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This dissertation treats information theory and its applications

to the general area of decision making. Specifically, three areas are

covered; (1) information theory applied to Bayesian analysis,

(2) estimation using multi-factor information channel models, and

(3) information theory applied to Markov chain analysis.

A major portion of this dissertation concerns the concept of

conditional information which occurs as the result of the transmission

of information for an experiment (Z) when the outcomes of another

experiment (Y) are known. The gain in information is measured by

computing the difference between the information transmitted when one

set of values is known for an experiment, and another set obtained

when certain experimental parameters are allowed to vary. When

only one set of experimental results is available, the information gain

is computed as the difference between the transmitted information



under the experimental conditions and the information transmitted

assuming complete uncertainty. The latter is characterized by the

condition which results when the events of the experiment are con-

sidered to be equally likely.

The information theory technique appears to be especially use-

ful in the area of sampling. The cost of gathering information may be

balanced against management's willingness to pay for the information

in order to arrive at an optimal number of events to sample for a

particular experiment.

Utilizing the concept of conditional information and information

gain, estimates may be made by applying a multi-factor information

channel analysis. In order to obtain the maximum amount of informa-

tion from a sampling experiment, it may be desired to predict the

strategies one should use. A case study is presented in which a

research questionnaire was sent to prospective customers of several

manufacturers of crushing and grinding equipment in an attempt to

determine a particular company's standing with respect to its "image"

and "progressiveness." The results of five specific questions were

analyzed by the information theory approach in an attempt to predict

the market shares for each of five companies. The information theory

analysis showed that each of the five questions could be used independ-

ently as a market share predictor. This suggests that a person may

subconsciously possess a pre-conceived opinion of a company which



affects his answer to a specific question about that company.

A matrix method based on the work of Muroga (1959) is pre-

sented for solving multi-factor information channel problems. In

order to solve a problem of this type it is easiest to first ignore the

existence of non-positive solutions and solve the information maxi-

mization equations accordingly. If a non-positive solution occurs, one

or more restrictions may then be imposed in order to force only

positive values on the final solution. Non-positive solutions indicate

that the maximum information gain occurs outside the realm of per-

missible values. The solution, then, involves maximizing the infor-

mation gain while insuring that the probability of each event of the

experiment is positive.

A multi-factor information theory analysis is applied to Markov

chain problems in order to estimate at what point stochastic equilib-

rium occurs. This result is especially useful for computer simula-

tions of Markov chains in which the equilibrium condition is of prime

importance. By first employing the information theory analysis, the

simulation may be started at or near stochastic equilibrium, thereby

reducing the costs of unnecessary calculations during the transitional

stages of the process. The information theory analysis shows that at

least in some practical problems, stochastic equilibrium will not

occur for a long period of time. In many applications, the transitional

stages are of more interest than the steady-state conditions.



Current research points to several areas for further investiga-

tion. Models to allow for the heterogeneity among consumers, means

to identify and quantify the important factors in a multi-factor infor-

mation theory model, and learning models offer unique challenges for

future research.

Also included in this dissertation is a computer program for

solving any one-factor, two-factor or multi-factor information

theory problem. A table of values for 1, 2, 3, or 4 levels of a one-

factor model is also given.
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MULTI-FACTOR INFORMATION THEORY MODELS
AND THEIR INDUSTRIAL APPLICATIONS

I. INTRODUCTION

The Meaning of Information

The use of the term "information" in communication theory does

not necessarily relate to what one does say but to what one could say.

In other words, information measures one's freedom of choice in

selecting a specific message out of all possible messages (Weaver,

1964). Also, it is not so much a property of an individual message,

rather it is a property of the entire experimental situation which pro-

duces messages.

When evaluating alternatives using information theory, one has

to consider not only the particular message sent but the set of all

possible messages of which the chosen message is an element. The

message source can be considered to consist of all the possible ele-

ments in a probabilistic experiment. These individual elements can

be viewed as stimuli generating particular messages. For purposes

of this discussion a discrete information source is assumed. Various

experiments under consideration will consist of a finite number of

elements or outcomes each having a definite probability of occurrence.
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Justification for Using Logs to Base Two

Consider an experiment consisting of two equally likely outcomes

such as in the tossing of a fair coin. On one toss of the coin there are

two possibilities; "head" or "tail" each with probability one-half.

This is the simplest experiment in which the outcome is uncertain.

Before conducting the experiment we do not know for certain whether

a head or tail will appear. This, the simplest case, has been chosen

as a standard and is defined as transmitting one unit of information.

If logarithms to base two are used, then the information transmitted

by the two outcomes of the experiment would be:

H = log2 2 = 1

which does give a unit measure. Information of this type is defined

as one "bit."

Now consider an experiment in which there is only one certain

outcome. For example, suppose a card is drawn from a standard

deck of playing cards from which all the black cards have been

removed. We wish to determine the information transmitted by the

result "a red card was drawn." There is only one outcome of this

experiment; a red card occurs with certainty. The information

transmitted, then, will be:

H = log2 1 = 0
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Since the outcome of the experiment was a foregone conclusion, there

is no information transmitted by the answer "a red card was drawn."

Therefore, there is no uncertainty or equivocation concerning the

outcome of an experiment and there has been no new information

transmitted.

Given an experiment having two outcomes as a standard of

measurement, one which consists of eight outcomes will transmit

three times as much information. This result is not immediately

obvious. However, consider tossing a fair coin three times in suc-

cession. The sample space of outcomes will consist of:

HHH
HHT
HTT
THH
TTH
THT
HTH
TTT

Since each toss is independent and each outcome is equally likely with

probability one-eighth, the information transmitted by the combined

experiment can be viewed as consisting of three separate elements or:

so

and

H(experiment) = H(lst toss) + (H(2nd toss) + H(3rd toss)

H(experiment)= log2 2 + log2 2 + log2 2

H(experiment)= 1 + 1 + 1 = 3
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Therefore, an experiment consisting of eight outcomes should trans-

mit three bits of information. Indeed, H = log2 8 = 3 bits. A choice

of logarithms to base two as a unit of measurement gives consistant

results (Raisbeck, 1963). More rigorous proofs for the use of base

two are given by Shannon (1949), Watanabe (1970) and others.

The information transmitted is usually expressed in the form of

negative entropy.

H =

n

pi log2 pi

i=1

where H is the entropy in bits, pi is the individual probability

of each outcome of an experiment which must add to unity or

Pi 1.
For example, the entropy that results from tossing a coin

i=1
once could have been determined from:

and

1 log
2

1 1

2 log2
1

H = -
2 2 2

1H =
2

( - 1 ) - 2 ( - 1 )

1 1
H =

2
+2 = 1 bit

Maximum Information and Information Gain

It may also be noted that the entropy of one bit is the maximum
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amount of information that can be transmitted by an experiment con-

sisting of two possible outcomes. Figure 1 shows the change in

entropy as the probability p of one outcome increases from 0 to

1.0 as the probability (1-p) of the other decreases from 1.0 to O.

0 .2 .3 .4 .5

P

.6 .7 .8

Figure 1. Entropy of a two outcome experiment.

1.0
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It can be shown that for any experiment having n outcomes,

information transmitted by the experiment will be a maximum when all

outcomes are equally likely; this being the condition of greatest uncer-

tainty or greatest equivocation. To illustrate, assume an experiment

with a finite number of outcomes X1, X2, X3, . . . , Xn having prob-

abilities Pr P2' P3' ' Pn respectively. The Lagrange Multiplier

Technique may be employed to maximize the information subject to

the restriction that p. = 1. In equation form:

i =1

Since

Then,

[max]H(X) = - pi log
2

p. + X(1-

i= 1

log b = log e loge b

log2 pi = (log2 e)(loge pi)

Therefore, defining K = log ,e = 1.4427 Equation (1.0) may be

n

i=1

Pi)

written:
n

[max]H(X) = -K

i=1

Now, taking derivatives:

p. log p. + X(1-
e

n

i=1

p.)

(1.0)



a[H(X)] P i
-K _ K log p -A =0

8P1
p1

a[H(X)] ____P2 K log - X = 0
apt P2

_K - K log p X o
813n Pn

n

n

a[H(x)]
ax

i=1

Equations (1. 1) through (1.3) may be solved to obtain:

pi = e(-1-X /K)

Now, let

A = e
( 1 -X /K) i = 1, 2, n

The individual probability values may now be calculated as:

p1 =A

p
2

= A

pn = A

From Equation (1. 4) :

P1 + P2 + P3 + + pn = 1

7

(1.2)

(1. 3)

(1.4)



Therefore:

or

so,

A + A + A + + A = 1

nA = 1 and A = 1 in

p
1

= p
2

= . . . = pn = 1 /n

8

and information is maximized when all possible outcomes are equally

likely. The equally likely concept also has an intrinsic intuitive

appeal. If one knew absolutely nothing about the occurrence of various

outcomes of an experiment, a logical choice would be to place equal

weight on each. This condition represents one of maximum uncer-

tainty. The point of maximum uncertainty will also be defined as

zero information gain. Therefore, when we are able to place

probabilities other than the equally likely conditions on outcomes in an

experiment we will gain knowledge and experience an information

gain. Information gain, then, will be defined as the difference between

the information transmitted by the equally likely conditions and the

information transmitted by a set of augmented probabilities based on

our knowledge concerning the experiment. An equation for information

gain, G(X) may be written as:

G(X) = log2 n -

n

i=1

. log p
2 i
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where n and pi are as previously defined.

An Example

Shirland (1971) gave results of a survey to determine the airline

ticket purchasing habits of college students. The following response

frequencies were obtained upon asking students whether they would

travel first class, tourist, or excursion given specific price levels

for each.

First Class 10.2%
Tourist 30.8%
Excursion 59. 0%

The information transmitted before the experiment is conducted,

assuming complete ignorance is

H(X) = log2 3 = 1.585 bits

The information gain then, would be calculated from:

G(X) = log2 3 - .102 log2 .102 - .308 log2 .308 - .590 log2 .590

G(X) = 1. 585 (. 336 + . 523 + .449)

or

G(X) = 1.585 1.308 = .244 bits

which represented a 17.5% gain in information.
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II. INFORMATION THEORY AND BAYESIAN DECISION ANALYSIS

Conditional Information

Consider an experiment X consisting of two sub-experiments

Y and. Z as shown in Figure 2.

Figure 2. Information transmitted by two experiments.

If the outcomes of experiment Y and Z are independent,

the information transmitted by the combined experiment X will be:

H(X) = H(Y) + H(Z)

which means that the information transmitted by the joint experiment

is the sum of the individual subset experiments.

If the experiments Y and Z are not independent, then the

information transmitted is given by:

H(X) < H(Y) + H(Z)

These results were proven by Kunisawa (1958), Shannon (1949) and

others.



Considering the general case of two dependent experiments as

shown in Figure 2, the joint probability of obtaining Y. and Z.

may be expressed by p(y., z.) and the transmitted information by:

H(Y, Z) - p(y., z.) log
2

p(y., z.)

11

(2. 0)

The conditional probability distribution may be determined from the

definition of conditional probability and the definition of Bayes

Theorem.

p(z.
3

p(yiz,) P(z.)P(y.lz.)

P(Yi)

p(z.)p(y. I z.)

j =1

(2. 1)

Bayes formula gives the probability of an outcome Z, given

that outcome yi of experiment Y has already been observed. In

our information theory analysis of Bayesian decision problems, we

will want to compute the uncertainty or equivocation after having

learned of a result of experiment Y. The information transmitted

by an outcome of this conditional analysis is:

H(Z.I Y.) =
J 1

(z.ly.1 ) log
2

p(z.I Y.)j J 1

(2. 2)

and there will be exactly n terms of this type. In other words, we



will have:

H(Z. I Y
1

) = -
3

H(Z.IY
2

) =
3

H(Z.IYn
) = -

3

m

i=1

m

j=1

m

j=1

, ) log2 p(zi I yi)

y2) log2 p(zj I y2)

) log2 p(zi I yn)

12

Since a particular H(Z. I Y.) occurs only a fraction p(yi) of
3 i

the time, the conditional information of the entire experiment may be

expressed as a weighted sum of the information from the individual

outcomes.

H(ZIY) = -

i=1 j=1

p(yi )p(z.
3

I y.1 ) log
2

p(z. I y.)
1

The above equation may also be written as:

H(ZIY) = -

n m

p(y., z.) log
2

p(z. I y)i

since from the definition of conditional probability:

p(z. I y) -
1 P(Yi)

p(yi, z.)

(2.3)

(2. 4)

(2. 5)



multiplying through by p(yi) gives:

P(Y., z.3 ) = P(y.)F(z. I y.)

13

(2. 6)

which can be substituted into Equation (2.3) to obtain Equation (2.4).

Input/Output Information Tree

An input/output model may help to clarify calculations in an

information theory problem. Figure 3 shows an input/output informa-

tion tree which may be used to calculate the transmitted information

H(Z I Y) for a decision analysis problem. The tree is used as follows:

1. Information in, represented by the marginal probabilities

p(yi) i = 1, 2, . n are entered on dotted lines.

2. The information transmitted by various signals is calculated

as H(z. I y.) = p(z.3 Iy.) log
2

p(z.Iy.).
J 1

31
3. The respective H(z. I y.) are summed over j to determine

J

H(Z I yi) for each i = 1, 2, . . . , n.

4. The frequency of occurrence of each yi is noted on a line

terminating at the output node.

5. The information transmitted by the experiment is computed

by summing p(yi) H(Z I yi) f(yi) over the various branches of

the decision tree to get H(Z I Y).

In this chapter, the comparative information gain between



Information
in

P(Yi)

H(z1 I yl)
1-1(z2I y1)

F() I yi)

H(zml yl)

H(z1 I y2)

H(z2I y2)

H(z) I y2)

11(zm I Y2)

H(zi I yi)

H(z2I yi)

H(z. I y1 .)

H(zm I yij

H(z1 I yn)

El(z2 I yn)

H(z) I y
n

)

H(zm I yn)

H(Z I y )

f(Y1)

H(Z

H(Z

f(Y2)

f(Yi)

y.)

Information out
H(Z I Y)

N
H(Z

Figure 3. Input/output information tree.

AY.)
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experiments will be analyzed. In other words, the information gain

due to additional information will be computed by considering experi-

ments:

X composed of Y and Z

X' composed of Y' and Z'

The information gain will be computed from:

G(X) = H(X) = H(X') (2.7)

Many decision making problems involving Bayesian analysis may

also be solved using information theory. Instead of simply computing

conditional probabilities as is done in Bayesian analysis, information

theory allows one to view the entire experiment with respect to total

information gain. The information theory calculations result in a

sensitivity analysis answering questions such as: "Given slight

changes in any or all probabilities in an experiment, what is being

gained as far as information content is concerned?" It may even be

possible to treat information theory in decision problems with respect

to costs or profits. For example, a decision may be made concerning

the cost value of information gain which can be balanced against the

cost of collecting additional information. In this manner, an optimal

point may be determined at which the cost of additional information is

off-set by the amount that one is willing to pay for that information.

Two examples will serve to illustrate the decision analysis using
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information theory. The examples are drawn respectively from Halter

(1971) and Riggs (1968).

Urn Problem

Formulation of the Problem

Two urns A and B are given. Urn A contains 4 red and

2 green balls and urn B contains 3 red and 7 green balls.

4 red
2 green

B

3 red
7 green

Figure 4. Distribution of balls for urn example.

Three sampling procedures are available:

a. Randomly choose an urn, draw one ball and examine it.

b. Randomly choose an urn, draw one ball, examine it, replace

it and draw another.

c. Randomly choose an urn, draw two balls without replacement

and examine them.

Decision Procedure

An outcome of the experiment is observed, but it is not known

from which urn this particular outcome has been chosen. Which
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sampling procedure (a, b or c) more accurately predicts from which

urn the sample has been selected?

Sampling Procedure (a)

Since we are choosing a ball from an urn in a random manner:

p(A) = p(B) = 1/2

The sample space for this experiment consists of two outcomes:

1. A green ball is drawn.

2. A red ball is drawn.

We would like, then, to determine the information transmitted

by this experiment. Equation (2. 3) may be used once we have calcu-

lated the respective probabilities. For this example, Equation (2.3)

will be:

H(Z I Y) = p(g)H(g) + p(r)H(r)

which will be computed from:

H(Z I Y) -p(g)[p(A I g) log p(A I g) + p(B1 g) log p(I31g)]

-p(r)[p(Air) log p(Alr) + p(BI r) log p(Bjr)] (2.8)

Definitions of the terms used above are as follows:

H(g) Information transmitted by observing a green ball.

H(r) - Information transmitted by observing a red ball.
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p(g) - Probability of drawing a green ball.

p(r) - Probability of drawing a red ball.

p(A I g) - Probability that we were sampling from urn A. given that

we observed a green ball.

p(B I g) - Probability that we were sampling from urn B given that

we observed a green ball.

p(A I r) - Probability that we were sampling from urn A given that

a red ball was observed.

p(B I r) - Probability that we were sampling from urn B given that

a red ball was observed.

Bayes formula may be used to calculate p(A I g) and p(AIr).

p(B I g) may be calculated as: 1 - p(A. I g) and p(B1r) = 1 - p(A I r).

P(Alg) =
P(A)P(g I A)

p(A)p(g I A) + p(B)p(g I B)

From the statement of the problem:

p(gIA) = 1/3

p(rIA) = 2/3

p(gIB) = 7/10

p(rIB) = 3/10

Therefore:



(1/2)(1/3) 0.333
lg)p(A - (1/2)(1/3)+(1/2)(7/10) 1.033

p(131g) = 1 - 0.321 = 0.679

= 0.321

(1/2)(2/3) O. 667
p(A )l r .690(1/2)(2/3)+(1/2)(3/10)- .967

p(B1r) = 1 - .690 = .310

Now, the probability of drawing a green ball p(g) will be a

weighted sum of all the ways in which a green ball can be drawn or:

p(g) = p(A)p(g I A) + p(B)p(g I B)

P(g) = (1/2)(1/3) + (1/2)(7/10) = .517

p(r) = 1 p(g)

so

and

p(r) 1 - .517 = .483

19

In tabular form, these results may be written: (z. refers to urn A

and urn B for j = 1, 2; yi refers to a red or green ball for

i = 1, 2).

Table 1. Bayesian probabilities for urn
exampleprocedure (a).

z
r g

A
B

13(n)

.690 .321

.310 .679

.483 .517
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The information transmitted can now be calculated from Equa-

tion (2.8).

H(Z I Y) = .517[.321 log .321 + .679 log .679]

+ .483[. 690 log .690 + .310 log .310]

H(ZIY) = .517 (.9055) + .483 (.8932)

H(Z1Y) = . 8400 bits

If we knew nothing concerning the outcomes; (1) we are drawing

from urn A or (2) we are drawing from urn B, we would assign

equal probabilities of .500 to both which would result in an information

transmission of 1 bit. By using sampling procedure (a) we trans-

mitted .8400 bit for a gain of .1600 bit. Sampling procedure (a),

then, contributes 16% gain in information over complete uncertainty.

If either sampling procedures (b) or (c) result in an information gain

of more than 16% we may safely assume that we are even less uncer-

tain about the urn from which we have been sampling. Therefore,

the sampling procedure which results in the greatest amount of

information is the best procedure to use.

Sampling Procedure (b)

Randomly choose an urn, draw one ball, examine it, replace it

and draw another.

The sample space for this experiment consists of four outcomes:
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1. (gg) green on both draws.

2. (gr) green first, then red.

3. (rg) red first, then green.

4. (rr) red on both draws.

The information transmitted by this experiment will be:

H(Z I Y) = p(gg)H(gg) + p(rr)H(rr) + 2p(gr)H(gr)

Since p(rg) = p(gr), then H(gr) = H(rg) which accounts for

the factor of 2 in the above equation.

As in procedure (a) the respective conditional probabilities can

be obtained from Bayes formula. The individual probabilities of each

outcome can be computed as weighted sums of all the ways to achieve

that outcome.

The results of the probability calculations are given in Table 2.

Table 2. Information gain analysis for urn example- -
procedure (b).

z. \-i gg gr rg rr

A .185 .514 .514 .832
B .815 .486 .486 .168
H(i) bits .6908 .9994 9994 .6531
13(Yi) .301 . 216 . 216 . 268

The transmitted information will be:

H(Z I Y) = .301 (.6908) + .216 (2)(. 9994) + . 268 (. 6531)
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H(ZIY) = .8150 bits

The information gain of procedure (b) over procedure (a), then,

G(Xb-a) = .8400 - .8150 = .0250 bit

which represents a 3.08% increase in information gain over procedure

(a).

We may conclude that drawing a second ball results in a gain in

information of 3.08% or that we have learned 3.08% more about the

experiment and are now in a better position to make predictions about

from which urn we had been sampling given a particular outcome.

Procedure (b) also contributes an 18.50% gain in information over

complete uncertainty compared with 16% for procedure (a).

Sampling Procedure (c)

Randomly choose an urn, draw 2 balls and examine them.

The sample space for this experiment will be the same as in

procedure (b). Since the first ball drawn will not be replaced, how-

ever, the probability distribution of outcomes will be hypergeometric

rather than bionomial as in procedure (b).

The results of the calculations are given in Table 3.
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Table 3. Information gain analysis for urn example-
procedure (c).

z .
.
.1

gg gr rg rr

A .125 .532 .532 .853
B .875 .468 .468 .147
H(i) bits .5436 .9970 .9970 .6023
p(i) . 267 .249 .249 .233

Transmitted information

H(Z I Y) = .267(. 5436) + .249(2)(. 9970) = .233(. 6023)

H(Z I Y) = . 7097 bits

The information gain over procedure (a) is:

G(Xc-a) = .8400 - .7097 = .1393 bit

which is a 15.5% gain.

G(Xc-b) = .8150 - .7097 = .1053 bit

which is a 12. 9% gain. The gain in information over complete uncer-

tainty is 29. 03 %.

In answer to the question posed in the statement of the problem,

our analysis shows that procedure (c), sampling two balls without

replacement is the best technique to use since it results in our gaining

the most information concerning the combined experiment. Figures

5, 6 and 7 show the calculations for the three sampling procedures in
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the input/output information tree format.

Alternative Solution

In order to check the validity of the information theory analysis

in the urn example, the following traditional solution method is pre-

sented using the concept of Maximum Likelihood.

Procedure (a): Referring to the table of probabilities obtained

for this case we may determine the likelihood function for the experi-

ment.

Table 4. Likelihood values for procedure
(a) in the urn example.

z \
i
Yi r g

A 67)) .321
B .310 679
P(Yi) .483 .517

L(z.
3

I y.1 ) .690 .679

guess A B

The likelihood function, L(z.j I y.), indicates our guess as to

which urn we have been sampling from given various outcomes. For

example, if we observe a red ball, the probability that we have been

sampling from urn A is (. 690) and from B (.310). Therefore, if

we observe a red ball we should guess that we have been sampling

from urn A since it is more likely that we have been doing so.

