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Randomized trials are the gold standard for the clinical assessment of a new treat-

ment compared to a placebo or standard of care. Often in clinical trials, patients are

accrued sequentially rather than all at once. Thus, the data from such a trial becomes

available sequentially to the researcher. Monitoring and testing the accrued data through-

out a trial and making decisions based on on such tests that could terminate the trial early

is called sequential testing. Designing and analyzing such sequential trials has garnered

much attention in the statistical literature over the last 50+ years. The added flexibility

and benefits from such a trial do not come free-of-cost. Careful considerations in the de-

sign, careful monitoring of the data throughout, and careful analysis of the data at the

conclusion are necessary to preserve the integrity of such a sequential clinical trial. This

thesis will be mostly concerned with a special form of sequential testing called a group

sequential procedure. Such procedures have the benefit of a reduction in expected sample

size while not being burdened by continual monitoring of the data after every observation.

Special topics of group sequential procedures include the concepts of overrun, secondary

endpoints and adaptive group sequential procedures.

Overrun is the accrual of data after the decision to terminate the trial has been

reached. We investigate and compare popular approaches to the incorporation of such

data into the final analysis. Through a simulation study, it is found that a random weight-

ing of the p-values from the data up to the termination of the trial and the overrun data



based the sample sizes for such data under the Sample Mean Ordering of the outcome

space leads to the shortest average confidence intervals while maintaining the nominal

coverage probability.

Most clinical trials are designed and evaluated using a primary endpoint for the

treatment effect. Some trials have secondary endpoints to assess either safety or addi-

tional clinical benefits beyond the primary outcome. We consider the design and analysis

of group sequential trials when both a primary and secondary endpoint are of interest. Our

investigations are done in the setting of a gatekeeping procedure. We are able to unify

and generalize global proofs to certain propositions made by other researchers when we

consider testing both a primary and secondary endpoint. We further investigate secondary

inference in the form of confidence interval construction through an extensive simulation

study. We find that the approach of Whitehead et al. (2000) outperforms existing methods

for the settings considered.

Adaptive clinical trials seek to modify some aspect of the trial after an interim look

at the data in order to improve the odds of a successful trial by the end. We compare

some popular choices of adaptive Phase II two-stage designs and introduce a new design

while evaluating operating characteristics (Type I error, Type II error and expected sam-

ple sizes). Majority of the literature focuses on minimizing the expected sample size under

the null hypothesis only. Our new Quasi-Symmetric n2-design seeks to substantially re-

duce the expected sample size under the parameter values close to the design alternative

while minimally increasing expected sample size under the design null. We evaluate and

compare such a design to existing methods.
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AN EVALUATION OF DESIGN AND INFERENCE IN SPECIAL

TOPICS OF GROUP SEQUENTIAL PROCEDURES

1. INTRODUCTION

Introduction

Randomized trials evaluating an experimental treatment against a control (either

placebo or standard of care) are the gold standard in the clinical community. This evalu-

ation is usually spread across four phases. Phase I clinical trials investigate proper doses

and assess the safety of a new treatment in a small number of human subjects. Phase II

are used as an initial screening process for potentially effective treatments once a proper

dose has been found in Phase I. Phase II trials are often another small-scale study that

also continues to assess safety concerns. Both Phase I and Phase II trials usually do not

include any placebo or standard of care against which to test the new treatment. Phase

III clinical trials are large-scale randomized studies to compare the effectiveness of the

treatment to a placebo or standard of care. Such trials could be aiming for superiority

of the treatment so that it is clinically more beneficial than a current regimen, or such

trials could be aiming for non-inferiority of the new treatment as compared to a standard

regimen. That is to say, the new treatment does no worse than the standard of care. This

can be useful to assess if the new treatment has reduced cost to the manufacturer and/or

consumer or if the new treatment has a reduction in side effects (improves safety). Once

the new treatment has been approved for widespread use, Phase IV trials continue to

monitor the treatment for any late-term effects.

There are many types of designs at all stages of the clinical process that seek to

evaluate the goals of each phase. Fixed-sample designs gather data on all subjects entered

into the trial and analyze that data at the conclusion of the data collection period. The

final sample size for such a design is known in advance and calculated to satisfy certain
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operating characteristics desired in the trial (Type I and Type II error at a specific sci-

entifically meaningful effect size). However, it is common in clinical trials for subjects to

enter sequentially and so their data becomes available sequentially to the researchers. Se-

quential testing procedures were developed to evaluate data as it came available while still

maintaining the integrity of the trial. If there is substantial evidence of a treatment effect

(or lack thereof) after only a small amount of subjects, there may not be a need to keep

collecting data from more subjects and the trial can be stopped early for either efficacy

or inferiority. There are numerous benefits to such a procedure including: (1) reduction

in the cost of the trial, both concerning monetary costs and time costs, and (2) ethical

considerations to not withhold known effective treatments from subjects or continue to

distribute known ineffective treatments.

The advantages of sequential procedures are applicable to all phases of the clinical

process. The current research will mostly be considering applications to Phase II and

Phase III trials, but the ideas presented could be extended to other phases.

However, the advantages of such sequential procedures do not come without a cost

in the form of more complex statistical designs and analyses. Such complications are dis-

cussed in Chapter 1, both in the fully sequential and group sequential setting. Common

design and analysis strategies are introduced for group sequential clinical trials.

Due to the sequential nature of patient accrual, occasionally by the time a look at the

data reveals substantial evidence to terminate the trial several more subjects have already

been enrolled into the study. There is a concern regarding how best to incorporate such

subjects into the statistical analysis. Chapter 2 investigates such concerns by comparing

several proposed approaches to incorporating such extra information.

In most clinical trials there is one primary endpoint of interest - usually some mea-

sure of the effectiveness of a new treatment. However, some trials also have a secondary

question they want answered and will use a so-called secondary endpoint to investigate

such a question. This can be anything from safety concerns to additional clinical benefits

beyond the primary endpoint. Chapter 3 discusses the design of such a trial, which pre-

serves the integrity of the trial across the two endpoints. Chapter 4 evaluates estimation

procedures for these secondary endpoints under a specific sequential testing procedure.
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Chapter 5 explores different optimal adaptive two-stage sequential designs for Phase

II clinical trials. Adaptive clinical trials seek to modify some aspect of the trial (most com-

monly final sample size) after an interim look at the data in order to improve the odds of a

successful trial by the end. A few popular choices of two-stage designs are compared with

two newly proposed designs in terms of the operating characteristics of the trial (Type I

error, power function and expected sample sizes).

Finally, this dissertation concludes with a discussion of this research in Chapter

6 along with a consideration of the Bayesian paradigm and extensions to more complex

examples.
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1.1. Background on Fixed-Sample and Sequential Procedures

In a fixed-sample clinical trial with 1:1 (equal) randomization, 2n patients are ran-

domly assigned to either the experimental treatment arm or to a control arm (placebo or

standard of care) ending with n patients on each arm. The number of patients on each arm

can be calculated to achieve a desired power 1 − β for a specific null hypothesis H0 = θ0

and alternative hypothesis HA = θ1 under a Type I error rate set at α, for instance by

using the standard power formula assuming normally distributed responses:

n =
σ2(z1−α

2
+ z1−β)2

(θA − θ0)2

In the above formula, σ2 is the pooled population variance for the two arms (assuming

equal or unequal variances) which is commonly estimated using a pilot study or treatment-

specific knowledge. The formal analysis including the calculation of a p-value, point es-

timate and confidence interval for the treatment effect is done after all 2n subjects have

been evaluated.

In most clinical trials patient accrual is sequential and thus patient information be-

comes available sequentially. For safety concerns and trial efficiency, evaluation of the trial

data as it is accumulated is of great concern. Thus, clinicians need a procedure to test the

treatment effect as the data is obtained throughout the trial. However, this type of need

for sequential analysis is not limited to the clinical setting and can be seen in aspects of

quality control and survival analysis.

A sequential test of a statistical hypothesis is defined in Wald (1945) as any sta-

tistical test procedure which gives a specific rule, at any stage of the experiment (at the

n-th trial for each integer value of n), for making one of the following three decisions: (1)

to accept the hypothesis being tested (null hypothesis), (2) to reject the null hypothesis,

(3) to continue the experiment by making an additional observation. One of the earliest

discussions of sequential testing comes from Dodge and Romig (1929) in the manufactur-

ing setting. It is considered under the realm of sequential testing since the sample size

is not predetermined and can depend on accumulated data. They developed an optimal
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single sampling method for binomial responses consisting of one interim inspection of the

data. Using this design, manufacturers could test a small sample of a product lot for

defections and decide whether to accept the lot (little to no defections) or inspect and test

the remainder of the lot (defections in the small sample exceeded an allowable number).

The optimality criterion here is to minimize the expected sample size.

Following the seminal paper on the most efficient tests of statistical hypotheses by

Neyman and Pearson (1933), there was a need to apply and investigate the most powerful

likelihood ratio test to the sequential testing procedure. Abraham Wald, considered by

many as the founder of sequential analysis, began work on this problem in 1943 follow-

ing a meeting of the Statistical Research Group at Columbia University. By April 1943

he had developed the sequential analogue to the Neyman-Pearson theory which he called

the sequential probability ratio test. The test is as follows: Let pim(x1, ..., xm) denote

the probability density function (or probability mass function in the discrete case) in the

m-dimensional sample space calculated under the hypothesis Hi (i = 0, A). Then the

sequential probability ratio test accepts HA if

pAm
p0m

≥ A. (1.1)

It accepts H0 if

pAm
p0m

≤ B. (1.2)

It takes an additional observation if

B <
pAm
p0m

< A. (1.3)

The number of observations n required by the test is the smallest m such that either 1.1 or

1.2 holds. The constants A and B are chosen so that 0 < B < A and the test has a desired

Type I error rate of α with a power of 1 − β under the alternative HA. Wald notes that

for all practical considerations, one can let A = 1−β
α and B = β

1−α and still have at most

a level α test with power at least 1 − β. The only possible disadvantage may be a slight

increase in the expected sample size. One very surprising fact from using A and B defined
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above is that the sequential probability ratio test requires no distributional assumptions

since A and B depend only on α and β and the ratio pAm
p0m

can be calculated from the data;

that is, the critical values A and B of this test do not depend on knowing the distribution

of pAm
p0m

or any test statistic contained therein. Only the distributional form of the test

statistic is needed when one wishes to calculate expected sample sizes. Wald (1945) goes

on to discuss the probability of accepting H0 (or HA) when some third hypothesis H is

true, the calculation of expected sample sizes for the sequential probability ratio test and

testing composite alternatives.

Wald also discusses the notion of a truncated sequential probability ratio test in which

a maximal sample size N is implemented and the test must make a decision if N is reached.

He shows that for his practical sequential probability ratio test for a normal mean (using

A and B above), the Type I and Type II errors can be greatly inflated if the truncation

N is at or near the fixed sample size of the Neyman-Pearson test for the same design

parameters α and β. Lastly, he shows that the sequential probability ratio test is nearly

optimal under both H0 and HA; that is, it achieves the smallest expected sample size of

any sequential test when H0 or HA is true. He did not succeed in directly proving this

optimality due to the possibility of excess over a particular boundary A or B which is due

to the finite inspection times of the testing procedure.

Concurrently, yet separately to Wald, Walter Bartky was also working on sequen-

tial analysis and published Bartky (1943) which detailed sequential testing for Binomial

responses with constant probability of success. Bartky’s procedure considered multiple

sampling with infinite lots as opposed to Dodge and Romig (1929) who had previously

worked with finite lots and a single sampling step. Wald (1945) was not published earlier

due to its usefulness in war efforts, specifically quality control inspections of weapons ship-

ments. Nevertheless, Wald (1945) and his later book Wald (1947) laid the groundwork for

the next 30 years of sequential analysis.

By the 1950’s, modifications to the sequential probability ratio test began to arise.

For testing simple hypotheses, Weiss (1953) introduces a generalized sequential probability

ratio test (GSPRT) where the boundaries A and B are not necessarily fixed for all stages

of testing as in Wald (1945) but rather at the ith stage predetermined constants Ai and
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Bi are used such that Ai ≥ Bi for all i. Under this procedure, truncation is possible if

at the N th-stage AN = BN . Under some mild assumptions, Weiss shows (1) a general-

ized sequential probability ratio test exists with error probabilities α* and β* that are no

greater than the corresponding error probabilities α and β of any other given test and

(2) the cumulative distribution function of the number of observations required to come

to a decision using the GSPRT is never below the corresponding distribution function for

another given test, under either H0 or HA. That is, when either H0 or HA is true, the

probability of stopping the procedure at or before the sample size n under the GSPRT

is never smaller than the corresponding probability under any other given test. Weiss

concludes that, under some assumptions, the generalized sequential probability ratio test

is uniformly better than any other given test. It is interesting to note here that the last

concluding remark of Weiss (1953) says that similar results will hold in cases where the

observations are taken in groups of predetermined size rather than one at a time. To the

author’s knowledge, this is the earliest mention of group sequential procedures which will

be discussed in the next section. Kiefer and Weiss (1957) go on to demonstrate some inter-

esting properties of generalized sequential probability ratio tests; most notable is that in

terms of the two types of error (α and β) and the distributions of the sample size required

to reach a decision, many GSPRT’s are inadmissible.

Armitage (1957) presented another modification of the sequential probability ratio

test but, perhaps more importantly, sought to bring sequential testing to the foreground

of clinical trials. He recognized that clinicians that are responsible for patients in a clin-

ical trial will frequently deem it unethical to continue a trial if they are convinced that

a treatment effect has appeared since this would imply that the clinician would withhold

an effective treatment from certain patients for the remainder of the trial. On the same

note, clinicians may also monitor certain side effects throughout a trial and deem it un-

ethical to continue a patient on a treatment that has shown adverse side effects. In the

clinical setting, Armitage recognized that infinite sequential sampling schemes were not of

particular use since the uncertainty of the termination point of a trial may outweigh any

possible long-term benefit of reduction in (average) sample size. Armitage (1957) rein-

troduced the concept of truncation (now being called a closed sequential procedure) along
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with a restriction of straight-line boundaries. His restricted sequential procedures consist

of sampling until one of the following three boundaries is reached:

(a) the upper boundary U : yn = a+ bn (a > 0)

(b) the lower boundary L : yn = −a− bn (a > 0)

(c) the middle boundary M : n = N

where yn =
n∑
i=1

xi, a and b are fixed constants and under the assumption that the xi come

from a normal distribution with unknown mean θ and known variance σ2. After intro-

ducing this family of restricted sequential procedures, Armitage begins the discussion of

significance testing and estimation following a sequential procedure recognizing that an

ordering of the outcome space is needed for both. That is, there is a need to determine

which values of the test statistic (based on the sufficient statistic) are as extreme or more

extreme than that observed, where extreme may be taken to mean stronger evidence in

favor of a particular alternative hypothesis. To the author’s knowledge, Armitage intro-

duced the notions of two particular orderings of the outcome space that will be discussed in

more detail later: Analysis Time Ordering and Sample Mean Ordering. Armitage (1958)

would later examine sequential estimation, specifically unbiased estimation and confidence

interval construction, under three particular closed sequential procedures for a binomial

parameter.

Following Armitage’s restricted sequential procedure, Anderson (1960) presented

another modification to the sequential probability ratio test. It was widely known that

Wald’s original test minimized the expected sample sizes at both the null (θ0) and alterna-

tive (θA) hypothesized values of the parameter of interest. However, a disadvantage to this

test is that the expected sample size is relatively large for values of the parameter between

θ0 and θA. Anderson’s modification was to build a minimax sequential probability ratio

test that would minimize the maximal expected sample size, namely under θ = 1
2(θ0 +θA).

Thus, this procedure would optimize the test under the “worst case scenario”. Lai (1973)

also examines this minimax procedure as an optimal stopping problem and finds that the

optimal stopping rule consists of a pair of convergent decreasing nonlinear curves that are

symmetric about the sample time axis.
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Armitage returned, with others, to discuss the effects of repeated tests of signifi-

cance on sequential data both when the null hypothesis is true (Armitage et al. (1969))

and when the null hypothesis is not true (McPherson and Armitage (1971)). The former

paper examines the inflation of Type I error when repeated tests are done at the same

fixed level α. However, I believe the greatest achievement from Armitage et al. (1969)

was the closed, albeit recursive, form of the probability density function of the cumulative

sum Sn =
n∑
i=1

xi when Xi ∼ N (0, 1) under sequential sampling. Although Armitage et al.

