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de-Haas van-Alphen Effect in the Quantum Limit

I. INTRODUCTION

An oscillatory dependence of the magnetic susceptibility of

an electron gas with the applied magnetic field was first predicted

under certain conditions by L.D. Landau
(1)

This effect was

observed under the predicted conditions of high magnetic field and

low temperature by de-Haas and van-Alphen (2) in 1930 and now

bears their name. It's real utility however was not appreciated

until Lifschitz and Kosevich (3)
pointed out that the period of the

oscillations, when plotted against the reciprocal of the field

strength, was directly proportional to the extremal cross-sectional

areas of the electron fermi-surface (FS) in directions perpendicular

to the magnetic field. This observation has enabled the de-Hass-

van-Alphen effect to evolve into a highly sensitive probe of the FS

of solids.

Typical DHVA data ( magnetic susceptibility ( x ) vs 1/B )

is shown in fig. 1 for both Silver and Rhenium. One should note

not only the periodicity of the oscillations but also the fact that

two or more oscillations may be present simultaneously depending upon

the characteristics of the FS being examined.

As noted previously, the DHVA. effect is intrinsically a high

field, low temperature effect in which (.0e ,>)>F-rwhere 63c

is the cyclotron frequency, is Boltzmann's constant, and T is

(3)
the temperature. The Lifschitz-Kosevich analysis makes use of the



above conditions on temperature and field but also demands that

t we < < where 74 is the chemical potential of

2.

the electrons in the solid. For most metals this is the usual state

of affairs even with "high" DHVA fields.

As the field strengths available to the experimentalist increase

or equivalently for metals with an unusually small chemical potential,

eg. Bismuth, the condition tic4Jc 4. < is not automatically

satisfied.

We shall refer to the region ficie-i) as the quantum limit (QL)

in contrast to the Lifschitz-Kosevich (LK) region where (Jo. .<7.6(

In fig.2 we show a typical plot of magnetic susceptibility vs.

field for Bismuth in the QL region. The purely sinusoidal oscillations

which were present in the LK limit have evolved into a far more

complex line shape in the QL. In fig. 2 one can simultaneously

observe both LK and QL oscillations since two parts of the FS are

involved and the electron surface reaches the.QL before the hole

surface. One can also observe in fig. 2 the characteristic split

in the line shape caused by the two spin states of the electrons.

Although it may in principle be possible to analyze the QL

line shapes in terms of LK oscillations and their harmonics ( just

as it is possible to analyze a square wave in terms of its Fourier

components ) it is both cumbersome and questionable to do so. The

LK result is an expansion of i( in the assumed small parametertW
/-

and applying it outside of this region raises doubts as to its

convergence. It may even be totally inappropriate to attempt to

apply the LK analysis to the QL region since the. theoretical express-
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Figure one shows the DHVA susceptibility oscillations in

a)Rhenium and b) Silver in the high n region. (ref. 5)

Figure two shows the last (n=0) DHVA oscillation in the differential

magnetic susceptibility for Bismuth at T=.6°K with B along the

binary axis. The broken line is a schematic version of what the

curve might be at T=0 if there were no broadening and if the fast

oscillations due to holes were absent. The pair of arrows indicate

spin split peaks. ( ref. 4)
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-ion derived by Lifschitz-Kosevich is not the total susceptibility

of the electron gas but rather the oscillatory part of the susceptibil-

ity , i.e. the total susceptibility with the Pauli and Landau terms

subtracted out. In the QL region on the other hand it is only the

total susceptibility which is observed and which is capable of

analysis.

The effect of introducing impurities into the lattice in which

the electrons are contained also provides another distinction

between magnetism in the LK as oppossed to the QL region.

Dingle(6) showed in a heuristic manner that the introduction of

impurity scattering in the LK limit would cause the normal amplitude

factor eyse[-- to be modified by a temperature

enhancement factor -1-221 = 141x1 r We where 4 is the

zero temperature limit of the self-energy due to impurity scattering.
1

The effect of impurity scattering therefore is to cause a reduction

in the amplitude of the oscillations equivalent to increasing the

temperature by an amount equal to the Dingle temperature T; .

Excessive impurity scattering is thus capable of quenching the amplitude

of the oscillations if the magnetic field is of insufficient strength.

In the QL however, the predominant effect of impurity scattering

is to modify the steep slope on the high field side of any given quantum

limit peak. As we shall see in Ch. 2 the differential susceptibility
2

1. Dingle himself did not associate the Dingle temperature with a
self-energy.

2. The differential susceptibility is defined as 4M/a in contrast to
the susceptibility which is defined as M/B.



60

in the QL for a pure system suffers a discontinuity at certain field

values. It diverges as these field values are approached from the

low field side and tends to a finite value when approached from the

high field side. The introduction of impurities into the lattice

removes the divergence and discontinuity in 2( at these critical

values and produces a large but finitie slope on the high field

side of the critical value.

Although several experiments have already been performed in the

QL(7), the only theory available for data analysis has been rather

heuristic in its inclusion of impurity scattering and remains

incomplete in that the final result for the susceptibility is

expressed solely in terms of an integration to be done numerically.

Information concerning impurity scattering is then obtained through

a trial and error approach in which one searches for those parameters

which yield the best fit after numerical integration to the high field

slope of the QL peak.

To date, there does not exist in the literature a first prin-

ciples analysis of the differential susceptibility for an electron gas

in an impure lattice which is applicable to the quantum limit. For

reasons mentioned above such a derivation would require a completely

different mathematical approach from that employed in the LK region

and would not be a mere extension of the LK result into the high field

region. Furthermore, such a derivation should preferably be grounded

in many-body theory and not be forced to include interactions in a

heuristic manner.

The main focus of Ch. 3 of the present work is to introduce into
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the literature such an analysis.

Experiments in the QL (7)
have also indicated that the Dingle

temperature, which is responsible for the slope on the high field side

of the quantum limit peak, may in certain impurity systems actually

be dependent upon the strength of the magnetic field.

To understand the origin of such effects, it is necessary to

calculate the self-energy due to impurity scattering in the presence of

a strong magnetic field.

In even the most favorable of situations,with weak but realistic

potentials and no multiple scattering,such a calculation can be

extremely difficult. More complex situations require increasingly more

sophisticated approximations to the self-energy resulting in increas-

ingly more difficult calculations. In fact, in order to make any

progress at all it has become common practice to simplify the nature

of the scattering potentials to the ultra short range delta function.

This has the advantage of introducing mathematical simplification

into the analysis but only at the expense of losing information

concerning the range of the potential as well as any quantum number

dependence which the self-energy may have.

Apart from an attempt by Brailsford (8) , there has not appeared in

the literature a calculation of the self-energy in any approximation

which attempts to use a realistic potential with range effects in full

magnetic field states. Of course the mathematical difficulties involved

in such a calculation would preclude its use in a highly sophisticated

self-energy approximation such as a self-consistent T-matrix approach.

But it is quite possible that restoring some detail to the scattering
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potentials may allow even a Born approximation to the self-energy

to adequately account for some of the observed experimental data.

In Ch. 4 of the present work we attempt such a calculation as

described above using a screened coulomb potential to calculate the

self-energy within the restrictions of a simple Born approximation.

We are aware of the possible inadequacies of such an approximation

to the self-energy which ignores multiple scattering and suggest a

way to incorporate the above result into a self-consistent Born

approximation which even in the delta function model suggests

interesting B and impurity concentration dependencies.

The points discussed above are developed according to the follow-

ing format.

In chapter two we shall discuss the DHVA effect in both the QL and

LK limits but shall restrict ourselves to an electron gas in a perfect

lattice using the effective mass approximation. Although this chapter

is mainly pedagogical much of it is based upon a new approach to the

problem which will allow us to clearly focus on the physical and

mathematical distinction between the two regimes as well as providing

a frame of reference in which to compare the more difficult calculation

of chapter three for the impure lattice.

Even though the results for the differential susceptibility for

electrons in a perfect lattice in the LK limit are well known
(3)

,

the mathematical techniques used to obtain them here are unique to our

approach and possess certain logical advantages over other derivations;

primarily in the manner in which the analysis allows the susceptibility

to be decomposed into its three unique physical components ( Landau,
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Pauli, and DHVA) in the LK region.

The result we obtain in chapter two for the,zero temperature

contribution to the susceptibility in the QL has also appeared in the

literature (9)
. But the methods employed in reference nine require

that the susceptibility at non-zero temperature be obtained from the

zero temperature susceptibility by means of a numerical integration with

a temperature broadening function.

Our derivation proceeds along quite different lines from those

now currently appearing in the literature and we find that our

derivation allows the susceptibility to be expressed in terms of two

distinct components. One which corresponds solely to the zero temp-

erature contribution and on which clearly shows in an additive fashion

the corrections which temperature will introduce. Our form has the

further advantage that one can focus on the mathematically more

complex temperature correction terms and perhaps approximate them with

simple useable functions.

In chapter three, which is the main focus of this work, we present

for the first time a rigorous derivation for the low temperature

differential magnetic susceptibility in the quantum limit of an electron

gas in an impure lattice. The starting point of the derivation is

Luttinger's theorem
(1o)

which expresses the thermodynamic potential for

an interacting system in terms of the Fourier coefficients of the

Matsubara Green's function for the system.

Just as for the non-interacting case, the result for the

susceptibility shows the individual contribution of zero-temperature

and non-zero temperature terms. These terms are more complex than
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those for the non-interacting case discussed in chapter two, but it

is shown that they reduce properly to the non-interacting result

(derived from the more familiar starting point of chapter two) in the

limit that the self-energy approaches zero.

In chapter four we turn our attention to the non-zero temperature

terms and attempt to find those physical regions in which they may be

approximated by certain asymptotic forms. We present there a series

of computer generated plots which compare the asymptotic approximations

to the T 0 terms with their "exact" values as obtained through a

numerical integration. We also compare the graphs generated for the

contribution to the total susceptibility ( temperature + zero-temperature)

of a single LL using both the exact temperature and approximate

temperature forms and try to determine those regions in which the

replacement causes a negligible difference in the observed line

shapes for the total susceptibility.

