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A finite element formulation is developed for the prediction of

the large displacement response of pipelines which are placed upon

irregularly contoured marine sediments and are subsequently subjected

to episodic hydrodynamic loads. The equations of motion during each

episode of extreme wave activity are obtained from a variational form

of Hamiltons principle and this form of the equations of motion is

integrated using the Newmark method of implicit integration. Within

each time step a Newton-Raphson iteration scheme is used to achieve

equilibrium while accurately tracking the nonlinear path-dependent

response. An updated Lagrangian formulation shifts the pipeline

reference configuration and separates rigid body movements from

pipeline deformations. This provides a large deflection, small

strain transient analysis of the pipeline response.

Nonlinear, elastic-plastic springs simulate transverse and axial

bottom resistance from both cohesive and cohesionless sediments.

Inclusion of a pressure differential across the pipe wall modifies



tensile stresses and influences the flexural stiffness of the finite

element model through the geometric stiffness matrix. Hydrodynamic

added mass and nonlinear, viscous drag forces are included by means

of the relative-motion form of the Morison equation. The formulation

results in a three-dimensional finite element model of a bottom-laid

pipeline that is constrained to follow the irregularly contoured

ocean bottom.

A finite element method computer model is developed and used to

predict the pipeline response to both monochromatic and random wave

loads. Numerical examples presented demonstrate the validity of the

formulation and illustrate the results obtained from sample

simulations. It is found that nonlinear structural behavior is a

dominant factor in predicting pipeline response and that inclusion of

nonlinear effects greatly reduces predicted pipeline displacements.

It is further shown that both the directionality of wave attack and

the wave length of incident waves significantly alters the magnitude

and location of the maximum pipeline response. Computational times

for the random wave simulations analyzed were substantial with an

approximate ratio of CPU to real time ratio of 105 to 1 being typical

for the finite element analysis of a prototype marine pipeline having

150 degrees of freedom.
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Nonlinear Dynamic Response of Bottom-Laid Deep Ocean Pipelines

1.0 Introduction

1.1 Motivation

Traditional design practices for offshore pipelines attempt to

ensure stability along the entire pipeline system. In shallow water,

the standard practice requires the burial of pipeline systems result-

ing in increased construction costs from trenching operations. Uncer-

tainties regarding the effectiveness of trenching operations, coupled

with a desire to minimize construction costs, has generated an in-

creased interest in analyzing the dynamic response of bottom supported

pipeline systems in deeper water.

The design forces used to evaluate the stability of bottom

supported pipelines include: hydrodynamic fluid pressures, resistive

sediment forces, and the resistive stiffness of the pipeline. An

analysis based on these criteria often results in a pipeline design

which requires a weight coating to develop additional resistive forces

necessary to maintain stability. However, even pipelines designed in

this manner will experience significant motion when subjected to ex-

treme wave events. The forces which determine the dynamic response of

the pipeline during this extreme wave events are: 1) the hydroelastic

fluid forces, 2) the resistive soil forces, and 3) the inertial and

resistive forces of the pipeline.

Designing pipeline systems which are capable of responding

dynamically during extreme wave loading provides an effective means

for reducing both the deployment and material costs of deep ocean

pipelines. The analysis described herein evaluates the nonlinear
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dynamic response of marine pipeline systems in order to provide

definitive design guidelines with respect to weight coatings and

other statistical design parameters.

1.2 Previous Research

Increased usage of the ocean resources for commercial and

military applications has promoted a great deal of interest in

marine pipeline systems. Large scale environmental hazards which

present a potential threat to ocean pipelines include seabed

instabilities induced by soil liquification or sesmic activity

[Demars, et al (1977) and Machemehl (1978)] and hydrodynamic fluid

loadings induced by waves and currents. In addition to these large

scale phenomenon, sections of pipeline may be exposed to localized

stress concentrations that may result from scour-induced spanning

[Ells (1975)].

A preliminary route selection process serves as a practical

means of avoiding potential pipeline failures due to seabed

instabilities. Sediment loading models which aide design engineers

in unstable regions where facilities mandate the use of marine

pipelines have been proposed by Audibert, et al (1978) and Swanson

and Jones (1982). These models provide a static analysis procedure

for pipelines subjected to sediment flows.

The traditional design standard for pipelines subjected to

hydrodynamic loading requires that the pipeline remain stable when

subjected to a specified design wave. This type of static design

typically involves balancing the resistive sediment forces and the

maximum hydrodynamic forces. Early sediment resistance models for
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bottom supported pipelines used a Coulomb friction model with esti-

mated friction coefficients [Potynody (1961)]. More recent work

[Lyons (1973) and Anard and Agarwal (1980)] supports the use of

this type of sediment model for cohesionless sediments; however,

other investigators such as Karal (1977) suggest that a Coulomb

friction model is inappropriate for describing cohesive sediment

resistance. Karal (1977) and Wantland et al. (1982) proposed sedi-

ment resistance models for cohesive materials that were based on a

limit analysis of the plastic failure mechanism occurring during

the rheological phenomenon. For long period loadings such as tidal

currents, Karal (1983) further suggests that cohesive sediment

resistance should be described as a function of loading rate to

reflect the effects of pore water dissipation.

Computation of the hydrodynamic pressures which load the pipe-

line during the design wave is typically performed using the

Morison equation. Investigative efforts by Brown (1967), Sarpkaya

(1975), Yamamoto et al (1973) and others have served to quantify

the force coefficients used in the Morison equation and has aided

in the prediction of the fluid forces which cause pipeline instabi-

lities. In regions where high fluid pressures threaten pipeline

stability, design options include attachment of additional weight

coating, placement of anchor blocks along the pipeline route, and

burial of the pipeline in sub-sea trenches. General procedures for

evaluating the stability of ocean pipeline systems in shallow water

have been presented by Huang and Hudspeth (1982) and Jones (1976).
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Recent investigations by Lambrokos (1982) and Karal and

Halvorsen (1982) suggest that the no-motion design criteria for

deep-ocean pipelines subjected to fluid loadings may be relaxed in

order to allow pipeline motions to occur during these extreme wave

episodes that have long return periods. These investigators

examined the nonlinear, fluid-soil-pipe interaction problem using

finite difference algorithms. These algorithms employed nonlinear

sediment models and computed the time domain response of the pipe-

line to a hydroelastic fluid loading. Lambrokos (1982) and Karal

and Halvorsen (1982) examined stochastic and monochromatic fluid

loadings, respectively. The conclusions from both of these inves-

tigations indicate that displacements and dynamic stresses which

resulted from peak wave loadings remained within acceptable design

tolerances.

There is currently available not any published literature that

provide either laboratory or prototype data for the dynamic res-

ponse of a bottom-supported pipeline. The Morison force coeffi-

cients and the resistive sediment parameters used in these state-

of-the-art dynamic analyses have been adopted from commonly ac-

cepted values that are used in static-equivalent pipeline stability

analyses.

1.3 Objectives

Present design methodologies for marine pipeline systems

generally require only a static-equivalent stability analysis using

hydrodynamic pipe loadings computed from a design wave. Pipelines

which are subsequently exposed to an extreme wave event that
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that exceeds the design wave load may then be subjected to dynamic

stresses and motions which could endanger the pipe system or sur-

rounding sub-sea facilities. Numerical computations for the linear

pipeline responses during peak wave loadings have been performed

[Lambrakos (1982) and Karal and Halvorsen (1982)] using finite

difference techniques. These linear responses to nonlinear loads

provide useful information regarding pipeline behavior during epi-

sodes of dynamic pipeline response; however, further evaluation of

the nonlinear behavior in a directional, random wave environment

seems warranted.

The purpose of this analysis is to develop a finite element

method (FEM) formulation which can be utilized for a detailed study

of the evolution of pipeline configurations under random wave

attack from directional seas. The primary features of the FEM

algorithm developed include: 1) the ability to predict the large

deflection response of the pipeline; 2) the ability to model non-

linear hydroelastic fluid forces; 3) the ability to independently

model cohesive and cohesionless sediment loads; and 4) the ability

to adopt irregular bottom contours. Additional features provided

by the finite element method include: 1) flexibility in discre-

tizing the pipeline system; and 2) the ability to model features

such as a missing weight coating along any arbitrary portion of the

pipeline.

1.4 Scope of Study

The formulation presented is directed toward predicting the

dynamic stresses and displacements which develop in a pipeline
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subjected to a peak wave episode. This analyses is concerned pri-

marily with the environmental loadings and the dynamic responses of

the pipeline system. The solution algorithm has been constructed

in a format which allows the specification of stochastic sediment

characteristics and wave kinematics that are required to define the

environment surrounding the pipeline system.

In Chapter 2 the finite element formulation is developed from

the governing differential equations for a beam-column using well-

known variational techniques. Extension of the finite element

formulation to large deflection analysis is achieved through the

adoption of a convected coordinate system. Chapter 2 also provides

a description of the environmental loadings to which the pipeline

is subjected. Numerical approximations for these environmental

loadings are used in conjunction with the finite element

algorithm. Numerical examples which illustrate test problems and

the computed pipeline behavior during peak wave episodes are pre-

sented in Chapter 3. Chapter 4 provides a summary of the analyses,

as well as conclusions and an evaluation of the limitations of the

methodology.

A flow diagram for the computer algorithm that was used to

compute the example responses given in Chapter 3 is illustrated at

the conclusion of Chapter 2. Documentation for this algorithm is

given in AppendiX A. Because of the large amount of CPU required

to compute the nonlinear dynamic response by FEM, the algorithm is

presently limited to large modern main frame computer facilities.
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2.0 Formulation Of Problem

2.1 Methodology

In this chapter, the governing differential equations for a

continuous pipeline system subjected to nonlinear environmental

loads are presented. These equations predict, for small deflec-

tions, the biaxial bending, the axial displacements, and the

twisting motions of the pipeline. The nonlinear environmental

loads to which the pipeline is subjected include hydrodynamic

viscous drag and a materially nonlinear sediment stiffness. Appli-

cation of the governing equations to finite deflection analysis is

made possible by adopting a convective coordinate system which

tracks with the pipeline motions.

The governing dimensional equations of motion are nondimen-

sionalized in order to avoid numerical instabilities. Variational

techniques are applied to the nondimensional equations of motion in

order to establish a general energy principle which can be applied

to the pipeline system. A finite element method (FEM) formulation

of the problem is employed that permits the continuous pipeline

system to be discretized for numerical computations. An incremen-

tal iterative solution technique (Newton-Raphson) is introduced in

order to accomodate the nonlinear terms in the equations.

Development of the FEM formulation begins with the evaluation

of the response of a single element to an arbitrary static

loading. The tangent stiffness of an element, that includes a pre-

existing axial force, is derived using an energy principle. This

stiffness, coupled with a convective coordinate system and an
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incremental iterative solution technique, extends analysis capabil-

ity to static large deflections. Introduction of inertial effects

and a time integration scheme allows finite deflection dynamic

analysis for arbitrary dynamic loadings.

The restriction of the pipeline response to certain modes

(viz., sliding of the pipeline along the seafloor) imposes con-

straints on pipeline movements. Coordinate system transformations

are introduced in order to couple the element responses that have

been restricted to sliding only along the ocean floor. Optional

end restraints are introduced to provide greater flexibility in

describing boundary conditions at the pipeline terminations.

Environmental load descriptions are developed by replacing the

arbitrary loadings on an element with approximate representations

of applied environmental forces. Fluid loads on each element are

computed from both hydrostatic and hydrodynamic pressures. The

hydrodynamic pressures are represented by a relative-motion form of

the Morison equation. Within the incremental iterative procedure,

a first-order Taylor series expansion of the hydrodynamic loading

couples the dynamic fluid forces to the pipeline responses. Sedi-

ment loads on the pipeline elements are defined by linearly-

elastic, perfectly-plastic springs. The lateral and axial char-

acteristics of these sediment springs are determined independently

for cohesive and for cohesionless soils by evaluating the sediment

resistance capacities.

Coupling the individual element responses will simulate the

response of the entire continuous pipeline system. An algorithm is



introduced in which individual elements are combined to model the

pipeline; and the Newton-Raphson iteration technique is employed

within a discrete time step to determine the pipeline configuration

and stresses required to place the system in dynamic equilibrium.

A Newmark-beta numerical integration scheme is then used to proceed

through those sequential time steps which constitute an environ-

mental episode.

2.2 Equations of Motion

The equations of motion apply to the continuous pipeline

depicted in Fig. 2.1. that also specifies both the global (X,Y,Z)

and local (T0,0) coordinate systems. The local tangential direc-

tion (T), as shown in Fig. 2.1, coincides with the longitudinal

axis of the pipe, and the binormal direction (8) is locally perpen-

dicular to the ocean floor. The normal direction (n) is orthogonal

to both the tangential and binormal axes.

2.2.1 Partial Differential Equations Controlling Pipeline Response

The partial differential equations for the small deflection

response of a pipeline [Clough and Penzien (1975), pp. 297-306 and

Chajes (1974), pp. 196-2011 are as follows:

2 * 2 * 2 *
3 u.

1 * 3 ui *3 u i
,32

(E I
* *

--72) + p --37. + m
3x 3x at

* * *
r. , t u

2 '

) i = 2, 3

2 * *
a u. 3u.

* 1 a , * * 1, *, * * *,
a --.*(E A --1J = ri(x ,t ,ui); i = 1

at
*2

3x ax

(2.2-1a)

(2.2 -1b)

9
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Figure 2.1 Definition sketch of global (X,Y,Z) and local
(T,n,(3) coordinate axes.
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and

3
2
u
*

* *
G J i =4

ax
*2

(2.2-1c)

in which m* = mass per unit length; x* = position along the pipe

segment; t* = time; E* = elastic modulus; I* = cross-sectional

moment of inertia; A* = cross-sectional area; G* = shear modulus;

J* = torsional inertia; p* = axial tensile load; ut ith component

of displacement, where ui is defined in Fig. 2.2; and ri = i th

component of applied load per unit length. Equations (2.2-1) des-

cribe biaxial bending, axial deformation, and torsional response,

repectively.

The effect of structural damping, shear deformation, and rota-

tional inertia are neglected in Eqs. (2.2-1). Simplification of

the general load representations and the imposition of constraints

on the pipeline motions that will be introduced later will elimi-

nate Eq. (2.2-1c). However, torsional rigidity will be retained at

this time in order to obtain a fully three-dimensional formulation

for the pipeline response.

The equations for flexural and axial reponses will be shown to

be nonlinear (even for small deflections) because the applied

environmental loads are nonlinear functions of either the pipeline

displacement or its derivatives. Extending Eqs. (2.2-1) to include

finite deflections introduces geometric nonlinearities which may be

treated by adopting a convected coordinate system.



F
Sri

Figure 2.2 Applied pipeline loadings and displacement fields.

F

(Z)

Eifilaaffl

ai

mg

12



13

2.2.2 Nondlmensionalization of Controlling Equations

Numerical techniques to be employed in the solution of Eqs.

(2.2-1) require manipulations and decompositions of the systems of

equations. To assure numerical accuracy in the solution

algorithms, the controlling equations are nondimensionalized. The

nondimensionalizing parameters chosen are the following: the peak

spectral wave frequency, fo; the mass density of the fluid medium,

po; and length of the first pipeline element used in the finite

element discretization, L1. Typical relationships between dimen-

sional (denoted by superscript asterisks *) and nondimensional

quantities (denoted without superscripts) are represented by the

following expressions:

* * * *, 1

(X,Y,Z,ui) = (X ,Y ,Z ,uji r- ; i = i = 1,2,3 (2.2-2a)

1

,

(t,At) =
, *

,At
*
if

(m) = (m,) 12

p
o
L

1

*

(ri) (ri)

1

3 2 '

1,2,3

poLlfo

*
(ri) = (ri)

1

p L4f2
; 4

o 1 o

(2.2 -2b)

(2.2-2c)

(2.2-3d)

(2,2-2e)

Replacing dimensional terms in Eqs. (2.2-1) with dimensionless

terms from Eqs. (2.2-2) and eliminating common terms yields
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3
2
u.32u

i
32u

i32
+ ri(x,t,u2); i = 2,3

ax 3x 3x at

32
ui a r,.

3u
i) rm---- rioc,t,ui) ; i = 1

2 3x 3x
at

and

a
2
u.
1

=GJ--.1.= 4ri,

ax
2

(2.2-3a)

(2.2 -3b)

(2.2-3c)

The common types of boundary conditions specified for these

equations in practical ocean pipeline applications are the fol-

lowing:

u = u' = 0; fixed end (no displacement, no rotation)

u = u" = 0; simply supported end (no displacement, no moment)

u" = u'" = 0; free end (no moment, no shear)

in which the superscript prime (') denotes differentiation with

respect to the longitudinal (aXial) coordinate. These conditions

are called prescribed boundary conditions if they specify displace-

ments or rotations, or natural boundary conditions if they specify

forces or moments.

2.3 Energy Concepts

The controlling equations presented in Section (2.2) pertain

to a continuous system. An analytical solution of these equations

is generally not possible when complicated environmental loadings

or pipeline geometries are encountered. It is, therefore, neces-

sary to evaluate the response of the pipeline numerically. The

numerical techniques which will be employed to calculate the pipe-
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line response will be introduced in the following sections of this

chapter.

2.3.1 Variational Principle

The equilibrium Eqs. (2.2-3) have been shown to be equivalent

to satisfying Hamilton's minimization principle [Hildebrand

(1965)]. This minimization principle may be illustrated by Eq.

