the cell [al, a2] X [b1,b2] in the Hardy-Krause sense,

and M is the total variation [9].

Hobson also notes that if f(x,t) is of bounded variation in the

Hardy-Krause sense then

f(x,t) = P(x,t) - N(x,t) - f(a ,b ) ,

where P(x,t), N(x,t) are the positive and negative variation func-

tions of f(x,t) on [al , az] x [bi, b ] If we fix the value of one of

the variables, say t = B, then

f(x,B) = P(x,B) - N(x, B) - f(arbi)

is by definition a function of bounded variation in a single variable.

It follows from concepts in one variable that f(x,B), P(x,B),

N(x,B) have identical sets of points of discontinuity on the line t = B.

In particular if f(x, B) satisfies



lim f(x,B) = f(a , B) for all b < B <b2
1 1

al

lim
x

P(x, B) = P(a1 ,B)
a+

1

lim N(x,B) = N(a1,B) for all b1
<B < b .

Definition 1. 3. A function f(x,y) is said to be normalized if

we have

f(a,b) = (1 /4){f(a+,b+)+f(a+,b )+f(a ,b )+f(a ,b

where (a, b) is in the domain of f(x, y); and if one of the coordi-

nates is fixed, say y, then

f(a, y) = (1 /2){f(a+, y)+f(a , y)} .

Definition 1.4. Let
{En}

be a sequence of positive numbers

such that

urn E = 0 ,
n Go

and let
{pk}

be sequence of natural numbers such that

lim pk = 00.
k

4

then

and



Let Sm, (x y)} be a sequence of real valued functions defined for

0 <Ix-x01 + y-yoI < En .

Then

lirn sup S (x,y) = lim
M/1m,n co k

(x, y) (x0, y0)

sup{Sm, n(x, y) I rn, n > Pk

0 < lx-xol +Iy-y01 < E k} 2

with lim inf Sm, n(x, y) defined in a similar manner.

Definition 1. 5. If the sequence {Sm, n(x,
y) converges

pointwise to a limit function f(x, y) in the region

0< I x-x01 -4- I y-yo I < E, then {sm, n(x, y)} is said to exhibit the

Gibbs' phenomenon at (x0, y0) if one or both of the following

inequalities hold.

lim sup Sm, n(x, y) > lim sup f(x, y)
m, n °° (x, y) (x0, yo)
(x, y) (x0, y0)

lim inf S (x, y) < urn inf f(x, y)
m.,nm, n co (x, y) (xo, yo)

(x' Y) (x0' yO)

Ustina [26] was able to show the following'.

Lemma 1. 6. Let f(x, y) be a normalized function, periodic in

5

each variable, and of bounded variation in the Hardy-Krause sense in the



period rectangle. The Gibbs' phenomenon for f(x,y) at the point

(x, y) = (0,0) is the same as the Gibbs' phenomenon for the function

x(f; y) = (c irra)(x)d(y) + g1(0)00(x) + g2(0)4)(y)

where

0 t = 0

(OM = (Tr -t) /2 0 < t <

1)(t+2k-rr) k =

+ + - - +c = f(0 ,0 ) - f(0 , 0) - f(0 ,0 ) + f(0, 0)

g1(y) = (1 br){f(0+, y)-f(0-, y)} - (c /21r) sgn y

g2(x) = (1 /Tr){f(x, +)-f(x, o)} - (c/2Tr) sgn x .

Definition 1. 7. The forward difference operator A is given

Ah =h -hn n n+i

A p+lhn = A (A phn) .

write

r, 5 > 0.

6

We note that A distributes across addition and thus we can

A p nh = A (.6. p-1 nh) = h ) = h) ,
k p-k n p k n

thus showing that the operator A commutes with A
s

for integers

by

and



then

The double forward difference operator A is given by

Ah = h - hr+1, s
- h

TS rs r, s+1 + hr+1, s+1

If we let A
1, 0

represent the forward difference operator which

obeys

h h -hA1, Ors rs r+1, s

Ah = A ).rs 1, 0(h -hrs r, s+1

If we also let A be given by0,1

AO, lhrs h -hrs r, s+1

then we see

Ah = A (A h ) .rs 1,0 0,1 rs

Hence we shall denote the double forward difference operator

A by

A = A = A = 6. A
1, 1 1, 0 0, 1 0, 1 1, 0

In light of this we make the following definition.

Definition 1.8. The double forward difference operator A . .
1,

is given by

7



A . .h=. h = A1,3 rs 0,j rs 0,3 1, 0 rs

where A , respectively A ., is the (single) forward differ -
i, 0 0,3

ence operator acting on the first, respectively second, variable sub-

script.

1 2
We note that other authors have used the symbols A . , A.

1 3

write

1 2
A. .

1,3 1 3

Using the definition of the (single) forward difference operator

we see the following identities are valid:

A p+1, 0 = A
1, 0(A p, 0) = A p, 1, 0)

A A (A ) A (A )0, q+1 0, 1 0, q 0,q 0, 1

AA
p, qA r, s = A p+r, q+s 1,3 p+r-i, q+s -j = A r, sA p, q.A

(iv) A h =
m

s=0

(v) A p, qhmn = A p, 0(A 0, qhmn) = A
0, q(A

h
p, Omn)

= 0,q (-1)s(P)h
S s+m,n

...1)5
M

s0

8



Hence

s=

p, q

s, r=

hmn =

s+r p q
(-1) ( s )(r)hs+m, r+n

Adams [1] improved the result to show

(-1)s(P)(-1)r( )hr s+na, r+n
r=0

r=m s=n

p-m )( p-)n. h .r-m s-nLp-r,p-s rs

h = (P)(P)A h .

0, 0 r s p-r, p-s rs
r, s=0

9

Here, of course, ) is the binomial coefficient, which obeys the

identity

p+1 P P
) = )

s 5 S-1 -

From the identities

t. .h = L. .h + Ls .hj mn 1, j m+1, n i+1, j m.n

A. .h = L .h + h
1,3 mn 1, j m, n+1 i, 3+1 mn

Hildebrandt and Schoenberg [8] have shown that



13, q

h (P)(q),A h
0,0 L1 r s p-r,q-srs .

r, s=0

The concept of the mean value of an almost periodic function is

contained in the following lemma [5].

Lemma 1.9. If f(x) is an almost periodic function, then

there exists

Sf(x)dx
[a, a+T]

h* =
n sk rn+1(1-r)k-ndg(r), n = 0,1, ,

[0, 1

10

uniformly with respect to a. )1{f(x)} is independent of a and is

called the mean value of the almost periodic function f(x).

Ishiguro used the mean value of an almost periodic function when

he investigated the Lebesgue constants corresponding to the one

dimensional Quasi -Hausdorff sequence to sequence transformation

which is defined in the following manner:

Definition 1. 10. The Quasi-Hausdorff summability matrix

transforms the sequence Isk} into the sequence {1-1*} by means of

the equation

00

1lim
T°°



11

where g(r) is of bounded variation on [0,1]. This transformation

is regular if and only if

dg(r) = g(1) - g(0) = 1 (Reference [21]).

[0, 1]

As the above is a Lebesgue-Stieltjes type integral we have need

of two theorems stated in a Lebesgue-Stieltjes setting.

Dominated Convergence Theorem. If {fn(x)}
is a sequence of

functions defined and g-measurable on a set E, and there is a

function h(x) defined and g-summable on E suCh that

Ifn(x) < h(x), and the functions fn
(x)converge in measure or

almost everywhere on E to a finite-valued limit function f(x),

then f( x) is g-summable, and

limn(x)dg(x) = 5f(x)dg(x),
n-00

and

limfn(x) -f(x) I dT(x) = 0

where T(x) is the total variation function corresponding to g(x) [19].



and

lim I fn(x)-f(x)
I d-r(x) = 0 (Reference [19]).

n-00 E*

Since the Quasi-Hausdorff means of a single sequence is defined

by using two dimensional matrices it is to be expected that the means

of a double sequence will be defined by using four dimensional

matrices.

12

Bounded Convergence Theorem. If

the functions f(x) are defined, finite and g-summable on
n

a set E* of finite g-measure;

the functions f (x) converge in measure (or almost
n

uniformly, or almost everywhere) on E* to a limit func-

tion f(x);

for every positive E there is a 8 > 0 such that

Ifn(x)
I d-r(x) < E for all n and for every subset ES

E
of E* with m E < 5;

T

either the integrals 1 fn(x)
I d-r(x) are bounded, oric f(x)

E*
is finite almost everywhere;

then f(x) is g-summable over E*, and

urn fn(x)dg(x) = f(x)dg(x),
n~ 00



Definition 1. 11. The matrix

termed a transposed difference matrix.

Definition 1. 12. Let } be a given (double) sequence and

let/4 = (p.mnk12)
be a "diagonal" matrix, the only nonzero elements

being H. E . The transformation matrixmnrnn mn

H' e)-1 e

13

mnki) ((-1)m+n (km)(n)) is

is called a Quasi-Hausdorff matrix corresponding to the sequence

mn

We are able to show that the elements of any Quasi-Hausdorff

matrix B corresponding to the sequence {p. } must have themn

form
k

bmnk./ = (m)(n k-m,./

By specializing the given sequence {p. } to be a sequence ofmn

double moment constants corresponding to a weight function g(u,v)

we are able to find conditions for regularity of the resulting Quasi-

Hausdorff transformation. Following Adams [2], Hildebrandt and

Schoenberg [8] we have

Definition 1. 13. The sequence {II }, where
Inn



timn = umvndg(u, v), m, n 0, 1, 2, ...

[0, 1140, 11

is said to be a sequence of double moment constants corresponding to

the function g(u, v). Here g(u, v) is of bounded variation in the

sense of Hardy-Krause. If, in addition,

g(u, 0) = g(u, 0+) = g(0, v) = g(0+, v) 0, 0 < u, v < 1

g(1, 1) - g(1, 0) - g(0, 1) + g(0, 0) = 1,

then H. is said to be a regular moment constant.
ITIll

This places us in a position to prove

Theorem 2. 25. The Quasi-Hausdorff matrix H*(p.mn), which

corresponds to the sequence fp.mnl, is an a matrix (series to
0

series regular) for convergent double series with bounded partial

is a sequence of regular moment constants.

Theorem 2. 26. A Quasi-Hausdorff matrix A is a T-matrix

(sequence to sequence regular) if and only if

(a) pi is a moment constantmn

(b) Sic dg(u, v)
1

uv
(0, 1]x(0,1]

where g(u, v) is a function which generates the sequence {1-'.n }.

14

sums if {i-L }mn



is given by means of the equation

co

h*mn {(k )(i)m n
k,/ =m,n

fmnkf skl

um+10 u)k-mvn+1(1-v)/ -ndeu,vgs

[0,1]><[0,1]

where {s la}
is the sequence being transformed into th* 1. Themn

matrix

F = (fmnia) ,

which will be denoted by

H*(P-m+1, n+ 1)

is the sequence to sequence Quasi-Hausdorff matrix.

Relations between H*(-1. ), the series to series matrix, and
rnn

15

This theorem leads us to investigate the connection between

Quasi-Hausdorff T-matrices and Quasi-Hausdorff a matrices. We

find the following definition to logically follow from previous work:

Definition 1.14. The sequence to sequence Quasi-Hausdorff

matrix, corresponding to the real double moment sequence

H*(tim+1,n+1),
the sequence to sequence matrix, lead to conditions

for regularity of "Ilm+1,n+1).
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We apply this transform to the sequence of partial sums of a

double Fourier series of a function which is of bounded variation in

the sense of Hardy-Krause, and study the convergence properties of

the transformed sequence.

If x = A is a jump discontinuity of a function then the

sequence of graphs corresponding to the partial sums of the Fourier

series of the function seem to "condense" on a line which is orthogonal

to the x axis and passing through this point of discontinuity. If the

length of this interval of "condensation" is larger than the jump of the

function then the Gibbs' phenomenon is said to be present. Fejer [30]

was able to show that if one considers the Cesa.ro (C, 1) sums of the

Fourier series then the Gibbs' phenomenon was not present at the

point of discontinuity and in fact the Fourier series converges uni-

formly on every compact interval on which the function is continuous.

We treat the corresponding problem for the Quasi-Hausdorff method.

We find

Proposition 1.15. The regular Quasi-Hausdorff means of the

partial sums of the Fourier series of f(x,y), where f(x,y) is of

bounded variation in the sense of Hardy-Krause, do not exhibit the

Gibbs' phenomenon at any point of continuity of f(x, y)

Proposition 3.9. For the two dimensional regular Quasi-

Hausdorff means of the function 4(x, y) we have



urn h* (4); xm, yn)mnm, n°°

f sin(y/u) dy sin(y/v)
Y

[0, 1]X[0, 1] [0,-r] [0,

provided g(u,v) is continuous at the axes,

mx T < 00 , fly T

2
mx2 0, ny 0 as m, n

m n
co .

Here h* (cl); x ,y ) is the transformed sequence of partial sums
mn m n

of cl)(x, y).

We conclude this research into the Quasi-Hausdorff means by

finding a representation for the Lebesgue constants for this method.

It is well known that the growth rate of the Lebesgue constants

for Fourier series plays a key role in the convergence properties of

such series. For instance, the fact that these constants diverge

implies, by the Uniform Boundedness Theorem, that there exists a

continuous function whose Fourier series diverges at some point.

Likewise the asymptotic behavior of the Lebesgue constants for the

Quasi-Hausdorff method plays a basic role in the convergence

properties of the Quasi-Hausdorff means.

The next theorem describes the growth rate of the Lebesgue

constants for the Quasi-Hausdorff method.

dy dg(u, v)

17
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Theorem 4.23. If the weight function g(u, v) which generated

the regular Quasi-Hausdorff matrix associated with the Lebesgue

constant L*(M,N; g) is a function which is continuous and zero on

some cross neighborhood {(x,y)10 <x < 8 or 0 <y < 81 for some

8, then

L*(M, N; g) = C*(g) in M in N + o(ln M in N), M,N

whe re

C*(g) =
(4/2) dg(u, v + (2 IIT3){11{fi}+p({f2}+(Tr/2)J1{f3} },

{1}X{1}

where

f1
(w) =

f (z) =

1,x,o, 1)

and it is assumed that these mean values exist.

Upon specializing the function g(u, v) to be a countable linear

combination of two dimensional interval functions we derive the two

dimensional analogue of the one dimensional theorem proved by Ishiguro.

f2
(z, w) = s in(z /u) sin(w iv) dg(u, v)

.5151
1

sin(wiv) dg(u, v)

{1}X [6, 1)

sin(z/u) dg(u, v)

[8, 1)X{1}



II. QUASI-HAUSDORFF MEANS AND REGULARITY
OF THE TRANSFORMATION

In this chapter we give a development of the Quasi-Hausdorff

means for the double sequences. Proofs are provided only for those

theorems for which we have no references. In general, the theory is

a logical extension of the corresponding theory for Quasi-Hausdorff

means of a simple sequence.

Definition 2. 1. Let A = (amnia) be a four dimensional

matrix, and let S = (smn) be a two dimensional matrix whose

elements are the elements of the double sequence Is }. The two
ITIri

dimensional matrix

T = AS (A-2)

whose elements are the elements of the double sequence {t n},

where

oo

s m, n = 0, 1, 2, . (A-3)t = amn mnia 1cl
k, =0

is meaningful for every m, n is a transformation of the matrix S.

The matrix A is said to provide a sequence to sequence transforma-

tion or a series to series transformation or a series to sequence

transformation according as it converts

19



lim tk/ = lim smn
k,/ ~-00 m, n °0

20

(A-6)

(iii) totally regular if (A-6) holds even when s diverges to
Trill

positive or negative infinity.

Similar terminology is used for series to sequence and series to

series transformations.

Definition 2.4. The matrix A = (amnki) is said to be a

(i) K-matrix if it is sequence to sequence convergence pre-

serving,

{smn} to or/ smn to t or smn to {tki}.

m, n k, m, n

Definition 2.2. The sequence {s } is said to be summable
mn

by the matrix A to the sum t if tmn exists for every m,n

and if

Em t t < (>0mn
m, n 00

where convergence is in the sense of Pringsheim.

Definition 2.3. The transformation (A-2) is said to be

convergence preserving if every convergent sequence

{s } is transformed into a convergent sequence {tmn}'

regular if in addition



sequences {Y },
Pq

lim amilk/ = (3Id (each k and 1)
m, n

00

lirn / ald = B
mnm, n

00

sup I amnld is finite
m, n k, L0

lirn
m, n

lim
m, n

if and only if

k, 1=0

1 =0

When the above is satisfied,

m,
lirn
n 00

- = 0, (for each
amnkf

amnki I= 0, (for each k).

co

y = Bx +
mn (3

(x -x) ,

k, 1=0

21

T-matrix if it is sequence to sequence regular,

(3-matrix if it is series to sequence convergence preserving,

.y-matrix if it is series to sequence regular,

5-matrix if it is series to series convergence preserving,

a-matrix if it is series to series regular.

Lemma 2.5. The matrix A (aninki) is a K-matrix, for

bounded convergent sequences {x } into bounded convergent



(i)

j=0

lirn ,eN a = 0, (for all i; m, n = 0,1,2, . )

10 mnij

lirn A a = 0, (for all j; m, n = 0,1,2, .. . ).

co
01 mn. ij

The matrix A is a y-matrix if and only if, in addition,

(iv) lim
m, n 00

1 amnij I

oo

j=0

sup
m, n k,10

I if finite [24].mnki

Lemma 2.7. The matrix A = (amnld ) is a n-matrix for

convergent double series with bounded partial sums if and only if

co

(m, n=0,1,2, . )
mn

a.1 = 0, (for all i)1 mnij

22

where

x = lim xmn
m, n 00

the series (x -x)being always absolutely convergent. The

k,
matrix is a T-matrix, if, in addition, pia = 0 and B = 1 [24].

Lemma 2.6. The matrix A = (amnkf ) transforms bounded

sequences {xmn} into bounded sequences {ykJ}
if and only if



But

00lim= 0, (for all j)
lamnij

m, n
i =0

lim amnij= 1, (i, j = 0, 1, 2, )

m, co

00

(independent of m, n, but only

23

(vii) amni) I

j =0 for m > M, n > N) [20].

Proposition 2.8. The matrix A = (amnia) is an a-matrix if

and only if the matrix G = (g ) is a 'y-matrix, where the ele-

ments-of G are defined by

m, n

gmnk/ arski
r, s=

Proof. Let

co

vmn / amnkfula
(4. 1)

k, =0

exist for m, n = 0, 1, 2, .. .

and
p,sci

cr (4. 2)
Pq mn

m, n=0



Let

Then

/TM

Hence the existence of (4. 4) implies the existence of (4. 1) and the

validity of (4. 2), (4. 3).