(1969) presented the density for the simplified standard normal case only, one can gener-

alize to any normal distribution as seen in Emerson and Fleming (1990) discussing group

sequential procedures. For some choice of continuation and stopping sets, the density of

the test statistic (M , S), where M is the stopping time of the trial and S is the cumulative

sum statistic at the stopping time of the trial, can be written as:

p(k, s; θ) =


f(k, s; θ), (s /∈ Ck)

0, otherwise

with f(k, s; θ) defined recursively by

f(1, s; θ) =
1

n
1
2
1

φ

s− n1θ

n
1
2
1 σ

 ,

f(k, s; θ) =

∫
Ck−1

1

n
1
2
k σ

φ

s− u− nkθ
n

1
2
k σ

 f(k − 1, u; θ)du (k = 2, ...,m)

where φ(x) = (2π)−
1
2 exp(−x2/2) is the standard normal density. By integrating this den-

sity numerically, this now allows one to find a sequential procedure that does not inflate

the Type I error. McPherson and Armitage (1971) discusses the calculation of power for

sequential procedures that lead to two-sided sequential plans that control both the Type

I and Type II errors. They found that these designs had parabolic, or near-parabolic,

boundaries as compared to the straight-line boundaries of the former restricted sequential

procedures.

Large sample tests of statistical hypotheses were developed in part by Wald (1943)
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and Rao (1948). Sequential analogues to these large sample tests can be found in Cox

(1963) and Whitehead (1978), respectively.

Analysis following a sequential procedure has been developed by many in the liter-

ature: Armitage (1958) discussed estimation of a binomial parameter; Siegmund (1978)

examined estimation of a normal mean both when the variance is known and unknown;

Whitehead and Jones (1979) discussed significance levels and confidence interval con-

struction for two cases of straight-line stopping boundaries; Jones and Whitehead (1979)

developed the sequential forms of both the log rank and Wilcoxin tests for survival data;

Woodroofe (1992) presented approximately normal pivots for confidence interval construc-

tion that can be generalized to many sequential procedures. These are left for the reader

as discussion on estimation following a group sequential procedure is presented in the fol-

lowing sections.

1.2. Background for Group Sequential Procedures

As discussed, the benefits of a sequential procedure include the sometimes dramatic

reduction of the expected sample size along with, in the clinical setting, the potential to

push effective treatments and stop ineffective or dangerous treatments quicker. However,

in practice continuous assessment of the treatment effect after each observation, or pair

of observations, can be quite difficult. Thus group sequential procedures (GSP) were de-

veloped to split the trial up into a number of interim analyses. This alleviates the burden

of continual evaluation while still having the advantages of the sequential testing method.

Even though the maximal sample size needed for a group sequential procedure to achieve

the same power for a specified alternative θ1 is slightly higher than the fixed-sample clin-

ical trial, for well-designed group sequential trials the average sample number (ASN) is

typically less than the fixed sample one-stage design due to the possibility of stopping

the trial early. Thus, on average, a group sequential procedure will use fewer subjects as

compared to a fixed sample design and slightly more subjects than the fully sequential

design depending on the number of interim analyses used.
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Group sequential procedures have been designed and evaluated by Pocock (1977),

O’Brien and Fleming (1979), Whitehead and Stratton (1983) and Lan and DeMets (1983),

among others. A unification of group sequential designs was introduced by Kittelson and

Emerson (1999) and their notation will be used when describing these designs.

Let us consider a trial in which the effectiveness of a new treatment is measured by

independent observations Yi, i = 1, ..., NJ where it is assumed that Yi ∼ N (θ, σ2) with σ2

known and suppose the goal is to test the null hypothesis H0: θ = θ0. It can be seen that

Ni measures the statistical information available at the jth analysis about θ. At the jth

analysis time, the size of the treatment effect is often measured by one of three statistics:

(1) the sample mean Ȳj =
Nj∑
i=1

Yi/Nj ; (2) the normalized statistic Zj = (Nj)
1/2(Ȳj − θ0)/σ;

or (3) the partial sum statistic Tj =
Nj∑
i=1

Yi. The proportion of the sample accrued by the

jth analysis is denoted by Πj = Nj/NJ .

Most group sequential designs are defined on a standardized scale; that is, Xi =

(Yi − θ0)/((NJ)1/2σ) with Xi ∼ N (δ/NJ , 1/NJ) where δ = (NJ)1/2(θ− θ0)/σ is the stan-

dardized treatment effect. Standardized versions of the above test statistics are defined

as: (1) the standardized sample mean X̄j = (Nj)
1/2(Ȳj − θ0)/σ; (2) the standardized

normalized statistic Z∗j = X̄j(Πj)
1/2; and (3) the standardized partial sum statistic Sj =

X̄jΠj . It can be shown that in the absence of sequential testing, each of these standardized

statistics follow a respective normal distribution. It can be seen that X̄j ∼ N (δ, 1/Πj),

Sj ∼ N (δΠj ,Πj) and Z∗j ∼ N (δ(Πj)
1/2, 1). However, under sequential testing these statis-

tics do not follow normal distributions. A sufficient statistic for δ is the stopping time M

and any of the three statistics S = SM , X̄ = X̄M , or Z∗ = Z∗M . The sampling distribution

of the sufficient statistic can be computed using numerical integration using the recursive

form of Armitage et al. (1969) described earlier.

Group sequential designs are defined by the specification of the conditions under

which the trial will stop (or equivalently, conditions under which the trial will continue

to accrue the next group of subjects) at each of the J analyses planned. These can be

expressed in terms of stopping sets Sj and continuation sets Cj for one of the statistics

X̄j , Z
∗
j or Sj . If at analysis time j the statistic is contained in its respective stopping set
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Sj , then the trial is terminated and p-values, point estimates and confidence intervals are

generated. If the statistic is contained in its respective continuation region Cj at analysis

time j, then the trial continues to analysis time j + 1 and the new cumulative statistic is

evaluated against its stopping boundaries at that analysis time. This procedure continues

until a stopping region is met or a maximal sample size NJ is reached and a decision is

either made for efficacy or inferiority of the treatment. The final continuation set CJ = ∅

is empty so that the trial stops at the Jth analysis.

These designs are found so that the operating characteristics of type I error rate

α and power 1 − β for a specified alternative θA are controlled. To do this, an iterative

search is performed on the standardized scale in which continuation sets are guessed, the

operating characteristics are evaluated, and new continuation sets are tried until a design

is found that conforms to a specified type I error and power. It is important to note that

the process here does not generate a unique design since there are infinitely many sets of

stopping rules that satisfy the operating characteristics. Furthermore, is can be shown

that there is no uniformly most powerful group sequential test. However, the number of

interim analyses J , a maximal sample size NJ and a sequential design family are usually

pre-specified in order to produce a unique design.

Each of the aforementioned group sequential clinical trial designs can be described

in terms of their stopping and continuation sets according to either Z∗j or Sj . Let us

begin with a look at the two-sided tests of Pocock (1977), O’Brien and Fleming (1979)

and Wang and Tsiatis (1987). Pocock designs use the normalized statistic Z∗j and have

stopping boundaries set such that the trial terminates the first time Z∗j /∈ (−G,G). The

Pocock design sets constant stopping boundaries on the Z-scale across all analysis times.

This typically leads to the final analysis time having a critical value greater than the fixed-

sample counterpart (e.g., Zcrit = 1.96 for a two-sided α = 0.05 test). O’Brien and Fleming

noticed that there is difficulty in explaining to clinicians why the boundary at the final

analysis time does not correspond to the fixed-sample design of the same sample size. This

is known to be an artifact of the non-normal sampling distribution of Z∗j and the sequential

testing procedure. However, O’Brien and Fleming wanted a group sequential design that

had a nearly identical decision rule at the Jth analysis to that of the fixed-sample design.
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Thus, they developed stopping boundaries of the form Z∗j /∈ (−G/(Πj)
1/2, G/(Πj)

1/2).

Basically, this design scales the stopping boundaries by the proportion of information at

each analysis time and results in a final boundary that is approximately Z∗J = (-1.96,

1.96) supposing that a level α = 0.05 two-sided test is desired. Wang and Tsiatis uni-

fied and extended the Pocock and O’Brien-Fleming boundaries by investigating designs

that terminate a trial when the partial sum statistic Sj /∈ (−GΠ∆
j , GΠ∆

j ). By varying

the user-specified tuning parameter ∆ one can move between the Pocock (∆ = 0.5) and

the O’Brien-Fleming (∆ = 0) designs. For all the designs described above, the boundary

parameter G is chosen specifically for the design in question.

Extending the early designs to one-sided hypotheses, the triangular design of White-

head and Stratton terminates the trial when Sj /∈ (δ1Πj −G−GΠj , G+GΠj) where G is

found to provide a level-α one-sided test with power 1− α for a standardized alternative

δ = δA. Extensions to such designs have been developed by Emerson and Fleming (1989)

and Pampallona and Tsiatis (1994), among others.

Lan and DeMets (1983) provide a different approach to the design of a group se-

quential trial that does not need pre-specification of the number of analyses as compared

to the approaches above. Their procedure requires only the specification of an increasing

error-spending function α∗(t) that characterizes the rate at which α is spent over the du-

ration of the trial (0 ≤ t ≤ 1). In their paper, Lan and DeMets use three examples of

error-spending functions:

(1) α∗1(t) =


0, t = 0

2− 2Φ(zα
2
), 0 < t ≤ 1

(2) α∗2(t) = α log{1 + (e− 1)t}

(3) α∗3(t) = αt

Figure 1.1 shows these examples graphically over the time duration of the trial. The

first function α∗1(t) corresponds closely with O’Brien-Fleming boundaries in this particular

setting as it is difficult to terminate the trial early. For example, the error spent at the

half-way mark through the trial (t = 0.5) can be computed as α∗1(0.5) = 0.006. The second
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function α∗2(t) corresponds closely with Pocock boundaries where α∗2(0.5) = 0.031 while the

third function α∗3(t) corresponds to uniform error spending over time with α∗3(0.5) = 0.025.

While these error-spending functions provide some flexibility to the trial design one must

be careful on the choice of such a function as it can lead to inefficient designs.

So far, some popular options for the design of a group sequential clinical trial have

been discussed. Each of these designs attempts to control specific operating characteristics

of the trial to within specified values (i.e, α and β). Just as challenges arose in the design

of such trials, the inference following such a design poses many statistical challenges.

1.3. Complications of Group Sequential Procedures

Group sequential procedures do not come without some cost which comes in the

form of more complicated evaluation of operating characteristics and statistical inference

procedures. Typical statistical inference includes a p-value, a point estimate and a confi-

dence interval for the parameter(s) of interest. The operating characteristics include the

FWER, power calculations and efficiency (sample size, average sample size, etc). Due to

the popularity of group sequential procedures in recent clinical trials, there has been a

great deal of research to evaluate such procedures in terms of statistical inference over the

last 40 years.

For all examples in this research except those in Chapter 5, let us consider data

X1, , Xn that are identically and independently distributed N (θ, 1) random variables.

Through asymptotic theory, this simple case is widely applicable to a variety of situations

as discussed by Whitehead (1997). For simplicity, the goal will be to test the null hypoth-

esis H0: θ = 0 versus the one-sided alternative HA: θ > 0. Extensions to less than or

two-sided alternatives are easily accommodated.

1.3.1 Bias of the Maximum Likelihood Estimator

An estimate of the population mean θ in a fixed-sample design is usually given

by the sample mean X̄, which is the maximum likelihood estimator θ̂MLE in the normal

setting considered here. This estimator is unbiased and either exactly normally distributed
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when the data are normal or, under some regularity conditions, asymptotically normally

distributed when the data are non-normal. In a group sequential procedure, the maximum

likelihood estimate of the population mean is still the sample mean achieved at the stopping

time; however this estimator is not unbiased for θ and does not follow a normal distribution.

The bias results from the early stopping times which favor more extreme sample means

and the complicated stopping boundary.

Let us consider using a group sequential procedure with 3 equally spaced analysis

times at n = 100, 200 and 300 using an OBrien-Fleming stopping boundary for a one-

sided level α = 0.025 test of the null hypothesis H0: θ = 0 versus an alternative hypothesis

HA: θ > 0. Figure 1.2 shows the kernel density plots of 10,000 simulated stopping means

for each of 4 true population mean values (θ = 0, 0.077, 0.153 and 0.230). These values

correspond to the design null (θ = 0), the design alternative (θ = 0.230) and values of 1
3θ

and 2
3θ to glimpse how θ can affect the distribution of θ̂MLE .

Figure 1.2 shows that the sampling density of θ̂MLE is non-normal and both the shape

and location of the density depends on the true mean value θ.

Since the true mean is known, the bias associated with each mean value can be calculated:

Bias(θ̂1) = E(θ̂1)− 0.000 = −0.0163

Bias(θ̂2) = E(θ̂2)− 0.077 = −0.0078

Bias(θ̂3) = E(θ̂3)− 0.153 = 0.0082

Bias(θ̂4) = E(θ̂4)− 0.230 = 0.0162

The biases here turn out to be quite large and not within simulation error of being con-

sidered zero (unbiased). Simulations were done here for ease, but note that software could

obtain these densities and expected values by numerical integration

Several improved approaches to estimation have been considered after a group se-

quential procedure. Let us define the bivariate statistic (M,S) where M is the stopping

time of the trial (or equivalently the sample size at the termination of the trial) and S is

the sample mean (or a function thereof) at the termination of the trial. Whitehead (1986a)

examined the use of a bias-adjusted mean estimator θ̂BAM which is the value θ∗ satisfying
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Figure 1.2: Densities of ˆθMLE for various values of θ under a particular GSP
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E[S; θ∗] = s; that is, the value of θ∗ for which the observed statistic s is the expected

value under that θ∗. The maximum likelihood estimator and the bias-adjusted mean do

not require a choice of the ordering of the outcome space. Another approach is to consider

a median-unbiased estimator θ̂MUE which is the value of θ∗ satisfying P{(M,S) > (m, s);

θ∗} = 0.5; that is, the value of θ∗ for which the observed statistic would be the median of

the sampling distribution under that θ∗. It is important to note that the median-unbiased

estimator does depend on the ordering of the outcome space chosen since in its calculation

one must decide when an outcome is more extreme than another.

1.3.2 Orderings of the Outcome Space

In order to generate p-values and confidence intervals (and certain estimators as

above) for any statistical procedure, one must determine an appropriate ordering of the

outcome space. That is, which observed test statistics are more extreme than others

given a particular hypothesized value of the true treatment effect θ must be determined.

In the one-stage fixed sample test of a population mean, the sufficient statistic is the

sample mean and an obvious ordering of the outcome space is to say sample 1 is more

extreme than sample 2 if X̄(1) > X̄(2) when testing against a greater alternative. In

sequential testing of a population mean, the sufficient statistic is the bivariate statistic

(M,S). Because both M and S are random quantities, ordering the outcome space for

a group sequential procedure becomes more challenging. Several orderings include an

Analysis Time Ordering (Madsen and Fairbanks (1983); Tsiatis et al. (1984)), a Sample

Mean Ordering AKA Maximum Likelihood Ordering (Emerson and Fleming (1990)) and

a Likelihood Ratio Ordering (Chang and O’Brien (1986); Chang (1989)).

The Analysis Time Ordering (ATO) proposes that an outcome has more evidence

for the alternative if it stops earlier in favor of the alternative, and has less evidence if it

stops earlier in favor of the null. Thus,

(M(1), S(1)) � (M(2), S(2)) if



M(1) = M(2), S(1) > S(2)

M(1) > M(2), S(2) < aM(2)

M(1) < M(2), S(1) > dM(1)
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Figure 1.3: The figure above is an example of the stopping boundaries for a particular
group sequential design with two interim analyses. Arrows indicate increasing values of
the observed stopping statistic based on the analysis time ordering. If two outcomes have
the same analysis time, then the ordering is based only on the observed sample mean.
Otherwise, as indicated by the arrows, if an outcome stops earlier and rejects the null,
then it is more consistent with the alternative than an outcome that stops later in the
study.

where aM(2)
is the lower boundary at the stopping time M(2) for outcome 2, and dM(1)

is

the upper boundary at the stopping time M(1) for the outcome 1. So if outcome 2 stops

earlier and fails to reject the null, it is less consistent with the alternative than outcome

1. If outcome 1 stops earlier and rejects the null, it is more consistent with the alternative

hypothesis than outcome 2. Figure 1.3 illustrates this ordering.

