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This collection of three manuscripts serves to improve methods for collect-

ing, interpreting, and utilizing autocorrelated data from headwater stream

networks. Each stream network is comprised of linear segments. These seg-

ments lie within a unique branching structure that connects the segments

via flowing water, and the connectivity provided by water varies seasonally.

These aspects separate stream networks from other landscapes, and provide

unique challenges to the statistical analysis of stream-based phenomenon.

Two chapters of this work relied on a unique and comprehensive set of

data. These data constitute a complete census of habitat unit fish counts

from 40 randomly selected headwater basins in western Oregon. The first

objective of this work was to evaluate how different sampling designs captured

spatial autocorrelation, given the samples were drawn from a population of

spatially autocorrelated observations. Spatially distributed clusters of sam-

pling locations were more apt to capture spatial autocorrelation than samples



without clusters or small clusters located at tributary junctions. A similar

investigation was made concerning sampling design performance in relation

to estimating autocorrelation function values. All sampling designs lead gen-

erally to negatively biased estimates, and practical differences among the

sampling designs were not observed. The second objective was to investigate

spatial autocorrelation model range parameters as measures of patch sizes.

It is common practice to use range parameters to infer the size of patches

within spatially autocorrelated data, but this methodology lacks sufficient

justification. The census data were used to compute range parameter val-

ues, and another proposed autocorrelative measure of patch size: the integral

scale. The same data were used to compute patch sizes under several patch

definitions, and the relationship of range parameters and integral scale values

with patch sizes was explored. Range parameter values did not equal and

were not strongly correlated with average patch sizes, though range parame-

ter values were more correlated with maximum patch and gap sizes. Integral

scale values matched the magnitude of, but were not strongly correlated with,

average patch sizes.

The third objective was to refine the analysis of temporally autocorrelated

hydrology data from paired watershed studies. Paired watershed studies are

used to evaluate forest harvesting effects on stream biota and hydrology (i.e.

fish, amphibians, insects, stream flow, and sediment yield). Traditionally,

treatment effects are discerned using prediction intervals. This work provided

an improved method for constructing prediction intervals for use in change

detection in paired watershed studies. The improved prediction intervals in-

cluded variation associated with estimating linear and autocorrelation model

parameters.
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1. INTRODUCTION

1.1 INTRODUCTION

Data collected across spatial landscapes or over time commonly exhibit

autocorrelation (Legendre, 1993). This phenomenon is appropriately summed

by Tobler’s first law of geography, that “everything is related to everything

else, but near things are more related than distant things” (Tobler , 1970).

The presence of autocorrelation lessens the amount of statistical informa-

tion contained within a sample, and therefore needs to be accounted for in

hypothesis tests and parameter estimation uncertainty. The study of auto-

correlation in ecological has evolved from simply statistical accounting, and

ecologists have begun to focus attention on the spatial process itself (Pickett

and Cadenasso, 1995).

Stream networks provide a unique landscape for the study of spatial au-

tocorrelation. Each stream network is comprised of linear segments. These

segments lie within a unique branching structure that connects the segments

via flowing water, and the connectivity provided by water varies seasonally.

The connectivity and proximity of locations within streams can be expressed

along the path of water moving through the network structure. These traits

have led to further developments in the study of autocorrelation methods for

stream networks (Ver Hoef et al., 2006), and present interesting arenas for

investigating statistical measures for analysis of data collected within them.

Paired watershed studies are used to evaluate forest harvesting effects

on biota and hydrology (i.e. fish, amphibians, insects, stream flow, and

sediment yield) in stream segments adjacent to and downstream of timber

harvest. For instance, hydrologic response variables are collected over time
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before and after harvest, and the response values within a treated watershed

are compared to those within untreated watersheds. Detection of changes

in a treated watershed, relative to a control watershed, are indicative of

effects due to forest harvesting. These response variables are often temporally

autocorrelated, and change detection is assessed using prediction intervals

(Gomi et al., 2006; Moore et al., 2005; Watson et al., 2001).

This work seeks to update and fill gaps in relation to the estimation and

application of spatial autocorrelation, and improve the prediction interval

methodology, for data collected within headwater stream networks.

1.2 CHAPTER DESCRIPTIONS

Chapter 2 investigates how sampling designs impact the ability to detect

spatial autocorrelation and estimate autocorrelation parameters in spatially

autocorrelated data. This chapter utilizes censuses of fish counts from west-

ern Oregon headwater basins. Two cluster-based and two non cluster based

sampling protocols are implemented in a resampling exercise to evaluate au-

tocorrelation detection and estimation among protocols.

Chapter 3 uses census fish count data from 40 western Oregon headwater

basins to investigate the appropriateness of range parameter and integral

scale values for the estimation of patch sizes. Patches are measured for

each basin using four patch definitions, each based on increasing within-

patch fish count thresholds. The census fish count data are used to compute

range parameter and integral scale values for each basin. The relationship

between range parameter and integral scale values with patch sizes is assessed

graphically and with correlation estimates.

Chapter 4 derives prediction intervals for change detection in temporally
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autocorrelated hydrologic data from paired watershed studies. The proposed

prediction intervals incorporate variation due to the estimation of linear and

autocorrelation model parameters, which is in contrast to current methods of

prediction interval calculation for paired watershed studies. An example of

their application is given using data from the Hinkle Creek Paired Watershed

study from Oregon.
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2. SAMPLING HEADWATER STREAM NETWORKS FOR SPATIAL

AUTOCORRELATION DETECTION AND AUTOCOVARIANCE

PARAMETER ESTIMATION

2.1 ABSTRACT

Spatial autocorrelation is common in data collected for ecological studies,

and the use of statistical models for spatial autocorrelation has evolved. Ini-

tially, these models where used to improve linear model parameter estimation

uncertainty, but more recently ecologists have considered spatial autocorre-

lation as a valuable tool for describing ecological patterns. The structure and

water-driven continuity of stream-networks makes these landscapes unique,

and has prompted the development of new models for describing spatial au-

tocorrelation within these networks. We evaluate the spatial autocorrelation

detection and parameter estimation of four sampling protocols applied to

complete censuses of coastal cutthroat trout (Oncorhynchuys clarki clarki)

habitat unit fish counts. We consider two cluster- and two non cluster-based

sampling protocols. Spatially distributed clusters were the most apt to con-

tain spatial autocorrelation, and spatial autocorrelation detection was also

associated with headwater basin attributes. Differences among the sampling

protocols in regards to autocorrelation parameter estimation was less dis-

tinct.

2.2 INTRODUCTION

Attention to patterns of spatial autocorrelation in ecology has shifted

dramatically. Geostatistical methods were first used to account for spatial
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autocorrelation in order to estimate the mean, assess relationships between

explanatory and response variables, or make predictions at unobserved loca-

tions. More recently, ecologists have focused attention on the spatial process

itself, recognizing the implications of variance patterns across their systems

of study as valuable explanatory and predictive tools, rather than simply

sources of background variation (Pickett and Cadenasso, 1995). The real-

ization that spatial patterns are important components of ecosystems has

rendered the study of spatial heterogeneity important in its own right (Leg-

endre, 1993).

Realizations of this shift include Ettema and Wardle (2002) recogniz-

ing spatial variability as a key, rather than nuisance, to understanding the

structure and function of soil biodiversity. Other studies relating spatial vari-

ability to soil variables include Russo and Bresler (1981), Schlesinger et al.

(1996), Solie et al. (1999), Grundmann and Debouzie (2000), Muneto et al.

(2001), and Blair (2005). Examples from forest plants include Mast and

Veblen (1999) and Bouza et al. (2002). Rossi (2003) used spatial autocorre-

lation to study earthworms. There has also been much work utilizing spatial

heterogeneity in aquatic ecosystems that include river or stream nutrients

and water quality (Cressie and Majure, 1997; Little et al., 1997; Rathbun,

1998; Peterson and Urquhart , 2006; Dent and Grimm, 1999; Cressie et al.,

2006), tropical sea plankton (Bulit et al., 2003, 2004), seabirds (Huettmann

and Diamond , 2006), aquatic invertebrates (Downes et al., 1993; Lloyd et al.,

2005), stream substrate composition (Rice and Church, 1998; Venditti and

Church, 2005), stream temperature (Gardner et al., 2003), and riverine fish

(Torgersen and Close, 2004; Isaak and Thurow , 2006; Ganio et al., 2005;

Neville et al., 2006).

The autocovariance function can be used to model the decaying autoco-
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variance (C(h)) between observations as the distance between them (h) in-

creases. The geostatistical model for C(h) often contains the range, nugget,

and partial sill parameters (Schabenberger and Gotway , 2005). The range

and partial sill parameters describe the rate of covariance decay with h, and

the partial sill and nugget parameters describe the covariance when h is

zero. The autocorrelation function (R(h)) standardizes the autocovariance

function between 0 and 1, and can also be used to describe this relation-

ship. R(h) = C(h)/C(0), and utilizes the three autocovariance parameters

simultaneously.

Spatially explicit data are needed to describe and compare the spatial au-

tocovariance patterns of ecological phenomenon. Data are obtained through

sampling, and sampling is the focus of this work. Even though spatial statis-

tical methods are traditionally used to analyze data that have already been

collected, they can also be used to design sampling programs (Cooper et al.,

1997). Regardless of the analysis goal, estimation of spatial autocorrelation is

among the essential steps in any geostatistical analysis (Gascuel-Odoux and

Boivin, 1994). Because inferences for spatial data are affected substantially

by the configuration of the network of sites where measurements are taken

(Zimmerman, 2006), a less than optimum selection of sampling locations can

result in greater covariance function uncertainty (Russo and Jury , 1987), and

efficient spatial autocorrelation parameter estimation is significantly affected

by the sampling design (Muller and Zimmerman, 1999) it is imperative that

efficient sampling designs be investigated.

There exists a solid and consistent body of work on the estimation of spa-

tial autocorrelation parameters for geostatistical data. Zimmerman (2006)

found that for efficient estimation of covariance parameters a design should

have a large number of short and long distances between sample points (lags).
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This design can be achieved by a distribution of regularly spaced clusters,

many of which lie along the periphery of the sampling space. Similarly, Zhu

and Zhang (2006) conclude that designs including closely spaced points lead

to more efficient estimation of covariance parameters, and work from Zhu and

Stein (2005) found designs with clusters of sampling locations more efficient

than non-clustered completely regular or simple random sampling designs.

In addition, the most efficient designs for spatial autocorrelation parame-

ter estimation evaluated by Muller and Zimmerman (1999) included many

tightly clumped groups of sampling locations. In an assessment of maximum

likelihood (ML) and restricted maximum likelihood (REML) for estimating

autocovariance parameters Irvine et al. (2007) also found a cluster-based

design provided the smallest inter-quartile range for estimates of the auto-

correlation function than regular lattice or random designs for estimating

autocovariance parameters.

The above results are satisfactory for covariance parameter estimation

in landscape studies. They may not, however, be sufficient for stream ecol-

ogy studies. Each stream network is comprised of linear segments within a

unique branching structure. Water flow connects segments, but connectivity

between segments varies because of inputs from upstream segments at each

tributary junction. This notion is most succinctly concluded by Hynes (1975)

that every stream is likely to be an individual. These traits have led to further

developments in the study of autocovariance methods for stream networks.

Ver Hoef et al. (2006) use moving average constructions to develop valid

spatial autocovariance models for stream networks based on stream distance

that also incorporate relative flow contribution between stream segments.

Additionally, new methods for sampling spatially distributed resources, such

as generalized random-tessellation stratified (GRTS) designs, that lead to
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spatially well distributed probability samples (Stevens Jr. and Olsen, 2004)

have been created. These developments allow the investigation of covari-

ance parameter estimation performance for stream networks in light of new

sampling and analysis methods for stream network spatial data.

Tributary confluences are a common element among stream networks,

and there is growing evidence that confluences influence spatial processes

in streams. Poole (2002) suggests a stream segment’s physical context is

among important considerations for understanding primary drivers of biotic

community composition at stream locations. Confluences are areas of in-

creased morphological (Benda et al., 2004b), chemical, and biological stream

heterogeneity (Kiffney et al., 2006). Benda et al. (2004a) conclude that the

probability of a tributary impact on mainstem morphology increases with the

relative size of the tributary to the mainstem. They link this relationship

to the spatial distribution of fluvial geomorphic processes and forms. The

physical attributes relating to tributary inputs effect fish habitat (Ferguson

et al., 2006), and biological responses to increased levels of environmental

variability near confluences can be expected (Rice et al., 2006).

Given the benefit for covariance parameter estimation that clusters of

sampling locations have, and the role that confluences play in the spatial

heterogeneity of stream networks, we hypothesize that sampling designs as-

signing clusters of sampling locations centered at tributary junctions might

lead to improved covariance parameter estimation. The previously cited

studies evaluating the performances of sampling designs for autocovariance

parameter estimation relied on simulated data, but to our knowledge sam-

pling design performance has not been investigated using real-world data.

Pooler and Smith (2005) utilized the census of a 40 x 33 m section of the

Cacapon River in West Virginia to evaluate sampling designs for estimating
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the distribution and abundance of freshwater mussels. In a similar manner,

we will compare the spatial autocovariance parameter estimates obtained

from a re-sampling exercise of census data. Samples obtained from tributary

focused clusters, spatially distributed clusters, and two non-clustered sam-

pling protocols will be compared in a design-based analysis of autocovariance

detection and parameter estimation.

2.3 METHODS

2.3.1 40 Basins Dataset

Coastal cutthroat trout (Oncorhynchuys clarki clarki) were continuously

sampled in 40 watersheds located west of the Cascade Mountains in Oregon

(Gresswell et al., 2004). The basins are located above barriers to anadro-

mous fish migration and are part of a larger study examining the effects of

landscape pattern on isolated coastal cutthroat trout populations. Each of

the 40 basins was randomly selected from a population of 268 second- and

third-order catchments and surveyed through the entire fish-bearing extent

(Ganio et al., 2005). Adult coastal cutthroat trout abundance was assessed

with single-pass electrofishing without blocknets (Bateman et al., 2005) in all

pools and cascade habitat units in each watershed. These data constitute a

census of the habitat units within each headwater basin. Twelve headwater

basins whose fish-bearing extent encompassed between three and ten tribu-

tary junctions were selected for this analysis. It should be noted that these

data represent a one time snap-shot of habitat unit fish-counts, and it has

been shown that habitat unit fish counts can change quickly and dramatically

over time (Bateman et al., 2005).
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2.3.2 Autocovariance Models for the Census Data

We begin by establishing census data autocovariance parameters for each

of i basins. These parameter values are used to construct census values of

Ri(h). Values of R̂i(h) from each of the sampling protocols described in the

next section are compared to these Ri(h) values.

We consider four candidate autocovariance models for the census data

from each basin. All habitat unit fish counts were transformed via a

logarithme(datum + 1) transformation. The four autocovariance models for

isotropic and stationary spatial processes come from two different classes.

The first class represents geostatistical models that utilize the pairwise Eu-

clidean distance between all habitat units. We first consider the exponential

with nugget autocovariance model

C(h) =

{
θ0 + θ1 if h = 0
θ1exp(−3hθ−1

2 ) if h > 0
(2.1)

where h is the Euclidean distance between observations, θ0 is the nugget

parameter, θ1 is the partial sill parameter, and θ2 is the practical range

parameter. The practical range is defined as the distance at which correlation

between observations ≈ 5% (Schabenberger and Gotway , 2005).

We also considered the spherical with nugget autocovariance model

C(h) =


θ0 + θ1 if h = 0
θ1

[
1 + .5(hθ−1

2 )3 − 1.5hθ−1
2

]
if 0 < h < θ2

0 if θ2 ≤ h
(2.2)

where h is the Euclidean distance between observations, θ0 is the nugget

parameter, θ1 is the partial sill parameter, and θ2 is the range parameter.