0-

Pq

k, m, n=0

q

gpqla L amnki
m, n=0

00

0-
p q

= gpqkfukf
k, 1=0

Thus (4.1) implies the existence of (4. 4).

Conversely if (4. 4) exists for each p, q then

0- - -0- +0
inn m, n-1 m-1, n m-1, n-1

CO

+g
{gmnki gm, n-1, Id gm-1, nk/ m-1, n-1, u

by using (4.3)

(4. 3)

(4.4)

2.4

p, q 00

a
umnki ki

m, n=0 k, 1 =0

CO q

a
umnk/ k.f

a
rrinkf



= S ;

m, n=0

hence A defines a regular series to series transformation.

Definition 2. 9.

(i) An a-matrix with lima = 0 for all m,n is
mnia

k, -- 00
said to be an a0 -matrix.

(ii) A N-matrix with lim
k,/ -- 00

said to be a y0
-matrix.

Corollary 2.8. The matrix A is an a0
-matrix if and only if

the matrix G is a 'y0-matrix.

Proof. If lirn arxinkf
= 0 then (4. 3) implies

k, 00

25

Now let A be a regular series to series transformation of

/ ukI
into v , and let / v = s. Using (4. 2) we then seerimnan

cr as p, q 00, so that the matrix G whose elements are
Pq

given by (4. 3) defines a regular series to sequence transformation

given by (4. 4). On the other hand if G defines a regular series to

sequence transformation then (4.4) yields

(3- s as p, 00,
Pq

and so by (4.2)
00

gmnice
= 0 for all m,n is



urn
gnink.e

= 0. On the other hand if lim g = 0 then
k,

since

gmnk/ gm, 1,k gm-1, nk/ + gm-1, n-1, = amnia
(4.5)

we see that lim a
k

0mni

Definition 2.10. The matrix

are defined by

Pmnk/

h=mnrs

f(--l)m+n

k( )(1 ),m n

we shall term a transposed difference matrix.

Proposition 2.1 - The transposed difference matrix is its own

inverse.

Proof. Let

00

(pmnk, whose elements

k >m, >n

otherwise

Prrink/ rs thus H ee

We shall apply the matrix H to the double sequence {u} and
TS

show that the transformed sequence is the same- We find

26



CO

r,

since

mnrs rs

r, s

k, .e=m,n

oo Co

r,s=i) k, i=0

co co

= u (-1)m+n V (-1)k+1(k)(1)(r)(s)
Li rs rrink.e

r, s=0 k,i=m,n

u (-1)1n+n(s)(r)
(_uk+./(r-m)(s-n)

rs n m k-m 1 -n
r, s=0 k, =m,n

-urs

k+/ r-m s-n
(k-m)( -n) =

Pnink/pk/ rsurs

r = m, s = n

otherwise

Definition 2. 12. Let
{p.mn}

be a given sequence and let

= (p. ) be a "diagonal matrix" whose only nonzero elements
mnkf

are p. p. The transformation matrix=Inn inn

is called a Quasi-Hausdorff matrix corresponding to the sequence

11-Lrnnl-

The sequence {sinn}is said to be summable to s in the

Quasi-Hausdorff sense corresponding to the sequence filmn

27

if the



sequence {tinn}, where

T = H*S ,

approaches as m, n become infinite.

The matrix H* is well defined since if we let:

(i) H* = 0] then the elements of

oo

r, s=0

because p is a "diagonal" matrix. Thus the elements of

P{)-4P] are given by

Pr ski k Pk/ mn rskkIkIkImn
k, I =0 k , =m, n

(ii) H* [ Q then similarly

CO

p
rsmniimnk/ rskkIkI

m, n=0

and so [,L(] Q has elements given by

00 r, s

P rsid kf mn = r ski Ilk/ k.e Pki2mnP

k,10 k, =m, n

Ilk/ rs prsmn Pkimn

are given by

28



amnia otherwise.

To show that this is a Quasi-Hausdorff matrix consider the sequence

P, = = 1 i(m+1)(n+1).
mn mnmn

Let C be the Quasi-Hausdorff matrix corresponding to this

sequence. Then its elements are of the form

co

We shall show that C = A.

cmnkl
r, s=0

Pmnrs rs rski

29

We note since the matrix defined above has its "diagonal

elements" described by m n
that if we define the transpose of

the four dimensional matrix A = (amnkf
) by

At = (anink.P)t = (alarrin), then (H*)t, where H* is as previously

defined, is a Hausdorff two dimensional transformation matrix. We

also note that since the transposed difference matrix is its own

inverse it is trivial to show that Quasi-Hausdorff matrices commute.

The following is an example of a Quasi-Hausdorff matrix:

Let A = (a where

1/(k+1)(1+1), k >m, I >n



We apply the matrix C to the double sequence {u }. Wers

find

00 00 00

co co

(_)m+n(..i)r+s( r )(s )11 (k)( )u
m n rs r s ki

k,,Q=0 r, s=0

co k, 1

(-1)u 1m n
r+sk-m)(/

m+n (k)(
(-1) (

r-m s-n t'rs
k, 1=0 r, s=m, n

(A-13)
oo k, 1

(-1)m+riu ( k )(f ) (1)k/ m n -r-ms-n)r+1 s+1r+s( k-m)(
-n 1 1

k,/ =m,n r,s=m,n

oo

k()()umn ki
k,/ =m,n

00

pmnrsilrs rsiduki

k
= 1 ()()umn kil

k,1=m,n

k, I

r,s=m,n

r+s -m-n (k-m)(/ -n)
r-m s-n

urdu vsdv

[0, 1]

um(1-u)k-mdu 5vn(1-4-ndv
[0, 1] [0, 1]

co

u (k)(/)B(m+1,k-m+1)B(n+1,/ -n+1)ki m n
k,./ =m,n

30

where B( , ) is the Beta function

cmnkfu =

=0 k, 1 =0 r, s=0



00

k, =m, n

1 1

kl k+1 1+1

1-(p)r(q)
upon us ing B(p, q) -

r(P+q)

Hence cmnld = amnld
and we now see that A is a Quasi-

Hausdorff matrix.

The above example also helps to generate the form of an

arbitrary element of a Quasi-Hausdorff matrix.

Theorem 2. 13. A matrix B = (b k) is a Quasi-Hausdorff

matrix corresponding to the sequence {p. } if and only if its ele-

ments have the form

k-m, 1 -n
k 1

bmnk/ (m)(n) (-1)r+s(k-m)( -n)11r+m, s+n
r, s=0

k=( )( )A 11m n k-m, -n mn

Proof. Let B = be a Quasi-Hausdorff matrix.

Applying this to a double sequence matrix S we have T = BS

where
00

tmn = bmnkf sk/
k, 1= 0

31



Using (A-13) of the example with ski replacing uki we find

k, 1

t =
I

in
(k)(i) (..op-m+q-n(k-m)(i -n)13,

TI111 n p-m q-n pq ski
k, I =0 p, q=m, n

co k-m,12-n
k I

(m).(n)

(_nr+s(k-m i -n
_-_- r s )11r+m, s+n ski

k, i =m, n r, s=0

Therefore

k-m,1 -n

bmnki = (mk)(n1)
(-1)r+s(k-m)(f-n)11Li r s r+m, s+n

r, s-

k
= ( m)(n) A k-m, -nN-mn

by definition of the difference operator.

Then upon reversing the steps we have the remaining part of

the statement.

Definition 2.14. We call

mn
[0, l]x[0,

32

mn
u v dg(u,v), m,n = 0,1,2,...

a sequence of double moment constants corresponding to the function

g(u,v), if g(u, v) is of bounded variation in the sense of Hardy-

Krause in [0,1] X [0,1]. If in addition,



ou, 0) = g(u, 0+) = g(0+ v) = g(0,v) = 0, for (u,v) in [0,11X [0,1]

and {g(1,1)-g(1,0)-g(0,1)+g(0,0)} = 1, then is said to be
Triri

re_a_ilar [2].

For notational purposes we will write H*(p.mn)
to represent

the Quasi-Hausdorff matrix which is generated by a sequence {}.1 }.

We now find conditions for 14*(P'mn)
to be a regular matrix

(Theorem 2.25).

We shall show that when 11 is a regular moment constant
Triri

then H*(1.1. ) is a regular series to series matrix. We use Propo-
mn

sition 2.8 and Lemma 2.7.

Thus

Proposition 2.15. If

gmnij

m, n

r, s=

h rsij

where h is an element of H*, then
rsij

A g=()(j)A11 mnij m n i-m, j -n m+1, n+1

Proof. By definition

h = (i)(j)Arsij r s i-r,3-s T S

33



A h . = (i)(i)A . - (i)(3+1)A11 rsij r s i-r,j-s rs r s i-r,j+l-s rs

-
i+1

( )(j)A.r s 1+1-r,j-slIrs r "s i+1-r,j+l-slIrs

= (1) + (2) + (3) + (4) .

Making use of the relation (1+1) = (q) + ( q ) we rewrite
z z-1

i j+= ()( ).A ir s -r,j+l-srs + (r)(s-1 (A)

and

and

(4) = (1+1)(3) + (i+1A.
. (B)

r s 1+1-r,j+l-srs r s-1 i+l-r,j+l-s' rs

We now use the relation A
1, t+1

= A 1, t 0, 1)
on the first

:erms of (A) and (B) to arrive at

(A1) =(1)(j)A. .i (j
r s 1-r,j-s rs r s i-r, s+1

+ (i)( )Ar s-1 i-r,j+l-s rs

i+1 j
(B . - (1+1)(j)6, . P,

1
) ( )(r s rs r s i+1-r,j-s r,s+1

i+1
)( j)A. 1 '+1 sr s- 1 -r, j - r

We note that the first terms of (A1)
and (B1

are precisely

terms (1) and (3).

34



then

Combining these results, making use of the relations between

binomial numbers we arrive at

h = (i)(j)Ai j

11 rsij r s i-r, j-s r+1, s+1 - (r)(s-1)Ai-r, s

- )( ) ( )( -

r-1 r-1 5-1 i+l-r,j+l-s rs

We sum on r, s:

m,n n m

L .llhrsij = (i
(i)A.Sii r 1-r, j- +1, s+1S r

r, s=0 s=0 r=0

- r-1 i+l-r,j-s r,s+1/

(i)A.r i-r,j+l-s r+1, s

- ( r-1 i+l-r, j+l-srs}

s+1

s- 1
s=0 r=0

s- 1 i-m, s/

= (i )(i)&m n i-m,j-n m+1, n+1

Proposition 2.16. If g is as defined in Proposition 2.15
nmk

35



Proof. By definition

lirnlimgmnij r s i-r,j-s rs
m, (x) r, s=0

i (j L.r s i-r,j-s rs
r, s=0

by definition of the difference operator and binomial numbers.

Proposition Z.17. If i is a regular moment constant then

lirn = 0, fixed q
q

lim 1)(j),6 = 0, fixed p.
00 p n i-p, j n+1

Proof. Considering the first relationship we have

)(im q = Sir ( )(jtlin+10 -11t V-ITICIG-v) dg(u,v).j-cimq
[0, i]X[0, 1]

Now

lini
m, n--"" 00

= u
'mni3 ' 00

36



(j)vc1(1-v)j-cl

q=0

so that for a 6 chosen such that 0 < 6 < 1 we can write

0< (i )(i)16. 11m q<I u(j)(1 -6)j -clidg(u,v)1uldeu.,01+
[o, 5] [0, 1]

{dP(u,v)+dN(u,v)}

[0, 1]X[0, 6]

+ Sic (3)(1-6)3 v)+dN(u, v)}

[0, i]x[5, 1]

where P(u, v) and N(u, v) are

the positive and negative variations

of the function 011, v).

< {p(i, 5)-P(1, 0)+P(0, 0)-P(0, 6)+N(1, 6)-N(1, 0)

+N(0, 0)-N(0, 6)} + (j)(1-6)j-clVar g .

Because (i)(1-6)j-cl 0 as and by the continuity of

P(1, 6), P(0, 6), N(1, 6), N(0, 6) at 6 = 0 it follows that

(j)vq(1-v)j-ci = 1,
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lim sup (j)(i )1 A .q m i-m,j-q m+l,q1 = 0.

A symmetric argument yields the second relationship in the theorem.

Continuing we have a theorem which will yield the result that the

only Quasi-Hausdorff matrices which are regular come from moment

sequences.

Theorem Z. 18. In order that {11 } be a sequence of doublers

moment constants it is necessary and sufficient that

co

sup (r)(s)
m n r-m,s-nilm+1,n+11 < (A)1

m, n r, s=m,n

00

00

sup
, s-n110,n 11 <

s=n

Proof. Hildebrant and Schoenberg [81 have shown that 4Lrs}

is a sequence of double moment constants if and only if

sup ( P)(P) 1Li m n p-m, p I < c°
m,n=0

)1
11r-m,m 0 T11+ 1 0I < °'°
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(B)



sup

, s+1

39

Ramanujan [21] has shown that fl-Lr} is a sequence of moment

constants if and only if

Co

sup )LA -milm+11 <r "
r=m

while Kuttner {161has shown this is also true if and only if

(P)I 11I <r p-r r
r=0

We first show that (A), (A1), (A2) imply (B). By a series of

propositions we will show that (A) implies

su ( P )(m n p-m,p-n m,n1 < 00(133)p ID) I A

m, n=1

Proposition 2. 19. If 0 < k,/ <p-1 and M > 2p-k-1,

N > 2p-1-1 then

M-p+1 N-p+1
m-1 q- 1

Ap-k, p-i p.Id
- ( p-k- 1 (p-1- 1)Am, qI-Lp, p

m=p-k q=p42

M-p+1 13-2

(p-k-1 (s-1+i)Am,N-s
m- 1 N-p+1

m=p-k s=1-1



(1d) =

Summing we find the above yields

P-2 N-p+1

( ) (
M-p+1 Vt-1
r-k+1 p-1-1M-r,t r+1,p

r=k-1 t=p-,f

P-2
(M-p+1 (N-p+1v-I +1 )AM-r,N-vilr+1, v+1r-k+1

v=1-1

Proof. By induction on M and N. Call the right hand side

(la) + (lb) + (1c) + (1d).

For N = 2p4 -1, M = 2p-k-1 we see that

p-k-1(la) = (p-k-1)p-k,p4p.pp .

P-2

P-2

p-2

(1c) = (p-f -1)(
p-k

p-/ -1 r-k+1 2p-k-1-r, p-111r+1, p

r=-1c- 1

p-2 p-2
p-k p-/

(r-k+1)(v-1+1)A2p-k-l-r,2p-i-1-vilr+1,v+1
r=k-lv=/ -1

40

(lb) = p-k-1) -1+1)p-k, 2p-I -1-stip, s+1
s=4 -1



p- 1 p- 1
plc p-/

r-k+1)(v-I+1
r=k- 1 v=' -1

=
p-k, p - j2

Now let us assume the result is true for N and show true for

N+1; by symmetry of M and N in the statement of the proposi-

tion this will also establish the result for M. Consider (lb):

M-p+1 p-2
, m-1 N-p+1
lp-k-1)( v4+lL6m,N-v}lp,v+1

m=p-k v=1-1

M-p+1 p-2
, m-1 N-p+1
lp-k-1)(v-i+1)Am,N-v+111p,v+1

m=p- v=1-1

M-p+1 p-2
m-1 N-p+1

p-k- 1)(v-f +I )Am, N-vfjp, v+2
m=p-k v=1 -1

= (1b1) + (1b2) say.

In (lb 1) we let T = v, while in (1b2) T = v+1. With these substi-

tutions and some rearranging of terms we find
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(lb) =

(1d) =

M-p+1 p-2

rn=p-k T=I

M-p+1
m-1

(p-k- 1)
m=p-k

M-p+1 p-2
m-1 IN-p+21

p-k-1)Am,N-T+111p T+1T-12+11
m=p-k T=1

M-p+1
m-1 N-p+1

(p-k- 1) em, N-1+2+ (p-f -1 )6m, N:-.p+2 p, pP-

m=p-k

We call this last result (1B).

Now proceeding with (1d) we find in a similar manner

13-2 1:1-2

r=k-1

P-2
M-p+1

( r-k+1)
r=k -1

m-1IN-p+11+IN-p+11
p-k-1),6m,N-T+111p,T+1 T-i+11T-1

N-p+1
0 )6m,N4+1+111p,f -1+1

+ (N-p+1p-f -1 ),6m,N-p+1+111p,p+1-1

M-p+I N-p+2
r-k+1 )(T4+1),6M-r,N-T+111r+1,T+1

N-p+1
-r,N-1+2r+1,i+ (p-i -1 )6M-r,N-p+24r+1,p

42

We call this result (1D).

Shifting to (la) we find, upon adding a term and then subtracting

it back out,



(la) =

(1c) =

M-p+1 (N+1)-p+1
m-1 q- 1

(p-k- 1)(p -1 m, q p, p
m=p-k q=p-1

M-p+1
m-1 N+1-p+1- 1

(p-k- 1 p-4 -1 )Lm, N-p+211p, p -

m=p-k

We note that the second term above is the negative of the last term in

(1B).

Finally (lc) yields in an analogous fashion

p-2 (N+1)-p+1

(M-p+1
t-1

r-k+1)(p-1-1)1'M-r,t1.1r+1,p

P-2

r=k-1
(M-p+1)

N+1-p+1-1
r-k+1 p-I -1 ).A M- r, N-p+211r+1, p

Again the second term is the negative of the last term in (ID).

Hence in recombining the terms ( la, B, c,D) we find

M-p+1 (N+1)-p+1
m-1 q- 1

(p-k-1)(p4 -1 m,qp,p
m=p-k q=p-.P

M-p+1 p-2
m-1 (N+1)-p+1

(p-k-1)( T-12 +1 )Arn,(N+1)-TP,T+1
m=p-k T=4 -1

43

r=k-1 t=p-/

A
=p-k



p-2 (N+1)-p+1
M-p+1 s-1

(r-k+1)(p-I-1)6M-r,silr+1, p
r=k-1 s=p-.

P-2 P-2

(M-p+1
(N+1)-p+1

r-k+1)( T-f+1 )AM-r,N+1-T}Ir+1,T+1
r=k-1 T=1-1

The result obtained is precisely the statement in the lemma with N

replaced by (N+1). Hence the lemma is true for all M, N.

Proposition 2.20. If
fp.Id}

is a sequence of constants then

00

SUP <m-n, zij-n+1, tI
m=n

if and only if

R,sup )mR-m,z1-1m,tI < 00, fixed z,t .
m=0

Similar results hold for I A z, n+1 and I z , R m I -

Proof. The proof is a straight forward modification of a proof

by Kuttner [16] for a sequence of constants {Pk}
and will not be

44

given. In his proof Kuttner was able to establish the result for p > 1.



