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Chapter 1 – Introduction

Applications tailored to the individual needs of users have the potential to dra-

matically increase productivity while reducing the investment of users who desire a

particular end result. Such highly customized programs are difficult from a learning

standpoint as each application must learn one user’s distinct preferences, meaning

that training data is unique to that one individual. Requiring each user to label

large amounts of data is intractable from a usability standpoint, as it constitutes a

huge time investment for each user, and such an investment could be greater than

the time needed to perform a particular task manually.

Within such a customized framework, incorporating domain knowledge in a

way that users can understand while minimizing the time investment lends itself

to producing better performing applications that are successful in helping users

complete their desired tasks. One method of incorporating domain information

is through the use of feature relevance feedback, a method that allows users to

denote certain features as important for a particular class or for the training data

as a whole. In particular, we focus on feature relevance feedback in the form of

labeled user features. A labeled user feature is a feature that is associated with a

single label that represents the class that it is most representative of. For example,

given the feature “touchdown,” we might assign it the label “football.”

Given time constraints and the option of feedback through just labeled instances
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or using feature relevance in addition to labeled instances, feature relevance is more

attractive as “on average humans take 5 times longer to label one document than to

label one feature [10].” Additionally, previous work has shown that incorporating

feature relevance feedback can improve the performance of classifiers in less time

than focusing only on labeling documents alone [3]. Work by Raghavan & Allan

introduced an algorithm for incorporating feature relevance feedback that has been

well cited in related work [9]. In their study they showed that the use of feature

relevance in the form of labeled features significantly increased the performance

of their SVM-based methods in a series of 1-vs-All tests. While these results are

encouraging, they leave several important questions regarding feature relevance

unanswered:

• Does feature relevance work well outside of binary classification and, if so,

how well does it scale with the number of classes?

• How does the quality of the initial labeled training points affect performance?

• Does the quality of features given as feedback affect the performance of fea-

ture relevance?

In this thesis we attempt to begin to answer these questions, focusing specifi-

cally on the effects of labeled feature feedback on the performance of feature rele-

vance methods, apart from any form of active learning. Additionally, we contribute

a new method of incorporating feature relevance feedback into locally weighted lo-

gistic regression (LWLR) [2]. LWLR is a modification of logistic regression that
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weights training points with respect to a query through the use of a distance func-

tion. This allows training points that are more similar to the query to have a

greater influence during classification than less similar points. Our method, the

Feature Contrast Method (FCM), is a distance function that allows feature rele-

vance feedback into LWLR.

To answer our research questions, we extended Raghavan & Allan’s earlier work

by analyzing their methods in a multi-class setting alongside our Feature Contrast

Method. This idealized setting allowed us to more accurately assess the effect of

feature feedback on the feature relevance methods we test. Finally, we address

situations that are closer to how end-users behave by testing all methods on real

user-feature feedback taken from our earlier Autocoder study [8].



4

Chapter 2 – Related Work

2.1 Introduction

Previous work on incorporating feature relevance feedback can be divided into

two categories. The first category consists of methods that directly incorporate

feature relevance into classifiers in a supervised setting. This means that the

feature relevance feedback is used to modify the classifier within the context of

only the training data. The second category incorporates feature feedback in a

semi-supervised fashion, leveraging information from both the labeled training

data and the unlabeled test data.

In this thesis we focus on the first category of feature feedback, which we denote

as Supervised Feature Relevance feedback, as opposed to the second category,

Semi-supervised Feature Relevance feedback, which we propose to explore in future

work. In the following sections, we outline related work divided into these two

categories.

2.2 Supervised Feature Relevance Methods

Haghighi & Klein introduced prototype-driven learning, a method that, given a

set of “prototype” features for each label, optimizes the joint marginal likelihood

of the labeled data [4]. This method allows for a simplified and declarative method
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for incorporating feedback through labeled feature examples. In their paper, they

show that this method of incorporating feature feedback resulted in a reduction in

error for several of their induction tasks.

Tandem Learning, developed by Raghavan & Allan, incorporates both label

feedback and feature feedback into SVMs to improve classifier performance [9].

In their paper, they show methods of incorporating user feedback via an active

learning loop using three different feedback mechanisms. Using a combination of

these methods in conjunction with uncertainty sampling and an oracle, Raghavan

& Allan demonstrated a significant improvement in classifier performance over

their baseline.

Raghavan & Allan’s first method, scaling, involved directly modifying the

counts of features based on the feature relevance feedback. For all instances in

the labeled and unlabeled data, any features that were marked as relevant were

scaled by some constant a, while all others were scaled by b. Their second method,

feature pseudo documents, involved adding pseudo documents, consisting of only

a feature and a label, to the training data. A parameter, r, is introduced which

controls the distance of the pseudo documents to the margin. Values of r ≤ 1 allow

the pseudo documents to exert a greater influence on the margin than the support

vectors. Raghavan & Allan’s third method, pseudo relevance feedback, soft-labels

the unlabeled training data by computing the similarity between the unlabeled

instances and the set of terms the user has associated with each class. This is done

by adding a new slack variable for each unlabeled instance. For each class, the

sum of these slack variables is computed and each slack variable is weighted by the
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similarity of its respective instance to the features associated with that class.

We note that Raghavan & Allan’s third method falls under the category of

Semi-supervised Feature Relevance methods, but we list it here as their previous

two methods are supervised methods. As noted earlier, we wish to focus on the

effect of feature relevance in a supervised setting, so we exclude their third method

from our experiments.

2.3 Semi-supervised Feature Relevance Methods

Much previous work with Semi-supervised Feature Relevance methods involves

soft-labeling the unlabeled data using feature feedback and then using these soft-

labeled instances as additional training data. Early work by Liu, et al. [5] obtained

labeled features using human annotators and then soft-labeled based on the cosine

similarity between the unlabeled data and pseudo-instances that consisted only of

labeled features. They showed that gathering feature relevance feedback required

less effort than labeling instances, and classifiers trained using feature relevance

feedback with a small training set produced results similar to classifiers trained

using only a larger set of training data.

Wu & Srihari [14] provided soft-labeled instances with confidence scores ob-

tained by computing the number of features, associated with some label l, that

appear in an instance divided by the total number of features associated with the

label l. These weighted instances were then used as training data for a Weighted

Margin SVM, which considered the weights when selecting support vectors. They
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demonstrated that incorporating feature relevance feedback in this fashion pro-

duced considerably better performance than SVMs using only labeled data.