The second class of spatial autocovariance models are tail-up spatial mov-

ing average models for stream networks (Ver Hoef et al., 2006) which utilize

in-stream distances. For moving average in-stream models, the exponential
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model describing the covariance between an observation si downstream of

observation sj is

C(si, sj) =


θ0 + θ1 if h = 0
θ1exp(−3hθ−1

2 )
√

wi,j if h > 0 and si, sj are flow connected
0 if si, sj not flow connected

(2.3)

where h is the distance along the stream network between locations si and sj,

wi,j is the proportion of water flow the stream segment containing si receives

from the segment containing sj, and with θ0, θ1, and θ2 as in (2.1). The

moving average analog to (2.2) is

C(si, sj) =


θ0 + θ1 if h = 0
θ1

[
1 + .5(hθ−1

2 )3 − 1.5hθ−1
2

]√
wi,j if 0 < h < θ2 and si, sj are flow connected

0 if θ2 ≤ h or si, sj not flow connected
(2.4)

with h and wi,j as in (2.3) and θ0, θ1, and θ2 as in (2.2). These models

differ from the geostatistical models in the distance measure used, and in

two other ways. First, the autocovariance between locations is weighted pro-

portionally to the amount of stream flow the downstream location receives

from the upstream location. Second, two habitat units are only considered

autocorrelated if they are connected via water flow through the stream net-

work. See Ver Hoef et al. (2006) and Peterson et al. (2007) for more details.

Relative flow contribution was not directly measured for each location in the

watershed. The proportion of the upstream watershed area drained by each

stream segment was used to weight the moving average autocovariance func-

tions at each tributary confluence (Peterson et al., 2007). We computed all

confluence weights and in-stream distances via the FLoWS ArcGIS toolbox

(http://www.nrel.colostate.edu/projects/starmap/flows index.htm).

Maximum likelihood equations were optimized to obtain parameter val-

ues, given the census data, for each basin using R code from Ver Hoef and
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Peterson (2007). Akaike’s information criterion (AIC) values were used to

determine which candidate model was best supported by the data (Zuur

et al., 2009). If necessary, we also considered the relative structured vari-

ability (RSV ) (Schabenberger and Gotway , 2005) of each candidate model.

RSV is θ0

θ0+θ1
. The autocovariance model with the highest RSV was chosen

if any AIC values from the four autocovariance models were within 2 AIC

units of the best fitting model.

For reference, we also fit a model that assumed each observation within

each basin was independent and not spatially autocorrelated. AIC values

from these models and empirical semivariograms were used to ascertain the

presence of autocorrelation in the census data for each basin.

We used the selected spatial autocovariance model from each of the i

basins to calculate Ri(h) at distances (h) of 25, 100, and 200m. We chose

these lag values for h to represent relatively short, medium, and longer dis-

tances between sampling locations within the basins.

2.3.3 Sampling Protocols

We now describe the four sampling protocols and resampling process used

to compare each protocol’s spatial autocorrelation detection and parameter

estimation performance. The evidence of spatial autocorrelation, and R̂i(h)

computed from the autocovariance parameter estimates of each sample will

be assessed.

Two cluster-based, and two non cluster-based, sampling protocols were

employed in this study (Figure 2.1). For notation, m will represent the

number of clusters, l will represent the number of habitat units within each

sample cluster, and n = l ∗m will represent the entire sample size.
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The first sampling protocol is simple random sampling (SRS) without

replacement. n habitat units were randomly chosen among all the habitat

units for each basin using the sample function in R statistical computing

software (R Development Core Team, 2005).

The second sampling protocol is the generalized random tessellation strat-

ified (GRTS) methodology aimed to create spatially balanced probability

samples (Stevens Jr. and Olsen, 2004). n habitat units were chosen among

all habitat units for each basin using the spsurvey contributed R package

(Kincaid et al., 2008) for the implementation of GRTS sampling.

The third sampling protocol implemented, referred to Mod.GRTS, is a

modified GRTS procedure that we applied to select spatially balanced clus-

ters of sampled habitat units throughout the headwater basins. We used

spsurvey to select a spatially distributed set of m cluster centroids. At each

centroid, a continuous cluster sample of size l was obtained by selecting l
2

habitat units upstream and including the centroid, and l
2

habitats units di-

rectly downstream of the centroid. Should l
2

habitat units in either direction

result in the encountering of a tributary junction, the remaining units yet

unassigned were split among the two other segments leading from the junc-

tion. The total number of centroids chosen corresponds to the number of

tributary junctions within each headwater basin for comparison with the

TOCCSIC sampling protocol described below.

The fourth sampling protocol is tributary junction only, continuous clus-

ter sampling in catchments (TOCCSIC). Moving away from m tributary junc-

tions along each stream segment l
3

consecutive habitat units were selected

for sampling. Should l
3

be sufficiently large in a direction as to encounter

another tributary junction, the remaining units were split between the other

two joining stream segments’ habitat units.
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2.3.4 Resampling

As each headwater basin’s habitat unit survey constitutes a complete

census, a sample of the habitat units from each basin was drawn according

to each of the four sampling protocols. For each combination of basin and

sampling protocol, a sample of size n was drawn D times where

D = max(50, tCm); where tCm =
t!

m!(t−m)!
(2.5)

for the GRTS, Mod. GRTS, and SRS protocols, and t represents the total

number of tributary junctions within each headwater basin. There are only

tCm unique samples possible for the TOCCSIC design, and all D = tCm

possible samples were generated.

To investigate the performance of the Mod.GRTS and TOCCSIC sam-

pling protocols under different cluster sizes, we used sample sizes of 48 habitat

units (2 clusters of 24 units or 4 clusters of 12 units), 72 habitat units (2 of

36, 3 of 24, 4 of 18, and 6 of 12), and 144 habitat units (4 of 36 and 6 of 24)

(Table 2.1).

Two autocovariance models were fit to each sample. The first is the

autocovariance model chosen for that basin’s habitat unit census, and will

be hereafter referred to as a spatial autocovariance (SAC) model. The second

model, hereafter referred to as SLR, assumes no spatial autocorrelation in

the sample and includes a single variance parameter. Model parameters were

estimated using maximum likelihood.
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2.3.5 Sample Autocovariance Parameter Performance

To evaluate the sampling protocols we first compared their ability to

detect the presence of spatial autocorrelation, given that each sample was

drawn from spatially autocorrelated census data. Next, we computed R̂(h)

for each sample for lag distances of 25, 100, and 200m, and compared the

bias and variance of these estimates relative to the R(h) values obtained from

the census data of each basin.

We dichotomized each sample into one of two categories based on the

SAC and SLR AIC values. We considered the SAC and SLR fits as com-

peting models if the difference between their AIC values was within 2 units

(Burnham and Anderson, 2002). All samples with competing models or

lower SRS AIC values were classified as lacking strong evidence of spatial

autocorrelation. All other samples where classified as having evidence of

spatial autocorrelation. We used this dichotomization to create a response

variable for each sample. Samples lacking evidence of spatial autocorrelation

were assigned a value of 0, and all others were assigned a value of 1. We fit

a binomial generalized linear model (GLM) to this response variable, with

logit link function, to estimate the probability that each sampling protocol

would lead to samples with evidence of spatial autocorrelation.

Explanatory covariates in the GLM included indicator variables for sam-

pling protocol types, and continuous basin-specific covariates to account for

variation due to basins. We chose covariates that may be obtained from

standard geographic information system (GIS) software. These covariates

were the relative maximum distance of each sample, basin shape, the basin’s

drainage density, and the proportion of the basin’s stream length comprised

of first-order streams. Relative maximum distance is calculated by taking
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the maximum distance of any two locations within a sample, and dividing by

the maximum distance between sampling locations from the census data for

that basin. Basin shape is calculated in two steps. First, the longest straight-

line distance between a basin boundary and the basin outlet is determined.

Next, this value is squared and divided by the basin area (Figure 2.2). We

also included the total number of habitat units from the census of each head-

water basin. All non-sampling protocol covariates where centered at their

means to allow the interpretation of the sampling protocol coefficients rela-

tive to the model intercept (GRTS sampling protocol) at the average level

of all basin covariates and to minimize multicollinearity. Interactions among

basin covariates and between basin covariates and sampling protocols were

investigated using likelihood ratio drop in deviance tests.

The relative bias, mean-squared error (MSE), and variance of each pro-

tocol was compared for R̂(h) values at distances (h) of 25, 100, and 200m.

For the j = 1 . . . D samples from the ith basin for each protocol and sample

size we compute relative bias as

Relative Bias =

∑D
j=1

(
R̂(h)j,i −R(h)i

)
R(h)iD

(2.6)

and MSE as

MSE =

∑D
j=1

(
R̂(h)j,i −R(h)i

)2
D

(2.7)

MSE is the sum of variance and the squared bias, so we also computed the

variance as

V ariance = MSE −

(∑D
j=1

(
R̂(h)j,i −R(h)i

)
D

)2

(2.8)

To summarize the performance of the sampling protocols we will present the

relative bias and variance values in the results section. We will also compute

the relative bias for the nugget parameter for sample sizes of 48.
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2.3.6 Distribution of Interpoint Lag Distances

A benefit of including distributed sets of clusters is to ensure both small

and large lag distances among the sampling locations. To evaluate this we

first divided all interpoint sample distances by the largest distance within

each basin. Next, we partitioned these distances into 20 bins. Finally, we

computed the average proportion, across all samples and basins for each of

the sampling protocols, of all inter-point distances that fell within each bin

for sample sizes of 48 and 144.

2.4 RESULTS

2.4.1 Census Data

All twelve headwater basins exhibited evidence of spatial autocorrela-

tion via inspection of AIC values and empirical semivariograms. The census

data from each headwater basin also indicated strong nugget contributions

with RSV values ranging from 0.20 to 0.55. Ten of the twelve headwater

basins considered for the 48 and 72 sample sizes were best fit via tradi-

tional Euclidean distance autocovariance models, and two were best fit via

in-stream distance moving average autocovariance models. Only six of the

twelve basins had fish-bearing stream segments within a network of suffi-

cient tributary junctions for consideration at sample sizes of 144. All six of

the basins used for the 144 sample size analysis were best fit via Euclidean

distance autocovariance models.
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2.4.2 Sampling Protocol Performance

We present the results obtained from samples with relative maximum

distances greater than 0.5, and TOCCSIC protocols from the largest cluster

sizes for sample sizes of 48 and 72 (m = 2 and m = 2 and 3, respectively).

The TOCCSIC protocol performance for the smallest-sized clusters at sample

sizes of 48 and 72 were removed from the analysis due to very small numbers

of possible samples (D).

2.4.2.1 Probability of Obtaining Samples with Evidence of Spatial Autocorrelation

As sample sizes increase, regardless of basin shape or drainage density,

the overall estimates of the probability of obtaining samples with evidence

of spatial autocorrelation increases (Figure 2.3).

For sample sizes of 48, the estimated odds that a sample has evidence

of spatial autocorrelation differs among sampling protocols, and there is ev-

idence that sampling protocol behavior depends on basin covariates (Table

2.2). Compared to the GRTS sampling protocol, all other protocols have

higher estimated probabilities of obtaining a sample with evidence of spatial

autocorrelation (Figure 2.3), and the two cluster protocols have higher esti-

mated probabilities than the non-cluster protocols. For all sampling proto-

cols, the odds of obtaining a sample with evidence of spatial autocorrelation

is negatively associated with the number of census habitat units, headwa-

ter basin area, and the percentage of stream length comprised of first-order

streams, and positively associated with the relative maximum distance of

each sample (Table 2.2). The effect of drainage density depends on basin
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shape (Figure 2.3). Increasing drainage densities are estimated to decrease

the probability of obtaining a sample with evidence of spatial autocorrela-

tion more sharply in spherical shaped basins than linear shaped basins. At

lower drainage densities, the estimated probability of obtaining a sample with

spatial autocorrelation is higher in spherical basins than linear basins. The

TOCCSIC sampling protocol shows lower estimated probabilities of obtain-

ing samples with spatial autocorrelation than the Mod. GRTS protocols at

higher drainage densities, regardless of basin shape (Figure 2.3).

For sample sizes of 72, the differences among sampling protocols and as-

sociations with basin covariates (Table 2.3) are very similar to those observed

for samples sizes of 48, though the estimated probabilities of obtaining sam-

ples with evidence of spatial autocorrelation are generally higher across all

sampling protocols (Figure 2.3). The estimated probabilities for the larger

TOCCSIC (m = 2) samples are very similar to those from the Mod. GRTS

protocols, but the probability of obtaining samples with spatial autocorrela-

tion for smaller TOCCSIC (m = 3) samples is estimated to decrease more

sharply with increasing drainage densities than the Mod. GRTS protocols.

At sample sizes of 144, the interacting effect of drainage density by head-

water basin shape was more pronounced than that from sample sizes of 48 and

72 (Figure 2.3), but all sampling protocols responded similarly to changes in

drainage density by basin shape (Table 2.4). In more linearly shaped basins,

there is no estimated effect of drainage density on the probability of obtain-

ing samples with evidence of spatial autocorrelation (Figure 2.3). Increasing

samples sizes to 144 lead to higher estimated probabilities of obtaining sam-

ples with evidence of spatial autocorrelation across all sampling protocols

compared to smaller sample sizes. The pattern among sampling protocols is

similar to that observed with the smaller samples sizes, but over the major-
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ity of the drainage density range in both basin shapes the smaller TOCCSIC

(m=6) cluster samples have the lowest probability of obtaining samples with

evidence of spatial autocorrelation.

For all three sample sizes the Mod. GRTS protocols were among the

highest probabilities of obtaining samples with evidence of spatial autocorre-

lation, and were less affected by increasing drainage densities in more linearly

shaped basins. Except for the largest sample size, the GRTS and SRS proto-

cols had the lowest probabilities of obtaining samples with evidence of spatial

autocorrelation.

2.4.2.2 Bias and Variance of R̂(h)

Overall, the bias of the GRTS and SRS protocols approached that of the

cluster methods as samples sizes increased. Changes in relative bias with

increasing sample size were not observed for the cluster-based sampling pro-

tocols. The variance of all protocols generally decreased as lags increased, but

at 200m few changes were observed. Across all lags and sampling protocols

variance did generally decrease with increasing sample size.

Sample Size = 48

At 25m, the GRTS sampling protocol was unbiased, the SRS protocol

was slightly negatively biased, and all cluster-based sampling methods were

negatively biased (Figure 2.4). The GRTS and SRS protocols had higher

variance than the cluster-based sampling methods. At 100m, the bias was
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more similar among sampling protocols, but the GRTS protocol was still

less biased and the TOCCSIC protocol exhibited more negative bias than

the other sampling methods. The difference in variance among sampling

protocols was less pronounced than at 25m, though TOCCSIC exhibited

lower variance. At 200m, all protocols were negatively biased, with only the

TOCCISC protocol separating as lower than the other methods. Consistent

with the other distances for sample sizes of 48, the TOCCSIC also had smaller

variance.

The unbiased yet highly variant nature of the GRTS and SRS protocols

prompted a closer look at the relative bias of the nugget parameter. At this

sample size, both the GRTS and SRS protocols demonstrated stronger neg-

ative relative bias for the nugget parameter than the cluster-based protocols

(Figure 2.5).

Sample Size = 72

At 25m, all Mod. GRTS and TOCCSIC protocols were negatively biased,

and the GRTS and SRS protocols were less biased (Figure 2.6). Though

the TOCCCSIC protocols showed slightly less variance, there is generally

little difference among the variances of the other protocols. The pattern was

similar for a lag of 100m, though the difference in bias between the cluster-

based and non-cluster based methods was smaller than at a lag of 25m. At

200m, the TOCCSIC protocols showed more negative bias than the other

protocols, and there was generally little difference in the variances among

the protocols.
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Sample Size = 144

At 25m, the GRTS and SRS were generally less biased than the cluster-

based protocols, and contrary to the smaller sample sizes, the GRTS and

SRS variances at 25m were comparable to the other protocols (Figure 2.7).

For a lag of 100m, the TOCCSIC protocols showed more negative bias, but

the box-plot quantiles of all protocols overlap, and the variance of the GRTS

and 6-cluster TOCCSIC protocols were generally lower than the SRS and

Mod. GRTS protocols. At 200m, the TOCCSIC protocols showed the most

negative bias and generally smaller variances. The other protocols were com-

parably negatively biased, but the GRTS protocols had generally smaller

variance.

