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A NONLINEAR FREE BOUNDARY VALUE PROBLEM

I. INTRODUCTION AND STATEMENT OF THE PROBLEM

1.1. Introduction.

In many applications one is frequently faced with the problem of

determining both the domain where the problem is to be solved as well

as the solution. Such problems are referred as free boundary value

problems. A particularly important problem of this type deals with

the determination of the water level underground and is the subject

of this dissertation.

The one dimensional form of this problem is obtained by thinking

of the soil as a large slab which consists of a homogeneous porous

medium. Our problem is to describe the pressure at a given time and

to determine the depth to which the fluid has penetrated.

The treatment is complicated by the fact that the governing

equation of the problem that we will derive below is in general non-

linear. It is a function of the pressure and describes the water

content in the soil at a given pressure. This function, the so-

called retention function, is of great interest and has been in-

tensively studied in soil science. Although considerable effort

has been spent to obtain theoretical curves, they are at present

mainly empirical.

Two of the most common expressions for the retention function

are considered in this dissertation. The first one deals with the

linear case where the retention depends linearly on the pressure and
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the second case where the dependence is quadratic for positive pres-

sures.

The governing equations for the physical situation outlined

above are derived in section 1.2 and initial and boundary conditions

are described. A complete statement of the problem for the general

case is given in section 1.4.

The second chapter deals with the case of a linear retention

function. Existence and uniqueness theorems are proved in section

2.1 by use of the variational formulation of the problem. In section

2.2 the error analysis is discussed and an error estimate is derived

based on the assumption that the solution is sufficiently smooth. In

section 2.4 a numerical method using finite elements is described.

In section 3.1 of the third chapter, a finite element method is

used to find a numerical solution of the problem for a quadratic

retention function and in section 3.2 a numerical algorithm for the

approximation of both linear and quadratic is given.

1.2. Mathematical Model.

We shall consider a homogeneous porous medium which is assumed

to consist of a large slab so that physical properties can be de-

termined by the single variable y, (see Fig. 1) and which is assumed

to be saturated with water to a certain depth. Here we shall assume

throughout that the process can be considered one dimensional even

though the real problem is three dimensional. As time progresses the

liquid will flow toward areas of lower pressure; in this case the

water will flow downward. The flow will continue as long as a



Fig. 1. The physical situation.
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sufficiently high saturation is maintained. The level of the fluid

in the ground is determined by the function ) at time T known as

the "free boundary".
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To derive the mathematical equations, let y denote the spatial

coordinate above some fixed reference level. We take the positive

direction upward. Let U(y,T) be the pressure of the fluid depending

on y and T9 and g the acceleration due to gravity. Under conditions

of slow flow, the flow is governed by Darcy's law

DUV = -k Ty- + pg )

where p denote the density of the fluid, k the permeability coeffi-

cient, and v the seepage velocity of the fluid. The law governing

the conservation of mass is given by

(p(6)+ 3" = 0at Dy

the so-called continuity equation. GI) and S denote, respectively,

the porosity and the saturation of the medium, both of which are

functions of the pressure and satisfy the inequalitites

0 < < 1 and 0 < S < 1 .

A precise definition of these terms as well as detailed physical

discussion is given in [11] and [13].

Combining Darcy's law and the conservation of mass equation

we obtain

T ay

k aU =0

Without loss of generality for the developments in the sequel,

the constants k, g and p will be set to be equal to one. Thus,
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the governing equation for the pressure becomes

aR(U) _ a2U

at
93/2

where R(U) = (pS. This is a nonlinear, differential equation in U

of parabolic type. The product epS is known as the retention function.

In order to derive the boundary conditions, let us assume that

the top and the bottom of the soil are located respectively at y=1

and y=0. The motion of the free boundary is denoted by function

i(t) at time T with -s-(0) =1. At the fixed boundary y=0 the flux

is given by U(OT)= -1. Along the free boundary y=-(-c) the pres-

sure is assumed to be zero: U(T(T),T) =0. The motion of the free

boundary is governed by the differential equation

dS = -lly(s(T),T) -1

Finally the initial pressure at time T =0 is given by U(y,0) =g(y)

where g(y) is a positive decreasing function in 0 < y < 1 satisfying

g'(0) = -1 g(1) = 0

and

gi(y) < 0 y < 1

1.3. Literature Review.

There is an extensive literature on free boundary value problems

dealing both with the theoretical and the numerical aspects. This

literature has been rapidly expanding since the introduction of the

concept of variational formulations which usually lead in the end to
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the use of finite element approximations. See [6]. Because of this

large literature, we will discuss here only the papers related di-

rectly to our work.

The method developed in the present dissertation is based on

the technique introduced by Nitsche [17] for the one phase Stefan

problem. First the original free boundary problem is reduced to

one with a fixed boundary by use of Landau transformation. In most

cases the resulting equation is then nonlinear. In [17] the original

Stefan problem splits into a nonlinear parabolic initial boundary

value problem for a fixed domain and two ordinary differential equa-

tions. We shall follow a similar procedure and first transform our

free boundary value problem to a problem with fixed domain. In

contrast to [17], the equations in our transformed problem will be

coupled which complicates the analysis substantially. After carrying

out this reduction, we then derive a variational formulation of the

problem.

In [12] Gastaldi follows [17] to study the numerical approxi-

mation of a free boundary value problem in one space dimension

arising in the filtration of a compressible fluid through porous

medium. The study of our error estimate of the solution is based

on Gastaldi's paper since she also ends up with coupled differential

equations in the transformed problem.

In both papers [17] and [12], the problems deal only with the

particular case when the retention function is linear and the treat-

ment is very theoretical. The physical significance of the retention

function is not discussed. Dr. Lenhard [14] in his Ph.D. disserta-

tion, 0.S.U., has made an in-depth of study of retention functions



for different liquids on unconsolidated porous media. Liquid re-

tention functions obtained on samples containing different liquids

are compared. Two resulting forms of the retention function are

studied in our dissertation, a linear and quadratic type which

are supposed to be the most common ones in applications.

We shall refer to Friedman [ 9] for results concerning general

theory of parabolic equations. For the relationship existing be-

tween free boundary value problem and variational inequalities,

see Magenes [15]. Existence and uniqueness theorems are proved for

classical models and the question about the regularity of the free

boundary is also discussed. For the weak solutions of parabolic

variational inequalities see Brezis [ 5]. For the detailed proofs

of existence and uniqueness theorems, we refer to the papers [3],

[ 4], [ 6].

1.4. Statement of the Problem.

Following the plan described in section 1.2 the problem we want

to solve now reads in one space dimension.

Problem 1. Given To > 0 and g(y) which satisfies

g(y) > 0 , g' (y) < -1 for 0 < y < 1

and

g'(0) g(1) = 0

Find the pair {U(y,T) , -(T)1 such that

i(T) > 0 0 < T s(0) = 1 (1.1)

7



aR(U)
U (y,T) =

37.
in c = {(y,T)10<T <T0 , 0 < y <

YY

(0,T) = -1 ,O<T< T
0

, 0 < T < T

U(y,°) = g(Y) , 0 < y < 1

and in addition

dS /77 X X

d '

m
v'vTi,T) = -1 , 0 < T < T

T y

where

R(U) is the retention function which depends on the pressure U.

