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ON BATEMA S METHOD FOR SOLVING LINEAR INTEGRAL EQUATIONS

N 1, itroftqti,oR. The integral equations which will be considered

here are those of ik.edhoIm type and second kind, that iso of the form

(1. x(s) fl et) (t) at )

where y(e) and K(sit) are given, and x(s) is be found.

pt is a bilinear fora of 2n fOnctions

)dt= 409

All functions considered in this paper are real.

)- Tli(t) it is well known that (1.1) is equivalent to an

ordinary system of n linear algebraic equations 18, 11).(2) In this

case the kernel is said to be of "finite rank" or "degenerate"

Ordinarily a kernel is not of finite rank but one may still hope to

take advantage of the reduction to a finite system by replacing gs,t)

by an approximation of finite rank. The essential idea of H. Batemanis

process, which will be described in N 2, ia to accomplish this system-

atically, the Orls and V's being determined directly from the kernel

(ett) itself in a very vimple vv.

When K is replaced by: oNV:

(2) Numbers in brackets refer to the list of references at the end of
the paper.

the original equation becomes



x(s). Shortly after Batemanis paper (3) appeared, F. Tricemi (12)

pdblished an error bound. His result was based on the determinants'

formulas of Fredholm (6) and was Obtained by the use of Hidemardls

inequality; but he did not assume that the kernel was of finite rank,

much leas of Bateman's variety. Consequently his error bound Wald

not be expected to be particularly good for methods of

here. In fact, although his bound has been

[Al and Kantorovich and Kryl (91, it does not appear elver

to have been applied (at least in print) to a numerical example.

Tricomils ideas epee to be acre appropriate to an iterative scheme for

determining the Fredholm resolvent for (1.1). An adaptation of his

results has been carried out recently by T. I. 01ahn [71.

A general bound for the error incurred when K(s,t) Is re-
placed by an approximate kernel of finite rank has been derived by

Loneeth [10 But this bound, although derived outside the framework

of Fredholm's formulas, is still not directed toward the Bateman

scheme.

In this paper the Bateman idea is analysed in detail for the

phyeica]ly important case in which K(s,t) is the Omen's !Unction

or the $elf,-adjoint eseand order linear differential operator

1(n) a (pol

hcizogeneons boundary conditions. An rror bound is derived

trim di*-

1. books

inequalities 8.1 (842)1 which is 0(6/1/ where

Now it is hoped that xe(s) is a tsly the true oclution



constants. Bateman proved [21 that the resolvent kernels call it

hn(sst), associated with An(ust) is given by the determinantal

equation

pitting five characteristic values Al A2 ft A

AU4 u(0) * u(1) Oa

of the error in the approximation to IC(sot) Ku

numerical example is described in i 9. Bateman

illustrated the process in the homage aus case y(s) a 0



(2.6)

and 1E640 satisfies 2.2). A/1 functions

the intervals (0 s < (0 1).

If the results above aro to be

integral equation, e.g.

sit)
and

the elan= s of 2.3

approximates

be defined that k(stt) is east tormined



Bateman shows how this may b. done in the second of two papers

th this topic EA. First set K s "O. Clearly k(s E 0.

fulfill requirement b) let

(2.7)

(2.11)

Where 8111 ea+ V

belonging to the int.

It is necessary to require that

W(e )

Particular 1r of

uation 2.3) becomes

definition



then

W(s

Similarly it may be shown that

share ciis the cofactor of W(sot) in W. When W(s,t) is
itself *dower* it is possible to prove the following lemma stated

by Bateman CO*

Itiams.I If W(g, ) im

(2.13) t) 1ETi=ljai

a network of lines in the (s,t)Therefore Bh(sA) equals

and consequently hn(sgt), *lob( 0plane over the regi

Can be obtained now fr 2.44 may be used to Obtain as approximate

solution

then (s st SA).
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Factoring the above determinant into the product of n+ order

determinants ye1da
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.(0)q(t)

.±4 era40**,.. (4)
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I MO tP...(-6)

Ze);: / AA; (4i) '
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approximation is. For this purpose one ordinarily uses some ain of
x(s), denoted by lx(s)II

II lal II I

The quadratic norm

)

(3a) 11

(3.4)

where

relate

need

max Ix( )1
o<s<1

number ch that: 11x110,
is any real number, Ilx +yil Ilx11 +11711.

this paper, that is,

The last norm ind.udea the first two WADO, if p = 2, then (3.3)
becomes (3.1) and if p then (3.3) becomes (34).

Using operator notation e may write (2.6) as

I 11)x Tx

s for the identity transformation. It is possible to

to fix11. shall assume x an element of a (real

vector space L, which is defined with these properties,
Z1 and xi n L, then is also, mbar*

and b are real;
every x in LI 1Jxj exists.