Stumpf, et al. introduced a modification to co-training called user co-training

[12]. Co-training is a semi-supervised learning method that utilizes two classi-

fiers that work on the same data using independent sets of features with the as-

sumption that each classifier produces the same classification despite the differing

feature sets. User co-training treats the user as the second classifier involved in co-

training. They do this by introducing a user feedback classifier that represents the

user by treating the feature feedback as the set of features for the labels the user

associates them with. In addition to user co-training, they also considered a con-

strained version of Näıve Bayes where user feedback was introduced as constraints

for the maximum likelihood estimation of parameters during training. While the

use of constrained Näıve Bayes did not increase performance, they showed that in-

corporating keyword-based feedback with user co-training resulted in a significant

increase in performance.

Druck, Mann, & McCallum [3] used a generalized expectation (GE) criterion,

a term in an objective function that incorporates preferences about model expec-

tations, to train a discriminative probabilistic model where the labeled features

directly constrained the model’s predictions on the unlabeled data. To do this,

they constructed a GE criterion that penalized the model’s predicted distribution

based on its KL-divergence from a reference distribution. The reference distri-

bution was estimated from feature relevance feedback, obtained via an oracle or

latent Dirichlet allocation (LDA), in conjunction with the unlabeled data. Druck,
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Mann, & McCallum compared their method to the work of Wu & Srihari and

Raghavan & Allan. In both cases, their comparisons suggest that their method of

incorporating feature relevance through GE criteria outperforms these previously

formulated methods.

GE is very general and can be applied to many different probabilistic models.

Additionally, several types of parameter estimation can be shown to be special

cases of GE, such as maximum likelihood estimation. Using this, it is possible to

demonstrate that classifiers based on these methods are also special cases of GE,

which we demonstrate is the case for LWLR in Section 4.4.



9

Chapter 3 – Nomenclature

Bold variables are used to represent vectors.

Y : The set of all J labels.

X : The set of all features, consisting of M features.

D : The set of all training data, consisting ofN instances.

(xi, yi) : An instance, consisting of a non-sparse vector of M

features and a label

xji : The value of the jth feature in the ith instance.

R : The feature relevance feedback for a single user, rep-

resented as a vector of M elements where the ith

element is the label given as feedback for the ith fea-

ture in X. Features for which no feedback is given

are assigned a special symbol, ∅, which represents

the absence of a label.

Ri : The ith label in R.

Q : The set of all queries.

xq : A query.

xi
q : The value of the ith feature in the query.

Θ : The set of parameters for a model.

Θ(yk) : The set of parameters associated with the label yk.
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θ(yk, i) : The ith parameter from those associated with the

label yk.

cos(u,v) : A function that computes the cosine similarity be-

tween two instances.

[P ] : Iverson bracket notation, defined as

[P ] =

 1 if P is true;

0 otherwise.

where P is a statement that can be true or false.

u ◦v : The Hadamard product of two vectors of identical

length where (u ◦v)i = uivi.



11

Chapter 4 – Locally Weighted Logistic Regression

4.1 Introduction

LWLR is a variation of logistic regression that assigns a weight to each training

point with respect to a query, xq, through the use of a distance function. Using

weighted training points allows LWLR to give more influence to points that are

closer to the query than other points, which enables LWLR to outperform logistic

regression in many cases. This advantage comes with a sacrifice in speed, as

LWLR is a lazy algorithm that must compute these weights each time a query is

made. In addition, an appropriate kernel value k must be selected to achieve good

performance using LWLR.

The use of a distance function in calculating the weights for LWLR provides

an excellent opportunity to incorporate feature relevance feedback in a natural

way. The distance function only considers two points at a time, the query and

a training point, which allows us modify the resulting weight by considering the

feature feedback that is relevant to only these points. By doing so, we can obtain

a more accurate picture of how related these two points are according to the end

user.

We begin with a brief mathematical description of LWLR, followed by a deriva-

tion showing that LWLR is a special case of GE. Finally, we conclude with a dis-
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cussion of the use of cosine similarity as a baseline distance function for LWLR

and our feature relevance method.

4.2 Description of Locally Weighted Logistic Regression

We begin with logistic regression. Given a set of features derived from docu-

ments, X, labels, Y , and the set of parameters, Θ, the probability of a label yk,

given the input xi is:

pΘ(yk|xi) =
exp

{
θ(yk, 0) +

∑M
j=1 θ(yk, j)x

j
i

}
Z(xi)

,

where

Z(xi) =
J∑

k=1

exp

{
θ(yk, 0) +

M∑
j=1

θ(yk, j)x
j
i

}
.

For simplicity in later derivations, we introduce a new feature into each instance,

denoted as x0
i , which allows us to include the parameter θ(yk, 0) in the summation.

This feature always has a value of 1. Incorporating this, we get

pΘ(yk|xi) =
exp

{∑M
j=0 θ(yk, j)x

j
i

}
Z(xi)

,

where

Z(xi) =
J∑

k=1

exp

{
M∑
j=0

θ(yk, j)x
j
i

}
.
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This gives us the following likelihood for logistic regression:

L(Θ) =
N∏
i=1

pΘ(yi|xi)

LWLR modifies the likelihood by adding a weight term, w(xq,xi), which is the

weight for the ith training point with respect to xq. Incorporating this we get

L(Θ) =
N∏
i=1

pΘ(yi|xi)
w(xq ,xi), (4.2.1)

where

w(xq,xi) = exp

{
−f(xq,xi)

2

k2

}
,

k is the kernel width, and F is a function of the Euclidean distance from the ith

data point to the query.

4.3 Training Locally Weighted Logistic Regression

LWLR sets the weight for each training instance with respect to the query, which

is the current instance we wish to classify. As a result, LWLR must be trained

for each query we wish to classify. To do this, we perform maximum likelihood

estimation on the parameters Θ using the log-likelihood of LWLR, which is

lw(Θ) =
N∑
i=1

w(xq,xi) log pΘ(yi|xi). (4.3.1)
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If we consider a single parameter, θ(ya, b), the derivative of the log-likelihood with

respect to θ(ya, b), given by l′w, is:

l′w =
δ

δθ(ya, b)

N∑
i=1

w(xq,xi) log pΘ(yi|xi)

=
N∑
i=1

w(xq,xi)

(
δ

δθ(ya, b)
log pΘ(yi|xi)

)

=
N∑
i=1

w(xq,xi)

 δ

δθ(ya, b)
log

exp
{∑M

j=0 θ(yi, j)x
j
i

}
Z(xi)


=

N∑
i=1

w(xq,xi)

(
δ

δθ(ya, b)

(
M∑
j=0

θ(yi, j)x
j
i − logZ(xi)

))

=
N∑
i=1

w(xq,xi)

(
δ

δθ(ya, b)

M∑
j=0

θ(yi, j)x
j
i −

δ

δθ(ya, b)
logZ(xi)

)

=
N∑
i=1

w(xq,xi)

(
xb
i [ya = yi]−

1

Z(xi)

δ

δθ(ya, b)
Z(xi)

)

=
N∑
i=1

w(xq,xi)

(
xb
i [ya = yi]−

1

Z(xi)