(P )1 A /-1. <m p-rn m

and

p-k, 011k, pl

p-2 N-p+1
M-p+I s - 1

(r-k+1)(p-i -1M-r,silr+1,p
r=k-1 s=p-1

both tend to zero as M,N tend to infinity, for fixed p, k, .

Proof. We will only show that (lb) tends to zero as M,N

tend to infinity for fixed p,k, 1 as (lc) follows by a similar argu-

ment.

Co

n+p- 1 ,

)1,6n11pip-1

1)1,6 r, 0pp' (2A)
p-1

s+p-1
P-1 AO, sp.pp

I (2B)

45

m=1 n=0

The modification of his proof yields for p > 1

Co

k=1 r=1
and

00

1=1 s=1

Proposition 2.21. If {p.mn} is a double sequence and (A)

is true and the conditions of Proposition 2. 19 are satisfied then

M-p+1 p-2
m-1 N-p+1

p-k-1)(T-I+1)Am,N-TP-p,T+1
m=p-k T=f -1

(lb)

(lc)



To this end we observe that since (A) is assumed true then

00 00

(N) \'
Is z I R-z,N-silz+1,s+1

N=s R=z

is finite. Hence

oo

lim (N
N-00

H R-z,N-silz+1,s+1
R=z

is zero for fixed s, z. Therefore any finite sum

z-1 oo

( (R)11
z

s=i -1 R=z

tends to zero as M,N tend to infinity for fixed z,/.

Let Q = z-k+1, hence Q will be fixed when z,k are

fixed. The finite sum becomes

Q+k-2 00

(N)
(Q+k-1) IR-(Q+k-1),N-sP'Q+k,s+1

s=1-1 R=Q+k-1

which is identical, upon letting m = R -(Q+k -1), to

Q+k-2 00

(N) \- (m+Q+k-1
I

Z., Q+k- 1 )1 Am, N-si-LQ+k, s+1
s=/ -1 m=0

46



This double series still tends to zero as M,N tend to infinity for

fixed k,/,Q But since

m+Q+k-1)(m) < (
Q Q+k-1

we find

Q+k-2 00

p-2

T=I -1

P-2 co

(N) (

T p-k) Lm,N-Tp.p,T+11
T=I-1 m=0

Substitute W = p-k, or p = W+k, to yield

W+k-2 oo

(N) (m)
T w

T=/ -1 m=0

oo

(
m1

p-k m, T+1
m=p-k

m, T+li

47

s=1-1 m=0

tends to zero as M,N tend to infinity for fixed k,/, Q.

Consider now (lb). Since

N N-p+1
( m ) > ( ) and (T)>(T-1+1)p-k p-k-1

we see



As M,N tend to infinity we have previously found this double series

tends to zero for fixed W,k, I, hence for fixed p, k, . Thus (lb)

tends to zero as M,N tend to infinity for fixed p,k, .

Proposition 2.22. If is a double sequence and (A) is

true and the conditions of Proposition 2.19 are satisfied then

p-2 p-2

(M-p+1
(N-p+1
v4+1),6M-r,N-vilr+1,v+1

(1d)

r=k-1
r-k+1

v=i -1

tends to zero as M,N tend to infinity for fixed p,k,

Proof. Since (A) is assumed true then

NMlim (v)(r)IAM-r,N-vr+1,v+11 = 0

But with

( M)> (
M-p+1

N) > (
N-p+1

r r -k+1 ) (v v-1+1 )

we see

p-2 13-2

I (1d) I <

r =k - 1 v=1-1
v)1,6m-r,N-vilr+1,v+11

where the right hand side tends to zero as M,N tend to infinity for

fixed k, p. Therefore (1d) tends to zero also under those condi-

tions.
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Proposition 2.23. If
{1ik/2}

is a double sequence and (A) is

true and the conditions of Proposition 2.19 are satisfied then

Co

r-1 s-1
= (p-k-1)(p-/-1),6r,si-Lp,p

r=p-k
s=p-1

for fixed k,/ and p > 1.

Proof. Follows immediately by taking the limit as M,N tend

to infinity of the result in Proposition 2.19 and applying the results

of Propositions 2. 21, 2.22.

Proposition 2.24. If the conditions of Proposition 2.23 are

satisfied than

p- 1

P )(P) Im n p-m,p-n
m, n=1 r, s =1

p- 1 co

Proof. It follows from Proposition 2.23 that

P)(P)I P- Im n p-m,p-n m,n

CO

(P)(P)Im n -m- 1)(p -n-1),6 r, p
r - 1 s -1

p
m, n=1 r=p-m

s=p-n

r+p- 1 s+p- 1
)1 P. Ip- 1 p- 1 rs p, p
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p- 1 00

( P)(P)m n
r- 1 s - 1

(p-m- 1)(p-n-1)1r,sp,pI
m, n=1 r=p -m

s=p-n

00

r, s = 1

p- 111 I( p)( p)(
r- 1 s - 1

mnp-m- 1)(p-n- 1)r, s p,p
m=max{1, p-r}
n=max{1, p-s}

oo

<_ / I L II I
( P )(P)( r-1 s- 1 )

r, s p, p m n p-m- 1 p-n- 1
r,s=l m=max{0 , p -r}

n=max{0, p-s}

co

< I 1(r-fp-1)(s+p-
1

r,s p,p p- 1 p-1 )

r,s=1

We are now in a position to finish the first part of the proof of

Theorem 2. 18.

We consider the double series in (B3)

P

(P)(P)1 Am n -m, p-n m, n I

1-1

m, n= 1

p- 1

< -1 (P )(P) I
1 + A FL I

p,p
m, n= 1

p- 1 p- 1

(P)1,6(P) I A I

in p-m, OP.m, p I n 0, p-ni-Lp,n
m=1 n=1

p-1

m n p-m, p-n m,n
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It follows from (2A), (2B) that the last two terms obey

'hus

P-1

)1,6 I <p-m, 0 m, p

}-1. <0, p-n p, n

ihile by Proposition 2. 24 the second term obeys

p- 1

( P )(P) I A 11 Im n p-m,p-n m,n
m, n=1

( P )(P)m n p-m, n I

m, n=1

ao<V r+p- 1)( s +p- 1
III I + Z ( )1,6 P- I13,P p-1 p-1 r, s p, p

r, s=1

oo

r+p- 1
+ 2j( )1,6 11 Ip-1 r, 0 p,p

r=1

00

00

00

00

s+p- 1)
Ip-1 0, s p, p I

s=1

r+p- 1 s 1-p - 1
, )( )1 11.p-i r, s p, p

r, s=0

r+p- 1
)1,6 r, 01-1p,pp -1

s+p-1
11p-1 0, s p, p

s=1
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r+p- 1 s +p- 1)1
P- Ip-1 p-i r,s p,p

r, s=1

m=1 r=

and



Since (A) is assumed true we know there exists a constant K

such that

CO

{p. } andm, 0

sup

{P'0, n}

R S
(A)(B)1R-A,S-BI-LA+1,B+11

<K.

R,S=A,B

Let R-A = r, S-B = s, A= B, p = A+1. Then (A) implies

00

(r+p- 1 s +p- 1
)( )1Lsi < K ; p>1.

p-1 p-1 r, s p, p
r, s0

Therefore we see

( P )(P) I p-m, p-n n
< K.m n

m, n=1

Thus (A) implies (B3).

By hypothesis

CO

-m, em+1, 01 <sup

k=m

00
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(A )
1

(A2)0, n+1' < "

Using Ramanujants result in one dimensional theory then yields that

are sequences of moment constants, i. e. , there



exist two functions of bounded variation xi(t), x2(w)
such that

m,0 = tmdx1 (t), 0,n wndX (w), m,n = 0, 1,2,...

[0,11 [0,1]

and furthermore

dxi(t) = dx2(w)
[0, 1] [0, 1]

Let x3(t,w) be any function of bounded variation in the sense

of Hardy-Krause which satisfies

x3(t, 0) = -X1(t) + x1(0), o < t < 1

X3(0,w) = -x2(w) + x2(0), 0 <w < 1.

One such function is given by defining it to be zero for all other

values in the unit square. Define a sequence of moment constants

corresponding to such a function x3(t,w) by

m, n =
tmwndx w), m,n = 0,1,2,...

[0, 1]X[0, 1]

Then

= and v =

m, 0 m, 0 0,n 0,n
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By the theorem of Hildebrant and Schoenberg the sequence

{v } satisfies
m, n

while for n = 0

sup (P)(P)I A

sup

n=

n=1

m=1

When both are zero we see

I < co.
m n p-m, p-nvm, n

m, n0

Hence

(P)(P)IA < 00
m 0 p-m,pvm, 01

(13)(13)1 v 1 < co.0 n p,p-n 0,n

p, p-n

P )1 L 11 < K -
m p-m, pp 0

54

Replacing vm, 0, v0, n
by p.

0 0,n respectively we find that

for m = 0

sup

m=0

and



Therefore

P )(P)Ap,p 0,0 = -0,0 m n p-m,p-nvm, n
m, n=1

n=1

-

+ K + K + K .
I AP,P110,01 1110,01

Hence combining these results we find

(P )(P)1.6p-m,p-nilm n m,nI
m, n=0

P

.-_-I I +
(P)(P)IL I-1

'6 p, p110, 0 / m n p-m, p-n m, n I

m, n=1

1p, p-n10, n +

Taking the supremum of both sides yields

sup (P)(P)ILm n p-m, nI

m, n=0

p-m,p m,0

p-m, p
IJ

In , 0 I

<00 (B)
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n=1 m=1



k-m,/ -nm+1,n+1
t=m+1
s=n+1

we find the partial sum

(km)(n) 1 Lk-m, I -np,m+ 1, n+ 11

k, I =m, n

R R-k+m+1,R-1 +n+ 1
1 , R-k R-i

< / (km)(n) it-m-1)(s-n-1 AR+1-t,R+1-st,s1)1

k, 1 =rn, n

R+1
R+1 R+1

( t )( s )ILR+1-t,R+1-sP.t,sI
t=m+1
s=n+1

Since (B) is assumed true this last double series is bounded for

all R. We let R tend to infinity and obtain

co

k
sup (m)(n) -m, n+1 I <

m, n k, 1=m, n

Thus (B) implies (A).

t=m+1, s=n+1

56

Thus (A), (A1), (A2) imply (B).

Now to show that (B) implies (A), (A/), (A2). From the identity

R-k+m+1,R-f +n+1
R-k

(t-m-1)(s-n-1)AR+1-t,R+1-slit,s



fil 1m, n

On the other hand (B) also implies that the double sequence

is a moment constant sequence so that

now proved.

sup

sup

00

1

< co
k-m, em+1,0

0,i-n}10,n1-1I <

are both true. Thus (B) implies (A), (A1), (A2); Theorem 2.18 is
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(A2)

n
urnyndx(u, v), m, n = 0,1,2, . . .

110,11)40,1]

and so

m,0 = um-dx(u,v) = unid(X(u, 1)-x(u, 0))

[0,1]X[0,1] [0,1]

0,n yndx(u,v) = vnd(X(1,v)-X(0,v))

[0,1]X[0,1] [0,1]

Since X(u,v) is of bounded variation in the sense of Hardy-Krause

we know that both x(u, 1) - x(u, 0), X(1, v) - x(0, v) are of bounded

variation and so {II } {p. } are single sequences of moment
m, 0 0,n

constants. Ram.anujan's results (a) then imply

00

(A
1
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Theorem 2.25. The Quasi-Hausdorff matrix H*( m, n) is an

a -matrix for convergent double series with bounded partial sums if
0

m, n
is a sequence of regular moment constants.

Proof. By Proposition 2.8 we see that H*( m,n) is an

a-matrix if and only if

m, n

G = (gmnii =

r, s=0

is a y-matrix. Thus we need to satisfy the conditions of Lemma 2. 7

with out elements... We find
granij

conditions (i) and (vii) are true by Theorem 2.18 and

Proposition 2.15,

conditions (ii) and (iii) are shown true by using the arguments

in the proof of Proposition 2. 17. We have

m,n

A g = h
1, 0 mm.3 1,0 rsij

r, s=0

where

hrsij (i)(i ),6 .r s i-r,j-s r,s

( )( )u (1-u) v'cSiisri-rs(1-v)i sdg(u,v) .

[0, Ilx[0, 1]



By the techniques used in Proposition 2.17, it follows that

0 < Ir (i)
S Li-r,j-sr , s

I

< SS {dP(u, v)+dN(u, v)} + (is )(1-5)j sVar g

[0,1]X[0,1]

and by continuity that

lim supl (i)(i)& p. I = 0.r s i-r,j-s r,s

A similar argument holds for g0,1 mnij
conditions (iv) and (v) are trivially true since for m > i or

n > j we have

g11 mnij = 0,

condition (vi) uses Proposition 2.16 and is satisfied if

100 -

By the regularity of n we have

0,0 =
dg(u, v) 1.

[0,1]X[0,1]

Hence Him, is an a-matrix. In order to be an
a0

-matrix we

need G to be a0-matrix. But by definition G is a yo-matrix if
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and only if

lim= 0.gmnijj oa

This is valid whenever

lim h = 0 ,
j,jOO rsij

which follows again by arguments analogous to those in Proposition

2.17.

Thus for regular moment constants p.m, n
we do have

H'4(
, n)

being an a0-matrix.

Theorem 2.26. A Quasi-Hausdorff matrix A is a T-matrix

if and only if

ELm, n is a moment constant

dg(u,v)
uv

(0, ,,x(0

where g(u,v) is a function which generates the sequence

Proof. We show that (a), (b) true implies the Quasi-Hausdorff

matrix A is a T-matrix. Since A is Quasi-Hausdorff we know

its elements have the form
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00 00

amnki

arrinkf

k,f=0 k,,e=o

oo

k, 1 =0

k k > m, > n(m)(n) A k-m, 1 - n m, n

We first show that (a) implies

00

arrinkl
k,,Q=0 (0, 1]X(0, 1]

if it exists.

Case one. g(u, v) >0. Then using the definition of pq mn

we find

dg(u,v)
uv

k-m,f -n

k)(/) (-1)r+s (k-m )(-n )r s
r s=0

otherwise,

Xr+my s +ndg(u, v)

[0, 1]>([0, 1]

m n
k ) S um 1 -uk nivr1( ) (1-v)g -ndg(u,v)

[0, 1]X[0, 1]

(k)(f )imo-u)k-mvn(1-v)J2 -ndg(u,v)
in n

[0, 1]X[0, 1] k,f =0

)dg(u,v)
U

)(
vn

(1-(1- )m+1 (1-(1-v))n
(0, 1]><(0, 1]
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and

(0, 11x(0, 1]

dg(u,v)
UV

Case two. A g(u, v) not always positive. Here we consider the

two series

oo

(k )(/) Sic um(1-u)k-mvn(1-v) -11dP(u, v)
Li m n

k, =0 [0, 1]X[0, 1]

oo

(k )(I) um(1-u)k-mvn,(1-vie -11dN(u, v)L mn j
k,/ =0 [0,1]40,1]
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(13. 1)

(13.2)

where P(u, v) and N(u, v) are the positive and negative variations

of g(u,v). Using the same techniques as in Case one we find these

to be equal to

sec dP(u,v)
uv

(0, 1]X(0, 1]

and
.11,S1 dN(u, v)

uv
(0, 11X(0, 1]

Now these integrals both exist if and only if

I dou, v)
uv

(0, 1]x(0, 1}

exists, which by a theorem in Lebesgue-Stieljes integration [19], will



exist if and only if

dg(u,v)
uv

(0, 1*(0,1]

exists. Since (13. 1), (13.2) both converge absolutely we can subtract

to find

00

(k um(1-u)k-mvn(1v)e -n{dP(u, v)-dN(u,L m n
k, =0 (0, 1NO, 1]

(i)
k, =0

On the other hand

d(13.1) - (13.2) = P(u, v) dN(u, v)
uv uv

(0, l]x(0, 1] (0, 11X(0, 1]

dg(u,v)
UV

(0, i]x(o, 1]

Thus again

arnnki

if the integral is finite.

dg(u,v)
uv

(0, 1]x(0, 1]
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00

amnki
k, =0



Now we show that if (b) is also true then A is a T-matrix.

Considering the conditions for a T-matrix, Lemma 2.5, we see that

lim amnkf = 0 is trivially satisfied;
m, n co

00

lim a 1, because (b) is assumed true and
m, k, =0

mnki =

00

cs
dg(u,v)

3

uv amnkl
(0, 11X(0, 1] k, =0

00

(iii) sup'
m, n k,1=0

ankf finite. Since
m

64

amnki
Sic dg(u, v)

k, f (0, 11X(0, 1]

and since

cs
dg(u, v)

uv
(0,1]X(0, 1]

implies

SSI dg(u, v)I
UV

(0; 11X(0;

exists we find (iii) is satisfied;



sup

sup
m, n

mn

Co

(iv), (v)urnf = 0 for each
mnkm, 00

k=0

CO

are trivially true for elements of A.

Thus conditions (a), (b) imply that A is a T-matrix.

On the other hand if A is a Quasi-Hausdorff T-matrix then by

Lemma 2. 5(iii) we see

00

(k I )

m n 6k-m,
, I m, n

is finite. Define a sequence {limn}
by

1 =0

Thenp. +1,+1m, n
v andmn

00

m-1, n-1'

ankf = 0 for each km

m > 1, n > 1

either or n =

k 1

(m)(n) Ik-m, J2 - n m + 1 , n+1

( )1 Lk -m, o m+1, 01
---m < Co

<00 (A)

(A )
1

65

sup
m, n k,f =m,n



and

00

Thus Theorem 2.18 states that {vmn}
is a sequence of moment

constants, and by a theorem of Hildebrant and Schoenberg [8], a

function h(u, v) of bounded variation in the sense of Hardy-Krause

exists such that

urnvn dh(u, v), m,n = 0,1,2,...
m.n

[0,1]X[0,1]

But then

Mri
v
M+1,n+1

0,/-nv0,n+11 = 0 <

.1111

{0, 1]x[0,

We define a function g(u, v) by

g(u, = .519 tildh(t, r1).

[0,u]x{0,v]

This function is of bounded variation since

dg(u, v) = uv dh(u,

mn
u v (uv dh(u,v)).
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SirI dg(u, v) .scic 1 uv dh(u, v) I

[0, 1]x[0, 1] [0, 1]X[0, 1]

I dh(u, v) B < co.

[0, 1]X[0, 1]

Hence since h(u, v) is of bounded variation in the sense of Hardy-

Krause then so is g(u,v). Then also

=
5151

niU v dg(u, v), m, n = 0, 1, 2, ...