(2.2-3a) for i = 2; i.e. for the flexural response of the pipe in

the n-T plane. Applying the principles from the calculus of varia-

tions, the scalar dot product between a small arbitrary displace-

ment, 6112 and Eq. (2.2-3a) may be integrated over the length of the

pipe, L, to obtain the virtual work given by

L a
4
u
2

a
2
u
2 a

2

u2
f [El 4

+ p+ m--2 r2]6u2dx = 0
ax 3x

2
at

(2.3-1a)

in which all terms are nondimensional quantities. The first two

terms in Eq. (2.3-1a) can be integrated by parts to obtain

3
3
u2 3

2
u
2

1
361.1

21
L

L

3

r

3u
2

[E1--- dug] - [El------- + p--- 61.1
2

] +
ax 3x

2
ax o ax

3
2
du

2
a
2
u
2 L

3u
2

36u
2

+
ax2 ax2 3x 3x

dx f P ax +

3
2
u

+ f m du
2
dx - 51' r

2
du

2
dx = 0

D
2

2
(2.3 -1b)

The first three terms in this equation vanish when evaluated

using either the prescribed or natural boundary conditions pre-

viously given. The remaining terms are equivalent to the minimi-
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zation of potential energy for the prescribed flexural response of

the pipeline system [cf. Cook (1981) or Chajes (1979) for an in-

depth discussion of the relevant energy principles].

Equation (2.3-1b) is an instantaneous equilibrium statement

for the continuous pipeline. Integrating between an arbitrary

initial time, to, and an arbitrary later time, tl, gives

tl
L a2u2 L a2u2 32 du

2
L au

2
adu

2 Ni

tf [ fm su
2

c b c (f E I dxjj dt

o at ax ax

2 2
dx

ax
f P

t,

f ( f
Lr2

6u
2
dx)dt = 0

to

(2.3-2a)

which is equivalent to Hamilton's principle [Clough and Penzien

(1975)] given by

t t
1 1

f 6(T - V)dt + f 6W
nc
dt = 0 (2.3 -2b)

t t
0 0

in which 6 = variation during the interval to to t1; T = the total

kinetic energy of the system given by

L au

T= 1 f i 2
dx i= 1,2,3,4 ;

o at

V = the potential energy of the system and of any conservative

loads; and Wne = the work done by nonconservative forces. For the

illustrated example of the flexural response in the nT direction,

the potential and conservative energy of the system are given by

1
L a

2
u2

1
L au

2 2
V =

2
dx - dx

o ax
2 ax2
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and the work done by nonconservative forces is given by

L
W
nc

= J r
2
du

2
dx.

The equivalence between the force Eqs. (2.2-3a) and the energy

minimization expression given by Eqs. (2.3 -2b) has been demon-

strated only for the flexural response. However, similar analyses

would also give equivalent minimum energy expressions for both the

torsional and axial response modes (Eqs. 2.2-3 b & c).

This transformation of the controlling partial differential

equations to a single energy principle equation is significant in

the development of a finite element formulation. The finite el-

ement method (FEM) is a numerical solution technique that is based

on the minimization of a discretized version of the energy in the

system using discrete nodal equilibrium equations. Moreover,

Hamilton's principle is applicable to a variety of dynamic systems

and is not restricted solely to the dynamic beam equation.

2.3.2 Discretization of the Continuous Systea

For numerical analyses, it is convenient to discretize the

pipeline system such that the displacement field within the system

can be represented by the response of a set of generalized coor-

dinates. The generalized coordinates for the pipeline under con-

sideration consist of displacements and/or rotations at discrete

points along the pipeline. If the displacement field of the pipe-

line is represented by a set of generalized coordinates, minimiza-

tion of the total potential energy can be obtained by taking the

derivatives of the total potential energy with respect to each of
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the generalized coordinates. This numerical procedure is called

the Rayleigh-Ritz method. A detailed presentation of this method

can be found in Bathe (1982), Cook (1981) or in Clough and Penzien

(1975).

In order to develop general numerical techniques, the dynamic

response of the pipeline will be represented by the uncoupled res-

ponses in bending, in axial deformation, and in twisting. For each

of these modes of response, equilibrium of the system requires that

the energy of the system be minimized with respect to the displace-

ment field associated with that mode of response.

The displacements and rotations for the entire pipeline may be

approximated by the following relationship:

ui(x,t) = di(t)*i(x) ; i = 1,2,3,4 (2.3-3)

in which ui(x,t) = the spatial and temporal dependent displacement

or rotation corresponding to the index i; di(t) = the time varying

generalized coordinate associated with the index i; and ipi(x) = an

admissible shape function for the given mode of response. The

remaining rotation terms, u5 and u6, are defined for small deflec-

tions by the spatial derivatives of the transverse deflections with

respect to position along the pipeline axis.

Substituting the separation of variables relationship given by

Eqs. (2.3-3) into Hamilton's principle given by Eq. (2.3-2b) for

determining the bending, axial, and twisting responses of the pipe

system yields
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t

t
1 L L "

f [ f yx)myx)dicodx + f 4,i(x)EIlpi(x)di(t)dx

L ,
1

+ f yx)pipi(x)di(t)dx - f riyx)dx]ddidt = 0; i = 2,3 (2.3-4a)

t
1 L

tf [ f xpi(x)myx)dicodx + f 11);(x) EA*;(x)di(t)dx

t

t

L
- f r

1 1
(x)dx]dd

1
dt = 0

1 L

J [ f p4(x)GJ p4(x)d4(t)dx - f r44)4(x)dx16d4dt = 0 (2.3-4c)

(2.3 -4b)

in which the superscript primes (') = the spatial derivative along

the pipeline axis and the overdots () = the second temporal

derivative. If the temporal integration of these equations is

performed numerically, the integrals in Eqs. (2.3-4) are minimized

at each discrete time step. Because the components of the virtual

motions of the corresponding generalized coordinates, di, are arbi-

trary, each of the bracketed terms in Eqs. (2.3-4) must be iden-

tically zero for each discrete time step within the time interval

under consideration. 'Evaluation of the bracketed terms in such a

manner provides an expression for the equilibrium of forces for

each mode of response at discrete time steps.

The finite element method utilizes the same principles which

were applied to obtain Eqs. (2.3-4). However, rather than repre-

senting the modes of structural reponse by a single set of shape

functions and generalized coordinates, the structure is modeled by

a series of coupled elements. Proper coupling of the elements
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allows simultaneous solution for the set of generalized coordinates

which results in a force equilibrium within the finite element

model. Changes in structural geometry due to dynamic responses can

be easily modeled by the finite element method by adopting a local

coordinate system for each element. Individual element effects can

then be transformed to a mutual coordinate system in order to solve

simultaneously for the unknown generalized coordinates. Because

the basis of the finite element method is the individual elements

used to model the structure, much of the effort in developing a

solution algorithm for Eq. (2.2 -3b) is directed toward formulating

the equilibrium equations for a single element.

As an analogy to Eqs. (2.3-3) which represents a discretiza-

tion of the entire pipeline, the displacment fields within an

individual element only are represented by the matrix equation

ui(x,t) = IN(x)1T Id(t)li ; i = 1,2,3,4 (2.3-5)

in which ui(x,t) = the spatial and temporal components of displace-

ment or rotation within the element which correspond to the index

i; {d(t)}i = the time varying vector of generalized coordinates

associated with the ith mode of response the element; {N(x)}i = a

vector of admissible shape functions for the ith of response within

the element; and the right superscript T = the transpose of a

vector or matrix. Substituting Eq. (2.3-5) into the expression for

Hamilton's principle given by Eq. (2.3 -2b) gives a system of equa-

tions analogous to Eqs. (2.3-4). An important distinction between



21

these systems of equations, however, is that they now represent the

dynamics of only a single element. The equilibrium equations for a

single element only are now given by

[m]t+Atfcil t+At[k]t+Atidl t+Atirl
(2.3-6)

in which the left superscript t+At represents an instantaneous

point in time in the interval t
o to t1; [n] = matrix representation

of mass within the element;t+AtIdl = vector of the acceleration of

an instantaneous generalized coordinate;
t At

[k] instantaneous mat-

rixrix representation of element stiffness; = vector of

instantaneous generalized coordinates; and t+Atlirl = instantaneous

vector representation of applied environmental loads. A detailed

development of the individual terms in Eqs. (2.3-6) is presented in

Section (2.4).

Equation (2.3-6) is a generalized force equilibrium state-

ment. However, because the applied loads are nonlinear, the equa-

tion is nonlinear. To facilitate the evaluation of this equation

and its extension to large deflections, a general solution techni-

que for nonlinear systems of equations is presented.

2.3.3 Nonlinear Solution Technique

The Newton-Raphson iteration scheme, or modifications of it,

provides a straight-forward algorithm for computing equilibrium

solutions to nonlinear problems. The technique estimates the load-

deflection response of an element that is caused by a change in

position using a first-order approximation of the response eval-

uated at the current position [Bathe (1982), pp. 490-491]. To
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apply this concept, consider the following generalization of Eq.

(2.3-6) is considered:

iht+At(ik)1 .t+At{ik} _t+AtHmi.Ccikl
[k]{dk}) =

or

Iht+At(dk)} Irt+At(dkil
-

Ift+At(dk)}
=

(2.3-7a)

(2.3 -7b)

in which the superscript k denotes iteration number; {dk} = the

generalized coordinates at the kth iteration; {ht+At(dk)} = equili-

briumbrium function at time t+At; = the applied load func-

ift+Atr ,,
tion; and id

kjj
= the structural resistance function which

includes internal elements forces caused by both element deforma-

tions and inertial effects. The linear Taylor expansion of the

equilibrium expression about the current postion Idk-11 is

t+At k-1 k-1 t+At k-1 t+At 311 k-1
Ih(d + Ad jf = th(d )1 + [Toi] {pa

k -1}

dk -1

where

{dk} {dk -1} + lAdk-'1

(2.3-8a)

(2.3 -8b)

and in which Ado = 0 and d° = the initial estimate for the pipeline

nodal position at the beginning of a time step based on the kine-

matics from the previous time step. Substituting Eq. (2.3 -7b) into

Eq. (2.3-8a) gives the following iterative expression for an el-

ement at the discrete time t+At:
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t-i-Attrk-11 i-Atir k -1
4-

, t+Atr3r] r

{
k -11 t+Atr3f1}

I:57 Ad ij
ad

1

d
k-1

d
k-1

{Adk.m4} = (2.3-9)

{dk}in which Id
kf

has been expanded using Eq. (2.3-8b). Equation (2.3-

9) is a general expression which will be used to iteratively solve

for the pipeline response at time t+At. For a linear structural

response such as that represented by Eq. (2.3-6), Eq. (2.3-9) can

be rewritten as

t+Atfrk-11 [n]t+Atfcik-11 [k]t+AtIdk-11 rari k-1
{Ad

J Lad.,
k-1

[m](A {Adk-1} - [k]fAdk-11 = 0
ad

in which

ti-Atifk-1} [n]t-I-Attak-11 [k]t-I-AtIdk-11

and

k_i= [m] (f-cif) [k]

d

(2.3-10a)

(2.3 -10b)

(2.3-10c)

The extension of Eqs. (2.3-10) to nonlinear structural responses

k-1
1,requires that the internal structural forces,

t+At
If be deter-

mined from element deformations rather than from total displace-

ments or rotations, Id
k-1

1, as in Eq. (2.3-10b). It is further
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necessary to evaluate the structural stiffness matrix, [k], itera-

tively in Eq. (2.3-10c) in terms of the axial loads which exist

within the element at the (k-1)th iteration. An in-depth discus-

sion of these procedures in presented in Section (2.4.1).

A graphical interpretation of the Newton-Raphson iteration

scheme for a single degree of freedom system is presented in Fig.

2.3. This figure shows that the solution increment computed at

each iteration is obtained by linearly projecting the previously

computed slope of the load-displacement function using the pre-

viously computed displacement increment in order to satisfy the

existing force imbalance. A more in-depth discussion of this solu-

tion technique is presented by either Bathe (1982) [pp 490-491] or

Cook (1981) [pp. 357-382].

2.4 Finite Element Method (FEM)

The finite element method (FEM) described in sections 2.4 is

directed toward predicting the large deflection dynamic response of

a long slender beam subjected to specific environmental loads. The

variational principle described in Section (2.3.1) is applied to

develop the elastic and geometric stiffnesses of an element in

terms of the generalized coordinates which determine the displac-

ment fields of the elements. The introduction of a convected ele-

ment coordinate system, coupled with the Newton-Raphson iteration

scheme outlined in Section (2.3.3), permits extension of this for-

mulation to static, large deflection analysis. A Newmark-beta

temporal integration scheme is used in conjunction with the finite

deflection model to predict dynamic stresses and displacements.
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Figure 2.3 Graphical interpretation of the Newton-
Raphson technique (Incrementally applied
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Application of the general dynamic model to the pipeline simulation

requires specifying constraints on pipeline displacement [Section

(2.4.2)], and then evaluating the applied environmental loads [Sec-

tion (2.4.3)] consistent with the specified constraints. In Sec-

tion (2.4.4) the pipeline dynamics are incorporated into an FEM

algorithm for simulation of the pipeline response.

2.4.1 Structural Response for an Element

The pipe system is modeled by straight-lined segments using

linear beam elements. Associated with each element are the dis-

placement fields which are defined in terms of either generalized

coordinates or various degrees of freedom. This concept has been

discussed previously in Section (2.3.2) and was represented expli-

citly by Eq. (2.3-5). The generalized coordinates for an element

are shown in Fig. 2.4 for a local coordinate system (T, n,

From Fig. 2.4 it is apparent that both the i and j ends of the

member have six degrees of freedom.

Interpolation functions, together with the generalized coor-

dinates define the displacement fields within an element, and are

presented in Table 2.1. The displacement fields for flexural res-

ponses are approximated by cubic splines which utilize the slopes

and ordinates of the element nodes as generalized coordinates.

This type of scheme is termed Hermitian interpolation. The shape

functions which define the axial and torsional response are asso-

ciated with the longitudinal displacement and rotational degrees of

freedom at the element ends. The splines that represent these

displacement fields are linear and match the ordinate or T rotation
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Figure 2.4 Definition of local element degrees of freedom

(double arrows denote rotation).
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of the element ends. This type of formulation is based upon

Lagrange's interpolation formula which defines a polynomial of

order n-1 passing through n points. An in-depth discussion of

interpolation schemes and higher-order elements is given by either

Cook (1981) [pp. 77-102] or Bathe (1982) [pp. 114-186].

2.4.1a) Static Linear Response

The application of the Newton-Raphson iteration technique

requires that the linear approximation of the structural stiffness

be estimated at each given configuration. To demonstrate the

development of the elastic and geometric stiffnesses, the element

described in Fig. 2.4 is subjected to a preexisting tensile force,

p, that is consistent with its current configuration. The stiff-

ness can be derived by evaluating Eq. (2.3 -2b) for static loading;

i.e., by neglecting inertial effects. Substitution of the inter-

polation functions from Table 2.1 into Eq. (2.3 -2b) and rearrange-

ment to an equivalent static form yields

L L ,

[I {N (x)liEIIN"(x)ITidxild(t)li + [f IN (x)lipflii(x)l'ir.dx]fd(t)li

= 1r(t)li ; i = 2,3 (2.4-la)

L

IN
,

[ f (x)11 EA{N (x)}iTdx]fd(011 = 1r(t)11 (2.4-1b)

L ,

[ f (x)14 GJ1N
'

(x)14Tdx]1d(t)14 = 1r(t)14 (2.4-1c)
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Table 2.1. Interpolation splines and associated
degrees of freedom.

Re sponse Shape Functions Degrees of Fr eedom

ul(x, t)
(axial)

{N(x)}1 Id(t)11 - di

d7.1

u2(x, t)

(et a,tau

n-r

bending)

{N(x)}2 1

2 2x- +
L3L2

2x2 x3x - +
L L2

3x
2 2x 3

L2 L3
2 3

x x
L

L2

{ d(t)}2

u3 ( x, t)

(bet a, tau

8-r

bending)

IN(x)1 - 2x3..4. 2

L2
23

2x2 x3

L2
- x +

3x2 2x 3

x 2 x3

L2

L2

L3

{d(t)}3

dll

'14(xtt)
(torsion) 040014 -

L
{d(t)}4

x
L

[,4di01
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in which {r(t)}. = the vector of generalized applied nodal loads

which represent the continuous loadings. The components of these

vector loads correspond to the components of the generalized coor-

dinate vector, Id(t)Ii. For static analysis, the load vector is

constant and evaluation of the integral terms in Eqs. (2.4-1) re-

sults in a set of simultaneous equations which can be solved to

determine the generalized coordinates for which equilibrium

exists. Evaluation of Eq. (2.4-1a) yields two sets of four simul-

taneous equations; and evaluation of Eqs. (2.4-lb & c) each yields

two simultaneous equations. Combining all of these equations in

matrix form gives

ak8] + [kG]) Idl = {r}

or

[k] {d} = {r}

(2.4-2a)

(2.4 -2b)

in which {d} and {r} are the generalized displacement and load

vectors, respectively, (the components of the vector Idl are shown

in Figure 2.4) given by
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{d} =

d
3

d
4

d

d

d7

d
8

d
9

d
10

d
11

X12

; {r} =

(2.4-2c)

[k] = generalized structural stiffness matrix for a given tensile

load p;

[id = Ott] + Licc] (2.4-2d)

where [kE] and [k
G

] are defined in Figures 2.5 and 2.6, respective-

ly.