δ

δθ(ya, b)

J∑
k=1

exp

{
M∑
j=0

θ(yk, j)x
j
i

})

=
N∑
i=1

w(xq,xi)

(
xb
i [ya = yi]−

1

Z(xi)

J∑
k=1

δ

δθ(ya, b)
exp

{
M∑
j=0

θ(yk, j)x
j
i

})

=
N∑
i=1

w(xq,xi)

(
xb
i [ya = yi]−

1

Z(xi)

∗
J∑

k=1

(
exp

{
M∑
j=0

θ(yk, j)x
j
i

}
δ

δθ(ya, b)

M∑
j=0

θ(yk, j)x
j
i

))
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=
N∑
i=1

w(xq,xi)

(
xb
i [ya = yi]−

1

Z(xi)

∗
J∑

k=1

(
exp

{
M∑
j=0

θ(yk, j)x
j
i

}
xb
i [ya = yk]

))

Using the derivative of lw with respect to θ(ya, b), we can construct the full deriva-

tive of lw with respect to Θ. We then train a LWLR model using an optimization

routine like L-BFGS [6] that finds the values ofΘ that maximize the log likelihood.

4.4 Locally Weighted Logistic Regression as a Special Case of Gen-

eralized Expectation

In Mann & McCallum’s work, a GE criterion is a function, represented as G,

which expresses some preference about a model’s expectations of some set of val-

ues [7]. It represents the model’s predicted distribution over the values of some

function, f , as a scalar, where f is a function of the model’s variables. Formally,

this is denoted as

G(E[f(X)])→ R

The scalar value produced by G is added as a term to the objective function used

for parameter estimation.

It has been shown that maximum likelihood is a special case of generalized

expectation [7]. We extend that derivation to show that LWLR is also a special

case of GE. We begin with the likelihood for LWLR, shown earlier in equation 4.3.1.
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Let pΘ(Y |X) be the conditional probability distribution over Y given X pa-

rameterized by Θ. Let f(xi, y) be a vector indicator function that returns a vector

of length N containing zeros in all locations except at the ith position where it

contains a 1 if xi has label y. Let f̂ be the empirical distribution of the vector

indicator function applied to X in the training data D and Y in the labels Y ,

denoted as

f̂(X,Y ) =
1

N

N∑
i=1

∑
y∈Y

f(xi, y),

which returns a vector of N values in which the ith element represents the proba-

bility of selecting the ith data point from the training data.

To represent LWLR, our GE criterion, G, is the negative cross entropy between

the elements of EΘ[f(X, Y )|X] and f̂(X,Y ), multiplied by the weight w(xq,xi),

where

EΘ[f(X, Y )|X] =
1

N

N∑
i=1

∑
y∈Y

pΘ(y|xi)f(xi, y)

which is the model’s expectation of the vector indicator function given the training

data. Given this and f̂(X,Y ), we get

G = −
N∑
i=1

w(xq,xi)f̂(X,Y )i log(EΘ[f(X, Y )|X]i) (4.4.1)

where the subscripts i index into the dimensions of the vector indicator function.

Taking this, we simplify until we reach something equivalent to equation 4.3.1,
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which is the log-likelihood of LWLR.

G = −
N∑
i=1

w(xq,xi)f̂(X,Y )i log(EΘ[f(X, Y )|X]i)

= −
N∑
i=1

w(xq,xi)f̂(X,Y )i log

( 1

N

N∑
i=1

∑
y∈Y

pΘ(y|x)f(x, y)

)
i


From the expansion of EΘ[f(X, Y )|X] we see that it returns a vector of prob-

abilities, multiplied by 1
N

, where the ith entry corresponds to 1
N
pΘ(yi|xi). This

gives:

G = −
N∑
i=1

w(xq,xi)f̂(X,Y )i log

(
1

N
pΘ(yi|xi)

)

= −
N∑
i=1

w(xq,xi)

(
1

N

N∑
j=1

∑
y∈Y

f(xj, y)

)
i

log

(
1

N
pΘ(yi|xi)

)

= −
N∑
i=1

w(xq,xi)
1

N
log

(
1

N
pΘ(yi|xi)

)

= − 1

N

N∑
i=1

w(xq,xi) log

(
1

N
pΘ(yi|xi)

)

= − 1

N

N∑
i=1

w(xq,xi) (log pΘ(yi|xi)− logN)

= − 1

N

N∑
i=1

(w(xq,xi) log pΘ(yi|xi)− w(xq,xi) logN)

= − 1

N

N∑
i=1

(w(xq,xi) log pΘ(yi|xi)) +
1

N

N∑
i=1

(w(xq,xi) logN)

= − 1

N

N∑
i=1

(w(xq,xi) log pΘ(yi|xi)) +
logN

N

N∑
i=1

w(xq,xi) (4.4.2)
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Both 1
N

and logN
N

∑N
i=1w(xq,xi) will not affect the outcome of the maximum

likelihood estimation for the parameters Θ. Removing them from equation 4.4.2,

we get

G = − 1

N

N∑
i=1

(w(xq,xi) log pΘ(yi|xi)) +
logN

N

N∑
i=1

w(xq,xi)

=
N∑
i=1

w(xq,xi) log pΘ(yi|xi)

which is the log-likelihood for LWLR. This shows that equation 4.4.1 is equivalent

to equation 4.3.1 in terms of the maximum likelihood estimation for the parameters

Θ. Thus, LWLR is a special case of generalized expectation.

4.5 Cosine Similarity

The LWLR classifier uses a distance function to determine the weights of the

training data with respect to a query. The closer a particular training point is to

the query, the more weight it is given during training. Cosine similarity (COSIM)

is a method used for comparing two vectors by finding the cosine angle between

them. In text classification it is used to compare the similarity of two documents

by using the vector of TF-IDF values associated with each document’s features.

Since cosine similarity is used frequently in text classification problems and does

not incorporate any feature feedback, it lends itself to being used as the baseline

distance function for LWLR.

The distance function used by LWLR requires that higher distance values indi-
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cate greater dissimilarity between the query and the training point. In its original

form, cosine similarity behaves in the opposite fashion, where 1 indicates that two

points are identical and 0 indicates that they are independent. We can incorporate

it into a distance function using by defining the following function:

COSIM(xq,x) = 1− cos(xq,x) (4.5.1)

This function inverts the output of cosine similarity, giving results ranging from

0 (identical) to 1 (independent). Note that using cosine similarity as a distance

function restrict points from being any further apart than a distance of 1.
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Chapter 5 – Feature Relevance Feedback in Locally Weighted

Logistic Regression: Feature Contrast Method

5.1 Introduction

Locally weighted logistic regression compares a query to training data to set

the weight of each training point through the use of a distance function. Training

points that are weighted more highly have a greater effect on classification than

those with lower weights. The particular distance metric used directly affects the

resulting weights. Our baseline distance metric, cosine similarity, only shows how

similar two instances are and ignores other information that may indicate that the

two instances belong to the same class, even if they do not appear to be similar.