In chapter five we briefly review some of the approaches and

inherent difficulties involved in calculating the self-energy caused

by impurity scattering in an impure lattice. We present there for the

first time a calculation of the self-energy in the Born approximation

using a realistic Yukawa potential in full magnetic field states.

We find that the result is capable of detailed analysis in

certain regions of the parameters but would require numerical evaluation

in others. We conclude our investigation at this point since numerical

work on the self-energy would begin to pave the way for an extensive

investigation of how the simple Born approximation which we discuss

may be incorporated into a more sophisticated self-consistent Born



approximation. The task would certainly be non - trivial but would

include multiple scattering events in a manner which hopefully would

be adequate to show the interplay between range, field strength, and

quantum numbers which would give rise to a field dependent Dingle

temperature under the appropriate conditions, eg. weak but long range

scattering potentials.

In chapter six we review what has been accomplished in this work

and make certain suggestions as to how the analysis of the QL which we

have presented may be used to provide alternate and complementary methods

for analyzing quantum limit experiments in addition to those which are

currently in use.
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II. MAGNETIC SUSCEPTIBILITY FOR A PURE SYSTEM

A. LIFSHITZ-KOSEVITCH REGION

The analysis begins with the calculation of the thermodynamic

potential ( _IL) which may be defined as (11),

-

where the symbols and notation used are defined in appendix A.

Once. is calculated, the magnetization M, the susceptibility

r;1( , and the differential susceptibility 'X , may be found from the

following prescriptions,

- ((= M M

)j1

(2-2)

For a non-interacting system of particles the expression for

simplifies considerably to the form

_it 7- '

IQ)
(2-3)

The single particle eigenvalues are found by solving the eigen-

value equation, 1-1(-V...1.T , where for the system under consideration

H has the form,

A

(2-4)
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where,

is the vector potential and is related, to B by 1=VxA

V(r) is the crystal potential experienced by the electrons.

We shall assume that the effect of the crystal potential may be

adequately accounted for by introducing a band effective mass ( m )

into the kinetic energy term. The mass which appears in the magneton

(Ala) is left unchanged since the spin potential energy being non-

coulombic is not affected by the motion of the electrons in the crystal

field ( except that the g-factor may be modified by crystal potential

effects through spin-orbit coupling ).

With these assumptions, the Haniltonian takes the form,

H eA/c-14 -zis -3

(2-5)

There exists some flexibility in the choice of A since only the

curl of the vector potential need be specified. Traditionally two gauges

are employed in dealing with magnetic problems - the symmetric gauge

in which A=ISsicA, Az=AsFO and the Landau gauge in which Ax = -By,

A
Y
=A

z
=0. Both gauges will yield a constant magnetic field B in the

z direction.

In the symmetric gauge the eigenfunctions and eigenvalues are

found to be (12)
,in the limit of a system of infinite volume,

1.4 4- )4, = t I



Cs) = e
- /,7 I 14.

c<i ) =

E 1

a A

-vvi Ocit

(2-6)

Some interesting features of these states may be noted. First,

as the magnetic field is turned off and 0 the energy spectrum

does not reduce to the expected free electron result. The resolution

of this apparent discrepancy was first discussed by Rensinck
(13)

who showed that the order in which one takes the limits V-'° and

B-->(D is crucial in recovering the free electron result.

Secondly, we see that there exists an angular momentum dependent

energy differential between those states with positive and those with

negative angular momentum. It has been shown that this effect will feed

back into the Fermi-Dirac distribution function and give rise to a

net orbital magnetic moment. If we recall that the classical Bohr-

vanLeeuween
(14)

theorem predicts that the orbital magnetization of an

electron gas is identically equal to zero, we may conclude that in all

aspects, both spin and orbital, electron magnetism is a purely quantum

phenomena.

Thirdly, for m),O, the degeneracy in the energy is apparently

infinite( or atleast proportional to some power of the infinite volume ).

In the Landau gauge, the solution to the eigenvalue problem takes

the form
(12)



Yo1/4(0 c"xxe.LI< e H 1:57 (y -Y )]
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(11+ ya) t cs + -0
7044

04 = Ka, 6')

where, 2S = LJeth and (2-7)

We again note the apparent infinite degeneracy due to the absence

of the k
x quantum number in the energy. This degeneracy factor may

be determined by means of a heuristic argument developed by Landau (12)

He argued that the center of oscillation of the harmonic oscillator

eigenfunction, yo, must lie within the confines of the solid,

i.e. 0< y
o

L
y

. But since y
o

is related to k
x

, this puts a bound on

the range of k
x
such that 0 k < X L . Thus the number of allowed k

xy

values we may have is zs'L L /217. This shows that the degeneracy isx y

proportional to the area of the solid perpendicular to the magnetic

field and to the strength of the magnetic field itself. This field

dependent degeneracy is crucial to understanding the DHVA and all other

oscillatory magnetic phenomena.

Taking the degeneracy factor into account and choosing a unit

volume, we find that

where,

[ e a1



-).4 (11+'1,1)-kcic.

TY, c Trcq

A K'Va? -yyl*

An integration by parts with respect to kz yields,

The identity,

+- e.

+ 00

71- cALei-TrS c
__s

(c)ito

may be used to obtain the form,

-o b +c..0

ds
6-

LIT
10 _

A Eat
77- O_A,C. 77-S e

Finally the kz integration may be done to yield

= C 7T Cam, o

ohrL S

where,
b-Loo

Q_ e Ar1-71n*-ir

y, ("" ycl) -h

/0

Js

lb.

(2-8)

(2-9)

(2-10)

(2-11)

(2-12)
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It is at this point that the physical distinction between magnetism

in the LK and QL regions causes the analysis to take different routes.

In the LK region, the ratio of FiktJe is )) 1 so that there are

many densely packed levels below the FS. As the magnetic field is

increased, the Landau levels(LL) start to pass through the FS as a

quasi-continuum. Electrons in states above the Fermi energy enter

states of lower energy whose degeneracy has been increased enough to

accomodate them. It is the combined effect of LL's riding up through

the FS and electrons falling down to lower LL's, which are increasing

in energy and degeneracy, which gives rise to the oscillatory behavior

seen in the DHVA effect.

To mathematically reflect this near continuum of levels in the

LK region, it is appropriate to perform the sum of LL's called for in

eq. 2-12.

The result of this summation is,

b Lc°

7rcia.c.V)S Ci3-(1.)`S
>\*

where, X = /\* (-3 CZ (2-13)

At this stage the following Mittag-Leffler expansion can be

introduced into the integrand
(15)

+co I
77- x s + c- I) /3

Jb.k/-ya, X4 A=L--00 ( 2 N 0) Aiia
fi



M- -at,

Ntl
I )

( S N 7T. ix)\) .icurytk N

'

where 24 means omit the n=0 term.

18.

(2-14)

Each of the three terms in the above expansion will yield contribu-

tions to-11- which we call-11

fields (iit-)4431) it has been

, _fL a __r2-

shown(15,16) that the first term gives

respectively. For "weak"

rise to the familiar Pauli paramagnetic susceptibility, the second to

the Landau diamagnetic susceptibility, and the third to the DHVA

oscillatory susceptibility.

Specifically-113 may be put into the form,

(- I)'+7- e (e) t 111.: -191 L
-41/'ve//8 110/4) 3°

x*

where, 6 = p L j_h \ (2-15)

It is important to note the appearance of the term .A.W6I AnTN)`

in the denominator. For high temperatures and low fields this term

will contribute an amplitude factor which behaves as exp( kal-//t4 )

effectively damping the amplitude of the oscillations. Thus the

experiment is intrinsically a low temperature, high field experiment.

Mention should be made at this point of the pioneering work of

R.B.Dingle
(6)

in extending the above analysis of the DHVA effect to

include electron-impurity interactions. In that case, the LL's are no

longer exact eigenstates of the system and electrons will scatter out

of the LL's at a rate determined by the interactions. Dingle
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incorporated this effect into the analysis by giving each LL a

Lorentzian line shape with a width determined by the scattering rate.

When this broadening was folded into the calculation for_11 , he

found that the scattering could be viewed as a temperature enhancement

effect on the amplitude of the oscillations. Instead of

exp( KelVALJ ) there would now be a term exp(-12)111-1-7°1

where T
d

is the so-called Dingle temperature.

In the quantum limit discussed in the next section, the condition

ji-t no longer applies since the LL's are widely space which

causes them to pass through the FS as individual spin split levels. As

noted by Rode(7), this physical situation has its mathematical

consequence in that we refrain from performing the sum over n in

eq. 2-12 anticipating that the susceptibility will be ultimately

expressible as a sum of nearly non-overlapping terms whose main

contribution at any field strength will come from that LL which is

about to pass or has just passed through the FS.

B. QUANTUM LIMIT REGION

Rather than summing over n as in the LK limit we now work directly

with eq. 2-12 and employ the following Mittag-Leffler expansion,

Tr cAc.fos= p .t s c-
[ e- le]

(2-16)

This produces a decomposition of _S1_ into _Ilo and_//-rwhere,



= -1

b - L.so

- in 2( e
sy°'[sc'- K4001

20.

(2-17)

(2-18)

Here -A, implies temperature independence while _aTimplies

temperature corrections to_ao. This will become evident as the

development continues.

If we make use of the fact that,

.0
CS-k P))k

sd_
Ka p .1]

e- Cs+ k xd x

0

(2-19)

then we may write for either term in the resulting sum for _.12.7

- I
-s g

K

oa C.- l< )(

K
c27

(2-20)

In both _fLoq- , the integrals which appear may be thought of

as members of the following class of integrals,



b+L00

s'
4's eas

21.