The axial components of the geometric stiffness matrix, [i.e.,

kG11, km7, kG71 and kG77 (subscripts denoting matrix location by

row and column)] are not derived from Eq. (2.4-1b). These compo-

nents were adopted from the element fomulations presented by Meek

(1971) [pp. 543-588] or by Cook (1981) [pp. 331-337].

Equation (2.4-2b) is a linear equilibrium expression for the

static response of a single element. A static equilibrium expres-

sion for the entire structure may be formed by summing contribu-



Figure 2.5 Elastic stiffness, [1c7], in Eq. (2.4-2a)
[Ref. McGuire and Gallagher (1979), p.91 1.
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Figure 2.6 Geometric stiffness,[kE], for tensile load, p,
in Eq. (2.4-2a) [Ref. Cook (1981), pp. 384-
335 and Meek (1971), p.569 1.
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tions from the active degrees of freedom from all of the el-

ements. Combining element stiffnesses in this manner assures that

the boundary conditions described in Section (2.2.2) will be satis-

fied.

2.4.1b) Static Nonlinear Response

In general, the displacements of a pipeline system during a

peak forcing event may become significant. In such cases, the

product of element stiffness and displacement does not yield the

actual element forces. This is because large element motions in-

volve both rigid body movement and actual element deformation. The

rigid body motion of the system should produce no internal forces

within an element for static analysis. In order to extend the

concepts presented in Section (2.4.1a) to nonlinear static analy-

sis, an updated Lagrangian formulation is adopted to define element

displacements [Belytschko and Hsieh (1973) and Cook (1981), pp.

353-356] and is incorporated in the Newton-Raphson iteration

scheme.

The concept of a convected coordinate system which moves with

an element undergoing displacement may be readily demonstrated by

the analogy of restricting the motion of an element in the

n-T plane to remain in the global X-Y plane. The result of such a

constraint is an effective reduction of the three-dimensional el-

ement to a two-dimensional element. The reduction from a three-

dimensional analysis to a two-dimensional analysis is for clarity

of presentation and does not prohibit an extension of the concept

to three-dimensional analyses.



Figure 2.7 depicts the constrained element before and after

deformation. The global (X,Y,Z) degrees of freedom are denoted by

D
i' and the element deformations (not element degrees of freedom)

are denoted by 71i Because the element coordinate system tracks

with the member and because the element is constrained to remain in

the X-Y plane, the only deformations possible are d6, d7 and
d12.

The element deformations may be computed from the following geomet-

ric relationships:

XL = X0+ 1117- D1 (2.4-3a)

YL = Yo+ D8 -D2 (2.4 -3b)

(

= Tan
1
CI
L
/X )

L = (X2 Y2
)1/2

L

2 2 1/2
L = (X0 + 110)

in which X
0,

Y0, L0, XL, YL, and L are defined in Fig. 2.7.

Furthermore, Fig. 2.7 illustrates that

= 0

(2.4-3c)

(2.4-3d)

(2.4-3e)

; i = 1-5, 8-11 (2.4-3f)

(2.4-3g)
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Convectd coordinates utilizing an updatedFigure 2.7
Lagrangian formulation for a two dimensional
example: (a) before deformation and (b)

after deformation.

Y

(a) (b)
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= L - Lo

and

d12= D
12
- (e

L
-e

o
).

(2.4-3h)

(2.4-3i)

From these computed deformations, the actual axial load within

the element may be calculated by [Meek (1971), p. 557]

71[7 2 2
p = EA[ T-+ (2d6 - de. d12+ 2d12)] .30 (2.4-4)

After evaluating the axial load within an element, the internal

structural forces that result from these computed deformations may

be evaluated using Eq. (2.4-2b). For an element in equilibrium,

the resulting expression is

[k]fa} {r} (2.4-5)

Because there is not a linear correspondence between element defor-

mations and element displacements, the solutions to Eq. (2.4-5)

must be obtained iteratively using the Newton-Raphson technique.

Assuming that the load vector, {r }, is known for a given incre-

ment, t+At, Eq. (2.4-5) may be expanded in a linear Taylor series

to give

t+Attrl
-

rki t+Atfak-11 rki t+At/Adc-11
(2.4-6a)

L L
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in which

Idk-11 + lAdk-11 ;

t+Attfk-11 t+Atrak-11

and

rafi =Ladi_k_i [kl

(2.4 -6b)

(2.4-6c)

(2.4-6d)

Equation (2.4-6a) provides an iterative procedure for eval-

uating the equilibrium configuration of an element subjected to an

incrementally applied static load. The accuracy of this type of

formulation is illustrated graphically in Fig. 2.8. This figure

compares the analytical [Timoshenko (1972)] and finite element

[Zimmerman (1982)] solutions for the large deflection response of a

cantilever beam which has been subjected to an incrementally

applied large point load at full span. The finite element model

for this structure was comprised of four equal length elements.

Utilization of an updated Lagrangian formulation provides an

accurate method of evaluating internal structural forces which

occur during the three-dimensional dynamic simulation. The proper

determination of these forces is fundamental to establishing the

equilibrium configuration of the pipeline at each discrete time

step during the simulation.



Figure 2.8 Comparisons between finite element and
analytic solutions for the large deflec-
tion response of a cantilever beam.
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Before extending the large deflection finite element formula-

tion to include dynamic effects, it is prudent to examine a pos-

sible source of numerical error which may accompany this type of

formulation. Consider again the linear beam element shown in Fig.

2.7. If
o
= 0 and if 8L is defined by the FORTRAN function

ATAN2(YL,XL), then the rotation a6 is computed for either f rota-

tion. If e0 = 180° and L is computed by the FORTRAN function,

then the rotation d6 will only be unambiguously computed for a

rotation in a single direction. Similar difficulties exist for a

more general three-dimensional formulation. Although it is pos-

sible to solve this problem in principle, it is more computational-

ly efficient to avoid this source of error by defining the pipeline

configuration as in Fig. 2.1. Figure 2.1 shows the longitudinal

axis of the pipeline (T direction) to be generally oriented in the

positive X direction, and the A axis coincides approximately with

the positive Z axis. The finite element algorithm employed to

evaluate the pipeline response defines the i node of an element as

the lower numbered node and the j node of the same element as the

higher numbered node. Orienting individual elements such that

their T axis corresponds closely with the global X axis will assure

that all practical displacements of the system may be accounted for

without encountering numerical ambiguities. Favorable orientation

of individual elements defined between successive nodes results

from choosing a global coordinate system such that sequentially

numbered pipe nodes have values which increase in the positive

global X direction.
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2.4.1c) Dynamic Nonlinear Response

The finite element formulations introduced thus far have neg-

lected the effects of a time varying load-response relationship.

Hamilton's principle as defined by Eqs. (2.3-4) can be applied to

formulate the equations of motion for a single element. For arbi-

trary values of 643 the interpolation functions from Table 2.1 may

be substituted into Eq. (2.3.4) to yield

tl

f andfdl + [k] {d} - {r })dt = 0 (2.4-7a)
t

in which [k] has been defined in Figs. 2.5 and 2.6; and

{r} were defined in Eqs. (2.4-2c); and [m] = the element mass

representation. A mass representation defined by

L
[n] = f {N} m IN1

T
dx. (2.4 -7b)

is termed a consistent-mass formulation because the shape functions

utilized to construct the mass matrix are the same as those used to

interpolate for the displacement fields. In contrast, the lumped-

mass formulation assigns one-half of the element mass to each of

the element nodes. Because all of the element mass is assigned to

individual nodes, the lumped-mass formulation uncouples the iner-

tial effects between opposite ends of an element and produces no

direct moment contribution from inertial effects. For a well-

discretized system, the lumped-mass formulation provides a more

computationally efficient mass representation with no concurrent



loss in accuracy. Consequently, the lumped-mass representation will

be employed in the current formulation. The lumped-mass matrix,

[n], is depicted in Fig. 2.9.

Temporal integration of Eq. (2.4-7a) is performed numerically

by the Newmark-beta method. This method is an extension of the

linear acceleration method (Wilson 6). The Newmark-beta method is

given [Bathe (1982)] by the following:

t+At t. rt t- t+At",
d = d + L(1-6) d + 6 diAt

t+At
td d

ci at+At'ci]At2
d = d + At + [(1/2 -

a)C

(2.4-8a)

(2.4 -8b)

in which 6 and a are the Newmark-beta integration parameters;

superscripts t+At and t denote increment number; and At = time

step. For the commonly adopted values of 6 = 1/2 and a = 1/4, this

method integrates the kinematics over a time step assuming a con-

stant average acceleration during the time step. This integration

method is an implicit scheme. For linear structural systems, this

technique has been demonstrated to be numerically stable regardless

of the time step selected [Bathe (1982)].

Equations (2.4-8) can be rearranged and expanded in a form

which is compatible with the Newton-Raphson iteration technique.

This expansion yields:

t+ACd
= d

k 1 (t+Atdk
td)

1 t. r 1 ,t"
- 1 d

aAt
2 aAt 2a

(2.4-9a)
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Figure 2.9 Definition of lumped-mass representation
[m] in Eq. (2.4-7a).
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t+Atak
td

At(i_oCci (6a)t+ACcilk

in which

t+At
d =
k t+At

d +
k-1 t+At

Ad
k-1

(2.4 -9b)

(2.4-9c)

Coupling of the Newmark-beta integration method with the Newton-

Raphson iteration technique provides a means of determining the

kinematics and element stresses required to produce equilibrium at

r

each discrete time, t+At. If the applied loads
t+Attrf

are assumed

to be known, expansion of the equilibrium function given by Eqs.

(2.3-7) using Eqs. (2.4-9) gives

t+Atirl k,
_k_i

t+At ?fuk-11 _[mdt+At--1
1 - [k]

-k-1
{Adk-1}

L J

1 ,t+AtrA_k-1
2[a] d }

{o}
aAt

(2.4-10)

t+Atiak-11
Solution of Eq. (2.4-10) for provides an improved esti-

mate for the structural configuration necessary to satisfy equilb-

rium. Iterative solutions for an equilibrium configuration ter-

minates when specified convergence tolerances are met. Specifi-

cation of proper tolerances is of great importance in the solution

of nonlinear dynamics because of the path-dependent nature of the

response. The convergence tolerance criteria recommended by Bathe

(1982) are the following:
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H

t+At
R -

t+At_k-1
H

4 RTOL
OR - FlIma

X

and

t+At AD(k-1)T t+At t+AtF(k-1)
j

t+At (1)T(t+At t+At (1)
0 AD R - F )1

ETOL

(2.4-11a)

(2.4 -11b)

in which HH denotes a vector norm; FL= applied structural loads; F

= structural resistance to applied loading; AD = increment of

structural displacements; RTOL = force tolerance; and ETOL = energy

tolerance. Selecting iteration tolerances, ETOL and RTOL, that are

excessively stringent results in unnecessary additional computa-

tional effort. Conversely, specifying tolerances that are not

sufficiently tight can result in numerical instabilities or in an

unwarranted energy loss from the system. Cook (1981) recommends a

tolerance range between 10-2 <TOL< 10-6 for static nonlinear analy-

sis. Because the dynamic response has a greater path dependency

than the static response, it is appropriate to adopt tolerances

which are in the more stringent portion of this interval [i.e.,

10 5 <TOL< 10-6].

2.4.2) Evaluation of Pipeline Response

In the illustrative problem described in Section (2.4.1), a

single finite element was used to model the nonlinear dynamic res-

ponse of a small segment of the entire pipeline to a time-varying

set of generalized forces. However, accurate simulation of the

dynamic response of the entire continuous pipeline system using the

finite element method requires that the dynamic response of many
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elements be coupled. Coupling of the dynamic response of a indivi-

dual elements with one another is achieved by requiring continuity

between adjacent elements. This required continuity can be assured

by coupling of the generalized coordinates between two adjacent

finite elements because the position and shape of an element is

defined by these generalized coordinates. Subsequently, gen-

eralized coordinates which are shared by two or more elements can

be described by a mutual coordinate system. The components of the

generalized coordinates in each of the adjacent elements can be

evaluated by transforming the shared generalized coordinates into

the local coordinate system of each element.

2.4.2a) Problem Constraints

Typically, a single coordinate system (global X,Y,Z) is

utilized to describe all of the generalized coordinates in a finite

element model. However, anticipating that the pipeline will slide

only along a locally flat ocean bottom makes it advantageous to

describe the generalized coordinates with respect to this ocean

bottom. If it is further assumed that the ocean bottom is a slowly

varying surface over the domain of the pipeline system, it then

becomes possible to describe the shared generalized coordinates of

any two adjacent elements in terms of the nodal coordinate systems

at each node. Orienting the nodal coordinate systems at each node

such that two of the coordinate axes are in the plane of the ocean

bottom makes it possible to restrict the non-zero generalized coor-

dinates so that all of the nodes remain in the plane of the ocean

bottom. Imposition of this constraint reduces the number of gen-
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eralized coordinates at each node from six to three and requires

that the pipeline response at each node be limited to sliding in a

locally flat facet of the ocean bottom. A solution for the gen-

eralized coordinates which produces an equilibrium of generalized

forces within the entire pipeline system may be obtained by solving

iteratively for the restricted generalized coordinates at each

element node. A procedure for transforming element stiffnesses,

forces, and generalized coordinates between the coordinate systems

for assemblage in a system of simultaneous equations which models

the response of the continuous pipeline is described in the fol-

lowing subsection.

2.4.2b) Coordinate Systems and Transformations

Three distinct sets of coordinate systems will be utilized to

evaluate the dynamic response of the entire pipeline system. These

sets are: 1) global coordinate system (X,Y,Z); 2) local or element

coordinate systems (T,n,a) associated with each element; and 3)

A A A

nodal coordinate systems (T,n,(3) associated with each node. The

global coordinate system (X,Y,Z) establishes the pipeline system

relative to its environment. The local coordinate system

(r,r1M of each element defines the orientation of the element and

its associated generalized coordinates and forces. The element

coordinate system, (T0,0 shown in Figure 4 is now chosen such

that the $ direction corresponds to the upward perpendicular to the

ocean bottom at the mid point of the element. The nodal coordinate

system (T0,0) at each node provides a means of constraining the

motion of the pipeline to sliding only along the ocean bottom,
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while effectively reducing the number of generalized coordinates

for which a solution is required. The 0 axis at a given node is

defined by the upward normal to the ocean bottom at that node.

The T axis at a node is defined such that it bisects the T axes of

adjoining elements.

Transformation of the responses of an individual element to a

mutual global coordinate system requires a relationship between the

global forces (FX, Fy, and Fz) and the equivalent local forces

(FT, Fn, and FS) in the local coordinate system. By analytical

geometry, it can be shown [McGuire and Gallagher (1979)] that

FS

1 ml

m3

12 m2

n1

112

m3

Fx

Fy

Fz
(2.4-12)

in which Li = direction cosines between the global X axis and the

local T(i = 1), n(i = 2), and gi = 3) axes; ni = direction cosines

between the global Y axis and the local T(i = 1), n(i = 2), and 0(i

= 3) axes; and ni = direction cosines between the global Z axis and

the local T(i = 1), TI(1. = 2), and 8(i = 3) axes. Equation (2.4-12)

is a matrix expression which can be used to transform any vector

quantity (displacement, rotation, force, or moment) between the

global coordinate system and the local coordinate system. The

transformation maxtrix given by Eq. (2.4-12) may be used to obtain

the relationship between local and global generalized coordinates

according to
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0 0 0
0 A 0 0
0 0 A 0
0 0 0

[Di
{12 x 11 [12 x 12] {12 x 11

or

{d} = [Ti] {pf

in which

[A] = I m n Pr j =

Al

n]
Z3 m3 n3
2 2 2 1

0 0 0
0A00
0 0 A 0
0 0 0 A

1d1 = the vector of local generalized coordinates for an element

defined by Eq. (2.4-2c); and {D} = the global components of gen-

eralized coordinates which correspond to the elements of {d }. The

matrix [T1] is the transformation matrix from the global coordinate

system to the local element coordinate system. Because both coor-

dinate systems are orthogonal [Cook (1981)1 the transformation

matrix [T1] has the property that

(2.4-13a)

(2.4 -13b)

(2.4-13c)

1T
1
j-

1
= 1T

1

T
. (2.4-14)

This property is useful in transforming the local equilibrium

expression for an individual element into the global coordinate

system where the equations would normally be combined and solved

simultaneously. To demonstrate this transformation, the local
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equilibrium equation for an individial element which has a linear

dynamic response to a nonlinear applied load is given by

[adt+Atial

which is equivalent to

Nir1.m
1-1J 3.

t+Atp_irm
iJ
lt+Atfpl rm it+AtIRI

1 I. i

(2.3-6)

(2.4-15a)

in which {R} = the global components of the generalized load vector

whose terms correspond to the terms of {r }. Premultiplying Eq.