We introduce a new distance metric called the Feature Contrast Method (FCM).

In addition to using cosine similarity to consider how similar two instances are,

FCM utilizes the labels assigned to user features that are present in the instances.

By comparing and contrasting user features and their labels, FCM is able to bet-

ter determine if two instances belong to the same class. We begin with a formal

definition of FCM, followed by a detailed discussion of its construction.
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5.2 Formal Definition

We begin with the likelihood for LWLR and modify the distance function to include

the feature relevance feedback, which gives

L(Θ) =
N∏
i

pΘ(yi|xi)
w(xq ,xi,R)

where w(xq,xi,R) is the weight for instance xi with respect to the query xq and

the feature relevance feedback. This weight is defined as

w(xq,xi,R) = exp

{
−F (xq,xi, yi,R)2

k2

}

where k is the kernel width. Let F (xq,xi, yi,R) be

F (xq,xi, yi,R) = max [0, COSIM(xq,xi) ∗ (1−G(xq,xi, yi,R))] ,

where G(xq,xi, yi,R) is

G(xq,xi, yi,R) = BONUS(xq,xi, yi,R)− PENALTY (xq,xi, yi,R)

J − 1
.

Let BONUS(xq,xi, yi,R) be

BONUS(xq,xi, yi,R) = W (xq,xi, yi,R) ∗ C(xq,xi, yi,R)
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and let PENALTY (xq,xi, yi) be

PENALTY (xq,xi, yi,R) = W (xq,xi,Y \ yi,R) ∗ C(xq,xi,Y \ yi,R).

W (xq,x,S,R) is a function that computes the cosine similarity between xq and

x using only those two points and only the features whose corresponding labels in

R exist in the set of labels S.

Let h(R,S) be a vector indicator function that returns a vector of length M

where the ith entry is 1 if Ri ∈ S and Ri 6= ∅, and 0 otherwise. Let ĥ(xi) be a

vector indicator function that returns a vector of length M where the jth entry is

1 if xj
i = 0 and 0 otherwise. Given h and ĥ, C is defined as

C(xq,xi,S,R) = α (h(R,S) ◦xq) • ĥ(xi),

where α is the normalization constant for the vector produced by h(R,S) ◦xq.

α (h(R,S) ◦xq) results in a vector of normalized feature values where only those

features in xq that have feature relevance feedback whose label in R is also in S

have non-zero values. The vector created from ĥ(xi) is used as a mask through

which we pass the normalized feature values so that only those features with zero

values in the xi are considered. The dot product with ĥ(xi) results in C producing

the sum of the normalized feature values in α (h(R,S) ◦xq) for only those features

that have non-zero feature values in xi.
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5.3 Creating a Distance Function that Incorporates Feature Rele-

vance Feedback

We begin with equation 4.5.1, the COSIM function, which does not take into ac-

count any information from the user features, as the basis for our distance function,

Using this, our distance function is

F (xq,xi, yi,R) = COSIM(xq,xi).

Now suppose we have a set of features, R, which we consider to be more

important than other features in determining the label of a data point. In order

to incorporate information from the user features in R, we need a function that

returns a value that represents the contribution of those features to deciding if

the training point in question is similar to xq. For now, we call this function

G(xq,xi, yi,R) and leave it undefined.

We note that if two points are very similar to each other via cosine similarity,

using the additional information provided by G affects the resulting weight very

little, as cosine similarity is already returning a value very close to 0. If the two

points are not similar, then it may be that they do not belong in the same class,

or they do belong together but they simply do not share many similar features. In

the second case, using the additional information from G may help us determine

whether or not the two data points actually share a label. Since it is only useful

to include this information when the points are not similar, we need to make sure
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that it is only included when the cosine similarity is close to one. We can do this

by modifying the distance function as follows:

F (xq,xi, yi,R) = COSIM(xq,xi)− COSIM(xq,xi) ∗G(xq,xi, yi,R)

= COSIM(xq,xi) ∗ (1−G(xq,xi, yi,R))

This weights the contribution of 1−G by the cosine similarity of xq and xi, using

more information from G as the similarity of xq and xi decreases.

5.3.1 Defining G

Cosine similarity allows us to consider all the feature to see if xq and xi are

similar. If a lot of the information represented by G is being used, this may indicate

that leveraging information other than that of just the unlabeled user features is

necessary, and using the feature relevance information may help us in deciding if

xq and xi are more or less similar than what cosine similarity indicated. When

thinking about how to use this information, some questions we might consider are:

• Do the instances share any user features?

• Does the query have any user features whose class is the same as that of the

training point?

• Does the query have any user features whose class is different from that of

the training point?
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If the two points share many user features, then this may indicate that they

are similar. Even if they do not share many user features, they still may belong

to the same class if the query contains many user features whose class is the same

as the training point. Since we have already considered xq and xi in terms how

similar they are, we now look at how they are different.

An instance containing user features is not guaranteed to contain only those

user features associated with the label that the instance should have. This means

that the instance may contain user features whose associated label contradicts the

correct label for it. When considering the query, we are interested in discovering

if the label associated with the training point is the correct label for the query. In

terms of the user features in the query, those that do not share a label with the

training point indicate that the query may not be similar to the training instance,

while those user features that do share a label with the training data indicate the

opposite.

There are two types of user features we can consider, positive user features,

or those that share a label with the training instance, and negative user features,

those that do not. We need a method of representing the contribution from both

types, and one way of doing so is through the use of feature values.

Intuitively, a feature that shows up more in an instance is more important than

one that shows up fewer times. This may not be true for very common words, but

we assume that for user features the user chooses features that represent only those

that are useful in determining the class of an instance. We incorporate this into G
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as

G(xq,xi, yi,R) = C(xq,xi, yi,R)− C(xq,xi,Y \ yi,R).

The function C returns the sum of the normalized feature values for all user

features with non-zero values in xq, but zero values in xi, that are associated with

a label that exists in the set of labels passed as an argument. In this case, the first

use of C returns the sum of the normalized positive user feature values and the

second use returns the normalized negative user feature values. We normalize the

values to prevent a bias towards instances with a greater number of user features.

G now returns a value that represents the information from the feature relevance

feedback in terms of how xq and xi are different. While useful, this neglects to

consider how they are similar in terms of user features. This is especially important

if they are completely similar in terms of the user features, as this would mean we

could get no information from looking at how they were different.

In order to balance between the information from contrasting the instance in

terms of the user features versus the information from comparing them, we weight

each use of C. To accomplish this, we use the previously defined function W to

modify the distance function as follows:

G(xq,xi, yi,R) = W (xq,xi, yi,R) ∗ C(xq,xi, yi,R)

−W (xq,xi,Y \ yi,R) ∗ C(xq,xi,Y \ yi,R).