-i-(T) is the free boundary.

g(y) is the initial pressure.

1.5. Variational Formulation.

A. Transformed Problem.

In order to reduce the problem to one with fixed boundaries,

we introduce the new space variable

(T(T),T) =

while the new time variable t= t(T) will be defined as the unique

solution to the ordianry differential equation

(1.6)



dt 1

with t(0) = 0
dT T2(T)

Let us consider first the case when R(U) is linear, i.e. let

R(U) = U be given. The governing equation of Problem 1 takes the

form

U y,T) = U(y,T) (1.7)
YY

setting now

u(x,t) = U(y,T) + y - -S-(T)
(1.8)

S(T) = S(t)

and using the new variables, one obtains

U =u - 1
y x ay

But

Thus

U =u -1
y s x

differentiating one more time with respect to y, we get

U(YT) = u
(x'

t)
YY s2

xx

9

(1.9)

Taking the partial derivative of U(y,T) with respect to T in equa-

tion (1.8), we obtain



Further,

U
u 22c +u at ay. Ds Ds

T X 3T t 3T j3t 3T

s(t)

= -U (-(T),T) -1 = u (1,t)-1) -1x('t)-Fr y s x

substituting these results into (1.10) leads to

U = xu (1 ,t)ux(x ,t) + u (x,t) xu (x t) u (1,t)2t sx'sxT
SL

X

finally using (1.9) and (1.0) and making all necessary simplifications,

(1.7) takes the form

UXX
ut = xux(1,t)u(x,t) + sux(1,t)(x-1)

in

Q = {(x,t)I0 <x <1 , 0 <t<T}

where t=T is the corresponding value of T = To.

For the initial and boundary conditions, we have

i) setting t=0 in (1.8) and using (1.5), we get the initial

condition

U(y,0 = u(x,0) - x + 1 = g(x)

Hence

u(x,0) = g(x) + x - 1

10

(1.10)



ii) we have

set y=0 to get

Thus,

U(YT) = u uc,t - 1
s x

1u(o) =
ux

(0,t) - 1 = -1
s

ux(0,t) = 0

Set y---s-(T) in (1.8) to get

U(i(T),T) = u(1,t) - + -s-(T)

=0

Hence the boundary condition at x=1 is

u(1,t) = 0

For the equation (1.6), we have

ds dt ds (1
dT = dt dT dts21

= -(3s- ux(1,t) - 1) -1

Consequently,

ds
= -sux(1,t)

dt

11



The transformed problem now reads

Problem 2. Find the pair {u(x,t) , s(t)} such that

in

u ut = xu (1' t)u (x' t) + s(t)ux(1,0(x-1)
xx x x

Q = {(x,t)10<x< , 0 <t< T}

ux(0,t) = 0

u(1,t) =0 , 0< t < T

u(x,0) = g(x) + x - 1 , 0 < x < 1 (1.15)

dsd(it)
ux(1,t)s(t) , s(0) = 1 , 0 <t_<1- , s(t) > 0 (1.16)

The analogous governing equation for the one phase Stephan problem

(see [ ]) is almost identical, but in the equation corresponding

to (1.12) the additional term s(t)ux(1,t)(x-1) is lacking. Such a

term makes (1.12) and (1.16) coupled, while the corresponding equa-

tions for the Stefan problem are uncoupled.

B. Weak Formulation.

To reach a weak formulation, we make another change of unknown

v =
ux.

Because of (1.14), u can be computed if v is known, which for

t fixed has to be in the space

.1
H = {w1 'Axil1(0,1) and w(0) = 0 }

Multiplication of (1.12) by wx with wx6;11 and integrating with re-

spect to x leads to

12

(1.12)

(1.13)

(1.14)



utwxdx = ux
Jo

(1,t) xu w dx
x x

+ sux(1,t) I-1)wxdx
o

by integrating the second terms of each side by part, we obtain

r1 r1 1

V w dx + vtwdx = v(1,t) I xvwxdx - sv(1,t) wdx
x x

Jo JoJo
The weak formulation of Problem 2 now reads

Problem 3. Find the pair fv(x,t) and s(t)} with

v(x,t) CO,TD -

such that

( ',w') + = v(1)(xv,w') - sv(1)(1,w) (1.17)

for all w e H1

= -v(1)s (1.18)

with the initial data

v(x,0) = 91(x) + 1 , 0 <x <1 (1.19)

s(0) = 1 (1.20)

Here and in the following v' and N./ denote, respectively, differentia-

tion with respect to x and t. The dependence on t is usually sup-

pressed and v(1) means v(1,t). The L2-product is denoted by (.,.)

13



for all x 6
Sh
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and the norm by

We now define a finite element method based upon the discussion

above.

C. Statement of the discretized problem.

Following a procedure introduced by Ritz and Galerkin we con-

struct a finite element solution to our boundary value problem. In

this method a solution of the variational problem is sought in a

finite dimensional subspace of H1, called the finite element space

and denoted here by Sh. We define Sh as follows.

Let
Eh

be a subdivision of the interval [0,1] into N =1/h equal

parts of length h. Sh is the space of continuous functions which

are piecewise polynomials of degree less than an integer r. We

define Sh as

Sh = { vh I Vh 6 Sh and vh(0) = 0 }

so that

Sh

The discretized problem now reads.

Problem 4. Find {vh(x,t) , sh(t)1 with

vh(x,t) : [0,T] %Sh

such that

(th,x) + (v'h,x') = vh(1)(xvh,x1) - shvh(1)(1,x) (1.21)
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h = -vh(1)sh (1.22)

with the initial conditions

vh(x,0) = Phg1(x) + 1 , 0 <x < 1 (1.23)

5h(0) = 1 (1.24)

where
Ph

is an appropriate projection in the space which will be

defined later.



II. SOLUTION FOR LINEAR RETENTION FUNCTION

2.1. Existence and uniqueness theorems.

In this chapter, we will be considering only the regular case

of the problem. This means that we assume that the solution of the

discretized problem is very smooth. Therefore the error estimate

of the solution is optimal with respect to the order of powers of h.

Since Sh is finite dimensional, the solution for the problem

exists then in a certain interval (0,17) where may depend only on

the interval of data.

In order to write the existence theorem, we need to define the

concept of local solution.

Definition 2.1. Problem 4 has a local solution if there exists a

T depending on the data, i.e. g and v, such that the approximation

vh
is valid for t in (0,70.

We now prove

Theorem 1. Problem 4 has a local solution.