(2-21)

which closely resemble the Hankel representation for the reciprocal

rl function , viz.
(17)

6+i: 0o
2 dSal

r(,)) d TT L. -S
- I

- L. 00

(2-22)

Although this class of integrals does not appear directly in the

free electron case, it does appear in the interacting system and the

free electron case may then be thought of as the 144-w 0

the more general problem.

With this notation we may now write,

= C R C std ) )
Tr

_f2.1.- a a s. (7,) C (. t o)

7 0

where,

L LI 1_ 1 e

limit of

(2-23)

The function L(x) has come about by explicitly performing the sum over k.

For the special case of 4 =0 which defines the free electron

case, we can see directly that,



Cyc2 ( .4, o) = r Oa) (-
477(

Cs-A)? (01) (3) = r (-1/a) 04 3/`' e (- )

This enables _no and -R to be put into the form,

r

_ p y- I T,t I 3/4
ti

3

C

4

L y e(-Z)

-7, ec-i)

22.

(2-24)

LI- (ItZS] d7

(2-25)

where a change of variable has been used to obtain the last

expression in 2-25.

These results are not pursued further since they are embodied in

the complete analysis for the interacting system which appears in the

next chapter.

Nevertheless we can make several observations. The step function

E)(-27,) implies that as soon as a LL passes through the FS it no longer

contributes to-2/0 . Furthermore, if we were to calculate the differen-

tial susceptibility , a second derivative in B would introduce a
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e 1/
.yi dependence which diverges as . This is to be

expected since the LL's are infinitely sharp in energy and their pass-

ing through the FS introduces discontinuities in M which are reflected

in the infinite derivatives. It can be shown that the differential

susceptibility, when calculated for a non-interacting system in the

LK limit,also suffers this fate. Of course the introduction of

impurities into the system will remove this divergence in both limits.

We also note that as expected, the main contribution to 2( in the

QL is due to a single LL - that one which is currently passing through

the FS and producing a zero in Z.,2 .

In the next chapter we shall repeat the calculation for-IL in the

quantum limit with the inclusion of interactions between the electrons

and impurity scatterers in the lattice. Although the method used is of

necessity quite different from that of the non-interacting system, the

mathematics is surprisingly similar.



-ri

=
rtl = Ya)I er Gt

=

poiz

0

24.

Fig. 3

Figure three illustrates the relationship among,

E71 CY1411A) t L))

= 01+ yd) cr- jci and
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III. MAGNETIC SUSCEPTIBILITY FOR AN IMPURE SYSTEM

In order to calculate -IL for an interacting system, we will use

the formalism of non-zero temperature quantum statistical mechanics.

The central quantity in this formalism is the Green's function

which is defined as
(18)

G I F 14 - o.

(3-1)

,t.-,
where (P(.7,)z ) and `+' L)( ,t:/ are field operators in the complex time

4
krtic -

Heisenberg picture, i.e. k4)(5)-c-) = -P(x) e with
A A A

A

H 714 N
. H is the hamiltonian of the system, N is the number

operator, and)u is the chemical potential. tr. is the analytically

continued complex time variable which is related to the real time

through . 11,-; is an operator which, for purely immaginary time,

orders quantities according to decreasing values of 1- . The quantity

A

fG, is the grand canonical density operator which for thermal

equilibrium is defined as sQ.= e

A very important property of the temperature Green's function

which follows directly from the cyclical property of the trace is its

periodic structure in the t' variable
(18)

. Specifically we can show

that G(Z)7(1,1z ) GO,, x') . Because of this property we may

expand G in a Fourier series,

G G (x) x') E-9.)
p

(3-2)
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where, (.14+i) /r-/s a = . for fermions.

One can also show that in the set of states, cC> which diagonalizes

the hamiltonian, k

or.,0,)x)
l'-Q) has the form

(18)

C.(17, sA) = < &lc:4> <at)L1>

L -

( 3 3 )

TheC(sa)play- a central role in the analysis to follow because of

the following theorem developed by Luttinger (10)
which expresses ..n-

in terms of the Q(g,a) ,

_II 7-4. .L [I_
P G(g4)

(3-4)

This expression, which is strictly valid for the calculation of

the non-analytic parts of _IL (19), has also been shown to be valid

for the entire thermodynamic potential in the limit of low tempera -

t e
(20)

.

The Green's function can also be shown to satisfy a Dyson type

integral equation,

G= G+CbgG

(3-5)

where G
o

is the Green's function for the non-interacting system, G

is the Green's function for the fully interacting system, and is

the self-energy operator.
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From the Dyson equation, we may formally write,

= G, -41
(3-6)

In terms of the states tc0, which diagonalize G
o

( for our

considerations these will be the Landau levels ), we have,

<ce !eke> = 4at IGno(> <41411,(

(3-7)

At this stage we may note another fundamental distinction between

the LK and QL regions which occurs in the manner in which the self-

energy may be treated.

It has been demonstrated by Fowler and Prange
(21)

and Soven
(22)

that for short range potentials in the weak field region (ii.4.3c )

it is sufficient as a first approximation to calculate the self-energy

in plane wave states as if the magnetic field were absent. The result-

ing introduction of the false k quantum number, in addition to the

expected kx and kz quantum numbers is dealt with by averaging the self-

energy over extremal orbits perpendicular to the kz direction.

In the QL we are not at liberty to make a weak field approximation.

The self-energy will remain a function of the full set of LL quantum

numbers (n,k
x
,k

z
) as well as the magnetic field itself and indeed it is

expected that some of the interesting features of the QL will arise

specifically because of this n dependence.

In chapter five it is shown that < will be diagonal

in the Landau level states if we assume that the impurity potentials
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have azimuthal symmetry about the z axis - a not too restrictive

assumption for a model calculation.

This assumption provides for a considerable simplification in the

formalism since3,

ya) 04< ILL (- a- )1 >

4.4 lc-1.0i
a

Thus we may write that,

_/L = I

j3 d1

where,

Eat = (1'1 + 7c1 + -4°7

ate* a-

(3-8)

( 3-9 )

(3-10)

With the help of an integral representation for the logarithm

which is reviewed in appendix B,.we may write _a. as

p
jai

+ zoo

L "7 0 cl s e-s (-ta

+ X e d, s

."") s

(3-11)

3. In the case that <!.(1i=10(1>is off diagonal, as will occur for
example with spin dependent potentials, the Green's function becomes
a matrix and must be diagonalized prior to all subsequent manipulations.
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(3-12)

It is at this point that this theory distinguishes itself from

other approaches. The closed form sum overga in eq. 3-11 is in

practice impossible to perform. Some authors
(21)

have been able to

use only the leading term as in the special case of electron-phonon

interactions in which a high temperature result permits just the fo

term to be taken while others
(23)have attempted a numerical evaluation

of the sum. The approach we shall follow, first developed by

Bharatiya and Wasserman
(24,25)

, consists in expanding g(fsz) about

retaining the first two terms in the expansion and then summing

over all .Q . It has been applied to the impurity and electron-

phonon problem
(24)

and has been able to turn the immaginary axis

formulation of statistical mechanics into a practical quasi-

particle approach for dealing with interacting systems.

Mathematically this approximation to the exact result is depend-

ent upon 4(tsObeing a slowly varying function of g..9, . Alternatively

one may conceive of the approach as attempting to develop a one or

more parameter approximation to an otherwise unassailable problem.

The approach will ultimately stand or fall on its ability to describe

the experimental data.

We proceed with the analysis by using the Poission sum formula to

accomplish the sum over -Q That is,

r a-airLNy a- scy)
yo

e

(3-13)



As discussed previously, we shall assume that

(y) = Co) y
cf y y

30.

Performing the summations and integrations called for in eq314.3-13

will require the use of the following properties of 4 , all of

which are easily derivable from the spectral relation
(1

8
)

,

dc,

3_40 L. S Q- 4)

-rvt 44 (1'42 0 Fo

=1: < Foy

< 0

11 (LI) '7/ 0

(3-15)

We shall also employ the identity,

ogo

1 >°)e z

By using relations 3-15 and 3-16, eq. 3-11 reduces to

c<

ads
s co)

S Ott e-s

s e-s *CO

s (c)]

(3-16)

(3-17)



Making use of the actual form of g(0), we can write after some

algebraic simplification,

= !
f

[id i(go)°e) e('`))4)/07]

f4t4t 4 4. 11(rE')/071

SUL,/ 11.(Icb)Ct) (r ) /a1

1o) = (Y)
dy =0

ei(v))/4]

31.

(3-18)

Although we could continue using the above form and develop a

two parameter theory involving and we shall henceforth assume

that,

gi(to) << 4(°) "
Thus we may finally write as

-n- = cis e- st:L<
0( s 4.,

Ska
jezaivi, s

In eq. 3-20 the sum over states is of the form,

=
=

174 714 t

(3-19)

(3-20)

(3-21)
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We now further assume that 1(14i-)is a slowly varying function of

k
z

so that,

_AS
(f(14))cK)

00

With this assumption we may now write,

_IL =

c?7r,:

71 15-

-
s-3/4

= e B Aid-br

ha c A

71 C Afk. X°

_ T /A

(3-22)

(IS Tr cio.k.,..0S

S /4

e

(3-23)

Contact may now be made with the results which were derived from

a more conventional point for the non-interacting system by letting

4t =0 in eq. 3-23 and comparing the result with eq. 2-12.

Making use of the expansion
(26)

fr' 13'3

cALC.. go s =

as well as the relations
(26),

(3-24)



CC:7 eS
GO,

07q3

( s-t-10)?( ,

allows us to write, _A =--110#22.: 1-21; where

-o = fa
Ts-ia (4) i.r)

and,

T-4 (04 1 tr)

=

LU,) (At- 1,.y)

0

b+LD° ds
S-4 b-z.00

= "4-

33.