W represents a modified version of cosine similarity where the similarity is

computed from the TF-IDF values for xq and xi calculated using only those two
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points rather than the entire corpus. Additionally, W only takes into consideration

the user features when computing the cosine similarity. This allows us to use less

of the information from C when xq and xi are more similar in terms of the user

features, and visa versa.

The two products in G accomplish two different functions. One product repre-

sents information that increases the similarity between xq and xi while the other

product decreases the similarity. For ease in referring to these two products, we

denote them as follows:

BONUS(xq,xi, yi,R) = W (xq,xi, yi,R) ∗ C(xq,xi, yi,R)

PENALTY (xq,xi, yi,R) = W (xq,xi,Y \ yi,R) ∗ C(xq,xi,Y \ yi,R)

Using these, we get

G(xq,xi, yi,R) = BONUS(xq,xi, yi,R)− PENALTY (xq,xi, yi,R).

We note that if our data has more than two classes the PENALTY term will

represent more than a single label, meaning that it will carry more weight than

the BONUS term in these cases. To prevent this, we divide the PENALTY term

by J − 1, which averages its contribution over the number of labels it represents.

Using this, we arrive at our final representation of G:

G(xq,xi, yi,R) = BONUS(xq,xi, yi,R)− PENALTY (xq,xi, yi,R)

J − 1
.
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5.3.2 Incorporating G

In its current form, G will return a value that modifies the similarity between

the two points in question. In the case of a negative value, which will push the

points further apart, there is no restriction on how far apart the points can be.

A positive value is different, as the closest two points can be is 0. Too large of

a positive value will cause the distance to become negative, which will artificially

push the points apart. In order to prevent this, we modify our distance metric in

the following way:

F (xq,xi, yi,R) = max [0, COSIM(xq,xi) ∗ (1−G(xq,xi, yi,R))]

This prevents G from causing the points from being “more similar” than 0.
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Chapter 6 – Feature Relevance in a Multi-Class Experiment

6.1 Introduction

Raghavan & Allan’s original experiment was performed in a 1-vs-All setting

using feature relevance feedback selected by an oracle. The oracle selected the

features to be given as feedback by choosing those features whose information gain

was greater than or equal to the average information gain of the top thirty features

from the corpus. After the features were chosen, each feature was assigned the la-

bel that had the highest probability of occurring with it. The 1-vs-All experiment

environment, along with their method of selecting the feature relevance feedback,

made it difficult to answer our research questions using their original setup. The

large number of classes in each of the datasets causes a 1-vs-All framework to have

inherent class imbalance, which can affect the performance of classifiers and make

determining the benefits of various feature relevance methods difficult. Addition-

ally, the selection of the user feedback, as it was not balanced between classes,

caused some classes to lack feedback, making it difficult to assess the effects of

features on feature relevance methods.

Extending their previous work into a multi-class environment not only made it

possible to remove issues of class imbalance, but also allowed us to analyze their

feature relevance methods in a more realistic, and difficult, test setting. A more
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realistic setting enabled us to assess the usefulness of each method we tested in

terms of problems that are more similar to those that a real user might encounter.

To answer our research questions, we constructed a multi-class experiment with

two different sampling methods for each dataset we use. This allowed us to answer

our question on the effect of the initial training data. We then selected a balanced

number of top features to represent the feature relevance feedback for each class

in the experiments, as well as a random selection of features. Comparing the

results from both sets of features enabled us to answer our question regarding the

effects of feature quality. Finally, we varied the number of features we gave as

feature relevance feedback for each class to determine how increasing the amount

of feedback affected each method.

In this section we explain in detail the setup of our multi-class experiment and

then show the results of using both Raghavan & Allan’s supervised methods in

addition to our FCM method. We discuss the effects that each sampling method

had on the training data with respect to the distribution of user features. Finally,

we conclude with a discussion of the results with respect to our research questions.

6.2 Experiment

We began by choosing 5 classes from both the 20 Newsgroups and Modapte

datasets. Using these 5 classes, we created 4 sub-datasets of each original dataset,

each sub-dataset consisting of n classes, where n ranged from 2 to 5. Using each

sub-dataset, we created 30 pools consisting of 1000 random instances, sampled
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so that each class had as close to an equal number of instances in the pool as

possible. After each pool was created, we then created a corresponding validation

set consisting of 50 labeled instances per class represented in the pool. From the

pools we selected 4 instances from each class to be training data, and the remaining

instances were used as test data. For clarity, we refer to these training/testing sets

as the Balanced/Random (BR) datasets, respectively, for either the 20 Newsgroups

(BR20News) or Modapte (BRModapte) corpus.

In addition to the BR sets, we used an oracle to create a list of user features for

each sub-dataset. For each class in a particular sub-dataset, the oracle selected the

top m features for that class according to information gain. Labels were associated

with the features by computing the probability of occurrence of the feature with

the labels in the sub-dataset. This was done for values of m from 1 to 10, creating

10 sets of the “best” user features, as selected by the oracle. We also created

10 sets of randomly chosen features, each set a duplicate of the previous with a

randomly selected feature added for each class in the sub-dataset.

Raghavan & Allan’s SVM methods were modified to work in a multi-class

setting. Using the pools of 1000 training instances, we ran methods 1 and 2 using

uncertainty sampling and the 10 sets of “best” user features. For each run, we

saved the training and testing splits generated by uncertainty sampling on each of

the pools in conjunction with the list of user features. The data from the method

(either 1 or 2) that performed the best was then used to create new training/testing

datasets for use with our methods. For clarity, we refer to these training/testing

sets as the Uncertainty (UN) datasets for either 20 Newsgroups (UN20News) or
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Modapte (UNModapte). This process is illustrated in Figure 6.1.

Table 6.1: Parameters for each dataset, determined using validation sets.

20 Newsgroups Modapte
Uncertainty BR Uncertainty BR

Method 1 a = 15, b = 1 a = 3, b = 1 a = 4, b = 1 a = 2, b = 1
Method 2 r = .4 r = 3 r = .6 r = 2

FCM k2 = .1 k2 = .2 k2 = .1 k2 = .3
COSSIM k2 = .1 k2 = .15 k2 = .2 k2 = .35

We ran LWLR using our FCM distance metric on each of the Balanced/Random

datasets and the Uncertain datasets. In addition, we modified Raghavan & Allan’s

methods to use the training/testing splits in the Balanced/Random datasets rather

than uncertain sampling, and ran methods 1 and 2 on Balanced/Random datasets.