Proof. In (1.21) set x = vh to get

(h,vh) + (vh,vh) = vh(1)(xvh,vh)-shvh(1)(1,vh) (2.1)

The first two terms can be written in the form

1 d 11 2,
,v ) = v d x = 1 11 d v2 dx ux

h

r1

Jo h h dt h dt
o "

(h'vh) = cfit vh 2

16

(2.2)



f' vih2dx = livl 12
Jo

We estimate the remaining terms as follows

1

vh(1)(xvh,vp = xvhvhdx Ivh(1)1 Ilvh11HvH
Jo

Because v (0) = 0, we have

1

vn2(1)
= 2 Jo vh vhldx

= 2(vh ,v')
h

using the Schwarz's inequality we obtain

vt21(1) < 211vh11

17

(2.3)

(2.4)

(2.5)

(xvh,v) 11\1,111I M (2.6)

From (2.1), (2.2) and (2.3) it follows

1 dfailivh112 + livi,1112 = vh(1)(xvh,v0 - shvh(1)(1,vh)

The estimates (2.4) to (2.6) yield the inequality

klvh112 + 2111/1'111 < 2/211vh113121ivni1312- 2s vh(1)(1)vh (2.7)

The term 2shvh(1)(1,vh) can be dropped out of the inequality if we

can show that shvh(1)(1,vh) is always positive. In other words we

need to show that
vh

is negative in Q since s(t) > 0, 0 < t < T.



We have the following Proposition.

Proposition 1. If {Ts-(T). u(y,T) is a solution of Problem I

(assumed to be very smooth), then

i) ux(x,t) < 0.

Thus by Proposition 1, (2.7) takes the form

-d-t-J1vh112
2

2111./1'111 < 2/211v
3/2

3/2illiIlvhil

Because of the Young's inequality

1 1 q
ab<-p-a + c-T b

1 1

where a, b> 0 and + = 1 , we have
P

2/2-11vh113/211q11312 211n1,112 + c1lIvh116

4
here we took p = and q = 4. cl is a constant chosen such that

(2.9) holds. With this choice of the constant
cl'

by combining

(2.8) and (2.9), the term 211q112 drops out. Therefore

-ckilvh112 cilivh116

solve to obtain

11Phg' +1112
iv h'

which holds for t
T1

where

cli IPhg, +1 i 1401/2

18

(2.8)

(2.9)
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1

111130. lit'
The operator Ph to be used will be bounded uniformly

11Phg'll < c2(g)

-1
Then vh exists uniformly in h for t < (c1c2(g)) . To complete

the proof of Theorem 1, we need to prove now Proposition 1.

Proof of Proposition 1.

i) Let V = U in Problem 1.

Differentiating (1.7) and (1.5) with respect to y we obtain

V = V in Q
YY T

V(09T) = -1 9 0 < r < To

V(y,0) = 9.(Y) 9 0 <y < 1_ _

V((t)9T) 9 < T
< To

We can apply the maximum principle (see [ 9]): V must take its

maximum on the parabolic boundary of Q, i.e.

ao - t(y,T) ; = To

But the maximum of V cannot be greater than -1. In fact,

V(y,0) = gi(y) < -1

Vci-(T)9T) = -1 - < -1 0 < T < T
dt ' o



Thus

V(O,r) = -1 , 0 < T < To

V(y,r) < -1

Because

V(y,r) =u -1
s x

Consequently

ux(x,t) = v(x,t) < 0

Theorem 2. For any K > 0 fixed, there is at most one solution vh

of problem 4, with

h(x,t)EB= wweLco(0,1), liwilL. < KI

almost everywhere in t E (09T).

Proof. Suppose there exist two pairs of solutions

(1)

''h 9

(1)

sh } and {v(2)-(2)
h 'h

Let

w(x,t)
411) 412)

, with w(x,0) = 0

f(t) s(1) s(2)

'

with f(0) = 0
h h

substitute both solutions into (1.21) and subtract the resulting

equations to get

(W,x) + (w' ,x') = vh(1)(x4.11),x1) - si(11)411)(1)(1,x)

- 4,2)(1)(x4,2),x.) 4,2)4,2)(1)(1,x)

20



In order to group terms together we add and subtract to the left-

hand side of the last equation the terms

v(2)(1)(xv(1'
) x') and s(1)v(2)(1)(1,x)

h h h h

to get

wi,x.). w(1)(x41'),0+ 4,2)(1)(xw,x1)

- 411)w(1)(1,x) - 412)(1)f(t)(1,x)

In (2.10) the choice x = w gives

(W,w) + (wl,w')= w(1)(x411),W) + 412)(1)(xw,w1)

- 41)w(1)(1 ,w) - 412)(1)f(t)(1,w)

Because
vh

6 B, we have the estimates

21

(2.10)

(2.11)

w(1)(
411),w.) K Iwo) I I lw' I I

v(1)(xw,w') < Kliwil

Further since < K, from (1.22) we have

sh
= exp -

rt

v(1,z)dz < eTiivii
= cl

i.e. that
sh

is bounded. This implies that

st(,1)w(1)(1,w) <c lw(1)1 IIwH



where

2)(1)f(t)(1,w) < Klf(01 Ilwii

where

c, = sup_ 1411)1

' tc(o,t)

Using (2.11) and the above estimates we obtain

=ifadl II 112 + 1114'112 . .1<11w(1)1 +K II 11

+ K11w(1)1 11w11 + K1If(t)1 11w11

where

K1 = max(ci,K)

To get an estimate on f(t) note that f(t) = 411) - 412) solves

= ( + 411)(i)sh(2)

h h
411)(1)412)

or equivalently solves

(2)f + v(1)(1)f = - s2 w(1) with f(0) = 0

solving the differential equation we obtain

f(t) = -e-a(t) ft ea(z)412)(z)w(1,z)dz

22

(2.12)



a(z) v(1)(1,t)dt
Jo h

Since
vh

and s are bounded it follows

f(t) < K(f)lw(1)1 (2.13)

Consequently from (2.5), (2.12) and (2.13) we have

1>T,E-11 112 ylw113'211w112

+ irgs K

where

which leads to

and consequently to

11

113/211w,111/2
+ KiK(7011

3/2 1/2
1411 11W11

K5 = K2 + K3 + K4

w(x,t) E 0

23

Applying the Young's inequality we obtain

L* 1114112 + Ilwi112 11w1112 + K21 1'01112 +-1 11 12

K311w112 -1-s K411C2

For appropriately chosen constants K2, K3 and K4. Hence we have

1 d 2
K511w112 with w(x,0) 0



and

G(t) = s(t) - sh(t)

subtracting (1.17) and 2.18) from (1.21) and (1.22), we get

(e,x) + (el,x1) = v(1)(xv,x1) - sv(1)(1,x)

- vh(1)(svh3x') + shvh(1)(1,x)

and

a = -v(1)s + vh(l)sh

f(t) E 0

This completes the proof.

2.2 Error estimate.

We shall study the error of both v-vh
and s-sh in the

Loo - norm. Let

e(x,t) = v(x,t) - vh(x,t) (2.14)

24

(2.15)

(2.16)

(2.17)

By adding first the term vh(1)(xv,x1)+svh(1)(1,x) in both sides of

(2.16) and then replacing vh(1) by v(1) - e(1), one obtains,

(e,x) + (e',x1) = e(1)(xv,x') - se(1)(1,x) + v(1 ) (xe,x' )

- e(1)(xe,x') - av(1)(1,x) + ae(1)(1,x) (2.18)

for all x eih
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Similarly as in (2.18), by adding first the term vh(l)s in both

sides of (2.17) and then replacing vh by v(1) - e(1), one gets

(.1 + (v(1) - e(1))g = -se(1) with g(0) = 0 (2.19)

Note that (2.18) and 2.19) are still coupled. In order to eliminate

a from (2.18) we solve the linear equation (2.19) to obtain

a . s(1 - exp[ f e(1,z)dz]) (2.20)

* *

We now introduce the bilinear form b on H1 x H1 defined by

b(c,n) = (Col') - v(1)(xc,111) - (1)(xv,111) + s(1)(1,n) (2.21)

for all c, n H

We prove the following lemma.