(2.4-15a) by [T1]T yields

rT iTrm)rT it+AtcLI iT(t+AO[k][TIrAt/DI
L 1.1 L J L 1-

=
t+At

{B} (2.4 -15b)

Equation (2.4-15b) defines the equilibrium of an element in terms

of the generalized global coordinates. If the equilibrium expres-

sions for each element are transformed to the global coordinate

system, the global stiffnesses and mass representations of all

elements can be combined with respect to their shared generalized

coordinates. The total equilibrium expression for the pipe system

may then be evaluated iteratively for the generalized global coor-

dinates which produce equilibrium. Solving for the generalized



51

global coordinates in this iterative manner requires the evaluation

of six degrees of freedom at each pipe node.

In order to reduce the computational effort required to solve

for the dynamic response of the entire pipeline, as well as to

constrain the motion of the pipeline to sliding only along the

ocean bottom, the global equilibrium for each element given by Eq.

(2.4-15b) can be transformed to the i and j nodal coordinate sys-

tems associated with an individual element. For the response of

the element to be constrained exclusively to sliding, the only

nonzero generalized coordinates in a nodal coordinate system are

the translations in the T - 71 plane and the rotations about

the a axis. The general transformation between the global degrees

of freedom 1D1 and the nodal degrees of freedom has the form

A 0 0 0

O A.0 0
1

O 0 A 0

o o 0 A.
J.1

{12 x 11 [12 x 12

(2.4-16)

in which [A] = a 3 x 3 vector transformation matrix which contains

the direction cosines between the global coordinate axes and the i

or j (denoted by the subscript) nodal coordinate axes. For the

special case when the components of {u} are constrained to remain

in the n - T plane for both the i and j nodes, the transformation

relationship reduces to



1;1 = [T2] {D}

{6x1} [6x12] {12x1}

(2.4-17a)

in which ful = the non-zero components of the i and j generalized

coordinates expressed in nodal coordinate systems;

(711
1

u
2

1;1 =
u6

u7

u
8

u
12

(2.4 -17b)

and in which [T
2

] is defined in Figure 2.10.

Using the transformation from the generalized global coordi-

nates to the constrained nodal coordinates, Eq. (2.4-15b) is trans-

formed from global to nodal coordinates in a manner similar to the

transformation from Eq.(2.3-6) to Eq. (2.4-15b). Transforming Eq.

(2.4-15b) to nodal coordinates yields

[1;1] t+At{;} t+At [ic] t+Attil = t+Lit

(2.4-18a)

[6x6] {6x1} [6x6] {6x1} {6x1}

in which rad = the constrained mass representation for an element

given by

[m] = [T2] [Ti]
T
[m][Ti][T2]

T (2.4 -18b)
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Figure 2.10 Definition of the transformation
matrix from global to nodal
coordinate system in which I and
J denote the i and j nodes of a
given element.

L1I all all 0 0 0 0 0 0 0 0 0

12I
a2I n2I 0 0 0 0 0 0 0 0

0 0 0 L31 tan n3I 0 0 0 0 0 0

0 0 0 0 0 0 lu au au 0 0 0

0 0 0 0 0 0
L2J 22J II2J 0

0 0

0 0 0 0 0 0 0 0 0 L
--3J 113J n3JIO



t+Atr^i
lkj = the constrained stiffness of an element given by

t+At[id
=

FT
LT 1]T

(t+At) rkirT irT
L 2J L 1J L J L 1.1 L 2J

and t+At {q}
= the constrained applied loads given by

{q} =

q1

q2

q6

q7

q8
q12

(2.4-18c)

(2.4-18d)

Transformation of the equilibrium relationship given by Eq. (2.3-6)

to Eq. (2.4-18a) reduces the degrees of freedom associated with

each element, and restricts the response of the elements to sliding

only in the local facets defined by the nodal coordinate systems to

which they adjoin. Because the mutual degrees of freedom between

two adjacent elements are defined by a common nodal coordinate

system, the resulting nodal equations at each node can be combined

and solved iteratively for the equilibrium of the entire pipeline

system. Combining the individual element equations to model the

entire pipeline system yields

t+At t+At t+At t+At
{14]

{III + [1(.1 1111 = IQ}

in which

t+At t+At
[M] E [mi [1(.1 = E tki ;

(2.4-19)
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and in which
t+At

[1] = the constrained nodal degrees of freedom of

the pipeline system; and
t+At

{Q} = the constrained generalized

forces which are applied to the pipeline system.

Solving for the constrained nonlinear dynamic response of the

entire pipeline system requires that Eq. (2.4-10) be transformed

and combined in the same manner in which Eq. (2.3-6) was trans-

formed and combined to yield Eq. (2.4-19). Because this transfor-

mation and subsequent combinations are analogous to those previous-

ly derived, the transformation of Eq. (2.4-10) will not be pre-

sented explicitly.

2.4.3 Environmental Loadings

Current pipeline design practices attempt to establish

stability along the entire pipeline system. However, extreme wave

episodes may result in wave-induced hydrodynamic pressures along

the pipeline which are capable of initiating pipeline motion.

During these extreme wave episodes, the dynamic pipeline response

may be calculated using the finite element model described in Sec-

tion (2.4.1c) as modified by the constraints of Section (2.4.2).

Application of the finite element method requires that the contin-

uous distribution of environmental force loadings along the pipe-

line be represented by discrete generalized forces.

The total environmental forces applied to the pipeline system

are predicted by defining the generalized loading, {r }, on each of

the individual elements used to model the pipeline. The local

forces on each of the elements are then transformed to the nodal

coordinate systems and combined to yield the generalized nodal
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forces, {Q} . Because definition of the local forces applied to

each element determines the generalized nodal forces necessary to

evaluate pipeline response, evaluation of the applied pipeline

forces is directed toward establishing the local element forces,

Irl ,for an individual element.

2.4.3a Fluid Loading

Considering the pipeline to be a small compliant body, it is

accepted practice [cf. Lambrakos (1982), Karal and Halvorsen

(1982)] to represent hydrodynamic loadings using a relative-motion

Morison equation. The relative-motion Morison equation defines the

components of the load per unit length of the pipeline in terms of

a hydrodynamic lift, drag, and inertial force. Using the relative-

motion Morison equation, the dynamic wave-induced pressure forces

per unit length of pipeline are

F = .5C
L o

D(v - u2)
2

(lift) (2.4-20a)

r r -N"

= .5C
D o

D(v -
2
)117 - u

2
1 + .257p oD

2
CM Lv - 7T- ju2]F

n

F = 0
t

(drag and inertial) (2.4-20b)

(2.4-20c)

in which FT, Fn, and Fa = the distributed dynamic fluid loadings

corresponding to the intrinsic T,n, and a coordinate system shown

in Fig. 2.1; v = fluid velocity in the intrinsic n direction; D =
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pipeline diameter; CL, Cu and CM = lift, drag and inertial coeffi-

cients, respectively;p0= fluid mass density; and u2 = the intrin-

sic n component of pipeline displacement defined in Fig. 2.2.

Equations (2.4-20) express the distributed wave-induced load com-

ponents along the entire pipeline in an intrinsic coordinate sys-

tem. The local coordinate systems for each individual element were

established (Section 2.4-2b) to approximate the intrinsic coor-

dinate system shown in Fig. 2.1. Therefore, Eqs. (2.4-20) define

the wave-induced distribution on a given element in terms of the

local coordinate system of the element. Having defined the dis-

tribution of the wave-induced dynamic fluid forces along a given

element, it is necessary to represent this loading in terms of

generalized local forces. Nonlinearities in the lift and drag

forces on an element complicate the representation of the dynamic

fluid forces [cf. Anagnostopoulos (1982) and Penzien and Teng

(1978)]. In order to maintain a fully nonlinear representation for

drag forces while preserving computational efficiency, a lumped-

force approximation was adopted for the present simulation. A

lumped-force formulation uncouples the interaction between applied

forces at opposite ends of an element and simplifies the represen-

tation of the wave-induced hydrodynamic forces and of the linear-

Taylor expansion of the hydrodynamic forces. Using a lumped-force

formulation, the generalized wave-induced dynamic fluid forces at

either end of an element are represented by the relative-motion

Morison equation as a force per unit length (acting at the respec-

tive element end) distributed over one-half the element length.



Because lumped forces are uncoupled, the element load vector, {r},

contains no moment components. Furthermore, if it is assumed that

the local element a axis coincides closely with its associated

nodal 13 axis, then it is unnecessary to include lift forces in the

element load vector because the constraints specified in Section

(2.4.2) negate the influence of a lift force. To ensure that the

element local coordinate systems and adjacent nodal coordinate

systems vary slowly, it is necessary to refine the discretization

of the pipeline system in areas where changes in the topography of

the ocean bottom are more pronounced.

The linear-Taylor expansion of the generalized force vector

{r} is given by

{rk} = Irk-11 + rarl {Ad
k-1

Lad.'

d
k-1

(2.4-21)

Neglecting the effects of lift and considering only the wave-

induced dynamic fluid loadings, the components of Eq. (2.4-21) (for

lumped forces) are given by

r
k-1

= 0 i* 2,8 (2.4-22a)

ri
k-1

= .25 CDpoLDIv - a
1
k-11117

i
-

k -1)
+

1

.125np LD
2
C (1 d

o M

.

i C i

k-1

M

i = 2,8 (2.4-22b)
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and

ar..
= u--lj

ad
i*j* 2,8 (2.2-22c)

3r.. S 1c-11 .1257 2

3d
(

sj = .5
aft

p
o
LC

D
Divi-di 1+

aAt
2

p
o
LD LCM 1)

i = j = 2,8 (2.2-22d)

in which ri = i th component of the load vector {r }; vi = component

of fluid velocity corresponding to generalized velocity di; di =

3r
the ith component of generalized coordinate vector {d};

3d

= the ij matrix component of [2.E] (i and j denoting position by
ad

4k-1

row and column); d and a = NewmarT-beta integration parameters;

and At = the time step for temporal integration.

Equations (2.4-22) define the nonlinear hydrodynamic load

representation on an individual element. Hydrostatic pressure on

the pipe cross-section produces an additional fluid load which

modifies the pipeline response. Effects from hydrostatic pressure

occur when a pressure differential between the internal operating

pressure of the pipeline system and the surrounding fluid exists.

This pressure differential creates a circumferential and a longitu-

dinal stress in the pipeline. The resulting longitudinal stress,

if compressive, will degrade the flexural stiffness of each element

as reflected by the geometric stiffness of the element. Inclusion

of the pressure differential in the solution algorithm is achieved

by treating the longitudinal stress developed by this pressure

differential as a pre-existing axial force within an element.
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Treatment of the hydrostatic pressure effect within the solution

algorithm assumes that the vertical displacment of each element is

small and that changes in the pressure differential with time may

be neglected. Under these conditions, the axial prestress in each

element is calculated according to [Sandor (1978)]

(PR + p
o
gZ

ave
)D

a
o 4WT

(2.4-23)

in which a
o
= initial axial stress; g = gravitational constant;

Zave the Z coordinate at the element mid point; PR = internal

pipeline pressure; and WT = wall thickness of the load bearing

pipeline cross-section. Since Zave 4 0.0 in Eq. (2.4-23), deep-

water pipeline systems operating at high internal pressures would

normally be subjected to tensile initial stresses (ao > 0.0) .

Evaluation of hydrodynamic forces using the Morison equation

is dependent upon the proper selection of the coefficients CD, CM

and C
L.

In the present formulations these coefficients are assumed

to be constants which may be selected independently for each el-

ement. Appropriate choice of these force coefficients is dependent

upon the fluid flow regime and pipeline characteristics. Guidance

in selecting the proper force coefficients has been given by

Beckmann and Thibodeaux (1962), Brown (1967), Chakrabarti (1980),

Grace, et al (1979), Sarpkaya (1975), Huang and Hudspeth (1982),

Sarpkaya (1977), and Yamamoto, et al, (1973).

The fluid kinematics required during a simulated wave episode

are obtained from linear wave theory. Linear wave theory results
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in a boundary value problem for a scalar velocity potential which

describes the irrotational flow of an incompressible, inviscid

fluid.

The use of a scalar velocity potential to describe the flow

field provides a linear relationship between the velocity potential

and the fluid kinematics or the free surface [cf. Sarpkaya and

Isaacson (1981) for further discussion of these relationships].

For a monochromatic, surface gravity wave given by

N
w

(X,Y,t) = B cos (KX cos 0 + KY sin 0 - wt + (2.4-24)

in which Nw = free surface profile; B = wave amplitude; K = wave

number (rad/length); w = wave frequency (27/period); 0 = wave angle

relative to the global X axis; and 0 = phase shift, the fluid kine-

matics at any point in the flow field are given by

v (X Y Z t) =
gK cosh (K (Z+h))

x " w cosh (Kh)
cos 0 cos (KX cos 0 +

KY sin 0 - wt + 11) (2.4-25a)

gK cosh (K(Z+h))
v (X,Y,Z,t) = B sin 0 cos (KX cos 0 +

w cosh (Kh)

KY sin 0 - wt + 0) (2.4-25h)

and

cosh (K(Z+h))
cos 0 sin (KX cos 0 +

v
x

(X,Y,Z,t) = BgK
cosh (Kh)
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KY sin 0 - wt + 0) (2.4-25c)

cosh (K(Z +h))
4 (X,Y,Z,t) = -BgK

cosh (Kh)
sin 0 sin (KX cos 0 +

KY sin 0 - wt + 0) (2.4-25d)

in which vx and v = X and Y global components of the fluid veloc-

ity; 17T

x
and 1:7 = X and Y global components of the fluid accelera-

tion; and h = local water depth at the midpoint of each element.

Equations (2.4-25) demonstrate the relationship between the

water surface profile and the fluid kinematics for a monochromatic,

surface gravity wave. The real ocean surface is found to be of a

more chaotic form than that described by Eq. (2.4-24). However,

the surface of a random sea may be represented as a linear sum of a

sufficiently large number, N, of monochromatic waves. This type of

random ocean surface is given as

N(X,Y,t) =
j 1 n 1

h.cos(K.Xcos nAe +== jn

K.Y sin nE0 - jAwt + 0.
)

(2.4-26)
in

in which Bij = wave amplitude associated with the ij wave; du) =

increment in wave frequency; AO = increment in wave angle; =.Kj

wave number associated with the jth w

random phase angle associated with the jth wave component in nth
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wave direction. Values for the wave amplitudes,
i

B. n' are specified

for a given directional wave spectrum by

B.
in

= 2.0 VS (jaw, nA0) AwA0 (2.4-27)

in which S(w,0) = the directional wave spectrum [cf, Borgman (1969)

for a discussion of possible theoretical spectral representa-

tions]. Once a general representation for the free surface has

been obtained for a given random wave simulation, the same linear

relationships demonstrated by Eq. (2.4-24) and Eqs. (2.4-25) are

employed to compute the fluid kinematics during the random wave

simulation. A more in-depth discussion of techniques for random

wave simulations is presented by either Borgman (1982) or Sarpkaya

and Isaacson (1981).

2.4.3b) Sediment Loads

Sediment resistance applied to a bottom supported pipeline

system may aid in constraining pipeline motions. In the case of

seafloor instabilities, sediment loads may be a principal cause of

pipeline displacements and stresses. The discussion in this sec-

tion, however, will be limited to developing a representation for

those sediment loads which act to resist wave-or current-induced

pipeline motions. These sediment forces may arise from either

cohesive or cohesionless sediments.

Sediment resistance along a pipeline may be modeled using

nonlinear springs located at the discrete pipe nodes [Audibert and

Nyman (1977), Audibert, Lai, and Bea (1978) and Nyman (1982)]. The
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springs are assumed to have a linear elastic-perfectly plastic

stress-strain characteristic (Fig. 2.11) which may be determined

independently for either cohesive or cohesionless sediments. This

type of sediment resistance model can be easily applied to either

cohesive or cohesionless sediments by defining an elastic-plastic

spring which reflects the capacity and yield displacement for a

given sediment. Once the spring characteristics have been assigned

to pipeline nodes, the effect of resistance on the load vector

t+AtIrk-11, t+Atrari
and on the tangent stiffness matrix can be

Lad.'
d
k_i

included in the application of the Newton-Raphson iterative techni-

que to each element. The transformations developed in Section

(2.4.2) are used to constrain the response of the elements to slid-

ing along the ocean floor in the Tn plane (cf. Fig. 2.1). Conse-

quently, the nonlinear springs constrain only the T and n trans-

lational motions of the i and j nodes for each element.

This simulation is directed toward evaluating the pipeline

response only during peak wave episodes. The time interval between

these episodes varies; but for the purposes of the proposed simula-

tion, this time interval between episodes is considered to be of

sufficient duration to allow the sediment resistive stresses to

completely relax. Under these conditions, the hystersis shown in

Fig. 2.11 is relaxed between episodes but not during an episode.

Modeling of the sediment resistance by discrete nonlinear

springs provides a computationally efficient means of predicting

sediment resistance along the pipeline. A significant feature of

this model is its ability to do work through hysteresis [vide.,



Figure 2.11 Sediment resistance model.

Sediment
Capacity

Resistance

"Break away"

Pipeline at Rest

Displacement
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Fig. 2.11]. Other more complex sediment resistance models [e.g.,

Karal (1977), and Karal and Halvorsen (1982)] were reviewed. These

more complex models address a possible time-dependent variation in

the sediment resistance capacity and attempt to more precisely

define the load-resistance curve. A concern for computional effi-

ciency dictated that these more detailed approaches not be incor-

porated in the present algorithm.