Similarly, if a green ball is observed, the probability that we have
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been sampling from urn B is (.679) and from A (.321). So, the

likelihood function is (.690) and (.679) given a red and green ball

respectively.

In order to determine which sampling method is best, we would

like to determine the probability that we guess the right urn given a

particular outcome.

From the likelihood function:

SO:

and

Outcome (r) results in a guess of (A)

Outcome (g) results in a guess of (B).

P(Correct Guess) = P(red)P(Sampling from A given red)

+ P(green)P(Sampling from B given green)

P(Correct Guess) = (.483)(. 690) + (.517)(. 679)

P(Correct Guess) = .685

Procedure (b):

Table 5. Likelihood values for procedure (b) in the
urn example.

z. yi gg gr rg rr

A
B

.185

.815
.514
.486

.832.514
.486 .1.8

p(y.) .301 .216 .216 .268

L(z.1 ly.1 ) .815 .514 .514 .832

Guess B A A A
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P(Correct Guess) = p(gg)p(B I gg) + 2p(gr)p(A I gr) + p(rr)p(A I rr)

P(Correct Guess) = (.301)(.815) + (.216)(2)(.514) + (.268)(.832)

P(Correct Guess) = .691

Procedure (c):

Table 6. Likelihood values for procedure (c) in the
urn example.

z. yi
J
\ gg gr rg rr

A .125 . 853dff) 4310
B G.-7D .468 .468 .147
P(Yi) .267 .249 .249 .233

L(z. I y.) .875 .532 .532 .853
3 1

Guess B A A A

P(Correct Guess) = p(gg)p(B I gg) + 2p(gr)p(Algr) + p(rr)p(A I rr)

P(Correct Guess) = (.267)(.875) + 2(.249)(.532) + (.233)(.853)

P(Correct Guess) = .697

To summarize:

Sampling procedure (a) = .685

Sampling procedure (b) = .691

Sampling procedure (c) = .697

The conclusion is that sampling procedure (c) is preferred since

it results in a higher probability of guessing correctly given the
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various outcomes. However, it may be noted that the above probabil-

ities are nearly equal. Therefore, the information theory analysis

which results in the same conclusion appears to offer the investigator

a ubiquitous look at the data in that he may view the entire process at

once to obtain the relative gain in information between the various

experiments. The information theory analysis also allows the

investigator to set decision limits on the value of additional informa-

tion. In other words, it may be determined before the experiment is

conducted that an additional trial should result in at least say 10%

gain in information to be significant or worthwhile. In this manner.

a decision can be made at each stage of an experiment to determine

whether another trial should be conducted. The example which fol-

lows illustrates an analysis of this type.

Concrete Mixing Problem

Problem Formulation

New types of concrete /nixes are tested in a laboratory by con-

ducting compression and other strength tests on one or more test

cylinders. The probability that a trial batch will yield the specified

strength is 0.90 if the mix is properly prepared and tested.

Occasionally, about once every 20 times, the trial batch will be

improperly handled or the ingredients inaccurately measured. The
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probability that a poorly prepared mix will yield the specified strength

is 0.20.

We wish to determine the information transmitted and the

information gain from sampling 1, 2, 3 , n cylinders at random

from a particular mix.

The following notation will be utilized:

z1: The mix was properly prepared.

z
2:

The mix was improperly prepared.

y
1:

The mix is of the specified strength.

y2: The mix is not of the specified strength.

Analysis

The transmitted information as a result of conducting an experi-

ment with the above data may be computed from Equation (2.3). For

this example, Equation (2. 3) will be:

or

H(Z I Y) = p(y1)[H(Z I yin + p(y2)[H(Z I y2)]

H(Z I Y) = -p(yi)[p(zi I y1) log p(z1 I y1) + p(z2I y1) log p(z2I

-p(y2)[p(z 1 I y2) log p(z 1 I y2) + p(z2 I y2) log p(z2 I y2)]

From the formulation of the problem, the following probabilities

are available:
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P(mix is of the specified strength given it was properly mixed)

P(Yil zi) 0.90

P(mix is not of the specified strength given it was properly mixed)

p(y21 zi) = O. 10

P(mix is of the specified strength given it was improperly prepared)

p(yilz2) = O. 20

P(mix is not of the specified strength given it was improperlyprepared)

p(y21z2) = 0.80

P(mix was properly prepared)

p(z1) = 0.95

P(mix was improperly prepared)

p(z2) = 0.05

The transmitted information will be calculated for sampling

1, 2, 3, 4, 5 and 6 cylinders respectively.

Case I: Determine the transmitted information by sampling one

cylinder at random and observing whether it is of the specified

strength.

Sample space of possible outcomes:

1. yl: cylinder is of the specified strength.

2. y2: cylinder is not of the specified strength.
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Bayes formula may be used to determine the probabilities

necessary for the equation of information transmission previously

given. The results are as given in Table 7. In the ensuing analysis,

the possible outcomes will be denoted by the number of yi's in the

outcome. For example, the two possible outcomes for Case I

(sampling one cylinder) will be ly1 and Oy1 respectively. The

outcome 0y1 denotes the absence of yl y2or that is the out-

come. The reason for this notation will be obvious when possible

outcomes for sampling 2, 3, 4, 5 or 6 cylinders are enumerated.

Table 7. Concrete mixing problemsampling one cylinder.

Outcome 1)(z 1 I n) P(zz I Yi) P(Yi) H(Z I yi)

ly1

Oy1

0.989

0.702

0.011

0.298

0.856

0.135

0.0874

0.8780

The transmitted information may be computed as:

H(Z I Y) = 0.865(0.0874) + 0.135(0.8780)

H(Z I Y) = O. 1932 bits

Case II: Determine the transmitted information by sampling two

cylinders at random and observing whether each is of the specified

strength.
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Sample space of outcomes:

1. The first cylinder is of the specified strength, the second

is also.

2. The first cylinder is not of the specified strength, the second

is not.

3. The first cylinder is of the specified strength, the second is

not.

4. The first cylinder is not of the specified strength, the second

is of the specified strength.

Since the probabilities of outcomes 3 and 4 are identical, we

may compute one of them and note the existence of the other. The

four possible outcomes are:

1. yiyi = 2y1

2. y2y2 = Oy
1

3.
y1y2 ly1

4. y2y, = ly,

Table 8 shows the results needed in order to calculate the

transmitted information.

Table 8. Concrete mixing problem--sampling two cylinders.

Outcome p(z
1

I y.1 ) p(z
2 1

I y.)
YP( i Frequency H(Z I )

y)i

1. 2y1 0.997 0.003 0.7720 1 0.0295

2.
0y1 0.229 0.771 0.0415 1 0.7763

3. ly1 0.914 0.086 0.0935 2 0.4230
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The transmitted information may be computed as:

H(ZIY) = 0.7720(0.0295) + 0.0415(0.7763) + 2(0.0935)(0.4230)

H(Z I Y) = 0.1340 bits

Case III: Determine the transmitted information by sampling

three cylinders at random and observing whether each is of the

specified strength.

Using similar notation to that used in Case II the sample space

of outcomes will be:

1.

2.

3.

4.

ylylyl = 3Y1

y1y1y2 = 2y1

ylylyl = 1Y1

y2y2y2 = 0Y1

Table 9 shows the results needed in order to calculate the

transmitted information.

Table 9. Concrete mixing problemsampling three cylinders.

Outcome p(z I yi) P(z2 i n) P(Yi) Frequency H(Z I yi)

1. 3y1 1.0 0.0 0.6540 1 0.000

2. 2y1 0.980 0.020 0.0786 3 0.1415
3. lyi 0.572 0.428 0.01495 3 0.98499
4. Oyi 0.036 0.964 0.02655 1 0.2237

The transmitted information may be computed as:
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H(ZIY) = 0.6540(0.000) + 3(0. 0786)(0. 1415)

+ 3(0.01495)(0.98499) + 0. 02655(0. 2237)

H(Z I Y) = 0.0835 bits

Case IV: Determine the transmitted information by sampling

four cylinders at random and observing whether each is of the

specified strength.

The sample space will be:

2.

3.

4.

5.

ylylylyl 4Y1

y1y1y1y2 3Y1

Y1Y1Y2Y2 ' 2Y1

y1y2y2y2 = lY
1

Y2Y2Y2Y2 OY
1

Table 10 shows the results needed in order to calculate the

transmitted information.

Table 10. Concrete mixing problem--sampling four cylinders.

Outcome p(zil yi) p(z2 I yi) p( yi) Frequency H(Z I yi)

1. 4y1 1.000 0.000 0.622 1 0.00

2. 3y1 1.000 0.0000 0.069 4 0.00

3. 2y1 0.855 0.145 0.009 6 0.5972

4. ly1 0.145 0.855 0.006 4 0.5972

5. On 0.000 1.000 0.021 1 0.000

The transmitted information may be computed as:
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H(Z I Y) = 0.622(0.00) + 4(0. 069)(0. 00) + 6(0. 009)(0. 5972)

+ 4(0. 006)(0. 5972) + (0. 021)(0. 000)

H(Z I Y) = O. 0466 bits

Case V: Determine the transmitted information by sampling

five cylinders at random and observing whether each is of the speci-

fied strength.

The sample space will be:

1. YiYiYiYin 5y1

2. y1y1y1y1y2 4y1

3.
Y1Y1Y1Y2Y2 3Y1

4. y1y1y2y2y2 2y1

5. y1y2y2y2y2 1Y1

6. y2y2y2y2y2 = Oyl

Table 11 shows the results needed in order to calculate the

transmitted information.

Table 11. Concrete mixing problem--sampling five cylinders.

Outcome p(zi I yi) p(z2 I yi) P(Yi) Frequency H(Z I yi)

1. 5y1 1.000 0.000 .5600 1 0.000

2. 4y1 1.000 0.000 .0620 5 0.000

3. 3y1 .973 .027 .0071 10. 0.1791

4. 2y1 .426 .574 .0018 10 0. 9841

5. 1y1
.021 .979 .0042 5 0.1470

6. On .000 1. 000 .0164 1 0. 0000
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The transmitted information is:

H(Z1Y) = . 560(. 000) + 5(. 0620)(. 0000) + 10(. 0071)(. 1791)

+ 10(.0018)(.9841) + 5(.0042)(. 1470)

H(Z I Y) = . 0290 bit

Case VI: Determine the transmitted information by sampling

six cylinders at random and observing whether each is of the specified

strength.

The sample space will be:

1. nnnnnn

2. y1y1y1y1y1y2 5y1

3. ylylylyly2y2 4y1

4. yorinY2Y2Y2 = 3y1

5. y1y1y2y2y2y2 2Y1

6. YlYzYzYzYzYz

7. y2y2y2y2y2y2 On

Table 12 shows the results needed in order to calculate the

transmitted information.
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Table 12. Concrete mixing problem -- sampling six cylinders.

Outcome p(zi I yi) p(z2 I yi) P( .Yi ) Frequency H(Z I
Yi

.)

1. 6y1 1.00 0.00 0.503 1 0.00

2. 5y1
1.00 0.00 0.056 6. 0.00

3. 4y1 1.00 0.00 0.00621 15 0.00

4. 3y1 0.772 0.228 0.000896 20 0.7745

5. 2y1 0.085 0.915 0.000905 15 0.4196

6. ly1 0.00 1.000 0.003365 6 0.00

7. On 0.00 1.000 0.01310 1 0.00

The transmitted information may be computed as:

H(Z I Y) = 20(0. 000896)(0. 7745) + 15(0. 000905)(0. 4196)

H(ZIY) = 0.0195 bits

Figure 8 shows a plot of the transmitted information for the

various sampling experiments given in the concrete mixing example.

Figures 9 through 14 summarize the six sampling procedures

in terms of input/output information trees.

The concrete mixing example can be viewed as a decision

process by calculating the information gained from taking successive

samples. Suppose, for example, that due to the cost of sampling, it

is felt that at least a 25% gain in information must result from

sampling an additional cylinder over sampling just one cylinder.

Since the transmitted information from sampling one cylinder is
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Figure 11. Information tree for sampling three cylinders.
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0.1932 bits, we require that sampling 2, 3, 4, etc. cylinders will

result in a gain of at least 0.0483 bits of information. Using the

results previously obtained the following values may be determined.

Table 13. Summary of concrete mixing example results.

No. of Information
Cylinders Transmitted Information
Sampled (bits) Gain

1 0.1932
2 0. 1340 0.0592
3 O. 0835 0.0505
4 0. 0466 0. 0369
5 O. 0290 O. 0170
6 O. 0195 0.0095

Based on the results of Table 13, we would sample 3 cylinders,

since sampling a fourth cylinder only contributes 0.0466 bits of

information which is less than the 25% requirement.

Cost Considerations in Concrete Mixing Problem

The concrete mixing example could also be viewed as a decision

process that considers cost of additional information as a criterion.

Suppose, for example, that the costs of testing cylinders (obtaining

equipment, set up costs, direct labor, etc.) are as represented in

Table 14.

Suppose also that management personnel have decided that they

would be willing to pay for each additional test according to the
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schedule depicted in Figure 15.

Table 14. Testing costs for concrete mixing
problem.

Number of Cylinders
Sampled Cost of Testing

1 $ 700
2 900
3 1320
4 1870
5 2570
6 3300

1400

1200

10 20 30 40 50 60 70

gain in information

80 90 100

Figure 15. Management's willingness to pay for additional informa-
tion in the concrete mixing example.
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Using Table 14 and Figure 15 along with the results obtained for

information gain, we can conclude that three cylinders should be

sampled. The information gained from the three cylinder experiment

is .0592 bit or 30% for which we are willing to pay $420. Sampling

three cylinders results in a gain of .1097 bit or 56. 6% for which we

are willing to pay $792. The additional cost of sampling three

cylinders is $620. Sampling four cylinders results in a gain of .1466

bit or 75. 5% at a cost of $1060, so our decision would be to sample

three cylinders if cost of information is a criterion in the decision

making analysis. The relationship between information gain and cost

is portrayed graphically in Figure 16.

Figure 16 shows that an additional sample should be tested for

those points plotted for the cost of testing that are below the curve for

management's willingness to pay. The last point which is below the

curve for management's willingness to pay is the solution to the

problem.
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III. ESTIMATION USING MULTI-FACTOR
INFORMATION THEORY MODELS

Introduction and Theoretical Development

In this chapter, information theory will be applied in an attempt

to predict values for p(zj) and p(yi)

information analysis. In Chapter II the conditional information

transmitted was determined from Equation (2.4) as:

in a multi-factor conditional

H(Z(Y) = p(y.z.) log p(zi ( yi)
i 3

(3. 0)

If Equation (2. 5) for p(z. I y.) is substituted into the above equation
J 1

for the conditional information, the following relationship is obtained:

H(Z(Y) = -

which may be written:

H(Z(Y) =

n m

i =1 j = 1

but / p(y.1 z.) log oyi )

i j

n m p(y.z.)
p(y.z.) log[---I--- L ]i j P( .Yi. )

i=lj=1

p (yizi) log p(y.z.) +i 3

may be written:

i J

p (y.z.) log )
i 3 P(Yi

(3. 1)



log p(yi p(y.z.)

and employing Equation (2. 5) again:

Since p(yi)

P(Y.z.3 )
3

P(Y.)P(z I Y-)

51

(3. 2)

is constant as far as the summation is concerned,

Equation (3. 2) may be written as:

but

becomes:

p(y.z.3 ) = p(yi) .1 Yi)

== 1 for all . 1, 2, , n so Equation (3.1)

H(Z I Y) = -

and from Equation (2.0)

H(Y, Z) =

and

p(y.z.) log p(y.z.) + p(yi) log p(yi)

p (y.1 z.3 ) log p(y.1 z.3 )

H(Y) = 2 p(yi) log p(yi)
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Therefore

H(Z I Y) = H(Y, Z) H(Y)

and the information transmitted by the joint experiment is:

H(Y, Z) = H(Y) + H(Z I Y) (3.3)

In words, Equation (3.3) states that the information transmitted

by the combined experiment is the information transmitted by Experi-

ment Z when the results of Y are known. This result implies

that the information transmitted by the combined experiment is

greater than either of the sub-experiments or that:

H(Z, Y) > H(Y)

since H(Z, Y), H(Y) and H(Z I Y) are all non-negative values.

We could also write:

H(Z) + H(Y) > H(Z, Y)

H(Z) + H(Y) > H(Y) + H(Z1Y)

which gives the result that:

or

H(Z) >H(ZIY)

which shows that knowing the results of Experiment Y reduces the

information transmitted by Experiment Z. Therefore, the amount

of information gained by observing the results of Experiment Y may

be defined as:
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G(Y, Z) = H(Z) - H(Z1Y) (3. 4)

Equation (3.4) will be useful in deriving the prediction equations

which follow.

Prediction Equations

Development

Given a conditional probability matrix:

zl

z.

zm

Y1 yi Yn

p(z 11 y
1)

p(z
.1

1 y.) ... p(z .11 yn)

p(z.3 .1y
1 j) p(z..1 y.) p(1.1y

n
)

P(zin. ) Yi) P(z;nlyi) P(z 'in I Yn)

With no prior knowledge of p(z.) or p(yi) we would like to

develop a method to predict these values. A logical approach is one

which will determine p(z.) and p( y.) such that a maximum

information gain is achieved. Equation (3. 4) could be used then, to

determine:

subject to

[max]G(Y, Z) = H(Z) H(Z 1 Y)

and p(yi) > 0 i = 1, 2, ... , n

Using the Lagrange Multiplier technique, the maximization



equation becomes:

2
u.

1

[max]G(Y, Z) = H(Z) - H(Z I Y) + -1] +
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2
Xi(p(yi.)-f-ui)

(3. 5)

The p. and X. terms are the Lagrange Multipliers and the

terms are surplus variables introduced to form the necessary

equality: p(yi) + = 0. In most actual problems p(yi) will

naturally turn out to be greater than zero. It is easiest then, to first
2ignore the terms X.(p(y.)-)-u. ) and solve for p(z.) and

one or more of the p(yi)

p(yi)

are negative, then we may insert the

If

restriction on the p(yi) and employ the Kuhn-Tucker conditions to

solve the resulting equations. The Kuhn-Tucker conditions will be:

a[F(z, H., Xu)], u
1. az.

2.

3. X.

3

(z.)

4. X.u. = 0
1 1

5. p(zi) > 0

0

= 0

=+u. 0
j= 1,2,..,rn
i = 1,2,...,n

- 1)

2
)

6. X. <0; F <0
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An alternative method of correcting for negative probability

values is to first determine those values which are negative, set them

equal to zero, and re-solve for the maximum information gain with

these restrictions included.

An Example

Returning to the urn example of Chapter I, assume that we are

interested in sampling one ball only. What strategies should we use

in drawing from urns A or B that will result in obtaining the most

information concerning the experiment?

The available data is:

p(gIA) = 1/3

p(rIA) = 2/3

p(gIB) = 7/10

p(rIB) = 3/10

In matrix form, p(Y1Z), where y1 = g, y2 r,

z
2

= B, becomes:

g r
A 1/3 2/3

[P(( I Z)1 =
B 7/10 3/10

zl = A,

In this problem it will be easier to solve for p(g) and p(r)
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first, then to use the relationship that:

p(g) = p(A)p(g I A) + p(B)p(g1 B)
and (3. 6)

p(r) = p(A)p(r I A) + p(B)p(r I B)

to obtain p(A) and p(B), (Appendix A gives a proof that the

information gain may be computed as H(Y) H(Z I Y) or as

H(Z) - H(YI Z)).

As suggested in the theoretical development, the restriction

that p(A) > 0 and p(B) > 0 will first be ignored. Then, if either

of these probabilities turn out to be negative, the restriction will be

imposed and the solution redetermined.

We wish to determine p(g) and p(r) such that:

where

and

[max]G(Z, Y) = H(Y) - H(YI Z) + pip(y1)+p(y2)-1] (3.7)

H(Y) = -p(g) log2 p(g) p(r) log2 p(r) (3.8)

H(YI Z) -p(A)[p(g IA) log2 p(g I A) + p(r IA)log2 p(r IA)]

-p(B)[p(g I B) log2 p(g I B) + p(r I B) log2 p(r I B)]

(3. 9)

Equation (3. 6) may be solved to obtain p(A) and p(B)

needed for Equation (3. 9).



Solving:

p(A)(1/3) + p(B)(7/10) = p(g)

p(A)(2/3) + p(B)(3 /10) = p(r)

p(A) -9p(g)+21p(r)
11

20p(g)-10p(r)
p(B)

11

and Equation (3. 9) becomes:

H(YI Z) = -[ -9P(g)+21P(r) ][1 /3 log2 1/3 + 2/3 log 2/3]
11

Therefore,

20p(g11 )-10p(r) ][7 /10 log2 7 /10 + 3 /10 log2 3 /10]

H(Y I Z) = . 848 p(g) + . 950 p(r)

Equation (3. 7) will now become:

[max]G(Z, Y) = -p(g) log2 p(g) - p(r) log2 p(r) - .848p(g)

- 950p(r) + 1.1.(p(g)+p (r)-1)

and
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a[H(z, Y)] _log p(g) - 1 - .848 + p. 0 (3. 10)
ap(g)

a[H(z, Y)] -log
2
p(r) - 1 - .950 + p. = 0 (3. 11)

8p(r)

a[H(z, Y)] p(g) + p(r) - 1 = 0 (3. 12)
aw



58

Solving Equations (3. 10) and (3.11) for ti gives:'

or

and

-log2p(r) log2p(g) = .102

log 102-2 p(r)

p(g) = P(r)2
(102)

From Equation (3. 12), p(g) = 1 - p(r) so,

and

or,

1 p(r) = p(r)2(. 102)

p(r) = .482

p(g) = .518

Now the sampling strategies may be calculated as:

p(A) = -9(. 518)+21( . 482)
11

p(B) = 1 - p(A)

p(A) = .532

p(B) = .468

Since p(A) > 0 and p(B) > 0, we are justified in neglecting

that restriction from our model. The results suggest that in order to

'Appendix B gives a proof that derivatives of log2a may be
differentiated the same as logea to obtain 1 /a.
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obtain maximum information from our model we should sample from

urns A and B with frequencies 0.532 and 0.468 respectively.

Figure 17 shows a plot of the information gain for various values of

p(A) . Again, the maximum occurs for p(A) = .532 and p(B) = .468

as seen from the graph.

.11

.10

. 09

. 08

co .07

.06

o .05

. 04

. 03

. 02

. 01

0 .10 .20 .30 .40 .50 .60 .70 .80 .90 1.0

p(A)

Figure 17. Plot of information gain for urn example.
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Using the traditional method of maximum likelihood will result

in a sampling strategy of 1.0 and 0.00 for A and B respectively.

This means that a researcher should completely ignore one set of

data. For example, in an R&D situation in which there are two pos-

sible tests for determining operating characteristics for a piece of

equipment, the traditional method concludes that one will learn the

most about the equipment by ignoring one of the tests completely.