(3-25)

(3-26)

(3-27)

(3-28)

(3-29)

These integrals are evaluated in appendix C where it is shown that

174 )Z1=) = S-2 (1") mt)

with

(3-30)



and

,5-/c2 (.1 i A4 = Ar;- GC,) ]1-1
z

(= EQ-c)

34.

(3-32)

(3-33)

Before we proceed to calculate the susceptibility, there are

still some points to resolve.

First is that M depends explicitly upon B through all the obvious

dependencies as well as through the not so obvious dependence contained

in the chemical potential as well as the self-energy. Therefore, the

expressions for M and`x are of the form

141=--(A (L-(1-)

JP) 4/ a/,.4,8

t ( cifi 4.(11)
6'z c),4

(3-34)

(3-35)

This implies that one needs explicit knowledge of the field

dependence of both the chemical potential and the self-energy in order

to calculate the differential magnetic susceptibility.

For the LK limit, p is known to vary with B according to

Lj1,110r
(3)

wherejJ0 is the chemical potential at zero field. Taking

this correction term into account introduces terms of negligible

effect into the calculation of in in the LK limit.
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In the QL however, ji may show a less than negligible variation

with B, particularly for the n=0,1,2 peaks.

In fig. four we show some numerical estimates obtained by Rode(9)

of the p vs B variation for the n=2 level in pure Bismuth.

Figure five shows the effect that including thisp(a) dependence

has on the shape of the differential susceptibility curve. The outer

curve is computed with ap.(e)dependence included while the inner curve

excludes it. It should be noted that the inner curve is scaled down

slightly from its)/ constant counterpart but is essentially un-

altered in shape by the exclusion of theft(G) dependence.

Experimentalists have found that the most useful characteristic

of the line shape for extraction of Dingle temperature information is

the slope on the high field side of the peaks(). As one can see,

this slope remains essentially unaltered by inclusion of a B dependence

in ,a . TheiuMdependence will however be important in determining

the location in B of any particular peak even though it will not

appreciable affect the shape of any peak.

It should also be noted that,(,( will not be the only parameter

which will affect the location of a peak but will appear in the theory

inseperable linked with the real parts of the n and possible B

dependent self-energy through the expression,

0171,0- (11 1/0 6- (8 ( 6)

(3-36)

whose zero determines the position of the T=0 peak on the B axis.
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Figure four shows the variation in electron Fermi energy as a function

of magnetic field strength for a model calculation for Bismuth. The

magnetic field is in the binary direction and covers the range over

which the n=2 level empties. ( ref. 9 )

Figure five shows a comparision of the differential magnetic suscepti

bility calculated with and without the Fermi energy fluctuations.

The inner (narrower) waveform is for constant Fermi energy. The

constant Fermi energy waveform has been displaced in field by a few

percent in order to facilitate comparison of the curves. ( ref. 9)
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The real part of the self-energy terms will in general consist

of contributions from impurity scattering centers and from crystal

potential effects. In lieu of a specific band model, we shall

determine our total effective
( 4/1t

) from the

available experimental data on peak positions and neglect the internal

variations of,U within any peak. We shall also assume that (Z) is

a sufficiently slowly varying function of B so that its derivatives

with respect to B may be neglected.

With these points in mind, the calculation of NI and 1.)(

proceeds in a straight forward manner and we find that,

rl .-.. M (-n,cr)
(3-37)

(3-38)

M(71,5-)=. [Q(..4)-G+11ht -1. I. (..1)

{t. kOzt CGC-1) +AYA 4. Q( [GCS)- 1/1- 1.1a (aq
3

1.(.n)0) C,42333 ,C-GC°) -°t]
G(.+)

`71.C,13) E.GC.4)- 04-f/A

G (a) = [ +14121 VA

L c) = [1+ e-

(3-39)

(3-4o)

(3.-41Y



E () =
soy

Fa

.1. (C)

G(z)

F. (z)
G(z) G()

oC)

0

/3

L (x) (014-1,)

0

_712z (a) E. (x)
0

= e -yn*

hac

( '/A) cs- dirs

C-n At,? -du

(c(x)] x

FA(.1--7.)]

37.

(3-42)

Equation 3-40 should be compared to eq. D-12 which will show the

equivalence between the T=0 susceptibility as derived from our formal-

ism and from Rode's (9)
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Equation 3_40, which is the main result of this work, expresses

the magnetization and differential susceptibility in the QL for an

impure system as a sum of individual terms each of which corresponds

to a particular set of the LL quantum numbers (n,67).

The quantityol(-Na-)plays a role similar to that ofi0,0")in the

non-interacting system but includes the renormalization of the LL

energies caused by the introduction of the real part of the self-

energy.

The divergence which occured in the non-interacting case has

now been eliminated because the function C; 01) 01'2' 4.m -1

does not diverge as 0( 0 due to the fact that is not zero.

It is also apparent that the contribution of any particular LL to

M or7\ no longer abruptly ceases when o( becomes positive ( i.e. as the

LL passes through the FS) but now contributes a steep but finite slope

on the high field side of the peak ( approximately at ct =0 ).

The sharp discontinuities of the non-interacting case can be

regained by noting that

0

We again note the distinct separation between T=0 and TO

and 12) terms which allows their relative importance to be determined

and which facilitates further analysis of the temperature contributions.

Of crucial importance is the fact that J1 in each term is a

function of n,6-, and B. This fact is capable of producing

substantial modifications in the observed line shapes from those found
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on the basis of a strict Lorentzian broadening for all levels.

In chapter four we shall turn our attention to an analysis of

the TOO terms and in chapter five we shall discuss the calculation of

a realistic :(11,0--,13) in the Born approximation.
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IV. TEMPERATURE CORRECTIONS

A. MATHEMATICAL ANALYSIS

Unlike ordinary Fermi gas problems where the low temperature

corrections are usually negligible, both the quantum and LK limits

require the inclusion of temperature effects in order to fully

reproduce the observed line shapes.

The only other theoretical treatment of the QL previous to this

one (9) did not attempt to isolate the temperature from the zero-

temperature terms nor was that theory cast in such a way as to

facilitate such a decomposition.

In the present work however we see that the temperature correction

terms are expressed as integrals of the form,

(00

0

(4-1)

I

The rapid decay in x of the function L 1+ tx at low

temperature suggests an approximation technique based on Laplace's

method of asymptotic expansions in which the function +04(.`4-''')1

is expanded about x=0. It is hoped that if and when the expansion is

forced to leave its region of convergence, the function e-
fax

will be small enough to render the errors incurred negligible.

The functions to be expanded both contain terms of the form

I(.( r,)4 4q2 ]-111

(4-2)



which have branch points at x= klt.0 . These branch points limit,1
the region of convergence of the expansions to

,

LP'
a+ 4 VA

24x J

Thus we expect that the asymptotic approximations will be accurate if

KEY

E 0(Q, 4a;i1 '
< I

These conditions will hold far to the right or left of any

particular LL crossing ( i.e. 14 )Ka-r) or near the crossing region

itself ( lett< K81- ) provided that the scattering is strong enough

or the temperature is low enough so that Ka 74 I

Keeping these points in mind and retaining only the first terms

in the expansion of the integrands, we find that

I-1(00 c; F:(01,) x EQ,L) c..(x 7°7 RA00
0

0°
(c() = A Fi'(d) x e(x) Cbk 2_r_ Fa (00

0 6,0°2

F (00 (c 4) 4.01
(co

e(co
ci

2,4 akc'T
(ck) (z, Fi (00 _

4. Recall that ok may be thought of as the field dependent distance of

any LL from the FS and that the dominant contributions of that LL

occur in the region opON-, 0 .
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Higher order terms in the expansion have been investigated ( up

to three terms have been examined ) and we find that although the

absolute deviation between the exact and the approximate results

becomes smaller on a point for point basis, the introduction of more

terms causes the line shape to become distorted in such a way that one

might mistake the distortion as being a spin induced effect. Thus we

rely solely on the single term approximation for our analysis.

B. GRAPHICAL ANALYSIS

In the graphs which follow we examine how well the single term

asymptotic approximation corresponds to its "exact value" as

determined by a 41 point Legendre quadrature on the temperature

correction terms.

We are not only interested in how well the approximation fares

in an absolute sense but even more importantly how well it fares as

compared to the exact result when each is added to the zero-temperature

term to yield the contribution to the total susceptibility for a

particular LL at any given temperature and scattering rate.

To accomplish this the graphs which follow are presented in

groups of three. The A graphs in each set show the exact temperature

contribution to '7C and its single term approximation ( )(77 and XTA

respectively ) plotted on the same vertical axis with the magnetic

field plotted along the horizontal axis. The A graphs will be an

indication of how accurate the asymptotic approximations are in an

absolute sense.
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The B graphs show the zero-temperature contribution tor)( and

the exact temperature contribution, which we callV) and 'X T

respectively, plotted on the same vertical axis with the field plotted

along the horizontal axis. The B graphs will indicate the relative

importance of the temperature terms as compared to the zero-temperature

terms.

The C graphs show the total susceptibility
5
^,K='XC)4 T and

the total approximate susceptibility-AA= -AO +IJ-A plotted on the

same vertical axis with the field again plotted along the horizontal

axis. The C graphs will indicate how effective the approximate

formulas are in reproducing the exact susceptibility.

In all cases, the susceptibilities displayed along the vertical

axis will be plotted in units of D= e 47Y's cm
3 while the horizon-

ha

tal axis will be in gauss.

The data chosen is that which is applicable to the n=3 level cross-

ing for electrons in Bismuth
(9)

, viz;

m/m = 106.383 G = .545 )7 = .01897 ev.

As we shall see, the critical factor which determines how

accurate the asymptotic approximations are is the ratio of the

temperature T to the Dingle temperature Td.