Development of the nonlinear spring characteristics for repre-

senting sediment resistance is based upon the static capacity of

the sediment to resist lateral or axial displacements of the

pipe. Determination of the sediment capacity coupled with an esti-

mate of the deformation necessary to develop this force defines the

elastic-plastic characteristics for a given spring. Nonlinear

spring models were developed for both cohesionless and cohesive

sediments in both the lateral and axial modes.

The lateral and axial resistance of a cohesionless sediment to

the corresponding displacement of a pipeline element has been shown

to be a linear function of the effective weight of the pipeline

segment [cf. Anand and Agarwal (1980) and Lyons (1973)]. Sediment

resistance determined in this manner can be represented by a

Coulomb friction model which has been well-documented in ocean

engineering applications [cf. Audibert, Lai and Bea (1978);

Corbishley (1982); Huang and Hudspeth (1982); Jones (1976); and

Lambrakos (1982)]. The Coulomb friction model for cohesionless

sediments is given by

SC.
1

= p.1 (W
s
- F8) ; i = l(r),2(n) (2.4-28)
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in which SCi = the T or n component of the sediment resistance

capacity; pi = the T or n Coulomb coefficient of friction; Ws =

submerged pipe weight; FS = fluid lift force; and 1 = T and 2 = n

modes. Selection of the Coulomb friction coefficient, pi, must be

made from in-situ sediment data. Recommended values for the

Coulomb coefficient of friction appear to be in the range between

0.5 4 pi4 1.5.

Although the Coulomb friction model has been accepted for

evaluating the resistance capacity for a cohesionless sediment,

there are insufficient data presently available to determine the

appropriate yield displacement for the nonlinear Coulomb friction

spring. Fortunately, the precise specification of a yield point

for the nonlinear spring model is not important for determining the

gross dynamic response of a pipeline system that is evaluated only

for peak environmental episodes. Consequently, order of magnitude

estimates have been used to approximate the breakaway displacements

and their corresponding yield stresses. Load deflection data from

Lyons (1973) indicate that the yield displacement for the lateral

deflection of a cohesionless sediment is approximately 2.0% of the

pipe diameter. Load-deflection graphs from Anand and Agarwal

(1980) indicate that the breakaway displacement of the axial defor-

mation of a cohesionless sediment are approximately 0.2% of the

pipe diameter. These values have been incorporated for the non-

linear spring characteristics for a cohesionless sediment in the

FEM algorithm.
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The Coulomb friction model does not appear to be justified for

cohesive sediments [Karal (1977)]. Comprehensive FEM algorithms

for cohesive sediment models have been developed which are capable

of estimating soil forces very accurately. However, these FEM

algorithms cannot be incorporated into a pipeline algorithm without

a significant loss of computational efficiency. The nonlinear

model that was adopted for determining the resistance capacity for

a cohesive sediment is a rational balance between the Coulomb fric-

tion model and the more elaborate FEM models. The cohesive sedi-

ment resistance model incorporated in this FEM algorithm was

developed by Swanson and Jones (1982). A similar formulation has

also been given by Wantland, et.al., (1982). In this nonlinear

cohesive sediment model, the settlement of the pipeline is first

estimated and then passive sediment pressures are used to determine

the resistance capacities of the cohesive sediment.

In accordance with the development given by Swanson and Jones

(1982), the settlement of the pipeline section is determined by

balancing the maximum stress under the pipeline, fd, with the

bearing capacity of the cohesive sediment, qd. These stresses are

represented by

W
s

f = N
d a b

and

5
q
d

= c(1 +
.3b s

Nc
Yes

(2.4-29a)

(2.4 -29b)

in which Na = stress coefficient (= 2.5); Ws = submerged pipe
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weight; b = width of bearing below the pipe section; Nc = bearing

capacity factor(= 5.14); c = average cohesion; s = depth of settle-

ment; and ye = submerged unit weight of the sediment. Equating

Eqs. (2.4-29a) and (2.4-29b) gives an expression which may be eval-

uated iteratively to determine the pipe settlement, s.

Having obtained the pipeline settlements, passive sediment

pressures determine the lateral capacity while skin friction deter-

mines the axial capacity. Cohesive capacities established in this

manner are given by [Swanson and Jones (1982)]

SC1 = ca

SC
2
= cs(3 + S-11 ) +

3y
e
s
2

2

SC2 = cs(3 + --
D2s) 2 Yes2

(2.4-30a)

for p 4 .5 (2.4-30b)

for ) .5 (2.4-30c)

in which SC1 = axial sediment capacity; SC2 = lateral sediment

capacity; a = contact area; and D = pipe diameter. Sample settle-

ment calculations and corresponding sediment capacities are pre-

sented in Table 2.2 for several pipeline sizes and sediment

weights. The sediment parameters selected for these calculations

were: c = 40 psf, Na = 2.5 and Nc = 5.14.

The break away displacements for cohesive sediments are again

estimated by assuming that the choice of the exact yield point for

the nonlinear spring will not significantly affect the gross dynamr-

ic response of the pipeline during peak environmental force loading
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episodes. Wantland, et al. (1979) have addressed the pipe settle-

ment problem and the subsequent development of the load deflection

characteristics for cohesive sediments. Their analysis suggests

that some relationship exists between pipeline settlement and sedi-

ment yield displacement. Rather than attempting to determine this

relationship directly from their data, the results from Nyman's

investigations (1982) have been adopted. From an examination of

Nyman's results, the lateral and axial breakaway displacements were

estimated to be 2.0% of the calculated pipe settlements. It is

recognized that the values suggested by Nyman (1982) are specif-

ically identified for cohesionless soil and not for cohesive marine

sediments. However, within the context of the entire pipeline simu-

lation, these values seem to represent a reasonable engineering

approximation.

The nonlinear sediment and fluid forces are combined into a

single time-varying forcing function {r} which is applied to the

individual pipeline elements. Sections (2.4.1) addressed the non-

linear dynamic response of individual elements and Section (2.4.2)

described the coupling of these elements. This section has pro-

vided a description of the nonlinear sediment loadings that are

applied to the pipeline. Application of the Newton-Raphson tech-

nique given by Eq. (2.3-8a) provides an estimate for establishing

equilibrium at time t+At. The Newmark-beta integration scheme

provides a method for coupling sequential time steps during an

episode of peak environmental loading. In the next section, an



Table 2.2 Sample calculation for settlement and resistance
capacity for pipeline sections on cohesive soils
(N = 2.5; N

c
= 5.14; c = 40 psf).

Pipe Dia
ED (ft)]

Submerged
Weight (lb)

W
s

Submerged Soil
Density ye (pcf)

Settlement
Es (ft)]

Soil Capacities
Axial Lateral

SC
1

(lb /ft) SC2 (1b/ft)

1.25 76.69 80 .15648 36.16 38.26

1.25 29.7 80 .02486 10.04 14.15

4.0625 663.24 80 2.0727 258.6 845.6

4.0625 255.23 80 .4384 108.78 126.08

1.25 76.69 30 .16806 37.54 38.49

1.25 29.7 30 .02515 14.23 10.07

4.0625 663.24 30 4.245 510.5 1401.4

4.0625 225.23 30 .5201 118.93 128.88
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algorithm for simulating the pipeline response to such a peak

forcing event is discussed.

2.4.4 Algorithm for Pipeline Simulation

Sections of Chapter 2 have focused on the development of a

numerical procedure for predicting the nonlinear dynamic response

of a deep ocean pipeline subjected to a random wave environment.

This section is a brief summary of an algorithm which utilizes the

numerical techniques presented in the previous sections to evaluate

the pipeline responses.

For simplicity, a single grid system is used to define the

bathymetry, the engineering properties of the sediment, and the

fluid kinematics to which the pipeline is exposed. Figure 2.12

demonstrates the sequence in which the FORTRAN programs AGSSIM,

AGWSIM and AGAPIP are linked to compute the sediment properties and

the fluid kinematics within the grid; and the pipeline response

during peak wave episodes.

Separation of the solution algorithm into three main modules

provides greater flexibility for simulating a variety of wave and

sediment conditions with a minimum of computer core. Directional

random seas simulated by AGWSIM provide the linear wave theory

fluid kinematics. AGAPIP determines the stochastic values for the

sediment properties and fluid kinematics at the pipeline nodes from

the values at the grid nodes by means of a Best Linear Unbiased

Estimator (BLUE) which interpolates stochastically within the grid

network. Values for the sediment parameters are determined at the

initial pipeline nodes prior to the initiation of a wave episode



Figure 2.12 General solution algorithm for
simulation of pipeline response
in a random wave environment.

AGSSIM

STOCHASTIC EVALUATION OF

SEDIMENT CHARACTERISTICS AT
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AGWSIM

DIRECTIONAL SEA SIMULATION TO
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i
AGAPIP

FINITE ELEMENT ANALYSIS OF

PIPELINE RESPONSE TO

PRESCRIBED ENVIRONMENTAL

CONDITIONS.

( END
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and remain constant during the episode. Fluid kinematics during an

episode are updated along the instantaneous pipeline location at a

time step which is consistent with the wave simulation time incre-

ment used by the FFT algorithms in AGWSIM. Fluid kinematics are

treated as constant values during the intermediate solution steps

for the pipeline response if they are simulated at discrete time

steps which are greater.

Development of the statistical principles necessary to for-

mulate the computer algorithms AGSSIM and AGWSIM is not within the

scope of the present discussion pertaining to the evaluation of

pipeline response for a prescribed set of environmental condi-

tions. A detailed discussion of these statistical simulation

methods have been given by Borgman (1982). With regard to the

numerical evaluation of the pipeline response, it is only necessary

that the definition of the environmental loads provided by AGSSIM

and AGWSIM be in a format which is compatible with the finite el-

ement algorithm, AGAPIP. To avoid prohibitive computational expen-

ditures when evaluating pipeline responses, it is advantageous to

filter the wave simulation data from AGWSIM and to analyze the

pipeline response for a specified sequence of peak wave events

only.

A general flow diagram for AGAPIP is illustrated in Fig.

2.13. A detailed description of the program variables and the

input/output parameters is given in Appendix A. Figure 2.13 demon-

strates that SUBROUTINE DYPIPE performs the analysis of the pipe-

line response during a peak wave event. The fundamental equation



Figure 2.13 General flow diagram of main PROGRAM AGAPIP.
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Figure 2.13 (Continued).

CALL DYPIPE TO CAL=JLATE

PfPE.INE RESPONSE DURING

CURRENT PEW WAVE EVENT

1 SUL MAME 17
i"----

1

ALDZILARY

SUBROUTINES

76



77

solved in this routine is a linear Tayor series expansion of Eq.

(2.4-19). The expansion of this equation has the form

t+At r^1 k-1 t+At r" r-. k-1 r^i t+At k-1
0/I 1.11

0:11 LMi {II}

k-1

t+At r i

2 L

ie
[K]

[as])k-1 k-1

aft
U-

k-1 91T

or more compactly

t+At
IIMBALI =

k-I t+At r

.1,

t+At
LT

r 1

OUT
k-1

k-1

(2.4-31a)

(2.4 -31b)

in which t+At IIMBALIk-1 = the left hand side of Eq. (2.4-31a) and

represents an imbalance of forces; and
t+At

= the tangent
7k-1

stiffness represented by the right hand side of Eq. (2.4-31a). The

tangent stiffness matrix, IT] , is formulated within AGAPIP by a

procedure which combines the tangent stiffness equations for

individual elements into the tangent stiffness matrix for the en-

tire pipeline. An illustration of the matrix [T] is given in Fig.

2.14. The submatrices, [ti] , represent the contribution of the

element to the tangent stiffness of the entire pipeline. The over-

lapping of the element tangent stiffness matrices and the sparsity

of entire pipeline matrix, IT] , occurs for sequentially numbered

pipline nodes. Sequential numbering of the nodes along the pipe-

line requires the nodal generalized coordinates at the end of an

element and the nodal generalized coordinates at the beginning of

the next element along pipeline to be the same. The symbolic over-



Figure 2.14 Tangent stiffness representation of a pipe-
line [T], in which [ti] are the submatrix
contribution from the ith individual element.

78



79

lapping of submatricies in Figure 2.14 represents the matrix addi-

tion of those terms in the overlapped areas which results from the

required continuity between adjacent elements.

Figure 2.15 depicts an interior element submatrix, [ti] , for

the specialized condition when global, local, and both nodal coor-

dinates system for the element are parallel. Specification of such

a constraint permits the illustration of an element tangent stiff-

ness matrix without the complications of transformations between

coordinate systems. The nonzero components of the submatrix

[t ] are listed in Table 2.3. The tangent stiffness contri-

butitions from the elements at the two terminal ends of the pipe-

line are similar to that of a general element shown in Fig. 2.15

except that the rows and columns of the submatrix are deleted.

These deleted rows and columns correspond to the prescribed boun-

dary conditions of the generalized coordinates.

To illustrate the solution algorithm employed for predicting

the dynamic pipeline response, a general flow diagram of the SUB-

ROUTINE DYPIPE is shown in Figure 2.16. The major variables in

SUBROUTINE DYPIPE are defined in Appendix A. Figure 2.16 shows

that Eq. (2.4-31b) is evaluated iteratively throughout an episode

by a nested loop which formulates the contribution from an element;

assembles the tangent stiffness array for the entire pipeline; and

computes an incremental correction to the position of the pipeline

for the given imbalance of forces.

The core of the finite element solution technique that has

been formulated in Chapter 2 is represented in Fig. 2.15. A number



Figure 2.15 Tangent stiffness matrix, [t.], for an
interior pipe element when t*e coord-
inate transformation matrices [TI] ,and
[T

2
] correspond to the identity matrix.
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Table 2.3. Contributory components of the element tangent stiffness
submatrix [t] as given in Figure 2.15. Subscript i or j
indicating i or j nodal quantity and SA and SL refer to
the axial and lateral sediment spring stiffness respectively.
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Figure 2.16 General flow diagram of algorithm
employed by SUBROUTINE DYPIPE.
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Figure 2.16 (Continued).
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Figure 2.16 (Continued).
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Figure 2.16 (Continued).
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of example simulations were analyzed to evaluate the performance of

the solution algorithm. The results of these test problems togeth-

er with the results of more realistic ocean engineering simulations

are presented in Chapter 3.
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3.0 Sample Problems

3.1 Basis for Problem Selection

A number of test problems have been analyzed to demonstrate

the accuracy and efficiency of the solution algorithm developed in

Chapter 2. Because this algorithm was developed specifically to

model the fluid-structure-sediment interaction problem for an off-

shore pipeline, comparisons of results from all features of the FEM

algorithm with analytical solutions, or with experimental data for

a prototype problem, was not possible.

In this chapter a number of test problems of increasing

complexity and applicability are examined to provide qualitative

and quantitative verification of the algorithm. Section (3.2)

describes several example problems which were designed to test

individual modules of the solution algorithm. In Section (3.3),

the predicted pipeline response to a monochromatic wave loading is

presented. The predicted pipeline response to a sequence of short

random wave episodes is presented in Section (3.4). Solutions for

the example problems presented in Sections (3.2) and (3.3) required

minor modifications to the solution algorithm shown Fig. 2.13, and

where practical, these changes are discussed in detail. The physi-

cal characteristics of the two types of pipe elements analyzed in

the example problems of Chapter 3 are summarized in Table 3.1.

3.2 Comparison with Analytical Solutions

3.2.1 Impact Response of a Cantilever Beam

The dynamic response of a cantilever beam subjected to an

impact load at full span was investigated in this problem. The



Table 3.1 Pipe section specifications for Chapter 3. (cf.

Fig. 2.2 for typical cross-section of pipeline).

Section Properties Pipe Klement
Type 1

Pipe Klement
Type 2

Youngs Modulus (psf) 4.32 X 109 4.32 X 109

Poisson's ratio 0.3 0.3

Steel pipe dianeter (f t.) 1.06667 1.66667

Steel wall thickness (ft.) 0.0416667 0.0416667

Mass density of steel section (slug/f t3) 13.97516 13.97516

Cuter sleeve diameter (ft.) 1.25 2.0

Mass density of outer sleeve (slug/f t3) 4.34783 4.75778

Ratio of pipeline density/fluid density 1.35 1.20

Area of steel (sq. in.) 19.32 30.63

Moment of inertia (in.4) 365.38 1455.91

Mass per unit length (slug/f t) 3.32541 7.53983
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problem was selected specifically to provide a numerical comparison

with a known analytical solution. In particular, this problem

provides a comparison of the maximum dynamic deflection and the

fundamental period of vibration of a cantilever beam computed from

a closed form linear solution with the values obtained from the FEM

algorithm. This example also demonstrates the numerical stability

of the solution algorithm and the suitability of the numerical

procedures for transient analysis.

For a given load, the maximum expected deflection for the

cantilever beam can be computed as the product of the dynamic

amplification factor (ratio of the amplitudes of dynamic and static

response) and the static deflection produced by the load. For an

undamped linear structural system, the dynamic amplification factor

for an impact load is 2.0 [Clough and Penzien (1975), p. 92]. The

static tip deflection of a cantilever for a vertical point load at

full span [vide Fig. 2.1] is given by Sandor (1978), [p. 411] as

P.X
3

A
s 3E1

(3.1)

in which A
s
= static deflection; P = applied load; X = length of

span; E = Youngs Modulus and I = moment of inertia. The expected

displacement amplitude, A
D'

for the dynamic response is, therefore;

2PX
3

A
D 3E1

(3.2)

The predicted first mode response frequency, fl, for a linear

cantilever beam is given by Blevins (1979), [p. 108] as
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fl
(1.87510407)2 EI 1/2

HIT)
27R2

(3.3)

in which f
1
= first mode frequency (hertz); and m = mass per unit

length. The corresponding fundamental period for the cantilever

may be computed by inverting Eq. 3.3.