The information theory analysis gives a more logical and practical

solution in which the information gained by conducting each test is

determined. It could turn out, however, that one test is significantly

better than the other. In this case the strategy would be to ignore

that test. The information theory analysis, then, offers a semantic

interpretation which follows from the logical assumption that a

researcher would like to extract as much information as possible by

utilizing all available data in the most efficient manner.
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IV. MATRIX METHOD FOR SOLVING MULTI-FACTOR
INFORMATION THEORY PROBLEMS

Introduction

Muroga (1958) suggests that a matrix method may be used to

solve predictive equations in a multi-factor information channel

analysis. Two types of problems are analyzed in this chapter;

(1) problems that initially result in positive solutions and (2) prob-

lems that initially result in non-positive solutions. 2

Theoretical Development

Given a conditional probability matrix of determinable values:

1
Y. ym

zl P(Yllz1) P(Yilz1) P(Yrniz1)

p[ p(y= z. p y lz.) p(y.lz.) p(y
1 3 3 j

zm p(yi I zm) p(yi I z ) . . . P(Ym I zm)

where m
p(y. I z.3 ) = 1

1

i= 1

2In this and subsequent chapters, [ ] will denote a matrix.
[ ]' will denote a matrix transpose. All vectors are row vectors
unless noted as a transpose.



The maximization equation, then, is:

Now, define

[max]G(Y, Z) [H(Y)] - [H(Z I Y.)]

[HP = [p(Y1 z) ][B P

where [H] is a vector of information equations of the form:

h1 = - p (yil zi) log p(yil zi)

hm

z.) log p(y. I z.j )

) log p(yil zm)

and [B] is a vector of constants b.; i = 1,2,3, ...,m.

Solving Equation (4. 1) for [B]' gives:

[BP = [p(Y1Z)] -1[HP

Writing Equation (3.4) in matrix form gives:

[ p (z ) ][p (YI Z)] = [p (Y)]

Solving for [p(Z)]:

[p (Z)] = [p( ) ][p(y z)]-1

(4. 0)

(4. 1)

(4. 2)

(4.3)

(4. 4)
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Combining Equations (3. 0) and (3. 2) into matrix form results

in the following equation for H(YI Z).

[H(YI z)] = [H][p(z)]1 (4. 5)
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Substituting Equation (4. 1) and (4.4) into Equation (4. 5) results

in the following equation for H(YI Z).

[H(YI Z)] = [13(Y I Z)]-1[P(Y)][B][P(Y1

since [p(Y)][B] is a one-by-one vector of constants [H(YI Z)]

may be written as:

but

[H(YI Z)] = [P(Y)][B][p(YIZ)]-i[p(Y1Z)]

[p(Y1Z)l[p(Y1Z)] = [I]

where [I] is an identity matrix. Therefore,

[H(YI Z)] = [p(Y)][B]= b.p(y.) = b.p(z.) (4. 6)
3 3

The above result occurs because we have assumed a square

matrix of conditional probabilities initially.

Now, since we wish to maximize the information gain equation

subject to

1

ing equation:

p(yi) = 1, we may include this condition in the follow-
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[max]G(Y, Z) = [H(Y)] - [H(Y I Z)]+ X (L p yi -1) (4.7)

i

[H(Y)] = - p (y.) log
2
p(y.) (4.8)

Substituting Equations (4. 6) and (4.8) into Equation (4.7) gives

the following equation to be maximized:

[max]G(Y, Z) = max p y. log
2
p(y.)

solve.

and

bip(yi)+ X

(4. 9)

To maximize Equation (4. 9) we take appropriate derivatives and

a[G(Y, Z)] lo p( y.) 1 - b. + X = 0
ay, Y2P i

a[G(y, z)]
ax

(4. 10)

p (yi) 1 = 0 (4. 11)

Solving Equation (4. 10) in terms of p(yi) gives:

X -b. +1

13(Yi) = 2
1

2X
1

-b.+1
1

-b.+1
1

= 1



or
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Substituting this value for 2X into Equation (4. 12) results in:

-b.
2

1
2

12

P(Y) =-
1 -b.+1 -b.

2 1 2L2 1

p(yi) =

-b.
1

2 (4.13)

Equation (4. 13) may be solved in conjunction with Equation (4. 2)

to determine p(yi) for i = 1, 2, 3 , . . . , m and p(z.) may be

determined from Equation (4.4) (see also Appendix B).

Sampling Example

Let us return to the urn example presented in Chapter II in

order to illustrate calculations using the matrix method.

The conditional probability matrix of data is:

green red

yl y2
A z1 1 /3 2/3

[p(Yd z )] =

B z2 7 /10 3 /10

The inverse of [p(YI Z)] is:



and

or

[p(y1z)]-1 =

[H] =

-9/11 20/11

21/11 -10/11

h
1

h
2

h
1

= -1/3 log 1/3 2/3 log 2/3 = 0.917962
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h
2

= -7/10 log 7/10

The values for [B] =

(4. 2).

3/10

b
b'

2

log 3/10

may be

=

calculated

0.881291

using Equation

13 i] -9/11 20/11 .917962
[B] =

or

b
2 21/11 -10/11 .881291

b
1

= .8550

b
2

= . 9520

Therefore,

and

2-.8550
P(Y1) .8550 -.9520

p(yi) = p(green) = .518

p(y2) = p(red) = .482

which are the results obtained previously using the Lagrange Multiplier
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technique.

The probabilities p(A) and p(B) may now be calculated

from Equation (4.3) as:

[p(A) p(B)] = [.518 .482]
-9/11 20/11

21/11 -10/11

and p(A) .532; p(B) = .468 as previously calculated. The

matrix method offers a quick and easy solution to many multi-factor

information channel problems.

Example of Multi-Factor Information Theory Models
with Non-Positive Solutions

As previously stated, there is no guarantee that non-positive

solutions to the multi-factor information theory model will not occur.

The following example illustrates a method for restricting the model

to provide only positive solutions.

Consider a market research situation such as the one presented

by Shirland (1971) in which questionnaires are sent to prospective

customers posing the following four questions.

1. Given brands A, B, C, and D, which one would you

purchase if price were of major importance to you?

2. Considering quality of product, which one would you purchase?

3. Considering reliability, which would you choose?



data.

4. Considering the warranty of the product, which would you

purchase?

For illustrative purposes, consider the following hypothetical

Table 15. Multi-factor negative probability
example.

Brand A B C D
p(Y1Z) Y1 Y2 Y3 Y4

z
1

(price)

z2 (quality)

z3 (reliability)

z4 (warranty)

1

1

/2

0

/4

0

1

1

/4

1

/4

0

1

0

0

/4

1

1

1

/4

0

/4

0
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The data of Table 15 imply that considering prices, 50% of

those answering the questionnaire would purchase Brand A, 25%

would purchase Brand B, none would buy Brand C and 25% would buy

Brand D; etc.

Using the matrix method, the values for [H]' are:

[H]' =

and,

h
1

h
2

h
3

1.500

0

2.00

h
4

0



this yields,

Therefore,

b
1

1/4 0 -1 hi1/2 1/4

b
2

0 1 0 0 h2

[B]' =

b
3

1 /4 1/4 1/4 1 /4 h
3

b
4

0 0 1 0 h
4- _

[B]' =

P(yi) =

for i = 1,2,3,4.

_ -
bl

b
2

b
3

b
4

-b.
2 1

--- --
- 2.00

0

0

10.00

2+2.00+20+20+2-10.0
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Putting in appropriate values for b. in the equation for p(y.)

gives the following results:

p(yi) = .6666

p(y2) = . 1666

p(y3) = . 1666

p(y4) -= . 0002

The values of Oz.) j = 1,2,3,4 may now be calculated from
3



the relationship that:

[.666 .167 .167 0]

Therefore,

1 /2 1/4 0 1/4

0 1 0 0

1/4 1/4 1/4 1/4

0 0 1 0

p(zi) = 2.6656

p(z2) = 0.1665

p(z3) = -2.6649

p(z4) = .8329
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= [p(z i)p(z2)p(z3)p(z4)]

The above probabilities for p(z.) satisfy the restriction that

p(z.) = 1 but they violate the requirements that p(z.) > 0 and
J

J
p(z.) < 1 for j = 1,2,3,4 respectively. The result implies that

J

the maximum information gain occurs outside the range of allowable

values. Therefore, we must impose an additional restriction in

order to limit our solution to positive probabilities only. Since

p(z3) < 0, a logical restriction is p(z3) = 0. The Lagrange

Multiplier technique may be used to re-solve the information gain

equation. However, in order to maximize the information gain equa-

tion, we must first solve for the p(zj) in terms of the p(yi). In

order to simplify that notation,

by z. and Yi

p(z.) and p(yi)

The necessary equations are:

will be denoted



Solving:

71

2z1 + z
3

z
1

+ 4z
2

+ z
3

z
1

= 4y1

4y
2

z3 + z4 = 4y3

+ z3 = 4y4

zl = 4y
1

4y
4

z2= y2 y4

z3 = -4y1 + 8y4

z4 = y1+ Y3 44

The restriction that p(z3) = 0 implies that:

-4y1 + 8y4 = 0

The restriction that p(z3) = 0 could also be imposed using

matrix notation. We need only to solve for p(z3) in terms of the

p(yi) i = 1,2,3,4.

We know that:

[p(z)l[p(Ylz)] = [pool

Using the method of determinants to solve for the p(zi), the

following result is obtained.
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=p(z.)

J

row

1

i

m

1

i

m

P(Yi I zi) P(Yil zi) P(Yni zi)

P(n) ... P(yi) p(yr,)

p(yi 1 zm) .. p(yil zm) ... p(yn I zna)

P(Yi I zi) P(Yil zi) P(Yril zi)

p(Yi I zj) p(yil zj) p(y.lzi)

P(Yi I zm) P(Yilzm) P(Yril zm)

The method of determinants may now be used to solve for

p(z3) in our example.

p(z3)

Solving:

1/2 1/4 0 1/4

0 1 0 0

yl y2 y3 Y4

0 0 1 0

1/2 1/4 0 1/4

0 1 0 0

1/4 1/4 1/4 1/4

0 0 1 0

p(z3) = 8 y4
4

y1

which is the result previously obtained. By imposing the restriction
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that p(z3) = 0, the information gain equation becomes:

subject to

and

[max]G(Y, Z) = [H(Y)]-[H(Y1Z)]

-4y1 + 8y4 = 0

Putting in appropriate values for H(Y) and H(Y I Z) results

in the following equation.

[max]G(Y, Z) = -

+x

log2p(yi)
j 1ip(y.

I z.) log p(y. z.)j

-1) + µ( -4y1+ 8y4)

Plugging in the appropriate values of p(zi) in terms of the

[max]G(Y, Z) = - p (y.) log
2
p(y.) - 1.5(4y

1
-4y

4)
+

+ p.(8y4-4y1)

Taking derivatives:

KG(Y, z)] , -1 _ log
2

y

1

- 6 + - 41.t. = 0
n

(4. 14)



a[G(Y, z)] -1 - log2y2
aY2

a[G(Y, Z)]
-1 log2y3 + X

ay3

=0

=0

a[Goz, z)] _1 _ log y + 6 + X + 8p. = 02 4

a[G(Y, Z)] - y +y +y +y =1
ax 2 3 4

a[G(aY, Z)] - 8y
4

- 4y
1

= 0
p.

Solving Equations (4. 14)-(4. 17) for the p(yi) gives:

P(Y1) 2(X-4P'-7)

P(Y2) 2(X -1)

p(y3) = 2(X-1)

(X+8p.+5)
P(Y4) 2
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(4. 15)

(4. 16)

(4. 17)

(4.18)

(4. 19)

The above values for p(yi) may now be substituted into

Equation (4. 19) to obtain p. = -1.057 (Appendix C gives the equations

for computing p.). Now, Equation (4. 18) may be solved for 2X

which is:

2X =

Therefore:

1

2
-1.772

+2
0

+2
0

+2
-3.456
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p(yi) = .1274

P(Y2) = .4045

p(y3) = .4045

Now, solving for p(z.j)

P(y4)

j =

.0637

1,

1/4

2,3,4 gives:

-1
1/2 0 1/4

0 1 0 0

[.1274 .4045 .4045 .0637] [P(zi)P(qP(z3)P(g]
1 /4 1 /4 1/4 1 /4

0 0 1 0

and

p(zi) = .2548

p(z2) = .3408

p(z3) = 0

p(z4) = .4044

These values for p(z.) satisfy all the restrictions. Each

p(yi) > 0 each p(z.) > 0 and p(Yd = p(z.) = 1.

Based on the result obtained, we would predict that 12.74%

would choose Brand. A; 40.5% Brand B; 40. 5% Brand C; and 6.37%

Brand D. Also, the p(z.) j = 1,2,3,4 indicate that the factor

"Price" gives us 25. 5% of the information concerning the various

brands; that the factor "Quantity" gives 34. 1% of the gain in
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information; that "Reliability" contributes zero percent and

"Warranty" 40.4%. It is interesting to note that the various condi-

tional p(yil zi) probabilities for Reliability are all equal to 1/4.

Previously, we showed that Information Gain was measured in terms

of a deviation from the equally likely condition. It is thus justified

to set p(z3) equal to zero. In fact, we would expect this condition

to be true indicating that the factor "Reliability" does not help us any

in predicting which brand will be chosen (Appendix D gives a computer

solution to this problem).

Capital Allocation Example

The symbiotic use of a one-factor and multi-factor information

theory analysis is illustrated in the following example, A manufac-

turer produces two grades of a particular product; Grade A and

Grade XA. Grade A controls 40% of the manufacturer's total market

share while Grade XA controls 60%. Management feels that two

factors alone determine the purchasing habits of customers, "price"

and "advertising expense." The price of Grade A is $5.00 and Grade

XA is $9. 00. Currently, the company is spending $100, 000 per year

on advertising with $40, 000 being allocated to Grade A and $60, 000

to Grade XA. It is felt that, perhaps, one or more other factors can

be found which might influence purchasers to buy either Grade A or

XA. Since funds are tight, the company would like to take $20, 000 of
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their annual advertising budget to search for new factors and to

reallocate the remaining $80, 000 in order to take advantage of their

old belief that purchasers use only "price" and "advertising" when

buying either Grade A or Grade XA.

If "price" alone is used as a factor to predict market share, the

one-factor information channel equation will be (Shirland, 1971):

W-5 + NV
-9 = 1

and from the 2 level/one-factor table of Appendix E, the correspond-

ing prediction of market share will to 50% for Grade A and 60% for

XA. Taken alone, price is seen to be a poor predictor of market

share since the respective shares are known to be 40% for A and 60%

for XA. A multi-factor analysis may then be conducted using as the

required conditional probabilities, p(yilzi) = . 60 and

p(y2I zi) = .40. z1 corresponds to the factor "price" and y1 and

y2
correspond to the market shares of Grade A and Grade XA

respectively. Using z2 to represent advertising expense, the

conditional probability matrix will be:

price zl

advertising z
2

with

Y1 Y2

.60 .40

P(Yliz2) p(y21z2)
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p(yi) = .40

p(y2) = .60

A multi-factor information theory analysis results in:

p(yi I z2) = . 20

p(y21z2) = .80

Letting . 20 and .80 be predictions of market share when

advertising alone is used as an estimator, we wish to determine the

values of Ll and. L2 such that:

-L
1

-L2
W + W = 1

where L1 and L2 represent the advertising expense for Grades

A and XA respectively. The tables of Appendix E may be used to

determine Ll and L2. From the table for 2 levels /one-factor

a ratio of 1:7.23 is obtained for the advertising expenditure. The

conclusion, then, is to allocate $12, 150 as the advertising budget for

Grade A and $67,850 to Grade XA, while $20, 000 additional is being

spend in an attempt to define and utilize other factors that might

possibly be important.

This example has pedagodic value in that it illustrates the

multi-factor information theory analysis in reverse. However, in

practical situations, it could prove dangerous to shift advertising
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resources to such a great extent as is recommended in this example.

One reason is that it has been assumed that purchases rely solely on

"price" and "advertising" expenditure when buying the product in

question. If that were completely true, the analysis given here would

be valid. However, in actual situations many subtle forces such as

the media used or the method of advertising may be as dominant as

the mere dollar volume of expenditures. Also, a drop of $20, 000 in

advertising may upset the market share balance in favor of competi-

tive firms or the mere method of resource allocation by competing

firms might severely affect any shifts of resources in the example.

By the same token, it could turn out that the analysis is valid and that

the recommended shift will not affect the market share, or it could

even increase the respective shares.
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V. A CASE ANALYSIS USING ONE-FACTOR AND MULTI-
FACTOR INFORMATION THEORY MODELS

Introduction

Buzzel (1969) presents the following historical background for

an attitude study of five companies involved in manufacturing crushing

and grinding equipment. Buzzel's data will be used in conjunction

with the information theory analysis presented in this dissertation.

The theoretical development of a one-factor information channel

analysis was discussed by Shirland (1971).

Case History

The Diamond Company

In October 1966, Mr. Mathew West, Marketing
Manager of the Diamond Company, was reviewing a series
of studies of awareness of and attitudes toward his com-
pany and competing companies. He was concerned with
assessing the validity of the measures and sampling proce-
dures for two reasons! (1) two sets of studies had yielded
apparently conflicting results; and (2) one set of studies
indicated a deterioration in attitudes toward Diamond, and
this seemed inconsistent with the fact that sales in 1966
were up substantially over previous years.

Company Background. The Diamond Company
manufactured crushing and grinding equipment for sale to
the chemical industry in the United States. Diamond's
equipment was sold by a 35-man sales force. Diamond
and four other companies competed for the bulk of the
business. Mr. West believed that their market shares
were roughly:
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Collins, Inc. 15%
Diamond Company 15

Ferguson, Inc. 25
Hammond Machine Co. 20
Maxwell Manufacturing 20
All Others 5

100%

Crushing and grinding equipment was used in a
variety of applications in the chemical industry. Corporate
management, production management, process engineering,
and/or research personnel might be involved in the pur-
chase of a piece of equipment.

Although some companies have developed new types
of equipment in recent years, Diamond had not made sig-
nificant changes in its product line for several years.
Nevertheless, 1966 sales were up sharply over previous
years.

Advertising. The major purpose of the awareness
and attitude studies was to assess the effects of the com-
pany's advertising program. For several years, Diamond
had advertised relatively heavily in trade magazines. The
main objective of the campaigns had been to encourage the
feeling that Diamond stood for leadership and progressive-
ness in the industry. Diamond also maintained a group of
12 service engineers which was regarded as a part of the
sales force. Since this was considered by the company to
be a well-above-average service effort as measured by
industry standards, Diamond was also interested in
assessing its image for repair service.

Shares of total industry advertising expenditures in major

media were estimated as given in Table 16.

The Studies. Mr. West has commissioned two
research studies, one in 1964 and one in 1966. Each
study used the same questionnaire, the same cover
letter, the same universe (the 20,000 name circula-
tion list of the major trade magazine in the industry),
and the same systematic sampling procedure. The sample
size had been increased in 1966 to 1,000 from 600 in 1964.
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Both studies produced about the same proportion of usable
questionnaires (149 in 1964 and 244 in 1966)--a response
rate of 25%.

Analysis revealed that in both studies, the distribu-
tion of respondents' job classifications and geographical
locations closely approximated that of the circulation list
used as the basis for selecting the sample.

Table 16. Advertising expenditures for grinding and
crushing equipment.

Company 1964-1966 1963

Collins, Inc. 14% 7%
Diamond Company 23 34
Ferguson, Inc. 11 24
Hammond Machine Co. 20 13

Maxwell Manufacturing 32 22
Total pages of advertising 152 100%1964-66 (all companies)

The principal results of the 1964 and 1966 attitude and awareness

studies are contained in Tables 17-21.

Magazine Studies. In addition to the 1964 and 1966 studies

which were conducted for Diamond by an outside research agency,

Mr. West became aware of a series of trend studies which had been

conducted by a chemical industry magazine. Its circulation list had

served as the basis for the sample in the 1964 and 1966 studies.

Analysis. Buzzel was interested in noting changes in attitudes

of customers over a previous study. The information theory analysis

will be used to make inferences about customer attitudes. The follow-

ing five tables contain the relative frequencies of replies to five
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questions posed by the research questionnaire. In order to obtain

values for the five levels of the one factor "Attitude Rating," the

various categories; Excellent, Good, Fair, Poor, and. Don't Know are

rated as 1, 2, 3, 4, and 5 respectively. One composite rating is then

computed and used to obtain predictions of market share for each

company using each question singularly. Then a multi-factor analysis

is used to test for independence between various questions.

The questionnaire was presented as follows:

Listed below are five major factors which contribute
to the overall impression you have of various companies.
Under each of these are listed the names of five companies
which manufacture crushing and grinding equipment for the
chemical process industry. We wish to learn your opinion
of these companies, and ask that you rate them on each
characteristic by placing a check under the rating you
select. Please bear in mind your opinion is important to
us, even though it may represent an impression which is
not based on first-hand knowledge or experience (Buzzel,
1959).

Question #1. "Please rate the companies below in regard to fairness
of price and value represented by their crushing and
grinding equipment. "

Table 17. Fairness of price--Diamond Company case study.

Rating
Companies

Collins Diamond Ferguson Hammond Maxwell

Excellent .074 .111 .131 .078 .107
Good .303 .390 .421 .267 .340
Fair .074 .094 .152 .107 .197
Poor .008 .026 .016 .024 .028
Don't Know .541 .377 .279 .525 .328

Note: Number of responses in the 1966 survey consisted of 244 usable
questionnaires.
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Question #2. "Please rate the companies below in regard to service."

Table 18. Service rating--Diamond Company case study.

Rating
Companies

Collins Diamond Ferguson Hammond Maxwell

Excellent
Good
Fair
Poor
Don't Know

.053

.266

.086

.020

.573

.086 .115

.283 .390

.160 .152

.041 .045

.430 .300

.070
.246
.115
.030
.537

.143

.311

.143

.030

.369

Question #3. "Quality - In addition to the matter of good materials and
workmanship, consider performance measuring up to
promised specifications in your ratings."

Table 19. Quality- - Diamond Company case study.

Rating
Companie s

Collins Diamond Ferguson Hammond Maxwell

Excellent
Good
Fair
Poor
Don't Know

.139

.254

.057

.016

.532

.143 .139

.328 .369

.135 .176

.012 .020

.382 .295

.078

.221

.115
.016
.570

.156

.324
.143
.041
.336

Question #4. "Progressiveness - consider product innovation and
up-to-dateness of products in your ratings. "

Table 20. Progressiveness--Diamond Company case study.

Rating
Companies

Collins Diamond Ferguson Hammond Maxwell

Excellent .074 .111 .090 .065 .143
Good .226 .262 .356 .258 .324
Fair .119 .160 .185 .103 .119
Poor .033 .053 .057 .012 .025
Don't Know .550 .414 .312 .562 .389
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Question #5. "Please rate the companies in regard to over-all leader-
ship as a source for any type of crushing and grinding
equipment. "

Table 21. Leadership--Diamond Company case study.