[0,1140,1]

and so g(u, v) generates the sequence {IIInn}
which is a moment

sequence. We also note that g(u, v) is continuous at the axes and

zero on them.

Finally Lemma 2. 5(ii) states

CO

lim a = 1,
mnkfm, 09

k, =0

where

k
amnkl = (m)(n)is k-m, 1 -nilmn

k= ()(m n)A k-m, -n m+ 1 , n+1

k m+1 k-m n+1 f-n
= (m)(n) u (1-u) v (1-v) dh(u,v)

[0, l]x[0, 1]
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when A is a Quasi-Hausdorff T-matrix. Since the integral is zero

when u and/or v equals zero this integral can be taken over

(0, 1] X (0, 1].

Consider the sequence of functions {f }
Pq

where

q

f (u, v) =
Pq

k,/ =m,n

Then

If (u, v) I < 1 and lim f (u, v) = 1
Pq Pq

By the Dominated Convergence theorem we have

lim f (u, v)dh(u, v) =urn f (u,v)dh(u,v)
Pq Pq

P'(1-"°[0, dx[0, 1] [0, 11X[0, 1] P' q

or
oo

k )( (1-u1 m+1 -mn+1 _vyt -ndh(u, v)
m n

k,f=m,n [0, 1Ix[0, 1]

Thus because A is a T-matrix,

k m+1 k-m n+1
(m)(n)u (1-u) v (1-v)

-n 0 < u,v < 1.

.r.c dh(u, v) .

(0, ,,x(0,



00

1=
V CC (k )(

.m+1 ..-u)k-m n+1
v (1-v)dh(u, v)

m,n °0 k,i=m,n [0, 1]X[0, 1]

CO

= lim (k )()A
m, 00

k, = m n

= dh(u, v) =

1,x,0, 1, ,(0, 1,x(0, 1

and Theorem 2.26 is proved.

Corollary 2. 26. A Quasi-Hausdorff matrix is boundedness

preserving if and only if p. is a moment constant defined by amn

function g(u, v) such that

Sir I dq(u, v) I
uv

(0, 1]X(0, 1]

Proof. It is well known that a matrix A maps bounded

sequences to bounded sequences if and only if

M. ,
amnki I

sup

k, =0

is finite. The proof of the one dimensional case easily extends to the

two dimensional case.

m n k -m, 1 -n m+ 1 , n+ 1

dg(u, v)
uv

< 00

(*)

m n
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In the proof of Theorem 2.26 we found condition (*) to be

sufficient for to be a sequence of moment constants gener-

ated by a function g(u, v) which satisfied the inequality

SI I dg(u, v)1
uv

(0,11X(0,1]

On the other hand if we assume {p.mn}
is generated by a

function g(u, v) such that

Sic I dg(u, v) I
uv

(0,1*(0,1]

then again the proof of Theorem 2.26 shows that 01 is satisfied.

In the one dimensional case Vermes [28] has established a

connection between series to series transformations and sequence

to sequence transformations. He proved

Lemma 2.27. Given an a -matrix H defining a transforma-

tion of the series Zan to the series Zb , there exists a

K-matrix F which transforms the sequence {sn}
of partial sums

of Zan into the sequence ft } of the partial sums of Zb and

conversely.

< 00

70

Idh(u, v) I < 00

[0,11).[0,1]



We shall do the same for two dimensions (Proposition 2.31).

First we prove an intermediate result.

Proposition 2.28. Let F = (fmnkl) be a T-matrix, Ecmn

be a series with bounded partial sums Ski, and

00

Cfmn
= fmnkis

m, n = 0, 1, 2, .. . , (5.1)

k,i =0

define a sequence to sequence transformation. Then the matrix

B = (brnnki ) where

00

nanki fmnrs
(5. 2)

r, s=k,1

by

defines a series to sequence transformation

oo

cr brs r skicki
k,. =0

(5. 3)

of the series Ecki
with bounded partial sums into the sequence

{crmn} defined in (5.1). Furthermore the matrix B is a No-matrix

which by Corollary 2.8 induces an a -matrix A = (amnki) defined
0
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00

amnkf (fmnrs -fm, n-1, rs -fm- 1 nrs +fm - 1 ,n- 1 , rs )

r,s=k,/
(5.4)

m, n 0, 1, ; negative subscripts

indicate the elements are zero.

Proof. Using the definition ofS we see
kf

oo k,/

mnk PqCrmn
= / f/ c

k,0 p, q=0

CO

b cmnkf k/
k,/=0

where bmnice
is as defined by (5. 2), the interchange being valid

because of the absolute convergence of fmnki and the boundedness

k,

{Sk}. The fact that B is a
y0

-matrix follows from F being a

T -matrix.

To satisfy the conditions of Lemma 2.7 for a y-matrix we use

(5.2) to computeA 1 1bmno and find

Since F is a T-matrix we have

A b =fmnki1 l ryinki
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(5. 5)



Co

If < °°; hence Lemma 2.7(i), (vii) are satisfied.
mnij

j=0

oo

If ..I < 00 implies
mnij

i, j=0

oo oo

/ 1 fmnij 1 <
implies

i=0 j=s

Co

j=s
frnnij

co

< 00 implies

lirn = 0 for each i
s 00

L1 rnnij
j=s

and similarly

Co

mnij =
i=w

Thus Lemma 2. 7(ii), (iii) are satisfied.

CO

c) lim
Ifmnk/

= 0 for each
m, n-~ 00 k=0

00limfmnk/ = 0 for each k
m, n 00

=0

for each j .
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and again this implies Lemma 2. 7(iv), (v) are true for the matrix B.

d) The last condition needed to be satisfied is Lemma Z. 7(vi);

oo

l mmj fmnrsurnb
= lmi

m, fl 00 m, n 00

Now from Lemma 2. 5(11) we have

CO

lim fmnrs
= 1

m, 00 r, s=0

and by Lemma 2. 5(iii) the series converges absolutely. So we can

write

CO co i- I CO

fmnrs fmnrs mnrs
r,s=i,j r, s=0 r=0 s=j

00 j -1 i-1,j-

fmnrs fmnrs
r=i s=0 r, s=0

We show that as m, n tend to infinity the last three series

tend to zero. By repeated use of Lemma 2.5(v) we find

0,



by repeated use of Lemma 2. 5(iv) and the concept of absolute

convergence we have

s=0 r=i

by use of Lemma 2.5(i) we have

i- 1

Li fmnrs o

r=0 s=0

Thus the last condition for B to become a y-matrix is now satisfied

when F is a T-matrix.

Using Proposition 2.8 we know that B generates a a-matrix

which we will term A. In addition Corollary 2.8 states that if B

is a No-matrix then A is an
a0

-matrix. But since F is a

T-matrix we know

co

Li fmnrsI

< K for all m,n and therefore
r, s0

cic fmnrs

CO

If sI

r,s=k,,e r,s=k,/

j-1
0,fmnrs

as k,/ tend to infinity for all m, n. Hence
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CO

urn bmnkf = lim f = 0
00

m.nrs
00 k, r, s=k1

and so B is in fact a y0
-matrix when F is a T-matrix. We also

have that a T-matrix induces an a0 -matrix under the correspondence

(5.4), (4.5).

Definition 2. 29. The matrix B, respectively A, defined

by (5.2), respectively (5.4), is called the No-matrix, respectively

a0-matrix, corresponding to the T-matrix F.

We consider now whether conversely a T-matrix can be derived

from an a0-matrix.

Proposition 2. 30. Let A = (a ) be an a -matrix for the
mn 0ld

series Ea with bounded partial sums, and let F = (fmnld) be
mn

defined by
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fmnk/

m, n

p, q=0
1apqld

m, n = 0, 1, 2, . . . (5.6)

Assume that A satisfies

CO m, n

(aa) lim L L L11apqki 1

m, k, 1=0 p, q=0



m, n

1 lapqkf
< co.

p, q=0

(bb) sup
m, n k, =0

Then F is a T-matrix, and if A transformsEamn to Ebrs

both series having bounded partial sums, then F transforms the

sequence of partial sums of Eamn to the sequence of partial sums

of Eb .rs

Proof. Let B be the No-matrix generated by A as detailed

in Proposition 2.8 and Corollary 2.8. Using (5. 6) and (4.3) we see

fmnkl = 1 lbm ,
(5. 7)

We use this last relationship and the assumption that A is an

a0
-matrix, or B is a

y0
-matrix to verify that F is a T-matrix.

(a) Lemma 2. 7(vi) yields

lim bllinkf = 1 ,

m, n co

so by using this with (5.7) we have

lirn fmnkf = 0 for all k, .

m, n

00
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Thus Lemma 2. 5(i) satisfied with 13kl = 0.

(b) condition (ii) of Lemma 2.5 is satisfied as it is condition (aa),



conversely.

condition (iii) of Lemma 2.5 is satisfied as it is condition

(bb),

Lemma 2. 7(iv), (v) and (5.7) yield

00

urn fmnki
=0 for each I

m, 00 k=0

00

lim
m, n 00

Imnki = 0 for each k.f

1=0

Thus conditions (iv), (v) of Lemma 2.5 are satisfied.

Hence F is a T-matrix.

The last assertion of the lemma is easily verified.

Combining Proposition 2.28 with Proposition 2.30 we have a

result analogous to Lemma 2. 27.

Proposition 2.31. Given an a0-matrix A, with (aa), (bb)

satisfied, defining a transformation of the series / am, to the

m, n
series b both series having bounded partial sums, there

rn, n
m, n

exists a T-matrix F which transforms the sequence of the partial

sums ofZam,n into the sequence of partial sums of Zbm, n
and
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Definition 2.32. The sequence to sequence Quasi-Hausdorff

transformation corresponding to the real double sequence {N. } is

given by means of the equation

00

h*mn fmnki skf
k, 1=m, n

where

k
frrinki =m)(n k-m, -nilm+1,n+1

If

nm $IS
ijx[o, 1]

vndg(u, v),

is a moment sequence defined by a function g(u, v) of bounded

variation in the sense of Hardy-Krause, then the transformation

matrix will be denoted by

H*(P-m+1, n 1

This definition is analogous to the one dimensional case. It is

motivated by

Theorem Z. 33. Let the Quasi-Hausdorff matrix H*(p. ),rnn

with 1.i regular, define a transformation of the seriesEcmn to
mn
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the series Zd , both series having bounded partial sums. Then
S



the Quasi-Hausdorff matrix H*(p.m+1,n+1)
is a T-matrix

transforming the sequence of partial sums of Ec into the

sequence of partial sums of Ed.
mn

Proof. By Theorem 2.25 H*(tinin) is an a0
-matrix, and for

this matrix there corresponds a series to sequence matrix B which

is yo. The sequence to sequence matrix F which corresponds to

H*(p.mn) is a T-matrix if and only if Proposition 2.31 is satisfied,

i.e. , conditions (aa), (bb) need to be valid when

k
amnia = (m)(n)Lk-m, - m,n

We note that (aa) can be rewritten as

lim bmn, 0, q+1+bmn, p+1,0
m, n 00 p, q 00

since

00

A 11bninid
k, = 0

= lirn (bmn, p+1, q+1 -b -bmn, 0, q+1 mn, p+1,0+bmn, 0,0)
p 00

=0
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and the first and last terms tend to 0 and 1 respectively because

B is -yo. Then by using



m, n

bmn.k1L1arsk1
s=0

we can write (aa) as

m, n

lirn lim (ar +a 0.0,q+1rs,p+1, 0)
=

m, n 00 p,r, s0

By arguments analogous to those used in Proposition 2.17 we find

lim sup I a k, 0/

lim sup amn, 0,1 I = 0 whenrn,n is regular.
--- co

This then implies condition (aa) is satisfied.

Condition (bb) can be written for this case, after consulting

Proposition 2. 15, as

00

ksup ()(m n),6k-m, -nm+1, n+1 I
m, n k, I =m, n

is finite. Theorem 2.18 states this to be true whenever n

regular moment constant. Hence F is a T-matrix corresponding

to the a matrix F1*(11m, n).
0

We note that the elements of F are precisely the terms

inside the absolute value signs,
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is a



k I
frianki = (m)(n) k -m, 1 'm+1, n+1

Thus F is, by Definition 2.32, the Quasi -Hausdorff matrix

11*(lim+1, n+1)

Corollary 2. 31. If tp.mn1 is a moment sequence then the

Quasi-Hausdorff matrix H*Gim+1,n+1) is boundedness preserving.

Proof. Using the results in the proof of Corollary 2.26 we see

that we need to show that

Co

su.p 2 Ih*k(Im,n
k, 1 0

is finite where

kh* -rrink/ = (m )(n rn+ 1, n+1

But using Theorem 2.18 we find that filmn1
being a sequence of

moment constants yields this result.
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III. GIBBS' PHENOMENON AND QUASI-
HAUSDORFF TRANSFORMATION

Throughout this chapter we assume that f(x,y) is periodic

with period 2Tr in each variable, and of bounded variation in the

Hardy-Krause sense in the period cell.

Lemma 3. 1. If f(x,y) is periodic with period 2-rr in each

variable, then the Fourier series corresponding to it converges at

(x, y), interior to the cell [ -Tr, Tr] X [-Tr, Tr], to the value

- + - -
1/4-{f(x+,y+)+f(x+, y-)1-f(x , y )+f(x , y )1

provided that the function

f(x±s,y*t)

s, t

is bounded and can be expressed as the difference of two functions,

each of which is monotone non-decreasing (or monotone non-

increasing) with respect to s and t in some cross neighborhood

of the point (x, y) [9].

Remark. Hobson [9] states that a cross neighborhood of the

point (x, y) is the set {(s,t)} such that (s, t) belongs to
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[ Tr] X [ -Tr, Tr], and for some 6 > 0, at least one of the conditions
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(i) Is-xl <6

or (ii) t-y1 < 6

is satisfied.

We also note that a periodic function which is of bounded

variation in the sense of Hardy-Krause satisfies the conditions of

Lemma 3.1 everywhere.

Corollary 3.1. If, in addition to the assumptions already on

f(x,y), we also assume that f(x, y) is normalized, then the partial

sums of the Fourier series of f(x, y) converge to f(x,y) every-

where. In particular, the partial sums of the Fourier series of

f(x, y) converge to f(x,y) at every point of continuity of f(x,y) [261

Lemma 3.2. Let (s, t) be a point of continuity of f(x, y) and

let sk/ be the kith partial sum of the Fourier series of f(x, y).

Then for every E > 0, there exists a positive integer p(E ) and

an open neighborhood of (s,t), say U(E), such that

I skl (;) -f(;) I < E , x = (x, y)

for all x in U(E ) and k, >p() [26].

Corollary 3.2. If D is a closed set of points in the period

cell such that f(x,y) is continuous at each point of D, then the

Fourier series of f(x,y) converges uniformly on D to f(x,y) [26].
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Corollary 3.2A. The partial sums of the Fourier series of

f(x, y) do not exhibit the Gibbs phenomenon at any point of continuity

of f(x,y) [26].

Lemma 3.3. Let f(x, y) be a normalized, periodic function

of bounded variation in the period cell. The partial sums of the

Fourier series of f(x,y) will exhibit the Gibbs' phenomenon at

every point of discontinuity of f(x,y) and only there [26].

As an immediate consequence of these results we have

Proposition 3.4. If f(x,y) is periodic with period 2Tr in

each variable, and is sumniable in the period cell, then the regular

Quasi-Hausdorff means of the partial sums of the Fourier series

corresponding to f(x, y) converges at (x,y), interior to the cell

[--Tor] X [-Tr,-rr], to the value

+ + + - - + - -
1/4{f(x ,y )+f(x ,y )+f(x ,y )+f(x

provided that the function

f(x±s,y±t)

s,t

is bounded and can be expressed as the difference of two functions,

each of which is monotone non-decreasing (non-increasing) with respect

to both s and t in some cross-neighborhood of the point (x, y).



Corollary 3.4. If, in addition to the previous assumptions on

f(x, y), we assume f(x,y) to be normalized, then the regular

Quasi-Hausdorff means of the partial sums of the Fourier series of

f(x,y) converges everywhere to f(x, y), in particular, at every

point of continuity of f(x,y)-

Proposition 3.5. Let (s,t) be a point of continuity of f(x,y),

and let t [f; x y] be the lath (regular) Quasi-Hausdorff trans-

form of the partial sums of the Fourier series of f(x,y). Then for

every E > 0, there exists a positive integer R(E ), and an open

neighborhood of (s,t), call it U(E ), such that

Itki {f; x, y) I < E

for all (x, y) in U(E ), and k, > R(E ).

Proof. We first note that for the regular Quasi-Hausdorff

transformation

CO

lima 1
andmnia =m, n k,

there exists M > 0 such that

/ arrinkl I < M, m, n 0, 1, 2, ..

k, 1=0
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Second, we see that f(x, y), being of bounded variation, is

bounded at the point (x, y) of U(E ), say

If(x,y)I < T.

Now consider

00

I tk/ [f*,x,y]- f(x,Y) I = / mnsmn-f (x' Y)
m, n=k

00

akIrnnIsrnn(x, y"(x' Y)+f(x' y)}-f(x' y)

n=k, I

ak/ mnfsmn(x, y) -f (x, y)}

m, n=k, 1
CO

+ f(x, y) ak/ mn-f(x, y)

m, n=k, I

CO

Iakl mn I I smn(x, y)--f(x,

m, n=k, I
CO

+ I f(x, Y) I akimn- 1I.
m, n=k,

By Lemma 3.2 and (ii) above the first term can be made smaller than

E /2 for all (x, y) in U(e), an open neighborhood of (s, t) and

for all m, n > P(E ). By (i) above and the fact that f(x, y) is of
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bounded variation we can make the second term smaller than E /2

for all m,n > Q(E ) and for all (x,y) in U(E). Letting

R (E ) = max{P(E ), Q(E)}

we see that the result in the theorem is established.

Corollary 3. 5. If D is a closed set of points in the period

cell such that f(x, y) is continuous at each point of D, then the

regular Quasi-Hausdorff means of the partial sums of the Fourier

series of f(x, y) converge to f(x,y) uniformly on D.

Proof. Let E > 0 be given. With each point (s,t) of D,

associate a neighborhood U(E ; s,t), and a number P(E ; s,t) such

that

1 tki[f; x, -f(x, y) 1 <

whenever k, > P (E s, t) and (x, y) belongs to U(E ; s , t). Then

the family

{U(E s (s, t) in D}

is an open cover of a closed, compact set D and thus contains a

finite subcover

{U(E;s.,t.)1(s.,t.) in D;i 1,2,...,m,1J 13
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Let P(E ) be the largest of the numbers which are associated with

the sets of the subcover. Then

I t[f; x, y]-f(x, y) < E

whenever (x, y) in D and k , 1 > P(E ).