Lemma 1. The bilinear form b(0-1) satisfies

There exists M such that

<MIII1111111 , for all n 6 }V

There exist m, A such that

13(,C) >m 1112 -A 11012 for all 61.1

where M, m, A are positive constants depending only on

IlvilL.(L) and ostupa_ is(t)I .

Remark: Part (i) on the lemma simply states that b is a bounded

bilinear form and that part (ii) is coercive.



Proof. We have

1c(1)12 = 2
1

1(x)(x)dx < 211C11IkH (2.22)

and

c(x) = c' (z)dz , for all c 1:11

The last equation implies that

1 1

fkik:1z Widx <,2dz 1/2

Hence

11c1 I Ile I I

Using the estimate (2.22) and the fact that v and s are bounded,

we obtain

lb(01)1 _<_11c111 1111111

c211C'111/211C111/2111111 c311 'II 111111

where c
c2' c3

are positive constants.

*1
Now according to (2.23), we have for all c, nEH

110(c,n)1

+c2IIcIIIInhI+c3IcIIIIniI

Set 1 +
cl

+
c2

+ c3 = M to get (i).

26
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ii) To show the coercitivity, consider (2.21) and set n = to get

b() = 11012 - v(1)(xc,') - (1)(xv,c') + s(1)(1,c)

This implies that

b(C') 2 11012 - c41k11 1101 - c511C1111211013/2

1111/211c113/2
- II

where
c4' c5 and

c6
are constants.

According to Young's inequality, the last inequality yields

2
1 2 2 1 , 2 1 4 4 2

b(,C) 1W11 e411 11 - II - c56

where 6 is a positive real number appropriately chosen.

i .e.

3 12
- 110!

6

1 3 12 II 2 1

b(c,) > (T. - 4.7T) I 11 - kfe4 4-

to get (ii) we need to choose 6 such that

1 31
- -4- 747S6 '0

with the choice of 6, we set

>3

crild12 - 11012

4

-4- c/36 )1k112

64/3

27



and

1 3 1

4 T 4/3
6

1 2 1 4 43 4/3
+ --4- c56 + -2-1-. c6 = A

to get the result (ii).

Hence, from Lemma 1. we conclude that

b(c,n) = b(c,n) A(c,n) (2.24)

11* *
is coercive on H x H .

Now we can write (2.18) in the form

e,x) + b,(e,x) = (e,x) + ae(1)(1,x)

- v(1)a(1,x) - e(1)(xe,x1) (2.25)

for all xES .

Putting (2.20) into (2.25), one gets

(e,x) + b(e,x) = (e,x) - v(1)s(1-exp[ e(1,z)dz])(1,X)

- e(1)(xe,x1) + e(1)s(1-expq e(1,z)dz])(1,x) (2.26)

for all
xESh

Because of the last three terms, equation (2.26) is nonlinear. In

order to get an error estimate, we consider (2.26) with e(1,t)

replaced by the bounded and measurable function E(t) which we take

to be known. We take the bounded to be one in L norm. The idea is

28



to show that the map which associates e(1,t) to every E(t) is a

contraction in a ball of radius R small enough, so we can apply

contraction-mapping theorem and obtain that the finite element

solution
vh

remains in a neighborhood of v. Consequently, a bound

for the error e will be also obtained.

Inserting E(t) into the last two terms of (2.26), we get

(e,x) + b,(e,x) = A(e,x) v(1)s(1-expq e(1,z)dz])(1,x)

- E(t)(xe,x1) + e(1)s(1-exp[f E(z)dz])(1,x) (2.27)

for all x8h

Note that equation (2.27) is still nonlinear because of the term

v(1)s(1-expq e(1,z)dz])(1,x). So we cannot get the optimal

convergence rate for the L. - norm of e. To get around this dif-

ficulty we write e in the form

e(x,t) = (v(x,t) - Phv) - (vh(x,t) - Phv) = - (1) (2.28)

where
Phv

is an orthogonal projection of v onh and is the cor-

rection term in
Sh'

Replacing e by (2.28) in the nonlinear term of (2.27) gives

v(1)s(1-exp[ft e(1,z)dz] expq -(1)(1,z)dz])(1,x)

Now we define Phv as the solution of the Dirichlet problem

29



with

P v S such that

b,(v-Phv,x)= 0 , for all X E ih and x(1) = 0 (2.29)

1, Phv(1,t) =
v(1,t)

This implies that

6(1,t) = 0

almost everywhere in t.

Since b is coercive and continuous, we know from the Lax-

Milgram lemma that the above Dirichlet problem has a unique

solution. By substituting (2.28) into (2.27), we obtain

(;,x) + b,x) = A(4),x) + (,X) + b(e,x) - Ak,x)

rt

v(1)s(1-exg-1 (1)(1)dz])(1,x)
Jo

(2.30)

gl)s(1-expq E(z)dzj)(1,x)

E(xc,x') - E(x(p,x1)

for all x e
Sh

(1)(x,0) = 0

Thus 4) E Sh is the solution of a system of nonlinear ordinary dif-

ferential equations. From (2.28) we have the following result

30



where

11H-1 = sup' { (co) In e 1:11 and <1}

where

and

Now to find an estimate on 4), we write 4) in the form,

31

(2.33)

(2.24)

(p(x,t) = (00(x,t) + z(A, ) t E (0,1-) (2.35)

z(x,t) =

4)0 Eih with (1)0(1,t) = 0

Inserting (2.35) into (2.30) and setting X = cp, we obtain

11e111..(_2) 11611L.(L2) 11(1)111.(1.2) (2.31)

So in order to get an estimate on e, we need to find estmates on

e and (1).

The estimate on e is given by the following Lemma (see [17],

[ 7], [19]).
Lemma 2. Assume r > 3 and that the exact solution v of Problem 4

be sufficiently smooth. Then for any time t fixed

11611Hk 11 11Hk < chr-k , -1 < k < 1 (2.32)



Cp,c0 + b.,(0,0) = A(4),,1) + + b(e,z) - A(6,0)

+ v(1)s(1-exgf- 0(1)dz])(1,0)

(2.36)

- 0(1)s(1-exp4 E(z)dz])(14)

+
E(xe,(pl) - E(x0,1)

Let us first study the term b,(c,z). We have

b,(e,z) = (e1,z') - v(1)(xe,e) - e(1)(xv,e) + se(1)(1,z) +

Since c(1,t) = 0, b takes the form

b(c,z) = (61,z') - v(1)(kc,e) + A(c,z) (2.37)

Now let us find an estimate on each term of the right-hand side of

(2.37). We have

1 1

(c1,e) = e'(x,t)z'(x,t)dx = 0(1) c1(x,t)dx

= q5(1)[c(1,t) - e(0,0] = 0

By (2.28) and (2.29).