The Sample Mean Ordering (SMO) proposes that outcomes are ordered solely

based upon their sample mean and not taking into account the stopping time of the trial.

Thus here,

(M(1), S(1)) � (M(2), S(2)) if S(1) > S(2) (1.4)

The Likelihood Ratio Ordering is more involved and harder to implement in the

simulations presented in this research; however, for completeness, it will be discussed.

Chang and O’Brien (1986) ordered the outcome space by defining the extremeness of
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the test statistic from a hypothesized value θ0 in terms of the likelihood ratio statistic

comparing the MLE to the null hypothesis. Using the form of the sampling density of

(M,S) derived by Armitage et al. (1969) and following Emerson and Fleming (1990), this

ordering for θ = θ0 can be expressed as:

(M(1), S(1)) ≺ (M(2), S(2)) if

M(1)∑
i=1

ni

 1
2

(θ̂(1)−θ0) <

M(2)∑
i=1

ni

 1
2

(θ̂(2)−θ0) (1.5)

It is important to note that for all practical designs considered the Analysis Time

Ordering and the Sample Mean Ordering both give rise to true convex confidence intervals

that will be in agreement with the hypothesis test decision. However, there are instances

where the Likelihood Ratio Ordering will not produce true intervals and can have disagree-

ment with the test decision. For all of the examples and simulations in this research, the

Analysis Time Ordering, the Sample Mean Ordering or both (for comparative purposes)

will be used.

1.3.3 Generating P-Values and Confidence Intervals

To generate a p-value for the hypothesis test, one must integrate the sampling density

of (M,S) to find the probability of being as extreme, or more extreme, than the observed

sufficient statistic (m, s) following a particular ordering of the outcome space. Since the

sampling density is non-normal, numerical integration techniques are often used.

The Sample Mean Ordering produces the one-sided p-value function:

p(θ) = P{SM ≥ sm; θ} (1.6)

where sm is the observed sample mean at the observed stopping time m.

The Analysis Time Ordering produces the one-sided p-value function:

p(θ) = P{ (M < m,SM ≥ dM ) or (M = m,SM ≥ sM ); θ} (1.7)

After an ordering of the outcome space has been chosen and p-values have been

computed for an observed outcome, two-sided (1 − α) × 100% confidence intervals for θ
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may be obtained by first computing for each potential value θ = θ∗ two-sided p-values

p(2)(θ∗). Then a (1 − α) × 100% confidence interval is all values of θ∗ for which the

corresponding p-value p(2)(θ∗) is greater than the level α:

CI1−α =
{
θ∗ : p(2)(θ∗) > α

}

The different orderings each produce the p-values p(2)(θ∗) by starting with one-sided p-

values p(1)(θ∗) and then letting p(2)(θ∗) = 2 min(p(1)(θ∗), 1 − p(1)(θ∗)). These p-values

and confidence regions can either be estimated through simulation or calculated exactly

through the use of statistical software like the RCTdesign package in R or the SEQDESIGN

procedure in SAS. All examples and simulations for this research were performed in R using

RCTdesign under permission from its creator (http://www.rctdesign.org/).

1.3.4 Comparing Confidence Intervals from Different Orderings

Since there is a choice in the ordering of the outcome space for the analysis of group

sequential trials, it might be of some use to compare two of the popular orderings: Analysis

Time Ordering and Sample Mean Ordering. To compare such orderings, let us evaluate

confidence interval construction for specific optimality criteria; namely, average confidence

interval length and confidence coverage. Ideally, a procedure that produces the shortest

confidence intervals on average while maintaining the nominal coverage probability of

(1− α)× 100% is preferred.

For a simple evaluation let us re-visited the example of a group sequential procedure

with 3 equally spaced analysis times at n = 100, 200 and 300 using an OBrien-Fleming

stopping boundary for a one-sided level α = 0.025 test of the null hypothesis H0: θ = 0.

Data sets were generated according to three different population mean values θ = 0, 0.1

and -0.1. The choices of θ are completely arbitrary and serve only to illustrate a small

range of possible values. Figures 1.4, 1.5 and 1.6 display confidence intervals generated

from this design.

For all three settings considered, both the Sample Mean Ordering and Analysis

Time Ordering produced confidence intervals that achieve the nominal coverage probability

of 0.95, within simulation error. However, across all settings considered, the Sample



22

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

−0.5 0.0 0.5 1.0

5
10

15
20

First 20 CI's For Two Ordering Methods When θ= 0

θ

S
im

ul
at

io
n 

N
um

be
r

●

Analysis Time Ordering
Sample Mean Ordering
True Mean θ= 0

ATO Avg Length = 0.2894
SMO Avg Length = 0.285
ATO Coverage = 0.9476
SMO Coverage = 0.9476
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an OBF design when θ = 0.
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Figure 1.5: The first 20 confidence intervals from a set of 100 intervals generated under
an OBF design when θ = 0.1.
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Figure 1.6: The first 20 confidence intervals from a set of 100 intervals generated under
an OBF design when θ = −0.1.
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Mean Ordering produced significantly narrower confidence interval lengths compared to

the Analysis Time Ordering.

Figure 1.7 shows the densities of confidence interval lengths for each θ setting

considered. Each density plot for the Analysis Time Ordering has more mass for larger

lengths compared to the Sample Mean Ordering which in turn produces a larger average

length. These findings are consistent with those of Emerson and Fleming (1990).

1.4. Conclusion

The concepts of group sequential procedures along with descriptions of the extra

considerations that are involved in both the design of such procedures and the inference

following it have been introduced. Stopping rules consistent with the sequential design are

needed to protect the integrity of the trial with respect to both Type I and Type II errors.

The usual fixed-sample inferential procedures that do not take into account the stopping

rule will produce biased point estimates and confidence intervals that do not cover the

parameter of interest at the nominal level.

The following chapters will cover special topics that arise in group sequential clinical

trials including inference after overrun, design and inference when considering secondary

endpoints and finally design considerations for adaptive two-stage clinical trials.
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Figure 1.7: Density plots of 100 confidence interval lengths generated under an OBF design
when θ = 0, 0.1 and -0.1.
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2. OVERRUN IN GROUP SEQUENTIAL CLINICAL TRIALS

2.1. Introduction

Because of the sequential nature of patient accrual, a common occurrence in group

sequential clinical trials is the collection of additional data after a decision to stop has

been reached. The data acquired after a stopping boundary has been passed is called

overrun. Early work on sequential analysis with delayed observations can be found in

Anderson (1964) for normal data with known variance and Choi and Clark (1970) for

binomial data with different distributions of overrun. The challenge presented by overrun

data is how best to incorporate the information from the extra data obtained after the

stopping boundary was reached in performing inference for the parameter of interest. Care

must be taken to appropriately protect type I error and confidence levels when including

this extra data. Several recent methods have been examined for dealing with overrun:

Whitehead (1992), Hall and Liu (2002) and Hall and Ding (2001) all consider approaches

for constructing estimates, confidence intervals, and (equivalently) performing hypothesis

tests incorporating the information in overrun data. Specifically, Sooriyarachchi et al.

(2003) compared four methods of handling overrun only for one ordering of the outcome

space and focused their comparisons on evaluating the type I error rate and power, along

with potential reversal of significance after incorporating the overrun. This chapter will

expand on Sooriyarachchi et al. (2003) and compare four different methods of handling

overrun, each using two different orderings of the outcome space (Sample Mean Ordering

and Analysis Time Ordering), and explore the performance of these methods for two

different group sequential designs (Pocock and O’Brien-Fleming).

It is important to note that Hall and Ding first discussed their p-value combination

methods as a technical report in 2001 but didn’t have it fully published and accessible

until Hall et al. (2008). From here on, this method will be referenced as Hall et al. (2008)

even though they precede Sooriyarachchi et al. (2003).
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2.2. Methods of Handling Overrun

2.2.1 Ignoring the Overrun

The simplest way to deal with overrun is to ignore it. We compute p-values and

generate confidence intervals ignoring any overrun, using only the data obtained up to the

observed stopping time m. The p-values are computed using equations 1.6 and 1.7 from

1.3.3 for the Sample Mean Ordering and the Analysis Time Ordering.

2.2.2 Combining p-values using random weights

This method is taken from Hall et al. (2008). Consider p1(θ) and p2(θ) to be two

monotonically increasing p-value functions generated from two different data sets with the

same parameter θ. Let w1 and w2 be possibly random weights such that w2
1 + w2

2 = 1.

Then a combined p-value function

p(θ) = 1− Φ[w1g{p1(θ)}+ w2g{p2(θ)}]

is also a monotonically increasing p-value function. In the above equation, Φ denotes the

standard normal cumulative distribution function and g(x) = Φ−1(1−x) for all x ∈ (0, 1).

In using random weights to combine the p-values from the data up to the stopping time

and the overrun data, the weights are set as a function of the sample size at the stopping

time and the overrun sample size. Let NM be the sample size at the observed stopping

time M and NO be the overrun sample size. Then since the stopping sample size and

the overrun sample size are both random quantities, the random weights (wR1 , wR2 ) are

obtained as

wR1 =

√
NM

NM +NO
and wR2 =

√
NO

NM +NO
.

2.2.3 Combining p-values using fixed weights

The method of combining p-values using fixed weights, also discussed by Hall et al.

(2008), follows the same concepts as with random weights except that the weights are

not based upon observed sample sizes and overrun but rather are fixed prior to observing

the data. The fixed values of the weights may be chosen based on expected sample sizes
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and overrun under the null hypothesis, or selected using some other deterministic rule.

In practice, these fixed weights are determined in the planning stages of the trial and

while inaccuracy in determining these expectations does not lead to invalid analyses it

can lead to an inefficient analysis due to ineffective pre-determined weighting. Using the

same notation as above, the fixed weights could, for instance, be determined under the

null hypothesis according to:

wF1 =

√
E(NM ;0)

E(NM ;0) + E(NO;0)
and wF2 =

√
E(NO;0)

E(NM ;0) + E(NO;0)

where E(NM ;0) and E(NO;0) denote the expected sample size and overrun amount, respec-

tively, under the null hypothesis. In our explorations, we consider a variety of different

relative weightings between the stopping data and the overrun data.

2.2.4 Deletion Method

The deletion method, coined in Sooriyarachchi et al. (2003) and introduced by

Whitehead (1992), essentially removes the interim analysis in which the trial was stopped,

utilizing all boundaries from before that analysis, and treats the final data including over-

run as the final stopping analysis. Thus the deletion method analyzes the trial as if the

only interim analyses to have taken place were those for times 1, 2, . . . ,m− 1,m+ 1. The

p-value function for the Sample Mean Ordering essentially stays the same since the stop-

ping time does not factor in, while the p-value function for the Analysis Time Ordering

then becomes:

p(θ) = P{(M < m, SM ≥ dM ) or (M = m+1, SM ≥ sM ); θ}

2.2.5 Comparison of Methods

In all the methods above, if the trial reaches the final analysis stage, then no overrun

is generated and the p-values and confidence intervals are computed according to the

method of ignoring overrun.

Sooriyarachchi et al. (2003) compared these methods only for the Analysis Time

Ordering of the outcome space and focused their comparisons on evaluating the type I error
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Analysis Time Sample Size Lower a Boundary Upper d Boundary

Time 1 100 -0.1149 0.3447
Time 2 200 0.0574 0.1723
Time 3 300 0.1149 0.1149

Table 2.1: Boundaries for the O’Brien-Fleming design described.

rate and power from incorporating overrun, along with potential reversal of significance

after incorporating the overrun. This chapter will focus on comparing these methods using

both Sample Mean Ordering and Analysis Time Ordering by evaluating average confidence

interval lengths and confidence interval coverage. Ideally, we would like a method that

achieves the nominal confidence coverage while producing the shortest average confidence

interval length. These optimality criteria of obtained coverage and average interval length

will be used to determine which method of incorporating overrun data into inference is

most effective.

2.3. Simulations

To compare the methods described, 10,000 data sets were simulated. Two com-

mon group sequential designs were used: O’Brien-Fleming and Pocock boundary designs.

While most clinical trials usually use a variant of one of these two designs with boundary

points somewhere between both designs, they were chosen here to highlight a broad range

of possible boundary points. Each was a single arm (simple hypothesis) design consisting

of 3 analysis times with corresponding sample sizes of 100, 200 and 300 observations. The

stopping boundary functions are well documented for both designs.

The O’Brien-Fleming stopping boundaries on the sample mean scale for a level

α=0.025 test of H0 : θ = 0 versus a one-sided alternative HA : θ > 0 with analysis

times/sample sizes as described above are listed in Table 2.1. This design has power 0.975

to detect a difference θA = 0.230.
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Analysis Time Sample Size Lower a Boundary Upper d Boundary

Time 1 100 0.0349 0.2253
Time 2 200 0.1008 0.1593
Time 3 300 0.1301 0.1301

Table 2.2: Boundaries for the Pocock design described.

The Pocock stopping boundaries for a level α=0.025 test of H0 : θ = 0 versus a

one-sided alternative HA : θ > 0 with analysis times/sample sizes as described above are

listed in Table 2.2. This design has power 0.975 to detect a difference θA = 0.260.

Each simulated data set consisted of 300 observations generated from a N (θ, 1)

distribution for θ = 0, θ = 0.0575, or θ = 0.115. These choices of θ are chosen based on

the design null θ0, the design alternative θA for the O’Brien-Fleming design along with

1
4θA and 1

2θA. The sample mean for the first 100, first 200, and all 300 observations were

calculated and the stopping time and observed sample mean were recorded, according to

the boundaries above. Three different types of overrun were simulated:

1. Fixed overrun of 50 observations

2. Random number from a Poisson(20m) distribution, where m is the analysis time at

which a stopping boundary is reached

3. Random number between 1 and 99, each with equal probability

These types of overrun were chosen to get a broad range of possible overrun distributions.

They are by no means exhaustive but give a good indication of possible results from

overrun types that may be observed.

Two-sided p-values, average confidence interval length and confidence coverage were

computed for each of the four methods of handling the overrun discussed earlier for both

the Sample Mean Ordering and Analysis Time Ordering of the outcome space. Since

the sampling distribution of the stopping mean is non-normal due to the stopping rule,

numerical integration was used in calculating the two-sided p-values. Furthermore, we
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investigated these methods using three different combinations of fixed weights (note that

in each case, w2
1 + w2

2 = 1):

(1) w1 =

√
1

4
and w2 =

√
3

4

(2) w1 = w2 =

√
1

2

(3) w1 =

√
3

4
and w2 =

√
1

4

2.4. Results

In examining Table 2.3 (O’Brien-Fleming average confidence interval lengths), we

first note that the random weights method using Sample Mean Ordering produced the

shortest (narrowest) confidence intervals on average among all methods of handling over-

run and for all simulation settings presented. Across all distributions of overrun consid-

ered, both the Sample Mean Ordering and Analysis Time Ordering using fixed weights of

w1 =
√

1/4 and w2 =
√

3/4 produced the widest confidence intervals on average, even

wider than ignoring the overrun. This is not surprising, as this particular combination

of fixed weights dramatically down-weights the majority of the data allowing the overrun

data (which is a sample size less than 100) to dominate the analysis. Also worth noting is

that the Sample Mean Ordering produced narrower confidence intervals than the Analysis

Time Ordering for all methods except the deletion method.

Table 2.4 (O’Brien-Fleming confidence coverages, rounded) shows that most meth-

ods are around the nominal confidence coverage of 0.95. The confidence coverage for the

fixed and deletion methods tends to be a bit more conservative when the true mean is

larger than the null hypothesis (H0 : θ = 0).

In Table 2.5 (Pocock average confidence interval lengths), we see again that the

random weights method using sample mean ordering produced the shortest confidence

intervals on average across all methods of handling overrun and all variations of overrun

presented. In this design setting, we see that both sample mean ordering and analysis time

ordering using fixed weights of w1 =
√

1/4 and w2 =
√

3/4 produced the widest confi-
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dence intervals among random weights, fixed weights and deletion methods, though these

intervals were shorter than ignoring the overrun which is contrary to what happened in

the O’Brien-Fleming design. Again we see the Sample Mean Ordering producing narrower

confidence intervals than the analysis time ordering for all methods except the deletion

method.