2.4.2.3 Distribution of Interpoint Lag Distances

The continuous sampling of the two cluster-based protocols lead to higher

proportions of small interpoint distances compared to the GRTS and SRS

protocols, but no other substantial differences were observed in other distance

bins (Figure 2.8).

2.5 DISCUSSION

The basin-specific covariate values of the 12 basins utilized in this study

are generally representative of those from the 40 basins dataset of which the

12 were selected. With the exception of total census size, the mean of all

covariate values we considered were very close to the mean values of those
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covariates from the 40-basins dataset. The mean census size for the subset

of basins within this analysis was 470 and roughly 200 units higher than

the overall mean of 277. The values of the basin shape covariate included

the minimum and maximum values of the 40 basins, and the area covariate

included the minimum and 2nd largest values. The drainage density values

for the 12 basins we used included the maximum value from the 40 basins,

but 7 density values from the 40 basins were smaller. Our subset included

the smallest percentage of first-order stream length, but there were 5 higher

values within the 40 basins than the subset’s maximum. The subset consid-

ered here was specifically selected to have sufficient fish-bearing tributaries

to investigate sampling clusters located at tributary confluences.

The investigation into the probability that each sampling protocol leads

to a sample with evidence of spatial autocorrelation suggests interesting no-

tions about the role of basin structure in sampling. A stronger decrease in

the probability of obtaining samples with evidence of spatial autocorrela-

tion was observed for spherically shaped basins than linearly shaped basins.

The increased number of flow-connected habitat units per distance might

account for the dampened effect of increasing drainage density in more lin-

early shaped basins. Given a fixed area and fixed sample size, an increase

in drainage density within a spherically shape basin implies more un-flow

connected habitat units, as opposed to an increasing drainage density within

a more linear shaped headwater basin.

In this analysis the extent of the sampling domain was important. In-

creasing values of relative maximum distance were associated with increased

probabilities of a sample capturing spatial autocorrelation.

Estimation of autocorrelation functions was less affected by differences

among sampling protocols than was the detection of the presence of spatial
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autocorrelation. In general, for all sample sizes and lag distances, the au-

tocorrelation function estimates were negatively biased. This is consistent

with the work of Irvine et al. (2007) that found maximum likelihood esti-

mates lead to underestimated autocorrelation function values when range

parameters are large.

The GRTS and SRS protocols showed the least relative bias for lags of

25m and 100m at sample sizes of 48 and 72, but also showed larger variance,

especially at sample sizes of 48. This is likely due to the severe negative

relative bias of the nugget parameter for the GRTS and SRS protocols. A

similar, though less extreme, difference was observed for the nugget param-

eter for samples sizes of 72. As noted in Section 2.2, the divisor of the

autocorrelation function contains the nugget parameter, and severe under-

estimation of the nugget will inflate autocorrelation estimates. The GRTS

and SRS protocols were less likely to result in samples with evidence of spa-

tial autocorrelation. When their samples were spatially autocorrelated they

were estimated to have very small nugget values. The lack of sample points

occurring at the smallest lag distances might explain the inability for proper

nugget parameter estimation at smaller sample sizes, but the cluster based

protocols had more small interpoint distances at sample sizes of 144 when

relative bias values were generally consistent among protocols.

The tributary junctions were indeed sources of heterogeneity, and seem-

ingly too heterogeneous for effective estimation of spatial autocovariance pa-

rameters. The smallest TOCCSIC clusters at sample sizes of 48 and 72

were the most affected by changes in drainage density and had the lowest

estimated probability of obtaining samples with evidence of spatial autocor-

relation at sample sizes of 144. Only the larger-clustered TOCCSIC pro-

tocol performance was comparable to the Mod. GRTS generated samples,
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when the three “arms” of the TOCCSIC clusters extended further into the

three stream segments joining at each tributary junction. Smaller-clustered

TOCCSIC samples were also generally the most negatively biased among the

sampling protocols.

The size of the clusters we considered could be a reason that we did not

see superior performance from our cluster-based sampling protocols in re-

gards to estimation of autocorrelation function parameters. At the onset, we

were interested in comparing Mod. GRTS and TOCCSIC clusters containing

the same number of habitat units. We therefore restricted our cluster-based

sampling designs to contain small numbers of large clusters. The designs

deemed optimal by Zimmerman (2006) and Zhu and Stein (2005) contained

many more, and hence, smaller, clusters distributed across the sampling do-

main, and those of Zhu and Zhang (2006) contained several clusters of vary-

ing sizes and non-clustered sampling locations. An investigation comparing

GRTS, larger numbers of smaller- sized Mod. GRTS, and a combination of

GRTS and Mod. GRTS might prove a useful exercise. This would more

closely mimic the cluster sizes and distributions of these studies. It would

also allow an increased number of the 40 headwater basins to be used by

eschewing the need to consider the number of tributary confluences.

Variation among basins could be another reason for not observing more

distinctive bias and variance differences among the sampling protocols. In

particular, the sample sizes represented different proportions of the census

size from each basin. The average number of census habitat units was 470

for the 12 basins used for sample sizes of 48 and 72 (range: 195 - 713). The

analysis for a sample size of 144 was carried out with 6 basins, whose number

of habitat units ranged from 340 to 713 (5 of those six had more than 600

habitat units). As the sample size became a smaller proportion of the census
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size the probability of obtaining a sample with autocorrelation decreased. To

generalize the relative merits of sampling designs for autocovariance param-

eter estimation across streams we considered a broad set of census sizes, but

this may have clouded our ability to detect differences.

Our investigation is based on the assumption that the goal of the analy-

sis is to estimate the spatial autocovariance function to describe the spatial

pattern within headwater basins. If the analysis goal is estimating auto-

covariance parameters for prediction of fish counts in habitat units, both

Zhu and Stein (2005) and Zimmerman (2006) suggest that regularly spaced

sample points, that also contain several small clusters, may be optimal. This

differs from their recommendations for the estimation of autocovariance func-

tion parameters in which all sample points are within clusters. The GRTS

and Mod. GRTS combination described above may also prove fruitful for an

investigation regarding sampling designs for optimal prediction performance.

Only two of the basins considered here were best fit by up-stream moving

average models. Further developments have led to valid moving average au-

tocovariance models that incorporate both flow-connected and unconnected

locations (Garreta et al., 2009). These may be more appropriate for lotic

organisms, like fish, that are capable of moving up and downstream. If

only up-stream moving average models are considered, utilizing some larger

TOCCSIC samples within a broader sampling plan may help improve autoco-

variance parameter estimation. TOCCSIC samples do ensure a sample would

contain flow-connected locations, and also provide better nugget parameter

estimation via clustering.

Our work demonstrates that implementing a GRTS sampling protocol

may be sensible if obtaining spatially distributed samples without spatial

autocorrelation is of interest, especially when the sample size is small in
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comparison to the census size. The GRTS protocol did have lower estimated

probabilities of obtaining samples with evidence of spatial autocorrelation

than even the SRS protocol. Additionally, the GRTS protocol would provide

a spatially distributed sample.

In terms of estimating autocovariance function parameters in headwater

stream networks, implementing a sampling protocol that includes a spatially

distributed set of large clusters, akin to the Mod. GRTS framework we

proposed, may be preferred in that better nugget estimation performance

can be expected. There remains substantial room for refinement in regards

to general results for optimal sampling designs across heterogeneous systems

such as headwater stream networks.
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Table. 2.1: Sample sizes by number of clusters and cluster size.
Sample Size Number of Clusters Cluster Size

n m l

48
2 24
4 12

72

2 36
3 24
4 18
6 12

144
4 36
6 24

Table. 2.2: Estimated effects of basin covariates and sampling protocols on
the odds a sample has spatial autocorrelation for sample sizes
equal to 48. Odds effects represent 50-unit increases in basin
census size and .25km2 increases in basin area.

Variable Estimate Std. Error Effect Lower 95% CI Upper 95% CI
Intercept -1.9257 0.1251 0.1458 0.1141 0.1863
Census Size -0.0018 0.0003 0.9142 0.8887 0.9403
Drainage Density -3.0485 0.3375 0.0474 0.0245 0.0919
Basin Shape 0.1473 0.0636 1.1587 1.0230 1.3124
Area (km2) -0.3912 0.0548 0.9068 0.8828 0.9315
First-order Percentage -7.7055 0.9419 0.0005 0.0001 0.0029
Sample Rel. Max. Dist 3.1750 0.5635 1.0323 1.0209 1.0437
Mod. GRTS-2 1.7468 0.2189 5.7362 3.7350 8.8097
Mod. GRTS-4 2.1011 0.2028 8.1753 5.4940 12.1653
SRS 0.5338 0.1346 1.7054 1.3100 2.2201
TOCCSIC-2 1.6933 0.4323 5.4373 2.3303 12.6869
DrainDens*Basin Shape 1.7294 0.2098 5.6375 3.7365 8.5057
DrainDens*Mod.GRTS-2 0.9904 0.4129 2.6922 1.1984 6.0479
DrainDens*Mod.GRTS-4 0.4815 0.3566 1.6185 0.8046 3.2559
DrainDens*SRS 0.0236 0.3373 1.0238 0.5286 1.9831
DrainDens*TOCCSIC-2 -0.6286 0.8776 0.5333 0.0955 2.9787
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Table. 2.3: Estimated effects of basin covariates and sampling protocols on
the odds a sample has spatial autocorrelation for sample sizes
equal to 72. Odds effects represent 50-unit increases in basin
census size and .25km2 increases in basin area.

Variable Estimate Std. Error Effect Lower 95% CI Upper 95% CI
Intercept -1.1660 0.1171 0.3116 0.2477 0.3920
Census Size -0.0025 0.0003 0.8825 0.8597 0.9059
Drainage Density -3.6388 0.2814 0.0263 0.0151 0.0456
Basin Shape 0.4976 0.0628 1.6449 1.4545 1.8601
Area (km2) -0.4145 0.0484 0.9016 0.8804 0.9232
First-order Percentage -9.2341 0.8137 0.0001 0.0000 0.0005
Sample Rel. Max. Dist 4.8425 0.4507 1.0496 1.0404 1.0589
Mod. GRTS-2 1.8886 0.1973 6.6101 4.4900 9.7311
Mod. GRTS-3 1.8408 0.1770 6.3014 4.4541 8.9150
Mod. GRTS-4 2.0083 0.1791 7.4506 5.2449 10.5839
Mod. GRTS-6 2.0342 0.2062 7.6460 5.1045 11.4528
SRS 0.5223 0.1242 1.6858 1.3216 2.1505
TOCCSIC-2 2.1648 0.3660 8.7128 4.2524 17.8520
TOCCSIC-3 1.5957 0.2548 4.9317 2.9930 8.1260
DrainDens*Basin Shape 1.0995 0.1908 3.0026 2.0656 4.3646
DrainDens*Mod.GRTS-2 1.5453 0.3721 4.6894 2.2616 9.7235
DrainDens*Mod.GRTS-3 1.7947 0.3095 6.0178 3.2807 11.0388
DrainDens*Mod.GRTS-4 1.0335 0.2939 2.8110 1.5801 5.0008
DrainDens*Mod.GRTS-6 0.6612 0.3804 1.9372 0.9191 4.0831
DrainDens*SRS 0.0968 0.3055 1.1017 0.6054 2.0048
DrainDens*TOCCSIC-2 0.6907 0.6432 1.9952 0.5656 7.0385
DrainDens*TOCCSIC-3 -0.8164 0.4784 0.4420 0.1731 1.1290

Table. 2.4: Estimated effects of basin covariates and sampling protocols on
the odds a sample has spatial autocorrelation for sample sizes
equal to 144.

Variable Estimate Std. Error Effect Lower 95% CI Upper 95% CI
Intercept 0.4853 0.1766 1.6247 1.1494 2.2964
Drainage Density -1.8114 0.1402 0.1634 0.1242 0.2151
Basin Shape -1.2609 0.2793 0.2834 0.1639 0.4899
Sample Rel. Max. Dist 7.4422 0.7476 1.0773 1.0616 1.0932
Mod. GRTS-4 1.7568 0.2926 5.7937 3.2649 10.2811
Mod. GRTS-6 1.5483 0.3107 4.7034 2.5584 8.6468
SRS 0.2420 0.2101 1.2738 0.8439 1.9226
TOCCSIC-4 2.0339 0.3213 7.6438 4.0723 14.3476
TOCCSIC-6 -0.0141 0.2688 0.9860 0.5822 1.6699
DrainDens*Basin Shape 3.7200 0.5166 41.2640 14.9919 113.5754
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SRS GRTS

MOD. GRTS TOCCSIC

Figure. 2.1: Basic representations of each sampling protocol.

Figure. 2.2: Examples of shape factor calculation. Each basin has area equal
to 1 unit2.
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Figure. 2.3: Effects of sampling design and headwater basin drainage density
on the probability that samples contain spatial autocorrelation,
by basin shape. In each graph the relative maximum distance
is set to the average of each sampling protocol. The first-order
percentage, maximum census size, and headwater basin areas are
set to the average within each basin shape. The x-axis in each
plot represents the range of centered drainage densities within
each shape, and the spherical-shaped basins span a slightly larger
range of values. Dotted lines represent 95% confidence intervals.
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Figure. 2.4: Relative bias and variance of estimating the autocorrelation
function at 25m, 100m, and 200m for sample sizes of 48 and
GRTS (G), SRS (S), Mod. GRTS (MG.x) and TOCCSIC (T.x)
sampling protocols. .x refers to the number of clusters. Each
protocol includes values calculated at each basin.
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Figure. 2.5: Relative bias of the nugget parameter for sample sizes of 48 and
GRTS (G), SRS (S), Mod. GRTS (MG.x) and TOCCSIC (T.x)
sampling protocols. .x refers to the number of clusters. Each
protocol includes values calculated at each basin.
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Figure. 2.6: Relative bias and variance of estimating the autocorrelation
function at 25m, 100m, and 200m for sample sizes of 72 and
GRTS (G), SRS (S), Mod. GRTS (MG.x) and TOCCSIC (T.x)
sampling protocols. .x refers to the number of clusters. Each
protocol includes values calculated at each basin.
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Figure. 2.7: Relative bias and variance of estimating the autocorrelation
function at 25m, 100m, and 200m for sample sizes of 144 and
GRTS (G), SRS (S), Mod. GRTS (MG.x) and TOCCSIC (T.x)
sampling protocols. .x refers to the number of clusters. Each
protocol includes values calculated at each basin.
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Figure. 2.8: Distribution of interpoint relative distances averaged by sam-
pling protocol and across all headwater basins, for sample sizes
of 48 and 144.
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3. INVESTIGATING THE APPROPRIATENESS OF SPATIAL

AUTOCOVARIANCE FUNCTION RANGE PARAMETERS TO

DESCRIBE THE SIZE OF PATCHES

3.1 ABSTRACT

The geostatistical range parameter is often used to describe the size of

patches in ecological landscapes. Theoretical or empirical justification for this

technique is lacking. The integral scale is computed using the sill, range, and

nugget autocovariance parameters simultaneously, and has been proposed as

an alternate to the range parameter alone to describe the size of patches.

We use complete censuses of coastal cutthroat trout (Oncorhynchuys clarki

clarki) habitat unit fish counts obtained from 40 western Oregon headwater

streams to compute range parameter and integral scale values. We compare

these values to the lengths of patches computed from four patch definitions.