1

v(1)(xe,e) < Iv(1)1 1(ke,e)1 = iv(1)1 I ke(x,t)z1(x,t)dx1

!gin HCILIHVHL CL)

C. A(c,z) < Al(c,z)I

32



-Note that z(x,t)c H1 since z(0,t) = 0. It follows from (2.34) and

(2.35) that

Al(e,z)I LAlklL = Alle111q)(1)1

Similarly, we now find an estimate on each term of the right-hand

side of (2.36)

Because liEll < 1, we have the following two estimates

a5- E(x') < 1E1 Ilcd1 110P'11 11(011 114)111

ai6 Note that (1 - exp[f E(z)dz]) < c2

where c2
is constant. Thus

4)(1)s(1
J

-exp[t E(z)dz])(1,) < c2i(1)(1)i .

o

a7.
For the nonlinear term, we have

rt t*
1-exp[ q5(1)dz] = I cp(1)dz - (ft q)(1)dz)2exp[- cp(1)dz]

2

where t* is suitably chosen. We also have the relation

33



=E-e=c-v+ vh

since 69 V' vh are bounded, we conclude that

expt -
Pt

(1)(1)dz] <K = constant
Jo

Further, from (2.22)

14)(1)1 ifikp111/211,1)1111/2

This implies that

1

v(1)s(1-exg- I (1)(1)dz])(1,(1)) = v(1)s(f 4)(1)dz)(1,)

1
t2 t*

- -2--v(l)s(1 cb(1)dz) exp[
-Jo

(1)(1)dz](1,)

r
Ig

t rt
c uldz + c4114,11(j Ica(1)Idz

0 0

<72-c311(1)111/211qb'll1/21 Ikil 1/211(0,111/2dz

Jo

+ 2c411(p 111/211(p,i11/2(1tHid' 2 _11111 2dz),2
Jo

A ttf 1/211(0, I11/2dZ)2= u3 ca- k

+?-c4 (1tIl1/21W111 2dz)3
3 dt

where
c3

and
c4

are positive constants.
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We obtain from the above results

11(d12 + MI14'112 A114)112 11 11_111ePI

C511E11-114)(1)1 W611_111)(1)1 + Al le( 1_1114)111

dft u11/2114,4111 22 c3 dt
dz

(

+ 114) 11 114)'1 I + 1E1 11 II 11q511)

by applying (2.22) to (1), it follows

c511c11_11,1)(1)1 + 11E11_114,(')1 < /2-(c5 +A) I 1cl 1_
1111,111/2114),111/2

Similarly,

c214)(1)1 c2 114,113/2/14),1/1/2

Consequently the inequality (2.38) takes the form

cfit 11(P112 2m114)1112 2 A114)112 211 11_111411

+ 2/f(c5+A)11611..
ilifli1/211,i11/2

2 Alicii_opill
( 2 . 39 )

t

C3
(I ik111/2114),

111/2dt) c4
2 4 d ft

W
1/2

1/2dt)
3

dt - a-( (I

+ 2/2- c2114)113/211 1111/2 211W 21E1 11E11

ft

Jo
114)111/2114)1111/2dz)3 c214)(1)( 114)11

35
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Taking into account that yb(x,O) = 0, we integrate (2.39) over the

interval (0,t) to get

H112 + 2mf 11012dz < 2 Af 11W2dz + 2f 1111_11(01dz

2i! (c5 A ik111/2114)111 1/2dz
Jo

rt

2AI'WI_ 11(0111dz + /2- c 2.40)

J0 0

rtc (it ,,211112,_.3
3 ,j 14, GZ) 272- c211(P113/21W111/2dz

Jo

+ 2f114,11
+ 21 IEI

0 0

In order to apply Gronwall's Lemma, we now reduce the following terms

by use of Young's and Schwarz's inequalities

47.c2114)113/211(1)1111/2 1(1114)112 611(1)111

b2' 2114)11 114)111 114)112 +l1'112

21E1 11E11 114)111 .k21E1211c!12 6111)1112

211 11_1114)111_k311 11.2.1 + 61145'112

II implies that

2,/-2-cillEll_illqb111/21101)'111/2 <2/Tyle11_111(P'H

2
.. .k411611_1 ollgol 112

36
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b8

c3 t I 11(p.11 <k6 I 2 dz+612dz

4
rt

c41/21W111/2dz)3

c
lifliciz)1/2(ft1W ildz)1/2 3

Jt0 0

4 rt 3
-

c4(jolk' 2f-

o

114dIaz)3/2

Next an application of the Young's inequality yields

IwIldz)2 + c6(fo11(pliciz)6 ,
0

4
where we have chosen p = -7 and q = 4.

Applying the Schwarz inequality again, gives finally the estimates

t
rt rt

-s c4(f2'wit1/2)3 <k7 j -dz + 6 j 1W112dZ
0 0 0

Here k1,...,k7 and 6 are positive constants.

By introducing the estimates bl to b8 in (2.40), we obtain
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b6. 2 AllE11-111(P'11 k5116112 611(1)'112

b7.
c(ftlk112114)1111 2dz)2 < d (f lkildz)(ftdz)



2
11(15112+2mi. 1kb1112dz <2 A I + k9 11611...idz

o

6o'WI'2dz + k4
I 11E112-1 dz + f 11,1b1112dztt

k5 I 116112.1dz + 61
I

+
II

1q)112

dzJOJo

t

6
Jo
I2dZ + k7 11(plludz + 6 1W112W11 dz

Jo Jo

t

k flifli4 dz
+ 6 I 11.4)1112dz 11(p112dz

1

11(0111 dz + k IIEII21E12dt ( 16 14)11Idz
2

Jo

simplify to get

11,1)112 + 2m ft111)111dz < (2A + k6 +k1 + 1
o

rt t
2

+ k3 I 11Ell_idz + (k5 k4 ) j II
f

+ k9 11E112 lErdz9
ot9

(76 + 1) I 114)111'0:1z k 114)116dz

Since 6 is arbitrary, we now choose 6 such that

2m = 76 + 1

2m - 16 =
7

ft

J0111)112dz

38



with the choice of 6, the term 11(p1112dz drops out of the inequal-
Jo

ity. Hence we have

t

11(0112 <k8 I 114,112 dz + k3 I 11 1(.2 t1dz+ K9 Ilell,`idz

,t

+ k 11E111 Hell2dz + k7
" o

recalling that 114)11 is uniformly bounded, we then have the estimate

11(0116 _c114,112

It follows that

t
t 2 t

2

1141112

f

-- . kl0 j 'WI dz + k f 11 11_,dz + k 1161121dz
Jo oJo

+ k2IIEFIL 11E112dz

--o

where k10 = k8 + ck7

Now by applying Gronwall's Lemma, we finally get the estimate

114)(x,t)I I

12-2(0,1) 111 1112_2(0,T;H-1(0,1)) 11E1112_ (0,1-01-1(0,1))

11Elt(O,T)1161112.2(0,17; 0,1))/

where K is a constant.