Table 2.6 (Pocock confidence coverages, rounded) shows that all methods are around

the nominal confidence coverage of 0.95, with deviation most likely due to simulation error.

2.5. Discussion

All of the methods of handling overrun presented were also examined by Soori-

yarachchi et al. (2003) using both the triangular design of Whitehead (1997) and O’Brien-

Fleming boundaries and only the Analysis Time Ordering of the outcome space. They

mention in their conclusion that they do not investigate the Sample Mean Ordering (AKA

Maximum Likelihood Ordering) due to it not being “truncation adaptive” - one must know

the value of the information for all inspection times planned, even those possibly exceeding

the observed stopping time. They mention that even though these values have to be im-

puted in applications, the principle of the method is not satisfactory. In planning a group

sequential procedure one must lay out the analysis times in advance, and understanding

the sampling distribution of the test statistic under the null hypothesis at all analysis times

should be straight-forward through asymptotic theory if the group sizes are moderately

large. Therefore, we do not see a hindrance in using the Sample Mean Ordering most

applications of group sequential procedures.

Sooriyarachchi et al. focused their attention to type I error rate, power, and poten-

tial reversal of significance under these two designs using only deterministic amounts of

overrun. They had found that the deletion method led to conservative analyses that were

least likely to switch from a significant to a non-significant result. However, they also state

that the deletion method leads to the least accurate analyses. Based on its stability, they

advocated the use of the deletion method to handle overrun.

In our explorations, we also see that the deletion method tended to be a bit conserva-
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tive when using the O’Brien-Fleming design. However, when we examined that design and

the Pocock design using both orderings of the outcome space, we found that the method

of combining p-values using random weights and the Sample Mean Ordering generated

the narrowest confidence intervals while still achieving the nominal confidence coverage.

We see that this method provides both great accuracy and great precision, both absolute

and compared to other methods discussed. Based on these findings for all combinations of

θ and overrun type considered, we would suggest using the Sample Mean Ordering with

random weights approach when dealing with overrun in group sequential clinical trials.

Given the number of different settings within each design and observing that the Sample

Mean Ordering with random weights produced more precise and more accurate results

than other methods for every possible setting, there is no indication that these results

cannot be generalized to other types of designs and overrun distributions.
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3. MULTIPLE ENDPOINTS IN GROUP SEQUENTIAL CLINICAL
TRIALS

3.1. Introduction

Most methods for group sequential clinical trials focus on a single endpoint, which

is defined as a measured outcome used to determine the decision at the end of the trial.

However, in some trials there may be more than one outcome of interest; for instance, it

is often useful to consider both survival and disease recurrence outcomes or both efficacy

and safety of a new treatment. In these cases, it is common to designate one endpoint

as the primary endpoint and the other as a secondary endpoint. Most clinical trials are

designed and powered according to only the primary endpoint. According to an early

paper by O’Neill (1997), a primary endpoint is one that “provides evidence sufficient to

fully characterize clinically the effect of a treatment in a manner that would support a

regulatory claim for the treatment”. He goes on to describe a secondary endpoint as

one that “provides additional clinical characterization of treatment effect but that is not

sufficient to characterize fully the benefit or to support claim for a treatment effect”.

O’Neill also cautions against inference on the secondary endpoint parameter when the

primary endpoint has not been found significant. This laid the groundwork for Dmitrienko

and Tamhane (2007) and Dmitrienko and Tamhane (2009) to incorporate a hypothesis

testing procedure to these types of clinical settings. Currently, a common practice in

clinical trials with multiple endpoints as described above is to test the null hypotheses

in a hierarchical manner. That is, we test the secondary endpoint if and only if the

primary endpoint has been found to be statistically significant. Such a procedure is called

a gatekeeping procedure, since the primary endpoint acts as a gatekeeper to the testing of

the secondary endpoint.

One important issue with multiple testing of endpoints is controlling the family-wise

Type I error rate (FWER). In the non-sequential clinical setting, this issue was addressed

early by Pocock et al. (1987) who derived a global test statistic for a set of asymptotically

normal test statistics. Moyé (1998) introduced a prospective alpha allocation scheme
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(PAAS) to split the error across the endpoints in the trial. However, this scheme blurs

the line between primary and secondary endpoints and is cautioned against for specific

examples of secondary endpoints in an editorial by D’Agostino (2000). In the sequential

(and group sequential) setting, Liu et al. (2000) create a new secondary test statistic

adjusting for the bias of the primary MLE that increases power and controls the FWER.

This test statistic is set up under the rather strong assumption of bivariate normality

between the two endpoints. In a more recent paper, Tamhane et al. (2010) studied the

gatekeeping procedure for a two-stage group sequential design with bivariate normal data

under some correlation structure (ρ ≥ 0). Under this design, Tamhane et al. (2010) provide

several propositions which they do not globally prove but merely illustrate with figures.

In a concurrent, yet separate paper, Glimm et al. (2010) prove the upper bounds for the

type I error rate assuming multivariate normality of the test statistics. This chapter will

provide a global generalized and unified proof two of the propositions proposed in their

paper.

3.2. The Group Sequential Procedure as outlined in Tamhane et al.
(2010)

We consider a two-stage group sequential procedure with a primary and secondary

endpoint. Define n1 and n2 as the incremental sample sizes for the two stages in the design,

so the first stage analysis occurs after n1 subjects, and the second stage analysis occurs

after (n1 + n2) subjects. We will, without substantial loss of generality, assume that

the observations on the primary endpoint are identically and independently distributed

N (θX , 1) while those on the secondary endpoint are identically and independently dis-

tributed N (θY , 1) (the Central Limit Theorem will ensure robustness of inference based on

means, and if the variances are unknown or unequal to one, we can estimate variances and

scale our statistics appropriately). We consider testing the null hypotheses H1 : θX ≤ 0

and H2 : θY ≤ 0, regarding the primary and secondary endpoints respectively, against

one-sided upper alternatives using the gatekeeping procedure described above; that is, H2

is tested if and only if H1 is rejected at either the first stage or the second stage of the
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analysis. The FWER is then defined as

P{Reject at least one true H1, H2}

which we would like to control at level α.

For both endpoints, the test statistics used at the two stages are the standardized

cumulative sample means. These are denoted as (X1, X2) for the two stages of the primary

endpoint and as (Y1, Y2) for the two stages of the secondary endpoint, where

X1 ∼ N (
√
n1θX , 1) X2 ∼ N (

√
n1 + n2θX , 1)

Y1 ∼ N (
√
n1θY , 1) Y2 ∼ N (

√
n1 + n2θY , 1)

We will let (c1, c2) and (d1, d2) denote the corresponding stopping boundaries for the

primary and secondary endpoints for the two stages, respectively.

The following two-stage group sequential procedure was used by Tamhane et al.

(2010):

• Stage 1: Obtain n1 observations and compute (X1, Y1). If X1 ≤ c1, continue the

trial to Stage 2. If X1 > c1, reject H1 and test H2. If Y1 > d1, reject H2; otherwise

accept H2. In either case here, terminate the trial.

• Stage 2: Obtain an additional n2 observations and compute (X2, Y2) based on the

entire n1 +n2 observations for each endpoint. If X2 ≤ c2, accept H1 and stop testing;

otherwise, reject H1 and test H2. If Y2 > d2, reject H2; otherwise accept H2.

3.3. Controlling Family-wise Error Rate

3.3.1 Choice of the Primary Boundary

The problem in the group sequential procedure described in Section 2 is choosing

the boundaries (c1, c2) and (d1, d2) in order to control the FWER at a desired level α. To

achieve this, we need to consider three possible configurations for the two null hypotheses:

1. H1 is true and H2 is true
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2. H1 is true and H2 is false

3. H1 is false and H2 is true

It can be easily seen that for configurations (1) and (2) above we will control the FWER

if we have a level α boundary (c1, c2) for the primary endpoint. This follows from the fact

that in configuration (2) there is no type I error for rejecting H2, and in configuration (1),

because of the gatekeeping procedure, the event of rejecting H2 is a subset of the event of

rejecting H1 and the probability of rejecting H1 does not depend on the validity of H2.

Thus, in either configuration (1) or (2), to control FWER at level α we must choose the

boundaries (c1, c2) to satisfy:

PH1(X1 > c1) + PH1(X1 ≤ c1, X2 > c2) ≤ α.

There are many possibilities for (c1, c2) that will satisfy this constraint, including the

widely known Pocock or O’Brien-Fleming boundaries as well as the more general error

spending function approach proposed by Lan and DeMets (1983).

3.3.2 Choice of the Secondary Boundary

We will now consider the final configuration (3) in which H1 is false and H2 is true.

The FWER under this configuration can be expressed as:

FWER = PH2(X1 > c1, Y1 > d1) + PH2(X1 ≤ c1, X2 > c2, Y2 > d2)

Under the assumption that the two endpoints are jointly distributed as bivariate nor-

mal with correlation coefficient ρ ≥ 0, Tamhane et al. (2010) provided the following 3

propositions:

Proposition 2: If (c1, c2) = (d1, d2) is an α-level boundary for the primary and

secondary endpoints then for ρ = 1, maxθX FWER = α is attained at θX = 0 and for θX

= 0, maxρ FWER = α is attained at ρ = 1.

Proposition 3: If (c1, c2) and (d1, d2) are α-level boundaries for the primary and

secondary endpoints such that c1 > d1 and c2 < d2 (e.g., if (c1, c2) is the O’Brien-Fleming
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boundary and (d1, d2) is the Pocock boundary) then for ρ = 1, maxθX FWER = α is

attained when
√
n1θX = c1 − d1.

Proposition 4: If (c1, c2) and (d1, d2) are α-level boundaries for the primary and

secondary endpoints such that c1 < d1 and c2 > d2 (e.g., if (c1, c2) is the Pocock boundary

and (d1, d2) is the O’Brien-Fleming boundary) then for ρ = 1, maxθX FWER < α is

attained when
√
n1 + n2θX = c2−d2. Therefore the max FWER can be increased to α by

decreasing (d1, d2) to (d
′
1, d

′
2) so that (d

′
1, d

′
2) forms an α∗-level boundary with α∗ > α.

Tamhane et al. (2010) illustrate these propositions with figures and tables under

certain types of designs with certain specified correlation structures in bivariate normal

data, with the goal of controlling the FWER at level α = 0.05. The figures illustrate the

vailidity of these propositions and they state that they believe these propositions to extend

to global maxima for the FWER but were unable to prove them globally. Glimm et al.

(2010) was able to prove propositions 2 and 3 under the bivariate normality assumption

whereas we will prove this more generally.

3.4. Generalization and Unification of Propositions 2 and 3

Let X1 and X2 be the standardized means based on n1 and n1+n2 i.i.d. observations,

respectively, from a N (µX , 1) distribution, so

X1 =
√
n1X̄n1 ∼ N (

√
n1θX , 1)

X2 =
√
n1 + n2X̄n1+n2 ∼ N (

√
n1 + n2θX , 1)

Similarly, let Y1 and Y2 be the standardized means based on n1 and n1 + n2 i.i.d. obser-

vations, respectively, from a N (θY , 1) distribution, so

Y1 =
√
n1Ȳn1 ∼ N (

√
n1θY , 1)

Y2 =
√
n1 + n2Ȳn1+n2 ∼ N (

√
n1 + n2θY , 1)
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We will assume that the observations that contribute to X1 and Y1 have correlation ρ

(not necessarily ≥ 0), so that the correlation between X1 and Y1 is ρ and the correlation

between X2 and Y2 is also ρ. Note that we are not assuming bivariate normality as

Tamhane et al. (2010) and Glimm et al. (2010) did in their derivations; any dependence

structure is covered by the following results.

Unified Proposition: If (c1, c2) and (d1, d2) are α-level boundaries for the primary

and secondary endpoints such that c1 ≥ d1 and c2 ≤ d2, then maxρ,θX FWER = α is

attained when ρ = 1,
√
n1θX = c1 − d1.

The proof of this unified proposition can be found in Appendix A.

3.5. Consideration of Proposition 4

Proposition 4 in Tamhane et al. (2010) presents the case where the first boundary

for the secondary endpoint is larger than the first boundary for the primary endpoint,

(d1 > c1), and they note that if ρ = 1, the FWER is controlled at level α even for

boundaries (d1, d2) of level greater than α. This result is more difficult to extend to

arbitrary dependence structures, and more importantly is of limited value. Note that as

θX increases, the stopping probability at the first analysis will increase. Thus we increase

the power for the secondary endpoint by setting d1 lower rather than higher. It seems

reasonable to me to prefer high power for the secondary endpoint when we have high

power for the primary endpoint, and therefore there would be little use for secondary

boundaries with d1 > c1.

3.6. Summary

When a secondary endpoint is meant to assess an additional benefit beyond the

primary treatment effect we must consider an adjustment for the problem of multiple

testing of hypotheses. This section expands upon the results of Tamhane et al. (2010),

which concerned controlling the FWER in such a clinical trial where the primary endpoint

acts as a gatekeeper for the secondary endpoint. We have provided a proof for a unification
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of Propositions 2 and 3 with global results, under a more general dependence structure

than merely bivariate normal and for negative as well as positive correlations between the

two endpoints.

3.7. Adaptive Extensions of the Multiple Endpoints Problem

Adaptive clinical trials are those that can perform a mid-trial modification to some

design parameter based upon interim estimates of either the treatment effect or its stan-

dard error. Such adaptations can take the form of sample size re-estimation, change in

the treatment allocation ratio, or dropping of certain experimental arms from the trial.

Adaptive designs will be discussed in more detail in Chapter 5.

Statistical considerations for adaptive clinical trials with multiple endpoints were

discussed by Hung et al. (2007) while analysis strategies were discussed by Chang and

Chow (2007). An adaptive alpha allocation scheme was developed by Li and Mehrotra

(2008) and saw extensions from Li et al. (2013) and Xi and Tamhane (2015). In a two-part

paper, Tamhane et al. (2012a) and Tamhane et al. (2012b) discuss adapting the secondary

boundary based on an upper confidence limit for ρ estimated at the interim analysis along

with second stage sample size re-estimation. As we can see, adaptive extensions for mul-

tiple testing procedures in group sequential clinical trials is an on-going research problem.
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4. SECONDARY PARAMETER CONFIDENCE INTERVALS

4.1. Introduction

In the previous chapter we discussed the control of FWER when testing a primary

and secondary endpoint in group sequential clinical trials. Once such a trial has been

terminated, inference about both the primary and secondary endpoint parameters often

comes in the form of point estimates and confidence intervals. Inference about the primary

endpoint parameter has already been discussed in Chapter 1. However, inference about a

secondary endpoint parameter following a sequential procedure is a bit more challenging

since it is common to only test secondary endpoints if the primary endpoint is found sig-

nificant (gatekeeping procedure). Early work from Whitehead (1986b) and Emerson and

Banks (1992) introduced adjustments to the secondary analysis assuming two-dimensional

Normal processes and constant correlation over time. Yakir (1997) relaxed the correlation

assumptions of the previous papers. More recently, Gorfine (2001) investigated Yakir’s

approach when dealing with a secondary endpoint that is a subgroup of the primary end-

point. Secondary analyses concerned with testing for a treatment-by-strata interaction

were investigated by Yakir and Hall (2003) in the general survival setting and were ex-

tended to the Cox proportional hazard model in Hall and Yakir (2003). Another approach

to secondary tests and confidence intervals, introduced by Lai et al. (2009), proposed a

resampling method and a new ordering scheme which provides accurate inference in com-

plex clinical trials.

This chapter on secondary endpoint inference will focus on a different approach in-

troduced in the single endpoint setting by Woodroofe (1992). This approach does not

assume any ordering of the outcome space but rather uses approximately normal piv-

ots to construct confidence intervals. Let us consider Xi ∼ N (θ, ω2) where ω2 is known

and our interest is in testing and estimating θ. It has been shown that the θ̂MLE = X̄n

(where n is the terminal sample size) is biased in a group sequential procedure and that

its standardization Z
′
n(θ) = X̄n−θ

ω/√n
does not follow a standard normal distribution. How-

ever, Woodroofe introduced a second standardization step on Zn(θ). He let Z
′
n(θ) have
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a mean which is denoted by µ(θ) = Eθ{Z
′
n(θ)} and a standard deviation denoted by

σ(θ) = (Eθ[Z
′
n(θ)− µ(θ)]2)1/2. This leads to the quantity Z#

n (θ) = Z
′
n(θ)−µ
σ which does

have mean 0 and standard deviation 1. When treated as approximately normally dis-

tributed, it leads to a 100(1− α)% confidence interval for θ as follows:

X̄n −
ωµ√
n
∓ ωσ√

n
Φ−1

(
1− α

2

)
.