Rating
Companies

Collins Diamond Ferguson Hammond Maxwell

Excellent
Good
Fair
Poor
Don't Know

.074

.217
. 131
.020
.656

.144 .209

.320 .394

.143 .111
.045 .033
.348 .254

.053

.304

.127

.020

.496

.168

.357
.135
.037
.303

Analysis

Treating each question as a one-factor, five level information

channel and using the ratings as previously stated, the following

"attitude rating" and probability predictions are presented in Table

22.

The probability predictions of Table 22 may be arranged in a

conditional probability matrix for a multi-factor information analysis.

The P(Y1Z) matrix is:

Collins

Y1

Diamond
Y2

Ferguson
y3

Hammond

y4

Maxwell

y5

Question #1 z1 .1652 .2174 .2396 .1648 .2131

Question #2 z2 .1669 .1956 .2387 .1737 .2251

Question #3 z
3

.1734 .2096 .2322 .1561 .2288

Question #4 z4 .1765 .2035 .2286 .1722 .2243

Question #5 z
5

.1212 .2212 .2585 .1672 .2320
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Table 22. Information theory analysis of Diamond
Company case study.

Company
Attitude
Rating

Probability
Prediction

Que stion #1
Collins 3.639 16.52%
Diamond 3.080 21.74
Ferguson 2.888 23.96
Hammond 3.654 16.48
Maxwell 3.130 21.31

Question #2
Collins 3.788 16.69
Diamond 3.446 19.56
Ferguson 3.031 23.87
Hammond 3.714 17.37
Maxwell 3.159 22.51

Question #3
Collins 3.542 17.34
Diamond 3.162 20.96
Ferguson 2.960 23.22
Hammond 3.779 15.61
Maxwell 2.977 22.88

Question #4
Collins 3.765 17.15
Diamond 3.397 20.35
Ferguson 3.145 22.86
Hammond 3.748 17.22
Maxwell 3.193 22.43

Que stion #5
Collins 4.261 12.12
Diamond 3.133 22.12
Ferguson 2.728 25.85
Hammond 3.602 16.72
Maxwell 2.950 23.20

It may be observed from the matrix (p. 85) that every row is

nearly the same as every other and therefore, the results may not be
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independent. In fact, a multi-factor analysis reveals that, indeed,

the results are not independent. This suggests that any one of the

questions may be used to predict the market shares for the various

crushing and grinding companies. Since we have five independent

predictions, an average of the values may be a better indicator of

market share. The average predicted values, then, would be:

Collins, Inc. 15.20%
Diamond Company 19.71
Ferguson, Inc. 22.80
Hammond Machine Co. 15.80
Maxwell Manufacturing 21.49
All others 5.00

100.00%

The above results agree very well with the rough estimates of

Mr. West except those for the Hammond Company and for Diamond

Company. A closer look at the original 244 usable questionnaires

suggests a possible reason for the low estimate for the market share

of the Hammond Company. Since it was estimated by Mr. West that

the Hammond Company controlled 20% of the market for crushing and

grinding equipment, one would expect that a representative sample of

the population would have an opinion as to the various qualities of that

company. However, upon close examination of the "Don't Know"

answers it appears that a large number of the respondants are not

aware of the Hammond Company. Table 23 presents the number

answering "Don't Know" for the five questions.
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Table 23. Answers of Don't Know--Diamond Company case study.

Question Collins Diamond Ferguson Hammond Maxwell

1 132 92 68 128 80
2 140 105 73 131 90
3 130 93 72 139 82
4 134 101 76 137 95
5 160 85 62 121 74

Table 23 shows that fewer persons answered "Don't Know" about

the Ferguson Company (25% Market Share) and for the questions, the

Collins Company (15% Market Share) had the most "Don't Know"

answers for three of the five questions. These results were to be

expected since the Ferguson Company and Collins Company were first

and last respectively in Market shares. On the other hand, the

Hammond Company which was estimated to have the second largest

(20%) market share had the most "Don't Know" answers to two of the

questions and had second most of the other three.

It would appear, then, that the sample taken did not contain a

representative number of persons familiar with Hammond Company's

product. Suppose then that the Hammond Company's market share is

set at the estimated value of 20% and the market shares re-computed

using the one-factor information theory analysis. The various market

shares would then be:
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Collins, Inc. 14.90%
Diamond Company 18.80
Ferguson, Inc. 21.30
Hammond Machine Co. 20.00
Maxwell Manufacturing 20.00
All others 5.00

100.00%

The above estimates using information theory agree almost

identically with the "rough estimates" of Mr. West. The analysis

also points out what might be a very important concept. The fact that

a multi-factor information theory analysis showed that each question

could be used independently to predict market share suggests that

persons might not be able to consider a question such as "rate the

quality" or "rate the progressiveness." Instead, it may be that a

person has a preconceived opinion of a company in general which is

prevalent no matter what question he is asked. In other words, a

person may not be able to isolate his opinion of a company's "quality"

or "progressiveness" as compared to its "acceptance. " Instead, he

rates each of these qualities in terms of a combination of all the

factors that make up his opinion of a particular company.
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VI. INFORMATION THEORY APPLIED TO MARKOV
CHAIN ANALYSIS

Introduction

A first order Markov process is a process with the property that,

given the value of a state of the process Yi, the values Yi; j >i, do not

depend on the values of Yk; k < i. In other words, the probability

of any particular future behavior of the process, when its present

state is positively known, does not depend on its past behavior. A

discrete time Markov chain is a Markov process whose state space is

a countable set (Karlan, 1969).

Some areas in which Markov chain analysis has been employed

are:

1. One-dimensional random walks (Kemeney and Snell, 1965).

Z. Queueing models (Pritsker, 1969).

3. Inventory analysis (Hadley and Whitin, 1963).

4. Genetic models (Karlan, 1969).

5. Simulation models (Inoue, 1971).

6. Marketing research applications (Green, 1964).

7. Quality control acceptance programs (Koyama, et al., 1970).

Usually, it is desired to determine the steady-state probabilities

of a Markov chain after the process has reached stochastic equilib-

rium. The following four theorems are useful in determining these
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probabilities for any Markov chain.

Theorem 1. In a positive recurrent aperiodic class with states

limp..p.. = Tr =
33

CO

Tr

= 1

i=0

00

Tr p
1 13

i=0

and the ir's are uniquely determined by the set of equations:

TT > 01
CO

= 1

i = 0

=
3

00

i=0

any set of (Tr.) the above equations is called a
i=0

stationary probability distribution of the Markov chain (Karlan, 1969).

Theorem 2. A state i is recurrent if and only if:

co

Pnl =

n=1
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Theorem 3. If state i communicates with state j and if

i is recurrent then j is recurrent.

Theorem 4. The period of a state i is the greatest common

divisor of all integers, n > 1, for which pnii > 0.

Brand Switching Example

Consider three manufacturers of a product labeled Brand A,

Brand B, and Brand C respectively. It has been found through a

market research survey that there is a certain degree of brand loyalty

apparent in this market system, but also, there is some brand switch-

ing by retail customers. It has been observed that of the persons

purchasing Brand A in one period 10% will re-purchase Brand A

during the next period, 10% will purchase Brand B and 80% Brand C,

Of those purchasing Brand B in a particular period 70% will purchase

A and 30% will repeat. For Brand C, 40% of those who purchase it

in one period will switch to Brand A in the next period, 50% will

switch to Brand B and 10% will repeat.

The individual manufacturers are interested in determining the

answers to the following questions.

1. After n periods what will be the respective market shares

for the three brands?

2. At stochastic equilibrium, what is the market share for each
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manufacturer ?

3. How many periods does it take for the Markov process to

reach stochastic equilibrium?

Most Markov chain analyses involve determining answers to

questions 1 and 2. However, information theory may be extremely

useful in answering question 3. It may also be used in answering

questions 1 and 2. Generally, it is very easy to determine the steady-

state or stationary probability distribution by normal Markov chain

analysis. If the transition matrix consists of a positive recurrent

aperiodic class, the steady state probabilities are simply the left

eigenvector (Tr
1
PIT

2 f...71Tn ) associated with the class. The eigen-

value associated with the class will be 1, and the right eigenvector

((1)1' 12' " 4)n) corresponding to the absorption probabilities will be

of the form (1, 0, 0, ... , 0). In many cases, stochastic equilibrium

will not be reached until a large number of steps (periods in our

example) have occurred. In these cases, it is not realistic to consider

the steady-state probabilities since the conditions under which the

initial transition probability matrix was obtained will likely change

with time. Question 3, then, is very important in drawing conclusions

concerning a Markov chain. At present, the easiest method of deter-

mining the answer to this question is through a trial and error

procedure. However, recently there has been increasing interest in

simulating Markov processes. Several computer programs are
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available which simulate each event with the intent of heuristically

computing the steady-state probabilities along with other pertinent

data concerning the process. For example GERT (Pritsker, 1970);

MSIP (Inoue, 1970; Inoue et al. , 1971; Ghaffari, 1970) are two such

programs. Recent authors who have published their research con-

cerning Markov process simulation include Hennie (1968), Howard

(1960), Kemeny and Snell (1960), and Koyama et al. (1970).

This dissertation presents an information theory analysis that

may be used to predict the number of steps to reach the stochastic

equilibrium conditions. This method should prove useful in making

inferences about a particular Markov chain and to set limits on the

number of iterations for a Markov chain simulation. Another

advantage is that the information theory analysis will permit a

researcher to begin his simulation at equilibrium, thus eliminating

costly calculations while the process is in the transient states.

n-Step Transition Probabilities

It may be of interest to predict the probability distribution or

market share for each brand after the system has been operating for

1, 2, 3, etc. up to n time periods. To calculate the market shares

it is only necessary to multiply the one-step transition probability

matrix by itself n times, where n is the number of steps

desired, and then pre-multiply the resulting matrix by the initial



95

market conditions at the start of the analysis. In our example, we

know nothing concerning the respective market shares at the beginning

of the analysis. We should choose, then, the condition of maximum

uncertainty and use the equally likely case where

P(A) = P(B) = P(C) = 1/3.

From the statement of the problem, the one-step transition

probability matrix is shown in Table 24.

and

Table 24. Transition probabilities for
Markov chain analysis.

(Period i) (Period i + 1) to
From A B C

A .1 .1 .8
B .7 .3 0

C .4 .5 .1

P(A0) = 1/3

P(B0) = 1/3

P(C0) = 1/3

After n steps

[P(A0),P(B0),P(C0))

our market

.1

.3

.5

share prediction will be:

n

= [P(An),P(Bn),P(Cn)]

. 1

.7

.4

.8

0

.1



or

.40 .44 .16

[P(A2),P(B2),P (C2)] = [1/3,1/3,1/3] . 28 . 16 .56

.43 .24 .33

P(A2) = .37

P(B2) = .28

P(C 2) = .35

Table 25 contains predictions for the market shares of Brands

A, B, and C for the seven periods calculated.

Table 25. Markov chain prediction of market shares.

Period Brand A Brand B Brand C

1 .4000 .3000 .3000
2 .3700 .2800 .3500
3 .3730 .2960 .3310
4 .3769 .2916 .3315
5 .3744 .2909 .3347
6 .3750 .2921 .3330
7 .3750 .2916 .3334

Stochastic Equilibrium Probabilities

Using Theorems 1 through 4 stated previously, we may calcu-

late a set of Tr, such that
3

3

i=1

=
3

j= 1,2,3.

96
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The calculations for our brand share example will be:

.1 .1 .8

1A,
TrB, 1T C

.7 .3 .0 [
TrA' TrB' TrCi

.4 .5 .1

Solving the above system of equations results in:

A
.3750

Tr
B

= . 2917

Ti .3333

Therefore, over a sufficiently long period of time the market

share of Brands A, B, and C would be 37.50%, 29.17% and 33.33%

respectively regardless of what the shares were initially. In this

example, we assumed the equally likely condition of 1/3, 1/3, 1/3.

However, the steady-state probabilities will be as calculated given

any initial conditions.

Information Theory Analysis of n-Step Transition Probabilities

In the previous chapters of this dissertation, we have been using

information theory to predict various probabilities for a conditional

probability matrix. In the information theory analysis, we have pre-

dicted the probabilities of the various outcomes of Experiments Y

and Z when we could observe the conditional probability of
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Experiment Y given the results of Experiment Z. A Markov chain

analysis may be viewed in the same manner. The states of the sys-

tem at time i may be viewed as an Experiment Z and the states

at time i + 1 as another Experiment called Y. The previously

discussed multi-factor analysis may then be used to predict

i = 1,2,...,n,

p(yd;

which corresponds to a prediction of the various

market shares in the brand switching example. However, the infor-

mation theory analysis is based on the results of conducting the

experiment once. In other words, we may calculate the probabilities

of P(Y) and P(Z) for the first step in the Markov chain analysis

by using the matrix [P(YI Z)]. For steps 2,3, ... ,n respectively,

we would use the probabilities associated with the transition from

step 2 to 3, 3 to 4, etc. up to n 1, to n. More simply, we

would use the probability matrix associated with

[P(Y1Z)]2;[P(YIZ)]3;...;[P(YIZ)]n respectively. It may be noted

that at successive steps in the Markov chain analysis, as n gets

large, the probabilities in each column approach a common value. In

other words, when stochastic equilibrium has been reached

3Pll P21 1pm P P 23 = P .; and

. = pirn = p . Stated simply, each row in themmPlm 2m

probability matrix will be identical. Therefore, the information

gained by the matrix will be zero. Now, if we could use information

theory to calculate the number of steps to reach the condition of zero
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information gain, we could use this value as a predictor of when

stochastic equilibrium is reached.

The brand switching example will now be used to show that the

multi-factor information theory analysis can be used to:

1. Predict the probability values in the transitional stages of

a Markov process.

2. Predict the number of steps to reach stochastic equilibrium

in a Markov process.

The multi-factor analysis of Chapter III was used to develop

Table 26. This table contains the individual transition matrices that

were used in the information theory analysis along with the pertinent

results of the analysis. The following notation is used in Table 26.

Column 1. Step i: Gives the steps of the transitional probabil-

ity matrix as:

step 1 = [p(Y I Z)]

step 2 = [p(Y1Z)]2

step i = [p(YI Z)]i

step m = [13(Y1Z

Column 2. The states of the process as Brand A, Brand B and

Brand C.

Column 3. The transitional probability matrix as:
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[p(yiz)lstep 1

[p(yiz)Jstep i

[p(yiz)]step m

Column 4. p(yi): the prediction of the market shares of Brands

A, B, and C respectively.

:Column5. p(z.): the calculation of the amount of importance

or the relative amount of information gain contributed by each row in

the transition probability matrix.

Column 6. H.: calculated as:
1

3

P Y j
1=1

log p(yi I zi) for j = 1,2,3

Column 7. H(Y): the information transmitted by Experiment

Y alone.

H(Y) = 2 p (y.) log p(y.)
2 I.

i=1

Column 8. H(Y1Z): the conditional information transmitted by

Experiment Y when the results of Experiment Z are known.



Table 26. Summary of information theory data for brand switching example.

Step State Probability Matrix P(Yi) p(z.) H.
1

H(Y) H(Yf Z)

1 A .1 .1 .8 .4362 .4396 .9219 1.5268 .899155

B .7 .3 .0 .2121 .5604 .8813

C .4 .5 .1 .3517 .0000 1.3096

2 A .400 .440 .160 .3418 .5150 1.47294 1.44032 .141691

B .280 .160 .560 .3042 .4850 1.40568

C .430 .240 .330 .3540 .0000 1.54552

3 A .412 .252 .336 .3744 .3207 1.55685 1.57928 1.569183

B .364 .356 .280 .3046 .4417 1.57539

C .343 .280 .377 .3210 .2376 1.57429

4 A .352 .285 .363 .3713 .4667 1.57698 1.57788 1.575682

B .398 .283 .319 .2911 .2289 1.57038

C .381 .307 .312 .3376 .3044 1.57768

5 A .380 .302 .318 .3728 .5018 1.57780 1.57810 1.577252

B .366 .284 .350 .2933 .4982 1.57670

C .378 .286 .336 .3339 .0000 1.57581

6 A .377 .288 .335 .3762 .5004 1.57630 1.57732 1.577402

B .376 .297 .327 .2922 .4997 1.57819

C .373 .292 .335 .3316 .0000 1.57782

7 A .373 .292 .335 .3748 .4292 1.57774 1.57749 1.577484

B .376 .290 .334 .2918 .1987 1.57694

C .376 .293 .331 .3334 .3721 1.57748
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In order to prove the validity of the information theory calcula-

tions for predicting the various market shares for Brands A, B, and

C, two statistical tests (the paired t-test and Wilcoxen Signed Rank

Test) will be conducted using the results of the Markov chain analysis

and the information theory analysis. Table 27, Table 28 and Table

29 summarize the data necessary for conducting a paired t-test for

the predictions for Brands A, B, and C respectively.

Table 27. Market share predictions for brand A.

Market Share by
Markov Chain

Market Share by
Information Theory

Step Analysis Analysis Difference
Number X1 X2 X1 -X2

1 .4000 .4362 -.0362
2 .3700 .3418 .0282
3 .3730 .3744 -.0014
4 .3769 .3716 .0056
5 .3744 .3728 .0016
6 .3750 .3762 -.0012
7 .3751 .3748 .0003

Table 28. Market share predictions for brand B.

Market Share by
Markov Chain

Market Share by
Information Theory

Step Analysis Analysis Difference
Number X

1
X2 X1 -X2

1 .3000 .2121 .0879
2 .2800 .3042 -.0242
3 .2960 .3046 -.0086
4 .2916 .2911 .0005
5 .2909 .2933 -.0024
6 .2921 .2922 -.0001
7 .2917 .2918 -.0001



103

Table 29. Market share predictions for brand C.

Market Share by
Markov Chain

Market Share by
Information Theory

Step Analysis Analysis Difference
Number X1 X2 X1 -X2

1 .3000 .3517 -.0517
2 .3500 .3540 -.0040
3 .3310 .3210 .0100
4 .3315 .3376 -.0061
5 .3347 .3339 .0008
6 .3330 .3316 .0014
7 .3333 .3334 -.0001

Figure 18 shows a plot of the prediction of the market shares

of Brands A, B, and C using the two methods; Markov chain analysis

and information theory analysis.

Wine (1964) gives the following statistic for conducting a paired

t-test:

t= - 6
sd with n-1 degrees of freedom,

where:

d = mean of the difference between pairs of observations.

sd = standard deviation of the paired differences.

sd

d)
2

/n

n-1
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Figure 18. Plot of market share predictions for Brands A, B, and C.
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n = number of observations.

5 = hypothesized population mean.

Table 30 summarizes the t-test data for the three Brands A, B,

and C. In this example, we wish to test whether the two prediction

methods are identical by setting 5 = 0. In Table 30,

7

i=1

= the sum of the paired differences.

2

d.
1

= the sum of squares of the paired differences.

t = the t value at the .05 significance level withcrit
6 degrees of freedom.

Table 30 Summary of t-test data.

Variable d.
1

d.
2

1
sd t tcrit(.05:

A -.0231 .00214309 -.0033 .0185601 -0.470417 2.447
B .0530 .00839204 .00757 .0364937 0.548816 2.447
C .0487 .00282871 .00696 .0188600 .976375 2.447

Since each calculated t value is less than t at the .05crit

significance level, we cannot reject the hypothesis that the two

methods of predicting market share are the same. We may conclude

that in the absence of additional information the information theory

analysis gives predictions not significantly different from the Markov
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chain analysis.

In order to use the paired t-test we must assume that the two

populations from which data are drawn are normally distributed. As

a further test of our data a distribution free test as suggested by

Wilcoxon will be conducted. The Wilcoxon signed rank test uses

both the order and magnitude properties of the paired t-test but the

normality requirement is not necessary for the Wilcoxon test (Wine,

1964).

In order to conduct a Wilcoxon signed rank test, the paired dif-

ferences are first arranged according to increasing order of the

absolute value of the differences; that is, for Brand A:

Table 31. Wilcoxon test data for Brand A.

Order .0003 -.0012 -.0014 .0016 .0056 .0282 -.0362

Rank 1 2 3 4 5 6 7

Next, assign ranks from 1 to n for each difference as was

done above. Finally, find the sum T of the positive or negative

ranks, whichever is smaller, and compare with the appropriate

critical value from Table 34. If T is smaller than the critical

value, reject the null hypothesis that the two methods are the same;

otherwise fail to reject the null hypothesis.
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For brand A: T+ = 1 + 4 + 5 + 6 = 16

T = 2 + 3 + 7 = 12

Since T = 12 is smaller we use it and fail to reject the null

hypothesis since for seven pairs of values, we reject if T < 2 at

the .05 significance level.

Similarly, for Brand B the ordered values and their ranks are:

Table 32. Wilcoxon test data for Brand B.

Order -.0001 -.0001 .0005 -.0024 -.0086 -.0242 .0879

Rank 1.5 1.5 3 4 5 6 7

Since there are two values of .0001 we assign as rank the

average of their respective ranks or 1 + 2 divided by 2 = 1.5.

Now, T+ = 10

T = 18

Since T+ = 10 > 2, we cannot reject the hypothesis that the

two methods are the same.

Table 33. Wilcoxon test data for Brand C.

Order -.0001 .0008 .0014 -.0040 -.0061 .0100 -.0517

Rank 1 2 3 4 5 6 7
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For Brand C: T+ = 11

T = 17

Again, since T+ = 11 > 2, we cannot reject the hypothesis

that the two methods are the same.

Table 34. Critical values of T for Wilcoxon's signed
rank two sided test.

Pairs Probability

n .05 .02 .01
6 0 - -

7 2 0

8 4 2 0

9 6 3 2

From the results of the two statistical tests conducted on the

data in the brand switching example we can conclude that the two

methods of predicting the marketing shares for the various brands are

not significantly different.

Information Theory Used to Predict the Number of Steps
to Reach Stochastic Equilibrium

It was stated previously that the gain in information G(Y, Z)

will be zero when stochastic equilibrium is reached since each row of

the probability matrix will be identical. To show that this statement

is true consider the following:

Given the stochastic equilibrium probability matrix:
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Where:

Column

Row 1

m

P1 P(Yllz1)

P2 P(Y2) z1)

F'm= P(Ymk

1 2

Pi

P.
j

Pi

=

...

m

P1 P2 ...

1
P

2
...

P1 P2 ...

Pm

Pm

Pm

P(Y11z2)

P(Y21z2)

= P(Ym I z2)

1)(Ylizm)

P(Y2lzm)

= 13(YmIzm)

Since each row in the probability matrix is the same, one row

alone contributes 100% of the information concerning the matrix or

p(zi) = 1 and p(z2) = = p(zm) = 0.

Then p(yi) = P1; p(y2) = P2; ... ; p(ym) = Pm.

The information gain equation:

G(Y, Z) = log2p(yi) - z.p(y. I z.) log
2
p(y. I z.)

Plugging in appropriate values for the z.:
3

G(Y, Z) = P. log
2
P. P.