Thus we have proven the following Lemma.

Lemma 3. Let E(t) be fixed, measurable with
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then

114)1IL.(L2) K 11 111_2(H-1) 11611L2(H-1)

+11E1IL.Ileill_2(L2)/

From (2.31) we have

IlellL.(L2) IWIL.(L2) 11E111-.(-2)

Further, using Lemma 2 and Lemma 3 we obtain

< K { hr+1 + hrl 1E1 1, + KhrL.

Because h < 1, this implies

II )

we have the inverse property

ilxil < ch-1/2
11x11L2

, for all X Eh

since qb 6 it follows that

ileilL(L) 11c1IL(L.) + ch-1/211WL.(L2)
CO

Khr + ch-1/2K fhr+1 + hr1 El 1
L.

{hr + 11E11 hr-1/2

II II
K

r
{2 + liEll }
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(2.43)



Consequently since eE H1(0,1), we have the bound on e(1,t) give by

{hr 11E11 hr-1/21
CO

This proves that the application which associates e(1,t) to every

E(t) is a contraction in

81

= { w(t) 1 IIwIIL(Ot) < 1

since the image e(1,t) is contained in B1 for h < ii-, with h suitably

small.

Thus using the contraction-mapping theorem, we have proven the

existence of a function E(t) with E(t) = e(1,t). Consequently, we

have proved the following theorem.

Theorem 3. Let T > 0 be chosen properly and assume that the solution

of Problem 4 is sufficiently smooth in Q = f(x,t)10 <x <1,

Then there exists exactly one finite element solution vh in the

neighborhood of v with

Ilv - v =
o(hr)

2.3. Error estimate for the original unknowns.

What we have found so far is an error estimate for v(x,t). We

need to go back to the solution of problem 1 to get the estimate

for the initial unknown U(y,T).

We have the inverse transformation introduced at the beginning,

1

uh(x,t) = -vt,(z,t)dz
x "

41
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which is the approximation of the solution of problem 2. Furthermore,

yh = sh(t)x

h = Th(t)

where s and
Th

are given by

dsh(t)

dT vh (1,0sh
(t)

sh
(0) = 1

'

(2.45)

dTh(t)
9

s(t)
'

T(0) = 0
dt h h

Finally, the approximation of U(y,T) is given by

Uh(yh,Th) = uh(x,t) + sh(t)(1-x)

Theorem 2 and (2.45) give the errors

sup_ Is(t) - sh(t)i = o(hr)
tE(0,t)

sup_ IT(t) - Th(01 = o(hr)

tE(0,t)

From (2.44) and (2.46) we have

U(y(x,t),T(0) - Uh(Yh(x,t),Th(t)) =

Ct

(v(z,t) vh(z,t))dz + (1-x)(s(t) - sh(t))
x,

Theorem 2, (2.44) and (2.47) imply that

iiti(y(x,t),T(t)) - Uh(yh(x,t),Th(t))IlL
(L ) =

o(hr)
co 00

(2.46)

2.47)



U(Y(x,t),T(t)) -
ax

Uh(yh(x,t),Th(t)IIL.R. = o(hr)

Thus we have the following corollary

Corollary 1. Under the assumptions of Theorem 4, for some positive

t the errors

sup_ s(t) - sh(t)
tE(o,t)

sup_ t(t) - Th(t)

tE(0,t)

sup_ sup {1U(y(x,t),T(t)) - Uh(y (x,t),Th(t)) I

tE(0,t) xE(0,1)

+I U(y(x,t),T(t)) - Uh(yh(x,t),T (t)) 1

are of order h .

2.4. Numerical results.

We now develop a numerical scheme for the case of a linear

retention function as follows:

The governing equation of the discretized problem is given by

hx) + (vIh,x1)
= vh(1)(xvh,x1) - s v (1)(1,x) (2.48)

for all XShE

with

= -v (1)sh , sh(0) = 1 (2.49)

43

Th

,2

Th(°) = °
(2.50)



using the backward difference

vinli-1(x) - 4(x)
../(x,t) -

where

v(x) = vh(x,nk)

To linearize (2.48), we evaluate the nonlinear terms at the previous

time steps.

We now rewrite (2.48) as follows:

r(vri,x) - (vrtl,x)]
n+1 n n 1

n )(xvn(vh,x ,xx) + s h hv (1)(1,x) = Vh(1 h,xx)

for all XCSh

where

n+1

44

We choose r = 4 which means that Sh is the space of continuous func-

tions which are polynomials of third degree. Let

h = 1/N , for a fixed integer N > 1.

k = TIM , for a fixed integer M > 1.

k stands here for the time increment and h the length of the sub-

intervals of [0,1]. We denote

tn = nk , n = 0,1,...,M

We discretize the time derivative at the fixed time t = t

(2.51)



n( k)
sh

=
sh

n

n+1 a n+1,

vh,x =X vh kXj
D

xX= X(X)
3X

Similarly using the backward difference for the time derivatives

h
and

:E.h
at the fixed time t = tn+1' we obtain according to (2.49)

and (2.50)

(sini+1 - sit11) = ql[v11111-1(1) + vrill(1) - kvin14-1(1)v1111(1)]

n+1 n) (n+1)2 (sn)2

Th Thi 2' h hi

Note that in the last two equations we used the approximations

li zr1(1) + q(1) - kvrivh(1) = Iv (1)4(1)]

and

s2 =1[ sn+1)2 + (sn)2]
h 2 h

For the initial values, we have

v(x) = gl(x)+1 , x = ih , i = 0,...,N

sh '

= 1
Toh

= 0

We now replace the discritized problem by the difference scheme:

n+1 n+1 n+1
Find {vh ,

sh ' Th
1 such that

45



n n+1
(vn+1,x) + k(vhxn+1,x ) + ksnvn (1)(1,x)

, x

= kvn(1)(xvn' x ) + (vn"x)
h x n

for all X E
Sh

sn+1 = shn [ 1 - (v1(1) + vhn(1) - kvhn+1(1)vhn(1))] 2.53)

n+1n kr( n+1 N2 nN2

th = Th 'sh 'shi

46

(2.52)

(2.54)

According to (2.52), (2.53) and (2.54), if the state on t = nk

is known, we can proceed to the time level t = (n+l)k to find first

n+1 n+1

vn
, then

sn
and finally Tn+1

The approximate solution vn+1 is obtained by the Ritz-Galerkin's

method defined as follows:

we choose, in the fpace Sh, a basis

where the yx)'s are defined by the cubic splines sketched in Fig. 2

with equally spaced knots at x = jh, j = 0,1,...,N and satisfying

the condition

tp.(0) = 0 , j = 0,1,...,N.

See [18] for more detail on spline functions.



Fig. 2. Cubic splines.