Woodroofe investigated estimation techniques for µ(θ) and σ(θ) by approximation theory

as well as the normality assumption for Z#
n (θ). He finds that the normality assumption

is quite accurate in the tails of the distribution, which is precisely what will be used in

his pivot. Todd et al. (1996) improve above the estimation of µ(θ) and σ(θ) and compare

Woodroofe’s approach among common group sequential designs. Using this pivotal ap-

proach, Whitehead et al. (2000) extended the theory to construct confidence intervals for

secondary parameters in sequential procedures.

Following the notation of Whitehead et al. (2000), we denote (Xi, Yi) as a bivariate

normal random variable with mean vector (θ, ν), correlation ρ and variances ω2 and τ2

respectively. They assume the values of ω2, τ2 and ρ are known but those of θ and ν

are unknown. If the variances are unknown or unequal to one, one can estimate the

variances and scale the statistics appropriately. Let Zn and Wn denote the sums of the

first n observations of Xi and Yi, respectively. Then Zn and Wn are normally distributed

with means nθ and nν, variances nω2 and nτ2, and correlation ρ. The sample size at

termination of the trial will be denoted by N . As shown in the previous chapter, any α-

level group sequential boundary on both the primary and secondary endpoints will control

the FWER at an overall level α.

Let us derive random variables that are independent of the sequential test as was

done in Whitehead et al. (2000). First we consider Ti = Yi - ηXi and Un = T1 + ... + Tn

for n = 1, 2, ..., where η = ρτ/ω. Then it can be seen that Ti ∼ N (ζ, ξ2), where ζ = ν -

ηθ and ξ2 = τ2(1− ρ2), and that Ti is uncorrelated with Xi.
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Cov(Ti, Xi) = Cov(Yi − ηXi, Xi)

= Cov(Yi, Xi)− ηCov(Xi, Xi)

= ρτω − ηω2

= 0

Also, Un ∼ N (nζ, nξ2) and it is uncorrelated with Zn through a similar derivation. Since

the terminal sample size N only depends upon the data through Zi, the distributions of

Un do not depend upon the sequential test. We can then define

U
′
N (ζ) =

UN −Nζ
Nξ

which follows a standard normal distribution and is independent of both N and ZN . Using

U
′
N (ζ) as a pivot for ζ, we can provide a (1− α)× 100% confidence interval for ζ as

uN
N
∓ ξ√

N
Φ−1

(
1− α

2

)
,

where Φ denotes the standard normal cumulative distribution function. However, for our

problem here, ζ is not the parameter of interest but we will use this relationship to derive

an approximate pivot for ν later.

Our primary parameter of interest is θ and we can use the methods of Woodroofe

(1992) and Todd et al. (1996) described above to construct a 100(1 − α)% confidence

interval for θ as:

X̄N −
ωµ√
N
∓ ωσ√

N
Φ−1

(
1− α

2

)
where we recall µ(θ) = Eθ{Z

′
N (θ)} and σ(θ) = (Eθ[Z

′
N (θ)− µ(θ)]2)1/2. These expecta-

tions can be computed using the approximations of Woodroofe, the recursive numerical

integration of Todd et al., or through direct simulation. For the latter two approaches,

these expectations must be computed under some value of θ. Whitehead et al. (2000)

computed these expectations using the maximum likelihood estimate X̄N . Later, we will
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investigate the effect of using different estimators of θ on secondary confidence interval

construction.

The goal now is to construct an approximate pivot for ν. We can define the quantity

W
′
N (ν) =

WN −Nν
τ
√
N

and we know that under a fixed-sample design this would follow a standard normal distri-

bution. We know that Wn = Un + ηZn and so we can derive that

W
′
N (ν) =

(UN + ηZN )−Nν
τ
√
N

=
(U
′
N (ζ)ξ

√
N +Nζ) + η(Z

′
N (θ)ω

√
N +Nθ)−Nν

τ
√
N

=
U
′
N (ζ)(τ

√
1− ρ2)

√
N + (ν − ηθ)N + η(Z

′
N (θ)ω

√
N + ηθN −Nν

τ
√
N

= U
′
N (ζ)

√
1− ρ2 + ρZ

′
N (θ)

It can easily be seen that the mean and standard deviation ofW
′
N are ρµ and

√
1 + (σ2 − 1)ρ2,

respectively. This leads to an approximate pivot for ν of the form

W#
N (ν) =

WN −Nν − τρµ
√
N

τ
√
N{1 + (σ2 − 1)ρ2}

.

Treating W#
N (ν) as standard normally distributed leads to an approximate 100(1 − α)%

confidence interval for ν as

ȲN −
τρµ√
N
∓
τ
√
{1 + (σ2 − 1)ρ2}√

N
Φ−1

(
1− α

2

)
.

Whitehead et al. (2000) go on to show that W#
N (ν) is surprisingly normal even under large

ρ and that the tail probabilities of Z#
N (θ) match the tail probabilities of a standard normal

distribution quite well.
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4.2. Investigation of Secondary Confidence Intervals

In their work, Whitehead et al. (2000) assume the correlation ρ is known and use

θ̂MLE for computing µ(θ) and σ(θ). In practice, ρ is usually unknown and must be esti-

mated from the data. We also know that θ̂MLE is a biased estimate for θ. The rest of this

chapter will investigate the effect of estimating ρ and using different estimators of θ on

secondary confidence interval construction. Namely, we will examine average confidence

interval lengths and confidence coverage. Optimally, we would want a procedure that

produces the narrowest confidence intervals while still maintaining the nominal confidence

coverage. Furthermore, we will compare the approach of Whitehead et al. (2000) to that

of the Sample Mean Ordering of Emerson and Fleming (1990), beginning with O’Brien-

Fleming boundaries.

In order to estimate µ(θ) and σ(θ) along the lines of Whitehead et al., We used 1,000

Monte Carlo simulations of the distribution of Z
′
n(θ) using the maximum likelihood esti-

mate (θ̂MLE), the bias-adjusted mean (θ̂BAM ) and the median-unbiased estimate (θ̂MUE).

Since θ̂MUE requires an ordering of the outcome space, we chose to use the Sample Mean

Ordering to be consistent with our comparative approach. For constructing the secondary

pivot, the sample correlation r at the termination of the trial was used to estimate ρ.

Recall that the Sample Mean Ordering of the outcome space orders outcomes solely

based upon their sample mean and does not take into account the stopping time M of the

trial. Thus,

(Ȳ(1),M(1)) � (Ȳ(2),M(2)) if Ȳ(1) > Ȳ(2).

To construct secondary confidence intervals using this ordering, we must understand the

distribution of the secondary sample mean under a grid of ν∗ values. Using an estimate for

θ and ρ, we can simulate this distribution over our grid. We can then compare our observed

secondary sample mean against the grid using the sample mean ordering to get one-sided p-

values for each ν∗. Two-sided p-values are computed by taking 2 min(p(1)(ν∗), 1−p(1)(ν∗)).

To get our confidence interval we simply find the minimum and maximum ν∗ such that
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the p-value is greater than α.

Let us consider data (Xi, Yi) coming from a bivariate normal distribution with mean

(θ, ν) and covariance Σ =

 1 ρ

ρ 1

. Let us consider a group sequential procedure on

each endpoint, as in 1.3.1 and 2.3., with 3 equally spaced analysis times at n = 100, 200,

and 300 observations utilizing O’Brien-Fleming boundaries. The goal is to test H1: θ =

0 and H2: ν = 0 against one-sided upper alternatives with α = 0.025 on each design.

Because the design null is 0 and the design alternative is 0.230 with power 0.975, we

decided to run simulations under all possible combinations of mean 0, 0.115 and 0.230 for

both the primary and the secondary endpoints. This will capture the design null, design

alternative, and the so-called “worst case scenario” of 1
2(θ0 + θA). We chose to simulate

under two possible ρ values of 0.2 and 0.8 so as to capture both low and high correlation

effects.

We will incorporate a modified gatekeeping procedure that will construct a secondary

confidence interval either when the primary endpoint has crossed a boundary or the trial

reaches its maximal sample size. That is, if we reach the final analysis stage J , we will

construct a secondary confidence interval regardless of the primary endpoint’s significance.

4.3. Results for O’Brien-Fleming Design

Tables 4.1, 4.2 and 4.3 display the average secondary confidence interval lengths

using a primary effect estimate of θ̂MLE , θ̂BAM and θ̂MUE , respectively. Paired t-tests

were used to compare the Whitehead and Sample Mean Ordering approaches within each

simulation setting examined. We will note that a borderline difference is one that has a

p-value ≈ 0.05 and a moderate difference is one that has a p-value ∈ (0.01, 0.05).

We see that when using θ̂MLE , the Whitehead approach had significantly smaller

confidence interval lengths as compared to the Sample Mean Ordering for all simulation

settings considered. Similar results can be seen when using θ̂MUE except under ρ = 0.2

when (θ, ν) = (0.000, 0.000) and (0.230, 0.000) as we see no significant difference and a

moderately significant difference, respectively. We see interesting findings when consid-
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ering θ̂BAM as there wasn’t much difference between the Whitehead and Sample Mean

Ordering approaches when ρ = 0.2 except under the “worst-case scenario” on the primary

endpoint (θ = 0.115). For all settings considered there was marked difference between the

two approaches as the correlation increased. In comparing the three θ estimators used,

there does not seem to be much difference between them under Whitehead’s approach but

we do see some differences arise under the Sample Mean Ordering approach that favors

using θ̂BAM .

Tables 4.4, 4.5 and 4.6 display the confidence coverages using a primary effect esti-

mate of θ̂MLE , θ̂BAM and θ̂MUE , respectively. We see that the Whitehead approach does

a good job at maintaining the nominal coverage probability of 0.95 across all simulation

settings considered. However, the Sample Mean Ordering approach tended to be conser-

vative when ρ = 0.8 and θ moved away from the null.

The biggest differences we see between the Whitehead and SMO approaches come

when ρ = 0.8 and θ = 0.115. In this setting, we see the biggest difference in average

interval lengths and confidence coverage between the two approaches. This does make

some sense due to the gatekeeping procedure and correlation structure imposed. When θ

= 0.230 or 0.000, the trial tends to stop earlier either for efficacy or inferiority. However,

when θ = 0.115, the trial tends to go on longer, which improves the Whitehead approach

since it essentially is conditioning on the stopping sample size in its approximations (larger

sample usually means more accurate and precise inference). The Sample Mean Ordering

does not do this conditioning and still considers the distribution of the secondary sample

mean across all analysis times planned when computing p-values.

4.4. Considering Pocock Boundaries

We have seen that O’Brien-Fleming boundaries are quite conservative for the early

stages of a group sequential clinical trial and thus early stopping must be achieved by

fairly extreme results. We found the biggest discrepancies between the Whitehead et al.

and Sample Mean Ordering approaches to secondary confidence interval construction came

under the “worst case scenario” of θ = 0.115 when ρ = 0.8. What would happen if we
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ρ = 0.2 ρ = 0.8
(θ, ν) Whitehead SMO Signif. Diff.? Whitehead SMO Signif. Diff.?

(0.000, 0.000) 0.2803 0.2833 Yes 0.2842 0.2981 Yes

(0.000, 0.115) 0.2830 0.2886 Yes 0.2840 0.3027 Yes

(0.000, 0.230) 0.2828 0.2891 Yes 0.2848 0.3036 Yes

(0.115, 0.000) 0.2513 0.2601 Yes 0.2597 0.2901 Yes

(0.115, 0.115) 0.2500 0.2599 Yes 0.2599 0.2922 Yes

(0.115, 0.230) 0.2510 0.2612 Yes 0.2597 0.2923 Yes

(0.230, 0.000) 0.2797 0.2852 Yes 0.2845 0.3016 Yes

(0.230, 0.115) 0.2797 0.2874 Yes 0.2836 0.3031 Yes

(0.230, 0.230) 0.2797 0.2873 Yes 0.2797 0.2873 Yes

Table 4.1: Average confidence interval length for 1000 simulations using O’Brien-Fleming
boundaries and θ̂MLE , sd ≈ 0.001.

ρ = 0.2 ρ = 0.8
(θ, ν) Whitehead SMO Signif. Diff.? Whitehead SMO Signif. Diff.?

(0.000, 0.000) 0.2804 0.2775 Yes 0.2856 0.2962 Yes

(0.000, 0.115) 0.2831 0.2828 No 0.2854 0.3007 Yes

(0.000, 0.230) 0.2829 0.2828 No 0.2861 0.3013 Yes

(0.115, 0.000) 0.2514 0.2570 Yes 0.2611 0.2890 Yes

(0.115, 0.115) 0.2501 0.2569 Yes 0.2610 0.2908 Yes

(0.115, 0.230) 0.2511 0.2583 Yes 0.2611 0.2911 Yes

(0.230, 0.000) 0.2798 0.2797 No 0.2863 0.2990 Yes

(0.230, 0.115) 0.2798 0.2812 No 0.2853 0.3010 Yes

(0.230, 0.230) 0.2798 0.2816 Borderline 0.2798 0.2816 Borderline

Table 4.2: Average confidence interval length for 1000 simulations using O’Brien-Fleming
boundaries and θ̂BAM , sd ≈ 0.001.

ρ = 0.2 ρ = 0.8
(θ, ν) Whitehead SMO Signif. Diff.? Whitehead SMO Signif. Diff.?

(0.000, 0.000) 0.2804 0.2803 Yes 0.2851 0.2971 Yes

(0.000, 0.115) 0.2831 0.2858 Yes 0.2849 0.3013 Yes

(0.000, 0.230) 0.2828 0.2857 Yes 0.2856 0.3020 Yes

(0.115, 0.000) 0.2514 0.2580 Yes 0.2608 0.2890 Yes

(0.115, 0.115) 0.2501 0.2581 Yes 0.2609 0.2911 Yes

(0.115, 0.230) 0.2511 0.2589 Yes 0.2608 0.2912 Yes

(0.230, 0.000) 0.2798 0.2821 Moderate 0.2856 0.3001 Yes

(0.230, 0.115) 0.2798 0.2836 Yes 0.2850 0.3016 Yes

(0.230, 0.230) 0.2798 0.2842 Yes 0.2798 0.2842 Yes

Table 4.3: Average confidence interval length for 1000 simulations using O’Brien-Fleming
boundaries and θ̂MUE , sd ≈ 0.001.
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ρ = 0.2 ρ = 0.8
(θ, ν) Whitehead SMO Whitehead SMO

(0.000, 0.000) 0.951 0.944 0.950 0.955

(0.000, 0.115) 0.946 0.943 0.942 0.954

(0.000, 0.230) 0.961 0.958 0.941 0.953

(0.115, 0.000) 0.941 0.942 0.944 0.971

(0.115, 0.115) 0.957 0.962 0.958 0.982

(0.115, 0.230) 0.935 0.943 0.944 0.971

(0.230, 0.000) 0.962 0.956 0.958 0.961

(0.230, 0.115) 0.962 0.964 0.961 0.972

(0.230, 0.230) 0.962 0.956 0.962 0.956

Table 4.4: Confidence coverage for 1000 simulations using O’Brien-Fleming boundaries
and θ̂MLE , sd ≈ 0.007.

ρ = 0.2 ρ = 0.8
(θ, ν) Whitehead SMO Whitehead SMO

(0.000, 0.000) 0.952 0.943 0.952 0.951

(0.000, 0.115) 0.947 0.936 0.941 0.955

(0.000, 0.230) 0.961 0.953 0.946 0.956

(0.115, 0.000) 0.942 0.940 0.942 0.970

(0.115, 0.115) 0.958 0.958 0.959 0.981

(0.115, 0.230) 0.936 0.940 0.942 0.970

(0.230, 0.000) 0.962 0.949 0.962 0.963

(0.230, 0.115) 0.962 0.958 0.962 0.973

(0.230, 0.230) 0.962 0.949 0.962 0.949

Table 4.5: Confidence coverage for 1000 simulations using O’Brien-Fleming boundaries
and θ̂BAM , sd ≈ 0.007.