1
log

2
P. = 0
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Therefore, at stochastic equilibrium, the information gain will

be zero. If it were possible, then, to predict the number of itera-

tions needed to reach the point of zero information gain, we could

have a predictor of the number of iterations to reach equilibrium.

The brand switching example will be used to show that the information

gain equation follows an exponential type distribution. Linear regres-

sion will then be employed using as data the information gain values

for the first few iterations in order to obtain an estimate of the num-

ber of steps to reach a point of zero information gain.

The gain in information for the first seven iterations of the

brand switching example are presented in Table 35.

Table 35. Information gain for brand switching
example.

Step

Information Gain
(bits)

H(Y) H(Y/Z)
Loge (Gain)

1 .627673 0.465736
2 .141691 - 1.954107
3 .010098 - 4.595418
4 .002200 - 6.119298
5 .000849 - 7.071451

6 .000084 - 9.350000
7 .000004 -10.000000

Table 35 shows that after six iterations the gain in information

is zero to four decimal places. In fact, from the Markov chain

analysis for iteration six the respective probabilities for Brands A,
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B, and C were .375, . 292, and .333 which are the same as the com-

puted stationary probability distribution using Theorems 1 through 4

listed previously. Figure 19 shows a plot of the information gain for

the seven iterations for the brand switching example.

1 4 5

Periods

Figure 19. Plot of information gain for brand switching example.



112

From Figure 19 it may be seen that the gain in information

follows an exponential type distribution. A non-linear regression

analysis could be used directly to determine the equation of this curve.

However, we wish to make our predictions based on as few data points

as possible so it will be expedient to make a log (base e) transforma-

tion of the data. Table 35 gives the logarithms to base e for the

seven data points. Figure 20 shows a plot of the transformed data

points.

0

- 2

-4.
cd

0

- 8.

9

-10-

1 2 3 4

Periods
5 6

Figure 20. Plot of transformed data for the information gain in a
brand switching example.

7
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The plot of the transformed data does not follow exactly a

straight line. However, we must decide on the number of iterations to

use for the predictive equation. If all seven data points were used, a

quadratic or cubic term as well as a linear term might be desirable.

For this particular example we will employ simple linear regression

using only the first two data points to make our prediction. Then,

successively three, four and five points will be used to note any change

in the prediction. Table 36 summarizes the linear regression data

and gives the predictions for the number of steps to reach stochastic

equilibrium. For cases II, III, and. IV the regression equation is

based on values of X of -1, 0, 1, 2 etc. instead of X = 1, 2, 3,4

to facilitate ease of computations; X being the (i-2) iteration.

Table 36. Predictions of the number of steps for a Markov chain to
reach stochastic equilibrium.

Prediction Based
on Steps Prediction Equation

Predicted. Number
of Trials to Reach

Stochastic Equilibrium

1, 2
1, 2, 3
1, 2, 3, 4
1, 2, 3, 4, 5

Y = -1. 48837X + 1. 022635
Y = -2. 33842X - 2. 530577
Y = -2. 21039X - 2.146494
Y = -2. 21039X - 1. 830819

7. 4 z 8
5. 2 z 6
5. 6 z 6
5. 7 z 6

From Table 36 it may be noted that using the first two iterations

of the Markov process, the prediction is eight steps to reach

stochastic equilibrium while using three, four, or five iterations
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results in a prediction of six. This is an important result in several

respects. For computer programs that rely on matrix multiplication

to compute steady-state probabilities, the usual method is to set an

arbitrarily large limit on the number of iterations to insure that

stochastic equilibrium has been reached. Instead, the information

theory analysis could be used to predict an acceptable limit for the

number of iterations, thus reducing unnecessary costs of intermediate

steps. In Monte Carlo simulations, only one event is sampled at a

time. Therefore, it takes an even greater number of calculations to

determine the steady-state probabilities. The information theory

approach could be even more useful in these simulations since the

simulation could be started at a point at or near stochastic equilibrium,

thereby saving the costs of many calculations.
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VII. IMPLICATIONS AND EXTENSIONS

Implications of Multi-Factor Information Theory Model

This dissertation has presented three areas in which multi-

factor information theory models may be applied; (1) Bayesian deci-

sion analysis, (2) estimation and (3) Markov chain analysis. In

Bayesian decision analysis, it was shown that information theory

could be used to obtain the same results as with traditional methods.

An advantage of the information theory approach is that it offers a

measure of sensitivity in a particular problem. For example, in the

urn problem it was found that sampling procedures (a), (b), and (c)

resulted in values of . 685, . 691, and . 697 respectively for the

probabilities of guessing correctly the urn from which one had been

sampling. The information theory approach showed that sampling

procedure (a) resulted in a 16% gain in information over complete

uncertainty; procedure (b) showed a gain of 18. 5% over complete

uncertainty and a 3. 08% gain over procedure (a); procedure (c) was

concluded to be the best since it contributed a 29. 03% gain over com-

plete uncertainty and a 12. 9% gain over procedure (b). Information

theory, then, may be used as a decision tool in determining before

an experiment has been conducted whether enough will be learned to

make the experiment worthwhile. In this way the feasibility of
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collecting additional information can be examined.

Information gain may also be used to determine an optimal point

for management's willingness to pay for additional information by

equating it to the cost of collecting that information. This concept

should be especially useful in the area of Quality Control and Sampling.

The main advantage over traditional methods is that the information

theory approach answers the question: "Exactly how much is learned

from the collection of additional information and is it worthwhile

costwise to gather additional information?" Of secondary importance

is the fact that the information theory approach bases its interpreta-

tion of the problem situation on all the outcomes of an experiment and

not on just one or two specific outcomes.

When utilizing information theory as an estimating technique,

the results obtained showed that sampling strategies that produce a

maximum information gain are identical to those obtained by tradi-

tional methods. However, the information theory analysis is easier

to apply, and offers a novel interpretation and a clearer understanding

of the information processing mechanism.

A multi-factor information channel analysis is very useful in

many areas of marketing research. For example, the results of

questionnaires may be analyzed in an attempt to determine market

share. The basic hypothesis is that consumers are influenced by a

variety of factors when they make purchases; price, advertising, color,
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location, packaging, quality of product or company image, etc. The

information theory analysis can help to identify those factors which

are being considered. Once defined, these factors can be altered in

an attempt to increase market share or to improve the overall image

of a particular company. In the case analysis presented in Chapter

V, five questions were analyzed in an attempt to determine if they

could be used to predict market share. The solution showed that any

of the five questions could be used independently as an estimator of

market share. This result was significant because it suggested that

persons were not able to separate their opinions of a particular

company into levels of "fairness of price," "service value," "quality,"

"progressiveness" and "leadership." Instead, the analysis led one

to believe that, perhaps, it was a combination of these factors that

influenced a customer's opinion of a particular company but he was

simply not able to differentiate between different factors. A manu-

facturer should then be cautious in his use of information supplied by

questionnaires of this type. For example, if a manufacturer were

interested in determining customer attitude concerning the quality of

his product, he should remember that answers may well contain feel-

ings about many other aspects of his company as well and not on

quality alone.

The information theory analysis may serve to illuminate problem

areas of negative or positive feelings about a company. If upon
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analyzing the results of questionnaires, several factors are seen to be

independent as far as estimating market share is concerned while one

is not, that factor may distinguish positive or negative reactions about

the company. For example, in the case study presented in this dis-

sertation, suppose that four of the questions could be used independ-

ently to predict market share but the question concerning quality

could not. This might indicate that customers are heavily influenced

by this factor. If the analysis showed that using quality as a factor

resulted in a low estimate of market share, perhaps the company

could improve its position through advertising or by improving its

image as far as quality was concerned. If the factor, quality, results

in a high market share estimate, it may indicate that the company's

quality is considered exceptional. Again, a decision could be made to

further capitalize on this fact through advertising or other means.

In any practical problem concerning Markov processes there are

two phases, a transitional phase characterized by constantly fluctuat-

ing probability values and a stochastic equilibrium or steady-state

phase corresponding to long run aspects of the process. It may be of

practical interest to determine exactly how many steps it takes to

reach stochastic equilibrium. For example, in an inventory problem

one might like to develop a stocking policy for merchandise. The

usual approach is to calculate the steady-state probabilities and base

a decision on those values. However, it may take an unusually large
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number of periods for the particular process to reach the equilibrium

phase. In this case, the stochastic equilibrium condition is of no

interest since estimates generated to obtain values for the study will

vary with time and are therefore only reliable over a short planning

horizon. It would be very desirable, then, to calculate the number of

steps to reach equilibrium. This dissertation presented a procedure

using the concept of information gain which could be used to predict

the number of iterations of the process needed to reach stochastic

equilibrium.

Montgomery (1969) states that the Markov chain model of cus-

tomer behavior is subject to certain limitations, one of which is the

need for the development of statistical methods to render a model

more empirically viable. In recommendations for future research,

Montgomery states that there is a need for the development of multi-

dimensional Markov, diffusion and learning models. The information

theory model presented in this dissertation is one answer to both of

these recommendations.

Extensions for Future Research

In its present state, the Markov model of consumer behavior is

subject to limitations which identify areas for future research. First,

the model is not able to account for heterogeneity among consumers

in terms of their transition probabilities. Another generalization
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would be to allow customers to vary their opinions or reactions with

time. Second, developments in additional methods to test and validate

the assumptions are needed.

In the area of human behavior, it would be extremely desirable

to show that in any given situation, consumer behavior can be analyzed

as a communication channel. If this were the case, any situation

could be analyzed by identifying those factors upon which consumers

rely when making purchases. The challenge, then, involves first,

studying a wide variety of specific problems in an attempt to identify

the specific factors involved. Secondly and of more importance, is the

need for a method of systematically searching for the pertinent

identifiable factors that explain consumer behavior. Of course, as in

most mathematical techniques, data collection is an important prob-

lem area. If reliable data were available the criticism of most

mathematical techniques would be alleviated.

Another area of interest for future research is in the area of

learning models. Traditionally, information theory was applied to the

human operator in order to determine learning rates. Similar models

could be studied using consumer behavior as a communication mechan-

ism. A fundamental aspect of learning theory is the idea that the

occurrence of a response will increase the probability that a consumer

will repurchase the product at a later date. In fact, most available

learning models explicitly state that purchase event feedback affects
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the future response probability. Kuehn (1962) postulated a linear

learning model for consumer brand choice. Information theory sug-

gests a logarithmic function. Several specific examples exist that

suggest that information theory may be very applicable in the area of

consumer learning. Haines (1964) developed a learning model using

aggregate market measures which were found to be asymptotic. He

then used regression analysis which resulted in a modified linear

learning model. Future research could show that a model based on

information theory is more realistic in certain situations than either

Kuehn's or Haines' models.

Montgomery (1969) states that there is a need to test the

empirical viability of stochastic models for many product classes and

to compare various models. The information theory model presented

in this dissertation should be compared to other models for many sets

of data.

Additional work is needed in the area of evaluating the costs of

gathering information versus gain in information. Usually, cost con-

sideration problems are analyzed in an attempt to optimize manufac-

turing a product at the point of lowest total cost. However, in many

cases, especially in R&D situations, minimum cost might not be of

interest. For example, suppose a specified amount of capital is avail-

able for quality and reliability studies of a product. Several tests can

be conducted each costing a specified amount. The questions of
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interest are; "Which tests should be conducted?" and "How much

testing should be done?" Instead of minimum total cost, the problem

might concern itself with allocating capital in a manner that will pro-

vide the most information about the product. One example of this

type of analysis was described in this dissertation. More research is

needed, however, to develop improved methods which may be tested

in actual problem situations.

More research is needed in the area of identifying random

effects or noise that severely affect an information theory model.

Also, the actions of competing alternatives should be studied in an

attempt to determine the effect a change in one will have on the

information theory model.

In models similar to the capital allocation model of page 76 ,

calculations become increasingly cumbersome as more factors are

introduced into the model. More research is needed to develop

methods to handle these problems.

Shannon's early research into stochastic processes prompted

Kunisawa (1958) to suggest that a department of a company might be

analyzed by studying the flow of memos and communications between

members of a work group. It may be possible to treat one person in

the group as a transmitter sending information using the paperwork

channel to a receiver represented by the person receiving the informa-

tion. A similar analysis could be made using the flow of machine
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parts in a factory. Various departments such as the assembly area,

inspection area, manufacturing area, etc. would act as transmitters

and receivers and the volume of movement of various parts as the

information channel. If information theory could be shown to be

applicable to either of these situations, a new and powerful application

will have been found which will extend the usefulness of information

theory models.
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VIII. CONCLUSIONS

This dissertation has attempted to present the extreme versa-

tility of information theory. Claude Shannon (1949) who pioneered

information theory research, avoided the criticisms of other

researchers of his time by specifying that his theory only applied to

the technical problems of communication and not to the semantic or

pragmatic problems with which social scientists were concerned.

Technical problems as investigated by Shannon involve the accuracy of

transmitting symbols of communication. Semantic problems, on the

other hand, deal with how precisely transmitted symbols convey the

desired meaning. Problems involving motivation and understanding

fall into this category. Pragmatic problems are concerned with how

successful the meaning of a message transmitted to the receiver leads

to the desired result.

A mathematical treatment of consumer motivation has been pre-

sented in this dissertation. The premise is that consumers are

deluged by positive and negative signals and messages which motivate

them to purchase or not to purchase a particular product. These

signals are transmitted to consumers by means of specific factors

such as price, advertising, packaging, function, appeal, etc. Some

factors may act as positive motivators such as a low price, snob

appeal or other desirable feature and negative motivators such as a
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high price, poor quality, etc. Acting collectively, these factors

determine consumer behavior. Stated categorically, any consume r

behavior problem could be analyzed mathematically by identifying and

measuring the specific factor or factors that influence consumers

when purchasing a particular product. Practically speaking, however,

it would be an impossible task to identify every factor involved.

Instead, it may be possible to identify a sufficient number of factors

which can be used to predict behavior. All the undefined factors

would then be considered as noise. In many cases, one factor will be

sufficient, in others two or more will be required. Each situation

would have to be individually analyzed in order to determine the

particular information theory model that applied.

Markov chains have been extensively used as consumer learning

models, game theory models, queueing models, etc. The mathemati-

cal treatment of consumer motivation presented in this dissertation

can be used to explain Markov chain learning models. The Markov

chain model is predicated on the assumption that once a person has

purchased a particular product, there is a distinct probability that he

will repurchase or switch products during the next purchase period.

Steady-state probabilities are then calculated to determine the long run

purchasing habits of consumers. Employing the multi-factor analysis

suggests that the fact that a person had or had not purchased a

particular product would act as a factor in conjunction with all others
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to either positively or negatively influence the repurchase of the pro-

duct during the next purchase period. A multi-factor information

theory model, as well as a Markov chain analysis can be used, then,

to predict purchase habits of consumers. At steady-state the Markov

chain analysis and the multi-factor information theory model result in

identical solutions. During transitional phases, simulation of the

Markov process and the information theory models are seen to be

closely correlated.

Another important application of information theory models is

in the prediction of the point at which steady-state conditions of a

Markov chain analysis will be reached. Using the results of the first

few steps in a Markov chain analysis, the information theory models

give a fairly accurate prediction of the number of steps to reach

stochastic equilibrium. An analysis of this type could prove useful in

simulation situations. For those simulations in which stochastic

equilibrium is of prime importance, the information theory model

could be used to predict the point at which equilibrium is reached.

The simulation could then be begun at this point saving many costly

calculations.

The information theory models presented in this dissertation

can also be useful in economic decision situations in which it is

desired to obtain a maximum amount of information per dollar and not

simply to operate at minimum total cost. For example, in the area
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of quality and reliability control, several tests may be available

which can be used to determine specific characteristics for a product.

The information theory model could be used to determine the number

of tests to conduct that will result in allocation of capital such that a

maximum amount of information about that product results.

Again, the power of the information theory models presented in

this dissertation appears to be in their potential for explaining how

consumers behave, how Markov chain analyses are used as learning

models, and how decisions can be made. For these reasons, infor-

mation theory should prove to be another useful addition to the fields

of Operations Research and decision analysis.
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where

and

Proof that

APPENDIX A

Information Gain Equation Proof

G(Y, Z) = H(Y) - (YIZ) = H(Z) H(ZIY)

H(Y) =

H(Y I Z) = -

We know from Bayes theorem that:

log p(yi)

.)[p(y. I z.3 ) log p(y. I z.)]

P(Yd iP(zilY)

=P(YiI z.J ) -p(z.)

Substituting the value of P(Yi I zi)

into the information gain equation, the following result is obtained:

134

as determined from Bayes theorem

G(Y, Z) = p (y.) log p(y.) p (y.)p(z. I y.) log
3 p(z.)

p(y.)p(z.ly.1 )

Expanding the terms containing logs:
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G(Y, Z) = -

By definition,

From above,

but

p(yi) log p(yi) + p (yi)p(zi I yi) log p(yi)

P (Y.)P(z.j I Y.) log p(z.j I y.)

p (y.)p(z.
3 I.

y.) log p(z.)

H(ZI Y) p (y.)p(z. I y.) log p(zJ . I y.1 )

by definition, so

p (y.)p(z. I yi) log p(z
j

I y.) may be written ast

p(yi) log p(yi)

3

p(z.
3

I yi) = 1

(z.
3

I y.)

p (yi)p(zj I yi) log p(z.
3

y.) = p(yi) log p(yi)
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which cancels with the like term in the information gain equation.

Now p(y.)p(zjy.) log p(z.)
j

can be written

1

but

Therefore:

G(Y, Z) = -

and by definition

so:

log p(z.)

=p(z.)

(z.) log p(z.)

H(Z) =

P (Y-)P(z.j I y1)

P (Y.)P(z.j I y. )

p (yi)p(zilyi) log p(z.j jy.)

log p(z.)

G(Y, Z) = H(Z) - H(Z1Y) = H(Y) - H(YIZ)

which completes the proof.



APPENDIX B

Justification for Equation 3. 10

The following is a proof that derivatives of x log2 x in a

multi-channel information theory model may be differentiated as
loge x

1 + log2x instead of first transforming log2 x to loge 2

differentiating.

Consider the objective function (Equation 3. 7):

m m

max [G(Y, Z)] = max - p(yi) log2 p(yi) - bip(yi)

i =1 i =1

+x

In order to differentiate

m

p(yi) -1 )

i=1
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and then

p(yi) log2 p(yi), log2 p(yi) should

iloge p(yi) logc b
be transformed to lo 2

; since log b
lo

For nota-
ge gc a

tional purposes 1 /loge 2 will be defined to be C. The information

gain equation may now be written as:

max [G(Y, Z)] = max - loge p(yi) - bip(yi)



Differentiating:

Or

(B. 2):

8[G(Y, Z)] - C loge p(yi) b. + X = 0
8(yi)

a[G(y, z)]
a(X)

Dividing Equation (B. 2) by C gives:

b. -X
-1 loge p(y.) =

-b.+X
(

C
- 1)

p(yi) = e
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(B. 1)

(B. 2)

(B. 3)

Summing over i from i = 1, 2, ... , m and noting Equation

1 =

which may be written as:

or

-b.+X
-1)

e

1 = eX
/C

-bi( -1)



e(X/C) 1

-bi

(C -1)
e
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(B. 4)

X /CPlugging the value of e from Equation (B. 4) into Equation

(B. 3) gives:

gives:

P(yi)

-b.

(C -1)
e

-b.
1

(C -1)

-1Factoring out an e from both numerator and denominator

P(yi) =

-b.
1

e
C

-b.
1

e C

Now, we wish to solve the following identity for x.

Taking the natural logarithm of both sides:

b.
- = x loge 2

(B. 5)



But

SO,

Or

Therefore,

loge 2 = 1/C

b. x
C

x = -b.
1

-bi() -b.
e

1= 2

So Equation (B. 5) may be written:

p(y) =
1 m

-b.
1

2

i= 1

-b.
1

2
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(B. 6)

The above result, Equation (B. 6) completes the desired proof

of the validity of Equation (3. 11) of Chapter III.
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APPENDIX C

m

Justification for Using
(-b.+a.p.)

a.2 1 1 to Calculate
1

i=1
the Lagrange Multiplier Constant 11 in a Multi-Factor

Information Theory Problem with Negative Probabilities

When a multi-channel information theory problem results in

non-positive probabilities, an additional restriction must be imposed

for each negative value. The necessary restrictions are of the form:

aip(yi) = 0

i=1

where
;

a.
1

= 1,2, .. m; are constants determined by the particular

problem data.

The information gain equation which must be maximized will

now become:

max [G(Y, Z)] = max - p(yi) log2 p(yi)

subject to:

and

p(yi) = 1

/ a ip(yi) = 0

bip(yi)



Using the Lagrange Multiplier technique with multipliers X

and p. results in the following maximization equation.

max [G(Y, Z)]= max -

+

loge p(yi) -

-1 ) + p.

bip(yi)

aip(yi) )
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(C. 0)

In Equation (C. 0), it may be noted that the log2 p(yi) term

has been transformed to loge p(yi)

that loga b = (logc b/logc a).

Taking appropriate derivatives:

by the use of the relationship

8[G(Y, Z)] C log p(y.) - b. + X + = 0
a(yi) e 1 1 1

a[G(Y, Z)]
8(X)

-p.) 1 = 0

a[a(y, z)]
a(µ)

aip(n.) = 0

Solving Equation (C. 1) for p(yi) gives:

-bi+X+p.a_1_1)

p(yi) = e

(C. 1)

(C. 2)

(C. 3)

(C. 4)
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Inserting the result of Equation (C.4) into Equation (C. 3) results

in the following equation:

-N.

e
(C -1)

Now,

a.e
1

i

-b.+X+p.a.
1 1

C

may be factored out of Equation (C. 5) to get:

i

-b.-Ey.a.
1 1

( )

a.e C = 0
1

If we let (-b.1 +4a.1 ) = K, Equation (C. 6) becomes:

1 a.eK/C = 0
1

1

(C. 5)

(C. 6)

(C. 7)

But, in Appendix B, it was shown that eK/C = 2K. Therefore,

Equation (C. 7) may be written as

or

1 a.2K = 0
1

i

i

(-b.+a.p.)
1 1a.2 = 0

1

which is the desired result. Equation (C. 8) is employed in the

(C. 8)
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computer program of Appendix D. For purposes of hand calculations,

it is probably easier to use logarithms to base e. In that case use:

-b.+a.p.
1 1

a.e C = 0
1

where C = 1/loge 2.

When p. has been obtained, X., or more appropriately

X /C
e may be computed from Equation (C. 2) as:

or

e

-b.+X+p.a.
-1)

= 1

Factoring out e
X/C gives:

e
X/C

X/C
e =

( 1 -1)
e = 1

1

e(
C

Now p(yi) may be calculated by plugging in the appropriate



eX
/C ivalue for into Equation (C.4).

p(yi) =

factoring out e
-1 gives:

p(yi) =

Let (-b.+p.a.1 ) = K then,
1

or,

p(yi) =

+p,ai
( -1)

e

i

e

-b.+p.a,

C
i -1)

e( C

-bi+pa.
(

1)
C

i

-b.+pa.