5. Ofcourse the total susceptibility at any field value is a sum of the

contributions from all LL's at that particular field value but the main
contribution is due to the particular LL which is about to cross the FS.
It is only in this region (o{ ti o ) that the asymptotic expansions are
expected to fail. Rather than plotting the total susceptibility, we
are examining the contribution to the total susceptibility of a

particular LL in the region where that LL is crossing the FS.
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From our graphical analysis we've found that for physically

reasonable Dingle temperatures of the order of .6°K, the asymptotic

approximations are extremely effective in reproducing the total

susceptibility line shape for all temperatures less than .3 °K. They

become less effective as the temperature increases past this point

and in order to see the effects introduced we begin the graphical

analysis right at the point(.3 °K) where the asymptotic approximations

are on the verge of losing their effectiveness.

In figs. 6 A,B,C, T=.3 °K and Td = .6 °K. For the n = 3 level,

the crossing occurs at 4394 gauss and graph 6A shows that once we are

-4
approximately 70 gauss past the crossing point (10=3)g) ,q(ar=.7.W.0.0i)

ev

the discrepancy between the exact temperature result and the approxima-

tion to it is negligible.

Figure 6B shows that for T =.3 °K and Td =.6 °K, the zero temp-

erature term sharply dominates the temperature term so that any minor

discrepancy between -)C-1- and-X7-A will tend to be masked by the

overpowering 7c0 term.

This effect is shown in fig. 6C in which it is not possible with

the given resolution ( two curves are plotted ) to see any distinction

between and 7C A for T =.3 °K and Td =.6 °K.

In fig. 7 A,B,C, the scattering rate has remained at .6 °K while

the temperature has been increased to .4 °K.

Figure 7B shows that the relative importance of70 to 70 is

increasing while fig. 7A indicates that the approximation toVr is less

accurate in the crossing region although still extremely good for

'73x/0-14*ev .
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These two effects conspire to produce an observable though

still small distinction between 'X and'7< Pt as evidenced by fig. 7C.

In figs. 8 A,B,C the temperature has been increased to .5 °K

with the Dingle temperature still remaining fixed at .6 °K. Figure

8C shows the distinction between 'X and-Xit becoming more pronounced

but the line shape is still reasonable accurate.

In figs, 9 A,B,C, the temperature is greater than the Dingle

temperature ( T=.7 °K, Td = .6 °K ) and we see that not only is the

error caused by the approximation large in magnitude ( fig. 9A ) but

it begins to introduce some spurious structure into the line shape

exhibited in fig. 9C which resembles that caused by spin splitting.
6

These first four sets of graphs indicate that the transition

region occurs for ratios of T/Td = 2/3 when T=.4 °K and Td=.6 °K.

In the next two sets of graphs, we examine the same ratio (2/3)

of T/Td but in figs. 10 A,B,C we have T=.2 °K and Td=.3 °K and in

figs. 11 A,B,C we have T=.8 °K and Td=1.2 °K.

From these graphs we can conclude that the ratio of T/Td = 2/3

is indeed the transition region for the asymptotic approximations to

be useful over a wide range of low temperatures ( up to .8 °K atleast )

with correspondence being slightly better at lower temperatures since

the temperature corrections become less important with decreasing

temperature.

Finally in figs. 12 A,B,C we look at an extreme case of T=.3 °K

6. This effect is similiar to what occurs when a more than one term
expansion is used.
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and T
d
=.1

o
K and we see that the asymptotic approximation greatly

overshoots the exact temperature term (fig. 12A) while the temperature

correction term itself contributes a significant portion of the total

susceptibility (fig. 12B). It is also apparent from fig. 12B that

the temperature terms tend to lower the amplitude and broaden the

line shape of the total susceptibility. Figure 12C shows how in this

extreme region (T/Td=3) the asymptotic approximation is totally

ineffective in reproducing the line shape in the vicinity of the

crossing region but still remains accurate once we are sufficiently

far from the peaks.

Similar sets of graphs have been examined for different n values

and we conclude from these that the only distinction between n values

is in how far past the peak one must be before the asymptotic

approximations are effective independent of the ratio of T/Td.

With decreasing n values one must move further past the peak in order

for the approximations to become of value. The ratio of T /Td2 /3

still appears to be the crucial ratio in the vicinity of the crossing

point.
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V. SELF- ENERGY CALCULATION

A. INTRODUCTION

The development of chapter three and the graphical analysis of

chapter four shows how sensitive the line shape of the susceptibility

is to the electron-impurity and perhaps other forms of the self-energy.

It should be noted that in our approach it has not been

necessary to invoke the short range or "weak field" approximations(21'23)

which would allow one to calculate the scattering matrix elements in

plane wave states. In fact, a characteristic of our result is that

4 will explicitly depend upon the LL quantum number n. It should

not be surprising then that each QL peak may indicate a different and

therefore field dependent scattering rate. The scattering rate may

also have an internal field dependence, apart from its overall n

dependence, which may cause a departure from the constant Lorentzian

broadening which has been assumed in previous analysis of the

QL (see appendix D).

Exploring this aspect of the problem is extremely difficult since

one would ideally like to calculate the scattering rate (immaginary

part of 7 ) using the exact LL basis states in conjunction with a

somewhat plausible model potential.

Among some of the factors which contribute to the difficulty of

such a calculation are:

1. Purely mathematical difficulties involved in calculating

matrix elements using the LL basis (see eq.2-7).



69.

2. Physical considerations concerning the nature of the

impurity system which determine the degree of sophistication

required of the self-energy approximation, e.g.

a. the existence of bound states or strongly repulsive

states of the impurity potential.

b. the range of the scattering potential and,

c. the concentration of the scattering centers.

The mathematical difficulties which one will encounter are

fairly obvious and have been considered by both Brailsford
(8)

and

Dworin
(27)

.

Brailsford attempted to calculate the self-energy in the Born

approximation using an arbitrary spherically symmetric potential but

was not able to obtain a result valid for all field strengths and

potential ranges. Dworin developed a more formal approach to

the T-matrix series but he also was unable to reduce it to a useable

form.

Even though. the Born approximation is a difficult enough

calculation, it is still the simplest approximation one can make to

the self-energy and in that respect may not be adequate to reflect the

physics of certain situations. This will occur, for example, if the

impurity potentials can support bound states. In this circumstance

the investigations which have been done on impurity band studies(28'29)

have indicated the need to introduce a self-consistent T-matrix

approximation to reflect the existence of bound states. The nature

of the self-consistent T-matrix approximation is such that it is
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not mathematically feasible to carry it out using a realistic

potential. The usual approach then is to invoke' either a delta

function or a seperable potential in order to simplify the analysis
(2

8
)

One aspect of this simplification is that it removes a crucial

convergence factor from certain sums which occur in the analysis. To

prevent the divergences from occuring, a cut-off is introduced into

the sum(similar to the Slater-Koster model) which is either

related to the strength of the bound state(30) or to the range of

the potential
(29)

Even if the potentials could not support a bound state, a self.,-

consistent approximation may still be required if the range of the

potential is long enough to cause multiple scattering events to be

of significance. Again one is confronted with the necessity to

invoke the delta function approximation to carry out the analysis

and range effects are later recovered through the cut-off in a manner

analogous to that described for the bound state problem
(28,29)

It

should be noted that although the delta function has the advantage of

simplifying the analysis, it has the distinct disadvantage of

removing all explicit quantum number dependence from the self-energy.

One final comment which is applicable to all self-energy

calculations regardless of their complexity is that one must always

perform an ensemble average of the impurity centers over the volume

of the crystal. This has the effect of introducing a "cumulant

averages II 7 as a prefactor multiplying each diagram
(31)

. This in turn

7. These are complicated polynomial functions of the concentration.
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greatly complicates the summing of diagrams which then can only be

carried out exactly in the limit of small concentration. A coherent

potential approximation
(32)

, which is essentially a double self-

consistent approximation, has been developed to deal with the case of

high concentration factors.

From the above discussion it should be apparent that a Born

approximation may not be sophisticated enough to adequately describe

the self-energy in the QL. But on the other hand more sophisticated

approaches demand that on relinquish straightforward information

concerning range effects and quantum number dependence by substituting

the delta function for more realistic potentials.

We shall attempt in the following analysis to perform a Born

approximation calculation using a realistic potential with range effects

in full LL states. We shall find that, as opposed to Brailsford

who was able to evaluate the self-energy only in the limits of weak

fields or ultra short range delta function potentials, we are able to

evaluate the self-energy for all values of range and field parameters.

The evaluation is expressible in closed form in some regions of the

parameters (as an approximation) and as a simple quadrature in

others. In those regions where a simple analysis is possible, we find

general agreement with the experimental results to date concerning the

field dependence of the self-energy (7)
.

The above discussion may be put into sharper focus by introducing

Feynmann diagrams to represent the contributions of various terms to

the self-energy.
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The diagrammatic analysis may be generated most easily by noting

that the full self-energy for the random collection of impurity

scattering centers is of the form
(17)

I T 4- V G \IT -0
(5-1)

where VT- is the full potential due to all scattering centers and

(a.) V
L=I

where \I ;LI)

at position a: .

(5-2)

is the potential due to a single impurity

The Born approximation consists in taking only the first two terms

in eq. 5-1 and performing an ensemble average over all scattering

centers. We shall describe what occurs in the Born approximation so

that its diagrams may serve as a prototype for the more sophisticated

approximations we wish to describe.

As is shown in detail below, the ensemble averaging yields an

expression for (retaining only first order terms in the concentration)

of the form,

":0 c 3/1 VM.) v(r-Fi.z) V(7-72,.)

(5-3)

In terms of diagrams this expression may be represented as,

=

C5-4)



where,

impurity scattering at site r..
i

G. ( Y`)y )

73.

(5-5)

Since G = Go G. Z'G
2
this implies that the expression for

G within the Born approximation includes the following types of

diagrams

t A
+

.