ρ = 0.2 ρ = 0.8
(θ, ν) Whitehead SMO Whitehead SMO

(0.000, 0.000) 0.951 0.943 0.952 0.956

(0.000, 0.115) 0.946 0.942 0.940 0.953

(0.000, 0.230) 0.962 0.955 0.946 0.956

(0.115, 0.000) 0.941 0.940 0.944 0.972

(0.115, 0.115) 0.957 0.959 0.956 0.981

(0.115, 0.230) 0.936 0.942 0.944 0.972

(0.230, 0.000) 0.961 0.952 0.959 0.965

(0.230, 0.115) 0.961 0.960 0.960 0.973

(0.230, 0.230) 0.961 0.952 0.961 0.952

Table 4.6: Confidence coverage for 1000 simulations using O’Brien-Fleming boundaries
and θ̂MUE , sd ≈ 0.007.
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ρ = 0.2 ρ = 0.8
(θ, ν) Whitehead SMO Signif. Diff.? Whitehead SMO Signif. Diff.?

(0.115, 0.000) 0.2510 0.2599 Yes 0.2584 0.2898 Yes

(0.115, 0.115) 0.2510 0.2610 Yes 0.2584 0.2915 Yes

(0.115, 0.230) 0.2510 0.2612 Yes 0.2597 0.2923 Yes

Table 4.7: Average confidence interval length for 1000 simulations using Pocock boundaries
and θ̂MLE , sd ≈ 0.001.

ρ = 0.2 ρ = 0.8
(θ, ν) Whitehead SMO Signif. Diff.? Whitehead SMO Signif. Diff.?

(0.115, 0.000) 0.2511 0.2564 Yes 0.2598 0.2882 Yes

(0.115, 0.115) 0.2511 0.2580 Yes 0.2598 0.2901 Yes

(0.115, 0.230) 0.2511 0.2577 Yes 0.2614 0.2910 Yes

Table 4.8: Average confidence interval length for 1000 simulations using Pocock boundaries
and θ̂BAM , sd ≈ 0.001.

chose a group sequential design that was not as conservative in the early stages, such as

the Pocock boundary design? Would the two approaches be more comparable under this

setting? We again used the same simulation structure as in the previous sections now

under Pocock boundaries (see Section 2.3.) and chose to only examine the settings when

θ = 0.115.

Tables 4.7, 4.8 and 4.9 display the average secondary confidence interval lengths for

this Pocock design using a primary effect estimate of θ̂MLE , θ̂BAM and θ̂MUE , respectively.

We again see that the Whitehead approach produced significantly shorter intervals com-

pared to the Sample Mean Ordering approach across all settings considered, most notably

when ρ = 0.8.

Tables 4.10, 4.11 and 4.12 display the confidence coverages for this Pocock design

using a primary effect estimate of θ̂MLE , θ̂BAM and θ̂MUE , respectively. For ρ = 0.2, we

interestingly see that the Whitehead approach was on the low end of coverage for all θ

estimators while the Sample Mean Ordering did experience some undercoverage, specif-

ically when (θ, ν) = (0.115, 0.000) and (0.115, 0.230). For ρ = 0.8, the Whitehead et

al. approach hits the nominal coverage probability across all simulation settings while the

Sample Mean Ordering approach was quite conservative, reaching coverage probabilities

of 0.98 at times.
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ρ = 0.2 ρ = 0.8
(θ, ν) Whitehead SMO Signif. Diff.? Whitehead SMO Signif. Diff.?

(0.115, 0.000) 0.2512 0.2558 Yes 0.2601 0.2874 Yes

(0.115, 0.115) 0.2512 0.2566 Yes 0.2601 0.2894 Yes

(0.115, 0.230) 0.2512 0.2570 Yes 0.2616 0.2904 Yes

Table 4.9: Average confidence interval length for 1000 simulations using Pocock boundaries
and θ̂MUE , sd ≈ 0.001.

ρ = 0.2 ρ = 0.8
(θ, ν) Whitehead SMO Whitehead SMO

(0.115, 0.000) 0.935 0.933 0.950 0.980

(0.115, 0.115) 0.935 0.942 0.950 0.981

(0.115, 0.230) 0.935 0.933 0.944 0.971

Table 4.10: Confidence coverage for 1000 simulations using Pocock boundaries and θ̂MLE ,
sd ≈ 0.007.

ρ = 0.2 ρ = 0.8
(θ, ν) Whitehead SMO Whitehead SMO

(0.115, 0.000) 0.936 0.930 0.952 0.977

(0.115, 0.115) 0.936 0.943 0.952 0.979

(0.115, 0.230) 0.936 0.930 0.942 0.970

Table 4.11: Confidence coverage for 1000 simulations using Pocock boundaries and θ̂BAM ,
sd ≈ 0.007.

ρ = 0.2 ρ = 0.8
(θ, ν) Whitehead SMO Whitehead SMO

(0.115, 0.000) 0.936 0.928 0.951 0.976

(0.115, 0.115) 0.936 0.942 0.951 0.977

(0.115, 0.230) 0.936 0.928 0.945 0.970

Table 4.12: Confidence coverage for 1000 simulations using Pocock boundaries and θ̂MUE ,
sd ≈ 0.007.
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ρ = 0.8
(θ, ν) Whitehead SMO Signif. Diff.?

(0.115, 0.000) 0.2592 0.2014 Yes

(0.115, 0.115) 0.2604 0.2050 Yes

(0.115, 0.230) 0.2592 0.2028 Yes

Table 4.13: Average confidence interval length for 1000 simulations when Conditioning
Sample Mean Ordering on M=m using O’Brien-Fleming boundaries and θ̂MLE , sd ≈
0.001.

4.5. Conditioning the Secondary Distribution on the Observed Stopping
Time

In general practice, the Sample Mean Ordering of the outcome space utilizes infor-

mation about the distribution of the sample mean across all planned analysis times, even

those times not reached by the observed trial. We saw in the previous section that the

Whitehead et al. pivot approach to secondary confidence interval construction is essen-

tially conditioned on the observed analysis time (i.e., conditioned on observed N). What if

we similarly condition the distribution of the secondary sample mean under Sample Mean

Ordering? Will it result in “fairer” comparisons while still achieving nominal coverage?

To examine this, We used the same simulation structure as in the previous section un-

der O’Brien-Fleming boundaries, but we chose to only examine the settings when θ =

0.115 and ρ = 0.8 since this is where we saw the biggest discrepancies between the two

approaches.

In examining Tables 4.13, 4.14 and 4.15, we see that when the Sample Mean Order-

ing is conditioned on M=m (primary analysis stopping time) we get significantly shorter

confidence interval lengths as compared to the Whitehead approach. However, this condi-

tioning produces severe undercoverage for the confidence intervals as seen in Table 4.16,

4.17 and 4.18. This seems to be happening because we are conditioning the secondary

sample mean distribution on an important feature of the overall process.
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ρ = 0.8
(θ, ν) Whitehead SMO Signif. Diff.?

(0.115, 0.000) 0.2601 0.2057 Yes

(0.115, 0.115) 0.2615 0.2089 Yes

(0.115, 0.230) 0.2601 0.2069 Yes

Table 4.14: Average confidence interval length for 1000 simulations when Conditioning
Sample Mean Ordering on M=m using O’Brien-Fleming boundaries and θ̂BAM , sd ≈
0.001.

ρ = 0.8
(θ, ν) Whitehead SMO Signif. Diff.?

(0.115, 0.000) 0.2600 0.2041 Yes

(0.115, 0.115) 0.2614 0.2074 Yes

(0.115, 0.230) 0.2600 0.2053 Yes

Table 4.15: Average confidence interval length for 1000 simulations when Conditioning
Sample Mean Ordering on M=m using O’Brien-Fleming boundaries and θ̂MUE , sd ≈
0.001.

ρ = 0.8
(θ, ν) Whitehead SMO

(0.115, 0.000) 0.963 0.831

(0.115, 0.115) 0.951 0.827

(0.115, 0.230) 0.963 0.833

Table 4.16: Confidence coverage for 1000 simulations when Conditioning Sample Mean
Ordering on M=m using O’Brien-Fleming boundaries and θ̂MLE , sd ≈ 0.001.

ρ = 0.8
(θ, ν) Whitehead SMO

(0.115, 0.000) 0.963 0.854

(0.115, 0.115) 0.953 0.848

(0.115, 0.230) 0.963 0.856

Table 4.17: Confidence coverage for 1000 simulations when Conditioning Sample Mean
Ordering on M=m using O’Brien-Fleming boundaries and θ̂BAM , sd ≈ 0.001.

ρ = 0.8
(θ, ν) Whitehead SMO

(0.115, 0.000) 0.961 0.848

(0.115, 0.115) 0.952 0.840

(0.115, 0.230) 0.961 0.851

Table 4.18: Confidence coverage for 1000 simulations when Conditioning Sample Mean
Ordering on M=m using O’Brien-Fleming boundaries and θ̂MUE , sd ≈ 0.001.
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4.6. Summary

For all the simulation settings considered, it seems that the Whitehead et al. (2000)

pivotal approach to secondary parameter confidence interval construction was optimal

compared to the Sample Mean Ordering approach when estimating the correlation ρ. We

did not consider Analysis Time Ordering of the outcome space for this research since it was

shown in Section 1.3.4 that, for a single endpoint, the Sample Mean Ordering produced

shorter confidence interval lengths while achieving the nominal coverage probability. Fur-

ther research could investigate and confirm our belief that the Whitehead approach would

be optimal compared to the Analysis Time Ordering approach.

In Whitehead et al. (2000), they mention in their discussion that a crucial assump-

tion for their methodology is that information accumulates in a proportional fashion about

both the primary and secondary parameters. They note that many situations in survival

analysis contradict this requirement. We have not considered time-to-event data through-

out this research, but further investigation into the pivot approach for this type of data

would be interesting.
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5. ADAPTIVE TWO-STAGE CLINICAL TRIAL DESIGNS

5.1. Background on Adaptive Clinical Trials

In the last 20 years, adaptive clinical trials have garnered a large amount of attention

in the Biostatistics literature. Adaptive trials seek to modify a design characteristic mid-

trial - usually based on an interim effect estimate. Modification can come in many forms

including:

• Sample size adjustment

• Dropping of a treatment arm

• Changing from superiority to non-inferiority

• Adjusting the randomization scheme

Of these, modification of the sample size is the most popular and widely used adaptation.

In the planning stage of an experiment, researchers must decide on the primary endpoint

and design along with a sample size calculation to match the design operating character-

istics (Type and Type II error) based on various information. Often, this information is

limited in drug development trials which can lead to underpowered studies. When this

happens, a pre-planned mid-trial adaptation can potentially recover lost power.

One of the earliest papers on adaptive trial design comes from Bauer and Kohne

(1994) who discuss two-stage designs in terms of the first stage acting as an “internal

pilot study”. They propose a general method of combining p-values into a global test

statistics that can accommodate a number of design modifications, not merely sample size

adjustment. In the following years, several adaptive design papers emerged for sample size

modification: (1) Proschan and Hunsberger (1995) introduce the conditional error func-

tion, (2) Shen and Fisher (1999) propose a final test statistic that is a weighted average

of the sequentially collected data, and Lehmacher and Wassmer (1999) describe a design

that is based on the inverse normal method of combining the results of the separate stages.

Considering only two stages, these designs were unified and discussed in Posch and Bauer
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(1999) using the conditional error function of Proschan and Hunsberger (1995). We will

follow their notation in describing this approach.

Consider a one-sided test of the null hypothesis H0: θ = 0 versus the alternative

HA: θ > 0 for the mean of a normal distribution with known variance. We can define a

monotonically non-decreasing function A(z): R→ [0,1] as a conditional error function for

the level α if ∫ ∞
−∞

A(z)φ(z)dz = α

where φ(z) is the density of a standard normal random variable. We let z1 and z2 denote

the standardized means from the n1 and n2 sample sizes at the first and second stage, re-

spectively, where n2 can be chosen based on the interim effect estimate after n1 subjects.

The conditional error function computes the conditional probability of rejecting the null

hypothesis given z1 (or similar effect estimate at the first stage). If we let r denote the

critical value at the second stage for which we would reject H0, then we can define the

conditional power, denoted by CPθ(n2, r|z1), as the conditional probability of rejecting

H0 given z1 when the true mean is θ. Given a conditional error function A(z) we can

design a level-α adaptive procedure by choosing n2 and r (both of which are dependent

upon the interim estimate) such that CP0(n2, r|z1) = A(z1). Posch and Bauer (1999) go

on to compare the designs of Bauer and Kohne (1994), Proschan and Hunsberger (1995),

Shen and Fisher (1999) and Lehmacher and Wassmer (1999) in terms of their respective

conditional error and conditional power functions.

Further developments in adaptive clinical trials would come from Cui et al. (1999)

who proposed weighted test statistics based on interim data that would be tested against

the same critical values as the non-adaptive procedure. Posch and Bauer (2000) further

consider adaptive two-stage designs based on Fisher’s product test to deal with apriori

underestimated sample sizes. A general method for modifying group sequential designs

(changes to the sample size, the alpha-spending function, and the number and time points

of future interim analyses) was introduced by Lehmacher and Wassmer (1999) that was

based on the preservation of conditional rejection probabilities. Li et al. (2002) proposed

a modification to Proschan and Hunsberger (1995) where they derive a likelihood ratio
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test z > r where z is the final test statistic after adaptation and the critical value r does

not depend on the interim estimate z1. Gao et al. (2008) derive a method of sample size

re-estimation at the penultimate analysis stage and show that their method is equivalent

to Cui et al. (1999), with both being special cases of Müller and Schäfer (2001).

However, adaptive designs have come with criticism as well as praise over the years.

Hung et al. (2006) discuss a regulatory view on adaptive trials including analysis concerns

as well as logistical issues after adaptation. These logistical issues concern operational bias

since an unblinded look at the data could have adverse impacts on the remaining parts of

the trial. For example, if a researcher who is supposed to be blinded to interim data has

knowledge of the adaptation procedure and the adaptation path observed in the trial, it is

possible for them to calculate the interim estimate and potentially introduce unintended

bias to the trial. Jennison and Turnbull (2003), Tsiatis and Mehta (2003), Burman and

Sonesson (2006) and Jennison and Turnbull (2006) all discuss the inefficiencies of adaptive

designs due to the weighted test statistics not being sufficient statistics anymore. Proper

inference following an adaptation is still an on-going topic of research but a recent paper

by Gao et al. (2013) shows promise in adaptive estimation. Their procedure uses a map-

ping of the adapted final test statistic that corresponds to the “backward image” in the

non-adaptive trial. They provide exact confidence interval coverage along with a median-

unbiased point estimate for a variety of adaptations (not just sample size re-estimation).

This is an improvement over the existing method of Brannath et al. (2009) which had

exact coverage if the adaptation was at the penultimate stage and conservative coverage

otherwise.

The rest of this chapter will focus on adaptive two-stage Phase II clinical trials with

a binary outcome for treatment efficacy. These types of designs are common for Phase II

studies that wish only to show whether a treatment is effective (and safe) based on some

primary outcome and not an estimate of treatment effectiveness. That is, these types

of studies usually only have a treatment arm (not a control arm) and are not concerned

with formal inference following a test decision. Larger Phase III studies that involve ran-

domized treatment-control allocations will follow with proper inference for the treatment

effect. Adaptive two-stage designs still benefit from flexibility and efficiency as compared
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to traditional fixed-sample designs and even classic group sequential designs. We will dis-

cuss the non-adaptive design of Simon (1989), the adaptive design of Banerjee and Tsiatis

(2006), the adaptive design of Richman and Emerson (2015) and finally propose a new

quasi-symmetric n2-design and compare it to the existing approaches.

5.2. Optimal Two-Stage Designs

In this section, we will assume that we have independent data Xi (i=1,...,n) coming

from a Bernoulli distribution with constant probability of success π. We will consider a

two-stage design with an interim analysis after n1 subjects and a final analysis after an

additional n2 subjects (n=n1+n2). We will denote the cumulative sum of the Xs in the

first stage as Sn1 =
∑n1

i=1Xi and the cumulative sum of the Xs at the final stage as S =∑n
i=1Xi.

We will be concerned with testing the null hypothesis H0: π ≤ π0 versus the one-

sided alternative HA: π > π0. Furthermore, we wish to control the Type I error at level

α and Type II error at level β for a specific alternative πA. We will denote r1, r as the

critical values at the first and second stages, respectively, such that if Sn1 < r1 we will

stop at the first analysis in favor of the null (no treatment effect); otherwise we continue

to the final analysis after an additional n2 subjects and if S < r we decide in favor of the

null. As we will see later, in the adaptive design setting both n2 and r may depend on

Sn1 .