Range parameter values were generally larger than, and only weakly cor-

related with, average patch lengths. Range parameter values were more

strongly correlated with maximum patch and maximum gap lengths. Inte-

gral scale values were not strongly correlated with average patch lengths, but

integral scale values more closely matched the magnitude of average patch

sizes than range parameters. We discuss potential reasons for our findings,

and highlight the role that gaps play in the computation of autocovariance

parameters. We contend that range parameters should not be used to de-

scribe patch sizes in data where heterogeneous within- patch response values

or large patch size variation can be expected.
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3.2 INTRODUCTION

Many ecological landscapes and associated phenomenon are spatially or-

ganized into patches (Bange et al., 2006; Blair , 2005; Bouza et al., 2002; Bulit

et al., 2003; Dent and Grimm, 1999; Ettema and Wardle, 2002; Huettmann

and Diamond , 2006; Kotliar and Wiens , 1990; Legendre, 1993; Lindenmayer ,

2000; Mast and Veblen, 1999; Paola and Seal , 1995; Perry , 1998; Pickett and

Cadenasso, 1995; Rossi , 2003; Schmuki et al., 2006), and lotic ecosystems

are no exception (Poole, 2002; Benda et al., 2004; Cooper et al., 1997; Fisher

et al., 1998; Isaak and Thurow , 2006; Neville et al., 2006; Torgersen et al.,

1999; Torgersen and Close, 2004; Venditti and Church, 2005; Ward , 1989;

Ward et al., 1998; Wiens , 2002; Wright and Li , 2002). Further, patchiness

is an inherent property of aquatic ecosystems (Bulit et al., 2004) and partic-

ularly apparent in stream habitats (Downes et al., 1993). Despite the theo-

retical and empirical work demonstrating the importance and implications of

spatial heterogeneity for lotic systems, patchiness and spatial heterogeneity

have received little rigorous quantification (Cooper et al., 1997).

The field of geostatistics focuses on the detection, estimation, and pre-

diction of spatial patterns (Rossi et al., 1992). Geostatistical models can

be used for investigations regarding the observed structure and hypothesized

generating processes (Legendre, 1993). These geostatistical models include

semivariograms or autocovariance functions that use sill, range, and nugget

parameters to describe changes in variance associated with distances between

observations. More specifically, the range is the shortest distance between

observations at which they are uncorrelated and at which the maximum vari-

ance of the process is reached (Schabenberger and Gotway , 2005, pg. 138).

It is common in the literature to find range parameters used as estimates of
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patch size (Cooper et al., 1997; Fletcher and Sumner , 1999; Dalthorp et al.,

2000; Franklin et al., 2002), average patch size (Pastor et al., 1998; Dent and

Grimm, 1999; Augustine and Frank , 2001; Blair , 2005; Bouza et al., 2002),

or the average patch and gap size (Perry et al., 2002; Cubillos et al., 2008).

Bulit et al. (2003) note the range parameter as an upper bound for the size

of patches, indicating that patch size could be a value up to the range, but

probably not larger. None of these papers cite a source which describes the

appropriateness of range parameters for describing patch size.

There is some indication that range parameter values and patch sizes

may be associated. Meisel and Turner (1998) simulated patches consisting

of binary blocks of internally homogenous values. They defined the range by

visual location of empirical semivariogram inflection points. They found the

inflection points did reflect the patch size when all patches where the same

size. They also found the range reflected the size of the larger patch size in

a simulated landscape containing only two patch sizes. They were not able

to detect similar results for simulated landscapes containing multiple patch

sizes.

Schabenberger and Gotway (2005, pg. 140) question why the distance

at which observations are no longer spatially correlated should be equal to

the size of patches. They suggest using measures of the distance over which

observations are highly correlated, and propose the integral scale which in-

corporates the shape and range, sill, and nugget parameters of the autocorre-

lation function. An integral scale describes the largest average distance over

which observations are correlated (Russo and Bresler , 1981; Russo and Jury ,

1987). Integral scale values are computed by integrating the autocorrelation

function with respect to distance up to the range parameter.

Integral scales have received significantly less attention than range pa-
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rameters in the ecological literature. Applications of integral scales from the

environmental sciences include Venditti and Church (2005) correlating inte-

gral scale values for initiated and existing stream beds to the average eddy

size that existed before bed form development, Solie et al. (1999) studying the

spatial variability of soil and bermudagrass using semivariance statistics that

include both range parameters and integral scales, and Bange et al. (2006)

using integral scales to describe relationships between the vertical transport

of sensible and latent heat and soil moisture conditions. The total covariance

statistic defined by Dalthorp et al. (2000) to investigate patch characteristics

in simulated Japanese beetle grub data is equivalent to the integral scale.

Quantitative measures of patch characteristics are essential for studying

ecological questions regarding how these characteristics vary in time and

space (Dalthorp et al., 2000), but despite interest in patchiness, many ecolo-

gists view patches simplistically (Kotliar and Wiens , 1990). Current notions

of patchiness and heterogeneity are vague (Cooper et al., 1997), and patches

are rarely quantifiably defined (Bulit et al., 2003). This work investigates the

appropriateness of range parameter and integral scale values for describing

the size of patches in headwater stream basins. Utilizing censuses of coastal

cutthroat trout (Oncorhynchuys clarki clarki) from continuously sampled

habitat units in 40 randomly selected headwater streams from Western Ore-

gon we define and measure patch sizes. We also fit autocovariance models

to these count data to obtain range parameter and integral scales values and

quantify the relationships between these values and patch sizes.
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3.3 METHODS

3.3.1 Patch Definitions

Kotliar and Wiens (1990) propose that patches should be determined

using objective criteria to define their boundaries. We present four objective

patch definitions each determined by increasing boundary thresholds. The

first definition represents patches as consecutive habitat units defined by

the presence or absence of adult fish. The second, third, and fourth patch

definitions represent patches as consecutive habitat units of fish counts above

the 25th, 50th, and 75th percentiles of the fish count distribution in each

basin. Defining patches also directly defines gaps as consecutive habitat

units which are not included in patches. For each basin and all four patch

definitions, the size of every patch and gap was computed as the distance

along the stream channel from the beginning of the downstream habitat unit

to the end of the upstream unit. Within each basin the mean, maximum,

and standard deviation of patch and gap lengths for each patch definition

was computed.

3.3.2 40 Basins Dataset

The 40 censused watersheds, located above barriers to anadromous fish

migration, are part of a larger study examining the effects of landscape pat-

tern on isolated coastal cutthroat trout populations (Gresswell et al., 2004).

Each watershed was randomly selected from a population of 268 second-

and third-order catchments west of the Cascade Mountains in Oregon and

surveyed through the entire fish-bearing extent (Ganio et al., 2005). Adult
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coastal cutthroat trout abundance was assessed with single-pass electrofish-

ing without blocknets (Bateman et al., 2005) in all pools and cascades in each

watershed. These census datasets represent the spatial distribution of fish at

one point in time, and previous work has shown that the spatial arrangement

and patch configuration of fish changes over time (Bateman et al., 2005).

3.3.3 Statistical Methods: Candidate Models

3.3.3.1 Autocovariance Models

Three classes of spatial autocovariance models were fit to the habitat

unit fish counts from each watershed. The first two classes of models assume

isotropic and stationary spatial processes, and their mathematic expressions

can be found in the appendix. The first class represents traditional geosta-

tistical models that use the pairwise Euclidean distance between all habitat

units. Exponential, spherical, and Gaussian models, each with nugget, were

fit as candidate autocovariance models to the data.

The second class are spatial moving average constructions for stream net-

works (Ver Hoef et al., 2006). These models differ from the first class of au-

tocovariance models in three ways. First, they use in-stream distance, rather

than Euclidean distance, between locations. Second, the autocovariance be-

tween locations is weighted proportionally to the amount of stream flow the

downstream location receives from the upstream location. Third, observa-

tions are only considered autocorrelated if they are connected by water flow.

See Ver Hoef et al. (2006) and Peterson et al. (2007) for more details. Expo-

nential with nugget and spherical with nugget spatial moving average models

were fit to the data as candidate models. Because relative flow contribution
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was not directly measured for each location in the watersheds, the propor-

tional upstream watershed area drained by each stream segment was used as

a proxy variable to weight the moving average autocovariance functions at

each tributary confluence (Peterson et al., 2007). All confluence weight and

in-stream distance matrices were created utilizing the FLoWS ArcGIS tool-

box (http://www.nrel.colostate.edu/projects/starmap/flows index.htm).

The third class is a simple linear regression (SLR) model fit without a

spatial autocovariance function. This model was used to determine if spatial

autocorrelation was present in the habitat unit fish count data. Combining

the three traditional geostatistical models, the two spatial moving average

models, and the one SLR model leads to a total of six candidate autocovari-

ance models fit to the fish count data from each watershed.

3.3.3.2 Linear Models for the Mean

In addition to the six spatial autocovariance models, two types of models

for the mean of fish counts were used. The first model type contained only

a single overall mean. The second model type contained the overall mean,

the maximum depth of the habitat unit, a measure of the surface area of

the habitat unit (the square root of a unit’s length times its average whetted

width), and the interaction of these explanatory variables. We use LC-SAC

to refer to models that included the three spatial autocovariance parameters

(i.e. sill, range, nugget) and the explanatory variables for the mean. We use

OM-SAC to refer to models that include the three autocovariance param-

eters and only an overall mean. We use OM-SLR and LC-SLR to refer to

models that do not include any autocovariance parameters but include the
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overall mean parameter only, or the overall mean and explanatory variables,

respectively. Table (3.1) provides a summary of the candidate classes and

types of models described above.

3.3.4 Statistical Methods: Analysis

3.3.4.1 Model Selection

The parameter values for each candidate autocovariance function and

mean model-type were obtained by maximum likelihood using R code from

Ver Hoef and Peterson (2007). All habitat unit fish counts were

logarithme(datum + 1) transformed. For each watershed and each type of

model for the mean, the best fitting spatial autocovariance model was deter-

mined by the lowest Akaike’s information criterion (AIC) value (Zuur et al.,

2009). In the event that several candidate autocovariance models had AIC

values within 2 AIC units, the model with the highest ratio of the partial

sill to the nugget plus partial sill was chosen because it described a higher

proportion of structured spatial pattern.

We also fit exploratory empirical semivariograms to each basin. These

semivariograms were used to provide visual evidence of non-stationarity via

excessive trend, and to help discern the presence of spatial autocorrelation

in each basin’s habitat unit fish counts. Lower AIC values for OM-SLR

or LC-SLR fits compared to corresponding OM-SAC or LC-SAC fits, and

empirical semivariograms lacking semivariance pattern indicated a lack of

spatial autocorrelation.
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3.3.4.2 Relating Patch Characteristics to Range Parameters

The best fitting autocovariance model was used to compute the range

parameter value, and the integral scale value for each basin was computed

using the best fitting traditional geostatistical autocovariance function. As-

sociations of the patch and gap characteristics with range parameter and

integral scale values were investigated using Spearman’s rho nonparametric

rank-based measure of correlation (Conover , 1999). P-values provided with

Spearman’s rho statistics were computed using Algorithm AS 89 (Best and

Roberts , 1975). For graphical presentation we logarithme- transformed all

range, integral scale, patch, and gap characteristic values. If range parame-

ter or integral scale values are a direct measure of average patch lengths we

would expect a graph of patch lengths versus range or integral scale values

to track a 1-to-1 line and the correlation estimates to be positive and high.

Should a direct relationship not be evident, but an associative relationship

exist we would expect likewise graphical and correlational evidence. The

same analysis approach was also applied to the average gap lengths, max-

imum patch and gap lengths, and the larger of patch or gap average and

maximum lengths from each basin.

3.4 RESULTS

For the OM-type models, four headwater basins showed excessive trend

via empirical semivariograms without sills and the corresponding estimates

of their range parameters were unreasonable. We did not consider these

four basins in the correlation analysis of range parameters or integral scales

with patch length characteristics. Four of the watersheds with OM-type
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models and one watershed from the LC-type models lacked evidence of spatial

autocorrelation. The range and integral scale values for these basins were

recorded as 1 to appear as zeros on all graphs with log-transformed axes. The

moving average autocovariance models were the best fitting in 17 headwater

basins for the OM- and in 23 basins for the LC- type models. Traditional

geostatistical autocovariance models fit best in 15 headwater basins for the

OM- and in 14 basins for the LC-type models.

3.4.1 Range Parameter Values and Patch Lengths

Regardless of patch definition or the inclusion of linear model coefficients,

graphical analysis indicated there was not strong evidence that range param-

eter values were equal to the average lengths of patches (Figures 3.1 and 3.2).

Range values were typically greater than average patch lengths. Although

the very smallest range values may be associated with some of the watersheds

with smaller average patch lengths, the observed relationship for the majority

of the watersheds provided no evidence of a strong relationship. There was

also very little evidence to suggest a strong associative relationship between

range values and average patch lengths (Table 3.2).

Maximum patch lengths showed much more promise for correlating with

range values (Figures 3.3 and 3.4). The maximum patch lengths translated

into more coverage around 1-to-1 lines, and in all cases showed stronger

evidence of association with range values via higher estimates of rank-based

correlation and stronger p-value evidence testing against a null hypothesis

that the correlation equals zero (Table 3.2). The range values from OM-SAC

models were modestly more related to maximum patch lengths than those

computed from the LC-SAC models (Table 3.2).
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The pattern of association between range parameter values and gap char-

acteristics was similar to that of range parameter values and patch charac-

teristics. Range parameter values were generally larger than average gap

lengths (Figures 3.5 - 3.8). Maximum gap lengths show stronger correlation

with range parameters than average gap lengths (Table 3.2), and the range

values for OM-SAC models were generally more related to maximum gap

lengths than those from LC-SAC models.

For both patches and gaps, the patch definitions based on counts above

the 25th and 50th percentiles generally provided stronger correlations with

range values than definitions based on the 75th percentile or fish presence

(Table 3.2).

There is no marked improvement in the correlation with range values

when considering the larger of the patch or gap means and maximums (Fig-

ures 3.9 - 3.12 and Table 3.3) as compared to each patch characteristic indi-

vidually.

3.4.2 Integral Scale Values and Patch Lengths

Integral scale values more closely matched the magnitude of average patch

and gap lengths than range parameters (Figures 3.13 - 3.16). Overall, integral

scale values were not strongly correlated with average patch or gap lengths

(Table 3.4). The integral scale values from the OM- and LC-type models

were strongly correlated with the range parameter values from each basin

(Figure 3.17). The estimated rank-basked correlation estimates were 0.878

and 0.809, respectively, and each had p-values against the null hypothesis

that correlation = 0 of less than 0.0001.
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3.5 DISCUSSION

Given the relatively weak association between average patch lengths de-

scribed by our four patch definitions and range parameter or integral scales,

we consider three reasons for our results. One reason may be that none

of our patch definitions are appropriate. Kotliar and Wiens (1990) suggest

that patches exist in a hierarchical structure. Relatively internally homoge-

nous patches with rather discrete edges make up first-order patches, sec-

ond order patches consist of clusters of first-order patches, and third-order

patches are formed by variation within and among first- and second-order

patches. The fact that range values were predominantly much larger than

our patches might suggest that range values are more associated with second-

order patches.

In studying planktonic ciliate patches in a tropical coastal lagoon, Bulit

et al. (2003) posited that patches should be rare, covering less than 50% of

the sampled area, and investigated two working definitions of patch. They

used the common spatial prediction method know as ordinary kriging (Isaaks

and Srivastava, 1989) to predict values over their entire sampling extent, and

found that patches defined by clusters of values containing predicted abun-

dances greater than the 75th percentile were better predicted than clusters

defined by values exceeding the 50th percentile. The continuous sampling

of the 40 watersheds dataset eschewed the need for kriging. It is not clear

why patches should be rare, as posited by Bulit et al. (2003). However, rarer

patches implies larger gaps and our analysis could not indicate that patch

lengths were more associated with range parameters than gap lengths were.

In an analysis of littoral zone fish habitat within a Canadian Shield lake

Brind Ámour and Boisclair (2006) defined patches of habitat as contigu-
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ous sites with similar environmental characteristics. Similarly, we defined

patches as contiguous habitat units with similar fish counts. Swartzman

et al. (1999b,a) identified fish shoal and plankton patches in data obtained

via acoustic sampling in the Bering Sea. Shoals and patches were defined as

contiguous pixels with clearly defined boundaries set apart from backscatter

thresholds. In essence, our changing percentile patch cut-offs were an explo-

ration changing patch boundaries via increasing backscatter thresholds. It

appears that our definitions of patches are consistent with others found in

the literature, and it seems unlikely that our findings are simply a product

of poor patch definitions.

Another reason for our results could be that none of the suite of models we

considered adequately described the spatial pattern of our data. A key reason

that the LC- type of model for the mean was included in our analyses is that

including the habitat unit coefficients stabilized potential trends observed

from the aforementioned empirical semivariograms, but their inclusion could

have accounted for spatial information previously manifested solely in the

spatial pattern of the variance.