We shall assume now that the "finite element" approximation

vn+1 of vn+1 has the form

n+1
N

n+1
vh (x) = a. tp.(x) (2.55)

j=0

where the coefficeints
ao

an+1 are to be determined. Inserting
' N

n+1

(2.55) into (2.52) and setting X = yx), one obtains

N
( ) + k( cx + kslillvri(1)(1,tp1)

j=0 j=0 J

(2.56)

= kvri.11(1)(xv11)

Note that from (2.55), one can get
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n+ n+1 1 n+1 n+1vh1 ( ) = a tp CO = aN_/ + a N

j=0

By the linearity of the scalar product, (2.56) takes the form

N-2
n+, (1 4")d 1

j=0 0 1 x

1
k nn' '+ [

N-1 i N-1(4) + 141N-1 + s, )dx
- - 4 n

n+1

N
jo + 4Itpl + ksnlp.)dx ]

a iN iN hi

1 [k 041\1_1 n, n , n
+ aN)xvo + voj ax

10

i=

These equations represent a system (the so-called Ritz system) of

(N+1) linear equations for (N+1) unknowns an+1 an+1" of the type
o N

Aa=b

where A is (N+1)x(N+1) matrix and b is the known coefficient vector.

n+1
By solving the system Ac.= b, we get the values of vh at each

n+1 n+1
point (ih,(n+l)k) and at the same time we calculate sh and Th .

Having obtained the values of vh(x,t) in the points (ih,(n+l)k)

and the values of
sh

and
Th

at t = (n+l)k, we now integrate vh(x,t)

over the interval (x,1) to obtain uh(x,t). This can be done by using

an exact formula since vh is piecewise cubic.
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Finally the values of Uh(yh,Th) are obtained in the points

n+1 n+1
yh = ihsh = 011,...,N) and Th = Th using the relation

+ - ihsrlh(Yh,Th) = uh(ih,(n+l)k)

=

EXAMPLE 1.

U - U = 0 , 0 <y <-s-(T) , 0 <T <1.822
YY

U(0T) = -1 <T <1.822

1
U(y,0) = - 32- x3

2
- x+ 2 , 0<y <1

UM ),T = 0 9 0 <T <1.822

U (i(T),T) = 1 0 <T <1.822dr

= 1

with

h = .2 and k = At = .1

N = 5 and M = 10
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we have

U =-u -1
y s x

1
U
yy

s2
xx

aR(U) aR(U) at _ raR(u-sx) ax aR(u-sx) 1

aT Dt aT L ax at at
s2

Dx ax 9T

at 3T at
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III. NUMERICAL SOLUTION FOR QUADRATIC RETENTION FUNCTION

3.1. Finite element method.

In section 1.5 we reduced Problem 1 to one with a fixed boundary

for the case of a linear retention function. In this section we will

follow the same procedure as in section 1.5 for a quadratic retention

function, i.e. let

R(U) = U2 , U > 0 be given.

Let us consider the governing equation of Problem 1

U -
3R(U) (3.1)

YY

setting

[u(x,t) = U(y,T) + y
(3.2)

s(t) = i(T)

and using the transformation defined in section 1.4, we obtain with

the assumption that R(U) is continuously differentiable.

(3.3)

(3.4)



- 1
DT - aT

Uy

- x[ - u (1 ) + 1) - 1 = u (1' t)
s s x

s2
x

DX X

,--7-yus,(1,t)s2 xux(1,t)a, sA

A(U) 1 ,xu
'

1 t)R (u ) + R (u )]
at

s2
xl tl

where

= U SX

aR_ aR
R -ax 't at

Inserting (3.4) and (3.5) into (3.1), we get

= xu (1,t)Rx(u1)

using (3.2), we obtain for the initial and boundary condition

a. setting T = 0 in (3.2) gives

U(y,0) = u(x,0) - xs(0) = g(s(0))

i .e.

u(x,0) = g(x) x

b. Set y = 0 in (3.3) to get
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(3.5)

.e.

Thus



Thus

Then

u (0,t) - 1 =
s x

whence

ux(0,t) = 0

_
set y = s(T) in (3.2) to obtain

u(1,t) = u(T,T) + -s-

u(1,t) = s(t)

we have

d-s- = -U (T,T) - 1
dT

J

which can be written in the form

ds dt
=dt dT

since

- U - 1

=
and U(s,T) = ux(1,t) - 1

dt 1

dT
s2

ds
= - sux(1,t)

dt

The transformed problem now reads

Problem (TP). Find {u(x,t),s(t) 1 such that

uxx Rt(u1) =
xux(1,t)Rx(u/)

in Q = 1(x,t) 0 <x <1 , 0 <t <T1
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(3.6)



ux(0,t) = 0 , 0 <t <T

u(1,t) = s(t) , 0 <t<T

u(x,0) = g(x)+x , 0 <x <1

ds
- sux(1,t) , s(0) = 1 , 0 <t <T , s(t)> 0

dt

where

U1 = u - sx , R = 113- and Rt =X 3X 3t

To find a weak formulation of Problem (TP), we follow the same

steps as in section 1.4.

Let

v=u

For t fixed we define v in the space

.1
H = {w we H1(0,1) and w(0) = 0

Taking into account (3.8), we obtain the relation

1

u = -j vdx + s(t) (3.11)

Jx

11 1

I uw-fRt(u1)wxdx =fxux(1)Rx(u xdx
Jo

XX X
0 0
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(3.7)

(3.8)

-1
Let us choose an arbitrary function

wx
H , multiply equation (3.6) .

by this function, and integrate over (0,1) to obtain

(3.12)

carrying out the summation for the second term in the left-hand side



of (3.12), we obtain

Note that

3u1

at

and

Thus

which yields

I1

r1 1

v w dx + I R (u )wdx = v(1) I xR (u )w dxxx.ixt 1 x x

(vx,wx) + (Rxt(u1),w) = v(1)(xRx(u ),wx)

for all W E H

The weak formulation of Problem (TP) now reads

Problem (VP). Find {v(x,t),s(t) } such that

3R(111) 3u1

au 3t

1

Rxt(u1)wdx
1

3u ds

x=1

- X ---
D t dt

w(0) = 0

ds ds_ .
dt dt

0

x=1

1

1)wxdx = -
Rxt(u1)wdx
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Rt(u1)wxdx = Rt(u1)w
0

Rtx(u1)wdx



and
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(Vx'wx) (Rxt(u1)'w) = v(1)(xRx(u/),wx) (3.13)

.1
for all we H

with the initial conditions

v(x,0) = gi(x) + 1

s(0) = 1

3.2. Statement of the discritized problem.

Using Ritz-Galerkin's method and the same finite element

space introduced in section 1.4 with

Sh = {w 1W E Sh and w(0) = O}

The discritized problem for a quadratic retention function reads.

Problem (DP). Find {vh(x,t),sh(t) 1 such that

where

with the initial conditions

A1= -sv(1,t)
dt

(uhl),w) = vh(1)(xRx(uh,1),wx),

for all W E S

uh,/ = uh - shx

ds

dth
-

Shvh(1)

(3.14)

(3.15)

(3.16)

(3.17)



vh(x'o) = P' (x) + 1 , 0 x <

(3.18)

where
Ph

is an appropriate projection in the space Sh.