The expected sample size ESS can be computed as n1 +
∑

Sn1
n2(sn1)P (Sn1 = sn1).

The goal will be to find a design consisting of (n1, r1, n2, r) where n2 may depend on

Sn1 and r may depend on both Sn1 and n2 while controlling the overall Type I error

rate at level α and the overall Type II error rate at level β for a design alternative πA.

We will also want to control ESS, whether that be minimizing ESS under the design

null, the design alternative or a balance between the two. The subsequent sections will

be concerned with finding and evaluating such designs in the cases where π0=(0.1, 0.4)

and πd=0.2, where πd = πA-π0. We will control the experiment-wise Type I error rate at

α=0.05 and experiment-wise Type II error rate at β=0.2 for the alternative πA.
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π0 πA α 1− β ESS(0) ESS(A)

0.10 0.30 0.047 0.805 15.01 26.16

0.40 0.60 0.049 0.801 24.52 41.73

Table 5.1: Operating Characteristics for Simon’s Null-Optimal Design when (π0, πA) =
(0.1, 0.3) and (0.4, 0.6). ESS(i) is the expected sample size under the null hypothesis
(i = 0) and the alternative hypothesis (i = A).

5.2.1 Simon’s Null-Optimal and Minimax Designs

Simon (1989) proposed optimal two-stage Phase II clinical trials by using exact bi-

nomial probabilities. He considered only designs that could stop early for futility; that

is, there was no early stopping in favor of the alternative hypothesis. Given operating

characteristics π0, πA, α and β, he finds a design that satisfies the error constraints while

simultaneously minimizing: (1) expected sample size under H0 or (2) minimizing the max-

imum expected sample size. These will henceforth be called Null-Optimal and Minimax

designs. This should not be confused with the δ-minimax designs of Wason and Man-

der (2012) which minimize the maximum sample size under the “worst-case scenario” of

π=1
2(π0 + πA) fort continuous responses. Deviating slightly from Simon’s notation to suit

later notation, we will stop the trial at stage 1 for futility after n1 subjects if Sn1 < r1.

Otherwise we accrue n2 more subjects and if S < r after n1 + n2 subjects we will reject

the treatment; otherwise we accept the treatment for further study.

Simon’s procedure is as follows: For each value of the total sample size n and each

value of n1 ∈ [1, n− 1], search over the range r1 ∈ [0, n1] and for each r1 value determine

the maximum value of r that satisfies the Type II error constraint of β. Then examine the

whether the set of design parameters (n, n1, r1 and r) satisfy the Type I error constraint

α. If the design satisfies the error constraints, then its ESS is compared against the mini-

mum of other feasible designs and the search is continued over r1. While keeping the total

sample size n fixed, Simon searched over n1 to find the optimal design for that fixed n.

This search is continued over n until it is clear an optimal design has been reached. We

will focus on Simon’s designs that minimize the expected sample size under H0 but the

same procedure can be used to find the design that minimizes the maximal sample size n.

Table 5.1 shows the operating characteristics for Simon’s Null-Optimal design when
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(π0, πA) = (0.1, 0.3) and (0.4, 0.6). We notice that the error constraints are met and

that the expected sample size under the null is quite small while the expected sample size

under the alternative is quite large for the combinations of (π0, πA) shown. More results

are found across different (π0, πA) combinations as shown in Table 1 of Simon (1989).

Tables 5.5 and 5.6 show the sample size n2 and corresponding critical value r at n subjects

for each Sn1 value. It can be seen that Simon’s optimal two-stage design is a special case

of a two-stage adaptive design where n2(Sn1) = n2 for all Sn1 ≥ r1 and 0 otherwise.

5.2.2 Banerjee-Tsiatis Null-Optimal Adaptive Designs

Null-optimal adaptive two-stage designs were proposed by Banerjee and Tsiatis

(2006) which allow the second stage sample size n2 to depend on the first stage effect

estimate Sn1 . They show that finding such a design satisfying the Type I and Type II er-

ror constraints is a constrained optimization problem which can be solved using Lagrange

multipliers. The objective function to be optimized can be seen as a Bayesian decision-

theoretic problem using an expected loss function that can minimized using backward

induction. This type of construct was used by Lai (1973) to find optimal fully-sequential

designs. We will omit the details of their search algorithm and refer the reader to pages

3385-3388 of Banerjee and Tsiatis (2006) for details.

Through their algorithm and construct, some optimal designs found resulted in a

very large maximal sample size. Such large sample sizes may not be feasible for most

Phase II clinical trials and so Banerjee and Tsiatis also considered restricted null-optimal

designs which fix a maximal sample size nmax to be no more than approximately a 10%

increase from Simon’s Null-Optimal design. We also agree that it makes sense to restrict

the maximal sample size after an adaptation and so we will focus on Banerjee and Tsiatis’

Restricted Null-Optimal designs for the remainder of the chapter. One can find both the

operating characteristics for their unrestricted designs in Table 1 of Banerjee and Tsiatis

(2006).

Table 5.2 shows the operating characteristics for the Banerjee-Tsiatis Restricted

Null-Optimal designs when (π0, πA) = (0.1, 0.3) and (0.4, 0.6). We notice that the error

constraints are met and that the expected sample size under the null is comparable or
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π0 πA α 1− β ESS(0) ESS(A)

0.10 0.30 0.045 0.803 15.02 23.91

0.40 0.60 0.050 0.801 24.43 40.65

Table 5.2: Operating Characteristics for Banerjee-Tsiatis Restricted Null-Optimal Design
when (π0, πA) = (0.1, 0.3) and (0.4, 0.6). ESSS(i) is the expected sample size under the
null hypothesis (i = 0) and the alternative hypothesis (i = A).

better than Simon’s designs. The expected sample size under the alternative is still quite

large but slightly less than under Simon’s designs. Tables 5.5 and 5.6 show the sample size

n2 and corresponding critical value r at n subjects for each Sn1 value. It can be seen that

for large values of Sn1 , n2(Sn1) = 0 which means these designs allow for early stopping in

favor of the alternative as compared to Simon’s designs which do not allow such stopping

for efficacy. We also can see that as Sn1 increases, n2(Sn1) also increases to a certain point

and then reduces to zero. This seems to be an artifact of only optimizing under H0 and

that as Sn1 increases the posterior probability centers around πA which means no penalty

for sample size inflation.

5.2.3 Richman-Emerson Conditional Error Spending Approach for Adaptive
Designs

In an unpublished Master’s project at Oregon State University, Richman and Emer-

son (2015) evaluate a new approach to adaptive trial design by focusing on the error

contributions from each possible Sn1 for a particular design. As noted before, the goal of

an adaptive two-stage design is to find design parameters (n1, r1, n2(sn1) and r(sn1 , n2))

that control the overall Type I and Type II error rates at α and β, respectively. Other

types of constraints (such as minimizing ESS under π0) can be considered as previously

mentioned. Before describing Richman and Emerson’s approach, let us derive some re-

sults. Let us denote Sn2 as the cumulative sum of Xi in the second stage only, whereas

Sn1 and S are defined as before so that Sn1 + Sn2 = S. We can write
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P (Reject H0|π) = P (Sn1 ≥ r1, S ≥ r(sn1 , n2)|π)

= Pπ(S ≥ r(sn1 , n2)|Sn1 ≥ r1)Pπ(Sn1 ≥ r1)

=

n1∑
Sn1=0

Pπ(S ≥ r(sn1 , n2)|Sn1 = sn1 , Sn1 ≥ r1)Pπ(Sn1 = sn1 |Sn1 ≥ r1)Pπ(Sn1 ≥ r1)

=

n1∑
Sn1=r1

Pπ(S ≥ r(sn1 , n2)|Sn1 = sn1)Pπ(Sn1 = sn1)

=

n1∑
Sn1=r1

Pπ(S − Sn1 ≥ r(sn1 , n2)− Sn1 |Sn1 = sn1)Pπ(Sn1 = sn1)

=

n1∑
Sn1=r1

Pπ(Sn2 ≥ r(sn1 , n2)− sn1 |Sn1 = sn1)Pπ(Sn1 = sn1)

=

n1∑
Sn1=r1

Pπ(Sn2 ≥ r(sn1 , n2)− sn1)Pπ(Sn1 = sn1)

=

n1∑
Sn1=r1

[1−B(r(sn1 , n2)− sn1 − 1;n2, π)]b(sn1 ;n1, π)

where B(k;n, π) denotes the cumulative distribution function and b(k;n, π) denotes the

probability mass function for a Binomial(n, π) random variable. We can also define the

following terms:

• Conditional Error: The probability of rejecting H0 when H0 is true, conditional on

observing Sn1 = sn1 :

Pπ0(S ≥ r(sn1 , n2)|Sn1 = sn1) = Pπ0(Sn2 ≥ r(sn1 , n2)− sn1)

• Conditional Power: The probability of rejecting H0 when HA is true, conditional on

observing Sn1 = sn1 :

PπA(S ≥ r(sn1 , n2)|Sn1 = sn1) = PπA(Sn2 ≥ r(sn1 , n2)− sn1)

• Error Contribution when Sn1 = sn1 : The contribution to the overall Type I error
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made when Sn1 = sn1 :

Pπ0(S ≥ r(sn1 , n2)|Sn1 = sn1)Pπ0(Sn1 = sn1) = Pπ0(Sn2 ≥ r(sn1 , n2)−sn1)Pπ0(Sn1 = sn1)

• Power Contribution when Sn1 = sn1 : The contribution to the overall power made

when Sn1 = sn1 :

PπA(S ≥ r(sn1 , n2)|Sn1 = sn1)PπA(Sn1 = sn1) = PπA(Sn2 ≥ r(sn1 , n2)−sn1)PπA(Sn1 = sn1)

Using the above terms and the derivation from before, we can express the overall Type I

error as:

α =

n1∑
Sn1=r1

Pπ0(Sn2 ≥ r(sn1 , n2)− sn1)Pπ0(Sn1 = sn1)

=

n1∑
Sn1=r1

(Conditional Error)Pπ0(Sn1 = sn1)

=

n1∑
Sn1=r1

(Error Contribution when Sn1 = sn1) (5.1)

From the above expression we can see that the overall Type I error is preserved if the sum

of the error contributions is less than or equal to α. Thus, one can specify an adaptive

design with level α by choosing an appropriate error contribution-spending function. We

will let αj denote the maximum error contribution allowed when Sn1 = s(j), where s(1)

= r1, s(2) = r1 + 1, ..., s(M) = n1 and M = n1 − r1 + 1. We can see from 5.1 that the

error contribution when Sn1 = sn1 is bounded by Pπ0(Sn1 = sn1). Richman and Emerson

proposed one such error contribution-spending function noticing this upper bound.

The procedure starts by assuming equal error allocation across the s(j) values

α
(0)
1 = α

(0)
2 = ... = α

(0)
M = 1/M

and then, beginning with the smallest value of Pπ0(Sn1 = s(j)), set αj = min(α
(0)
j ,

Pπ0(Sn1 = s(j))). Then they add the leftover error to the remaining αj ’s and continue
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π0 πA α 1− β ESS(0) ESS(A)

0.10 0.30 0.045 0.804 16.91 22.49

0.40 0.60 0.045 0.806 26.02 38.54

Table 5.3: Operating Characteristics for Richman-Emerson Null-Optimal Design when
(π0, πA) = (0.1, 0.3) and (0.4, 0.6). ESSS(i) is the expected sample size under the null
hypothesis (i = 0) and the alternative hypothesis (i = A).

this process through the s(j)’s. Their algorithm for finding null-optimal designs searches

over all combinations of (n1, r1) in a given range, evaluates the power of a given design

subject to the error contribution-spending function, and chooses the design with power

≥ (1 − β) that also minimizes the expected sample size under the null hypothesis. For

comparison purposes, the grid search over n1 could not exceed n1(BT ) + 2 and the search

over n2 could not exceed max(n2(BT )).

Table 5.3 shows the operating characteristics for the Richman-Emerson Null-

Optimal designs when (π0, πA) = (0.1, 0.3) and (0.4, 0.6). We notice the expected sample

size under the null is slightly larger compared to the designs of both Simon and Banerjee-

Tsiatis. The expected sample size under the alternative has been reduced from earlier

designs. Tables 5.5 and 5.6 show the sample size n2 and corresponding critical value r at

n subjects for each Sn1 value. We see a trend that this design shifts the positive part of

the n2 function down towards smaller Sn1 . This is why we are seeing both an increase

in expected sample size under the null and a reduction in expected sample size under the

alternative.

5.2.4 Proposed Quasi-Symmetric n2-Design

We note that the adaptive designs evaluated thus far all show a (mostly) non-

decreasing n2(Sn1) up to a point which allows for early termination in favor of the al-

ternative, the exception being certain Richman-Emerson designs. We wish to propose a

new type of adaptive design that seeks to create a symmetric n2(Sn1) function for those

values of Sn1 where n2 > 0. We will call such a design the Quasi-Symmetric n2-Design.

True symmetry is rarely achieved due to the discrete nature of the binomial probabilities.

Such a design will hopefully have a great reduction in expected sample size under the al-

ternative while only sacrificing slight gains in expected sample size under the null. These
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π0 πA α 1− β ESS(0) ESS(A)

0.10 0.30 0.049 0.803 17.25 19.63

0.40 0.60 0.050 0.802 27.28 33.38

Table 5.4: Operating Characteristics for Quasi-Symmetric n2-Design when (π0, πA) =
(0.1, 0.3) and (0.4, 0.6). ESSS(i) is the expected sample size under the null hypothesis
(i = 0) and the alternative hypothesis (i = A).

n1(S) = 10, n1(BT) = 10, n1(RE) = 7, n1(QS) = 10
Simon Banerjee-Tsiatis Richman-Emerson Quasi-Symmetric

Null-Optimal Restricted Null-Optimal Null-Optimal
Sn1 n2 r n2 r n2 r n2 r

0 0 2 0 2 0 1 0 2

1 0 2 0 2 19 6 6 5

2 19 6 19 6 19 6 21 7

3 19 6 19 6 21 5 15 5

4 19 6 22 7 0 1 0 2

≥ 5 19 6 0 2 0 1 0 2

Table 5.5: Two-Stage Design Parameters when π0=0.1 and πA=0.3. S = Simon, BT =
Banerjee-Tsiatis, RE = Richman-Emerson and QS = Quasi-Symmetric.

designs will be controlled at Type I error α and Type II error β for a specified alternative

πA.

Currently there is no algorithm or closed-form solution to find such Quasi-Symmetric

n2-Designs since there is not a specific optimization criterion. Rather, we will try to modify

the existing design of Banerjee-Tsiatis and create this quasi-symmetric n2(Sn1) function

by brute force to satisfy the error constraints. We chose such designs so that n2(Sn1) could

not exceed max(n2(BT )).

Table 5.4 shows the operating characteristics for the Quasi-Symmetric n2-designs

when (π0, πA) = (0.1, 0.3) and (0.4, 0.6). We see that we get considerable reduction in

expected sample size under the alternative for a slight increase in expected sample size

under the null. The Type I and Type II error constraints are met for both designs gener-

ated. Tables 5.5 and 5.6 show the sample size n2 and corresponding critical value r at n

subjects for each Sn1 value for this design. Similar to the Richman-Emerson designs, we

see a trend that shifts the positive part of the n2 function down towards smaller Sn1 while

trying to achieve the desired symmetry.
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n1(S) = 10, n1(BT) = 10, n1(RE) = 7, n1(QS) = 18
Simon Banerjee-Tsiatis Richman-Emerson Quasi-Symmetric

Null-Optimal Restricted Null-Optimal Null-Optimal
Sn1 n2 r n2 r n2 r n2 r

≤ 7 0 8 0 10 0 9 0 10

8 30 24 0 10 0 9 9 16

9 30 24 18 19 31 26 33 28

10 30 24 30 25 31 26 33 27

11 30 24 32 26 32 26 25 22

12 30 24 32 26 31 33 0 10

13 30 24 33 27 0 9 0 10

≥ 14 30 24 0 10 0 9 0 10

Table 5.6: Two-Stage Design Parameters when π0=0.4 and πA=0.6. S = Simon, BT =
Banerjee-Tsiatis, RE = Richman-Emerson and QS = Quasi-Symmetric.
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Figure 5.1: n-functions for Designs when π0

= 0.1 and πA = 0.3.
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5.3. Comparing the Different Design Approaches

5.3.1 Comparing the n Functions

Figures 5.1 and 5.2 show the n functions against π̂ at the first stage. Specifically,

we are examining the adaption of n2 based on Sn1 . We can see Simon’s fixed n2 for all

Sn1 > r1(S) and the non-decreasing n2 function (up to a point that jumps to zero) of

the designs of Banerjee and Tsiatis. We see the Richman-Emerson approach having an

n2 function behaving similarly to a shifted Banerjee-Tsiatis function. We can also now
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Figure 5.4: Power Function for Designs
when π0 = 0.4 and πA = 0.6.

see clearly the proposed Quasi-Symmetric n2-function, here and henceforth labeled as the

Modified design in the graphics.