It could be true that the moving average spatial autocovariance models

that incorporate in-stream distance and flow contribution did not adequately

described the spatial pattern of the patches. Autocorrelation is the result

of small-scale, stochastically dependent random innovations. Whereas ran-

dom innovations at different locations are independent, the attribute being

ultimately observed is the result of a mixing process that combines these

innovations. Ver Hoef et al. (2006) extended this notion to construct mov-

ing average covariance functions that use in-stream distance and incorporate

stream flow information.

Despite the fact that using moving average constructions to generate valid
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covariance matrices for geostatistical modeling based on stream distance and

water flow more accurately represents the connectivity and flow relationships

in stream networks (Peterson et al., 2007), the relative benefit of their appli-

cation over traditional geostatistical models that utilize Euclidean distances

has yet to be demonstrated. To our knowledge, due to the relatively recent

derivation of these techniques, there have been very few applications in the

literature. Peterson and Urquhart (2006) compared the moving average and

traditional geostatistical approaches in an analysis of dissolved organic car-

bon (DOC) for the Maryland Biological Stream Survey. They found that

using Euclidean distances consistently produced geostatistical models that

described a greater amount of variability in DOC than moving average models

that used in-stream distance and weighted flow contributions. Cressie et al.

(2006) also considered the spatial moving average approach in an analysis

aimed to predict daily change in dissolved oxygen within a river network in

South East Queensland, Australia. They fit a covariance mixture model that

incorporated a spherical geostatistical spatial model and a spherical spatial

moving average model. The estimated proportion of covariance accounted for

by the spherical model incorporating in-stream distances was zero, and the

authors concluded that their response variable exhibited spatial dependence

according to Euclidean distance rather than in-stream distance.

The spatial extents of each of these two examples (the entire state of

Maryland and over 15,000km2 in Australia) are much larger than those con-

sidered in this work, though flow-connectedness can only be defined for points

occurring within the same stream network. As such, spatial autocorrelation

exhibited in the Maryland Biological Stream Survey and Australian river

network datasets may be driven predominantly via meteorological inputs, so

it is of no surprise that Euclidean distance covariance matrices were found to



58

more accurately reflect the spatial dependence among observations. Though

there is variation in the total areas of the randomly selected 40 watersheds,

ranging from roughly 497 to 1093 hectares, these smaller spatial extents as

compared to the two aforementioned examples may allow for better insights

into the merits of moving average autocovariance approaches for stream-

network data. In addition to the work described here, we carried out a

similar analysis correlating range parameters and patch characteristics us-

ing only traditional geostatistical models and another analysis using only

in-stream distance models and found no considerable changes to the results

for the best fitting overall models presented herein. Given the suite of can-

didate autocovariance models considered, we feel confident that our results

were not simply a consequence of poorly chosen models.

The final reason could simply be that range parameters are not practical

measures of average patch lengths for data types similar to ours. Meisel and

Turner (1998) did find that their range parameters described patch sizes

in artificial binary data with patches of uniform size. They did not find

similar patterns in their analysis of large ungulate winter foraging and asso-

ciated environmental variables, and noted that variation in patch sizes could

contribute noise that might make detection of fine-scale spatial patterns, like

patch sizes, in real-world data difficult. Given its definition, the range param-

eter seems an intuitive measure of patch size in a landscape with uniformly

sized patches and gaps each containing internally homogeneous response val-

ues. This data structure seems unlikely for many ecological phenomenon, and

especially for those in streams where patch characteristics and arrangements

are generally quite heterogeneous (Cooper et al., 1997).

It might not be sufficient to rely on simulated patchy landscapes to fur-

ther investigate the use of range parameters to infer patch size. This could
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demonstrate that patch size infers range values, but concluding that range

parameters equate the size of patches would be a logical fallacy termed af-

firming the consequent (Matthews , 2009). This argument could suggest range

parameters as serviceable approximations for patch sizes (Floridi , 2009) in

landscapes similar to those simulated, but would not sufficiently justify that

range parameters equal the size of patches.

Our work highlights the need to consider both patches and gaps. Compu-

tationally, data within gaps are utilized just as data within patches are, and

our work indicates gaps are no less associated with range parameters than

patches. The strongest associations we found related the range parameters

to either the largest patch or gap length, or the largest among the patch or

gap lengths. This suggests that comparing range values of like data across

landscapes may allow for an ordering of largest patches or gaps.

In general, we contend that range parameter values should not be used

to estimate the size of patches in data where variation in patch or gap sizes,

nor varying response values within patches and gaps, is expected. We look

forward to future real-world data analyses that might lead to an increased

breadth of data types where range parameters, or integral scale values, may

be useful for describing patch sizes.
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APPENDIX: MATHEMATICAL EXPRESSIONS OF
AUTOCOVARIANCE FUNCTIONS

Geostatistical Autocovariance Functions

Each geostatistical autocovariance function models the autocovariance

between any two observations with changes in the Euclidean distance (h)

between them.

Exponential with nugget autocovariance model

C(h) =

{
θ0 + θ1 if h = 0
θ1exp(−3hθ−1

2 ) if h > 0

where θ0 is the nugget parameter, θ1 is the partial sill parameter, and θ2 is

the practical range parameter. The practical range is defined as the distance

at which correlation between observations ≈ 5% (Schabenberger and Gotway ,

2005).

Spherical with nugget autocovariance model

C(h) =


θ0 + θ1 if h = 0
θ1

[
1 + .5(hθ−1

2 )3 − 1.5hθ−1
2

]
if 0 < h < θ2

0 if θ2 ≤ h

where θ0 is the nugget parameter, θ1 is the partial sill parameter, and θ2 is

the range parameter.
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Gaussian with nugget autocovariance model

C(h) =

{
θ0 + θ1 if h = 0
θ1exp(−3h2θ−2

2 ) if h > 0

where θ0 is the nugget parameter, θ1 is the partial sill parameter, and θ2 is

the practical range parameter. The practical range is defined as the distance

at which correlation between observations ≈ 5% (Schabenberger and Gotway ,

2005).

Up-Stream Moving Average Autocovariance Functions

Each up-stream moving average autocovariance function models the co-

variance between an observation si downstream of observation sj with changes

in the in-stream distance (h) between si and sj, and the proportion of wa-

ter flow (wi,j) the stream segment containing si receives from the segment

containing sj.

Exponential with nugget autocovariance model

C(si, sj) =


θ0 + θ1 if h = 0
θ1exp(−3hθ−1

2 )
√

wi,j if h > 0 and si, sj are flow connected
0 if si, sj not flow connected

where θ0 is the nugget parameter, θ1 is the partial sill parameter, and θ2 is

the practical range parameter. The practical range is defined as the distance

at which correlation between observations ≈ 5% (Schabenberger and Gotway ,

2005).
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Spherical with nugget autocovariance model

C(si, sj) =


θ0 + θ1 if h = 0
θ1

[
1 + .5(hθ−1

2 )3 − 1.5hθ−1
2

]√
wi,j if 0 < h < θ2 and si, sj are flow connected

0 if θ2 ≤ h or si, sj not flow connected

where θ0 is the nugget parameter, θ1 is the partial sill parameter, and θ2 is

the range parameter.
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Table. 3.1: Summary of all models fit to each watershed.

Spatial Autocovariance Models

Class Distance Metric
Autocovariance
Functions*

SAC: Traditional Geostatistical Euclidian
Exponential, Spherical,
Gaussian

SAC: Spatial Moving Average In-Stream Exponential, Spherical

SLR None None
* all autocovariance functions include the sill, range, and nugget parameters

Models for Mean of Fish Counts
Type Parameters

OM Overall Mean

LC
Overall Mean, Habitat Unit
Size, Depth, Interaction

Type-Class Combinations
Spatial Autocovariance Model

Model for Mean SAC SLR

LC LC-SAC LC-SLR
OM OM-SAC OM-SLR
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Table. 3.2: Rank-based correlation estimates (p-value against null hypothesis
that correlation = 0) between range parameter values and average
or maximum patch lengths.

Patch Characteristic Model Patch Threshold

0
25th
Percentile

50th
Percentile

75th
Percentile

Patch: Average Length

OM-SAC -0.026 0.079 0.349 0.317
(0.88) (0.65) (0.04) (0.06)

LC-SAC 0.126 0.285 0.333 0.272
(0.44) (0.07) (0.04) (0.09)

Patch: Maximum Length

OM-SAC 0.230 0.576 0.701 0.646
(0.18) (<0.01) (<0.01) (<0.01)

LC-SAC 0.293 0.391 0.401 0.431
(0.07) (0.01) (0.01) (0.01)

Gap: Average Length

OM-SAC 0.360 0.327 0.366 0.104
(0.03) (0.05) (0.03) (0.55)

LC-SAC 0.306 0.277 0.218 0.078
(0.06) (0.06) (0.18) (0.63)

Gap: Maximum Length

OM-SAC 0.618 0.658 0.678 0.646
(<0.01) (<0.01) (<0.01) (<0.01)

LC-SAC 0.427 0.419 0.534 0.506
(0.01) (0.01) (<0.01) (<0.01)

Table. 3.3: Rank-based correlation estimates (p-value against null hypothesis
that correlation = 0) between the larger of patch or gap average,
and larger of patch or gap maximum, compared to range values.

Patch Characteristic Model Patch Threshold

0
25th
Percentile

50th
Percentile

75th
Percentile

Larger of Patch
or Gap Average
Length

OM-SAC -0.076 0.025 0.276 0.104
(0.66) (0.87) (0.12) (0.55)

LC-SAC 0.202 0.379 0.357 0.078
(0.21) (0.02) (0.02) (0.63)

Larger of Patch
or Gap
Maximum
Length

OM-SAC 0.287 0.643 0.773 0.657
(0.09) (<0.01) (<0.01) (<0.01)

LC-SAC 0.490 0.578 0.638 0.503
(<0.01) (<0.01) (<0.01) (<0.01)
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Table. 3.4: Rank-based correlation estimates (p-value against null hypothesis
that correlation = 0) between integral scale values and average
patch or gap lengths.

Patch Characteristic Model Patch Threshold

0
25th
Percentile

50th
Percentile

75th
Percentile

Patch: Average Length

OM-SAC 0.005 0.137 0.416 0.296
(0.98) (0.43) (0.02) (0.08)

LC-SAC 0.022 0.227 0.342 0.258
(0.89) (0.16) (0.03) (0.11)

Gap: Average Length

OM-SAC 0.435 0.419 0.321 0.126
(0.01) (0.01) (0.06) (0.46)

LC-SAC 0.400 0.340 0.296 0.223
(0.01) (0.03) (0.06) (0.17)
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Figure. 3.1: Plots of OM-type model range parameter values vs. average
patch lengths for each patch definition, on the log scale. The
solid line represents a 1-to-1 correlation reference.
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Figure. 3.2: Plots of LC-type model range parameter values vs. average
patch lengths for each patch definition, on the log scale. The
solid line represents a 1-to-1 correlation reference.
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Figure. 3.3: Plots of OM-type model range parameter values vs. maximum
patch lengths for each patch definition, on the log scale. The
solid line represents a 1-to-1 correlation reference.
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Figure. 3.4: Plots of LC-type model range parameter values vs. maximum
patch lengths for each patch definition, on the log scale. The
solid line represents a 1-to-1 correlation reference.
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Figure. 3.5: Plots of OM-type model range parameter values vs. average gap
lengths for each patch definition, on the log scale. The solid line
represents a 1-to-1 correlation reference.
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Figure. 3.6: Plots of LC-type model range parameter values vs. average gap
lengths for each patch definition, on the log scale. The solid line
represents a 1-to-1 correlation reference.
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Figure. 3.7: Plots of OM-type model range parameter values vs. maximum
gap lengths for each patch definition, on the log scale. The solid
line represents a 1-to-1 correlation reference.
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Figure. 3.8: Plots of LC-type model range parameter values vs. maximum
gap lengths for each patch definition, on the log scale. The solid
line represents a 1-to-1 correlation reference.
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Figure. 3.9: Plots of OM-type model range parameter values vs. the largest
of each basin’s average patch or gap length for each patch defi-
nition, on the log scale. The solid line represents a 1-to-1 corre-
lation reference.
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Figure. 3.10: Plots of LC-type model range parameter values vs. the largest
of each basin’s average patch or gap length for each patch def-
inition, on the log scale. The solid line represents a 1-to-1
correlation reference.
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Figure. 3.11: Plots of OM-type model range parameter values vs. the largest
of each basin’s maximum patch or gap length for each patch
definition, on the log scale. The solid line represents a 1-to-1
correlation reference.
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Figure. 3.12: Plots of LC-type model range parameter values vs. the largest
of each basin’s maximum patch or gap length for each patch
definition, on the log scale. The solid line represents a 1-to-1
correlation reference.
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Figure. 3.13: Plots of OM-type model integral scale values vs. average patch
length for each patch definition, on the log scale. The solid line
represents a 1-to-1 correlation reference.
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Figure. 3.14: Plots of LC-type model integral scale values vs. average patch
length for each patch definition, on the log scale. The solid line
represents a 1-to-1 correlation reference.
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Figure. 3.15: Plots of OM-type model integral scale values vs. average gap
length for each patch definition, on the log scale. The solid line
represents a 1-to-1 correlation reference.
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Figure. 3.16: Plots of LC-type model integral scale values vs. average gap
length for each patch definition, on the log scale. The solid line
represents a 1-to-1 correlation reference.
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Figure. 3.17: Plots of integral scale values vs. range parameter values for
OM- and LC-type models.
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4. PREDICTION INTERVALS FOR CHANGE DETECTION IN

PAIRED WATERSHED STUDIES

4.1 ABSTRACT

Hydrologic data may be temporally autocorrelated requiring autoregres-

sive process parameters to be estimated. Current statistical methods for

hydrologic change detection in paired watershed studies rely on prediction

intervals, but the current form of prediction intervals does not include all ap-

propriate sources of variation. Corrected prediction intervals for the analysis

of paired watershed study data that include variation associated with covari-

ance and linear model parameter estimation are presented. We provide an

example of their application to data from the Hinkle Creek Paired Watershed

Study located in the western Cascade foothills of Southern Oregon. Research

implications of using the correct prediction limits and incorporating the es-

timation uncertainty of autoregressive process parameters are discussed.

4.2 INTRODUCTION

The analysis of a paired watershed study (PWS) design establishes a sta-

tistical relationship between hydrologic responses in a control and a treated

catchment area over a given time period to determine if forest management

treatments affect hydrologic processes within the treated catchment area.

During a calibration phase the statistical relationship is estimated. Follow-

ing this phase, forest management practices are applied to the treatment

catchment only. Post-treatment predictions based on the calibration phase

relationship are used to predict the hydrologic response in the treated catch-
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ment absent of forest harvesting. Treatment effects are discerned as the

difference between the observed and predicted response of the treated catch-

ment area.

The prediction interval method of change detection for paired watershed

studies followed from the work of Harr et al. (1979) using ordinary least

squares (OLS) regression based on annual and storm-based mean and maxi-

mum water yield, peak flow, sediment load, and temperature to evaluate the

effects of forest management on water quality and quantity; for review see

Andrassian (2004); Bosch and Hewlett (1982); Brown et al. (2005). After

regressing the observed values of the treatment watershed on the observed

control watershed values via OLS during the calibration period, predicted

values and prediction intervals are computed for the post-treatment time pe-

riod. Prediction intervals should not be confused with confidence intervals,

though each provides a plausible range for an estimated value and conveys

the precision of the estimate.

The use of data collected on daily or monthly time scales prompted ad-

justments to the prediction interval method of change detection. To con-

tinue the prediction interval change detection methodology in the presence

of autocorrelated data, researchers began to filter the model residuals via

auto-regressive (AR) analysis and use the estimated variance of the AR dis-

turbances to construct prediction intervals and assess treatment effects (Gomi

et al., 2006; Moore et al., 2005; Watson et al., 2001). This method ignores

variation attributed to the estimation of autocorrelation model parameters,

and changes in prediction precision due to where the control watershed re-

sponse values lie in relation to their range during the calibration period.