The cantilever beam model chosen for this example was 100 ft.

long and was discretized into four equal length elements which were

oriented to respond in the global X-Y plane [vide Fig. 2.1]. The

physical properties of the elements are described in Table 3.1

under pipe element type 1. The impact load on the pipeline was

simulated in the computer model by selecting Morison coefficients

of

CD = CL = 0.0

and

CM = 1.0

(3.4a)

(3.4b)

and by specifying the fluid velocity and acceleration at all of the

pipeline nodes (except for the node at the cantilever tip) as zero

(v = v = 0.0) . The fluid velocity at the tip node was also

specified as zero (v = 0.0); however, the fluid acceleration at

this node was given a constant magnitude of 20 ft/s2. The direc-

tion of this acceleration was maintained in the horizontal plane

and was perpendicular to the original cantilever axis. Description

of the fluid kinematics for this example required modification of

the PROGRAM AGAPIP to allow the specification of global fluid kine-
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matics at any pipe node. Sediment loadings and other environmental

considerations were negated by specifying the gravitational con-

stant as zero (g = 0.0) and by selecting a cohesionless sediment

with friction coefficients equal to zero (u1 = p2 = 0.0) .

Initially, the response associated with the finite element

model corresponded to the cantilever beam impact problem; however,

as the finite element model of the cantilever deflects, the iner-

tial fluid loading at the tip of the cantilever is computed and

applied normal to the deflected shape of the element at the free

end of the cantilever. Consequently, unlike the analytic problem,

both the magnitude and direction of the applied load changed

slightly as the beam deflected. Another difference between the

finite element model and the analytic problem arose as a result of

the large deflection formulation used for the finite element com-

putations.

Figure 2.8 illustrates the effects of the nonlinearities on

the linear solution. The relationship between the cantilever tip

deflection and the applied static load, where the static load is

given in terms of P2,2/EI, is demonstrated in Fig. 2.8. The impact

load was modeled by the inertial component of the fluid load from

Eq. (2.4-22b) with a magnitude of P = 613.6 lb. The computed value

of PX2/EI for this load is 0.081, which is on the linear portion of

the load curve (approximately, 0.0 < PR.
2
/EI< 1.0) . However,

because of the previously described difference between the finite

element model and the analytical model, a slight descrepancy

between the closed form solution and the FEN solution was antici-



Figure 3.1 Computed cantilever tip deflections for

an applied impact loading.
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pated. These differences are negligible, however, and do not pro-

hibit a comparison between the analytic and the FEM solution.

In Fig. 3.1 the computed transverse tip deflection as a func-

tion of time is depicted. The finite element analysis which

rendered these results utilized a 0.1 second time step for temporal

integration. Figure 3.1 illustrates some of the previously antici-

pated descrepancies between the analytic and finite element models;

however, the plot of the tip deflection demonstrates primarily the

expected first mode response. The maximum computed deflection

obtained from the FEM solution was 5.389 ft., which compares

favorably with the predicted linear analytical solution of 5.374

ft. The slightly greater computed maximum deflection is attributed

to contributions from excitation of higher modes of response by the

inertial fluid loading (which rotates in order to remain normal to

the element at the free end of the cantilever). The effects of the

higher response modes may be observed in Fig. 3.1 where the higher

frequency vibrations are superimposed on the fundamental sinusoidal

response. The FEM results also indicated that the cantilever does

not oscillate between its original position and the maximum dis-

placement amplitude. This behavior is attributed to the fact that

the applied inertial fluid load is computed as the component of

fluid acceleration normal to the element at the free end of the

cantilever.

Comparison of results for the fundamental vibration periods

for the FEM and the analytical solutions can only be made to within

the accuracy of the time step chosen for the numerical solution.
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The closed form prediction for the fundamental vibration period is

3.77 seconds. The finite element model exhibited a vibration

period of 3.8 seconds.

In summary, by slightly modifying the FEM solution algorithms,

it was possible to obtain close agreement of results with a closed

form analytical solution for a dynamically loaded cantilever

beam. General agreement between the finite element values with

theoretical large deflection predictions has already been demon-

strated in Chapter 2 (vide Fig. 2.8); therefore, the present

example focused on evaluating the dynamic analysis capabilities of

the FEM algorithm. The computations for this example were not

carried beyond the first oscillatory cycle (Fig. 3.1) because the

analytical and finite element solutions had begun to diverge at

this point as a result of modeling constraints, and further compu-

tations would have provided no additional verifiable information.

3.2.2 Impact Response of a Cantilever Beam on an Inclined Plane

The dynamic response of a cantilever beam subjected to an

impact load at full span was examined in this example. The problem

was identical to that discussed in Section (3.2.1), except that the

response of the cantilever was constrained to remain in a plane

which had been positively rotated about the longitudinal axis of

the cantilever to a 25.0% slope. This problem was selected speci-

fically to provide a verifiable test for the transformations bet-

ween the local, global, and nodal coordinate systems.

Except for the rotation of the grid system, the problem

definition and program modifications necessary to formulate this
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problem were as described in Section (3.2.1). However, the fluid

acceleration assigned to the tip of the cantilever in each problem

was computed as the component of acceleration parallel to the plane

in which the tip node was free to respond. The cantilever response

described in Section (3.2.1) was constrained to remain in the X-Y

plane and the fluid acceleration at the cantilever tip was speci-

fied in the global Y direction. The component of the global Y

fluid acceleration parallel to the inclined slope for this problem

was 19.4 ft/s2. The corresponding ratio of impact loadings for

this example and the example of Section (3.2.1) is 0.97. In the

nearly linear response range of this problem, the expected results

are 97.0% of the computed results for the problem described in

Section (3.2.1).

Figure 3.2 depicts the global Y and Z components of tip

deflection for the response of the cantilever on an inclined

slope. Evaluation of the numerical results for this problem in-

dicated that the magnitude of the vector combination of these dis-

placement components were 97.0% of the cantilever deflections com-

puted in Section (3.2.1). Examination of the local force infor-

mation provided as part of the solution data showed the local

forces in this example to be 97.0% of those computed in Section

(3.2.1). Furthermore, the out of plane forces for both solutions

remained negligible. The vibration period for the response of the

inclined cantilever was 3.8 seconds which matched that of the hori-

zontal cantilever to within the accuracy to which the solution

results for either problem could be interpreted.



Figure 3.2 Computed components of tip deflection for a
cantilever responding on an inclined slope to

an impact loading.
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This example problem provided a control check on the coor-

dinate system transformations utilized by the solution algorithm.

The predicted deflection amplitude of 5.228 ft. and the computed

deflection amplitude of 5.229 ft. compare very well for this exam-

ple.

3.2.3 Reponse of a Pipeline to a Steady Current Load.

The response of a section of pipeline subjected to a steady

transverse current of 5.0 ft/sec. was modeled in this example.

This problem was selected specifically to demonstrate the ability

of the solution algorithm to accurately predict steady state be-

havior. Because the fluid loading for this example was applied as

an impact loading, this example also provides an indication of the

amount of viscous damping introduced by fluid drag.

The finite element model for this simulation consisted of six

equal length elements spanning a total length of 240.0 ft. The

prescribed boundary conditions at both ends of the span were fixed

(i.e., no displacement and no rotation) and the specified pipeline

characteristics are described in Table 3.1 as pipe element type

1. Current loads were simulated with a steady fluid velocity of

5.0 ft/sec. acting transverse to the original pipeline configura-

tion. Morison coefficients were specified as CD = CM = 1.0 and CL

= 0.0. Environmental factors other than hydrodynamic loading were

negated by specifying the gravitational constant as zero (g = 0.0)

and by specifying a cohesionless sediment with friction coeffi-

cients of zero (p1 = u2 = 0.0) . A temporal integration step of

0.1 second was used in the simulation.
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The expected pipeline response for this simulation was a

rapidly decaying vibration which approached a steady state pipeline

deflection equivalent to the deflection of the same pipeline that

was statically loaded with a uniform Morison drag force. Figure

3.3 depicts the computed midpoint deflection of the pipeline as a

function of time for this simulation. Interpretation of the simu

lation results and comparison of the results from linear structural

theory indicates that the pipeline response is nonlinear. A closed

form solution for the large deflection static response of a

uniformly loaded fixedfixed beam is not available. However, a

numerical solution for this problem was obtained using the FEM

computer program LDEFL [Zimmerman (1982)] which produced Fig.

2.8. Results from the nonlinear static analysis predicted a mid

point deflection of 1.651 ft. Figure 3.3 demonstrates that the

dynamic response of the pipeline subjected to the current load has

reached steady state after approximately 3.0 seconds. The computed

midpoint deflection after 3.0 seconds was 1.642 ft.

Simulation of other steady current problems indicated similar

steady state behavior. The amount of damping present in the other

simulations varied with the specified magnitude of the current.

These additional simulations were performed for durations up to

20.0 seconds without exhibiting any tendency to diverge from the

predicted steady state behavior.
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Figure 3.3 Midpoint deflection of a fixed-fixed beam
subject to a steady 5.0 ft/sec. current.
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3.2.4 Pipeline Response on an Elastic Foundation

The effects of the nonlinear springs that modeled the sediment

forces on the dynamic response of the pipeline was examined. This

problem was selected in order to provide comparisons of the maximum

dynamic deflection and the fundamental period of vibration of a

simply supported beam on an elastic foundation.

A 300 ft. section of a simply supported pipeline (i.e., unre-

strained rotation at the pipe terminals) was
subjected to an impact

loading from a 1.0 ft/sec. steady current. The finite element

representation of this system was discretized into six equal length

elements which were oriented to respond in the global X-Y plane.

The physical properties specified for the elements are described in

Table 3,1 as pipe element type 2. Sediment spring characteristics

were computed in accordance with Section (2.4.3b) for the cohesive

sediment having a cohesion (c) value of 40.0 psf and an effective

weight (le) of 21.0 pcf. The impact loading on the pipeline was

simulated with a steady current of 1.0 ft/sec. oriented transverse

to longitudinal axis of the pipeline. Morison coefficients were

chosen as CD = CM = 1.0 and C
L

= 0.0 . Fluid kinematics and pipe-

line response were both computed with a 0.01 second time step.

The expected response for this simulation was a damped linear

oscilation with a dynamic amplification factor of approximately 2.0

and a fundamental period of vibration slightly greater than the

undamped fundamental period of an equivalent simply supported beam

on an elastic foundation. The fundamental frequency for an
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undamped simply supported beam on a spring foundation is given as

[Blevins (1979), p. 107]

f 24 )1/2 (EI)1/2
f
1

2k
2

+ E
f

EI n
4)

(3.5)

in which f
1
= first mode frequency (hertz); k = length of span; m =

mass per unit length; E = Youngs modulus; I = moment of inertia;

and Ef = foundation modulus (load per unit length per unit deflec-

tion). Equation (3.5) for this simulation gives f1 = 8.687 hz., or

equivalently, a first mode period of .115 second. The numerical

solution for this problem is expected to have a period slightly

longer than that predicted by Blevins due to the damping introduced

by the fluid.

Figure 3.4 illustrates the pipeline deflection at midspan as a

function of time. Interpretation of these results reveals that the

computed vibration period was 0.118 seconds [cf. 0.115 seconds from

Eq. (3.5)].

Further review of these simulation results demonstrated that

the pipeline response was linear and was dominated entirely by the

sediment resistance. The static midpoint deflection of the pipe-

line to a Morison drag load of 2.0 lb/ft that is resisted only by

the sediment springs yielded a predicted midpoint deflection of 8.9

x 10-5 ft. Using this value and the FEM computed maximum of 1.761

x 10-4 ft., the computed dynamic amplification for this simulation

was 1.98 which compares favorably with the analytic prediction of

2.0 (Clough and Penzien (1975), [p. 92]).



Figure 3.4 Illustration of sediment spring response for
a simply supported pipeline subjected to an
impact loading from a 1.0 ft/sec. current.
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In reviewing the results from this example, it is noted that

although the analytical and FEM response of the pipeline compared

well, the computed response of the pipeline for this problem was a

small amplitude, high frequency vibration. Because the assumptions

made in formulating the FEM solution algorithm were oriented toward

evaluating the gross dynamic behavior of the pipeline, it is not

expected that the computed results for this problem would emulate

the actual pipeline response for this type of loading.

3.3 Pipeline Response to Monochromatic Wave Loadings

The pipeline response to monochromatic waves was also

examined. The simulations from monochromatic waves demonstrates

the fluid-structure-sediment aspects of the algorithm that were

difficult to illustrate with results obtained from stochastic wave

loadings. Furthermore, simulation results for monochromatic wave

loadings provide a source for qualitative comparison with the

numerical solutions of other investigators [e.g., Karel and

Halvorsen (1982)].

Three representative example problems were examined for mono-

chromatic wave loadings. Input parameters for the three example

problems are given in Table 3.2 and the pipeline properties for

these examples are described in Table 3.1 as pipe element type 2.

The grid system for each problem was a horizontal plane, and sedi-

ment characteristics throughout the grid were uniform. The FEM

algorithm for these example problems were modified to compute the

fluid kinematics at pipeline nodes without using interpolation

(SUBROUTINE BLUE). Fluid kinematics were calculated from a linear



104

Table 3.2 Pipeline, sediment and wave data for
monochromatic wave simulations.

Internal pressure (PR) 1440.0 psi.

Pipeline length between terminal constraints (L) 2500.0 ft.

Drag, lift, and inertial coefficients (CD,
CL, CM)

Fluid mass density (p0)

Sediment cohesion (c)

Sediment effective weight (ye)

Monochromatic wave specifications:

Water depth (h)

Wave height (H)

Wave period (2111w)

Phase shift (4))

Wave angle from X axis (0)

CD = 1.0
CM = 2.0
CL = 1.0

2.0 (slugs/cf.)

40 psf.

21 pcf.

200.0 ft.

30.0 ft.

12.0 sec.

90°

90°, 60°, 30°
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monochromatic wave traveling at an angle 8 to the global X axis,

with a free surface profile given by

N
w

= (X,Y,t) =
2

cos (KX cos 0 + KY sin 0 - wt + (1)) (3.6)

in which Nw = water surface profile; H = wave height; K = wave

number (rads/length); w = wave frequency (rads/time); and (111 = phase

shift. The fluid kinematics and the structural response were cal-

culated using a 0.2 second time step.

The finite element model of the pipeline system in each exam-

ple problem consisted of 50 elements. The prescribed boundary

conditions at the pipe terminals were specified as fixed (i.e., no

displacement and no rotation). The longitudinal axis of the pipe-

line in the preloading stage was selected to coincide with the

global X axis; therefore, the wave angle 0 corresponds to the angle

of wave attack relative to the original configuration of the pipe-

line.

The calculated deflections at the pipeline midpoint (x = 1250

ft.) and the horizontal water particle velocity are given as a

function of time in Fig. 3.5 for a normally incident wave (0 =

90°). The flat portions of the displacement plot illustrated in

Fig. 3.5b reflect the hystereses effect from the sediment forces.

The phase relationship exhibited in Fig. 3.5 between the fluid

velocity and the pipeline response indicates that inertial fluid

loading is an important component of the applied environmental

loading. In addition, Fig. 3.5 demonstrates the importance of the



Figure 3.5 Effect of (a) water particle velocity on
(b) pipeline response at X=1250.0 ft. for
a normally incident monochromatic wave,
8=90°.
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initial transient motion and sediment hysteresis in determining the

net lateral displacement of the pipeline.

The maximum deflections, the longitudinal stresses and their

location along the pipeline are given in Table 3.3 for both normal-

ly incident and obliquely incident (0 = 60°, 30°) waves. The

results tabulated in Table 3.3 reveal that the directionality of a

wave field greatly affects both the magnitude and location of the

maximum pipeline response. Furthermore, the computed results show

that even for a normally incident wave, the maximum pipeline

deflections do not necessarily occur at the midpoint of the pipe-

line or during the first wave in a group of waves. The normally

incident wave results (0 = 90°) are symmetric.

A literature search was unable to locate an example solution

which was analogous to the examples described in this section.

However, the work of Karal and Halvorsen (1982) provides a source

of qualitative comparison for a normally incident monochromatic

wave. Karal and Halvorsen (1982) employed a finite difference

technique with a nonlinear fluid drag force and a nonlinear hyste-

resis function for the sediment forces to evaluate the response of

a 1000.0 meter long pipeline subjected to a harmonically varying

fluid load. A comparison of the time-displacement plot illustrated

in Fig. 3.5b with that presented by Karal and Halvorsen (1982)

reveals that both responses have the same general form. A compari-

son of the phase relationship between the fluid velocity and the

midpoint displacement with that illustrated by Karal and Halvorsen

(1982), shows an apparent discrepancy. Figure 3, (p. 310) pre-



Table 3.3 Computed results for a monochromatic wave.

Max values for 0 4 x 4 2500 ft. Max values for midpoint

Wave Angle Lateral displ.