(3.3) (8)1 45)1/P
0

It is easily shown that all the properties above are eattefied by this
functional f x(s). Other possibilities would be



T is a linear cperatcri

It is additives T(x + x2)at Tx 4- Txr

ii) If 1(x11 is finite, then I 111 is also.
Ulan 11Niii) If 11%

Far this type of operator over L there exist 12,

numbers M(T) and m(T) such that

One nust restrict the space L and the transformati

further to guarantee a unique solution x which satisfies

the inequality' [10 pp. 194, 195

(3.8)

(T) 'lull*

defined se that 14

then they are bounded and

1y1 1 /11 14(w

an infinite set of vectors in B and if

as m, n 00 then there exists an xin B such that 1 fun

x Tax

is also ccmpletrns

0

as n If M(W) yeB and x is found in

A linear vector space is a Banach s



With inequalities (3.6), (3.1).
and (3.8) it is paseible to develop general bounds for I lx n11

which will b s adapted to Bateman's method in A 6 and reined in
Consider again

and the equation

(4.2) xn nen

applying (3.8) to (4. And .2respective

(4 3)

(4.4)

Subtracting (4.2) fr

(4.5)

which may be written either as

we find that

10

Moreover it is true if M(V) < 1 and A is ac tidy cow

tinuous transformation, i.e.. else which carries a bounded set of

into a compact one, even though L may not be complete.

(4.7) (x x.

Than if both (3.8) and (3.6) applied to this pair of equations, we

obtain



(4.8)

write

of (3.7)

(401) M(W) M(W

oh, when substituted

(Hj

4,9) yield.Nov applying 4.3)



by altering in the denonina

Each of these bounds is suitable =kw different cosi

In this paper (i.e) and (4.15) will be used.

quadratic AGM (3.1)

ill used, and if kernel X(set) its square integrable cnOs, t lo

he integral operator

is bounded, and

) x(t) dt

So i Si K2o
de d 12 N(I)

s directly fron the definitions by use of hwars

(5,1) 140(



Subtracting

of W

the first row

- ( 3 W4,-t.' -- w(o..ito w(4,(-)-wce;4.,)

expanded in terms of

column, we ha

W )-W(0,,{i)

Then referring to (2,8)

the negative of the cofactor of

continuous on the closed unit square.

column ) from the first

w(

W(4,

wraft, YrOL.,4 )

et rev sed

Wria If
any > 0 there



extsts a positive into K(c) such that

= 2c c z Zn
kul

(5.9)

shore 4. you'd give

(5.10)

Since NOw t.MW

to of $4 to obtain a bound for

we have

14



_LA 112211salaajat_41gadatdc' 4tilVoliFdart 1200010/010.

Here we include a sketch of the *Green's function* appresok

to the solution of simple bounden' value prehleue Further details and

proofs may be found in 151 and elsewhere.

We consider first a homogeneous

tion of second order

the 4ven interval which will atisty prescribed homogeneous Inunda

U = O. With thin in mind we define the Green's

function, denoted by V(sit), for the differential equation (6.1)s W(e,t)

is, for fixed t$ a continuous fanction of

boundary conditions. fteept at the point

satisfies the

first and see

derivatives with respect to a are continuous in the interval (0

At the point t the first derivative hes a Nap diecoutizaity

by

(6,3)

Moreover, considered as

ential equation L(W) =

satisfies thediffer'

except at the point s = t.

15

1

VIM



The following theorem is basic.

Aeereal XL r(s)

91 89 then j knotrktoxi

(6.4) u(s) S1 w(sit) y(t) dt

La a 19341Mga, 2: Da stittozadial, 8.94tx

(6.5) la(u) = y

skt, *Varies lb& 1r:ender:It, comIttiow 1,40831,9

oatisfiet (6.5) Az Sg2 nuneugged ke (6.4).

It is also possible to establish that the Green's

self..adjoint differential 0P4ratcr is a ammotri

parameter t and the argument a. That is

W(s t) w(t a).

(6.6)

asuma Elasenditt einatulassa battle

:Unction or

We now turn to the construction of the Green s ftnetion from

the differential operator L(m). Consider any solution uo of 1(a) a 0

which satisfies the homogeneous boundary conditions at es = 0. Then

generally 00 uo is a solution of the same nature for any constant eo.