5.3.2 Comparing the Power Functions

Figures 5.3 and 5.4 show the power curves for the designs considered under values of

the true effect proportion π ∈ [π0, (πA + 0.1)]. We have also included the power curve for

the non-randomized fixed-sample design as well. We can see that all designs considered

perform similarly with respect to power, beating the fixed-sample design for π ∈ [π0, πA].

However, we must consider that we have chosen a conservative non-randomized fixed-

sample test that satisfies the error constraints.

5.3.3 Comparing the Expected Sample Size Curves

Figures 5.5 and 5.6 show the expected sample size curves for π ∈ [π0, πA] across the

different designs. Again, we have added the fixed sample design of n = 25 for comparative

purposes. We see that Simon’s expected sample size around or exceeding the design al-

ternative πA = 0.3 or 0.6 for settings 1 and 2, respectively, is larger than the fixed-sample

design. The reduction in expected sample size under the design null π0 = 0.1, 0.4 is
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greatest for both Simon and Banerjee-Tsiatis designs. The new Quasi-Symmetric design

(Modified) shows considerable reduction in expected sample size as π increases while sac-

rificing minimal gains in expected sample size for true effects near the null. The designs of

Richman and Emerson seem to exist somewhere in the middle of the other designs when

comparing expected sample sizes.

5.3.4 Comparing Final Critical Values for BT and QS Designs

Figures 5.7 and 5.8 compare the final critical values r(sn1 , n2) between the Banerjee-

Tsiatis design and the Quasi-Symmetric n2-design against the total sample size after a

particular adaptation. This is merely to illustrate and compare another design parameter

between these two designs, but it is interesting to see the decreasing π̂crit for the Quasi-

Symmetric n2-design as Sn1 increases. This feature is not shared with the Banerjee-Tsiatis

design which seems to have very similar π̂crit at the final stage for all values of Sn1 where

additional samples are taken.
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5.4. Discussion

As Simon (1989) points out, there is an ethical concern to terminate noneffective

treatments as soon as possible. He also notes that when a treatment has a substantial ef-

fect there is often interest to study more patients on said treatment to estimate proportion,

extent and durability of response. Koyama and Chen (2008) discuss such inference follow-

ing Simon’s designs. However, most Phase II clinical trials do not include formal inference

on treatment effects but merely screen potentially beneficial treatments while monitoring

safety. Thus, we could screen treatments quicker by reducing the number of subjects both

when the treatment is ineffective and when the treatment is substantially effective. This

is the motivation behind such Quasi-Symmetric n2-designs discussed. Previous two-stage

Phase II designs focus only on minimizing the expected sample size under the null hy-

pothesis which can cause a large boost in expected sample size under the alternative. Our

approach seeks to reduce the expected sample size when the true effect estimate is near

πA with only slight gains in expected sample size under the null as compared to existing

designs.

Because no algorithm or closed-form solution exists for finding such Quasi-Symmetric



75

n2-designs, further research into this concept is needed. Such work would include at-

tempting to construct an expression for (n2, r) based on Sn1 as well as development of an

optimality criterion, which may include minimizing the average of ESS(0) and ESS(A).

In constructing the Quasi-Symmetric n2-designs, we attempted to create the symmetry

about the point π̂ = 1
2(π0 + πA) at the first stage which corresponds to the “worst-case

scenario” if π̂ ≈ π. For such a design, we might consider relaxing the maximum sample

size constraint which may improve expected sample sizes under both hypotheses.
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6. FINAL CONCLUSIONS

6.1. Conclusions on Research

In this research, we have investigated the topics of overrun, secondary endpoints

and adaptive two-stage designs. We have shown through a simulation study that handling

overrun through combining p-values with random weights under Sample Mean Ordering

produced optimal confidence intervals under all simulation settings considered. We have

no reason to believe that these results would not extend to other settings. We have also

proven global generalization and unification of two propositions proposed by Tamhane

et al. (2010) when considering secondary endpoints and FWER for hypothesis tests under

the gatekeeping procedure. We further investigated confidence interval construction for

secondary parameters when both ρ and θ were estimated. It was seen that the pivotal

approach of Whitehead et al. (2000) proved optimal for confidence interval construction

over the Sample Mean Ordering approach, but there was no optimal choice of estimator for

θ within that pivotal approach. Finally, we examined several adaptive two-stage Phase II

clinical trial designs as well as proposed a new Quasi-Symmetric n2-Design which showed

promise of a dramatic reduction in the expected sample size under πA for only slight gains

in the expected sample size under π0.

The simulation studies in this research will hopefully guide clinicians and statis-

ticians toward optimal analysis approaches when the topics of overrun and secondary

inference arise. The theory behind controlling the FWER when considering secondary

endpoints will open statisticians to more design options in the planning stages of such a

trial — giving them more flexibility while not hindering inference. And lastly, our pro-

posed Quasi-Symmetric n2-Designs give an option to reduce both the expected sample

size under the null and alternative hypotheses as compared to a traditional fixed-sample

design. From a strictly drug-development standpoint, Phase II trials wish to screen po-

tentially beneficial treatments while monitoring some safety. Our newly proposed design

will allow quicker assessment of such a goal both when the treatment is ineffective as well

as when it is effective.
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6.2. Bayesian Considerations

In this research we have approached all design and analysis objectives from the

frequentist paradigm. In recent years there has been a big push for Bayesian design and

inference in clinical trials. Emerson et al. (2007) give a nice summary of Bayesian methods

for group sequential procedures. We will give a general overview of the Bayesian paradigm

as it pertains to group sequential clinical trials.

First and foremost, the derivation of the stopping rule from a Bayesian perspective

is of little importance. This is because there is a one-to-one correspondence between

frequentist stopping rules and Bayesian stopping rules for a given prior. That is, if one

understands the probability model, the prior distribution and the Bayesian statistic on

which the stopping rule is built, one can map that rule uniquely back to the frequentist

setting. Therefore it is of more concern to discuss Bayesian inference and suitable choices

of the prior distribution for θ in such procedures.

Under a Bayesian paradigm, we consider a joint probability distribution p(θ,X) for

the treatment effect parameter θ and the trial data X. We specify a prior distribution

pθ(θ) that represents our knowledge of the behavior of θ without examining X and we also

specify a likelihood function pX|θ(X|θ). We base inference on the posterior distribution

pθ|X(θ|X) which can generate posterior means, posterior credible intervals and posterior

probabilities of specific hypotheses. The posterior distribution cal be calculated as

pθ|X(θ|X = x) =
pX|θ(X|θ)pθ(θ)∫
pX|θ(X|θ)pθ(θ)dθ

This posterior inference is unaffected by the choice of the stopping rule, so long as one

only considers inference at each analysis marginally. However, the posterior distribution

of θ given X = x across multiple analyses of the data is affected by such a stopping rule.

The choice of a prior distribution can heavily impact the outcome of a Bayesian

analysis. Since the FDA demands highly regulated processes for drug development, the

incorporation of such subjectivity to clinical decisions has been criticized and these analyses

have often been disregarded. When prior knowledge about θ must be specified, Emerson
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et al. (2007) advocate the sensitivity analysis approach as the most important one. That

is, show analyses considering a range of prior distributions rather than a single “expert”

prior. They advocate the approach of considering a range of normal priors since they

tend to underestimate the amount of information in any one individual’s true prior. It is

also rather straightforward to discuss such priors with researchers since most of them are

familiar with these types of distributions and have a sense of what the mean and standard

deviation of a normal distribution represents.

6.3. Extensions of Simplistic Examples Considered

All of the examples in this research were considered in the simplistic single-sample

case. Extensions to two-group analyses are easily accommodated by an adjustment to the

stopping boundaries of the design considered. Tests where nuisance parameters must be

estimated (e.g. unknown variance) are accommodated by scaling the statistics appropri-

ately.

We have shown stopping boundaries based on functions of the sufficient statistic

at each interim analysis. An equivalent boundary can be produced on the p-value scale

as well. Therefore, we can extend our examples to accommodate such analyses as linear

regression and simple experimental designs. However, a group sequential procedure is

defined by a primary stopping boundary and trying to design a procedure to incorporate

interaction effects in complex analyses becomes challenging. We can consider this in the

realm of subgroup analysis though and we refer the reader to such literature.



79

References

Anderson, T. (1964). Sequential analysis with delayed observations. Journal of the Amer-

ican Statistical Association, 59(308):1006–1015.

Anderson, T. W. (1960). A modification of the sequential probability ratio test to reduce

the sample size. The Annals of Mathematical Statistics, pages 165–197.

Armitage, P. (1957). Restricted sequential procedures. Biometrika, pages 9–26.

Armitage, P. (1958). Numerical studies in the sequential estimation of a binomial param-

eter. Biometrika, pages 1–15.

Armitage, P., McPherson, C., and Rowe, B. (1969). Repeated significance tests on ac-

cumulating data. Journal of the Royal Statistical Society. Series A (General), pages

235–244.

Banerjee, A. and Tsiatis, A. A. (2006). Adaptive two-stage designs in phase ii clinical

trials. Statistics in medicine, 25(19):3382–3395.

Bartky, W. (1943). Multiple sampling with constant probability. The Annals of Mathe-

matical Statistics, 14(4):363–377.

Bauer, P. and Kohne, K. (1994). Evaluation of experiments with adaptive interim analyses.

Biometrics, pages 1029–1041.

Brannath, W., Mehta, C. R., and Posch, M. (2009). Exact confidence bounds following

adaptive group sequential tests. Biometrics, 65(2):539–546.

Burman, C.-F. and Sonesson, C. (2006). Are flexible designs sound? Biometrics,

62(3):664–669.

Chang, M. and Chow, S.-C. (2007). Analysis strategies for adaptive designs with multiple

endpoints. Journal of biopharmaceutical statistics, 17(6):1189–1200.

Chang, M. N. (1989). Confidence intervals for a normal mean following a group sequential

test. Biometrics, pages 247–254.



80

Chang, M. N. and O’Brien, P. C. (1986). Confidence intervals following group sequential

tests. Controlled Clinical Trials, 7(1):18–26.

Choi, S. and Clark, V. (1970). Sequential decision for a binomial parameter with delayed

observations. Biometrics, pages 411–420.

Cox, D. R. (1963). Large sample sequential tests for composite hypotheses. Sankhyā: The
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APPENDIX
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1. PROOF OF TAMHANE PROPOSITION

As an outline for the Tamhane proof, we first show that if (d1, d2) is a level α

stopping boundary, then the overall FWER is controlled at level α under null hypothesis

configuration (3). Then we show that when d1 < c1, the global maximum value of the

FWER under null hypothesis is attained at ρ = 1, µX = c1−d1√
n1

.

We first note that the events {X1 > c1}, {X1 < c1, X2 > c2}, {X1 < c1, X2 < c2}

are mutually exclusive and that the events {Y1 > d1, Y2 > d2}, {Y1 > d1, Y2 < d2}, {Y1 <

d1, Y2 > d2}, {Y1 < d1, Y2 < d2} are also mutually exclusive. We also see that

{{X1 > c1}, {X1 < c1, X2 > c2}, {X1 < c1, X2 < c2}}

forms one partition of the sample space, and likewise

{{Y1 > d1, Y2 > d2}, {Y1 > d1, Y2 < d2}, {Y1 < d1, Y2 > d2}, {Y1 < d1, Y2 < d2}}

forms another partition of the sample space. Then we have:

FWERH2 = PµY =0(X1 > c1, Y1 > d1) + PµY =0(X1 < c1, X2 > c2, Y2 > d2)

But since {{X1 > c1}, {X1 < c1, X2 > c2}, {X1 < c1, X2 < c2}} is a partition of the sample
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space, we have by the Law of Total Probability that

P (Y1 > d1, Y2 > d2) = P (X1 > c1, Y1 > d1, Y2 > d2) + P (X1 < c1, X2 > c2, Y1 > d1, Y2 > d2)

+ P (X1 < c1, X2 < c2, Y1 > d1, Y2 > d2)

≥ P (X1 > c1, Y1 > d1, Y2 > d2) + P (X1 < c1, X2 > c2, Y1 > d1, Y2 > d2)

P (Y1 > d1, Y2 < d2) = P (X1 > c1, Y1 > d1, Y2 < d2) + P (X1 < c1, X2 > c2, Y1 > d1, Y2 < d2)+

P (X1 < c1, X2 < c2, Y1 > d1, Y2 < d2)

≥ P (X1 > c1, Y1 > d1, Y2 < d2)

P (Y1 < d1, Y2 > d2) = P (X1 > c1, Y1 < d1, Y2 > d2) + P (X1 < c1, X2 > c2, Y1 < d1, Y2 > d2)+

P (X1 < c1, X2 < c2, Y1 < d1, Y2 > d2)

≥ P (X1 < c1, X2 > c2, Y1 < d1, Y2 > d2),

so therefore we see that

FWERH2 ≤ PµY =0(Y1 > d1, Y2 > d2)+PµY =0(Y1 > d1, Y2 < d2)+PµY =0(Y1 < d1, Y2 > d2).

This means that if (d1, d2) are chosen to be a level α∗ stopping boundary, then we have:

FWERH2 ≤ PµY =0(Y1 > d1, Y2 > d2) + PµY =0(Y1 > d1, Y2 < d2) + PµY =0(Y1 < d1, Y2 > d2)

= PH2( Reject H2)

= α∗.

Now we consider the case where d1 < c1 and (d1, d2) is a level α stopping boundary.

When ρ = 1, since without loss of generality we assume σ2
X = σ2

Y = 1, we have under H2
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that

X1 −
√
n1µX = Y1

X2 −
√
n1 + n2µX = Y2.

because Xj must be a linear function of Yj for j = 1, 2, and the mean of Yj must be zero

under H2. Then for d1 = c1 −
√
n1µX we have

X1 > c1 ⇔X1 −
√
n1µX > c1 −

√
n1µX ⇔ Y1 > d1

X2 > c2 ⇔X2 −
√
n1 + n2µX > c2 −

√
n1 + n2µX ⇔ Y2 > c2 −

√
n1 + n2µX ,

and therefore

FWERH2 = PµY =0(X1 > c1, Y1 > d1) + PµY =0(X1 < c1, X2 > c2, Y2 > d2)

= P (Y1 > d1) + P (Y1 < d1, Y2 > c2 −
√
n1 + n2µX , Y2 > d2)

= P (Y1 > d1) + P (Y1 < d1, Y2 > max{c2 −
√
n1 + n2µX , d2}).

Since (d1, d2) is a level α stopping boundary with d1 < c1, we must have d2 > c2, so

therefore max{c2 −
√
n1 + n2µX , d2} = d2. Thus, if (c1, c2) and (d1, d2) are α-level

boundaries for the primary and secondary endpoints such that c1 > d1 and c2 < d2, then

for ρ = 1 and
√
n1µX = c1 − d1 we have:

FWERH2 = P (Y1 > d1) + P (Y1 < d1, Y2 > max{c2 −
√
n1 + n2µX , d2})

= P (Y1 > d1) + P (Y1 < d1, Y2 > d2})

= α.

Since it was earlier shown that the maximum FWER for any ρ and any α-level secondary

boundary (d1, d2) is α, we have proved a global maximum version of Propositions 2 and

3. Note that if c1 = d1, then c2 = d2 follows from (c1, c2) and (d1, d2) both being α-level

boundaries. In this case,
√
n1µX = c1 − d1 = 0, so therefore the max FWER = α is

obtained when ρ = 1 and µX = 0 by similar argument.