3.3. Numerical scheme.

As developed in Chapter II, the method of discretization in time

consists in the following:

Let in be the space of continuous functions which are polynomial

of third degree. Divide the interval [0,T] by the points

tn = nk , n = 0,...,M

into M subintervals of lengths

x n+1
The derivative Tt- in (3.16) is replaced, for t = th , n = 0,...,M

by the difference quotient

( h,l)
yurt111,11)

- yuir11,1)
(3.19)

where

un = uh1 (x,nk)
h,1 ,

Consequently, equation (3.16) takes the form

[(Rx(41,11),w) (Rx(41),w)] + (vZ;low ) = v/71(1)(xRx(41),wx)

i.e.
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(Rx(uVI),w)+k(vn+1,w )= kvn(1)(xR (un
h,x x h x h,1 '

uh,1),w) (3.20)

for all WE S

+1 n+1
similarly, sn and T are given by (2.53) and (2.54).

srl = sr111[1 _(v'(1) + ) - kvn4-1(1)vn(1)]

n+1n k n+1 2 n 2

Th = 'Ii(sh ) (sn) ]

using the basis {q). }N defined in section 2.4. Let us consider
j=0

the discritized problem and let us solve it approximately, assuming

it approximates solution vh in the form

n+1
vn+1(x) = I a. p.(x)

Jj=0 J

where the coefficient aoN are to be determined. In equation

(3.20) note that

R(un+1) 311n+1

R (un+1) -
h,1 h,1

x h,1 n+1 ax

DUh,1

It follows that (3.20) can be written in the form
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(3.21)

(3.22)

(3.23)



aR(un+1)
(

h1 [vn+1 - sn k(vn+1 'w
)

n+1 h h x x
3 Uh,i

aR(un )

= kvn(1)(x
n

Din -sn] w)
h h ' x

auh,1

aR(un ) aun
h,1 _JILL ,w1

aun
ax

h,1

for all w e S

where in the first term of the left-hand side of (3.24), we evaluated

sh
in the previous time steps in order to linearize the equation.

Putting (3.23) into (3.24) and setting w = vi(x), we get
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(3.24)

11

j=03 Jo

aRk
,

u /

n+1N

n+1
h,1

kipl(x)4" x
1( ) dxV (x)V.(x/

J

auh,1

n el aR(u2,1)

= kvi.:(1)1 )01(x) n" I (v11; - s)dx
Jo

auh,1

aR(un ) 1 aR(un+1

I

l,
(x)

h,1 evn en\Av
'hirif

h,1
n+.1 vi(x)dx

h

auh,1
0 auhl

n = 0,1,...,M and i =

n+1 n+1
Because of the term aR(un,1)/auh,1

'
(3.25) is a nonlinear equation.

In order to linearize (3.25), we will use a predictor-corrector

n+1 n+1 n+1 n+1
method to compute first aR(un,i)/aun,, and then with aR(un,i)/aun,./

(3.25)



This implies that

R(41) =

Further

n2
xsh

aR(un ) aun

R (unli)
h,1 h,1

x h,
aun

3x
h,1

fun sn)

"h,1' h'

= 2(4 - xsrhl)(u11,11,x - sg)
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known we will solve the linear system (3.25) for the unknowns

n+1 n+1 n+1
ao ,...,aN . The new uh,1 will be used again to predict the non-

n+1
linear term aR(uh1n+1)/auh,1

'

and the process continues until the
,

change in un+1 is sufficiently small.

We now describe the predictor - corrector method as follows:

In (3.6) replace Rt(ul,h) by the backward difference at t = (n+l)k

R(uri,) - R(util,h)

Rt(u1,h) -

and evaluate the rest of the terms of the equation at the previous

time step t = nk to get

R(u) = k(4- xu(1)R(40) + R(4,1) (3.26)

we have

R(u) = u2



let us denote the right-hand side of (3.26) by C which according

to (3.11) and (3.23), takes the form

N
1 n 4.n

C = k y a41(x) 4- 2 kx(-,4 aN-1 ' aNIj=0 J 3

N nil N

a4 *.(x)dx + shn(x - 1)]( a%.(X) - Sini) (3.27)

j=0 J X J j=0

N

+ [ I all'1 4).(X)dX 4(x-1)32
j=0 x

for n = 1,2,...,M

For n = 0 i.e. = 0, C is given by

C = kg(x) - 2xk(g1(1) + 1)-g(x)g'(x) + (g(x))2 (3.28)

Given C we can compute now the term

aR(41-1)

au
n+1

From (3.26) we have

1

R(uh,n+i) = C

or

i.e.
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(41)2 = C

4:1 = 1/C



Further,

n+1

DR(Un'l2 un+1
n+1 h,1

This implies that

911(utnill)

= 2/C- , n =
n+1

au
11,1

when C is given by (3.26) and (3.28).

By solving the system (3.25) we will obtain the values of

vn+1 at each point (ih,(n+1)k), = 0,1,...,N) and at the same

n+1 n+1
time we calculate

sh
and

Th
. Having obtained the values of

vh(x,t) in the points (ih,(n+l)k), Ci = 0,1,...,N) and the values

of sh and Th in the points (n+l)k, we use (3.11) to obtain uh(x,t).

Finally, the values of Uh(yh,Th) are obtained in the points

+1

yh
= ihsn+1

'

(i = 0,1,...,N) and
Th

= Tn using the relation.
h h

Uh(yh,Th) = uh(ih,(n+l)k) - ihsini+1

i = 0,1,...,N
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EXAMPLE 2

aU2
U - - 0 , 0 <y <i(T) , 0 <T<2.71

YY at

with

u(0) = -1

Igy,0)

T<2.71

1 2- - x + 2 , 0 <y <1

U(i-(T),T) = 0 , 0 <T <2.71

uY(
(-E) ,T

_-
s(0) = 1

h = .2 and k = At = .1,

N = 5 and M = 10

d-s-

=dT- 1 , <T <2.71
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fz.1

1 . 1 1 1 .2. 1,4

T

Fig. 3. Free boundary curve for example 1.



1

0 F,

0

.477

Fig: 4. Pressure when T = 0.0 for example 1.

Fig. 5. Pressure when T = 0.26 for example 1.

-
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. 4-

: 0.2 0.4 0.5'

.,

Fig. 6. Pressure when -u = 0.60 for example 1

3

3 cf.-, .5 1 1 .2

Fig. 7. Pressure when T = 0.98 for example 1.
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1 .

I . 5

I .

I . 3

. .4

0 E

C. 4-4

3

0

1 5

Fig. 8. Pressure when = 1.39 for example 1

1

o 1

Fig. 9. Pressure when T = 1.82 for example 1.
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Fig. 10.10. Free boundary curve for example 2.



a

-

3 - tag.

-4

0

Fig. 11. Pressure when c = 0.0 for example 2.

Fig. 12. Pressure when T = 0.34 for example 2.
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2

1 1 1

Fig. 13. Pressure when T = 0.88 for example 2.

0 E 2

2 1 .4- 1 .78

I

Fig. 14. Pressure when T = 1.49 for example 2.
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3 -1

0 .2
0 1

/

.2 0+

.1:42

-77.

Fig. 15. Pressure when T = 2.11 for example 2.

t

0.8

1 1 .2 . e, 1 9

I 4

Fig. 16. Pressure when T = 2.71 for example 2.
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