Corollary 3. 5A. The regular Quasi-Hausdorff means of the

partial sums of the Fourier series of f(x, y) do not exhibit the

Gibbs' phenomenon at any point of continuity of f(x, y).

Using the above results it is clear that a function f(x, y), of

bounded variation having no removable discontinuities, will always

exhibit the Gibbs' phenomenon at a point of discontinuity. If we

express f(x,y) by its Fourier series, form the sequence of partial

sums {S (f; x, y)}, apply a summability method to this sequence,
mn

then it is natural to ask if the transformed sequence will also exhibit

the Gibbs' phenomenon. For the two dimensional case this question

has been answered by Cheng for the circular Riesz means and by

Ustina for the Hausdorff means.

We will extablish some results pertaining to the study of the

Gibbs' phenomenon for the Quasi -Hausdorff means of the double series.

The work is a natural extension of Ramanujan, Ishiguro, and Kuttner

for the one dimensional case. We use their results and manner of

approach freely.
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9 0

As has been shown by many, to investigate the Gibbs' phenomenon

for the arbitrary normalized function of bounded variation in the one

dimensional case, it is sufficient to determine the Gibbs' phenomenon

of the function

[1/2 (7-x) 0 < x < 27

X(x) 0 x = 0 (21. 1)

X(x+2k7) k = ±1, ±2,±3, . .

so that

X(x)
sin kx

=1

S (X; x) =
sin kx

k=1

Since X(x), S (X; x) are odd, periodic functions of period 27

we need only to investigate the function in the interval 0 < x < Tr.

For the Gibbs' phenomenon for the Quasi-Hausdorff means, of

one dimension, of the Fourier series of X(x), Ishiguro and

Kuttner [16] obtained the following:

Lemma 3.6. For the regular Quasi-Hausdorff means of the

Fourier series of the function defined by (21. 1) we have



him h*(t = dg(u)n n
sin yiu dy

[0, 1] [0, -r]

provided that the weight function g(u) is continuous at u = 0,

nt T < 00 and nt2 0 .

Using the results of Ustina [26] we know that to study the Gibbs'

phenomenon for an arbitrary normalized function of bounded variation

in the Hardy-Krause sense in the two dimensional case, it is sufficient

to study it for the functions X(x), X(y), and ep(x,y) = X(x)X(y),

where X(t) is as defined by (21. 1). As before it is also sufficient

to investigate on the domain 0 < x, y < Tr. We henceforth assume

this restriction.

Proposition 3.7. If h* (X;x), h* (X;y) denote the mnth
mn mn

regular transform Quasi-Hausdorff transforms of the functions X(x),

respectively X(y), corresponding to the weight function g(u, v),

then

h* (X;x) = h* (X;x)
mn

h* (X;y) = h*(X;y),mn

where the right hand sides denote the mth(nth) regular one
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dimensional Quasi-Hausdorff transforms corresponding to the weight



functions g(u, 1), respectively g(1, v).

Proof. From the Fourier series representation of X(x) we

find

00

k, im, n

= - (1 /2)x + (1/2)

1-(1 /2)x +
mnk I

00

k, I =m, n

um+1( -u)-rrivn+1( I -n
X (I -v) dg(u, v)

[0, 1]X[0, 1]

by using the definition of the transform and its regularity. Since

h* (X; x) converges absolutely and uniformly in x,
mn

(k k

I)mn

sin(k+1 /2)s
sin(1 /2)s

[0, x]

sin(k+1 /2)s
sin(1 /2)s ds
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Sm(X-,x) =
sin kx

k=1

= -(1 /2)x +
sin(m+1 /2)s ds .2 sin(1/2)s

[0, x]

Then

oo

h* (X;x) = h s (X;x)
rnn k

k, I =m, n



co

h.

k=m [0, x]

* (X;x) = -(1 /2)x + (1/2) (k ) f
sin(k+1 /2)s

mn s in(1 /2)s s

co

X SSum+1(1-u)k-m
/ n+ -n

(n)v1 (1-v) dg(u, v)

[0, 1]X[0, 1] =n

oo

= -(1/2)x + (1 /2) (m

k=m

co

= -(1 /2)x + (1/2)

k=m

sin(k+1 /2)s
sin(1 /2)s

[0, x]

X um+1(1-u)k-m(1)dg(u, v)

[0, 1]X[0, 1]

sin(k+1 /2)s

ssin(1 /2)s

um+1(1-u)k-ril[dg(u, 1)-dg(u, 0)]

[0, 11

sin(k+1 /2)s
= (1 /2)x + (1/2) (k )

sin(1 /2)s

k=m [0, x]

X um+1( 1 -u)k-mdg(u, 1)

[0, 1]

since dg(u, 0) 0,

= h* (X; x) .
rn

ds
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are given by

cr* (t) = crNt) =n, r

sin kt

v=n

where

s(t) sin kt (Reference [101 ).

k=1

Now the two dimensional analog of Lemma 3. 6 becomes

00

V n+1 (1-r) s v(t)

94

We used the fact that the transform was regular, so that

dg(u, 0) = 0 and g(u, 1) is a weight function for the regular one

dimensional Quasi-Hausdorff transform.

Finally the other half of the theorem is proved similarly.

We now turn to examine the Quasi-Hausdorff transforms of the

sequence of partial sums of the Fourier series representations of the

function 4(x, y) = X(x)X(y). We have then

m, n

Sm, n(q); x; ) =
sin kx sin ly

k,I =1

Definition 3. 8. The circle means of the Fourier series of



Proposition 3.9. For the two dimensional regular Quasi-

Hausdorff means of the function (x, y) we have

lim h* (.1); x ,y )mn m n
m,

sin(y/u) sin(y/v) dy dg(u,v)

[0, 1]X[0, , -r] [0,

provided g(u, v) is continuous at the axes,

M X T < n T < X

mx2 0, ny2 0 as m, n
n

00.

Proof. Consider the partial sums of the function (1)(x,y). If

either m or n is zero we shall call the partial sum zero, while

otherwise

Sm, n(q); x,
y) = Sm(X; x)Sn(X, y

We see that the Quasi-Hausdorff transform becomes

CO

h* (1:1;x,y) =m,n (km)(n)Skf
um+10-tok mvn+10-01-ndou,v).

k,/ =m,n [0,1]X[0,1]
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(i)
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We break the integration into three parts,

over the cell [0, 1] x [0, 6),

over the cell [5, 1] X [5,1],

over the cell [0,5) X [5, 1], for 0 < 5 < 1.

We note that all three sums created by integrating over these cells

exists since {Sk/
is bounded, H* is a T-matrix, and thus each

sum is in fact absolutely convergent. We let the bound on {Ski}
be

denoted by M.

Considering the first integration we see

oo

k
(m)(n)Sid

m+1
u ( 1 -u)k-rrivn+1( I 01 v)

k, =m, n [0, 1]X[0, 5)

oo

<M (k )ç) um+1(1-u)k-mvn+10 -nideu,01
m n

k,1=m,n [0, 1]X[0, 5)

< M fdP(u, v) + dN(u, v)].

[0, 1]x[0, 5)

where again P(u, v), N(u, v) are the positive and negative variations

of g(u, v). By continuity arguments similar to the work in Proposi-

tion 2. 17 we find that the integration over the first cell can be made

arbitrarily small by proper choice of 5. Doing the same for cell

(iii) we find an analogous result.

Thus we are left with only cell (ii) to consider. We find



as k

00

k, =m, n [ 5, 1]X[ 5, 1]

oo

(k )S (Xx)um+1
k-m(1-u)m k

k=m

oo

X (1)S (X;y)vn+1(1n
-v)

-n dg(u, v)

=n

by the use of the absolute convergence of the double series. If we now

use the definition of the circle means of one variable we further find

that this summation is precisely equal to

lifi'4a(u; x)0-1):(v; y)}dg(u, v) -

[5, 1]X[5,1]

Ishiguro [10] shows that

o-*(r,tk )
S sin y dy

k
[o, T/r]

.C.c
[ ]x[ 8, 1

m+1 k-m n+1
(k )S u (1-u) v (1-v)/ -ndg(u, v)
m n ki

oo, uniformly in r for 5 < r < 1, with

2
lim ktk

T < °° and lim ktk 0.
k00 k--` 00
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Hence

Thus we have our second integral tending to

[ ]x[ s, 1]

as m, n 00, where

MX T < 00, MX 0

lirn h* (c1); x ,ymn m nm,n

[S, 11x[5, 1]

nyn
T <

2,nyn 0

r-

= $S S
sin yd

[6, 11x[6, 1] [0, T

S dyf six_Lx dy dg(u,sin y

[0, .-'/NT]0,71u]

ydy sin y

,T/U] [0, er\ivi

sin
dY

dg(n, v) + 0(5)

[0,

as m, n 00.

dg(u,v) 0(6)
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Except for the bottom limit on the double integral this is

essentially the desired result. If we replace the bottom limit by zero,

the desired limit, we make an error which is given by the value of

and (*)

lirn h* (c1);x y )mn m n
m, n



S sin y dy
y

Y

[0, 5)X[0, 6) L [0, Thi} [0, iv]

+ 515[o, 1]X[0, 6) [0, -du]

dg(u, v)

.51
dy siliy dvj dg(u , v)

Y

[0, li-Vv]
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Since for all Y we have

sin y dy < N ,

[0, Y.]

say, we find the above error to be less than

N2 dg(u, v) + N2 ssi dg(u, v) + N dg(u, v).

[0, 6)X[0, 8) [8, 1]x[0, 5) [0, 8)X[8, 1]

Again by the continuity conditions we can make this error arbitrarily

small by making 5 small. Thus in (*) the lower limit in the double

integral may be replaced by zero and the resulting 0(6) error

incorporated in the 0(5) term already appearing in (*). Then (*)

implies the desired result.

y
dy dg(u,v)

[0, -'?/v1

sin y dy



IV. THE LEBESGUE CONSTANT FOR THE
QUASI-HAUSDORFF TRANSFORMATION

In this chapter we shall investigate the Lebesgue constants for

the two dimensional sequence to sequence Quasi-Hausdorff transfor-

mation corresponding to a regular moment sequence. More precisely

this chapter developes the two dimensional analogues of the results in

Ishiguro [14].

Definition 4.1. The Lebesgue constants for the double Fourier

series are given by

42 SS isin(m+1/2)s sin(n+1/2)t
L(m, n) I d dt

s
I 2 sin(s /2) 2 sin(t12)

[0,Tr]X[0, Tr]

42

$'S Dmn(s, t)Idsdt

[0,7]x[0,Tr]

If the sequence {D (s, t)} is transformed by some summability
mn

method and we denote this transformed sequence by {Kmn(s,t)},

then the sequence of constants

42 SIS
IK (s,t)Idsdtmn

IT [0, Tr]X [0, Tr]

are said to be the Lebesgue constants for that summability method.
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Without loss of generality we may assume the integration is over the

set (0,71X (0,7] because the points deleted form a set of measure

zero.

We investigate these constants for the Quasi-Hausdorff sequence

to sequence transformation given in Theorem 2.33, when g(u, v) is

continuous at the axes.

Definition 4.2. For the Lebesgue constant L*(m,n; g) of

the Quasi-Hausdorff sequence to sequence transformation

H*(tim+1, n+1) we have

00

K (s,t) =mn
k, = m, n

(k)()D (s t) um n
m+1

[0, dx[0,1]

k-m n+1X (1-u) v (1-v)1 - n dg(u,v

where

sin(k+1/2)s sin(1+1/2)t
D (s,t)k, 2 sin(s /2) 2 sin(t/2)

We now consider this term K(s,t) just defined. Since the
m, n

sine function is the imaginary component of the complex exponential

function we see that Dk,/ (s, t) can be written

i(k+1 /2)s i(/ +1 /2)t
D (s,t) = Im{ e } Imf e }

k, 2 sin(s /2) 2 sin(t /2)

i(k-m)s+i(m+1 /2)s i(/ -n)t+i(n+1 /2)t
Im{ e } Imfe /sin(s/2) 2 sin(t/2)



Thus

ei(m+1 /2)s
(1-u)k -m(1 -v) -nDk (s, t) Im{ (( 1 -u)eis )k -m}

, sin(s /2)

ei(n+1/2)t

X ini{ 2 sin(t/2) ((1-v)eitre -n}

Hence

Km, n(s, t)

co

k )(.4)um+lyn+lto -tok-mo-

m n
k,/ =m,n [0,1]X [0,1]

SS
m+1 n+1 k)Iu v ( rnt

ei(m+1/2)s

m 2 sin(s /2)
((i_u)eis)k-m}

k,/ n [0,1]X[[0,1]

1 ei(n+1/2)t
((1 -v)eit)1 -n}dg(u, v).X

(n)
Im{ 2 sin(t /2)

Now let

p, q

f (u, v) =
Pq

k, rn, n

X im/ce )((1_.v)eiy -n}vn+1

for (u, v) belonging to [0,1] x [0,1] .

Im{(mk)((l-u eis)k-m} um+1
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Then

Furthermore

m+1 n+1

f Im Im
Pq is(1-(1-u)e)n1+1 it n+1(1 -(1 -y)e)

= f(u, v) for all (u, v) in [0, 1]X[0, 1

Therefore by the Bounded Convergence theorem we have

Thus we may write

K (s,t) =
m+1 n+1

u vmn2 sin(s /2)2 sin(t/2)
[0, 1]X[0, 1]

i(m+1 /2)s 1

X 1m -re
(1-(1-u)eis)m+1

i(n+1/2)t 1

X Im dg(u,v).
it n+1(1-(1-v)e )

q

If (u,v)I
Pq

lim
p, q- CO

Now let s = 2z, t 2w, so that

kk-m -n m+1 n+1
( )( )(1-u) (1-v) u v < 1
m n

for all p,q,u, y.

f dg = fdg .
Pq

[0, 11x[0, 1] [0, 1]X[0, 1]
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Kmn(s,t) =

implies

gs
[o, l]x[0, 1]

m+1 n+1
U v

2 sin z 2 sin w

X
ei(2n+l)w dg(u, v).

i2w n+1.}(1-(1-v)e )

Definition 4.3. The functions pi, p2, qi, q2 are given by

iqi(z , u)
pi(z,u)e

Im

1

2iz(1-(1-u)e )

(w,v)
1

p2(w, v)e
(1-(1-v)e2iw)

when 0 < z,w <n/2.

We note that the functions q1, q2 have values in [0,7r/2],

and also if

0 < u < 1, or 0 < v < 1

then

0 < upi < 1, or 0 < vp2 < 1.

This follows by considering the real and imaginary parts of the above

definition. For

e
-iq2iw1-(1-t)e

ei(2m+1)z

-(1-u)ei2z)m+17
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Squaring and adding yields

2 t2(tp)=
2 2t +4(1-t)sin w

Kmn(s,t) =

The right hand side is easily seen to be not larger than one. Hence,

since p > 0 and t > 0, we have

0 < tp < 1.

The equation for (tp)2 above implies that

up1
= 1 if and only if u = 1 or z = 0,

vp2 = 1 if and only if v = 1 or w = 0.

Using the above definition in Knin(s,t). we can now write

[o,
sif
}x[o, 1]

1

1

4(1-t) sin2w
2

4 sin z sin w

X (up1)n1+1{sin((2rn-1)z +(m+1)q1(z,u))1

(vp2,n+1
) [sin((2n+1)w + (n+l)q2(w, v))}dg(u, v)
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1 - cos 2w + t cos 2w - cos q (a)

sin 2w - t sin 2w - sin q (b)



Definition 4. 4. The function (1)(M, z, u, pl, q1) is given by

(1)(M, z, u, pi, q)= (upi )M[(sin(2Mz+Mqi ))(cot z-1/z)- cos(2Mz+Mq1)]

M being a positive integer, 0 <z < Tr/2, 0 <u <1, p1 and

as defined in Definition 4.3.

We note that (1(N,w, v, p2, q7) is then given by

(vp2)N[(sin(2Nw+Nq2))(cot w-1/ )- co s (2Nw+Nc12)]

where
1)2, (12 are as defined in Definition 4.3, N be a positive

integer, 0 <w < Tr/2, 0 <v < 1.

Since (cot s -1 /s) is bounded on [0,7 /2] this function

also bounded for all values in its domain.

Proposition 4.5.

1

SS z sin w (up1 )m-1-1{sin((2m+1)z+(m+1)q1 (z,u))}sin
[0, 1)X[0, 1)

X (vp2)n+1{sin((2n-Ww+(n+1 )q2(W, v)gdg(u, v)

[o, 1)x[0, 1)

rn.+1 n+1
(up1) (vp2) {sin(2(m+1)z+(m+1)q1(z, u)))

X {sin(2(n+1)w+(n+1)q2(w, v))}{-zli;}dg(u,v)

106

<13 is



.12,(m+1, z, u, pi, qi)(1)(n+1, w, v, p2, qz)dg(u, v)

[0, 1)x[0, 1)

(upi)m+1

[0, 1)x[0, 1)

(vp2)n+1
[o, 1)x[0, 1)

Call these four terms A, B, C, D.

sin(2(m+1)z+(m+1)q1(z,u))

X (0(n.+1, w, v, p2, q2)dg(u,v)

sin(2(n+1)w+(n+1)q2(w, v))
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X .4)(m+1, z, u, pi, qi)dg(u, v) .

Proof. Using the expansion for sin(A -B) we see

sin[(2m+1)z+(m.+1)q1]sin[(2n+l)w+(n+1)q2]

{sin[2(m+1)z+(m+1)q1]cos z - sin z cos[2(m+1)z+(m+1)q0

X {sin[2(n+1 )w+(n+l)q2]cos w - sin w cos[2(n+1)w+(n+l)q2j}

(let 2(m+1)z (m+1)q1 = M, and 2(n+1 )w + (n+l)q = N).

Thus

sin((2m+1)z+(m+1)cysin((2n+1)w+(n+1)q2)

sin z sin w

sin(M)sin(N)cot z cot w - cos(M)sin(N)cot w - sin(M)cos(N)cot z

+ cos (M)cos(N).



Observe that

cot z cot w = {1 /zw} + {cot z - 1 /z}{cot w - 1/w} + {cot z - 1 /z}{1/w}

+ {cot w - 1 /w}{1 /z} .

Making this substitution in A yields four new terms, labeled

A1, Az, A3, A4 .

We now work with the term B, adding and subtracting 1 /w

from cot w, yielding

-cot w = {-cot w + 1/w} - {i/w}

This substitution in B yields two new terms, denoted by B
1

and Bz.

In the same manner we work on C to yield two new terms

Cl and C upon substituting

-cot z = {-cot z + 1/z} - {1/z} .