(
C
i 1)

e

eK/C

eK/C

i

But as shown in Appendix B; eK/C = 2K, so

2K

13(Yi) =
1 2K

p(yi) =

i

(-b.1 +pa.1 )

2

(-b.+
1 1

i
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(C. 9)
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APPENDIX D

Computer Program for Solving Multi-Factor Information
Channel Problems

The following computer program calculates all values for one-

factor, two-factor and multi-factor information theory problems as

described in this dissertation. The user must enter a value of 1, 2

or 3 depending upon whether he wishes a one, two, or multi-factor

analysis respectively. The one-factor analysis portion of the program

calculates the respective p(i) for i = 1, 2,... ,n for the various

levels of the factor, conducts a Chi-square test if one is desired and

determines whether to accept or reject the hypothesis that the actual

and theoretical values are identically distributed. An initial value to

start the approximation must be entered by the user along with the

values of the various levels of the factor being considered.

In the two-factor analysis, the program calculates the impor-

tance values Y(1) and Y(Z) for the two factors. The probability

values for each row must be entered by the user along with the

marginal frequencies for each level.

In a multi-factor analysis, the user must enter data as follows:

1. The number of rows in the conditional probability matrix.

2. The specific values of the conditional probability matrix by

rows as; p(1,1),p(1,2),..p(1,m); p(2,1),p(2,2),...,p(2,m);

...;p(m, 1), p(m, 2),... ,p(m,m).
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After the data have been entered, the computer will then calcu-

1. The inverse of the conditional probability matrix if one exists.

2. The conditional information values h(i), i = 1,... ,n.

3. The necessary constants, b(i); i = 1, ,n for calculating

P(Yi)

4. The p(yi).

5. The p(z.).

6. A check is conducted to insure that all restrictions are

satisfied, i. e. ,
Yi

=p(.) 1, p(z.) = 1, p(y.p(yi} >0, p(z.) > 0,

for each i and j.

7. If one or more of these restrictions are violated, the program

will impose additional restrictions and recalculate the values

.ofb(i), p(yi) and p(z.)

The program is written in conversational form and is designed

to be used with the CDC-3300; OS-3 time sharing system with Fortran

IV compilor at Oregon State University. A unique feature of the sys-

tem is the availability of the statement TTYIN which allows data to be

entered directly from a remote unit without the necessity of READ

statements. For example, if a program were written in which it were

desired to enter an array of values for the variable X, the following

statements would be sufficient.
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DO 1 I=1,N

1 X(I)= TTYIN (4HX=- )

During execution of the program, the computer will ask for data

to be entered by printing, X = . The operator will then enter his

value for X1 and the computer will again print, X = . The pro-

cess is repeated until all N values of X have been entered.



000721 DO 47 I=1,NUMW
08001: PROGRAM gHIRLAND 00073. XPON=C*A(I)
00002: DIMENSION P(15.15),E(15.15),H(15).D(15.15).6(15) 00074: PI(1).100 /(E**XPON)
00003: DIMENSION, Y(15).Z(15),F(15).X(15),A(15),P1(15).015S(15) 00075:47 WRITE(61.511)I.P1(1)
00004: DIMENSION TOB(15) 000761511 FORMAT(' P',I2.' '.F10.2,' 2')
00005: DIMENSION P2(2,50),XI(50) 00077:C
00006: 37 CONTINUE 00078tC
00007s WRITE.(61,508) 00079 :C THIS PART OF THE PROGRAM EXECUTES A CHI-SQUARE
00000: 508 FORMAT(' TYPE 1 IF THIS IS A ONE-FACTOR'. 00080:C GOODNESS OF FIT TEST.
00009: I' ANALYSIS../.' TYPE 2 IF TWO-FACTOR OR', 00081: VR/TE(61.205)
00010: 2' 3 IF' MULTI.-FACTOR.//) 880828 205 FORMAT(//,' DO YOU WISH TO RUN A CHI-SQUARE TEST?,/,
00811: NTYPE=TTYIN(4H7= ) 00083: I' ENTER I FOR YES OR 0 FOR NO'/)
00012: IF(NTYPE .EQ. 1)60 TO 56 000841 NCHI=TTYIN(4H7= )

00013: IF(NTYPE .EQ. 2)00 TO 36 000851 IF(NCHI .EQ. 0)00 TO 57
000141 IF(NTYPE .EQ. 3)20 TO 34 00886140 WRITE(61;105)
000151 IF(NTYPE .EQ. 0)00 TO 37 008871 106 FORMAT(/, ENTER THE TOTAL NUMBER OF OBSERVATIONS'./)
00016: IF(NTYPE .GT. 3)00 TO 37 00088: NOBS.TTYIN(4HNOBS.4H. )

00017tC 00089: WRITE (61.185)
00018:C 00090: 105 FORMAT(/,' ENTER THE OBSERVED VALUES TO BE TESTED', /)
88019:C THIS PART OF THE PROGRAM CALCULATES THE ROOT OF AN 0809I1 CHISORE.0:0
00020tC EQUATION OF THE FORM I/X 1/X**A1 I/X**A2 ETC = 1.0 08892: DO 49 1.1:NUMW
00021:C FOR ANY COMBINATION OF UP TO TEN VALUES FOR X, USING.THE 000932 OBS(I)=TTYIN(4HOBS)
000221C NEWTON RHAPSON METHOD. 080941 TOB(I)=NOBS*P1(I)/100
00023tC 00095:49 CHISORE.(0135(1)-708(1))**2/7013(1) CHISORE
80024:C 00096: WRITE(61,I09)
080251 510 FORMAT(IH ,F10.5) 000971 109 FORMAT(/,' ARE THE DATA JUST ENTERED CORRECT?',
00026:56 CONTINUE 000981 l' ENTER I FOR YES OR 8 FOR NO.../)
00027: DO 38 1.1.10 000991 /CHEK.TTYIN(4HCHEC.4HK. )

00826:38 X(I).0.0 001001 1F(ICHEX .E0. 0)(10 TO 48
08029s WRITE(51.186) 00101: MDF.N10151-1

000301 188 ,FORMAT(//,' ENTER AN INITIAL VALUE TO START THE', 001821 /F(NDF .EQ. 1)CRIT.3.84146
04031: l' APPROXIMATION,/,' USUALLY A NUMBER BETWEEN'.- 00103: IF(NDF 2)CRIT.5:99147
000321 E,' 1 AND 2..//) 00104: IF(NDF 3)CRIT.7:81473
000338 R.TTYIN(4HINIT.4H. ) 001852 IF(NDF .EQ: 4)CRIT.9.48773
080341 WRITE(61,180) 80106: IF(NDF LEO. 5)CRIT.11.0705
80035: 100 FORMAT(//,' ENTER THE POWERS TO WHICH THE VALUES, 00107: IF(NDF :EQ. 6)CRIT.12':5916
00036: 1' ARE TO BE RAISED'/' ENTER A ZERO FOR THE LAST ". 001061 1F(NDF 7)CRIT=14.0671
800371 2' VALUE IN ORDER TO STOP ENTERING DATA'.//) 08109; IF(NDF 8)CRIT.15:5073
08038: DO 39 1.1,10 081101 IF(NDF :EQ. 9)CRIT.16:9190
00039: A(I).TTYIN (4H A. ) 001111 IF(CRIT. .GT. CHISORE)G0 TO 53
08040: IF(A(I) .EQ.0.0)GO TO 40 00112: WRITE(61,107)CHISORE,MDF
00041139 CONTINUE 001131187 FORMAT(IHI.' SINCE...FIG.4.. IS GREATER THAN THE',
00042:40 DO 41 1.1.10 001141 I' CRITICAL VALUE OF',F18.4;/. WITH"./3. DEGREES OF.,
00043: IF(A(I).EQ0.0)42,41 00115: 2= FREEDOM, REJECT TIE HYPOTHESIS OF INDEPENDENCE,/-
00044:42 X(I)=0.0 001161 3' AT THE .05 SIGNIFICANCE LEVEL.'//)
008452 GO TO 43 00117s GO TO 54
48046s 41 X(I).1 /R**A(I) 001:0153 WRITE(61.110)CHISORE.CRIT.NDF
00047:43 FUNCT.X(1)+X(2)*X(3)+X(4)+X(5)+X(6).X(7).X(8) 00119:110 FORMAT(IHW SINCE'.F10.4,' IS LESS THAN THE CRITICAL'.
800481 1*X(9).0((10) -1.0 081.20: I' VALUE OF':110.4,)' WITH'.13,' DEGREES OF FREEDOM,',-
80049: IF(FUNCT.GT. :00089)44.45 80121: 2' ACCEPT TIE HYPOTHESIS,). OF INDEPENDENCE'.
80050:45 CONTINUE 001221 3' AT THE .05 SIGNIFICANCE LEVEL.'//)
00051: IF(FUNCT .LT. -.00009)44,46 08123/ 57 CONTINUE
000521 44 DER/V.-A(I)/R**(A(I)+1.)-A(2)/R**(A(2)+1.) 00124:54 WRITE(61,512)
000531 I -A(3)/R**(A(3)+1.)-A(4)/R**(A(4)+1.)-A(5)/R**(A(5),I.) 00125: 512 FORMAT(' ENTER A 1 IF MORE RUNS ARE DESIRED',
800541 2 -A(6)/R**(A(6).10-A(7)/R**(A(7)+1.) 00126: I/' ENTER A 0 IF NO EXTRA RUNS ARE DESIRES: /7)
000551 3 -A(8)/R**(A(8)+1.)-A(9)/R**(A(9)+1.) 001271 NRUNS.TTYIN(OHRUNS.4H.
00056: 4 -A(10)/R**(A(10).1.) 00128: IF(NRUNS .EQ. 1)37,58
80057: R =R-FUNCT/DERIV 00129:C
000581 GO TO 40 00130:C
00059:46 CONTINUE 08131:C
00060: WRITE(61,510)R 00132sC THIS PART 3F THE PROGRAM EXECUTES A TWO FACTOR INFORMATION
0006ItC THEORY
000621C 00133:C ANALYSIS.
080631C THIS PART OF THE PROGRAM CALCULATES THE 00134:C
08064tC PERCENTAGES OF THE DIFFERENT LEVELS IN THE ROOT 00135:C
00065sC EQUATION. 00136: 36 CONTINUE
80066: WRITE(611:104) 061371 WRITE(61,200)
00067: 104 FORMAT(//,' ENTER THE NUMBER OF VARIABLES IN THE', 80130: 200 FORMAT(' THIS PROGRAM CALCULATES THE VALUES OF'
08060: I' ROOT EQUATION.'. //) 002391 I' THE VARIABLES',/,' Y1 AND Y2 IN A TWO FACTOR'.
00069: NUMW=TTYIN(4HNUM*) 00140: 2' INFORMATION CHANNEL PROBLEN.'///)
00070: C=ALOG(R) 00141: 6RITE(61,201)
00071: E=2.71828



001422 201 FORMAT(' ENTER THE NUMBER OF TERMS IN EACH '.
001431 1' ROW OF THE CHANNEL MATRIX.'///)
00144, M.TTYIN (4HNOE61.4HS. )

001453 DO 60 KI.2
00146: DO 60 L.1.25
00147: 60 P2(K.L)0.0
001481 DO 61 K.1.25
001491 61 Xl(K)0.0
001501 WRITE(6(.202)
001511 202 FORMAT(' ENTER THE VALUES FOR THE P(I.J).
00152: 1' IN THE ORDER"./. P(II).P(12) P(1N)',
00153, 2' P(21).P(22), P(2M)..///)
00154, 62 DO 63 11.2
001551 DO 63 J=1.M
00156: 63 P2(I,J)=TTYIN (4HP= )

00157: WRITE(61.203)
00158: 203 FORMAT(' ENTER THE OBSERVED MARGINAL PROBABILITIES',
00159: 1' AS',/,' X(I),X(2) X(M).'///)
00160: DO 64 J1.M
00161: 64 X1(J).TTYIN (4HX )

00162: WRITE(61.300)
001631 300 FORMAT(' ARE THE DATA ENTERED CORRECT?'.
00164: I' ENTER A I FOR YES OR 0 FOR NO.')
001651 NDATA .TTYIN(4117 = )

00166: IF (NDATA .EQ. 0)50 TO 62
00167: YI.0.0
001681 Y21.0YI
00169: 65 CALL GUESS (M.P2.Y1.Y2.Xl.DIFFI)
00170, CALL PROB (0.I.YI,Y2)
001711 CALL GUESS(M.P2,Y1,Y2,X1,DIFF2)
00172s IF(DIFF2 .LT. DIFF1)65.66
00173: 66 YIYI-0.1
001741 Y2.1. Y1
00175: 67 CALL GUESS(M.P2.Y1,Y2.X1.DIFFI)
001761 CALL PROB(0.01.Y1.Y2)
001771 CALL GUESS(M.P2.Y1,Y2.X1.DIFF2)
00178: IF(DIFF2 .LT. DIFFI)67,68
00179: 68 YOY1 0.01
00180: Y2=1.0YI
00181: 69 CALL GUESS(M.P2.Y1,Y2,X1,DIFFI)
00182, CALL PROB(0.001.Y1.Y2)
00183: CALL GUESS(M.P2.Y1.Y2.Xl.DIFF2)
00184: IF(DIFF2 .LT. DIFF1)69.59
001851 59 YI.Y1-0.001
00186s
001871 WRITE(61.204)Y1.Y2
001881 204 FORMAT(' YI '..F6.4o. Y2 = .F6.4)
001891 WRITE(61.400)
001901 408 FORMAT(' IF MORE RUNS ARE DESIRED TYPE',
00191: 1' A I IF NOT TYPE A 0')
00192* NRUNSTTYIN(4HNRUN.4HS )

00193: IF(NRUNS .E0. 1)00 TO 37
00194: GO TO 58
00195tC
00196sC
00197,C THIS PROGRAM CALCULATES ALL THE NECESSARY VALUES FOR
00198:C A MULTIFACTOR INFORMATION CHANNEL PROBLEM.
00199:C ARRANGE YOUR DATA SO THAT THE CONDITIONAL P(Y/Z)
00200:C ROW PROBABILITIES SUM TO ONE.
00201: 34 CONTINUE
00202:C
00203:C
002041C THE INVERSE OF A MATRIX
00205:C
00206e WR/TE(61.607)
00207, 607 FORMAT(' THE NUMBER OF EQUATIONS ARE./)
00208: NOECIS=T1YIN(4HNOE0.4HS. )

00209, WRITE(61,608)
00210: 608 FORMAT(//, THE PROBABILITIES P(Y/Z) ARE'./)
00211: DO 1 1.1.NOEQS

00212, DO I JI.NOEQS
80213: P(I.J).TTYIN(4HP= )

002141 1 D(I.J)=P(I,J)
00215: WRITE(61.609)
00216, 609 FORMAT(//. ARE THE DATA CORRECT'/,
00217: I' ENTER A -I FOR YES OR 0 FOR N0'.//)
00218s NCHECKTTYIN(4H7. )

00219: IF(NCHECK .EQ. 0)50 TO 34
002201 DO 2 1I.NOEQ5
00221, DO 2 JI.NOEQS
80222: 2 E(I.J)0.0
00223, DO 6 M.I.NOEQS
O 0224, 6 E(M.M).1.0
00225: DO 13 MPTVROI.NOEQS
00226: NPIVCOMPIVRO
O 02271 T.P(MPIVRO.NPIVCO)
00228: DO 15 N.I.NOEQS
00229: E(MPIVRO,N).E(MPIVRO.N)/T
00230: 15 P(MPIVR0.11).P(MPIVRO.N)/T
00231s N -I

00232, 18 CONTINUE
00233: IF(MPIVRO .EQ. M) GO TO 8
00234: CM.P(M.NPTVCO)
00235: DO 11 NI.NOEQS
O 0236: TMP(MPIVRO,N)sCM
00237s TAE(MPIVRO.N)*CM
002381 E(M.N).E(M.11).TA
O 02391 II P(M.N)=1.(14.14)+TM
002401 8 M.M.I
00241: IF(M .LE. NOEOS) GO TO 10
00242, 13 CONTINUE"
00243: 1.1
00244, KI
00245; II CONTINUE
00246, CIDN.0.8
00247s DO 72 j1.NOEOS
00248s 72 CIDN.E(J.K)m1)(1..1)+CIDN
O 0249, IF(CIDN .20. 0)00 TO 73
002501 1F(CIDN .EQ. 1073.74
00251, 73 KK.I
O 0252, IF(K .EQ. N0E05+1)1.1=1
002531 IF(K NOEQS+1)K.I
00254: 10(1 ;M. NOEOS+1)00 TO 75
00255s GO TO '71
00256s 74 WRITE(61.205)
00257, 205 FORMAT( INVERSE OF THE PROBABILITY MATRIX'.
00258: I' DOES MOT EXIST../)
00259, GO TO 58
00260, 75 VRITE(61.101)
00261; 101 FORMAT(/. THE INVERSE OF THE P(Y/Z) MATRIX IS)')
00262: WRITE(61,102)((M.N.E(M.N),N.I.NOEQS).M.I,NOEQS)-
002631 102 FORMAT(IH .12,12,2X.F10.4)
01264,C
O 0265gC
002661C
00267,C CALCULATIONS FOR H. SUM P(Y/Z) LOG P(Y/Z)
002681 DO 3 X- I.NOEQS
O 0269, 3 H(K)0.0
002701 WRITE(61,509)
00271: 509 FORMAT(/... THE CONDITIONAL INFORMATION
00272, ?'SUM P(Y/Z) LOG P(Y/Z) VALUES ARE ?' /)
00273, DO 4 I.1.NOEQS
00274, DO 4 J1.NOEQS
002751 G.D(I,j)
00276, IF(G .EQ. 0.0)20.21
002771 20 TL00.8.0
002781 GO TO 4
002791 21 TL00-1.4426950409*ALOG(0)
00280, 4 H(()H(I)+D(I.J)*TLOG
002811 DO 50 L.I.NOESIS
00282: WRITE(6I.500)L.H(L)



00283: 50 CONTINUE 08353:23
00284IC 08354s CHECK2=U
00285:C 803552 CALL TRIAL(F.B.NOEQS.U.E6042)
002862C 003561 IF(EQN2 .GT. 0.0)00 TO 23
00287:C THE NECESSARY B CONSTANTS FOR DETERMINING PROS (Y) 00357s 24 Um(CHECKT+CNECK2)/2.0
002881C 08358* CHECK3.0
00289: WRITE(61.502) 08359: CALL TRIAL(F.B.NOEQS.U.EQN3)
00298* 502 .FORMAT(///.. THE NECESSARY CONSTANTS' 00360: IF(EQN3 *GT. .00009)CHECKI.CHECK3
002911 I' FOR CALCULATING PROB(Y) ARE)' /) 88361: IF(EQN3 -.:00009)CHECK2.CHECK300292* 500 FORMAT(' 10.12.' ..F12.5) 00362: IF(EQN3 GT7 :08009)60 TO 24
00293: DO 7 K.I.NOEO5

118363: IF(EQN3 .00009)00 TO 24
00294, 7 B(K).0.0 00364s GO TO 33
00295, DO 9 1.I.NOEQS 08365: 22 U.0.1.0
00296* DO 9 ..P.I.NOEDS 00366* CHECK2 -U
00297: 9 B(1)013(I)+E(1.1.1)*H(J) 00367: CALL TRIAL(F.B.NOEQS.U.EQN2)
002981 DO 51 N.1.NOEQS 08368: IF(EQN2 0.0)00 TO 22
002991 WRITE(61.501)11.8(8) 08369t 25 U.(CHECKT+CNECK2)/2.0
803001 51 CONTINUE 00370: CRECK3.0
00301:C 88371s CALL TRIAL(F.B.110EQS.U.EQN3)
80302:C 08372: IF(EQN3 .88809)CHECK2CHECK3
08303:C 003731 IFCEQN3 '.410089)CHECKI=CHECK300384sC CALCULATIONS FOR PROS (Y) 00374: IF(EQN3 "."81; :88009)60 TO 25
80385:C 08375: IF(EQN3 .08809)80 TO 25
00386t WRITE(61.504) 00376: 33 CONTINUE
003871 504 FORMAT(///. THE PROBABILITIES P(Y) ARE.i./) 00377: WRITE(61.601)
00308t 501 FORMAT(' B..I2.' '.F12.5) 110378: 601 FORMAT(///.. SINCE SOME P(Z) ARE NEGATIVE'.
00309* YDEN=8.0

00379: I' NEW VALUES MUST BE CALCULATED./.. WITH THE00310, DO 12 K.1.1.10E05
00308: 2 RESTRICTION THAT P(Z) EQUAL ZERO FOR SOME Z.,00311: 12 YDEN.2.00**(-1311W+YDEN 00381* 37//.. THE CORRECTED CONSTANTS ARE) /)

00312, DO 14 L.1.NOEQS 00302s DO 27 M.1,110EQS
00313: Y(L).2.004:(13(L))/YDEN 00383: WRITE(61.600)N.B(M)
083142 WR/TE(61.503)L.Y(L) 80384: 600 FORNAT(..F10.4)
08315: 14 CONTINUE 00385! 27 CONTINUE

_

00316IC
00386: WRITE(61.507)1188317:C 80387: 507 FORMAT(///.. THE LAGRANGE MULTIPLIER CONSTANT'.003181C 00388: I' IS...F10.4:///)

00319sC CALCULATIONS FOR PROS (Z) AND CHECK FOR NEGATIVE Z'S 003892 WRITS(61.603)
08320sC CALCULATION OF LAGRANGE MULTIPLIER U AND 08390: 603 FORMAT(' THE CORRECTED P(Y) VALUES ARE1'./)80321:C RECALCULATION OF P(Y) AND P(Z) PLUS THE CORRECTED 80391: YDEN2.0:0
08322sC B CONSTANTS 00392* DO 28 L .'I,NOEQS
00323:C 00393: 28 YDEN2.YDEN2.2.00**(F(L)*U..8(L))
003241 WRITE(61.505) 003942 DO 29 K.I.NOEUS
00325, 505 FORMAT( / / /,' THE PROBABILITIES P(Z) ARE/ /) 003951 Y(K).2.00**(F(K)*UB(K))/YDEN2
00326: 503 FORMAT( = .F6.4) 083961 WRITE(61.602)K,Y(K)
083278 DO 16 1011..-NOEQS 08397: 29 CONTINUE
003281 16 Z(K).0.0 803981 602 FORMAT(. Y.,12..
08329s DO 17 I.I.NOEQS

00399: WRITEC6I.685)
88330: DO 17 J.I.NOEQS 00400s 605 FORMAT(///. THE CORRECTED P(Z) VALUES ARE)' /)00331, 17 Z(/).Z(I)+Y(J)*E(J.I) 884011 DO 38 11.1.NOEQS
00332, DO 52 L.I.NOEQS 00482s 30 Z(M) =0.0
08333: WRITE(61,506)L,Z(L) 00403* DO 31 J.1,NOEQS
88334: 52 CONTINUE DO 31 K.1,110EQS
00335: 506 FORMAT(' Z..I2,' ',F8.4) 00405, 31 Z(J).Z(J)...Y(K)*E(K.J)
08336: DO 35 K.I.NOSQS- 00406* DO 32 J.1.NOEQS
00337: 1F(Z(K) .LT. 0.0)50 TO 5 00407s WRITE(61.604)J.1(J)00338: 35 CONTINUE. 00408* 32 CONTINUE
00339* GO TO 32 00489: 604 FORMAT(' .F18.4)
08348: 5 H(K).0.0 08410: WRITE(61.606)
00341: NZERO.K 80411: 686 FORMAT(//.. IF MORE RUNS ARE DESIRED. TYPE'.
00342: DO 19 L=I.NOEQS 004121 1' A 1) IF NOT TYPE A 0 ./)
00343, B(L).0.0 084131 NRUN.TTYIN(4HNRUN.01H. )-
003441 19 F(L).Ea.NZERO) 00414: 1F(NRUN .EQ. 1)00 TO 37
00345: DO 26 M.1.NOEQS 00415: 58 CONTINUE'
00346: DO 26 N.1.NOEQS 00416: END
00347, B(M)...B(M)+E(M.N)*H(N) 004(7:C
80348: 26 CONTINUE 004(8sC
00349, U -0.0 08419:C
00350: CHECK1.0
88351: CALL TRIAL(F.B.NOEQS.U.EGNI)
00352: IF(EQNI .LT. 0.0)00 TO 22



00420: SUBROUTINE TRIAL(2:13+NOEOS:U+EQN)
064212 DIMENSION F(15).8(15)
004221 EQN60.0
00423: DO I I=I+NOEOS
O 04243 I ElINF(I)62:60**CF(1)*(1)*2.00ss
00425: 1(B(I))+EON
00426$ RETURN
60427: END
00428:C
00429:C
00430: SUBROUTINE BUESS(M.P2.YI.Y2.Xl.DIFF)
004317 DIMENSION PE(2.50).XI(50)
00432: DIFF.6.0
O 0433: DO I 11C1+14

00434: DIF.P2(1,10671+22(2,10672XI(K)
00435: 2:ABS(DIF)
O 0436. I DIFF. D + DIFF
00437: RETURN
00438: END
604391C
66440sC
6644IsC
O 0442: SUBROUTINE PROEME:A.B)
00443, A6A+Z
00444s
00445s RETURN
00446s END

3
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Solved Examples

Following are the computer printouts for six examples illus-

trating methods discussed in this dissertation. These six examples

are briefly discussed below.