Both of these sources of variation should be considered in the construction

of prediction intervals for change detection. Excluding these known sources
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of variation will result in underestimates of prediction variance leading to

prediction intervals that are too narrow, and increased Type I error rates.

PWS have been used to directly inform policy makers of the effects of

forest management on catchment hydrology. The ability to correctly iden-

tify management effects requires statistically powerful analysis methods that

incorporate well-defined and measured sources of prediction variation. The

objective of this paper is to provide an updated form of prediction limits for

use in detecting treatment effects in paired watershed studies that incorpo-

rate appropriate sources of variation.

4.3 PREVIOUS METHODS OF CHANGE DETECTION

The standard approach for change detection in PWS begins by estab-

lishing a linear model with the control watershed response (e.g. sediment

load) used as a covariate to predict the treated watershed response during

a calibration time period. During this period, observations are made before

any experimental treatments are applied. If the observations are temporally

scaled such that autocorrelation is not an issue, as may be expected for hy-

drological data summarized during storm events, the model is:

yi = β0 + xiβ1 + εi (4.1)

with yi representing the observed value from the treated watershed, xi the

observed value from the control watershed, i = 1, 2, . . . n representing the

number of storms during the calibration time period, β0 and β1 are the in-

tercept and slope parameters, and εi ∼ N(0, σ2). After treatment begins,

observations continue to be collected at both the treated and control water-

sheds. At the completion of the treatment period, the calibration model is



92

used to make predictions and prediction intervals for the treated watershed

response based on values of the control watershed during the post-treatment

time period. Each prediction interval value is calculated via

ŷj | xj ± t(α
2

,n−2)σ̂

√
1 +

1

n
+

(xj − x)2∑
(xi − x)2

. (4.2)

where j runs from n+1 to the final storm of data collection m, xj represents

the observed control catchment response for storm j during the treatment

period, σ̂2 estimates σ2, and t(α
2

,n−2) is the α-level quantile of a t-distribution

with n−2 degrees of freedom. For each observation within the post-treatment

period, a residual value Rj is computed as yj − (ŷj | xj) where (ŷj | xj) is the

predicted value using (4.1). Subtracting (ŷj | xj) from the upper and lower

bounds of the prediction interval computed using (4.2) provides a prediction

interval for the set of Rj. A disproportionate number of post-treatment

residuals that exceed the prediction intervals is an indication of a treatment

effect (Harr, Fredriksen, and Rothacher , 1979).

Of concern with most traditional paired-catchment studies, however; is

the relatively small number of pre-treatment observations used to construct

the statistics-based change detection models. In the absence of large sample

sizes, diminished statistical power undermines the ability to detect changes in

physical behavior. Notable PWS such as the Alsea and Caspar Creek studies

used annual values of water yield and sediment load with sample sizes of n

= 7 and n = 4, respectively (Lewis , 1998; Harris , 1977).

To address the limitations that annual or storm-based data pose for

change detection in watershed studies, researchers began data collection on

monthly and daily time scales (Gomi et al., 2006; Moore et al., 2005; Scott

and Lesch, 1997; Watson et al., 2001). Seasonal periodicity and serial auto-

correlation have been present in measurements observed close in time which
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violates the assumptions of independence and homoscedastic variance of OLS

regression (Salas , 1993). If unaccounted for, autocorrelation can result in in-

correct estimates of regression coefficients and invalid tests of significance

(Carroll and Pearson, 1998). Logarithmic transformations of explanatory

and response variables are used to address non-constant variance and sinu-

soidal trigonometric terms can be used to describe seasonality (Helsel and

Hirsch, 1992). Salas (1993) addressed autocorrelation by fitting a stochastic

time-series model to model residuals.

Watson et al. (2001) recognized the need to consider temporal autocor-

relation when moving to finer time scales. To evaluate changes in monthly

water yield at the Maroondah paired-catchment study in Australia, they fit

a model similar to (4.1), but with additional sinusoidal terms to account for

seasonal monthly variation and a log10 transformation of the measured re-

sponse variable to account for non-constant variance. In this model, i now

represents each month of the calibration time period. Following Salas (1993),

they fit a stochastic time series model to their residuals. They selected a

first-order autoregressive model (AR(1)). An AR(1) models autocorrelation

among the εi values as

εi = φ1εi−1 + γi (4.3)

where φ1 accounts for the autocorrelation between previous εi’s and γi is

an independent innovation. After estimating φ1 Watson et al. (2001) solved

(4.3) for γ̂i to compute the estimated random innovation at each observed

value. They computed the sample standard deviation of the set of γ̂i values,

multiplied this value by 1.96, and then added and subtracted this value from

0 to obtain upper and lower 95% “prediction limits” to assess change due to

forest harvesting (Watson, personal communication).

Following Harr et al. (1979), Watson et al. (2001) computed predicted
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values for the treated watershed using the observed values of the control wa-

tershed during the post-treatment period. Next, they computed the residual

(Rj) values as described above. They substituted Rj for εi in (4.3) and used

φ̂1 to solve for each γ̂j. The percentage of these post-treatment γ̂j values that

exceeded the prediction limits was computed, and a treatment effect was de-

clared if more than 5% of these values exceed the 95% prediction limits since

5% of all γ̂i values are expected to exceed the 95% prediction intervals by

construction (Watson et al., 2001).

Moore et al. (2005) and Gomi et al. (2006) modified the estimation and

analysis method proposed by Watson et al. (2001) using daily stream tem-

perature data to evaluate the headwater catchment responses to clear-cut

harvesting in coastal British Columbia, Canada. These researchers correctly

recognized that autocorrelated data not only require attention in the analysis

of residuals, but additionally in the estimation of linear model parameters

from (4.3). Accordingly, they used generalized least squares (GLS), and not

OLS, for linear model parameter estimation (Myers , 1990, p. 278). Moving

from the simple linear regression scenario of (4.1), (4.2), and (4.3) to the

multiple linear regression and GLS frameworks it is much more efficient to

represent models and formula components using matrix notation.

Using common matrix notation, the multiple linear regression analog to

(4.1) is expressed as

y
∼

= X
∼

β
∼

+ ε
∼

(4.4)

where y
∼

is an n x 1 vector of responses, X
∼

is an n x k design matrix, k is

the number of model parameters, β
∼

is a k x 1 vector of model parameters,

ε
∼
∼ N(0

∼
, σ2In

∼
), and In

∼
is an n x n identity matrix. It should be noted

that this model assumes the elements of y
∼

are independent. For autocorre-

lated data, GLS regression allows the independent errors assumption to be
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relaxed and assumes ε
∼
∼ N(0

∼
, σ2Ψ

∼
). σ2Ψ

∼
is an n x n symmetric variance-

covariance matrix with variance values along the diagonal and covariance

values in the non-diagonal matrix elements. The appropriate estimator for β
∼

when V ar(ε
∼
) 6= σ2I

∼
is not the OLS estimator, but rather the GLS estimator

given by (Myers , 1990, p. 278)

β̂
∼

= (X
∼
′Ψ
∼
−1X

∼
)−1X

∼
′Ψ
∼
−1y
∼
. (4.5)

In addition to recognizing that the covariance structure should be in-

corporated into the linear model parameters estimator, Moore et al. (2005)

and Gomi et al. (2006) also recognized that using the partial autocorrela-

tion function (PACF) can aid in determining the appropriate order of the

autoregressive process. After determining the autoregressive structure and

estimating the linear model and autoregressive parameters for the calibration

period data, the residuals, innovations, prediction intervals, and assessment

of treatment effects were computed following the methods of Watson et al.

(2001) described above.

Though Harr et al. (1979) correctly produced prediction intervals in the

OLS setting and the above studies are significant developments for the use of

temporally autocorrelated hydrologic data, the intervals created by Watson

et al. (2001), Moore et al. (2005), and Gomi et al. (2006) are not prediction

intervals. Their intervals are based on an estimate of the innovations vari-

ance, and do not account for prediction variance that includes variation due

to the estimation of linear model and autoregressive function parameters,

and covariance between observations (autocorrelation). Incorporating these

sources of variation will lead to improved prediction limits for evaluating

treated catchment behavior after management relative to pre-management

conditions.
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4.4 IMPROVED METHODS FOR CHANGE DETECTION

This section begins by establishing the correct form of the GLS prediction

variance that incorporates variation due to the estimation of linear model

and autocorrelation parameters, and then derives the prediction variance of

the innovations that are used to determine if treatment effects have likely

occurred.

To begin, consider a vector of the combined data containing the observed

stream discharge over the pre-treatment time interval and the predicted

stream discharge in the post-treatment interval that is predicted using the

calibration equation. Note that the terms “prediction” and “predicted val-

ues” refer to predictions for the treated watershed during the post-treatment

period but in the absence of treatment. The variance-covariance matrix of

the observed and predicted values can be partitioned as follows (Judge et al.,

1980, p. 209)

σ2

 Ψ
∼

V
∼

V
∼

′
Ψj
∼

 (4.6)

where σ2Ψj
∼

is the variance-covariance matrix of the predicted values and

σ2V
∼

is the covariance matrix between observed and predicted observations.

For ease of notation, we will proceed by referring to the elements of (4.6) as

having been multiplied by σ2. If the variance and covariance parameters are

known, the prediction equation has the form

ŷ
∼
|xj
∼

= xj
∼

β̂
∼

+ V
∼

′
Ψ
∼
−1(y

∼
−X

∼
β̂
∼
) (4.7)

where β̂
∼

is estimated from (4.5), and (4.7) is the best linear unbiased predictor

(BLUP) for y
∼
| xj
∼

(Kariya and Kurata, 2004, p. 70). Given this unbiased

estimator for y
∼
| xj
∼

and again that the variance and covariance parameters
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are known, the prediction mean-squared error (MSE) can be computed as

(Harville and Jeske, 1992; Zimmerman and Cressie, 1992)

MSE
[
ŷ
∼
|xj
∼

,yj
∼

]
= Ψj

∼
−V
∼

′
Ψ
∼
−1V

∼
+(xj

∼

′−V
∼

′
Ψ
∼
−1X

∼
)(X
∼

′
Ψ
∼
−1X

∼
)−1(xj

∼
−X
∼

′
Ψ
∼
−1V

∼
).

(4.8)

Note that since our estimator is unbiased, the terms “prediction MSE” and

“prediction variance” are equivalent.

In practical settings the parameters of variance-covariance matrices are

generally not known, and need to be estimated from the observed data. A

common method to obtain prediction variances has been to estimate the

variance-covariance parameters, and simply plug-in these values to (4.8) as

fixed and known; however, this estimator is biased (Harville and Jeske, 1992;

Kackar and Harville, 1984; Schabenberger and Gotway , 2005; Zimmerman

and Cressie, 1992).

To demonstrate the origin of this bias, start by defining yj
∼

as the true

values of observations at values of xj
∼

, ŷj
∼

(Ψ
∼

) to be predicted values of yj
∼

at

values of xj
∼

with known covariance parameters, and ŷj
∼

(Ψ̂
∼

) to be the pre-

dicted values when the covariance parameters are also estimated. Addition-

ally, restrict the class of estimators of Ψ
∼

to those that are even (symmetric

around zero) and translation invariant. These properties are shared by both

maximum likelihood (ML) and restricted maximum likelihood (REML) es-

timators (Schabenberger and Gotway , 2005, p. 265). Kackar and Harville

(1984) decompose the prediction error into

ŷj
∼

(Ψ̂
∼

)− yj
∼

=
(
ŷj
∼

(Ψ
∼

)− yj
∼

) +
(
ŷj
∼

(Ψ̂
∼

)− ŷj
∼

(Ψ
∼

)
)

(4.9)

and show that given the translation invariant restriction, the two partitions

of ŷj
∼

(Ψ̂
∼

)−yj
∼

in (4.9) are distributed independently. This leads to a prediction
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MSE of

MSE
[
ŷj
∼

(Ψ̂
∼

),yj
∼

]
= MSE

[
ŷj
∼

(Ψ
∼

),yj
∼

]
+ V ar

[
ŷj
∼

(Ψ̂
∼

)− ŷj
∼

(Ψ
∼

)
]
. (4.10)

Thus, by substituting Ψ̂
∼

for Ψ
∼

one simply estimates MSE
[
ŷj
∼

(Ψ
∼

),yj
∼

]
and

therefore underestimates the MSE
[
ŷj
∼

(Ψ̂
∼

),yj
∼

]
by V ar

[
ŷj
∼

(Ψ̂
∼

)− ŷj
∼

(Ψ
∼

)
]
.

Again given the class of even and translation invariant estimators, and

additionally that the combined vector of stream discharge follows a Gaussian

distribution, a first-order approximately unbiased estimator of MSE
[
ŷj
∼

(Ψ̂
∼

),yj
∼

]
is

MSE
[
ŷj
∼

(Ψ
∼

),yj
∼

]
+ 2tr

(
A(Ψ̂

∼
)B(Ψ̂

∼
)
)

(4.11)

which is referred to as the Prasad-Rao MSE estimator (Harville and Jeske,

1992; Schabenberger and Gotway , 2005). 2tr
(
A(Ψ̂

∼
)B(Ψ̂

∼
)
)

unbiasedly ap-

proximates V ar
[
ŷj
∼

(Ψ̂
∼

)− ŷj
∼

(Ψ
∼

)
]

with A(Ψ̂
∼

) approximating V ar
[∂ byj

∼
(Ψ
∼

)

∂Ψ
∼

]
and

B(Ψ̂
∼

) approximating MSE
[
Ψ̂
∼

,Ψ
∼

]
. The theoretical justification for (4.11)

can be found in Prasad and Rao (1990) and Harville and Jeske (1992), and

examples of the computation of A(Ψ̂
∼

) and B(Ψ̂
∼

) can be found in Harville

and Jeske (1992), Kackar and Harville (1984), Prasad and Rao (1990), and

Zimmerman and Cressie (1989). Note that (4.11) is the variance-covariance

matrix of prediction, and as such, the diagonal elements of (4.11) represent

the prediction variance.

This approximation of the prediction variance can be used to obtain pre-

diction intervals for the post-treatment time period to assess whether change

has likely occurred, as discussed in Section 2. Prediction residuals are ob-

tained by subtracting predicted values from observed values for the treated

watershed during the post-treatment time period, and this sequence of poten-

tially temporally autocorrelated residuals (R1, R2, . . . Rm), the autocorrela-

tion function, and estimates of the autocorrelation parameters (φ̂1, φ̂2, . . . φ̂p)
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can be used to create prediction intervals. In essence, we consider each post-

treatment innovation (γ̂j) as a linear combination of autocorrelated residuals,

and compute the variance of this linear combination. To match the example

in Section 4, the prediction variance associated with each innovation is now

derived for an AR(p) autocorrelation structure. A similar approach can be

used to derive the prediction variance of more general classes of autocorre-

lated processes. If we assume:

1. φ̂q independent φ̂q′ for all q, q′

2. φ̂q independent Rj for all q, j

then for each Rj, j = 0, . . . ,m forming a stationary time series,

Rj =

p∑
q=1

φ̂qRj−q + γ̂j (4.12)

and basic algebra leads to

γ̂t = Rt −
p∑

j=1

φ̂jRt−j. (4.13)

Using more algebra and basic properties of linear combinations of variances

and covariances (Goodman, 1960), the prediction variance of each γ̂j can be

found as

V ar(γ̂j) = V ar(Rj −
p∑

q=1

φ̂qRj−q) (4.14)

= V ar(Rj)

+

p∑
q=1

[
φ̂2

qV ar(Rj−q) + (Rj−q)
2V ar(φ̂q)− V ar(Rj−q)V ar(φ̂q)

−2σ2
(
ρq

(
φ̂q +

∑
φ̂kφ̂w

))]
; for all w − k = q(4.15)
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where V ar(Rj) is estimated using (4.11). Innovations are normally dis-

tributed with an expected mean of 0, hence upper and lower prediction

intervals at each time j are then simply computed by

0± 1.96
√

V ar(γ̂j) (4.16)

4.5 EXAMPLE: DAILY DISCHARGE DATA AT HINKLE CREEK

To demonstrate the differences between the prediction limits proposed

by Watson et al. (2001) and the improved limits described in Section 3,

we present an example from the Hinkle Creek Paired Watershed Study.