If we multiply the terms A2, C1, and D by

m+1 n+1
(uP1) (vP2)

and integrate over the half open cell [0,1) X [0,1) we find
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which is the desired result.
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(updm+1 (vp2)n+1{sin(M)sin(N)[cot z - 1 /z][cot w - 1 /w]

[0, 1)x[0, 1)

cos(M)sin(N)[-cot w + 1 /w]

sin(M)cos(N)[-cot z + 1/z]

cos(M)cos(N)}dg(u, v)

1)(m+1, z,u, pi, qi)ci)(n+1, q2)dg(u,v).

[0, 1)X[0, 1)

Denote this integral by E1.

In the same manner working with the terms A4
and C2

yields the integral

E2 = ss (up
m+1 sin(M) 43(n+1, w, v, p2, q )dg(u, v)

[0, 1)x[0, 1)

while
A3

and
B2

yield

En+1 sin(N)
3

= (vp2) dp(m+1, u, pc cii)dg(u, .

[0, 1)x{0, 1)

Hence

A+B+C+D= Al +El +E2 +E3



Using Proposition 4.5 we can now write L*(m., n; g) as

4
L*(m, n; g) =

11 [0, Tr /2]x[0, Tr /2]

[o, 1)x[o, 1)

(vp2)n+1

m+
(uP1)1

[0, 1)

we shall term n-g).5

)m+1(v_ )n+1 sin(M)sin(N)
P2 ZW

+ 43.(m+1, z, u, pi, cycl)(n+1, w, v, p2, q2)

m+1 sin(M)
(uP1) 4.(n+1, w, v, p2, q2)

+ (vpz)n+1 sin(N)4)(m+1, z, u, p1 , dg(u,v)

X {dg(1,v)-dg(1 ,v)}

sin((2m+1)z+(n1+1)(41

sin z

X {dg(u, 1)-dg(u, ))

sin(.2m+1)z sin(2n+1)w dg(u, v)1 dzdwsinz sin w
{1}X{1}

sin((2n+1 )w+(n+1)q2)sin(2m+1)z
sin z sin w

sin(2n+l)w
sin w

We note that the variables u, v were restricted to the cell

[0, 1] X [0, 1j. If we further restrict the variables to the cell

[6, 1] X [6, 1] then L*(m, n; g) is transformed into the quantity that

Thus L*(m, n; g) L0*(m, n; g).
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and
2 22-8(1-v)w /Tr v

(vp2)2

for sufficiently small w > 0, 1 > v > 0.

Lemma 4. 7. For small u > 0,

q.(u,r) = 2((l-r)/r)u+O(u3)

uniformly if 0 < 5 < r < 1, fixed 6.

Here 0 < < Tr/2 if 0 < r < 1, and again r 1 or

u = 0 imply q 0 by the comments following Definition 4.3. Thus

for our needs

111

We shall estimate L'(m,n; g). To work with these estimations
6

we introduce two lemmas by Ishiguro [11].

Lemma 4.6. If 1 <1fl < e, then

2 222 2 -8(1-r)u /Tr r
rP.(u,r)

J

for sufficiently small 0 < u and 0 < r < 1.

We note here that equality would hold if either r , r = 1,

or u = O. Thus

2 22
(uP1)

for sufficiently small z > 0, 1 > u > 0
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qi(z, u) 2(( 1 -u) /u)z + 0(z3), 0 < u < 1, small z >0, (4-31)

q2(w' v) 2(( 1 -v) /v)w + 0( , 0 <V < 1, small w > 0. (4-32)

For convenience in Propositions 4. 8-4. 13 we will often replace

m+1 by M, n+1 by N.

Proposition 4.8. If I [0, 1) x [0, 1) or even [8, 1) x 8, 1),

0 < < 1, then

[0, Tr /2]X[0, Tr/2] I 1

(M, q, u, pi., q1)4)(N, w, v, pz, qz)dg(u, v) dzdw

= o(ln M in N).

Proof. We have already seen that the function 4 is bounded

for all values in its domain, thus the integral is also bounded.

Proposition 4. 9. If 0 < 6 < 1, then

ss
[0, Tr/2]X[0, Tr/2] [8,1)x[8,1)

A-A1'idzdw

[0, Tr /21X[0, Tr/2]

= o(1)

dzdwl SIS (up )1\4(vp )Nt sin(2Mz+Mq1)sin(2Nw+Nq2)
1 2 zw

sin(2Mz /u)sin(2Nw/v)) dg(u,v)zw



Remark. The notation IA-A11 and any similar notation is

for future reference.

Proof. Choosing a o- so that 0 < z,w < if implies Lemma

4. 6 holds and a 5 so that Lemma 4.7 holds we break the integra-

tion over [0, Tr /2] X [0,7/2] into integration over the four subcells

[0, o-] x [0,o-], [0,cf]X [o-,Tr/2], [o-,Tr/2] X [0,cr] and

kr, ir /2] X [o-, Tr /2]. We term these subcells CC CC.1' 2, 3'

Let us denote the quantities 2Mz + Mq1, 2Nw + Nqz by a

and 13 respectively. Then

{ sin a sin 13 sin(2Mz/u)sin(2Nw/v)}
ZW

= {sin {3}{
sin a sin(2Mz/u) sin(2Mz /u)}{ sin 13 sin.(2Nw /v)

We make the above substitutions for the integrations over the first

three subcells, calling the resulting integrals T1, Tz, and T3.

Consider first T1.

T1 < dzdw

Cl
CS

[5, 1)X[6, 1)

gdzdw
1)1

[6,

M N sin 13 sin a sin(2Mz/u)
(uP1) (yP2) w

13)( sin

dg(u, v)

M N sin(2Mz /u)
(up 1) (vP2) X
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and

and

sin sin(2Nw/v)X ( - )dg(u, v) I

= T11 + T12 .

We use Lemma 4.6 for a bound on the quantities (upi) and

(vp2), and since 0 < z,w < o we can use Lemma 4.7 to write

a = 2Mz + M{2(1 /u)z -2z+0(z3 )1

= 2M{(z /u)+0(z3 )1

= 2N{(w/v)+0(w3)}

Hence

I sin < {1+0(w2 )} < {1+0(w)}, 5 < v < 12Nw v
I .1z- {sin a - sin(2Mz/u)}I < -z1-{(M)0(z3)} (M)0(z2) as z

Therefore

T11 < gdzdw gf_tii -4(1 -u)(M)z2 /TrZu 7,7-4( 1-v)(N)w2 hr2v2

C1

' w "
sin a sin(2Mz/u) 1),sin_1:3 I

I dg(u, v) I

22
< dzdw tr.r)r) -4(1-u)(M)z ITT u 'Um)3 c)(zZ )1"(

1 -4(1-v)(N)w trrvZ 2 2 2(N){-7 1+0(w2)}I dg(u, v) I
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2 2 2
Now -nz-4(1-u)(M)a trr u {(M)30(z2)} tends to zero as M

tends to infinity for all z not zero, while at z equal zero the

product is zero;

-4(1-v)(N)w2/Tr2v2 2(N) ,

'712
{ (1+0(w ))/

5

tends to zero as N tends to infinity for all w not zero.

Using Lebesgue's theorem on dominated convergence we find

T110 as M,NCO

Similar reasoning yields

T120 as M, N co

and therefore

T1 = o(1) .

Considering the integration over the second sub cell C2 we find

T2 gdzciwi (upl)M(vP)N
sin

w z
}{ sin a sin(2Mz /u)

v)

C2
[5, 1)X[5, 1)

gdzdwl (up1)M(vp2)N
sin(2Mz /u) ,

1)X[5, 1)

x {sin i3 sin(2Nw/v)}dg(- u, v)
w

= T21 + T22 .
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and

Using the same estimates as previously we easily see that

T22 < gdzdw

2

c*%51 7 IT

-4 (1-u)(M)z2 (1-v)(N)w
2 2

V

X { }(M)0(z2) I dg(u, v)1

-4 (1-u)(M)z2 (1-v)(N)wZ
2 { 2

V

X {2(M) 1}{ lidg(u,v)I .

Since by the Dominated Convergence Theorem both of the integrals on

the right hand sides tend to zero as M, N tend to infinity we see

that the second integration is also o(1),

T2 = o(1).

In the same manner the integration on the third subcell C3

satisfies

T3 = o(1).

For the fourth and last subcell C4
we find

sin(2Mz /u)sin(2Nw/v)-,
T < gdzdwl (upl)M(vp2)N{

sin a sin 13
-4 zw zw

C4 [6, 1)X[6, 1)

X dg(u, v)

116

T21
< gdzdw

2



T4 < gdzdw .51c (up

[5,1)x[6,1)

SO T4
0 as M, N 00, by bounded convergence. Thus all four

integrals are o(1) and the result is established.

Proposition 4. 10.

dzdw Sc(upi)mcb(N, w, v, p2, q2)

[0, Tr /2]x[0, Tr /2] [5, 1)x[6, 1)

sin(2Mz+Mq1
x { }dg(u, v)

I

C1
dzdw

[0, Tr /2]X[0, Tr /2]

= o(ln M in N)

and

ifs
dzdw ifs(vp2) (OW, z, U,pi, qi)

[0,1T /2]X[0, TT /z] [6, 1)x{6, 1)

sin(2Nw+Nq2
X { }dg(u, v)

I D11 dzdw

[0, Tr /2]X[0, Tr /2]

= o(ln M in N) .

M p I CIOU, V) I
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Proof. We will prove the first assertion, the second is proved

in a similar manner. The function 4) is always bounded and tends

to zero as N tends to infinity for w positive, while

sin(2Mz+Mq )
1 Lm 0(z2)

for small z, whereas for z > o- the bound is I /o-.

Thus choose a 5 so that Lemma 4.7 holds for (upi), and a

cr such that if 0 <z < o- then Lemma 4.6 holds.

Then

dzdwl (up i)m(I)(N, w, v, p2, q2)

{0, Tr /2]>40, Tr/2] 1{8, 1)X[8, 1)

sin(2Mz+Mq1
x { dg(u, v)

< SE
[0,°_11x[0,Tr/211 6, nx[s, 1)

2 22-4(1-u)z (M) hr u

2Mx 0(1)1 +0(z2)1 I dg(u,v
8

dzdw

.SAS*

g0(1)111 dg(u, v) dzdw

[ff, 7T /21X[0, Tr /2] , 1)X{8, 1)

o(ln M ln N).



{0, TT /2]>({13,1T/21

ifsI El -E2Idzdw
[o,IT /2]x[o,-n-/z]

= o(in M in N)

and

[0,7 /2]X[0, Tr /2] {1}x[6, i)

sin(2(N)wk) sin(2(M)z)-1 , N(vpz) dg(u,v)

I F1-F21dzdw
[0,7 /2]X[0, Tr /2]

= o(ln M in N)

Proof. Consider that with a = (2m+1)z + Mql, p 2Mz + Mq1,

we have

I sin a sin 131 i sin a sin a sin a sin p
-I sin z z I sin z z I

<I sin al I 1 1 1

sin z - z + z I sin a - sin PI <

Proposition 4.11.

ifs

ifs

dzdw
sin((2m+1)z+(M)q1 sin((2n+l)w)

sin z sin w

sin(2(M)z Ai) sin(2(N)1(up )Mdg(u,v)
1
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sin((2n+1)w+(N)ci

sin w
sin((2m+1)z)

sin zdzdw
ifs



Hence

Thus

sin((2n+l)w) sin 2Nw
sin w

0(1) + 10(1)1sin((a-p)/2)1

+ 0(1)1 a-pi /z

0(1) + 0(1 /z)z = 0(1) .

sin a sin p. + o (1), uniformly in z, w.
sin z

Also

sin((2n+l)w) sin 2Nw
sin w

sin((2n+l)w) sin((2n+1)w) sin((2n+1) sin 2Nw
sin w

1 1
Isin(2n+1)wl 1 - 1 + Isin(2n+l)w-sin 2Nwlsin w w w

0(1) +-1 0(1)1sin(w/2)1 = 0(1) .

+ 0(1), for all z w (A)

Choose cr, 5 so that Lemmas 4. 6 and 4.7 are true. If

0 <z < o- then q1 = 2(z /u) - 2z + 0(z3), 6 u 1, and

I sin f3 sin(2(M)z/u) < 0(1)1sin( -2(M)z/u
I z z 2

0(1/z)(M)0(z3 )

(M)0(z2) .
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Thus

sin a sin(2Mz /u)
+ (M)0(z2) + 0(1), for all w. (B)

sin z

If 0- < z < Tr/2 then

I sin a sin(2(M)z/u)
I is boundedsin z

or

sin a sin(2Mz/u) + 0(1) for all w.
sin z

For 0 < z < o, < w < Tr/2 we find by using (A), (B) that

sin a sin (2n+l)w
sin z sin w

sin(2Mz/u)sin 2Nw+ (M)0(z)+0(1)} 0(1)}

sin(2Mz/u) sin 2Nw +0 + (M)0(zsin(2Mz/u) 2)
sin 2Nw

(1)

+ (M)0(z2) + 0(1) sin 2Nw+ 0(1)

while for Cr < Z < Tr /2, 0 < w < Tr/2 we have

sin a sin(2n+l)wsin a sin 2Nw
- s in z}{

+ 0(1)}
sin z sin w

sin a sin 2Nw sin a+ 0(1)sin z w sin z

(C)
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Thus

SS1E1 -E21dzdw
[0, Tr /2]40, Tr /2]

1E1-E21dzdw +
.S151

[0, o-]40, Tr /2] [cr, Tr /2]X{O, Tr /2]

dzdw

[0, Tr /2}X[O, /2]
SSI sin a sin 2Nw + 0(1) sin a

I sin z w sin z
, 1)x{11

sin 2Nw sin(2Mz iu)
(uP1)

ss dzdw
m m0(1) _5(up1) 1 dg(u, v)1

[0, cdX[0, Tr /2] [5, 1)X{1}

dg(u, v) lj

122

dzdw SS 0(1) sin(2Mz /u)1 pi)Idg(u, v)1
[0, a-]X[0,ir /2] [5, 1)x{1}

(m)0(z2) 1 sin 2Nw 1 (up ) Idg(u, v)1
1

{5, ox{1}

2 M
cic (M)0(z )(up ) 1dg(u, v)1

[5, 1)X {1}

ss j sin 2Nw
lup1

) dg(u, v)1
w

1)X{1}

0(1)(up )Midg(u, v)17.

1)X {1}

1E dzdw



(M)(updMidg(u,
6, 1)x{1}

dz

I sin t at + t 0(1)Var(g)dz + 0(1)1

[0, 1] [1, NTr] 0, 0-1

I $51 (uP1)1q1
sin 2Nw

I I sin z
sin a sin(2Mz /u) I

[Cf ,Ti /21X[0,7 /2) [6, 1)X{1}

+ 0(1) d g(u,v)I
sin a-

dzdw,1

(where t = 2Nw has been used)

<o(l) + O(ln N) + o(1) + O(ln N) +S[sin t I 1 dtI dt + S
t t

[0,1] [1,N]

X scS 0(1) { (upi) I dg(u, dz

[cr, IT /2] [6, 1)X{i}

+ 0(1) dzdw

[CT, Tr /2]X[0, 11 /2]

< o(ln M in N).

The second result is established in a similar manner.
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I sin t I dt +
C0(z2 )

[0,1] [1,N-if] a-]

ss 0(z2)

[0, crix[0, 11/2]

(M)(upi)MIdg(u, v),} dzdw



Thus

CS
dzdw

[0, ir /2]x{0, Tr/21

Proposition 4. 12.

dzdwl {sin(2m+1)z sin(2n+nw
sin z sin w

[0, Tr /2]><[0, Tr /2] {1}x{1}

sin 2Mz sin 2Nw }dg(u,v)

G1
-G I dzdw

{o, ir 12]X[0, Tr /21

= o(ln M in N).

Proof. Since

sin(2k+1)z sin 2(k+1)z
I

0(1) uniformly for all k, z
sin z

we can write

sin(2m+1)z sin(2n+l)w {sin 2Mz+0(l)}{ sin 2Nw +ow}
sin z sin w

sin 2Mz sin 2Nw
W

, sin 2Nw sin 2Mz
+0(1)t + 0(1) .

SS

isin(2m+1)z sin(2n+ 1)w
sin z sin w

{1}x{1}

sin 2Mz sin 2Nw }dg(u,v)
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dzdw

0(1)i .c
[0, 1]

sin t dt +

sin 2Nw sin ZMz
0(1){ +1}dg(u,v)

SI sin t I dt +

[1,NTr] [0, 1]

S I sin tl dt + 11
[1, Mw]

0(0{0(1) + ln(NTr) + 0(1) + ln(MTr) + 1}

o(ln M in N) .

Proposition 4. 13. With pi., q pz, q2, and g(u,v) as

previously defined, we have

(uPdni+1(* 4
L5(m, n; g) = dzdw

TT

[0, Tr /2]X[0, Tr /2] [6, 1)x[6, 1)

sin(2(m+1)z/u) sin(2(n+1)w/v)
X

X dg(u, v) + o(ln M in N).

sin ti at

n+1
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[o, Tr 12]x[o, Tr /z] {1}x{i}

0(1) { I sin 2Nw I I sin ZI\Az I + 1}dzdw

[0, Tr /2]X[0, Tr /2]

0(1) SI sin 2Nw I dw + I sin 2Mz I dz

, Tr /2] [0, Tr /2]

(making the substitutions w = t/ZN, z = t /2M we have)



4

Tr
[0, Tr/2]><[0,7T /2]

Proof. From the definition of Om, n; g) we have
6

sin(2(n+1)w+(n+l)q2)
dg(u, v)

(1)(m+1, z, u, pi, ci1)4)(n+1, 1)2, q2)deu, v)

[6, 1)x[6, 1)

+

(upom+1 sin(2(m+1)z+(m+1)q1)

.1)(n+1,w,v, p2,

[6, 1)x[6, 1)

ST(uPOrn+1(vP
[6, 1)x[6,

sin(2(n+1)w+(n+l)q2)(vpz)n+1
ri)(m+1,z, u, p1,q1)dg(u,v)

[6, 1)X[6, 1)

sin( (2n+l)w+(n+l)q2)
sin(2m+1)z(v_2

)n+1
P

dg(u,v)sin z sin w
{1}x[6, 1)

sy (up 1)m+1
sin((2n1+1)z+(m+1)qi)

sin z
[6, 1)X{1}

+ Sic sin(2m+1)z sin(2n+1)w dg(u, v)sin z sin w
{1}X{1}

ISS (up1)m+1(vp2)n+1 sin(2(m+1)z /u) sin(2(n+1)w/v)

[6, 11X[6, 1]

X dg(u, v)I dzdw <

)n+1
sin(2(m+1)z+(m+1)q1)

sin(2n+l)w
dg(u, v)sin w

)deu, v)
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IT [0, Tr /21x[0, Tr /2]fCc

(up1)m+1(vp2)n+1
sin(2(m+1)z /u)

sin(2(n+1)w/v)
X dg(u, v)

op.(m+1, z, u, pi, qi)(n+1, w, v, p2, q2)dg(u, v)

[5, 1)X[5, 1)

sin(2(m+1)z+(m+1)qni
1

(uP1)
43(n+1,w,v, p q )dg(u,v)

2' 2

[5, 1)X[5, 1)

sin(2(n+l)w+(n+1)q2stc (vp2)n+1

[5,1)X[5, 1)

SS (up

[5, 1)x{1}

(vp2)

{1}X[5, 1)

+1 n+1
(uPi)m (vp2)

[5, 1)x[5,
SC

sin(2(m+1)z+(m+1)q1) sin(2(n+l)w+(n+l)qa)

cp(m+1,z,u,prq1)dg(u,v)

m+1 sin((2m+1)z+(m+1)q1) sin((2n+l)w)
sin z sin w

sin(2(m+1)z /u) sin(2(n+1)w)]
dg(u, v)

n+i sin((2n+1)w+(n+l)q2[
sin w

sin(2m+1)z
sin z

sin(2(n+1)w/v) sin(2(m+1)z)1 dg(u, v

Sctsin(2m+1)z
sin(2n+l)w sin(2(m+1)z sin(2(n+l)wideux

J sin z sin w
{1}X{1}
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dzdw



<
{IA-.A11+IBI+IC

I-FID HE1-E -1-F1-F2I

4

IT
[0, Tr /2]X[0, Tr /2]

+ o(ln M in N).