Example #1. A multi-factor analysis illustrating a non-positive

initial solution for p(z.), (j = 1,2,3, ... , ). This example was given

in the text on page 68.

Example #2. A multi-factor analysis illustrating an example

.witha positive initial solution for p(z.)

Example #3. A multi-factor analysis with non-positive initial

solution. This example was given by Kunisawa (1958).

Example #4. A multi-factor analysis. An example given incor-

rectly by Kunisawa (1958) on page 107. Kunisawa presents a two-

factor two-level example based on the results of a survey question-

naire. The following conditional probability matrix is given.

Brands A

z
1

Practicality . 60 .40

Quality . 55 . 45

Kunnisawa gives for results:
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p(y1) = p(Brand A) = 57%

p(y2) = p(Brand B) = 43%

P(z1) = p(practicality) = 60%

p(z2) = p(quality) = 40%

The error in Kunisawa's calculations occurs in his inversion

of the p(Y I Z) matrix. He gives:

9 -11

-8 12

as the required inverse which is incorrect since:

9 -11

-8 12 r
. 6 .4

55 .45
I

1 0

0 1

= I

The above relationship, p(YI Z)-1p(Y1Z) = I is a requirement for a

proper inverse to exist. The correct inverse is:

9 -8

which gives the following results for the probability predictions.

p(y1) = p(Brand A) = .5713

p(y2) = p(Brand B) = . 4249
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P(zi) = p(practicality) = .5013

p(z2) = p(quality) . 4987

Example #5. A multi-factor analysis. An example given incor-

rectly by Kunisawa (1958) on page 90. Kunisawa presents a two-

factor two-level example based on a race prediction problem. A

cyclist's performance is predicted using a racing form and it is

desired to determine if the racing form is actually helpful. The fol-

lowing conditional probability matrix is given.

but,

Racing Form Prediction

Actual Results

Y2

win lose

Predicts Winner z
1

. 6 .4

Predicts Loser .2 .8

Kunisawa gives the following results:

p(win) = p(n) = 3

p(lose) = p(y2) = 7

Kunisawa gives the following for the matrix inverse.

2 -.5

-1.0 1. 5



r
1-.52 .6 .4

1.5 .2 .8

The correct inverse is:

2

which gives results of:

P(win) = p(y1) . 3938

p(lose) = p(y2) = . 6062

111m.m.

1 0

0 1
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Example #6. A multi-factor analysis. An example incorrectly

given by Kunisawa (1958) on page 87. Kunisawa presents an exam-

ple based on weather forcasting using a barometer. The following

conditional probability matrix is given:

Fair weather Rainy weather

Y1 y2

Low Barometer reading z
1

High Barometer reading z2

.25 .75

. 667 .333

Kunisawa predicts:

p(fair weather) = p(y1) . 34315

p(rainy weather) = p(y2) = . 65685
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p(low reading) = p(z1) = .7764

p(high reading) = p(z2) = .2236

The correct results are:

p(fair weather) = p(y1) = .4558

p(rainy weather) = p(y2) = . 5442

p(low reading) = p(z1) = .5065

p(high reading) = p(z2) = .4935



EXAMPLE 1

RIJN

TYPE I IF THIS IS A ONE-FACTOR ANALYSIS
TYPE 2 IF TWO-FACTOR OR 3 IF MULTI-FACTOR

7. 3
THE NUMBER OF EQUATIONS ARE

NOEQS. 4

THE PROBABILITIES P(Y/Z) ARE

P. .5 P. .25 P. .00 P= .25
P. .0 P. 1.0 P. .00 P. .00
P= .25 P. .25 P. .25 P= .25
F. .0 P. .00 PI, 0.\\1. T. .00

ARE THE DATA CORRECT
ENTER A I FOR YES OR 0 FOR NO

THE NECESSARY CONSTANTS FOR CALCULATING PROB(Y) ARE;

B I = -2.00000
B 2 0
B 3 . 0
B 4 . 10.00800

THE PROBABILITIES P(Y) ARE;

I = .6666
Y 2 . .1666
Y 3 . .1666
Y 4 . .8002

THE PROBABILITIES P(Z) ARE;

T.

THE

1 2
1 3
1 4
2 I

2 2
2 3
2 4
3 1

3 2
3 3
3 4
4 1

4 2
4 3
4 4

I

INVERSE OF THE
4.0000

0
-4.8000
1.0800

1.0000
0
0
0

0

1.0080
- 4.0000
-1.0000
8.0000
-2.0008

P(Y/Z) MATRIX IS;

Z I = 2.6656
Z 2 . .1665
Z 3 . -2.6649
Z 4 = .8329

SINCE SOME P(Z) ARE NEGATIVE NEW VALUES MUST BE CALCULATEDWITH THE RESTRICTION THAT P(Z) EQUAL ZERO FOR SOME Z.

THE CORRECTED CONSTANTS ARE;

B I - 6.0080
B 2 = 8
B 3 .
B 4 . -6.0000

THE CORRECTED P(Y) VALUES ARE;

Y I . .1274
Y 2 . .4845
Y 3 .4045
Y 4 . .0637

THE CONDITIONAL INFORMATION SUM P(Y/Z) LOG P(Y/Z) VALUES ARE;

H 1 . 1.50000
H 2 = 0
H 3 2.00000
H 4 =

THE CORRECTED P(Z) VALUES ARE;

Z I = .2548
Z 2 . .3408
Z 3 . .0000
Z 4 . .4044
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THE CONDITIONAL INFORMATION SUM p(y/7) LOG ply/7) VALUES ARE

H 1 = 1.10111
H 1 1.00111
H 3 =
H 4 = 1.11011

THE NECESSARY CONSTANTS FOR CALCULATING FRIII(Y) ARE

9 1 = -4.11111
1 = 6.10000

9 3 =
A A.AnAnn

THE PROBABILITIES P(Y) ARE;

y I = .9394
Y ? = .0(119
Y 3 = .0547
Y 4 = .0009

THE PROBABILITIES PIT) ARE;

7 1 = 1.4771
7 ? = 1.0771
7 3 = .9963
7 4 = -1.7505

5INCE SOME PIT) ARE NEGATIVE NEW VALUES MOST RE CALCULATED
WITH THE RESTRICTION THAT P(7) EQUAL TER) FOR SONE T.

THE CORRECTED CONSTANTS ARE;

9 I =
=

1 =
=

4.0104
-R.0010

0

THE LAGRANGE MULTIPLIER CONSTANT IS -o.;;Rsn

THE CORRECTED PfY) VALUES ARE;

y 1 =
Y =
Y 3 =
Y 4 =

.1919

.1164

.414?

.1464

THE CORRECTED Pf7) VALUES ARE;

7,1 =
7 =
7.3

4 =,

.?929

.5,929

.4141
-0.nAnn

IF MORE RUNS ARE DESIRED. TYPE 4
I; IF 41T TYPE 4 1

NRUN= 1

TYPE I IF THIS IS 4 ONE- FACTOR ANALYSIS
TYPE 1 IF TWO - FACTOR OR 3 IF MULTI- FACTOR

= 1

THE NUMBER OF EQUATIONS ARE

NOEQS= 2

THE PRORABILITIES I.CY/71 ARE

p. .61 P= .40
p. .55 P. .45

ARE THE DATA CORRECT
ENTER A 1 FOR YES OR 0 FOR NO

7=

THE INVERSE OF THE P(Y/7) MATRIX IS;
1 1 9.0000
I 2 -0.0011
2 I -11.1000
? 1 11.1100

EXAMPLE 4

THE CONDITIONAL INFORMATION SUM P(Y/7) LOG P(Y /T) VALUES ARE;

H 1 =
H 2 =

.97095

.99277

THE NECESSARY CONSTANTS FOR CALCULATING PROB(Y) ARE;

B I = .79636
9 2 = 1.232R4

THE PROBABILITIES P(y) ARE;

1 = .5751
Y ? .4249

THE PROBABILITIES 1.(7) ARE;

7 1 = .5013
7 2 = .4907

IF MIRE RUNS ARE DESIRED. TYPE A I; IF NOT TYPE A 0
NRUN. I

TYPE 1 IF THIS IS 4 ONE - FACTOR ANALYSIS
TYPE P. IF T11-FACTOR OR 3. IF MULTI-FACTOR

7= 3

THE NUMBER IF EQUATIONS ARE

NOEQS= 2

EXAMPLES



THE PROBABILITIES P(y/Z) ARE

P= .60 P. .40
P= .10 p= .qn

ARE THE DATA CORRECT
ENTER 4 I FOR YES OR 0 FOR 21

7= 1

THE INVERSE OF THE P(Y/z) MATRIX IS
1 1 2.0000

- 1.0000
2 1 -0.5000

1.5000

THE CONDITIONAL INFORMATION SUM PCy/t) LOG P(Y/Z) VALUES ARE

H I = .97095
H . .72193

THE NECESSARY CONSTANTS FOR CALCULATING PR)9(Y) ARE

4 1 = 1.21997
q .59742

THE PROBABILITIES Ply) ARE;

Y 1 = .393q
y 2 = .6062

THE PROBABILITIES PIT) ARE

Z 1 =
Z =

.41144

.5156

IF MORE RUNS ARE DESIRED, TYPE 4 I; IF NOT TYPE A 0

NRUN= 1

TYPE 1 IF THIS IS 4 ONE-FACTOR ANALYSIS
TYPE 1 IF TWO-FACTOR OR 3 IF MULTI-FACTOR

7= 3

THE NUMBER OF EQUATIONS ARE

NIEOS=

THE PROBABILITIES P(y/Z) ARE

P= .250 P= .750
p= .667 P= .333

ARE THE DATA CORRECT
ENTER A 1 FOR YES OR 0 FOR NO

EXAMPLE 6

THE INVERSE OF THE p(y/Z) MATRIX IS
I 1 -0.7926
I 2 1.7926
2 1 1.5995
2 2 -0.5995

THE CONDITIONAL INFORMATION SUM PCy/Z1 LOG P<y/Z) VALUES ARE;

t =
H 2 =

.0ttzg

.01706

THE NECESSARY CONSTANTS FOR CALCULATING PRO9(Y) ARE:

9 1 =
9 2 =

1.00316
.74732

THE PROBABILITIES P(Y) ARE:

y 1 = .4558
Y I = .5442

THE PROBABILITIES PIZ) ARE;

Z 1 =
Z 2 =

5065
45135
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APPENDIX E

Table of Values for a One-Factor Information Theory Model

For a theoretical development of a one-factor information chan-

nel analysis see Shirland (1971). Following is a table for two, three

and four values in a one-factor model. The table gives the root of the

channel equation along with the probability predictions for the various

levels. The information channel equation is:

where,

-
W

-L1
+ W

-L2
+ . . . + W

Ln
1

n= 2,3,4

and, L
1
,L

2
, Ln are the values of the various levels of the

particular factor in question.

In explanation of the use of the tables, consider the following

example. Suppose that you have a four level one-factor information

channel problem. For example, given four brands of a product with

prices of $2, $3, $6, and $8 respectively, it is desired to predict the

demands for the various products using only "Price" as a factor. The

information channel equation, then, is:

W-2 + W-3 + W-6 + W-8 = 1
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Turn to the portion of the table with the heading "Four Levels /One

Factor" and search for the 2, 3, 6 heading in the extreme left column.

Then read across to the column heading 8 and read:

p
1

= .4874

p
2

= .3403

p
3

= . 1158

p
4

= . 0565

W = 1.4323

The pi (i = 1, 2,3,4) are the predictions for the various

demands and W is the root of the information channel equation

given the particular levels specified.

For a three level problem look under the heading "Three

Level/One-Factor" and read the first two levels from the left hand

column and the third level from its appropriate column. A two level

problem is done similarly.

This table does not contain all the combinations of possible

values for a 2, 3, or 4 level one-factor information channel problem.

The table gives only whole number combinations. For combinations

containing fractions of whole numbers use the computer program of

Appendix D which is capable of performing one-factor information

channel calculations for any combination of values for as many as ten

levels for a factor.



2 3 4

TWO LEVEL

5 6 7 8 9 10 1 2
3 4 5

THREE LEVEL

6 7 8 9 10

I P1 .5437 .5698 .5865 .5975 .6047 .6095 .6126 .6146
P1 .6180 .6823 .7245 .7549 .7781 .7965 .8117 .8243 .835! P2 .2956 .3247 .3440 .3570 .3657 .3715 .3753 .3777
P2 .3820 .3177 .2755 .2451 .2219 .2035 .1883 .1758 .1650 P3 .1607 .1054 .0694 .0455 .0296 .0190 .0121 .0077W 1;6180 1.4656 1;3803 1;3247 1.2852 1;2554 1;2321 1;2131 1;1975 W 1.8393 1.7549 1.7049 1.6736 1.6536 1.6407 1.6324 1.6271

2
I 3

PI 0 .5699 .6180 .6541 .6823 .7053 .7245 .7408 .7549 PI 0 .6180 .6369 .6500 .6593 .6660 .6707 .6742
P2 0 .4302 .3820 .3460 ;3177 .2947 .2755 .2592 .2451 P2 0 .2361 .2583 .2746 .2866 .2954 .3018 .3064

W 0 1;3247 1;2720 1;2365 1;2106 1;1907 1;1749 1;1619 1;1510 P3 0 .1459 .1048 .0754 .0541 .0387 .0275 .0194
3 W 0 1.6180 1.5701 1.5385 1.5168 1.5016 1.4909 1.4833
PI 0 0 .5497 .5877 .6180 .6431 .6642 .6823 .6981

1 4
P2 0 0 .4503 ;4123 ;3820 .3569 .3358 .3177 ;3019 PI 0 0 .6680 .6823 .6929 .7007 .7067 .7111

W 0 0 1;2207 1;1939 1;1740 1;1586 1;1461 1;1359 1.1272 P2 0 0 .1991 .2168 .2305 .2411 .2494 .2558
4 P3 0 0 .1330 .1009 .0767 .0581 .0439 .0331
P1 0 0 0 .5386 .5698 .5959 .6181 .6372 .6540 W 0 0 1.4971 1.4656 1.4433 1.4271 1.4151 1.4062
P2 0 0 0 .4614 .4302 .4041 .3820 .3628 .3460 1 5

W 0 0 0 1;1673 1;1510 1;1382 1;1278 1;1192 1;1120 PI 0 0 0 .7044 .7158 .7245 .7312 .7364
5 P2 0 0 0 .1734 .1879 .1996 .2090 .2166
PI 0 0 0 0 .5316 .5581 .5808 .6006 .6180 p3 0 0 0 .1222 .0963 .0759 .0598 .0469
P2 0 0 0 0 .4684 .4420 .4192 ;3994 .3820 W 0 0 0 1.4196 1.3970 1.3803 1.3676 1.3579

W 0 0 0 0 1;1347 1;1237 1;1148 1;1074 1.1010 I 6
6 P1 0 0 0 0 .7325 .7418 .7491 .7549
P1 0 0 0 0 0 .5267 .5497 .5699 .5877 P2 0 0 0 0 .1544 .1666 .1767 .1851
P2 0 0 0 0 0 .4733 .4503 .4302 .4123 P3 0 0 0 8 .1131 .0917 .0743 .0601

w 0 0 0 0 0 1;1128 1;1049 1;0983 1;0926 W 0 0 0 0 1.3653 1.3481 1.3349 1.3247
7

I 7
PI 0 0 0 0 0 0 .5231 .5435 .5615 PI 0 0 0 a o .7549 .7627 .7689
P2 0 0 0 0 0 0 ;4769 .4566 .4385 P2 0 0 0 0 A .1397 .1501 .1589

Y 0 o 0 0 0 0 1;0970 1;0910 1;0859 P3 0 0 0 0 0 .1055 .0873 .0722
8 w 0 0 0 0 0 1.3247 1.3112 1.3006
PI 0 0 8 0 0 0 0 .5204 .5386

1 8
P2 0 0 0 e 0 0 0 .4796 .4614 P1 o 0 0 0 0 0 .7733 .7799

W 0 0 0 0 0 0 0 1;0851 1;0804 P2 0 0 0 o 0 0 .1279 .1369
9 P3 0 0 0 0 0 0 .0989 .0832
PI
P2

0
0

0
0

0
0

a
0

0

0

0

0

0
0

0
0

.5183-

.4818
w

I 9

0 0 0 0 0 0 1.2932 1.2822

W 0 0 0 0 0 0 0 0 1;0758 P1 0 0 0 0 0 0 0 .7887
P2 0 0 0 0 0 0 0 .1181
P3 0 0 0 0 0 0 0 .0932
Y 0 0 0 0 0 0 0 1.2679
2 3
P1 0 .4656 .4896 .5076 .5213 .5320 .5403 .5468
P2 0 .3177 .3426 .3616 .3764 .3880 .3971 .4043
P3 0 .2168 .1678 .1308 .1023 .0801 .0626 .0489
W 0 1.4656 1.4291 1;4036 1.3850 1.3711 1.3605 1.3523

2 4
PI 0 0 .5249 .5437 .5583 .5698 .5791 .5865
P2 0 0 .2755 .2956 .3117 .3247 .3353 .3440
P3 0 0 .1996 .1607 .1300 .1054 .0856 .0694
W 0 0 1.3802 1.3562 1.3383 1.3247 1.3141 1.3057

2 5
P1 0 0 0 .5698 .5850 .5972 .6071 .6151
P2 0 0 0 .2451 .2618 .2756 .287! .2968
P3 0 0 0 .1850 .1532 .1272 .1058 .0881
W 0 0 0 1.3247 1.3074 1.2940 1.2835 1.2750
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THREE LEVEL

6 7 8 9 10

0 .4503 .4656 .4786 .4896
0 .3022 .3177 :3310 '0'3426
0 .2475 .2168 .-I905 .1678
0 1.2207 1.2106 1.2023 1.1955

0 0 .4843 .4975 .50880 0 :2812 .2947 .3065
0 0 .2346 .2078 .1847
0 0 1;1987 1;1907 1.1840

0 0 0 .5134 5249
0 0 0 .2636 .2755
0 0 0 ;2231 .1996
0 0 0 1.1814 1;1749
0

0 0 .5386
0 0 e 0 ;2485
0 e e 0 .21290 0 0 0 1.1673

0 .3965 .4123 .4259 .4376
0 .3296 .3454 ;3590 ;3709
0 .2739 .2423 ;2151 ;1915
0 1.2032 1.1939 1;1862 1.1797

0 0 .4314 .4451 .4570
0 0 .3082 .3220 .33410 0 ,-2605 .2329 .2089e 0 1.1831 1.1757 1.1695

0 0 0 .4614 .4735e 0 0 .2901 .3023
0 0 0 ;2485 :2242
0 o 0 1;1673 1;1613

0 0 0 0 .4877e 0 0 0 .2745
0 o 0 0 .2378
0 0 0 0 1.1545

0 0 .3872 .4012 .4135o 0 .3306 ;3446 .3569e 0 .2822 .2542 .2295
0 0 1:1713 1;1644 1;1586

0 0 0 .4177 .43020 o 0 ;3123 :3247
0 0 0 .2700 .2451
0 0 0 1.1566 1.1510

0 o e 0 .4446
0 0 0 0 ;29640 0 0 0 ;25900 0 0 0 1.1447



3 4 5

THREE LEVEL

6 7 8 9 10 I 2 3

4

FOUR LEVEL

5 6 7 8 9 10

7 8 PI .5188 .5295 .5357 .5392 .5412 .5423 .5429
P1 0 0 0 0 0 0 .3803 .3929 P2 .2691 .2804 .2870 .2908 .2929 .2941 .2948
P2 0 0 0 0 0 0 .3312 .3438 P3 .1396 .1485 .1537 .1568 .1585 .1595 .1601
P3 8 0 0 0 0 0 .2885 .2633 P4 .0724 .0416 .0236 .0133 .0074 .004! .0022
W 0 0 0 0 0 0 1.1481 1.1428 w 1.9276 1:8885 1.8668 1;8545 1;8477 1.8439 1;8418
7 9 I 2 4
P1 0 0 0 0 0 0 0 .4075 P1 0 .5518 .5591 .5635 .5662 .5677 .5686
P2 0 0 0 0 0 0 0 .3153 P2 0 .3044 .3126 .3176 .3205 ;3223 :3233
P3 0 0 0 0 0 0 0 .2773 P3 0 .0927 .0977 .1009 :1027 .1039 .1045
W 0 0 0 0 0 0 0 1.1368 P4 0 .0511 .0305 ;0180 .0106 .0061 .0035
8 9 w 0 1;8124 1.7885 1.7745 1;7663 1.7615 1;7587
P1 0 0 0 0 0 0 0 .3749 I 2 5
P2 0 0 0 0 0 0 0 .3317 P1 0 0 .5735 .5786 .5818 .5837 .5848
P3 0 0 0 0 0 0 0 .2934 P2 0 0 .3289 .3348 .3385 .3407 .3420
W 0 0 0 0 0 0 0 1.1305 P3 0 0 :0620 70649 .0666 .0678 .0684