The parameters for each classifier/dataset pair were tuned using the lists of “best”

user features, given as feature relevance feedback, and the validation sets. These

parameters are shown in Table 6.1

We computed the average macro-F1 and micro-F1 scores over all tests for a

particular method/dataset along with a confidence interval, which was computed

over the set of average macro-/micro-F1 scores used to calculate the overall average.

We focus on the macro-F1 scores, but micro-F1 scores are available in Appendix A.
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Figure 6.1: An illustration showing the creation of the validation and datasets for the multi-class
experiments.
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6.3 Results

6.3.1 Balanced/Random Datasets

We begin by looking at the performance of classifiers on the 20 Newsgroups

Balanced/Random dataset, which is shown in Figures 6.2 - 6.5. For all class sizes,

LWLR with FCM, using the best user features, performs significantly better than

both its baseline and Raghavan & Allan’s methods. It also shows a responsiveness

to the addition of user features. Use of random features instead of the best features

cause the classifier to perform with no significant difference from the baseline.

Both of Raghavan & Allan’s methods show no significant advantage of one

over the other, though method 1 is typically more significant than the baseline.

Except for the 3 - and 5 - class tests using 4 or more of the best user features,

method 2 fails to perform significantly better than a standard SVM. Method 2

shows responsiveness to the increase in the number of best user features, albeit only

slightly. Using random user features, both methods show no significant difference

from the baseline.

Looking at the performance of the classifiers on the Modapte Balanced/Random

dataset, shown in Figures 6.6 - 6.9, we note that once again LWLR with FCM tends

to significantly outperform the baseline as well as Raghavan & Allan’s methods.

For the 2 - class tests, both methods 1 and 2 show no significant difference compared

to LWLR with FCM. However, FCM retains its performance much better as the

number of classes increase, significantly outperforming all other methods as the

number of best user features increases. Again, FCM shows a responsiveness to
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increasing the number of best user features.

With the Modapte Balanced/Random dataset, method 2 starts to perform

significantly better than a plain SVM as the number of classes and best user

features increase. It also shows more responsiveness to increasing the number of

best user features as the number of classes increase. Method 1, using the best

user features, shows no significant improvement over using random user features.

As before, all classifiers’ performance using random features shows no significant

difference from their respective baselines.
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Figure 6.2: The overall average macro-F1 scores on the 20 Newsgroups Balanced/Random
dataset, 2 classes and best/random user features. The confidence intervals were computed over
the average macro-F1 scores used in the overall average.

Figure 6.3: The overall average macro-F1 scores on the 20 Newsgroups Balanced/Random
dataset, 3 classes and best/random user features. The confidence intervals were computed over
the average macro-F1 scores used in the overall average.
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Figure 6.4: The overall average macro-F1 scores on the 20 Newsgroups Balanced/Random
dataset, 4 classes and best/random user features. The confidence intervals were computed over
the average macro-F1 scores used in the overall average.

Figure 6.5: The overall average macro-F1 scores on the 20 Newsgroups Balanced/Random
dataset, 5 classes and best/random user features. The confidence intervals were computed over
the average macro-F1 scores used in the overall average.
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Figure 6.6: The overall average macro-F1 scores on the Modapte Balanced/Random dataset, 2
classes and best/random user features. The confidence intervals were computed over the average
macro-F1 scores used in the overall average.

Figure 6.7: The overall average macro-F1 scores on the Modapte Balanced/Random dataset, 3
classes and best/random user features. The confidence intervals were computed over the average
macro-F1 scores used in the overall average.
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Figure 6.8: The overall average macro-F1 scores on the Modapte Balanced/Random dataset, 4
classes and best/random user features. The confidence intervals were computed over the average
macro-F1 scores used in the overall average.

Figure 6.9: The overall average macro-F1 scores on the Modapte Balanced/Random dataset, 5
classes and best/random user features. The confidence intervals were computed over the average
macro-F1 scores used in the overall average.
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6.3.2 Uncertainty Datasets

We now look at look at the performance of the classifiers on the 20 Newsgroups

Uncertainty dataset, shown in Figures 6.10 - 6.13. LWLR with FCM shows no

significant improvement over method 2 in almost all cases, though it is significantly

better than method 1 for all tests. Both FCM and method 2 show some response

to the increasing number of user features, but it is much less dramatic than when

using the Balanced/Random dataset. We also note that, in the 2 class test, both

FCM and method 2 reach the highest average macro-F1 score out of all tests

we performed, with method 2 achieving the highest score. As before, the use of

random user features causes the classifiers to operate with almost no significant

difference from their respective baselines.

Looking at the performance on the Modapte Uncertainty dataset, shown in

Figures 6.14 - 6.17, we note that FCM is significantly worse than method 2 in

the 2 - class tests, but shows no significant difference from method 2 in almost

all the other test cases. Both methods show responsiveness to the increase in

the number of best user features. Method 1 using the best user features fails to

perform significantly better than both the baseline and method 1 using random

user features in most cases except for the 5 class tests. As before, the use of random

features causes the classifiers’ performance to have no significant difference from

their respective baselines in most cases.
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Figure 6.10: The overall average macro-F1 scores on the 20 Newsgroups Uncertainty dataset, 2
classes and best/random user features. The confidence intervals were computed over the average
macro-F1 scores used in the overall average.

Figure 6.11: The overall average macro-F1 scores on the 20 Newsgroups Uncertainty dataset, 3
classes and best/random user features. The confidence intervals were computed over the average
macro-F1 scores used in the overall average.
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Figure 6.12: The overall average macro-F1 scores on the 20 Newsgroups Uncertainty dataset, 4
classes and best/random user features. The confidence intervals were computed over the average
macro-F1 scores used in the overall average.

Figure 6.13: The overall average macro-F1 scores on the 20 Newsgroups Uncertainty dataset, 5
classes and best/random user features. The confidence intervals were computed over the average
macro-F1 scores used in the overall average.
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Figure 6.14: The overall average macro-F1 scores on the Modapte Uncertainty dataset, 2
classes and best/random user features. The confidence intervals were computed over the average
macro-F1 scores used in the overall average.

Figure 6.15: The overall average macro-F1 scores on the Modapte Uncertainty dataset, 3
classes and best/random user features. The confidence intervals were computed over the average
macro-F1 scores used in the overall average.
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Figure 6.16: The overall average macro-F1 scores on the Modapte Uncertainty dataset, 4
classes and best/random user features. The confidence intervals were computed over the average
macro-F1 scores used in the overall average.

Figure 6.17: The overall average macro-F1 scores on the Modapte Uncertainty dataset, 5
classes and best/random user features. The confidence intervals were computed over the average
macro-F1 scores used in the overall average.
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6.3.3 Both Datasets

Looking over the results from all of the tests, we note that both baseline classifiers

perform better on the Balanced/Random dataset than the Uncertainty dataset,

and in almost all cases this difference is significant. We also note that method 2

appears to perform better when using uncertainty sampling. In contrast, method 1

appears to benefit from a lack of uncertainty sampling in all cases except for tests

using only two classes.