To this end we consider the representation of L (m, n; g) given in

+ IG-G1 j}dzdw

< o(ln M in N)

by Propositions 4. 8, 4. 9, 4. 10, 4. 11, and 4. 12. (Note: M = m+1,

N = n+1).

We shall now use this representation of .L.;(m, n; g) to develop

the result

L*(M, N; g)
6 = ±c2- $S $S sin(z /u) sin(w/v)dg(u,

IT [1, NrY/11X[1,NriCT1 [6, 1]><[5, 1]

X (1 /zw)dzdw + 4-4 $S dg(u, v)1

rr {1}X{1}

1 1
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4
+ fin M

sin(y/v) dydg(u, v)
Tr

[1, 2E 6*N/ N] {1}X[6, 1]

sin(yiu) dg(u, v)Idy+ in N

[1,2E 6*Nrici] 1]X{1}

Proposition 4. 13 and replace m+1 by M, n+1 by N. Then



n. g) = L *(M- 1, N- I; g)-6 ,
5

Straight forward estimates show that

I OM- 1, N-1; g)-L*(M, N; g) I = o(ln M ln N).

Because of this equivalence for large M,N we shall work with

L(M-1,N-1; g) in order to simplify some of the computations.
5

We next divide [0, Tr /2] X [0,11- /2] into the nine subcells given

in the following diagram:

A(0, TN- 5;')

(0, 5).0
N

(0,0) ( 6*,O) (A 5*,O) (1, 0)
M M 2

where 5* - 2(15) 0 < 5 < 1 and 0 < E < 1 < A. We furtherq-
restrict 5* to satisfy 0 < 5* < min(1/2 , Tr NI M/2A, Tr NiFT /2A),

2A5* > max(1 /N/ M, 1 in order that the estimates in the
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5 6 9

3 8 7

1 2 4



13 0

following propositions are valid for large M, N. The estimates made

below hold for M,N sufficiently large. For convenience the

quantifier "for M,N sufficiently large" will often be suppressed.

We will estimate Lb
(M-1, N-1; g) on each of the nine subcells.

We also denote the portion of the integral representation of Lb

g and

the points of the subcell by Si.

Proposition 4. 14.

4 dz dw
=

2
sin(z /u)sin(w/v)dg(u, v) z w

iT
[1,Nr-MiX[1,NIT] [45, 1]X[5, 1]

+ o(ln M in N) + 4 2
Var(g)E in M in N.

Proof. We first define Ha, b
by the following

M-1, N-1 (z, w) =

[b, 1]X[6, 1]

M N
(up].) (vp2) sin(2Mz/u)sin(2Nw/v)dg(u,v).

From work at the beginning of Chapter 4 we note that

(uPd =

1

24(1 -u)sin7
2



1 > (up )1\4 >1- >0

21 > (vp )N > 1 -E > .

Thus

2
1(uP1) -11 < E I

(vp2)N - 1 I < E 2, and I (upl)m(vp2)N-1 I < 2E2 .

Hence

IHM-1,N-1(z'w)i- S.r
sin(2Mz /u)sin(2Nw /v)dg(u, v)

[5,11)[5,1]

{(1-1P1)M(vP2)N-1}sin(2Mz /u)sin(2Nw/v)dg(u, v)

[5, 1]X[5, 1]

ss.(UP1)1\4(VP2)N -1 I deu, v)

[5, 1]X[5, 1]

< 2E2 Var(g),

or if we replace the sin(2Mz /u) by (2Mz /u) the bound becomes

2E2 Var(g)(2Mz /5) .
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(vp2 )N

N/2

1

2

1
4(1 -v)sinw

+ 2

V- /
For (z, w) in subcell S1

and M,N >4 we have



where

1E01 < -4-- 55(8MNzw/62)Var(g) ____dz dw + 4 2SS 2e Var(g) _____dz dw

z w
Tr

Tr2 z w
S

1 1
s12

42 Stc _E2. g2E2Var(g)(2Mz/6) dz dw,
+ G Var(g)(2Nw /6) dz dw 4

z w 2 z w
iT Tr

S13 S14

Also for all z, w > 0 we have

I Hm_ 1, N_1(z, w) I - sin(2Mz /u)sin(2Nw/v)dg(u, v)

[6, ilx[s, 1]

< ss 1 (uP i)M(vp2)N- I (2Mz /11)1 1(2Nw iv) I I dg(u,

[6, 1]x[6, 1]

< 2 (2Mz /u)(2Nw /v) I dg(u, v)1

[6, 11X[6, 1]

8MNzw ,

Var(g)-
62

So

4
Ii =2 I HM-1, N- 1

-rr

1

sin( 2Mz /u)sin(2Nw Ar)dg(u,
iT

S1
[a, 1]X[5, 1]

z,w)l dz dw
z w

dz dw E
z w 0
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where

S1 I
= [0, E 5*/M] X [0, E 6*/1\n,

S1 = b*/M, E 5*kg M] X [E 6.*/N, 5*/N1-1.11,

S13 = [E +5*/M, E 5*/NI M] X [0, E 5*/N],

S14 [0, E 5=','/M] X [E b*/N, 5*/igN]

or

following:

E 5*E 5*
1E 1 < (8MN /52) Var(g)[ ]

0 MN
1T

+ 2E 2Var(g)[ln M1/2 in NI /21

5*
+ 2E

2
Var(g)(2n/6)[ln EN

15* r /21
+ 2E

2
Var(g)(2M/ 6)1_ )1In N .1]

2E
< Var(g) in M in N + o(in M in N).

Tr

Next observe that

S.11
sin(2Mz /u)sin(2Nw/v)

[E b*AIM, 1/2N1M]X[E 5*/PJN, 1 /2N/ N] [5, 1]X[5, 1]

, dz dwX dg(u, v)iz w

< Var(g)[in 2E 5*1 .
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Making the change of variables Z = 2Mz, W = 2Nw, we then see the



SS I SS
[2N/ME 6*, M]X[2,./NE 6*,\IN] [6,1]X[6,1]

< Var(g)[ln 2E 6*]2.

For convenience let

MN(Z,
W) =

Then we can write

16 (z,w)1 dZ dW
I1 = c,r ' MN I Z W

[0, 2N/ ME vdx[o, 2N/ N E 6*]

For large M,N and fixed E, 6* we see that

4
rr

[8, 1]x{6,

Tr , ZNIME8*{1, 2N/NE 6*]

4

[0, 214-1711E 6*IX[0, 2N/NE 45*]

sin(Z /u)sin(W /v)dg(u, v)1

dZ dW
X

W

sin(Z /u)sin(W /v)dg(u, v).

dZ dW
(Z, W) I

W

dZ dW(Z,W)I
MN Z W
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We now integrate .6 MN(Z,W) over [1, N/M] X [1, NIN] by the

following decomposition, where we let n..." stand for the quantities

behind the integral signs.



and

4
2 ssIt

{ /\17iX{ 1 N]

4 4
2 SS SS+2

Tr [1,2N/MESAX[1,2N/Nc6*]
It

{1, 2N/ ME 6*1><{2NITT E 6*, NM]

4
* * *

ss+

42+ , Trss
[2IME6*,,./M]X[1,2NINE6*) [2N/ME6*,41\4><[2I-N E 6*,N.IN]

and we shall call these integrals

Ao = A1 + A + A3 + A4 .

Estimating A A4 we find

4
1A21

(1)(1)Var(g)
dZ dW
Z W

Tr [1,2 N/ Mc 6:dx[2 JTE 6*, NriS1]

< 0(1) in M 1n(1 /2 c6*) = o(ln M in N)

while in a similar fashion

1A31 = o(ln M ln N)

4
1A4

1 < Var(g)[1n(2 E 6*)]2 = o(ln M In N),

as was just shown after making the change of variables.
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Thus we can write

4 4
I

+

TT [0, 11>40, 1] Tr [0, 1)X[1, 2N[NE 6*]

4
+

2 Sc
IT [1, 214-KIE 6*]X[0, 11

If we denote the first three integrals as B1, B2, B3 then

symbolically

I1 = B1 + B + B3 + AO - A2 - A3 - A4 + Eo

= AO + E5

whe re

+1B21+1B31 +1A21 +1A31 +1A41

We already have bounds for E0, A2' A3' A4.
Thus we now find

4 Z W dZ dW
1 B11< -5--- Var(g) wz

IT [0, 1]X[0, 1]

< Var(g) = o(ln M ln N)
Tr2

62

. . +
1

+ E0 .
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(1) Var(g)
Z

4
5

dW
WI B2I <

Tr-

2
[0,1]X[1,2 NI-1S-1E o'd

4 1
< Var(g)0(1) in N = o(ln M in N),

2 5
Tr

and similarly

alB3 I < 4-1 V r(g)0(1) in M = o(ln M in N).
112

5

Combining these estimates yields

dZ dW
sin sinmr dg(u,v)1 z t5

where
2

E

1 E5 1 < Var(g) ln M ln N + o (ln M ln N)
TT

This is the desired result.

Proposition 4.15.

12 = o(ln M in N), and 13 = o(ln M in N)

Proof.

4
12 = IHM-1N-1(z,w)1(1/zw)dzdw =

iT
2 ,

[E6*A1-1\-a, A8*/\/-1\711X[0, c5*N-1S17]..

II
=
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[E6*/,4-1-7/1, AO*Al m]x[o, EisqN]

[E6*/NIM, A6*./qM}X{E6*/N, Ea*RFIC1}

4 (2Nw/bzw) Var(g)dzdw
2

-rr [E8*/N/M, A6*/N/MIX[0, E6*/N]

( 1 izw) Var(g)dzdw

[E6*/,4 m, As*A! m]x[Es*/N, Es*Arg]

4 2N E6*
< Var(g){ () ln(A /E) + (1/2) ln(A /E ) ln N

6 N
Tr

o(ln M ln N).

13 = o(ln M in N) follows by symmetry.

Definition 4. 16. We define the functions 4)1(A), 4)2(A), E(t),

Lpi(A), 4i2(A) by

E(t) exp(-4(1-t)(a5*)2 /t2Tr2)

4)1(A) E(u) I dg(u, v)1

[5, 1)X [6, 1]

(1)2.(A) E(v)idg(u, v)

[5, 11X[6, 1)
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gii(A) E(v) I dg(u, v) I

{1}x[6, 1)

2(A) = E(u) I dg(u, v) I

[6, 1)X{1}

where g(u, v) is usually defined.

Note that cpi(A) 0 as A co, ipi(A) 0 as

Proposition 4. 17.

4
14 = in M

S5'
sin(y/v)dg(u, v) (1 iy)dy

For convenience we will "ignore" the factor in
14

Then

139

Tr
[1, 2E6*Nr-N-] {1}x[5,

+ 0(ln M in N){(1)1(A)+E2} + o(ln M in N).

15 = in N $ Sr sin(y/u)dg(u, v)i (1 /y)dy
Tr [1, 26*^J M] [6, 1]X{1}

+ 0(ln M in N){(1)2(A)+2} + o(ln M in N) .

Proof. For sufficiently large M and N and for

(z, w) in S4 we have (up1 )1\4 < E(u) and 1 (vp2
)N-11 < E2 (a)



M N sin(2Mz/u)
(uP1) (vP2)

[A 6*/NI M, Tr /2]X[0, 5*NN-1 [5, 1]X[6, 1]

sin(2Nw/v)
X dg(u, v)1dzdw

SS g +
[.A5*A/ M, Tr /2]X[0, E5*/N/ T-] [5, 1)X[5, 1) {1}x[6, I]

+ . . .1dzdw

[5, 1)x{1}

dzdw + P
0

[A5*Al M, Tr /2]X[0, E5*N17] {1}X[5, 1]

where

I PO I < SS $S Idzdw
[A5*AIM, /2]X[0, 6*N-ST] [5, 1)X[5, 1)

$S SS- dzdw
[A5*/N/ M, Tr /2]X[0, (5*/41\-11 [5, 1)X{1}

<E + E .

1 2

Now

E2 = $S
(up, )M. sin(2Mz /u) sin(2Nw)

[A5*NM, Tr /2]40, E5*/Nr-N-] [5, 1)x{1}

X dg(u, v) I dzdw
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[0, 25*tj-R]
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since (vp2) = 1 if v = 1. Letting y 2Nw

and by using (a) we find

dy

[AWN/ M, Tr /2]

E(u) I I3I sin(2Mz /u) I dg(u, v) dz

[6, 1)x{1}

'< {1 +in 25*Nr-N-}
dz E(u) I dg(u, v) I

[.A5*/N/ M,ir /2] 5, 1)X[5, 1]

< {1 + in 2E5*igN} ln(TTN/M/2A6*).4)1(A)

= o(ln M in N) + 1/4 4)1(A) in M in N .

Now consider that letting y = 2Nw, x 2Mz we find

SS* E(u)
I sin(2Mz /u) I

[AWNIM, Tr /2]X[0, 5*/NI-N] [5, 1)X[5, 1]

I sin(2NN,v/v) I I dg(u, v) I dzdw

, 2E5*NIT] [2.A5*N1171,TiM1

{ E(u) I sin(y/v)1 I sin(x/u)1
v) I dxdy

[5, 1)X[6, 1]

sin y 1



142

(y/v)
) byNow for 0 <y < 1 and 5 <v < 1 replace sin

1/6, while for 1 <y < 2(6=NN replace sin(y/v) by 1.

Finally replace sin(x/u) by 1. Then

, 1E < t + ln 6*NI Nilln (Tr M/2A6*) 1(A)}
1

o(ln M ln. N)+ 1/4 (1).1(A) in M in N .

Thus

IP 1
< o(ln M ln N) + 1/2 (A) ln M ln N

0

= o(ln M in N) + ep1(A) 0(ln M ln N).

Finally

cs ,SAS (uP1) (vP
N sin(2Mz /u)

[A6*/NIM,712]x{0,E6*/NIN] {1}x[6, 1]

sin(2Nw/v) dg(u, v) dzdw

SS SS (VP

N sin(2Mz) sin(2Nw/v)

{A 6*N M, Tr /2]X{ E 6*N-T11 OA 6, 1]

X dg(u, v) dzdw

sin(2Mz) sin(2Nw/v) dg(u, v)

[A5*/\IM, Tr/21X[0, Eo*NN] {1}X[5, 1]

X dzdw + P1



where

I Pi I <SS I g
[A5*AFIVI, /21x[0, E5*A/N] {1}x[5, 1]

sin(2Mz)

sin(2Nw /v)
X dg(u, v) I dzdw

S S S . . .Idzdw

[0, E5*/N] [c.5* N, 6*/NITT} [A 6*kg M, TrI2]

I. dzdw

[A 5*A/ M, Tr /2]X[0, E5*/1\1]

. . I dzdw

[A5*/M, Tr/2Hc5*/N, E5*Al 1\1]
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Now for
E3 we find by making some obvious replacements

E3 < E Z(1 /Z)(2NW/5W) Var(g)dzdw

[A (5*/N/ M, Tr /2]X[0, E5*/N]

2 E 6*
< N Var(g){} ln(Tr M/2A5*) o(ln M in N)

while for E4 we find



Thus

14 =

E < E 2 Var(g)(1/z)(1/w)dzdw
4

[A6*A.1 M, Tr /2]X[E6*/N, E6*A/T]

1 2
< E Var(g)( ) in N in (Tr NI M/2A8*) = E 0(ln M in N).

2

2
IP I < o(ln M in N) + E 0(ln M in N), as M, N 00.

1

Thus we now find

Isin(z2Mz)
[A6*/q M, Tr /21X[0, E6*/N/TT] {1}X[5, 1]

+ o(ln M in N) + 0(ln M in N)41(A)+ E

On this integral we again make a change of variables y = 2Nw,

x = 2Mz, to yield

cS
sin x sin(y/v) dg(u, v) I dxdy

[2A5*N1M,1\41]X[0,25*NiTh {1}X[5, 1]

t +

[0,1] [1, 205*NriCi]

ysr sin(y/v) dg(u, v) dy

{1}X[ 8, 1]

[2A8*N1M, TrM]

I sin x dx
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sin(2Nw/v)dg(u,v dzdw



S I sin xl dx 5 cS sin(y/v) dg(u, v) I dy

[2.A6*F-2, Mir] [0, 1] {1}x[6, 1]

I sin xi -(2/Tr) dx g dy

[2.A5*NIM, MTr] [1, 2E45*IN] {1}X[6, 1]

+
2 I dx

dY
[2.A6*,./M, Mrr] [1, 2E5*T-N] {1}X[6, 1]

E5 + E6 + E7 .

Now E5 = 0(ln M), for obvious reasons, while because
V

sup S I sin xl - (2 trr)dx

V > U> 1
U

we have

E6 = 0(ln N).

Hence

E + E = o(ln M in N).
5 6

Finally

2
E7 = {in Mir in 2A5*N] M} S SS'

[1, 2E8*N/Ti] {1}X[6, 1]

<00

1= o(ln M in N) + in M 5 sin(;/v) dg(u, v)
Tr

[1, 2E6*NIN] {1}x[6, 1]

dy.
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Hence, collecting results and multiplying by 4/72 we find

14 = 43 ln M sin(y/v) dg(u, v)
IT [1, 2E6):-.M] {1}45, 1]

+ 0(ln M in N){(01(A) + E } o(ln M in N).