(5-6)

where indicates the full Green's function. As

mentioned previously, each diagram will be multiplied by a cumulant

averages coefficient ( not shown ) which arises from the ensemble

averaging. These coefficents will all reduce to c in the limit

that C < < I .

In the self-consistent Born approximation, the Go line is

replaced by a full G line, yielding

C5-7)

Now the diagrams for G will include the following type,
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(5-8)

It is these diagrams which bring in the multiple scattering aspect

of the problem.

The T-matrix approximation for single impurity impurity

scattering assumes that 4 is of the form

4-

(5-9)

while the self-consistent T-matrix formulation replaces the Go

line with the full G line, leading to the inclusion of the following

diagrams,

B. BORN APPROXIMATION

(5-10)

We shall assume in the Born approximation that the self-energy is

given by,

(5-11)
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Since the first term is real, it will only contribute to a

shift in the chemical potential and therefore our attention will be

concentrated upon the second diagram in eq. 5-11.

In order to facilitate the ensemble average over scattering

centers which must be performed, we write

= <ad h.> q0Ch1,5-')< Vr(?2-)Vr(iZt)

(5-12)

where the obvious spatial integrations are left implied.

In terms of the Fourier transforms of the atomic potentials we

have,

NiT(.2)\17-(2t)

-/
i: IT- ca-.' -/Li.) )0( 13,$)c V(17) e e-

(5-13)

The ensemble average of Vr(71) \17(72:), which we designate as

r(72.) \I-r(i,Thr>e , is therefore related to the ensemble average of

e e ,/ where F. and T. cover exactly the same set of

scattering centers.

We may thus write,

(5-14)

We first consider,



LICW+R ).
d'a.

d32 < c Cn-

- 76.

(5-15)

where c = concentration of the scattering centers.

The contribution of the first term in eq. 5-15 to ft/ is

therefore,

CK.070C,(71,(T)<12111-C> cciN v(r<Ivi0 e

(5-16)

But it is easy to show that,

(:17- clE-72.)
v 0-0 vein e d3n;. V C7E- 7-0 v (7z1- (7.0

(5-17)

Therefore, the contribution of the first term to 14 after

ensemble averaging is,

41(0?)0()) = 40(\ri_< (2.) <2'10C>

where

<77-101 72.J> ci3aL Vcii-721) V(21-72;.,)

(5-18)

(5-19)



Diagramatically these terms may be represented as,

77.

(5-20)

It can be shown in an exactly similar fashion that the second

term in eq. 5-14 gives rise to a self-energy term which is of the order

c
2

We shall ignore these contributions and take eq. 5-20 as the

Born approximation to the self-energy.

Before we can make any further progress in the analysis of the

self-energy we need to calculate Go(r, r'). In terms of LL states,

this quantity may be expressed as,

<2k0<tx\i-C>

(5-21)

This calculation, which is detailed in appendix E, follows the

lines introduced by Dworin(27)but necessarily incorporates a different

set of arguments to make the extension to the Matsubara Greents function.

The results of the calculation show that,

0
Z4'
cr=17 I

k

KS. I 11-'. 72I41 ( y +X)
e

(T-- aft

(5-22)
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where,

a
kJ. ati iejz. >, 0

When this expression is incorporated into the one for 4 the

result may be expressed as,

walt_a_ii
(X-x)(yi*/)(

i(c6c,V)= C \l(q) e e 07. J act 0, a') \/(a')%
9-rce'"

x J3a_ 4321

(5-23)

where,

- (..)cl-)(),/,-.. _

SQ./d') =fe ' 9)01 (tzi- ) ((Z

(5-24)

The calculation of s(a)ca') was first performed by Dworin
(27)

,

and is outlined in appendix F. We present there an alternate derivation

which utilizes integral representations in a manner which makes this

calculation much simpler than the one originally presented in ref. 27.

The results of the calculation show that,



_S(41.1')=

790

e
-r1 I

)( -L0)4-'771e-lrf2/t.tin: (Lte`-1('-N niVol e
a

(sik )4, cy yir'j

( 5-2 5)
For 14 < 14

5 the roles of n and n' are exchanged.

The crucial point to note here is the appearance of theterm

-'9S (ii --n')
, where is the azimuthal angle associated with the

vector /2-- IL

When we calculate we must integrate the potentials V(r) and

V(r') over all space together with the above expression in 56 . If

the potential possesses azimuthal symmetry, as we shall henceforth

assume, then the integration of the coordinates will yield zero

unless n = n'. Therefore the self-energy is rendered diagonal in all

the Landau level quantum numbers.

Anticipating this diagonality in4 and using the diagonal form

of S(.+26, we may write eq. 5-23 as

(ct)z-- - c (2) Wst.I 21 I
L. 4

Y-)

11(2 e) \/((z')ci3rtd3A1

(5-26)

We shall continue the analysis by letting the atomic potentials
-at 2

be represented by a shielded coulomb potential; V(r)= Vc e-



as,

80.

This potential is expressible in terms of its Fourier transform

K4-t- 0(2

d3K

(5-27)

Using this expression in eq. 5-26 and making the change of

variable P1=1" F.-P=R ( we shall write R as F. in what follows) we

find that,

a

Y-ire (01)*1

( i

i.17-(17.+72.1) L K12 Z .1

-i
Ka -fr ,= 4 IL K

,

I- C;

01

eieCt3KIC13(4 Ci32'

(5-28)

The integrals over r/ may be done immediately and yield

(17).3
S*(17t4e) which makes the k' integration trivial.

The result of this is,

C
L K 2

eL Ii(Lta) (1313
CI` c)7r4 (el* .4°1)4

2

B t
(26)

a 4 _ oe

K

f<+-."(T1 of

(5-29)

(5-30)



This can be further reduced by noting that, (33)

00 4\7a - 4,14
- Ca-,:kg) (sa+

1- 1 e
e

( (1.t. .1 ) 1/4
oc)

if-7r /1(0
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(5-32)

Therefore, with our particular choice for the atomic potentials

we have been able to reduce the selfenergy to a form which involves

only one final integration, viz.

(or, ,;? c

c**

L! 1?0( zA.)

(5-33)

Since our main concern in this work is with the susceptibility

near the quantum limit we shall be interested in gol for small values

of n. We may then expand the Laguerre polynomials in their series

form,

where,

L ( = C -747)
-pyt =0

(-)1) 01*

(5 -31i



This puts -1 into the form,

(,c4,) q-n) 2c.yobois
cm

But
(26)

o .17Kfl gaAL Ko(ra)
0

am+t _se
e

t 274 A L(

=

LIL

(ill e.
tyA

L sz

ciy

82

(5-35)

zx2''Af
- (-A1

(5-36)

<*)
where \AI is the Whittaker function which is defined in terms

-01w44,0
(

of the more familiar confluent hypergeometric function as,
17)

t) =
--z"Va)0

e
r

Uclvt It )4)

Setting kz=0 and f4 = o as required by our formalism

finally yields,

(

We now recall that,

(5-37)

tt,/,2x a

OW 0711171 I. t°

-n -70 1
C. 0 (?)., +140 o

(5-38)



where,

--Lee

,,
= t 0--G-t j

Ct
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(5-39)

Since for the range of parameter values of interest to us,jj

dominates the other terms in the numerator of Ko by a factor of

4
100, we will approximate k,t, by -4172* = fCF , where

k
f
is defined by the last expression.

A
We note that neglecting the immaginary part of Xt, is equivalent

to neglecting the temperature dependence of 544

Now,

by

that

a
I

(5-40)

Furthermore, as the n
th

LL passes through the FS, 2S is given

a
6-y1

dcsG-M
.(5-41)

Ai
s , atTherefore, in terms of n alone, the value of 1 to p

field value where the n
th

LL is crossing the FS is,

t- I)
KF

(5-42)
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We see that there are two circumstances under which Ito /61 > >I ,

a. >> K F - short range potential, any n value.

b. lel>) I - long range potential, large n value.:

When either situation applies, we may approximate the Whittaker

function by,
(17)

\A/
(7ni-J-1 0 (1.4./

-3.177'111)

This enables the self-energy to be expressed as,

71,

(-1)111-41, (02 7r0
rn

of C '" (11--Yrt)

(5-43)

(5-44)

,.;/
We note that since LaOS > /1 eq. 5-44 under conditions a or b

is highly convergent in m and may be well approximated by the first

two terms in the series.

Thus,

4i(72) = .02 C Tr. 2571

04 C/4 zo zap

(5-45)

The real and immaginary parts of are found to be,

- ,21(
4-X114°1- cr

q?)°'

2

ate (./4+4)



41x(71)= 02 .4 15 11 KF (da-KF

c* (..14*-4r (Ge44- t(F4

21st

For case

3 c.

85.

(5-46)

a we may neglect kf with respect to c4 and find that,

271c7rINIF

C'd

c (1(F/004

01'14) -cr-N1

/ .4)4

(mot 0-43.1

For case b, 11) '7 I we find that,

= C
#

C

4c. Tr.
3

ieg C

c
04

3

o
*c

-Y1

(n + .2)- cr- CM

02 11

(-71 41-1) 6-CM

(5-47)

(5-48)

We may conclude from the above analysis that the self-energy in

the Born approximation is not inconsistent with the experimental

results in the regions in which we have been able to examine it simply.

For the short range potential, whether one is in the quantum limit or

not, the self-energy is essentially field independent while for long
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range potentials in the LK limit we note that although there does

exist some slight field dependence through the quantum number n, the

self-energy is still basically field independent.

A field dependent self-energy is most easily obtained by making

use of a self-consistent-argument for calculating the self-energy. A

self-consistent Born approximation would proceed along the following

lines,

These diagrams may be translated as follows,

(5-49)

G. (a ) = I Kn, ka,6-

LI EA, (.()

Therefore, we may write,

C <dl v 1 I

(5-50)



and,

cI 2 zi
11.0

kz ( <c< iv!

if one now assume a delta function potential, then

4,=11\1 h3>\°1 = o= constant

c \it B7i5,17r X
- 41]YI=O r

L
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(5-51)

(5-52)

(5-53)

It should be pointed out that the assumption of a delta function

potential has effectively removed a crucial convergence factor in eq.