Method 2 showed significant improvements when tested using uncertainty sam-

pling, and the performance of LWLR with FCM remained extremely stable across

both datasets when using the top user features. On the 20 Newsgroups datasets,

FCM showed no significant difference in performance between the Balanced/Random

tests and their corresponding Uncertainty tests in all cases except for one. On the

Modapte datasets, it showed no significant difference in half of the tests. On

average, the difference of the average macro-F1 score between the Modapte Bal-

anced/Random and the Modapte Uncertainty tests using LWLR with FCM was

less than .017.

6.3.4 Sensitivity to the Initial Training Data

The change in the training data had a significant effect on every feature relevance

method. Out of all the methods, our FCM method appears to be the most robust

to the initial training data, having no significant difference in performance and

variance between the two different sampling methods in most cases. In contrast,
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all other methods showed significant differences in performance between the two

sampling methods, and this was particularly true for method two, whose change

in performance when switching from using the Balanced/Random dataset to the

Uncertainty dataset was very large.

6.3.4.1 Effects of Uncertainty Sampling

A quick look at the results of the Balanced/Random tests versus the Uncertainty

tests shows a huge difference in the performance of the methods we tested. As we

noted earlier, the performance of the baseline SVM was almost always significantly

better when run on the Balanced/Random datasets as opposed to the Uncertainty

datasets.

Raghavan & Allan use an uncertainty sampling method very similar to that

used in previous studies [13, 1, 11]. Tong & Koller used uncertainty sampling in

a 1-vs-All setup on both the Reuters 21578 and 20 Newsgroups corpora. They

found the performance of uncertainty sampling can be variable and performed

quite poorly on occasion [13]. Despite its poor performance, it was still able

to perform reasonably well with fewer training instances than SVMs trained by

random sampling, even balanced random sampling. Tong & Koller noted that

uncertainty sampling tended to produce training sets where roughly half of the

data points were for the positive class [13]. In contrast, random sampling on

corpora with a large number of classes, such as 20 Newsgroups or Reuters 21578,

in a 1-vs-All setting is unlikely to produce a similar number of positive training
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examples without sampling a much larger number of instances. This is clearly

seen in Tong & Koller’s results, where their Random-Balanced sampling produced

significantly better performance than random sampling.

Previous work has shown that uncertainty sampling usually performs signifi-

cantly better in binary classification problems with fewer training instances than

random sampling [13, 1, 11]. For both of our datasets, the baseline SVMs trained

using uncertainty sampling performed significantly worse than SVMs trained using

Balanced/Random sampling when the number of classes was greater than two. De-

spite the performance of the baselines being lower, uncertainty sampling did result

in method 2 frequently producing the absolute highest average macro-F1 score in

most tests on both datasets. In contrast, it typically degraded the performance

of method 1. This suggests that uncertainty sampling may not be beneficial to

classifiers in a multi-class setting, but can favorably affect certain types of feature

relevance feedback methods.

A brief analysis of the average feature values for the best user features per

dataset shows relatively little difference between the Balanced/Random data and

the Uncertainty data. For the 20 Newsgroups data, the Balanced/Random train-

ing data typically contained feature values that were slightly higher on average

than those in the Uncertainty training data. Using the Modpate data, both the

Balanced/Random and Uncertainty training data typically had nearly the same

average feature values for the best user features.

Looking at the average sum of the information gain for the user features in

each instance in the datasets reveals that the Uncertainty dataset typically con-
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tained instances that had a higher sum of information gain than compared to

the Balanced/Random dataset. Often the average sum of the information in the

Uncertainty dataset was two or more times greater than the Balanced/Random

dataset. This suggests that uncertainty sampling tends to select instances that

emphasize features that are more useful in discriminating between classes.

6.3.5 Sensitivity to the Quality of User Features

In the multi-class experiment, we see that the quality of features had a signifi-

cant effect on the performance of the feature relevance methods. The use of top

user features produced an increase in performance, and adding more top features

continued to increase performance. In contrast, random features produced lower,

but relatively stable, performance across all classifiers, regardless of the number of

features included per class.

6.4 Conclusion

Our multi-class experiment extends Raghavan & Allan’s original work and elimi-

nates many of the issues that were present in the 1-vs-All experiment setup, which

allowed us to more accurately evaluate not only the performance of the feature

relevance methods we test, but also answer questions regarding the effect of the

initial training data and feature quality. We demonstrated that different sampling

methods can significantly affect the performance of feature relevance methods. In
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addition, we found that feature quality has a large effect on the performance of

feature relevance methods. Finally, we demonstrated that FCM often outperforms

Raghavan & Allan’s methods while being more robust to the initial training data.
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Chapter 7 – Feature Relevance on User Study Data: Autocoder

Experiment

7.1 Introduction

In Section 6.3.5 we noted that the feature relevance methods appeared to be

sensitive to the quality of the user features. Using an oracle allowed us to select

only high-quality features, which tested the performance of the feature relevance

methods in an ideal setting. In order to evaluate the performance of the classifiers

on more realistic data, we constructed an experiment that utilized user feedback

from our earlier Autocoder experiment [8].

The Autocoder experiment presented users with the task of coding transcripts,

a familiar exercise in the fields of psychology, social science, and HCI. With an

application to aid them, users were given two transcripts to code, which consisted

of verbal statements from participants in the experiment broken into segments.

They were allowed to add features, remove features, and assign labels to segments.

While performing this task, the application provided feedback and suggested labels

to the user based on the feedback they had given so far. Users were given the ability

to perform feature engineering, meaning that they could introduce new features

that consisted of n-grams or complex regular expressions. These new features were

incorporated into the feature relevance framework by adding them to the datasets
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as features and indicating that they were relevant to a particular class.

The Autocoder dataset is particularly challenging as a machine learning prob-

lem. No gold standard for the data exists, which means that performance is eval-

uated based on what the users decided was the correct code for each segment.

If users were inconsistent, that meant that the distribution of the data was not

consistent. Additionally, coding is very time intensive, meaning that large training

sets are not available. Since the Autocoder experiment was based around verbal

transcripts, the data is also sequential, and the users were allowed to engineer

features that spanned adjacent segments of the transcript. Finally, users were

also able to introduce class imbalance through their labeling of segments in the

transcripts.