The results for5 follow by symmetry.

Proposition 4. 18.

16 = o(ln M In N)

17 = o(in M ln N)

18 = o(ln M ln N).

Proof. On all of the subcells S6' S7' S8 we have

Hm_i, _1(z, w) I < Var(g).

Thus

4 CC dz dwI < Var(g) jj z w
Tr

7

< Var(g) .±-17 {1n(TT M/2A6*) ln(A )1

TT

< o(ln M ln N).

By symmetry

16 < Var(g) ln(rrNFIV2A6*) in(A /E ) = o(ln M ln N).

dy
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On the other hand

I <Var(g)
8

= Var(g){1n(A /E )}2z w
4

it Tr

S8

= o(ln M in N).

Proposition 4. 19.

19
= dg(u, v) ln M ln N El5

{1}x{1}
Tr

where

I E15 < in M in N 1.(A) + o(ln M in N)

and

1.(A) is a function which tends to zero as A tends to infinity.

Proof. Here S9 = [A6*/,./ M, ir /2] X [A 6*/\/ N, ir /2]. Consider

then

cc
(up1)1\4(vp )N sin( 2Mz /u) sin(2Nw/v)dg(u,v

S9
[6, 1]X[6, 1]

sin(2Mz) sin(2Nw) dg(u, v (1 /zw)dzdw

{1}X{1}

(u131)M (vP2)
N sin(2Mz /u) sin(2Nw/v)dg(u, v)

S9
[6, 1]X[6, 1]

- sin(2Mz) sin(2Nw) dg(u, v) (1 /zw)dzdw

{1}x{1}
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S9
[6, 1]x[6, 1]

{1}x{,,1

M N

4- SS [(uP1) (vp2)
sin(2Mz /u) sin(2Nw iv)

{1}x{1}

- sin(2Mz) sin(2Nw)]dg(u, v) (1 /zw)dzdw

551...11 (1 /zw)dzdw + f
6, 1]x[, 1]

S9
{1}X[6, ii

+SSf /

59 [6' 1]X{1}

S,c {. /

S9
{1}x{1}

Now

D1 E(u) I dg(u, v)J (1 /zw)dzdw

59 -[6, 1]x[6, 1]

(uPi) (vP2
)Nsin(2Mz /u) sin(2Nw/v)dg(u, v)

4- SS

11 (1 /zw)dzdw

j(1 /zw)dzdw

55,1(A)(1/zw)dzdw,55,1(A)(1/zw)dzdw
S9

S9

(1 /zw)dzdw
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2 < SIS E(y)Idg(u, (1 /zw)dzdw

59
{1}45, 1]

= qA) sic (1 /zw)dzdw

S9

Similarly for D3,

D3 <2 (A) Sir(1/zw)dzdw, ,

59

while

Therefore

D1
+

D2
+

D3
+ D4 =1(A)+Lp1(A)+L1J2(A)) g(1 /zw)dzdw

S9
= I(A) 1n(Tr'JN/2A6*) 1n(irN/M72A6*)

(1/4)(A) in M in N + o(ln M in N).

Thus

19 =
4 1 sin(2Mz) sin(2Nw) I dzdw I dg(u, v)zw

iT {1}X{1}
59

where

+ E10

1E101 < (1 /4)1.(A) ln M ln N + o(ln M ln N) = 0(1n M ln N)4.(A).
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Consider ing the integral in this last representation of 19 we see

dg(u, 01* gs I sin(2Mz) sin(2Nw) I
zw

dzdw

{1}x{1}
S9

=1 yy dg(u, v)

{1}x{1}

+1 dou, v) I 164 ss( 1 /zw)dzdw

(1}X{1}
Tr

S9

=
F1

+ F2 .

It follows that

F21 dg(u, v

{1}X{1}

=1 SS dg(u,
{1}x{1}

while

sin(2Mz) sin(2Nw) I - (2 /Tr) I sin(2Nw) I

+ (2 /Tr), sin(2Nw) I -(4 /72)
Z

16
----4

ln(ir N/Tr /2.A 6*) lneiT M/2A 541
Tr

ln M ln N + o(ln M ln N)

1

4 Cr I sin(2Nw)I I sin(2Mz)I -(2/Tr) dzdw
ii

2,

9

± sic (2 /7){ sin(2Nw) I -(2 /Tr) dz

ir
2

S

dw <
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dzdw



where

C.= sup
1 V > U > 1

i

is finite. Thus

F1 o(ln M in N).

Collecting the results we find

19 = ln M ln N dg(u, v) +E154

Tr

where

1E < 0(1)(A) in M in N + o(ln M in N).
15

This was the desired statement.

We are now in a position to prove the result stated on page 128.

Proposition 4.20. Under the same conditions imposed in

Propositions 4. 15, 4.16, 4. 17, 4. 18 and 4. 19 we find

4
< {0(1)(1n N)C1 +0(1)(1n M)C2}

Tr

V.
sin ti -(2/3) at

1
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L*(M 1\1- g)5 $ $

(4/2) g
[ ,Nfl-vrix[1, \ITT] [5, 1]x[5, 1]

(4/3) in M S sSIS sin(y/v)dg(u, v)1(1/y)dy

[1, 2E5*Nr171 {1}X[5, 1]

(4/4) dg(u, v) 1+ o(ln M in N).

{1}x{1}

Proof. We combine the results of Propositions 4. 15, 4. 16,

4. 17, 4. 18 and 4. 19. Therefore

*
L (M N' g)

5 '

[1, Nrivilx[1,NITT] [5, lix[5, 1]

(4 /74 ln M ln NI .S1S dg(u, v)

{,}x{,}

sin(z /u) sin(w/v)dg(u, v)1(1 /zw)dzdw

(4/2)
.SIS I 55 sin(z /u) sin(w/v)dg(u, v

Scsin(y/v)dg(u, v) 1(1 /y)dy

[1, 2E5):'N/Th {1}X[5, 1]

152

(1 /zw)dzdw

+ ln N SI 1 SS sin(y/u)dg(u, v) 1(1 /y)dyi +

[1, 25*N/T4] [5, 1]x{1}

+
(4/3) in M

+ in N
.0 .r.c

sin(y. /u)dg(u, v) (1 /y)dy}
[1, 2E5*NIM] [5, 1]x{1}



+ {(2/ 2-n-2)Var(g)E +1It. (A) +
.4)2(A)

+ 2E 210(ln M in N) + o(ln M in N)

+E
15

Thus

lirn sup
M, N co

L8(M, N; g)

in M in N

xi ss sin( -i-)sin( )dg(u, v)1(1/zw)dzdw

l]x[6, 1]

(4 /Tr4)1 515* deu, v)
{1}X{1}

(4/3)
3)

+ln N

[1, 2E6*N/ M]

E15
< Him sup {(2 /Tr2 Var(g)E 2+ el) (A) + .4) (A) + 2E}0(1) + o(i) +

1 n M in N
M, N

< 10(1){E 2.+(j)i(A) +.4)2(A) + flA)}I .

Thus this last bound is independent of M, N. We therefore let

E 0, A --"co on this bound to arrive at the desired result.

Proposition 4.21. Let

SC
[1, g-2]x[1, NC-N-1

in M S 1 SS sin(iv )dg(u, v)1(1/y)dy

[1, 245*NrN] {1}X[ 8, 1]

sin(y/u)dg(u, v)(1 /y)dyj
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I

(4/2)
In M in N



ss

F(z, w) = 1 SS sin(z /u) sin(w/v)dg(u, v) 1

and assume exists then

[1, M]X[ 1, NFFT]

= o(ln M in N).

Proof. Let

f(p, q) = F(z, w)dzdw (a)

[0, p]X[0, q]

Then

F(z, w) - (1/4)z w

urn f(Th q) )1{F},
ID, (1'00 Pq

WI in M in N

154

which exists by hypothesis, and so we can write

f(P, q) = pqn{F} + o(pq), p, q oo. (b)

Also note from (a) that

0 < f(P' < (1 /pc,) Var (g)dzdw = Var(g) (c)
Pq

[0, pIX[0,



Ss{F(z, w) -

{i,fl]x[i,JTfl

[1, NiTux[1,,,r-N--]

f(N/ M, f(NI M, 1) f(qM,w) f(1,NIN)
( w)w dw f(1, 1)

NI MN - NFM- Nr-g NJ-N-

[1, N/TNT1

+

+2

Now from (a) we have f = F(p, q) = f , where f =
Pq qp w aw

Now repeated integration-by-parts yields

f(1, w) dw +
WW

[1, NTT/f]x{ 1, (\TN]

Var(g) dz1+

{f ic,f{F,}} dz
zw z w

f (NITV-1, w) fw(1,w)S (1 /N17-V1.) w dw

[1, NiT\-f]

fw(z, w)

[1, Nrici]

f(z, w)
(zw)(zw

}] dz dw
z w

2
dzdw - (1/4)

z w

f(z,Nr17)
(zNJN)z

dz

f(Nr17,NTST) f(Nim
NITV-1N- ,4742 + f(1, 1) _ f(1,Nr17)

NJ-N-

dzdw - (1 /4)/1{F} ln M ln N

[ ,Nrmix{ ,Nrisii

+2

{F} in M in N

f(z, 1)
dz

Z Z

Var(g)

1, NIT]

f(z,w) dz dw
zw z w
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af

, by (c)



< o(ln M in N) + 0(ln N) + 0(ln M)

ifs
{ 1 ,NiTvrix [ 1, NIT-T]

where h(p, q) is a function which tends to zero as p, q

tends to infinity. Also I h(p, q) I - I f(P' q) - {F} I
Pq

which is less than or equal to twice the variation of

g(u, v), and given E > 0 there exists T1
> 0 such

that if p, q >T1 then I h(p, q) I < E . Here T1

depends upon E .

< o(ln M in N) + R , where R is the double integral above.

Considering just this last integral R we break the integration

into three parts:

{P1 {F} + h(z, w
dz dw{F}} --z w , by using (b),
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I R I
51.c. I h(z, w) I

< zw
[1,N/TVI-]X[1,q7}

dzdw

ifs ifs

[1,T1 ]X[1 N/N] [T N/M]x[l T1] [T N/M]x[T

2 Var(g)
zw dzdw + 2 Var(g) dzdwzw

[1,T1]X[1,NM] [1,N1M]X[1,

dzdw
Z W

[Ti,N/M]x[Ti,NIN]



or

< Var(g) in Ti(E)[inN +in M] + (E /4) in M ln N.

Thus, given any E > 0, it is possible to make

[ 1, NiTvilx[ 1, NiTi]

< o(in M in N) + Var(g) in T1(E N + in M] + (E /4) in M in N

1

in M in N
F(z, w) dzdw

zw
- (1/4)

[1,N11cI]X 1, N]

if M,N are sufficiently large.

dzdwF(z,w) - (1 /4)/1{F} ln M N
zw

{F} in M in N

(f) lim (1 /pq) stc. f(z, w)dzdw exists.

[0,p1X[0, q]
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Proposition 4.22. If g(u,v) is a bounded variation in the

is a point of discontinuity ofsense of Hardy-Krause and (u., v.)ii
g(u, v) which is not on the axes, if

+ + + - - +
f(z, w) = sin(z /u.) in(w/v.){g(u. , v. )-g(u. , v. )-g(u. , v. )+g(u. , v. )1

1 j 1 j 1 3 1 j
j

then



Set

and

Ek/
(Z, W) - f(z, w) - f z, w)

Let

Proof. Let

+ + - - + + + - - +
g(u., v. ; u. , v. ) = g(u. , v. ) - g(u. , v. ) - g(u. , v. ) + g(u. , v. ) .

1 3 3 1 3 1 3 3

fk/ (z, w) =

EkJ
= sup I E (Z, W) .

z, w

Since g(u, v) is of bounded variation we find f(z, w) exists

for all z, w, and in fact

o < f(z, w) < Var(g).

The sum representation of f(z, w) converges both absolutely and

uniformly in (z, w) since

f(z, w) <

j

_

s in(z sin(w/v.)g(u. , v. ; u. , v. )
1 3 13 13

sin(z /u.) sin(w iv.) I I g(u. , v. ; u. , v. ) ,
1 13 13

+ + -
g(u. , v. ;u. , v )1 < Var(g).13

call this sum A,
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Note that if
Aid

is the klth partial sum of A then
Ala

tends to A uniformly in z,

Consider now

CO

(z, I =

Then

j=1

k,

-1 sin(z /u.) sin(w )g(u+. v+. ; u,
1 1 j

i, = 1

00

sin(z /u.) sin(w /v.)g(u+. v+. ;11.-, v. )
3 1313

i,j=k+1,1+1

00

- -
sin(z /u.) sin(w iv )g(

+ +
u.

1 u 1313

1 00

j=1 i=k+1

j=k+1, 1+1

co

j=12+1 1=1

j=1 i=k+1

= A - A .k/

00 00

By the uniform convergence of
Aki

to A we have

lim E - lim {sup I

Ek
(Z, W) I = 0

k/ /k,00 z,w

+

j=1 +1 i=1
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j=1 j=1



f (z, w) - E < f(z, w) < f (Z, w) + E kJ

so that

(1 /pq) f (z, w)dzdw < 1 /pq) f(z, w)dzdw

[0,1440, q] [0, p]X[0,
(B)

< (1 /pq) f (z, w) + E kf
[0, p]X[0, q]

holds. For each k,/ we have fk/ (z, w) being a finite sum of

_ continuous periodic functions, hence fk/ (z, w) is almost periodic,

and so its mean value exists [51 , that is

= lim (1 /pq) *Sir fk
(z, w)dzdw

p; 00
[0, p]x[0, q]

exists.

Consider now for fixed T, S > 0 the difference

Ifk+T, /+S(z' " \M{fk, /(z' w)}

= lim (1 /pq) {f dolzdw
p, co

k+T, + S-fk,
[0, p]x[0, q]

< lim sup ( 1 /pq) fk+T, +S -fk, I dzdw
p,q"c0

[0, p]x[0, q]
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and also

PAtfki/

for k,1 sufficiently large, or

hence Tim )A{f } exists.k,1k,. co
Now from (B) we have

[0, 0)40, q]

Letting k, 1 tend to infinity yields

lim 71{f < lim inf (1 /pq) f(z, w)dzdwl
co p oo

[0, p]X[0, q)

lim s up [(1 /pq) f(z, w)dzdw

<urn inf [(1/pq) f(z, w)dzdwl
p, [0, p]X[0, q]

161

We already know tfk,1 (z, w)} is convergent uniformly in (z, w) so

for any ii > 0 we have

(z,w)-f (z,w)I <
Ifk+T, 1 +S k, 1

for all z, w when k, i are sufficiently large. Thus

lim sup (1 /pq) fk+T,1 +S(z,
w) -fk, (z' w)i dzdw <

p, co [0, pNO, q]

{P-kffk,/}}
is a Cauchy sequence,



Hence, there exists

11(f) = lim (1 /pq) f(z,w)dzdwl

[0, p]><[0, q]

162

As Corollary 4.23 shows, the next theorem is essentially the two

dimensional analogue of Ishigurots result in [14].

Theorem 4.23. If the weight function g(u, v) which generates

the regular Quasi-Hausdorff matrix associated with the Lebesgue con-

stant L*(M,N; g) is a function which is continuous and zero on a

cross neighborhood {(x,y)1 0 <x < 5 or 0 <y < b} for some 5, then

L*(M,N; g) = C*(g) ln M ln N + o(ln M ln N),

M, N co,

where

C4'(g) = (4/Tr2) dg(u, v)1 + (2 /Tr3)01{f1}+N{f2}+(Tr /Z)

{1}x{1}

where

= "rn jtfk, /1

< lirn sup (1 /pq) f(z, w)dzdw
p,q-co [0, p]X[0, q]

< lirn jtfk.e}
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f1(w)
= Sic s in(w/v)dg(u, v)

{1}x[8, 1)

f2 (z) = sin(z /u)dg(u, v) 1

[8, 1)x{1}

f3(z, w) sin(z/u) sin(w/v)dg(u, v)

[8, 1)X[8, 1)

and it is assumed that these mean values exist.

Proof. Since g(u, v) is zero on the axes and continuous there,

there exists by hypothesis, a 5 such that the integration over

[0, 11X [0,1] is identical with that over [5, 1] X [5,1] for the

measure generated by g(u, v). Thus N; g) = N; g).
8

By Proposition 4. 21 the first term in N; g) of

Proposition 4. 20 can be written

(4/7.2) Sic f3(z, w)(1 /zw)dzdw

[1, NrIcI]x[1, N[N]

= (1 /72))A{f3} in M in N + o(ln M in N).

In a like manner, the one dimensional analogue of Proposition 4.21

implies



Combining these results we arrive at the desired result.

We now state the two dimensional analogue of Ishiguro 's result in [14].

Corollary 4.23. If the weight function g(u, v) which generates,

the regular Quasi-Hausdorff matrix which is associated with the

Lebesgue constant L*(M,N; g) is a countable linear combination of

two dimensional interval functions with mass points bounded away

from the axes, then

L*(M,N; g) C*(g) ln M in N + o(ln M in , M,N

where

G*(g) = (4 /1-2) dg(u,

{1}X{1}

+ -
sin(y /sig(l, s.; 1 , s. )
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(4 /-n-3 ) ln M f1(w)(1/w)dw -= (2 /73)Nfil ln M ln N

[1, 2(6*NIN-] + o(ln M ln. N),

(4/Tr3) ln N f2
(z)(1/z)dz = (2 irr3){f2}

in M in N

[1, 26*N1M] + o(ln M in N).



Here (u., v.) is the (ith, jth) point of discontinuity of g(u, v) on
1

[0, 1) X [0, 1), (r., 1) denotes those along [0, 1)x {1}, while (1, s.)
3

are those along {1} X [0, 1). The summations extend over all such

(possible countably infinite) values.

Proof. We note by the conditions on the mass points that

u., v. are not zero so that sin(z/u.), sin(w/v.) are well defined.13 13
Then

f3(z,w) SS sin(z/u) sin(w/v)dg(u, v) 1

[6, 1)X[6, 1)

+ + - - 1

sin(z/u.) sin(w/v.)g(u. , v. u. v. )
1 j 1 j

fl(w) =I SS
{1}x[5, 1)

By Proposition 4.22 the

1

sin(w/v)dg(u,v)

ssin(z/u.)

3 1 j 1 j

exists. Also

+ -
sin(w/s.)g(1, s.; 1

3
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f2(z) S.c sin(z/u)dg(u,v) sin(z /u.)g(r. , 1; r. , 1)

[a, 1)X{1}
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Using the same techniques as in the proof of Proposition 4. 22 we can

show that both

{f2}
exist.
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