5-53 so that the sum over n is no longer convergent. To remedy this

one can insert a cut-off fact N
t

into the sum to duplicate the effect

of a finite range in the potential. Doar
(34)

has analyzed this

approach in great detail and developed a relationship between the cut-

off number and the Thomas-Fermi screening length. For very long range

potentials he finds that a cut-off of N
t
=1 is sufficient. An analysis

of eq.5-53 shows that taking the sum up to one will yield an

G1approximate c-Z rill)/3 dependence in the self energy.

A number of points should be noted. First is that the assumption

of a delta function potential has eliminated all quantum number
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dependence from the self-energy and secondly, range effects must

now be reinserted in a somewhat less than rigorous fashion.

It should be mentioned that the analysis of Doar
(34)

was

ostensibly a full self-consistent T-matrix approximation, but as

applied by Rode and Lowndes (7) who bring in the assumption that the

potential weighted density of states function( \it, ."00) ) is < < 1

and use this to approximate the self-energy up to second order terms

in V
o

, it appears that they are weakening the full T-matrix to

obtain a self-consistent Born approximation. Even with this

relaxation they are still able to generate a 1Y143 dependence in

for the long range potential problem in seeming agreement with

experimental results.

In view of these facts, we content that there may be some hope

that a self-consistent Born approximation utilizing a realistic model

potential with range may be able to be performed and may adequately

reflect experimental results.

The analysis will be by no means trivial but it is expected that

the calculation would build upon and incorporate much of the analysis

performed here into an iterative procedure which when applied to

eq.5-53 could extract from it in a self-consistent fashion while

still retaining full range and quantum number information.
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VI. DISCUSSION

In the preceeding analysis we have concerned ourselves with an

examination of the magnetic susceptibility of an electron gas in an

impure lattice in the magnetic field region known as the quantum limit.

We have worked throughout within an effective mass approximation to the

band structure of the solid and have introduced the self-energy

function, in a linear approximation, to account for the presence

of impurity scattering centers
8

.

Our main result is embodied in eqs. 3-40 and 4-4 which show that

for temperatures on the order of .4 0K or less and for corresponding

Dingle temperatures of .6 °K or more, there exist simple algebraic

expressions which accurately represent N and"; in the quantum

limit region. It is hoped that the simplicity of these forms will

allow experimentalists to extract information from the line shapes

using techniques which complement those already in use. The current

methods involve the generation of ';( vs B curves and the extraction of

Dingle temperature information from the steep slope on the high field

side of the quantum limit peak. This slope is highly sensitive to

the scattering rate (being infinite for a pure system) and appears to

be the prime reason why the experimentalist concerns himself with a

measurement of r)( rather than M. The higher the derivative taken,

the more structure one introduces into the observed effect.

In principle though, there is no reason why the magnetization could

8. The self - energy may be extended to include other effects as well,
e.g. realistic band structure effects or electron-phonon interactions.
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not be measured as well as the susceptibility. It is true that for

high scattering rates the shape of the magnetization curve is not

very rich in detail and its high field slope does not have the

sensitivity to variations in'r that the susceptibility displays.

But it is precisely in this region of high Td in which the present

analysis is most useful. Thus quantities such as the maximum peak

height and B-axis crossing points may be used to extract information

from the line shapes which may supplement and substantiate the more

traditional slope measurements.

Of course, one would need to have available the individual

contributions to the susceptibility from each LL isolated from all

the others.

This would seem to be feasible for the lower LL's in particular

since they are widely spaced from each other and it is only the low

field "tails" of the higher LL's which effect the shape of the lower

ones. In fact one can easily show that the expression

r\kyl = (rt ya) rh - (3- G-1 04 C/A ae>)
(6-1)

adequately predicts the susceptibility in regions far from the peaks.

These contributions may be subtracted out on a term by term basis

starting with the n=0 level and progressively extracting each level

out from the total susceptibility.

This assumes that the ultra-high field n=0 level is available

to the experimentalist. If this ideal is not achievable, one can still

use the analytic forms obtained to perform a parametric fit of the
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observed line shape and then analytically retrive the individual

levels from the susceptibility.

If this procedure could be accomplished for the magnetization

as well as for the susceptibility, then it would have the added

advantage that one need not concern oneself with the possible

ramifications of a B dependence iniu since 01= (-ILL\
(;) 1)4

Furthermore there exists the possibility of incorporating into

the experimental approach to the quantum limit a hybrid technique

which can appreciably simplify the analysis even in those temperature

regimes in which the algebraic forms are not valid for all field values.

It will be recalled that the algebraic forms will hold if one

is sufficiently far from a quantum limit peak or in the near vicinity

of a peak if the ratio of T/Td is approximately 2/3. In the event

that this condition does not hold, one can still use the algebraic

forms for the majority of the analysis and reserve the numerical

integrations solely for those relatively small number of points in

the neighborhood of the peak itself.

The current analysis also has the potential of providing a key

for the analysis of spin-dependent scattering effects. These

would be most accurately observed in the n=0 level where the spin

splitting is largest. These effects would be taken into account in

the formalism by treating the self-energy as a matrix.

The simplest possibility to consider would be when 4/ was

diagonal but different for different spin states. This case would

require no substantial modification of our present approach and
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could be dealt with almost immediately.

In the event that 5 is off-diagonal in the spin quantum

numbers, we would first have to diagonalize the two by two matrix

and then carry the formalism forward from that point. This also would

not seem to present any insurmountable difficulties.

The question of electron-phonon interactions at high magnetic

fields may also be examined in the QL.

In the LK limit it has been shown
(22)

that 1; for the electron-

phonon interaction is a purely immaginary quantity and is simply

proportional to the temperature. This linear dependence on the

temperature causes the electron-phonon self-energy to appear as a

mass enhancement effect rather than as a temperature dependent

scattering rate as one might initially expect.

In high. magnetic fields on the other hand, the strict linear

dependence oflil with T is not guaranteed and it maybe possible to

observe a temperature dependent scattering rate in the high magnetic

field regime.

In view of the above considerations, we feel that there now

exists a strong incentive for the experimentalist to perform QL

experiments in the regime of extremely low temperatures so that the

analysis presented in this work can be put to effective use. It is

hoped that the simple algebraic forms applicable to the QL at these

low temperatures will enable the QL to become as useful a probe of the

solid states as the DHVA effect has been in the LK limit.
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APPENDIX A

SYMBOLS AND NOTATION

B = magnetic flux density

m = mass of the electron

m = band effective mass of the electron

-e = charge of the electron

c = speed of light in vacuum

C = impurity concentration factor

we = eB/mc = cyclotron frequency

M = m/m = ratio of electron mass to effective mass

kb = Boltzmann's constant

gs
= electron spin gyromagnetic ratio

G = gs/4

Al = ge:ZA = electron spin magnetic moment

A.4 a = e 1'4,14 = Bohr magneton

6

= Gico,,

/\* = a:/cZ

D = e 471771114C

c* = "efol

Tr = sum over a complete set of states

T = temperature

Td = Dingle temperature = 14=1/7r,63

3 = i/kbT
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= thermodynamic potential

= magnetization

5-( = susceptibility

7\ = differential susceptibility

A = vector potential

= s- c = Landau level energy referenced

to the chemical potential

oLyt i1R 71,4e = impurity shifted LL energy

referenced to the chemical potential

CctQ i I) I77f3

It



where

Consider

APPENDIX B

INTEGRAL REPRESENTATION FOR THE LOGARITHM

--: (-r-st)

(:17-114rg)IriP

95.

(B-1)

The sum over A may be replaced by two contour integrals, viz.

csV) 7-7
<0

(B-2)

where f(z) is a function which has poles at z= (,c1.32-1.1)Tr/(3 along the

imaginary axis and has a unit residue at these poles. An example of

such_ a function is +. Q15

The contours C
1

and C
2
are chosen as follows,



Consider now the following expression,

C'

c
1,(.)

-s
a

Where for Cl the contour C' is taken as,
A b La)

og

it

-Sa(zxp.)
e clS

tioki

Whereas for C
2
the contour C' is taken to be,

0 61<)

96.

(B-3)

6 -cco

This is necessary in order to insure the convergence of some of

the integrals which are to follow.

Integration of the left hand side of eq. B-3 by parts allows us

to write,

-s ,c-z)
ci s ( 44. * (.a- ) e

Act
nA c tic A

-S9
d s e q F,

ci s
4,

(3-4)



where

Thus,

F e-Sr) C9 <)-1

ft

C
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Integrating by parts once again allows us to write,

cvca

Thus we have shown that,

>0

s44

sq
e ckS

bLec'

(B -5)

(B-6)

(13-7)
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INTEGRAL EVALUATION

The form of the integral which must be analyzed is,

6+1. co

S.
where,

- co

o<tt-_,<1

98.

(C-1)

Our basic assumption in dealing with this integral is that it is

an analytic function of the parameter -6) . Therefore we shall

deform the contour to lie along the real axis, evaluate the

resulting integrals along the real axis for values for which they are

convergent and then analytically continue the result to all values of

-9 for the original complex contour integral.

In deforming the contours to lie along the real axis, we make use

of the fact that the contributions from the infinite arcs which result

from the deformation yield zero in each quadrant if the following

conditions hold on c< and

, <O
oc >0, 4 <O

?O



Thus for o< >0 , our contour becomes

MI\AAANNIvWv\640^^"

and the integral reduces to

e x
ci

re44`

.0 A'

while for o?<0 , the contour becomes

ANO.t4:4146/..NIN4aaakAtlYSI v vvvvwk

and the integral reduces to
_06© i.,.1'. _ 7,, t

1... e e ci. I..