The Hinkle Creek Paired Watershed Study, located in the foothills of the

Cascade Mountains in southern Oregon, was designed to evaluate the influ-

ence of contemporary forest practices on hydrology and stream biota at the

headwater scale. Detailed descriptions of the Hinkle Creek Paired Water-

shed Study, including watershed description, data collection methodology,

and additional analysis can be found at the Watersheds Research Cooper-

ative homepage (http://watershedsresearch.org/). Average daily discharge

for this example was extracted for both DeMersseman (control) and Fenton

(treated) catchments. Two years of pre-treatment discharge data were used

to develop calibration equations and the relationship between control and

treated catchments. Due to equipment constraints, data were not collected

during extremely low flow periods each summer. After the calibration time

period, 65% of the Fenton Creek watershed was clear-felled in accordance

with the Oregon Forest Practices Act. We used R software R Development

Core Team (2005) for all analysis and computations.

We used a log10 transformation of daily discharge for treatment and con-
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trol watersheds and subtracted the mean monthly discharge from each ob-

servation to achieve stationarity. Stationarity is a required assumption for

fitting AR, moving average (MA), or autoregressive-moving average (ARMA)

time series models (Chatfield , 2004, p. 48).

We used partial autocorrelation functions and Akaike’s Information Cri-

terion (AIC) to choose the most parsimonious model. We considered all sets

of ARMA(p,q) autoregressive-moving average time series models with both

p and q parameters ranging from 0 to 4, and found a second-order autore-

gressive model provided the best fit. Next, we fit a GLS model, and then

obtained predicted values, residuals, innovations, and prediction intervals as

described in Section 3. Figure 1 shows the post-treatment innovations and

prediction intervals based on the Watson et al. (2001) method and our im-

proved method. The horizontal axis is ordered chronologically, which is the

common display for these analyses within the field of hydrology. The im-

proved prediction intervals are indeed wider than the Watson et al. (2001)

intervals, and are not constant across time. Prediction intervals are narrow-

est at the mean of the control watershed daily discharge values, and widen

progressively as the values move further from the mean. The non-systematic

variation in the width of the improved prediction intervals is due to the fact

that the innovations and prediction intervals are ordered by time, not by

covariate values.

If the proportion of post-treatment innovations that exceed the prediction

intervals is greater than a specified limit, typically 5%, it is determined that

a change due to forest management has occurred. The Watson et al. (2001)

intervals would lead one to conclude that a treatment effect has occurred,

as 11.0% of the innovations exceed those limits. In contrast, the conclusion

would be different using the improved prediction limits. Only 5.7% of the
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innovations exceeding the prediction limits indicate suggestive, but inconclu-

sive, evidence of a treatment effect.

4.6 DISCUSSION

First, a cautionary note about the regression-based approach for change

detection in paired watershed studies. Prediction of future observations is

only valid for post treatment values of the control watershed that lie within

the range of values during the calibration phase. Daily discharge, for exam-

ple, is strongly connected to climatic events. Should a post-treatment storm

produce larger control watershed daily discharge values than any observed

during the calibration phase, it would be technically inappropriate to define

a prediction limit over the days of this event.

Our example demonstrates that the improved prediction limits are wider

than those computed using the Watson et al. (2001) method, and that the

difference between the two methods is great enough to effect final conclusions.

From Figure 1 it appears that many of the points exceeding the Watson et al.

(2001) method, but not our prediction limits, occur when covariate values are

furthest from their means and our prediction limits are the widest. Statis-

tical tools attempt to differentiate the variation within treatments from the

variation among treatments. This partition of variance is clouded by impre-

cision induced by estimating the parameters associated with the statistical

model. Not accounting for this imprecision can lead to incorrect conclusions.

In a review of decades of studies on the effects of forest management

on annual-scale stream hydrology, Bosch and Hewlett (1982) conclude that

treatment effects are expected when at least 20% of the watershed is har-

vested. With 65% of the Fenton Creek watershed harvested, the fact that
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these data may not show evidence of treatment effects highlights the poten-

tial for daily hydrology data from paired watershed studies to be too noisy for

efficient change detection. Since paired watershed studies can inform politi-

cal, social, and economic policies, it is imperative that researchers judiciously

choose appropriate analysis methods for their data analysis.

It is clear that incorporating prediction variance is necessary for con-

structing prediction intervals. The effort involved in obtaining the correction

term of the Prasad-Rao MSE estimator warrants investigating the improve-

ment this correction term gives over simply using the biased plug-in estimator

presented in Section 3. Schabenberger and Gotway (2005, p. 266) note that

the bias of the plug-in estimator can be substantive for small sample sizes.

A small sample size is not an issue in our example, where n= 414 for the

calibration time period. For spatially autocorrelated data, in addition to the

assumptions necessary for (4.11), Zimmerman and Cressie (1992) suggest

using the Prasad-Rao MSE estimator when the spatial correlation is known

or estimated to be weak, and when the estimated variance-covariance matrix

of the observed data is known to be negatively biased. The estimated value

of the first autoregressive parameter for our example is 0.996 (95% CI: 0.90,

1.09), which is consistent with values of strong autocorrelation as seen in

Vijapurkar and Gotway (2001). There is another piece of evidence that may

indicate that the use of the correction term may not be necessary for daily

discharge data. We ran the analysis again without the Prasad-Rao correction

term, this time using the plug-in version of (4.8) for the prediction variance.

Relative to the variance estimates computed using the correction term, the

plug-in estimates average nearly 100% of the corrected values. This suggests

the bias of the plug-in estimator for these data is essentially zero. To bal-

ance this result, we applied the same approach to a similar dataset from the
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Hinkle Creek PWS summarized to monthly intervals, and with a calibration

period sample size of 20. This data was fit with a first-order autoregressive

model and the estimated autoregressive parameter was 0.28 (95% CI: -0.17,

.74). The plug-in estimator showed much more bias, only averaging 83% of

the corrected Prasad-Rao MSE estimator values. It may not be necessary to

use the Prasad-Rao MSE estimator for daily summarized paired watershed

data, though this warrants thorough investigation.

The prediction intervals we present are a further development for change

detection analysis of hydrologic data from paired watershed studies. These

refinements build upon improvements presented by Watson et al. (2001) and

Gomi et al. (2006). We recommend that prediction intervals incorporating

prediction variance be used for change detection analysis.
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Mersseman and Fenton Creeks, from the Hinkle Creek Paired
Watershed Study, Oregon.
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5. CONCLUSIONS

5.1 CONCLUDING REMARKS

This collection of manuscripts serves to refine the the collection, interpre-

tation, and application of autocorrelated data in headwater stream networks.

Chapter 2 demonstrated that sampling design affects the detection of spa-

tial autocorrelation in samples drawn from spatially autocorrelated stream-

network data. Incorporating clusters of samples lead to increased chances of

obtaining samples with evidence of spatial autocorrelation than non-clustered

sampling protocols, and spatially distributed clusters were more apt to con-

tain spatial autocorrelation than small tributary focused clusters. Chapter

2 also revealed that basin and stream-network characteristics are associated

with the ability to detect spatial autocorrelation in stream networks. De-

tection of spatial autocorrelation was the most difficult in more spherically

shaped basins with higher drainage densities. Strong differences among sam-

pling designs for the estimation of autocorrelation function values at several

lag distances were not observed, and all sampling protocols generally exhib-

ited negatively biased estimates.

Chapter 3 demonstrated that using the range parameter to estimate the

size of patches can be problematic for data containing patches of varying

sizes and heterogenous response values. Range parameters were generally

much larger than, and did not show evidence of strong correlation with,

average patch or gap lengths. Integral scale values more closely matched the

magnitude of average patch and gap lengths, but were no more correlated

with patch lengths than were range parameters. Range parameters were most

strongly correlated with the largest patch and gap lengths within each basin.
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Chapter 4 demonstrated a refinement in the construction of prediction

intervals for hydrologic change detection in paired watershed studies. Predic-

tion interval improvement resulted from explicitly incorporating the variation

associated with estimating linear and autocorrelation model parameters. In

a comparison between the former and improved methods of prediction inter-

val construction, it was shown that the difference between the two methods

is large enough to effect conclusions drawn from an analysis.

5.2 RELATED FUTURE WORK

The results of the work within this dissertation suggest some interesting

ideas for future research.

As discussed in Chapter 2, it seems that considering a broader range of

cluster sizes, and samples containing both clustered and unclustered loca-

tions may be beneficial. Additionally, a more realistic scenario that involves

estimation of both linear and autocorrelation model parameters seems a very

logical progression.

In light of the results from Chapter 3, there several future directions to

take in regards to autocorrelative measures of patch size. First, only first-

order patches, as defined by Kotliar and Wiens (1990), were considered.

Given that our range parameter values were predominantly larger than our

average patch lengths, it seems considering second-order patches would be

useful. Second-order patches are defined as groups of first-order patches

(Kotliar and Wiens , 1990). Using the 40 basins dataset, second-order patches

could be computed by joining nearby patches separated by only one or two

gaps, for example.

Another direction for future work comes from the conclusion that varia-
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tion in patch sizes within a landscape and variation in response values within

patches may have led to poor correlation of average patch sizes with range

parameters and integral scales; and other recent work regarding empirical

semivariograms and patch sizes (Satterthwaite, 2009). Response values could

be dichotomized based on occurring within a patch (response value = 1) or a

gap (response value = 0). Semivariograms computed from these transformed

data may indicate sizes of patches via inflection points.

Paired watershed studies are used to inform public policy. The impor-

tance of the conclusions reached has led to a continuous evolution of their

design and methods for their analysis. When hydrologic data was consid-

ered on an annual scale (Harr et al., 1979), it was argued that this temporal

scale was too coarse for effective change detection. Paired watershed stud-

ies have been designed to collect data at finer scales, but even these face

challenges, as recent work has shown data summarized at daily time scales

contribute too much statistical noise to effectively detect treatment effects

(Zégre et al., 2008). Future work should help elucidate the most effective

temporal scales for change detection. Additionally, an investigation into the

most effective analysis methods should be conducted. Comparing current

methods, like the prediction interval approach, with other current and newly

proposed methodologies will further refine the paired watershed study.
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Brind Ámour, A., and D. Boisclair (2006), Effect of the spatial arrangement
of habitat patches on the development of fish habitat models in the littoral
zone of a Canadian shield lake, Canadian Journal of Fisheries and Aquatic
Sciences, 63, 737–753.

Brown, J. D., L. Zhang, T. A. McMahon, A. W. Western, and R. A. Vertessy
(2005), A review of paired catchment studies for determining changes in
water yield resulting from alterations in vegetation, Journal of Hydrology,
310 (1–4), 28–61.

Bulit, C., C. Diaz-Avalos, M. Signoret, and D. J. S. Montagnes (2003), Spa-
tial structure of planktonic ciliate patches in a tropical coastal lagoon:
an application of geostatistical methods, Aquatic Microbial Ecology, 30,
185–196.

Bulit, C., C. Diaz-Avalos, and D. J. S. Montagnes (2004), Assessing spatial
and temporal patchiness of the autotrophic ciliate Myrionecta rubra: a case
study in a coastal lagoon, Marine Ecology Progress Series, 268, 55–67.

Burnham, K. P., and D. R. Anderson (2002), Model Selection and Multimodel
Inference: A Practical InformationTheoretic Approach, 2 ed., Springer-
Verlag, New York, NY.

Carroll, S. S., and D. L. Pearson (1998), Spatial modeling of butterfly species
richness using tiger beetles (Cicindelidae) as a bioindicator taxon, Ecolog-
ical Applications, 8 (2), 531–543.

Chatfield, C. (2004), The Analysis of Time Series: An Introduction, Texts
in Statistical Science Series, 6 ed., Chapman and Hall/CRC, Boca Raton,
FL.

Conover, W. J. (1999), Practical Nonparametric Statistics, Wiley Series in
Probability and Statistics, 3 ed., John Wiley and Sons, New York, NY.

Cooper, S. D., L. Barmuta, O. Sarnelle, K. Kratz, and S. Diehl (1997), Quan-
tifying spatial heterogeneity in streams, Journal of the North American
Benthological Society, 16 (1), 174–188.

Cressie, N., and J. J. Majure (1997), Spatio-temporal statistical modeling of
livestock waste in streams, Journal of Agricultural, Biological, and Envi-
ronmental Statistics, 2 (1), 24–47.



115

Cressie, N., J. Frey, B. Harch, and M. Smith (2006), Spatial prediction on
a river network, Journal of Agricultural, Biological, and Environmental
Statistics, 11 (2), 127–150.

Cubillos, L. A., J. Paramo, P. Ruiz, S. Nunez, and A. Sepulveda (2008),
The spatial structure of the oceanic spawning of jack mackerel (Trachurus
murphyi) off central Chile (1998-2001), Fisheries Research, 90, 261–270.

Dalthorp, D., J. Nyrop, and M. G. Villani (2000), Foundations of spatial
ecology: the reification of patches through quantitative description of pat-
terns and pattern repetition, Entomologia Experimentalis et Applicata, 96,
119–127.

Dent, C. L., and N. B. Grimm (1999), Spatial heterogeneity of stream water
nutrient concentrations over successional time, Ecology, 80 (7), 2283–2298.

Downes, B. J., P. S. Lake, and E. S. G. Schreiber (1993), Spatial variation
in the distribution of stream invertebrates: implications of patchiness for
models of community organization, Freshwater Biology, 30, 119–132.

Ettema, C. H., and D. A. Wardle (2002), Spatial soil ecology, TRENDS in
Ecology & Evolution, 17 (4), 177–183.

Ferguson, R. I., J. T. Cudden, T. B. Hoey, and S. P. Rice (2006), River system
discontinuities due to lateral inputs: generic styles and controls, Earth
Surface Processes and Landforms, 31, 1149–1116, doi:10.1002/esp.1309.

Fisher, S. G., N. B. Grimm, E. Marti, and R. Gomez (1998), Hierarchy,
spatial configuration, and nutrient cycling in a desert stream, Australian
Journal of Ecology, 23, 41–52.

Fletcher, W. J., and N. R. Sumner (1999), Spatial distribution of sardine
(Sardinops sagax ) eggs and larvae: an application of geostatistics and
resampling to survey data, Canadian Journal of Fisheries and Aquatic
Sciences, 56, 907–914.

Floridi, L. (2009), Logical fallacies as informational shortcuts, Synthese, 167,
317–325, doi:10.1007/s11229-008-9410-y.

Franklin, R. B., L. K. Blum, A. C. McComb, and A. L. Mills (2002), A
geostatistical analysis of small-scale spatial variability in bacterial abun-
dance and community structure in salt marsh creek bank sediments, FEMS
Microbiology Ecology, 42, 71–80.

Ganio, L. M., C. E. Torgersen, and R. E. Gresswell (2005), A geostatistical
approach for describing spatial pattern in stream networks, Frontiers in
Ecology and the Environment, 3 (3), 138–144.



116

Gardner, B., P. J. Sullivan, and J. L. Arthur Jr. (2003), Predicting stream
temperatures: Geostatistical model comparison using alternative distance
metrics, Canadian Journal of Fisheries and Aquatic Sciences, 60, 344–351,
doi:10.1139/F03-025.

Garreta, V., P. Monestiez, and J. M. Ver Hoef (2009), Spatial modelling and
prediction on river networks: up model, down model or hybrid?, Environ-
metrics, doi:10.1002/env.995.

Gascuel-Odoux, C., and P. Boivin (1994), Variability of variograms and spa-
tial estimates due to soil sampling: a case study, Geoderma, 62, 165–182.

Gomi, T., R. D. Moore, and A. S. Dhakal (2006), Headwater stream temper-
ature response to clear-cut harvesting with different riparian treatments,
coastal British Columbia, Canada, Water Resources Research, 42,

Goodman, L. A. (1960), On the exact variance of products, Journal of the
American Statistical Association, 55 (292), 708–713.

Gresswell, R. E., D. S. Bateman, G. W. Lienkaemper, and T. J. Guy (2004),
Geospatial techniques for developing a sampling frame of watersheds across
a region, in GIS/Spatial Analyses in Fishery and Aquatic Sciences, vol. 2,
edited by T. Nishida, P. J. Kailola, and C. E. Hollingworth, pp. 515–528,
Fishery-Aquatic GIS Research Group, Saitama, Japan.