0

Longitudinal stress' x 1250 ft.

i.2 maxi x (u2 max) oinalt x (crmax) 1u2 maxl

degrees ft ft ksi ft ft ksi

902 1.77
(t, 39.8 sec)

570.0 & 19.6
1930.0 (t 39.8 sec)

60 .74 2220.0 18.6
(t v. 33.6 sec) (t 37.0 sec)

30 0.006 853.3
(t 8.2 sec)

13.7
(t 7.2 sec)

0.0 &
2500.0

1.51
(t 4.0 sec)

14.1
(t 27.2 sec)

2500.0 .36 14.5
(t 14.0 sec) (t 33.2 sec)

853.3

1. Initial stress 13.5 ksi
2. Results are symmetric about midpoint
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sented by Karal and Halvorsen (1982) depicts significant pipeline

motion only in phase with peak fluid velocity. Furthermore, the

net lateral displacement predicted by the finite difference

algorithm was proportionally greater than that obtained from the

FEM solution. Both of these discrepancies indicate that the Karal-

Halvorsen algorithm predicts greater sediment resistive forces than

the FEM formulation; however, insufficient data are available to

directly compare these sediment force values.

Further comparison of the results published by Karal and

Halvorsen (1982) with the results computed by the FEM algorithm

reveals that both solution procedures predict that the location of

the maximum pipeline deflection for a normally incident wave is a

function of the wave length (or wave period for linear waves). The

Karal and Halvorsen results indicate this directly in tabular form

(Table 1, p 310). The FEM results reflect this effect in the

numerical results obtained for a pipeline subjected to a steady

current [Section 3.2.3)] and to a normally incident wave. The

results from the steady current (infinite period) simulation indi-

cated a maximum deflection at mid span, where as the results for a

normally incident wave (12.0 sec. period) reported in Table 3.3

indicate a maximum deflection that is symmetric about, but not at,

the pipeline midpoint.

3.4 Pipeline Response to Random Wave Loadings

Dynamic pipeline response for a sequence of three episodic

loadings from a directional sea simulation was analyzed. The wave-

induced fluid kinematics for this simulation were obtained from the
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program AGWSIM using a FFT time step of 1.0 second and a water

depth of 165.0 ft. To reduce computational expenses, the 17

minutes of data provided by AGWSIM was filtered to obtain episodes

of peak forces. The specific loading episodes which were analyzed

used the wave data from 0 to 39 seconds, from 269 to 309 seconds

and from 539 to 580 seconds. The selection of these data intervals

was chosen to represent a sequence of peak wave occurrances during

the design life of the pipeline. However, because the selection of

these data intervals was somewhat arbitrary, it is probable that a

worst case scenario may not be represented by the intervals

selected.

The pipeline and sediment characteristics for this simulation

are described in Table 3.4. The physical characteristics of the

pipe cross section are given in Table 3.1 as pipe element type 2.

The finite element model for this simulation consisted of 50 ele-

ments with fixed prescribed boundary conditions (i.e., no displace-

ment and no rotation at the pipe terminals). A temporal integra-

tion step of 0.2 second was utilized in the Newmark-beta integra-

tion.

In Fig. 3.6, the computed pipeline configurations after each

of the three wave episodes is illustrated. This figure reveals the

chaotic nature of the forces produced by waves from a random direc-

tional sea.

The calculated maximum deflections and longitudinal stresses

and their respective locations along the pipeline are presented in

Table 3.5 for each of the subsequent wave episodes. These results
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Table 3.4 Pipeline, sediment and wave data
for random sea simulation

Internal pressure (PR)

Pipeline length between terminal constraints (2.)

Morison coefficients (CD, CL, CM)

Sediment cohesion (c)

Sediment effective weight (ye)

Grid spacing

Water depth (h)

1440.0 psi

2500.0 ft.

CD = 1.0
CM = 2.0
CL = 1.0

40 psf.

21 pcf.

65.6 ft.

164.0 ft.



Figure 3.6 Pipeline configuration after each of three sequential wave episodes
from a directional sea simulation.
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Table 3.5 Computed results for random wave episodes

Max values for 0 < x < 2500 ft

Wave Episode Lateral displ. Longitudinal stress3

u2 max x(u max)2 /max x (amax)

ft. ft. ksi. ft.

1 2.76 750.0 37.5 0.0
(0 < t < 39 sec) (t = 20.0 sec) (t = 35.0 sec)

2 2.00 300.0 27.8 0.0
(269 < t < 309 sec) (t = 301.0 sec) (t = 301.8 sec)

3 2.12 300.0 28.1 0.0
(539 < t < 580 sec) (t = 559.8 sec) (t = 560.8)

3. Initial stress = 13.67 ksi
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indicate maximum displacements and stresses considerably greater

than those obtained from the monochromatic wave simulations

previously described. This increased response magnitude for the

directional sea simulation is indicative of the large energy con-

tent of the waves during the peak wave events selected for the

simulation.

Review of the results described in Table 3.5 indicates that

all of the maximum stress occurrances for this simulation were

located at the pipeline terminals. The computed maximum longitudi-

nal stress of 37.5 ksi indicates that stress levels during these

wave simulations approached yield values for some steels, and

therefore additional weight coating for this pipe section may have

been required. Further investigation of the FEM results from the

random wave simulation indicated that maximum mean deflection for

the pipeline during any wave episode was -0.0624 ft. at x = 1300.0

ft. and occurred during the third wave episode. The maximum mean

deflection for the pipeline during the entire simulation was

-0.0412 ft. at x = 1350.0 ft.

A review of available literature was unable to locate an anal-

ogous solution for a directional sea simulation; however, the work

of Lambrakos (1982) was similar in scope. The pipeline displace-

ments predicted by Lambrakos (1982) were distinctly greater than

those described in Table 3.5 or in Fig. 3.6. This difference

arises because of differences between the nonlinear structural

formulation presently employed and the linear structural formu-

lation employed by Lambrakos (1982). The linear formulation for



115

structural response is expected to over estimate the displacements

of a stiffening struture such as the pipeline systems analyzed by

the FEM algorithm.
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4.0 Summary and Recommendations

4.1 Summary and Conclusions

The nonlinear, dynamic response of bottom-laid deep ocean

pipelines to stochastic directional wave loadings has been investi-

gated. The study utilized the finite element method (FEM) to ob-

tain a nonlinear time domain solution for the predicted response of

a pipeline system. The differential momentum equations for the

pipeline motions were transformed via variational principles to

equivalent integral energy relationships. These integral energy

equations were discretized using the finite element concepts.

Solving numerically the integral energy equations by the FEM in

contrast to solving the differential momentum equations by finite

difference methods eliminated the possibility of numerical

instabilities and improved the reliability of the computed

results. The discrete structural model for the pipeline system was

developed from an application of well-known energy methods which

were then modified to accurately predict large-deflection responses

by using a convected coordinate system. The environmental pipeline

loadings due to nonlinear sediment resistances and to nonlinear

wave- and current-induced forces were simulated by state-of-the-art

models. To develop the FEM algorithm, it was assumed that: 1)

only the gross dynamic response of the pipeline during peak wave

episodes having a long return period was of interest; and 2) pipe-

line strains will remain small even though large pipeline displace-

ments may occur.
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The FORTRAN algorithm AGAPIP was developed and verified

numerically using several example problems of various types in

order to test both transient and steady state responses. The

numerical verification problems reported in Sections (3.2) demon-

strated excellent correlation with predicted analytical solu-

tions. Numerical results for the dynamic response of prototype

pipeline systems to both monochromatic and random, directional

waves indicated that both the stress levels and displacements pre-

dicted for these simulations remained within present design speci-

fications. Comparison between the dynamic responses to both mono-

chromatic and random wave simulations presented in Sections (3.3)

and (3.4) with the dynamic responses reported by other investi-

gators indicated significantly smaller displacements were predicted

by the FEM algorithm. However, these smaller displacements were an

anticipated consequence of the differences between the linear

formulation used by the other investigators compared to the non-

linear FEM algorithm. The numerical comparisons suggest that the

dynamic response of a long bottom-laid pipeline to stochastic

directional seas is not accurately modeled by linear structural

theory. It should also be noted, however, that the CPU times for

the nonlinear FEM algorithm are not insignificant and can approach

a ratio of CPU/real time of 105:1 for stochastic, directional

seas. In addition, the FEM algorithm is not economical to use for

simulations that result in nearly static pipeline responses; i.e.,

very small displcements due to very low hydrodynamic wave- and

current-induced forces. The FEM algorithm has been optimized for
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the strongly nonlinear dynamic response of a pipeline to large

wave- and current-induced hydrodynamic loadings.

4.2 Recommendation for Future Research

These results provide a frame work for more complex and com-

prehensive efforts to evaluate the dynamic response of marine pipe-

lines. The flexibility of the FEM algorithm to model a variety of

prototype pipeline systems provides a practical tool for an in-

depth parametric evaluation of the effects on the dynamic perfor-

mance of bottom-supported pipelines, of a directional sea state, of

the bottom contours, and of selected pipeline parameters. Initial

efforts should be directed toward minimizing computational costs

and toward making the algorithm more user friendly.

Additional effort should also be directed toward sensitivity

analyses that would include such factors as the selection of appro-

priate convergence tolerances and time steps; the discretization of

FEM element sizes; the interpolation used to obtain the environmen-

tal parameters within a grid; and the evaluation of the effects of

the differences between the time step used in the FFT simulation

for the fluid kinematics and the numerical integration time step.

Perhaps most importantly, a modification of the Swanson-Jones sedi-

ment model to eliminate the sharp discontinuity that presently

exists in their elastic-plastic modal deserves high priority.

Finally, physical data for both the overall dynamic pipeline

response and for the dynamic sediment and fluid load representa-

tions are needed in order to complete the verification of the FEM

algorithm.
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Appendix A

Description of Computer Algorithm AGAPIP

AGAPIP is a finite element analysis program designed as one

module in a suite of a three program package which has been

developed to predict the nonlinear dynamic response of a bottom-

layed deep ocean pipeline to wave- and current-induced hydrodynamic

pressures. General flow diagrams that illustrate how the three

modulus (viz. AGSSIM, AGWSIM, and AGAPIP) are linked and that

document the computational flow within AGAPIP have been presented

in Section (2.4). Example problems have been used to numerically

verify either AGAPIP or slightly modified versions of AGAPIP.

Numerical comparisons from these examples were reported in Chapter

3.

Appendix A represents a users manual for the program AGAPIP.

The documentation in this section consists of the following: 1) a

brief users guide which includes detailed information on user-

supplied data along with a sample data deck and the corresponding

program output; 2) Table A.2 which supplies a variable list for

AGAPIP and its major subroutines; 3) an alphabetical listing and

brief description of all subroutines; and 4) Table A.3 which

supplies Input/Output specification for each TAPE UNIT used by

AGAPIP.

This appendix is not intended to be a substitute for a

thorough understanding of the numerical methods utilized in the

solution algorithm. Because much of the user-supplied input data

for AGAPIP is discretionary (e.g. time step size or the FEM element
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discretization), it is recommended that program users be familiar

with the solution techniques described in Chapter 2. It is

strongly suggested that the users carefully review their numerical

results and perform some logic checks to ensure that their

numerical values are consistent with sound engineering practice.

Furthermore, because the CPU times for AGAPIP are significant, it

is recommended that a careful review of all user-supplied data be

made prior to executing the program in order to avoid unnecessary

CPU expenditures.

AGAPIP USER'S GUIDE

A list of the user-supplied data necessary to analyze a

pipeline response to stochastic, directional seas is given in Table

A.1. Further information is available in Table A.3 which describes

the Input/Output specifications required by AGAPIP for each TAPE

UNIT utilized during program execution. AGAPIP has been designed

to function as only one module in a suite of three modules and

successful execution depends upon the supportive input data on TAPE

1, TAPE 2, and TAPE 12 which have been produced by the other pro-

gram modules. Without these supportive data, successful execution

of AGAPIP will not be possible.

The list of user-supplied data in Table A.1 is organized by

typical 80 column card images. However, all user-supplied data for

AGAPIP are format list directed. The COMMENTS for each 80 column

card image in Table A.1 describe user options, default parameters,

and special considerations or recommendations.
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The physical description of the finite element model used for

a simulation must be established with the coordinate systems

defined by Fig. 2.1. All user-supplied input data, as well as the

inputs from the other 2 program modules, MUST be given in

consistent units (i.e., English or metric).

A sample data deck is illustrated in Fig. A.1. This deck

provides the control data for a 30 sec. simulation of a random wave

event. All data for the simulation are in English Units (viz. feet

and pounds). Figure A.2 demonstrates the use of the generating

options for nodal locations and the assignment of element

parameters.



Table A.1. USER INPUTS

Card No. Variable List (liniments

1 ETIM, ROE0, CRAY, PRSS, STEP Ending time for structural simulation; Fluid mass density;
Gravitational. constant (>0.0); Internal pipeline pressure;
Time step for numerical integration.

2 VK, STRT, ALPHA, DELL Fluid kinematic viscosity; timber of time substeps for the
initial time step of each episode (>1); Newmark integration
parameter a; Newark integration parameter 6. tbrmally, a
- .25; 6 - .5. (default: ALPHA - .25, DELL .. .5, if ALPHA
. 0.0).

3 PINTVL Number of discrete time steps between printed output (>1)

4 NNODES, NEPR, NMPR, RTOL, ETOL Ibtal lumber of pipeline nodes; Number of element property
cards; timber of material property cards; Convergence
tolerance for force imbalance; Convergence tolerance for
energy imbalance. (default: ETOL -. RTOL .. .00001; if ETOL
- RTOL - 0.0)

Fepeat Gird 5 NNODES Times or Until M - NNODES

S M, XR, (1,M), XR (2,M), Node number; X location; Y location; Z location (<0.0).
XR (3,M) First node input should be 1. Node numbers mist increase

each card. Node numbers which are skipped will be back
generated with equal spacing. Original pipeline direction
should have node numbers increasing in the positive X
direction (see Figure 2.1 and Section 2.4.1b).



Table A.1. USER INPUTS (Continued)

Card No. Variable List Comnents

Repeat Card 7 NEPR Times

7

or
(5 + NNODES)

EPR(J), EPR(J+1) , EPR(J+2)
EPR(J+3), EPR(J+4), EPR(J+5)

Steel pipe diameter; Steel wall thickness; Cuter sleeve
diameter; Drag coefficient; Lift coefficient; Inertial
coefficient. Input of negative drag coefficient causes
program to compute the drag coefficient as a function of
Reynolds nunber. (default CD Ci. - 1.0, Cm - 2.0; if
CD 0.0) to GlIEPR)

Repeat Card 8 NMPR Times (REAL)

8 or 11PR (J), 142R (J+1), MPR (J+2), Young's modulus for steel section; Poisson's ratio for
(5 + NNODES + steel section; Mass density for steel section; Mass density

NEPR) MPR(J+3)for outer sleeve. [J - 1 to 4*NMPR)

Repeat Card 9 NNODES-1 Times or Until I - NNODES - 1

9 or (9 + I, ICODE (1,I), ICODE (2,I)
NNODES + NEPR
+ NMPR)

Element number; Element property card nunber; Material
property card nunber. Element numbers mist increase with
each input. Element numbers which are skipped will be
assigned the element and material card nunbers of the most
recent (highest) element nunber.

10 (BRC(I), I=1,6) Boundary restraint codes (BRC) for node 1 and node
NNODES. I - 1 - axial diaplacement for node 1; I - 2 -
lateral displacement for node 1; I - 3 - rotation for node
1; I 4 - axial displacement for node NNODES; I 5 -
lateral displacement for node NNODES; I = 6 - rotation for
node NNODES. Prescribed boundary restraint codes signify
either a fixed or active degree of freedom at the pipeline
terminals (of Chapter 2). FREE 1.0; FIXED - 0.0. If
either BRC (1) 0.0 or BRC (4) 0.0, the initial axial
stress will be set to 0.0.



Table A.1. USER INPUTS (Continued)

Card No. Variable List Omments

11 (BSC(I), Axial spring constant for node 1; lateral spring constant
for node 1; rotational spring for node 1; pretension force
in pipeline. Pretension load is treated as a constant
initial stress throughout the entire pipeline.

12 (BSC(I), I5,7) Axial spring constant for node NNODES; lateral spring
constant for node NNODES; rotational spring constant for
NNODES.



REPEAT NNOOES -1 times

(REPEAT : !Min uses +[

[REPEAT . NEM times

4

REPEAT NNOOES Rims

0.0 0.0 0.0nononanumonauatummonummonAmmoonlossepowournoostoomocommormosor.
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Figure A.2 Sample output for sample input deck in Fig. A.1.

----AA GGGGG AA PPPPPP IIIIII PPPPPP EEEEEEEE
AAAA GGGGGG AAAA PP PP II PP PP EE
AA AA GG AR- AA -PP --PP //---PP-----PP-EE

AAAAAAAA GG GGG AAAAAAAA PPPPPP II PPPPPP EEEEEE
AA AA GG GG AA AA' PP II PP EE

AA AA GGG GGG AA AA PP II PP EE
-AA AA GGGGGG AA AA PP IIIIII PP EEEEEEEE

ANALYSIS PACKAGE FOR NONLINEAR RESPONSE OF BOTTOM-LAID DEEP-OCEAN
PIPELINE SYSTEMS SUBJECT TO HYDROELASTIC LOADS FROM A RANDOM WAVE
WIRONMENY.