7.2 Experiment

We constructed two sets of training and testing data. The first consisted of the

autocoder data without any sequential information. In the original study, users

were given a segment, but had access to the previous segment for creating features

that spanned multiple segments. Using a recurrent sliding window, the classifier

was given access to each instance and its predecessor. We create a non-sequential

version of the data in order to perform validation to tune our parameters. We call

this first dataset the Non-Sequential Autocoder (NSAC) set. The second dataset

used a recurrent sliding window to re-create the same data that was given to the

classifier in the study. We call this data set the Sequential Autocoder (SAC) set.
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Each dataset consisted of two transcripts per user. The first transcript was

used as the training set, and its associated features the user features. The second

transcript was used as the test set. Using the NSAC set, we created thirty random

splits of half of the training data to use as validation sets. Using these validation

sets, we tuned our classifiers’ parameters. These parameters, shown in Table 7.1,

were used for tests on both the NSAC and SAC datasets, as it was not possible to

sample good quality validation sets from the sequential data.

Table 7.1: Parameters obtained from the SAC validation sets.

Parameters
COSIM k2 = .001
FCM k2 = .001

Method 1 a = 15, b = 1
Method 2 r = 1

Using the training and testing sets, we computed the overall macro-F1 and

micro-F1 scores for each classifier, including a logistic regression classifier. Our

analysis focuses on the macro-F1 scores, but the micro-F1 scores are available in

Appendix A. All classifiers except the baseline classifiers, LWLR with COSIM and

the plain SVM, and logistic regression, were given the user features.

7.3 Results

Figure 7.1 shows the results of tests using the NSAC dataset. There is no signif-

icant difference in performance between the LWLR methods, which both perform
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significantly better than all SVM methods, as well as logistic regression. Using

the sequential data, shown in Figure 7.2, causes a decrease in the performance of

method 1, but all other classifiers remain relatively unchanged.

LWLR with COSIM performs slightly better than LWLR with FCM on both

datasets. In the Autocoder study, we noted that users sometimes added non-

predictive features that could reduce the performance of classifiers. Looking at

the individual results for the LWLR classifiers, we noted that they performed

identically except in a handful of cases where LWLR with FCM performed either

slightly better or slightly worse than LWLR with COSIM. It is possible that non-

predictive features added by certain users caused a decrease in the performance of

LWLR with FCM. This is consistent with our results from Section 6.3, where the

use of random feature sets caused LWLR with FCM to perform about the same as

LWLR with COSIM, though slightly lower.
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Figure 7.1: The overall average macro-F1 scores on the NSAC Autocoder dataset. The confi-
dence intervals were computed over the average macro-F1 scores used in the overall average.

Figure 7.2: The overall average macro-F1 scores on the SAC Autocoder dataset. The confidence
intervals were computed over the average macro-F1 scores used in the overall average.
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Chapter 8 – Conclusion

8.1 Introduction

At the beginning of this paper we asked three questions with respect to feature

relevance feedback that we considered to be unanswered by Raghavan & Allan’s

previous experiment. We introduced a new experiment in a multi-class setting

to help us answer these questions. In the following sections we summarize our

findings and discuss future work.

8.2 Answering our Research Questions

The first question we asked was “Does feature relevance work well out-

side of binary classification and, if so, how well does it scale with the

number of classes?” Using our new method, the Feature Contrast Method, we

demonstrated that feature relevance does work well in a multi-class setting. Addi-

tionally, our method appeared to scale well as the number of classes was increased

when compared to Raghavan & Allan’s methods.

The second question was “How does the quality of the initial labeled

training points affect performance?” We found that the initial training data

can have a large effect on the performance of feature relevance methods. Some

methods varied dramatically, while others, specifically FCM, maintained very sta-
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ble performance.

The final question we asked was “Does the quality of features given as

feedback affect the performance of feature relevance?” Our experiments

demonstrated that feature quality can have a dramatic effect on the performance of

feature relevance methods. The use of poor quality feedback significantly reduced

the performance of the tested feature relevance methods in all cases.

8.3 The Feature Contrast Method

Our method, the Feature Contrast Method, demonstrated consistently high per-

formance and responsiveness to feedback across different sampling methods. How-

ever, it suffers from several drawbacks. Training sets with few user features, many

low quality user features, or severe class imbalance can reduce its performance.

It is also sensitive to the kernel value chosen. We chose the kernel value using a

validation set, which may not be available in a more realistic setting.

8.4 Future Work

Showing that more realistic problems can be addressed by feature relevance

methods motivates further exploration of how these methods interact with users

when addressing real-world problems. In particular, our findings with respect to

the importance feature quality pave the way for future work addressing incorporat-

ing real user-feedback and methods for aiding users in providing quality features.
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Active learning addresses this by selecting features for users to label, but this

method may not be suitable in all cases. Alternative methods that are able to

identify and filter potentially poor feedback could aid users in providing consis-

tently high-quality feedback.

In addition to feature quality, our work has shown that incorporating feature

relevance feedback in a supervised setting can improve the performance of classifiers

significantly. This can be extended to semi-supervised methods where feature

relevance could be used to contribute to performance through the use of unlabeled

data. Previous work has often done this through the use of feature feedback to

soft-label unlabeled data to be used as additional training data. Further work in

this area could result in novel methods that use feature relevance more effectively

than for only soft-labeling.
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Appendix A – Micro-F1 Results

A.1 Multi-Class Tests

Table A.1: Overall average micro-F1 scores on the 20 Newsgroups dataset for the baseline
classifiers. The confidence intervals were computed over the average macro-F1 scores used in the
overall average.

Baseline Classifiers, Overall Average Micro-F1 Scores
on the 20 Newsgroup Dataset

# of Classes → 2 3
Classifier ↓
COSIM .7942 +/- .0189 .6789 +/- .0127
SVM .7888 +/- .0222 .6689 +/- .0188

4 5
COSIM .5786 +/- .0155 .4917 +/- 0.0135
SVM .5706 +/- .017 .4857 +/- .0141
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Table A.2: Overall average micro-F1 scores on the Modapte dataset for the baseline classifiers.
The confidence intervals were computed over the average macro-F1 scores used in the overall
average.

Baseline Classifiers, Overall Average Micro-F1 Scores
on the Modapte Dataset

# of Classes → 2 3
Classifier ↓
COSIM .8535 +/- .0203 .7261 +/- .0172
SVM .8725 +/- .0145 .7246 +/- .0165

4 5
COSIM .6986 +/- .0152 .6571 +/- .018
SVM .6909 +/- .0153 .6546 +/- .0167
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A.2 Autocoder Tests

Table A.19: Overall average micro-F1 scores on the Autocoder dataset. The confidence intervals
were computed over the average macro-F1 scores used in the overall average.

Overall Average Micro-F1 Scores on Autocoder Dataset
Non-Sequential Sequential

Logistic Regression .36 +/- .0224 .36 +/- .0224
COSIM .3242 +/- .0281 .324 +/- .0281
FCM .3379 +/- .0276 .3362 +/- .0268
SVM .3614 +/- .0208 .3387 +/- .0197

Method 1 .3969 +/- .0226 .3405 +/- .0216
Method 2 .3663 +/- .0202 .3506 +/- .0224