Grundmann, G. L., and D. Debouzie (2000), Geostatistical analysis of the
distribution of NH4+ and NO3- -oxidizing bacteria and serotypes at the
millimeter scale along a soil transect, FEMS Microbiology Ecology, 34, 57–
62.

Harr, R. D., R. L. Fredriksen, and J. Rothacher (1979), Changes in stream-
flow following timber harvest in southwestern Oregon, Research Paper
PNW 249, USDA Forest Service: Pacific Northwest Forest and Range
Experiment Station, Portland, OR.

Harris, D. D. (1977), Hydrologic changes after logging in two small Oregon
coastal watersheds, Water-Supply Paper 2037, United States Geological
Survey, Arlington, VA.

Harville, D. A., and D. R. Jeske (1992), Mean squared error of estimation or
prediction under a general linear model, Journal of the American Statistical
Association, 87 (419), 724–731.

Helsel, D. R., and R. M. Hirsch (1992), Statistical Methods in Water Re-
sources, Elsevier, Amsterdam.



117

Huettmann, F., and A. W. Diamond (2006), Large-scale effects on the spatial
distribution of seabirds in the northwest Atlantic, Landscape Ecology, 21,
1089–1108, doi:10.1007/s10980-006-7246-8.

Hynes, H. B. N. (1975), The stream and its valley, Internationale Vereinigung
fr Theoretische und Angewandte Limnologie, 19, 1–15.

Irvine, K. M., A. I. Gitelman, and J. A. Hoeting (2007), Spatial designs and
properties of spatial correlation: Effects on covariance estimation, Journal
of Agricultural, Biological, and Environmental Statistics, 12 (4), 450–469,
doi:10.1198/108571107X249799.

Isaak, D. J., and R. F. Thurow (2006), Network-scale spatial and tempo-
ral variation in chinook salmon (Oncorhynchus tshawutscha) redd dis-
tributions: Patterns inferred from spatially continuous replicate surveys,
Canadian Journal of Fisheries and Aquatic Sciences, 63, 285–296, doi:
10.1139/F05-214.

Isaaks, E. H., and R. M. Srivastava (1989), Applied Geostatistics, 3 ed.,
Oxford University Press, New York, NY.

Judge, G. G., W. E. Griffiths, R. C. Hill, and T.-C. Lee (1980), The Theory
and Practice of Econometrics, John Wiley and Sons, New York, NY.

Kackar, R. N., and D. A. Harville (1984), Approximations for standard errors
of estimators of fixed and random effects in mixed linear models, Journal
of the American Statistical Association, 79 (388), 853–862.

Kariya, T., and H. Kurata (2004), Generalized Least Squares, John Wiley
and Sons, West Sussex, England.

Kiffney, P. M., C. M. Greene, J. E. Hall, and J. R. Davies (2006), Tribu-
tary streams create spatial discontinuities in habitat, biological productiv-
ity, and diversity in mainstem rivers, Canadian Journal of Fisheries and
Aquatic Sciences, 63, 2518–2530, doi:10.1139/F06-138.

Kincaid, T., T. w. c. f. D. S. Olsen, C. Platt, D. White, and R. Remington
(2008), spsurvey: Spatial Survey Design and Analysis, r package version
2.0.

Kotliar, N. B., and J. A. Wiens (1990), Multiple scales of patchiess and patch
structure: a hierarchical framework for the study of heterogeneity, OIKOS,
59, 253–260.

Legendre, P. (1993), Spatial autocorrelation: Trouble or new paradigm?,
Ecology, 74 (6), 1659–1673.



118

Lewis, J. (1998), Evaluating the impacts of logging activites on erosion and
suspended sediment transport in the Caspar Creek watersheds, General
Technical Report 168, USDA Forest Service: Pacific Southwest Research
Station, Ukiah, CA.

Lindenmayer, D. B. (2000), Factors at multiple scales affecting distribution
patterns and their implications for animal conservation leadbeaters pos-
sum as a case study, Biodiversity and Conservation, 9, 15–35.

Little, L. S., D. Edwards, and D. E. Porter (1997), Kriging in estuaries:
as the crow flies, or as the fish swims?, Journal of Experimental Marine
Biology and Ecology, 213, 1–11.

Lloyd, N. J., R. Mac Nally, and P. S. Lake (2005), Spatial autocorrelation of
assemblages of benthic invertebrates and its relationship to environmen-
tal factors in two upland river in southeastern Australia, Diversity and
Distributions, 11, 375–386, doi:10.1111/j.1366-9516.2005.00166.x.

Mast, J. N., and T. T. Veblen (1999), Tree spatial patterns and stand de-
velopment along the pinegrassland ecotone in the Colorado Front Range,
Canadian Journal of Forest Research, 29, 575–584.

Matthews, M. R. (2009), Teaching the philosophical and worldview compo-
nents of science, Science & Education, 18, 697–728, doi:10.1007/s11191-
007-9132-4.

Meisel, J. E., and M. G. Turner (1998), Scale detection in real and artificial
landscapes using semivariance analysis, Landscape Ecology, 13, 347–362.

Moore, R. D., P. Sutherland, T. Gomi, and A. Dhakal (2005), Thermal
regime of a headwater stream within a clear-cut, coastal British Columbia,
Canada, Hydrological Processes, 19 (13), 2591–2608, doi:10.1002/hyp.5733.

Muller, W. G., and D. L. Zimmerman (1999), Optimal designs for variogram
estimation, Environmetrics, 10, 23–37.

Muneto, H., N. Ohte, N. Karasawa, G.-s. Zhang, L.-h. Wang, and
K. Yoshikawa (2001), Plant species effect on the spatial patterns of soil
properties in the Mu-us desert ecosystem, inner Mongolia, China, Plant
and Soil, 234, 195–205.

Myers, R. H. (1990), Classical and Modern Regression with Applications,
Duxbury Classic Series, Duxbury, Pacific Grove, CA.

Neville, H. M., D. J. Isaak, J. B. Dunham, R. F. Thurow, and B. E. Rieman
(2006), Fine-scale natal homing and localized movement as shaped by sex



119

and spawning babitat in chinook salmon: insights from spatial autocorre-
lation analysis of individual genotypes, Molecular Ecology, 15, 4589–4602,
doi:10.1111/j.1365-294X.2006.03082.x.

Paola, C., and R. Seal (1995), Grain size patchiness as a cause of selec-
tive deposition and downstream fining, Water Resources Research, 31 (5),
1395–1407.

Pastor, J., B. Dewey, R. Moen, D. J. Mladenoff, M. White, and Y. Cohen
(1998), Spatial patterns in the moose-forest-soil ecosystem on Isle Royale,
Michigan, USA, Ecological Applications, 8 (2), 411–424.

Perry, J. N. (1998), Measures of spatial pattern for counts, Ecology, 79 (3),
1008–1017.

Perry, J. N., A. M. Liebhold, M. S. Rosenberg, J. Dungan, M. Miriti, A. Jako-
mulska, and S. Citron-Pousty (2002), Illustrations and guidelines for select-
ing statistical methods for quantifying spatial pattern in ecological data,
Ecography, 25, 578–600.

Peterson, E. E., and N. S. Urquhart (2006), Predicting water quality impaired
stream segments using landscape-scale data and a regional geostatistical
model: A case study in Maryland, Environmental Monitoring and Assess-
ment, 121, 615–638, doi:10.1007/s10661-005-9163-8.

Peterson, E. E., D. M. Theobald, and J. M. Ver Hoef (2007), Geostatistical
modelling on stream networks: Developing valid covariance matrices based
on hydrologic distance and stream flow, Freshwater Biology, 52, 267–279,
doi:10.1111/j.1365-2427.2006.01686.x.

Pickett, S. T. A., and M. L. Cadenasso (1995), Landscape ecology: Spatial
heterogeneity in ecological systems, Science, 269, 331–334.

Poole, G. C. (2002), Fluvial landscape ecology: Addressing uniqueness within
the river discontinuum, Freshwater Biology, 47, 641–660.

Pooler, P. S., and D. R. Smith (2005), Optimal sampling design for estimat-
ing spatial distribution and abundance of a freshwater mussel population,
Journal of the North American Benthological Society, 24 (3), 525–537, doi:
10.1139/F06-145.

Prasad, N. G. N., and J. N. K. Rao (1990), The estimation of the mean
squared error of small-area estimators, Journal of the American Statistical
Association, 85 (409), 163–171.

R Development Core Team (2005), R: A language and environment for statis-
tical computing, R Foundation for Statistical Computing, Vienna, Austria,
ISBN 3-900051-07-0.



120

Rathbun, S. L. (1998), Spatial modelling in irregularly shaped regions: Krig-
ing estuaries, Environmetrics, 9, 109–129.

Rice, S., and M. Church (1998), Grain size along two gravel-bed rivers: sta-
tistical variation, spatial pattern and sedimentary links, Earth surface pro-
cesses and landforms, 23, 345–363.

Rice, S. P., R. I. Ferguson, and T. B. Hoey (2006), Tributary control
of physical heterogeneity and biological diversity at river confluences,
Canadian Journal of Fisheries and Aquatic Sciences, 63, 2553–2566, doi:
10.1139/F06-145.

Rossi, J.-P. (2003), Clusters in earthworm spatial distribution, Pedobiologia,
47, 490–496.

Rossi, R. E., D. J. Mulla, A. G. Journel, and E. H. Franz (1992), Geosta-
tistical tools for modeling and interpreting ecological spatial dependence,
Ecological Monographs, 62 (2), 277–314.

Russo, D., and E. Bresler (1981), Soil hydraulic properties as stochastic
processes: I. an analysis of field spatial varability, Soil Science Society
of America Journal, 45, 682–687.

Russo, D., and W. A. Jury (1987), A theoretical study of the estimation of
the correlation scale in spatially variable fields 1: Stationary fields, Water
Resources Research, 23 (7), 1257–1268.

Salas, J. D. (1993), Handbook of Hydrology, chap. Analysis and Modeling of
Hydrologic Time Series, pp. 19.1–19.72, McGraw-Hill, New York, NY.

Satterthwaite, P. M. (2009), Field and simulation studies of spatial patterns
in forest understories: responses to overstory structure and influences on
understory plant diversity, Master’s thesis, Oregon State Univeristy.

Schabenberger, O., and C. A. Gotway (2005), Statistical Methods for Spa-
tial Data Analysis, Texts in Statistical Science Series, Chapman and
Hall/CRC, Boca Raton, FL.

Schlesinger, W. H., J. A. Raikes, A. E. Hartley, and A. F. Cross (1996), On
the spatial pattern of soil nutrients in desert ecosystems, Ecology, 77 (2),
364–374.

Schmuki, C., C. Vorburger, C. Runciman, and S. Maceachern (2006), When
log-dwellers meet loggers: impacts of forest fragmentation on two en-
demic log-dwelling beetles in southeastern Australia, Molecular Ecology,
15, 1481–1492, doi:10.1111/j.1365-294X.2006.02849.x.



121

Scott, D. F., and W. Lesch (1997), Streamflow responses to afforestation
with Eucalyptus grandis and Pinus patula and to felling in the Mokobulaan
experimental catchments, South Africa, Journal Of Hydrology, 199 (3–4),
360–377.

Solie, J. B., W. R. Raun, and M. L. Stone (1999), Submeter spatial variability
of selected soil and bermudagrass production variables, Soil Science Society
of America Journal, 63, 1724–1733.

Stevens Jr., D., and A. R. Olsen (2004), Spatially balanced sampling of nat-
ural resources, Journal of the American Statistical Association, 99 (465),
262–278.

Swartzman, G., R. Brodeur, J. Napp, G. Hunt, D. Demer, and R. He-
witt (1999a), Spatial proximity of age-0 walleye pollock (Theragra
chalcogramma) to zooplankton near the Pribilof Islands, Bering Sea,
Alaska, ICES Journal of Marine Science, 56, 545–560.

Swartzman, G., R. Brodeur, J. Napp, D. Walsh, R. Hewitt, D. Demer,
G. Hunt, and E. Logerwell (1999b), Relating spatial distributions of acous-
tically determined patches of fish and plankton: data viewing, image anal-
ysis, and spatial proximity, Canadian Journal of Fisheries and Aquatic
Sciences, 56 (Suppl. 1), 188–198.

Tobler, W. R. (1970), A computer movie simulating urban growth in the
Detroit region, Economic Geography, 46, 234–240.

Torgersen, C. E., and D. A. Close (2004), Influence of habitat heterogeneity
on the distribution of larval pacific lamprey (Lampetra tridentata) at two
spatial scales, Freshwater Biology, 49 (5), 614–630.

Torgersen, C. E., D. M. Price, L. H. W, and B. A. McIntosh (1999), Mul-
tiscale thermal refugia and stream habitat associations of chinook salmon
in northeastern Oregon, Ecological Applications, 9 (1), 301–319.

Venditti, J. G., and M. A. Church (2005), Bed form initiation from a flat sand
bed, Journal of Geophysical Research, 110, doi:10.1029/2004JF000149.

Ver Hoef, J. M., and E. E. Peterson (2007), Spatial modeling of stream
network data, in Proceedings of the 92nd Annual Meeting of the Ecological
Society of America, San Jose, CA.

Ver Hoef, J. M., E. Peterson, and D. Theobald (2006), Spatial statistical
models that use flow and stream distance, Environmental and Ecological
Statistics, 13, 449–464, doi:10.1007/s10651-006-0022-8.



122

Vijapurkar, U. P., and C. A. Gotway (2001), Assessment of forecasts and
forecast uncertainty using generalized linear regression models for time se-
ries count data, Journal of Statistical Computation and Simulation, 68 (4),
321–349.

Ward, J. V. (1989), The four-dimensional nature of lotic ecosystems, Journal
of the North American Benthological Society, 8 (1), 2–8.

Ward, J. V., G. Bretschko, M. Brunke, D. Danielopol, J. Gibert, T. Gonser,
and A. G. Hildrew (1998), The boundaries of river systems: the metazoan
perspective, Freshwater Biology, 40, 531–569.

Watson, F., R. Vertessy, T. McMahon, B. Rhodes, and I. Watson (2001),
Improved methods to assess water yield changes from paired-catchment
studies: Application to the Maroondah catchments, Forest Ecology and
Management, 143 (1–3), 189–204.

Wiens, J. A. (2002), Riverine landscapes: Taking landscape ecology into the
water, Freshwater Biology, 47, 501–515.

Wright, K. K., and J. L. Li (2002), From continua to patches: examining
stream community structure over large environmental gradients, Canadian
Journal of Fisheries and Aquatic Sciences, 59, 1404–1417.

Zégre, N., A. E. Skaugset, N. A. Som, J. J. McDonnell, and L. M. Ganio
(2008), In lieu of the paired catchment approach: Hydrologic model change
detection at the catchment scale, submitted to Water Resources Research,
In Revision.

Zhu, Z., and M. L. Stein (2005), Spatial sampling design for parameter es-
timation of the covariance function, Journal of Statisitcal Planning and
Inference, 134, 583–603, doi:10.1016/j.jspi.2004.04.017.

Zhu, Z., and H. Zhang (2006), Spatial sampling design under the infill asymp-
totic framework, Environmetrics, 17 (4), 323–337, doi:10.1002/env.772.

Zimmerman, D. L. (2006), Optimal network design for spatial prediction, co-
variance parameter estimation, and empirical prediction, Environmetrics,
17, 635–652, doi:10.1002/env.769.

Zimmerman, D. L., and N. A. C. Cressie (1989), Improved estimation of the
kriging variance, Technical Report 161, The University of Iowa, Iowa City,
Iowa.

Zimmerman, D. L., and N. A. C. Cressie (1992), Mean squared prediction
error in the spatial linear model with estimated covariance parameters,
Annals of the Institute of Statistical Mathematics, 44 (1), 27–43.



123

Zuur, A. F., E. N. Ieno, N. J. Walker, A. A. Saveliev, and G. M. Smith
(2009), Mixed Effects Models and Extensions in Ecology with R, Statistics
for Biology and Health, 3 ed., Springer, New York, NY.