..._

- zr--2 1 1 ei..ir..)
1

1

i'C I

q
C 0

of

4,0

cc' oac, cb,

0.< < 0

99.

( c-2 )

(C-3)
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Therefore, for all of I may be written as,

T_, [.0(.0 S-1(4, ) GQ-0( Cy (.c())-1

(c-4)

Now for ,3 1 , the integrals S and C may be done explicitly

and yield(35),

S-ce()4,).PCI-,))..(Qe+444)

r(1-).1.(d°74'491 CA-%

For values of -q =1/2 and 5/2 we find,

Ar5 G3/4 L

56Q-]
G3A?

`4141
G

I 0(17°2

Via+ d LG -ot.]

(c-5)

7-1 ot1,+0CY/1

(C-6)



Therefore,
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z.7 (°( = '`Fir (a+ci

3 '71: 141

S I/4 (
4 1r/.1

'AI

+ d (G-04)

Cs74 (.0( , -= 147E

C y ) = i777TZ (G-4-04.)'/A

q.4-cova]

(C-7)

We may note some useful properties of the above function,

S,) co()

ci,7 (4) 4' ) c.(1-1)

(a(, )

(c-8)

So that finally T., may be simply written as,

(0.) ()) 2.-/CA) 1 4f1) G(--4) C-) (A)

ot's (°?) 1\)
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APPENDIX D

OUTLINE OF RODE'S CALCULATION

The approach taken by Rode (9)to calculate 9< in the QL for

an interacting system begins with the expression for the density

of states for a system of non-interacting electrons at zero-temperature;

viz.,

(E" e. 13 577''' E e 1_ t

(D-1)

As expected from the discrete nature of the LL's,S(Oiverges

whenever E =11,, .

The density of states function may be used to find

according to

=
Eli e-PLE-P)1

(D-2)

Integrating by parts twice allows this expression to be put into

the form,

=

where,

>GU

(D-3)

(D-14-)



and

tc1)dyd
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(D-5)

in the limit that T-->. 0, S(171-1) and we see that

0 0) = C.c./4
(D-6)

The function G(E) may be calculated explicitly and Rode finds,

e. Q Anc1;14- \_E-1-71]3/4 9 LE- i-n]
e

_110 = GC,u)

^nor'

(D-7)

Fran-aothe susceptibility for the zero-temperature, non-

interacting system is calculated according to the usual prescription

with the result,

1)( 4")' e G 4 \I oil- 7.4) M GI'
L,u

rya

(D-8)

The claim is then that the effects of both temperature and scatter-

ing are similiar in that they both cause a spreading of the energy and

therefore may both be taken into account by using the appropriate

convolution function.

For temperature, the appropriate function is

, =

C cfax.1
(D-9)



while for scattering the choice is,

= 7r 4 T.;
7r p

104.

(D-10)

The claim is then that for non-zero temperature and non-zero

scattering, the susceptibility may be obtained from the zero-

temperature, zero-scattering susceptibility according to,

°CD

/((,c") 7, To) = 9S,(z)04 (i1)?(Lpt...1-11, 0,0] G(i41

(D-11)

He finds that either the Z or integrals may be done first,

but that once one is performed, the second appears intractable and

thus must be performed by numerical methods.

He chooses to perform the integration first and finds from

this that the zero-temperature, non-zero scattering susceptibility is,

G(a)

(D-12)

where the notation is the same as in chapter three.

Finite temperature is then incorporated into the calculation

by numerically integrating the following convolution integral,

^1.(..4) = 93, (c-) ")( )--G,0) cCL
(D-13)
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APPENDIX E

CALCULATION OF esi.(r,r')

As stated previously, qt(r,r') may be expressed in terms of the

LL states as

(? -- Y.( < 2 Yo),(KI

. -Fd

where,

and
15 woce:: zgA y )

14-74.1-1

171 (4.) 4,= yo

(E 1)

(E-2)

N'n t'ri (4-Y0]

The sum over k
x
may be converted to an integral over y

o
as

follows,

14), dr

(E 3)

(E-4)



Thus we have,

A 1-LICArii(XLM11/6

LP.1(k) Y.1C(t)

L

where,
17,a Tr LI (No) ez7.-wrn

c)('-y.) , Sy (y1-1) , =

106.

(E5)

A change of variable puts this last expression into the form,
cpc)

.2

z (87y2 ez 475 S e- glt Sy) d

c

We will now focus our attention on the following integral,

=

where,

a0
e(q.- nit 6) a

= S1., 10 Sy

By using an integral representation for I-1-"Qi.tb)(17)

a Q.-s-b)t -t-A
CO:H (14. ID) = ! (

an-i

(B-6)

(E-7)

(E-8)
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( the contour chosen in eq. E-8 is such that it encloses the origin in

a counterclockwise direction ) and completing the square of the terms

which result in the exponential, we are able to generate the following

form,

14 (1.- toll at
c 75 e.

-c

-(-ts..-6])Y1.E

(3) al.

(E-9)

The integral over z is standard
(26)

and has the value,

AFIT 11 -E. + (4.-6)T1
(E-lo)

When this result is used in eq. E-6, we obtain

cq6)'(
-! Ar;74-4 e
d7ri-

c-03-4.13
1+ I

Lt -t- (ot. -6)r

Another change of variable yields the form,

ce e(`) 4' -E E (Q.-6)(4 -00)-r

S

e
1.1

(E-11)

(E -12)

By making use of the following integral representation of the

Laguerre function(17)

(c4) ( e--b -I- ic))1 dt
L., sA() ----

il7141T L7

(E-13)
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and performing some algebraic simplifications, we are able to

deduce that,

.ty )

Sji 427rLZ

The sum over k
z
is equivalent to

and the resulting integral,

( Kz e
i-SJZ -LC*4 #

where,

= (11 4) We. -4- cr

L

r
Ka

(E-14)

(E-15)

is most easily done by means of contour techniques. The result of

the contour integration is

where,

- 1.7r .e

[
C #

(E-16)

The branch of the square root function implied in eq. E-16 is the

one which has a positive immaginary part.

Summarizing the results so far, we may state that,

(4-10Ac+
n =0

L, Ofsa)
-1(1.

(E-17)
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The sum over n will be done using the Poission sum formula which

when applied to eq. E-17 yields,

We may expand , F, (-y,, ) as
(17),

_.erA i.1741(y.,s1)11-)err F 6.4A e
;?*(1.)Q)

e J;% A (x) ( *ax) (a 41 a- CY-4 )
yyi -7: 0

(E-18)

where the coefficients satisfy the following recursion relation,

A^ M+1 c,x) L21_ c,21.-1-)) Ayvt-
-rx +I '

140 t:
I

, A, 0, 'aka =

An explicit evaluation of the first few shows that,

A4, 3 (A1.-1-1)

1\s )3 (01 1- i )

to

A ± "

(E-19)

(E-20)

We can see from the pattern which is being generated that the

order of the coefficients is,

A L7) 8 (,21.+()

L(1)

(E -21)

where L (-111) is the largest integer ....114/.3.

Therefore the total x dependent coefficient multiply the Bessel

function is of the order

--)"141
1-1]

A-riet ( +01N)

L(rm

(E-22)
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This argument assures us that for those values of x for which

we expect the integral to have its main contributions, the first

term in the series will be adequate to represent

We therefore make the following replacement,

(E-23)

Furthermore, in applying the Poission sum formula we see that

there are two contributions which arise - the k=0 steady-state term

and the 100 oscillatory term.

From a physical point of view we note that the k00 terms

will produce oscillations with an already oscillatory effect. We

therefore chose to neglect the 100 terms in what follows.

Taking these points into consideration allows us to write,

L 1.),1 74 i

a°(1- ---- Tr e a <ix e .Jots {51i6"---1+an

)1/
_

(E -24)

The change of variable T:=V_,(,10-4)--A7A converts the integral

into the following form,

where,

Ks =

77 I -t'
e

k jzz yd

-
e*

(E 25)

(E -26)
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Again the branch of the square root which is implied in eq. E-26

is that with the positive immaginary part.

This integral is of standard form
(33)

and is equal to,

eL xsL 7/2

(E -27)

so that we may finally write,

6 (:-c.y+y) x11(1-:1
Gs(a,7.1)= c

1hr e - /2:

(E-28)
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APPENDIX F

CALCULATION OF S (r,r')

The quantity S has been defined as,
of d

Sej ti (T,2 )= 'Po ((T., 71z. ) `: (ati(214/L) 43(zz.

(F-1)

which in terms of the LL's themselves may be written as,

, le(K- T,) L

S I.ol 114'11 ."1"

S14)Kr..

lr -n1.7)' &K,14

(F-2)

where

e0

e
ryL-1:1 1-(YLYzYoY' (1+1' yo)]e L-4-7

NI,' DEC

(F-3)

Inthislastexpression,thetriviaax.and z, integrations have

been done and have led directly to the diagonality of S in the and

k
z
quantum numbers.

1 =!

A change of variable puts I into the form,

e e e2

(F-4)

We not replace the Hermite polynomial by its integral representa-

tion, complete the square and obtain after some simplification,
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e--6c82 -(25(yo-y)sx
e

(F-5)

where, - at yTc. e E - Pt

rrL ""E"I'4.1
c'71

=

L(N1-1`)°14()11-1

1.4

(F-6)

Another change of variable converts It into the form,

T J- kfa "
T_ kia Ca S y

= 77-771

(F-7)

We again recognize the appearance of the integral representation

for the Laguerre function and deduce that,

(F-8)



where we have assumed that n > n'.

S0(.4'

Combining all of these results, we find that

11-11

=
iet84 ZVSX 4.258Xty

'IFFY

e
e/Lk Ls:t zr eta)

u4.

(F-9)

For the casen< n', we repeat the procedure but this time we

replace Hn by its integral representation rather than H t with the

result that n and n' are exchanged in eq. F-9.