P4 0 0 .0356 .0217 .0131 .0079 .0047
W 0 0 1.7437 1;7282 1.7189 1:7132 1;7098

I 2 6
P1 0 0 0 .5882 .5918 .5940 .5954
P2 0 0 0 .3460 .3502 .3529 .3545
P3 e 0 0 .0414 .0430 .0439 .0446
P4 0 0 0 .0244 .0150 .8092 .0056
W 0 0 0 1;7001 1;6898 1;6835 1.6795

I 2 7

PI 0 0 e 0 .5983 .6007 .6023
P2 91 0 0 0 .3579 .3609 .3627
P3 0 0 0 0 .6274 ;0282 .0287
P4 0 e e 0 .0164 .0102 ;0063
W 0 0 0 0 1;6714 1;6646 1;6604

/ 2 8
P1 0 0 0 0 0 .6051 .6068
P2 0 0 0 8 0 .3661 .3682
P3 0 0 0 0 0 .0180 .0184
P4 0 0 0 0 0 .0109 ;0068
W 0 0 0 0 0 1;6527 1;6481

I 2 9

PI 0 0 0 0 8 0 .6096
P2 8 0 0 0 0 0 .3717
P3 0 0 0 0 0 0 .0116
P4 0 0 0 0 0 0 ;0071
W 0 0 0 0 0 0 1.6403

I 3 4
P1 0 .5934 .6023 .6080 .6117 .6140 .6155
P2 0 .2090 .2185 .2247 .2288 .2315 .2332
P3 0 .1240 .1316 .1366 .1400 .1421 .1435
P4 0 .0736 .0477 .8307 .0196 .0124 .0078
W 0 1:6851 1.6603 1.6448 1.6349 1:6286 1.6247

I 3 5

P1 0 0 .6180 .6245 .6288 .6316 .6334
P2 0 0 .236I .2435 .2486 :2519 .2542
P3 0 0 .0902 .0950 .0983 .1085 ;1020
P4 0 0 .0557 :0370 .0244 .0160 .0104
W 0 0 1;6180 1.6013 1.5904 1.5833 1.5787



I 3 6

4 5

FOUR LEVEL

6 7 8 9 10
1 5 6

4 5 6

FOUR LEVEL

7 8 9 10

P1 0 0 0 .6355 .6403 .6435 .6457 P1 0 0 0 .6823 .6884 .6929 .6961
P2 0 0 0 .2567 .2625 :2665 .2692 P2 0 0 0 :1479 .1546 .1597 .1634
P3 0 0 0 .0659 .0689 .0710 .0725 P3 0 0 0 .1009 .1065 .1107 .1138
P4 0 0 0 .0419 .0283 .0189 .0126 P4 0 0 0 .0689 .0505 .0368 .0267
W 0 0 0 1.5735 1.5617 1.5539 1.5487 V 0 0 0 1;4656 1.4526 1.4432 1.4366

I 3 7 1 5 7
PI 0 0 0 0 .6483 .6518 .6543 P1 0 0 0 0 .6978 .7026 .7061
P2 0 0 0 0 ;2724 .2769 .2801 P2 0 0 0 0 ;1654 ;1712 .1755
P3 0 0 0 0 .0481 .0500 .0513 P3 0 0 0 0 .0806 .0845 .0875
P4 0 0 0 0 .0312 .0212 .0144 P4 0 0 0 0 .0562 .0417 .0308
W 0 0 0 0 1.5426 1;5342 1.5284 W 0 0 0 0 1;4331 1;4233 1;4162

1 3 8 I 5 8
PI 0 0 0 0 0 .6576 .6603 PI 0 0 0 0 0 .7998 .7136
P2 0 0 0 0 0 .2844 .2879 P2 0 0 0 0 0 .1801 .1850
P3 0 0 0 0 0 .0350 .0361 P3 0 0 0 0 0 .0644 .0672
P4 0 0 0 0 0 .0230 .0157 P4 0 0 0 0 0 ;0457 .0342
W 0 0 0 0 0 1.5206 1.5145 W 0 0 0 0 0 1;4089 1:4014

I 3 9 I 5 9
PI 0 0 0 0 0 0 .6645 PI 0 0 0 0 0 0 .7192
P2 0 0 0 0 0 0 .2934 P2 9 0 0 0 0 0 .1924
P3 0 0 0 0 0 0 .0253 P3 0 0 0 6 0 0 .0515
P4 0 0 0 0 0 0 .0168 P4 g 0 5 0 0 0 ..,5370
W 0 0 0 0 0 0 1;5049 W 0 0 0 0 0 1.3905

1 4 5 1 6.7
PI 0 0 .6445 .6518 .6569 .6604 .6628 P1 3 0 C 0 .7117 .7169 .7208
P. 0 0 .1726 .1805 .1862 .1902 .1930 P2 6 0 0 e ;1300 -;139,8 .1402
P3 0 0 .1112 .1177 .1223 .1256 .1279 P3 0 0 0 0 .0925 ;0973 .1011
P4 0 0 .0717 .0500 .0347 .0239 .0164 P4 0 0 0 E. -0651 0500 ;0379
W 0 0 1.5515 1.5342 1.5224 1.5143 1.5080 W 0 0 0 0 1.4051 1:3949 1.3073

1 4 6 1 6 9
P1 0 0 0 .6637 .6693 .6732 .6759 PI 3 0 4 9 1 '7245 .7287
P2 0 0 0 .1941 .2006 .2054 .2088 P2 0 0 9 0 0 .1416 1497
P3 0 0 0 .0855 .0899 .0931 ;0954 P3 0 3 0 0 0 ;0754 .0795
P4 0 0 0 .0567 .0403 .0284 .0199 P4 o 0 0 o 0 ;0550 .0422
W 0 0 0 1.5067 1.4942 1.4855 1.4794 W 0 0 0 0 0 1;3803 1.3724

I 4 7 1 6 9
PI 0 0 0 0 .6781 .6823 .6854 PI 0 0 0 0 0 0 .7347
P2 o 0 0 0 .2114 .2168 .2207 P2 0 0 0 0 0 0 .1572
P3 0 0 0 0 .0659 .0689 .0711 P3 0 0 0 0 0 0 .0624
P4 0 0 0 0 .0447 .0321 .0229 P4 0 0 0 0 0 0 ;0458
W 0 0 0 0 1.4748 1.4656 1.4590 W 0 0 0 0 0 0 1;3611

1 4 8 I 7 8
P1 0 0 0 0 0 .6890 .6923 PI 0 0 0 0 0 .7354 .7398
P2 0 0 0 0 0 .2253 .2297 P2 0 0 0 0 0 ;1163 :1213
P3 0 0 0 0 0 .0508 .0528 P3 0 0 0 0 0 .0855 .0897
P4 0 0 0 0 0 .0350 .0253 P4 0 0 0 0 0 .0629 .0491
W 0 0 0 0 0 1;4514 1;4445 W 0 0 0 0 0 1.3599 1.3517

I 4 9 1 7 9
PI 0 0 0 0 0 0 .6973 PI 0 0 0 0 0 0 .7461
P2 0 0 0 0 0 0 .2365 P2 0 0 0 0 0 0 .1287
P3 0 0 0 0 0 0 ;0390 P3 0 0 0 0 0 0 .0717
P4 0 0 0 0 0 0 .0272 P4 0 0 0 0 0 0 .0535
W 0 0 0 0 0 0 1.4340 14 0 0 0 0 0 0 1:3403 1..

Os
--4



I 8 9

4 5

FOUR LEVEL

6 7 8 9 10

2 4 7

4 5

FOUR LEVEL

6 7 8 9 10

P1 0 0 0 0 0 0 .7549 PI 0 0 0 0 .5305 .5371 .5421P2 0 0 0 0 0 0 .1054 P2 0 0 0 0 .2815 ;2885 .2939P3 0 0 0 0 0 0 .0796 P3 0 0 0 0 ;1088 .1135 .1173P4 0 0 0 0 0 0 ;0601 p4 0 0 0 0 .0792 .0610 .0468W 0 0 0 0 0 0 1;3247 W 0 0 0 0 1.3729 1.3645 1:35822 3 4 2 4 8
PI 0 .4249 .4369 .4454 .4514 .4557 .4587 PI 0 0 0 0 0 .5464 .5518P2 0 .2769 .2888 .2973 ;3033 ;3076 .3106 P2 0 0 0 0 0 .2986 .3044P3 0 :1805 :1909 .1984 ;2038 .2076 .2104 P3 0 0 0 0 0 :0891 .0927P4 0 :1177 :0834 :0590 :0415 .0291 .0203 P4 0 0 0 0 0 ;0659 .0511W 0 1;5342 1.5129 1;4984 1;4884 1;4814 1:4765 W 0 0 0 0 0 1;3528 1;34632 3 5 2 4 9
PI 0 0 .4562 .4656 .4723 .4772 .4808 P1 0 0 0 0 0 0 .5593P2 0 0 .3082 .3177 .3246 .3297 :3333 P2 0 0 0 0 0 0 .3128P3 0 0 :1406 .1479 .1533 .1573 .1603 P3 0 0 0 0 0 0 .0732P4 0 0 .0950 .0689 .0498 .0358 :0257 P4 0 0 0 0 0 0 ;0547W 0 0 1;4805 1:4656 1;4550 1.4476 1;4422 W 0 0 0 0 0 0 1;33722 3 6 2 5 6
PI 0 0 0 .4801 .4874 .4929 .4969 PI 0 0 0 .5323 .5409 .5475 .5526P2 0 0 0 .3326 .3403 ;3460 .3502 P2 0 0 0 .2068 ;2152 .2218 ;2270P3 0 0 0 ;1106 .1158 .1197 ;1227 P3 0 0 0 .1509 .1583 ;1641 .1688P4 0 0 0 .0767 .0565 .0414 ;0303 P4 0 0 0 .1101 ;0856 .0665 .0515w 0 0 0 1;4433 1:4323 1.4244 1;4187 W 0 0 0 1;3706 1.3596 1;3514 1;34522 3 7 2 5 7
PI 0 0 0 0 .4986 .5045 .5089 P1 0 0 0 0 .5531 .5601 .5656P2 0 0 0 0 .3521 .3583 .3630 P2 0 0 0 0 .2275 .2348 .2405P3 0 0 0 0 .0875 .0912 .0940 P3 0 0 0 0 .1258 .1315 ;1360P4 0 0 0 0 .0618 .0460 .0341 P4 0 0 0 0 ;0936 .0736 .0579
W 0 0 0 0 1;4162 1;4079 1.4018 W 0 0 0 0 1;3446 1;3362 1;32972 3 8 2 5 8
PI 0 0 0 0 0 .5133 .5180 P1 0 0 0 0 0 .5698 .5756P2 0 0 0 0 0 .3677 .3728 P2 0 0 0 0 0 ;2451 .2514P3 0 0 0 0 0 ;0694 .0720 P3 0 0 0 0 0 .1054 .1098P4 0 0 0 0 0 .0497 .0373 P4 0 0 0 0 0 .0796 .0632W 0 0 0 0 0 1;3958 1;3895 W 0 0 0 0 0 1;3247 1;31802 3 9 2 5 9
P1 0 0 0 0 0 0 .5249 PI 0 0 0 0 0 0 .5836P2 0 0 0 0 0 0 .3803 P2 0 0 0 0 0 0 ;2602P3 0 0 0 0 0 6 ;0550 P3 0 0 0 0 0 0 ;0886P4 0 0 0 0 0 0 :0398 P4 0 0 0 0 0 0 .0677W 0 0 0 0 0 0 1.3803 W 0 0 0 0 0 0 1:30902 4 5 2 6 7
P1 0 0 .4055 .4957 .5032 .5088 .5130 PI 0 0 0 0 .5698 .5772 .5831P2 0 0 .2357 .2457 .2532 ;2588 .2631 P2 0 0 0 0 .1850 :1923 ;1982P3 0 0 .1643 .1730 .1796 .1846 .1885 P3 0 0 0 0 .1397 ;1461 .1514P4 0 0 .1145 .0857 .0641 .0478 .0355 P4 0 0 0 0 ;1054 .0843 .0674W 0 0 1:4351 1;4204 1.4098 1;4020 1;3962 W 0 0 e 0 1;3247 1;3162 1;30962 4 6 -

2 6 8
PI 0 0 0 .5107 .5188 .5249 .5295 P1 0 0 0 0 0 .5873 .5934P2 0 0 0 .2608 .2691 .2755 ;2804 P2 0 0 0 0 0 :2026 .2090P3 0 0 0 :1332 .1396 .1446 .1485 P3 0 0 0 0 0 :1190 ;1240P4 0 0 0 .0952 .0724 .0550 .0416 P4 0 0 0 0 0 ;0912 ;0736W 0 0 0 1;3993 1;3884 1;3803 1;3742 W 0 0 0 0 0 1;3049 1;2981 1....

CN
CO
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0
0

0
0
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0

0
0
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6 7

0 0
8 0
0 0

0 0
0 o

0 0

0 0
0 0
0 0
0 0

0 0
0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0

.3803 .3916
:2755 .2865
.1996 .2096
.1446 .1122
1:3803 13668

0 4078
0 .3025
0 1663
0 .1234
0 1;3484

0 0
0 0
0 0
0 0
0 0

0 0

0 0

0 0
0 0
0 0

0 0

0 0

0 0
0 0

0 0
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0
0
0
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0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

.4004
2951
.2175
;0871

1;3568

.4171
;3117
.1740
.0972
1;3384

4302
;3247
:1397
.1054
1.3247

0
0
0
0
0

0
0
0

0
0

9

0
0
0
0

0

.6008

.1680

.1302
;1010
1;2982

0
0
0
0
0

0
0
0
0
0

.4871

.3817

.2236
;0675
1:3492

4244
;3190
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.1456
',4840
1;3169

.4485
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.1179
.0902
1;3064

0
0
0
0
0
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.6017

.2178
;1017
:0789
1;2892

.6072

.1744

.1359

.0825
1;2834

.6157

.1831
;1127
.0885
1;2745
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.1543
1222
;0967
1;2631

.4124

.3069

.2285
;0522
13435
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.3247
1850
;0681
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.3388

.1504

.0668
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;3500
;1225
.0725
1;3001
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.3591
.0998
;0773
1;2918
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PI
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P3
P4
W
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P3
P4
W
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P2
P3
P4
W
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W
3 6
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P3
P4
V
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P2
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P2
P3
P4
W
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PI
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W

6

7

8

9

7

8

9

8

9
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0
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0
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0
0
8
0
0
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0
0
0
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0
0
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0
0
0
0
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0
0
0
0
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0
0
0
0
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0
0
0
0
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0
0
0
0
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0
0
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0
0
0
0
0

0
0
0
0
0

0
0
0
0
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0
0
0
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0
0
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0
0
0
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0
0

0

0
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0
0
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.2451

.1850
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0
0
0
0

0
0
0
0
0

0
0
0
0
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0
0
0
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0

0
0
0
0
0

0
0
0

0
0

0
0
0
0
0

0
0
0
0
0

8

.4400

.2545

.1936
;1120
1;3148

.4533
;2675
;1579
.1213
1;3817

0
0
8
0
8

0
0
0
0
0

.4711

.2219
;1727
.1343
1;2852

0
0
0
0
0

0
8
o
0
8

8
0

:
0

0
0
0
0
0
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.4477

.2620

.2005

.0898
1;3071

.4615
;2756
.1646
.0983
1;2940

.4725

.2866

.1354

.1055
1;2839

0
0
0

0
0

4796
.2300
;1881
:1103
1;2775

.4909
;2409
;1499
.1183
1;2677

0
0
0
0
0

.5054

.2035

..;11:::

1;2554

0
8
0
0
0
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.4539

.268!
;2061
.0719
1;3012

.4681

.2822
;1781
.0796
1;2879

.4794

.2936

.1408

.0862
1;2777

.4885

.3030
:1166
.0918
1;2697

.4865
;2367
:1862
.0906

1;2714

.4981
;2481
.1559
.0979
1;2615

.5075

.2576
;1387
;1043
1;2537

.5129

.2106
;1686
;1080
1;2493

.5225
;2199
.1427
;1149
1;2415



3 8 9
4 5

FOUR LEVEL

6 7 5 9 10

4 7 9
4 5

FOUR LEVEL

6 7 8 9

PI 0 0 0 0 0 0 .5347 P1 0 0 0 0 0 0
P2 0 0 0 0 0 0 .1883 P2 0 0 0 0 0 0
P3 0 0 0 0 0 0 :1529 P3 0 0 .0 0 0 0
P4 0 0 0 0 0 0 ;1241 P4 0 0 0 0 0 0
V 0 0 0 0 0 0 1;2321 V 0 0 0 0 0 0
4 5 6 4 a 9
PI 0 0 0 .3540 .3643 .3727 .3795 P1 0 0 0 0 0 0
P2
P3

0
0

0

0
0
0

;2730
:2106

.2830

.2199
:2912
.2275

.2979

.2338
P2
P3

0
0

0
0

0
0

0
0

0
0

0

P4 0 0 0 .1624 .1327 .1085 .0887 P4 0 0 0 0 0 0
V 0 0 0 1;2965 1;2871 1;2798 12740 W 0 0 0 0 0 0
4 5 7 5 6 7
PI 0 0 0 0 .3781 .3869 .3941 P1 0 0 0 0 .3365 .3460
P2 0 0 0 0 ;2965 .3052 ;3123 P2 0 0 0 0 ;2707 .2798
P3 0 0 0 0 .1823 ;1898 .1961 P3 0 0 0 0 ;2177 ;2263
P4 0 0 0 0 ;1430 :1181 .0975 P4 0 0 0 0 ;1751 :1480
V 0 0 0 0 1;2752 1:2679 1.2621 W 0 0 0 0 1;2433 1 2365
4 5 8 5 6 8
P1 0 0 0 0 0 .3985 .4060 P1 0 0 0 0 0 .3579
P2 0 0 0 0 0 .3166 .3241 P2 0 0 0 0 0 2915
P3 0 0 0 0 0 .1588 :1648 P3 0 0 0 0 0 .1932
P4 0 0 0 0 0 .1262 ;1050 P4 0 0 0 0 0 .1574
V 0 0 0 0 0 1;2586 1;2527 V 0 0 0 0 0 1;2281
4 5 9 5 6 9 -

PI 0 0 0 0 0 0 .4158 PI 0 0 0 0 0 0
P2 0 0 0 0 0 0 ;3339 P2 0 0 0 0 0 0
P3 0 0 0 0 0 0 ;1388 P3 0 0 0 0 0 0
P4 0 0 0 0 0 0 ;1115 P4 0 0 0 0 0 0
V 0 0 0 0 0 0 1;2453 V 0 0 0 0 0 0

4 6 7 5 7 8
P1 0 0 0 0 .3961 .4052 .4128 PI 0 0 0 0 0 .3729
P2 0 0 0 0 ;2493 ;2580 ;2652 P2 0 0 0 0 0 ;2513
P3 0 0 0 0 .1978 ;2058 ;2126 P3 0 0 0 0 0 .2063
P4 0 0 0 0 .1569 ;1310 ;1095 P4 0 0 0 0 0 .:1694
w 0 0 0 0 1:2605 1;2534 1;2476 V 0 0 0 0 0 1;2181

4 6 8 5 7 9
P1 0 0 0 0 0 .4170 .4249 P1 0 0 0 0 0 0
P2 0 0 0 0 0 ;2693 :2770 P2 0 0 0 0 0 0P3 0 0 0 0 0 .1739 ;1805 P3 0 0 0 0 0 0
P4 0 0 0 0 0 :1398 ;1177 P4 0 0 0 0 0 0
V 0 0 0 0 0 1;2444 1;2386 W 0 0 0 0 0 0

4 6 9 5 8 9
P1 0 0 0 0 0 0 .4349 P1 0 0 0 0 0 0
P2 e 0 0 0 0 0 ;2868 P2 0 0 0 0 0 0
P3 0 0 0 0 0 0 :1536 P3 0 0 0 0 0 0
P4 0 0 0 0 0 0 ;1247 P4 0 0 0 0 0 0
V 0 0 0 0 0 0 1;2314 V 0 0 0 0 0 0

4 7 8 6 7 8
PI 0 0 0 0 0 .4320 .4401 PI 0 0 0 0 0 .3242
P2 0 0 0 0 0 .2302 ;2378 P2 0 0 0 0 0 ;2687
P3 0 0 0 0 0 .1866 ;1937 P3 0 0 8 0 0 ;2227
P4 0 0 0 0 0 :1513 ;1285 P4 0 0 0 0 0 ;1846
W 0 0 0 0 0 1;2335 1:2278 W 0 0 0 0 0 1;2065
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.4503

.2475
;1661
;1361
1;2207

.4630

--f-V7::
;1459
1;2123

.3538

.2874

.2335

.1252
1;2309

.3661

.2995

.2004
VI340
1;2226

.3764
;3096
.1723
.1417
1;2158

.3814

.2593
;2139
.1454
1;2126

.3919
;2694
.1852
.1536

1;2061

.4047
;2352
.1963
;1638
1;1983

.3327

.2770
;2306
;1598
1;2013



6 7 9
4 5

FOUR LEVEL

6 7 8 9 10

P1 0 0 0 0 0 0 3433
P2 0 0 0 0 0 0 .2873
P3 0 0 0 0 0 0 .2011
P4 0 0 0 0 0 0 :1683
W 0 0 0 0 0 0 1;1951

6 8 9
P I 0 0 0 0 0 0 .3561
P2 0 0 0 0 0 0 .2524
P3 0 0 0 0 0 0 .2125
P4 0 0 0 0 0 0 .1789
W 0 0 0 0 0 0 1.1878

7 8 9
PI 0 0 0 0 0 0 3149
P2 0 0 0 0 0 0 .2669
P3 0 0 0 0 0 0 :2263
P4 0 0 0 0 0 0 ;1919
ii 0 0 0 0 0 0 1:1795
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PRESENT CONTRIBUTIONS
OF INFORMATION THEORY

AREAS FOR FUTURE
RESEARCH

RANKING MINIMUM COST ANALYSIS
(CHURCHMAN, 1954)
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(QUALITY CONTROL,
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(BARISH, 1962) X
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ESTABLISHES MEANS TO
IDENTIFY "FACTORS"
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ADVERTISING & MARKETING
(MACHOL, 1960)
(BUZZEL, 1969) X X X
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MULTI-FACTOR
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BRAND SWITCHING
(GREEN, 1967)
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