Similarly, if ui satisfies L(u) = 0 and the boundary conditions at

1 then el f4 is the mast general such solution. We will seems

and ul are linearly independent. Than



ow if we let

the defining properties of a Green's function are satisfied.

equations holds. Consider a linear family of differential equations

(6.8) (u) A u v(s)

depending on the parameterik $ he 111(e) is

satisfies the

exists, then by setting

Al( ) (

Las continu

conditions. If the Green's 1'nm:tit* for

ound for X Green's Function. One

at least two disadvantmges in using N(W

Niels that it is not apparent that N(W H ) 0 as
though each individual IW(s t) W(s tj)I decrease the (i,j)th

bound for /4(W -

$ for*

An important relation between ntegral and differential



subrectangle as n becomes large, it is quite possible that
U nL E

lootl IA4

hibiti

$ available.

restricting W

at best the tion of such quantity is pre..

is larger than live or six and car a desk ealealati

section these difficulties vill be resolved br

) to the Green's functions discussed la X 6. To fix

the ideas, us assume such boundary conditions that W(sot) 0

the unit square

a mesh in the (0 t) plans be constructed

18

01, Farther let (2.8) be evaluated at n2

1, If (2.8) were evaluated at the

= 0, n + then W Ist 0 and X would net beA A



(7.5)

definition

bk bk+1

a bk a bk+1

akbk akbk+1

". akbk+1 alc+1bk+1

has been required preious1.y that WkOj therefore bk 0. lie

natitiplying the Iroth column bk+ Ak and aubtracting fr (k+1 )et

column vs obtain



12, tr(t) G3-1 -

the theorem le proved.

Theorem III may be stated as simply as

ThatillOsa:
3, itiatu = O.

i 4 jit with the new notation

(17) 60"i'(4,-t)

a, t- Q. di . .

em

aro t(t) 01 r to) t(a) a(e) eq.... cLico(lj aft) tP14- 4(0 fro 4,

it41-1 4:41 - - gm-8 Obi SW.. 144-1

- - - 04.41 tr. 44,-1

ai.tr(t) . . . . . a;, oz. ti+,

af;44 Cif - e...tn-A-, ai4,4:44

aieR) 6,t; ai44+,S die.-
6fogi4, 04441 01.4 I trio aj tjo



By multiplying column a by

last column column n4.1) we reduce

bottom one, which is (bm/b13.1)( n

Then

Continuing in in the samemanner

and since the first and last rows

consequently W(14)(BA) 0. A similar proof is possible if i

With theorem. 11 and II it is possible to simplify

ad sabtrac

element to except

i 1 1

ly dependen

n

21



(7.1

With this arrangement it

(7.

=e t s



By multiplying the aeoand r

nee of i may be treated collectively q considering (7.7)

:e )(:a:: as before, redu

subtracting from the first



(7.20)

According to the

7.21)

same stops WA can be actored es that

be last column by b(t)/10 and subtracting the product



Similarly multiplying the next to last row by b(s

he product from the first yields

7.25)

U4
1+1

from Laplace's expansion.

and (7.25) we ha

Viol)
(7.26) 4 w

A

0

su tr



.27)

Moreover, it is evident
(ii)qua]. to t ttt t a.

,t) [a(t)b b(t)j[a(s)bi b(s)1

Summarising ye state

w la a Aunties bfAmAn lia



lirPor

aneastn pus 110gotyli

gerAlicsa (t00)**M3,Rrpt Jorrows

evonompoo 04. (Ott 'Pro(4), fang
'OD kriP, u re 0( 501

A04e eaT4 sum sin vs pirsego. )01,1an pawn, aiossoaR

"mg* Aszt au° (gel) *mix *JawmontelifANT ia; uolossafto otdrime

ova jo ocaol uT vomit oft Ill*. 1st! an "moo oRa



marked improvement over 5.8). Calculations which would have been

prohibitive with Large have now been made feasible with the later

t le 'widen that 7.28) la a

x(s) alma, 7(5) atigapjvail W(att) De,itied Green's maws

awfactatod NM Vat dalsturdit

.)

Tho Fual Boun0 fqr .11x x II.



Thea U) paIcr4,sprjajaatIlz

_11 t

[ ft

700

29



Using the grosser bound for MIN

(9.1)

Then

9.2 N(W

The integral equa

(9.3) x(s)
0fWI tt x(t) = 02

For a numerical example we consider the

Green's function associated with the differential opera L(u)

and bounding condition u(0) u(1) Op namely

112(8 ds dt] 0.10541.

30

was solved with Batemanis formulas with 2. In each



C7.28 it is possible to colonists several values of 411 44

with n 1 2, 3, 4, which are listed below.

In this

(94)fliI at 0.4421

Fr (8.1) nodified accordance with (4.8) we find that

.020839

x211 0.01134.

II < 042148,

I 4 0.011470

II °
4 0.00526.

)

0.037267

2 0.020286

0.013176

0.009428
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