SIMULATION CONTROL INFORMATION:

-83/07/1Er;

SIMULATION DURATION 30.0000
TIME STEP SELECTED .2000
IN1EGRAT101-CONSTAN-TS:

ALPHA = .2500
DELL .5000

INTERNAL PRESSURE = 207360.0
GRAVITATIONAL CONSTANT=-- 32.2000
PEAK WAVE FREQUENCY = .1000

--Ft:HD-MASS -DEP:SHY - 2,-0000
FLUID KINEMATIC VISCOSITY= .100000E-04
NUMBER OF SUB STEPS FOR INITIAL TIME STEP=

PRINT CONTROL INFORMATION:

PRINT INTERVAL= 1.00

5.0000

STRUCTURAL CONTROL INFORMATION:
NUMBER OF NODES= 51
NUMBER OF ELEMENT PROPERTY SECTIONS= 1

____HUMBER_OE_MATERIAL_FROPERTY SECTIONS= 1

FORCE TOLERANCE FOR CONVERGENCE= .1000E-04
FNFRaY IOLEBANCE_EDI_CDNSIERGENEEs 1000E-04



Figure A.2 Sample output data for sample
input deck (continued).

GENERATED NODAL DATA FOR PIPELINS1

NODE NODAL POINT COORDINATES
NURSER

-------
I 8.008 0.000 -164.042
2 50.000 8.008 -164.042
3 100.000 0.000 -164.042
4 150.000 0.000 -164.942
0 200.000 0.000 -164.042
6 250.000 0.000 -164.042
7 300.000 0.000 -164.042
I 350.000 0.000 -164.042
1 400.000 0.000 -164.042

10 450.000 0.000 -164.042
11 500.000 1.000 -164.042
12 550.000 8.008 -164.042
13 600.000 0.000 -164.042
14 650.000 1.000 -164.042
15 700.000 0.000 -164.042
i6 Y50.000 0.000 -164.042
17 000.000 0.000 -164.042
18 050.000 0.000 -164.042
19 900.000 0.000 -164.042
20 950.000 0.000 -164.042
21 1000.000 0.000 -164.042
22 1056.000 0.000 -164.341
23 1100.000 0.000 -164.042
24 1150.600 1.000 -164.042
25 1200.000 0.000 -164.042
26 1250.001 0.000 -164.042
27 1300.000 0.000 -164.042
20 1350.000 0.000 -164.042
29 1400.000 0.000 -164.042
30 1450.000 0.000 -164.042
31 1500.000 1.000 -164.042

_
32 1550.000 8.008 -164.042
33 1600.000 0.000 -164.042

--34 1650.000 0.000 -164.042
35 1700.000
36

___0.000_____-164.042
1750.000 0.000 -164.042

37 1800.000 0.000 -164.042
38 1050.000 0.000 -164.042
39 1900.000 8.008 -164.042
40 19s6.000 4:10 -4E4.642
41 2000.000 8.000 -164.042
42 2050.000 0.000 -164.042
43 2100.000 0.000 -164.042
44 2150.000 0.000 -164.042
45 2200.000 0.000 -164.042

---; 2254:168 lr."-bdtl -464:1142

fa 2000.000 0.000 -164.042
48 2350.000 0.000 -164.042
49 2400.000 0.000 -164.042
50 2450.001 8.000 -164.042
51 2500.000 0.000 -164.042



3/0 PIPE ELEMENTS

ELEMENT FROPERTIES

SECTION NUMBER

Figure A.2 Sample Output data for sample
input deck (continued).

OUTER STRUCTURAL STRUCTURAL WALL TOTAL PIPE SECTION DRAG LIFT INERTIAL
DIAMETER THICKNESS DIAMETER COEFFICIENT COEFFICIENT COEFFICIENT

1.66667 .84167 2.00000 1.0000 1.0000 2.0000

MATERIAL PROPERTIES,

SECTION NUMBER ELASTIC POISSONS STRUCTURAL
MODULUS RATIO MASS DENSITY

OUTER SIEVE
MASS DENSITY

1 .4320E4'10 .3000 13.97516 4.75774



Figure A.2 Sample output data for sample
input deck (continued).

GENERATE° ALLOCATION OF MEMBER PROPERTUS1

ELEMENT NUMBER GEOMETRIC MATERIAL
SECTION SECTION

3

5

6
7

10
11
12
13
14
15

17
to
ti
20
21
22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39
40
4t
42
43

--44
45
46
47 1

4.
49
SO

1 1

1 1

1

I I

1 I

1 1

t



Figure A.2 Sample output for sample
input deck (continued)

PIPE TERMINAL SPECIFICATIONS

END CONSTRAINTS 10.FIXED.I.FREEI

rAtiGfrifIAL NORMAL DINORMAL
DISPLACEMENT DISPLACEMENT ROTATION

BEGINNING" I. S. 0.

ENDI O. O. O.

TERMINAL STIFFNESSES AHO PRETENSION'

TANGENTIAL NORMAL BINORMAL
STIFFNESS STIFFNESS STIFFNESS

BEGINNING" 0. 0. 0.

ENDS 0. 0. o.

PRETENSION

0.



Figure A.2 Sample output for sample input deck (continued).

GRID CONTROL INFORMATION:
PLAN LOCATION OF GRID ORIGIN:

X LOCATION= -32.8
Y LOCATION= -1317

SPACING OF GRID POINTS = 65.6

GRID DATA
. GRID 2

LOCATION
FACTOR BEARING

CAPACITY
FACTOR FACTOR

X Y COHESION

OR

BOUYANT STRESS
OR

LATERAL
-NUMBER LOCATION LOCATION WEIGHT

AXIAL FACTOR

-32.81 -131.2 -164.0 40.00 21.00 '2.5001, 1 5.140
2, 1 32.81 -131.2 -164.0 40.00 21.00 2.500 5.140
3, 98.43 -131.2 -164.0 40.00 21.00 2.500 5.140
4, 1 164.0 -131.2 -164.0 40.00 21.00 2.500 5.140
5, 1 229.7 -131.2 -164.0 40.00 21.00 2.500
6, 1 295.3 -131.2 -164.0 40.00 21.00 2.500 5.140
7, 1 360.9 -131.2 -164.0 40.00 21.00 2.500 5.140
8, 1 426.5 -131.2 -164.0 40.00 21.00 2.500 5.140

--9, ---1 492.1 131.2 -164.0 40.00 21.00 2.500 5.140
10, 1 557.7 -131.2 -164.0 40.00 21.00 2.500 5.140

(OUTPUT EDITED)

3445. 131.3 -164.0 40.00 21.00 2.500 5.140b4, 5.
55, 5 3510. 131.3 -164.0

-164.0
40.00
40.00

21.00
21.00

2.500
2.500

5.140
5.14056.7- -Fr -3576. 131.3

57 J 5 3642. 131.3 -164.0 40.00 21.00 2.500 5.140
.....

-----b8, 5 3707. 131.3 -164.0 40.00 21.00 2.500 6:140
59, 5 3773. 131.3 -164.0 40.00 21.00 2.500 5.140
60, 5 3839. 131.3 -164.0 40.00 21.00 2.500 5.140
61, 5 3904, 131.3 -164.0 40.00 21.00 2.500 5.140
62, 5 3970. 131.3 -164.0 40,00 21.00 2.500 5;140
63, 5 4035. 131.3 -164.0 40.00 21.00 2.500 5.140
64, 5 4101. 131-7-3 -164.0 40.-00 217-00 2.500 5.140
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SUBROUTINE DESCRIPTIONS

A brief description of the SUBROUTINES in the FORTRAN PROGRAM

AGAPIP are given below. For reference purposes, the SUBROUTINES

are listed in alphabetical order. Control to these SUBROUTINES is

directed by the main PROGRAM AGAPIP as indicated in Fig. 2.13.

ACCEL. Directs the solution for the initial acceleration which

the pipeline experiences as a result of a force imbalance

at the beginning of an episode. The logic for this

routine is similar to that of the SUBROUTINE DYPIPE;

however, this subroutine computes accelerations rather

than displacements. (called by: DYPIPE)

ASSMBL. Assembles the nodal stiffness contributions from individ-

ual elements into a banded upper diagonal tangent

stiffness matrix for the pipeline. It includes the

prescribed or material boundary conditions. (called by:

ACCEL, DYPIPE)

BANNER. Echos a heading and simulation control information.

(called by: AGAPIP)

BLUE. Provides a Best Linear Unbiased Estimate at the pipeline

nodes of the grid point values for the fluid kinematics

and soil properties. (called by SOIL, WAVFLD)

CDCALC. Computes a drag coefficient for an element which is a

function of the average Reynolds during a given time

step. This routine is only called if user-supplied drag

coefficient is negative. (called by: WAVFRC, FLFRC)
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CRSS. Computes the cross product of two vectors. (called by:

DIRCOS)

DECOMP. Decomposes the pipeline tangent stiffness matrix and

computes the pipeline incremental nodal displacements for

the current load imbalance. This routine was taken from

p. 42, R. Cook (1981). (called by: DYPIPE)

DEFRCE. Multiples local element deformations and nonzero cour

ponents of current element stiffness to obtain local

element forces. (called by: ACCEL, DYPIPE)

DIRCOS. Computes local element and nodal direction cosines. The

local T direction is directed between the i and j element

nodes. The nodal T is approximately the average of the

adjacent local T directions. The nodal 0 is obtained by

crossing the nodal T unit vector and a vector in the plane

of the ocean bottom. The local 0 unit is approximately

the average of the adjacent nodal 0 vectors. Normal unit

vectors are defined by the cross product of binormal and
A A

tangential vectors a and T, or B and T (called by:

DYPIPE)

DUMP. Outputs simulation solutions. (called by: DYPIPE)

DYPIPE. Directs evaluation of pipeline response during individual

peak wave episodes. The Flow diagram for this routine

appears in Figure 2.16. (called by: AGAPIP)

EXTEFF. Modifies the pipeline tangent stiffness matrix and load

vector to account for optional boundary springs. (called

by: ACCEL, DYPIPE)
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FIX. Reads element constants and the element elastic stiffness

matrix. (called by: DYPIPE)

FIRM. Reads element constants and the element elastic stiffness

matrix and then substitutes the element mass and added

mass matrix (lumped mass) in place of the elastic

stiffness matrix. (called by: ACCEL)

FLFRC. Computes nonlinear fluid drag force; fluid inertial force;

and structural (element) inertial force. It also modifies

the element tangent stiffness matricies to include the

effect of these loadings. All of the loads in this

subroutine use a lumped force formulation. (called by:

DYPIPE)

FSOLV. Decomposes the pipeline mass matrix and computes initial

nodal accelerations from the initial force imbalance.

Rotational accelerations are assured to be zero. (called

by: ACCEL)

GRIDIN. READS grid data provided by AGSSIM (see Figure 2.13) and

echos this data. (called by: AGAPIP)

GSTIF. Adds geometric stiffness terms to the local element

elastic stiffness matrix. (called by: DYPIPE)

INTCAL. Computes element constants and the local elastic stiffness

matrix for each element and stores this information on

TAPE 10. (called by: AGAPIP)

MATMLT. Multiples two (16x61 or less) matricies and returns the

results in a third matrix.
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NEWACL. Transforms solution the vector of nodal accelerations to

global accelerations. (called by: ACCEL)

NEWMRK. Computes Newmarkbeta integration constants for temporal

integration. (called by: AGAPIP, DYPIPE)

NORMAL. Reduces a vector to a unit vector. (called by: DIRCOS)

OUT. Provides crude numerical data prior to aborting a simu

lation because of excessive iterative effort. (called

by: DYPIPE)

RESOLV. Transforms the incremental solution vector of nodal dis

placements to global displacements. It also updates the

current total displacements and kinematics to reflect the

computed incremental displacements. (called by: DYPIPE)

SDISP. Computes the global displacement and velocity (relative to

the reference position at the beginning of an episode) of

each end of an element. It is part of the sequence of

subroutines which establish sediment resistive forces.

(called by: ACCEL, DYPIPE)

SEARCH. Provides a reference grid point near a pipeline node to

aide in establishing the nodal and local direction

cosines. (called by: DIRCOS)

SIZER. Expands BLANK COMMON to the maximum core allocation

required for FORTRAN IV execution of AGAPIP. FORTRAN V

versions of AGAPIP must specify BLANK COMMON allocation

immediately, therefore, when executing in FORTRAN V, core

selection in SIZER should match the previous allocation

required. (called by: AGAPIP)
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SOIL. READS grid data provided by AGSSIM (see Figure 2.12) and

assigns sediment properties to pipeline nodes. (called

by: AGAPIP)

SOILSM. Computes sediment spring characteristics from sediment

properties at pipeline nodes. Sediment spring

characteristics are computed independently for cohesive

and cohesionless sediment characteristics. (called by:

AGAPI P)

SRFRC. Computes sediment resistive forces on an element in the

original reference coordinate system established at the

beginning of an episode (ie. the load vs. displacement

function is relative to the reference position at the

beginning of an episode). Sediment spring stiffness is

modified, if necessary, to accelerate convergence.

(called by: ACCEL, DYPIPE)

STRKIN. Reads and generates data necessary to describe the finite

element model of the pipeline. (called by: AGAPIP)

TRNFEG. Constructs a [6x6] transformation matrix for global to

local transformations. (called by: UPLGRN)

TRNFNG. Constructs a [3x6] transformation matrix for global to

nodal transformations. (called by: ACCEL, DYPIPE)

TRNSEG. Constructs a [6x6] transformation matrix for global to the

sediment reference local transformations. (called by

ACCEL, DYPIPE)

TRNSP. Transposes a ([6x6] or less) matrix. (called by: ACCEL,

DYPIPE)
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UPLGRN. Computes local element deformations using an updated

Lagrangian formulation. (called by: ACCEL, DYPIPE)

WAVFLD. READs fluid kinematics at grid points provided by AGWSIM

(see Figure 2.13) and assigns fluid kinematics to pipeline

node points. (called by: ACCEL, DYPIPE)

WAVFRC. Computes lumped fluid drag loads and lumped loads which

result from the -absolute- component of the initial fluid

force at the start of a wave episode. (called by: ACCEL)

XTEND. Provides an initial estimate for the position of the

pipeline at the beginning of a time step which is based

upon the kinematics at the previous time step. (called

by: DYPIPE)
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Table A.2. Partial Variable List for Main Portions of AGAPIP

Program/ Variables

Subroutine A%, Al, A2, A3, A4, A5, A6, A7 = Newmark

AGAPIP integration constants.

ALPHA, DELL = Newmark parameters (a and (5).

DT = FFT simulation time step.

EP = Episode counter.

ETIM = Simulation duration for structural

response.

ETM = Energy imbalance for first iteration of

each time step.

ETOL = Energy tolerance criteria for conver

gence.

GRAY = Gravitational constant (assumed to act in

negative global Z direction).

GS,GX,GY = Grid spacing; X location; and Y

location of grid origin.

ITER= Interation counter.

NDOF = Number of degrees of freedom = number of

equations.

NEPR = Number of element property cards.

NEVENT = Number of wave episodes.

NMPR = Number of material property cards.

NNODES = Number of pipeline nodes.-
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Table A.2 (continued)

PINTVL = Number of simulation solution steps

between printed output.

PKHZ = Peak wave frequency (hertz)

PRSS = Interal pipeline pressure (gauge)

RM = Nondimensionalizing mass scale.

AGAPIP (cont.) ROEO = Fluid mass density.

RTMAX = Force imbalance at first iteration of a

time step.

RTOL = Force imbalance criteria for convergence.

SL = Nondimensionalizing length scale.

STRT = Number of time substeps during first time

step of an episode.

TO, Ti = Beginning and ending time for an

episode.

TIMB, TIMF = CPU (second) counters.

TYME = Current simulation time.

VK = Kinematic fluid viscosity.

SUBROUTINE BANNER refer to variable list for AGAPIP

SUBROUTINE STRKIN refer also to variable list for AGAPIP

XR (I,J) = Reference pipeline location

I: 1 = X location; 2 = Y location;

3 = Z location

4 = X rotation; 5 = Y rotation;

6 = Z rotation



Table A.2 (continued)

STRKIN (cont.)

J: 1-NNODES = node number

BRC(I) = Boundary restraint codes (0 = Fixed;

1 = Free)

I: 1 = axial code for node 1

2 = lateral code for node 1

3 = rotational code for node 1

4 = axial code for node NNODES

5 = lateral code for node NNODES

6 = rotational code for node NNODES.

BSC(I) = Boundary spring constants and

pretension.

I: 1 = axial spring constant at node 1

2 = lateral spring constant at node 1

3 = rotational spring constant at node 1

4 = pretension force

5 = axial spring constant at node NNODES

6 = lateral spring constant at node NNODES

7 = rotational spring constant at node

NNODES

EPR(I) = Vector storage of element property card

data.

MPR(I) = Vector storage of material property

card data.
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Table A.2 (continued)

SUBROUTINE

GRIDIN

ICODECI,J) = Codes for assignment of element and

material

property cards to individual elements

I: 1 = element property card number

2 = material property card number

J: J = 1 -(NNODE S, 1) = node number

WG(I,J,K) = Pipeline displacements and

kinematics

I: 1 = X; 2 = Y; 3 = Z; 4 = X rotation;

5 = Y rotation; 6 = Z rotation

J: 1 - NNODES = node number

K: 1 = displacement

2 = velocity

3 = acceleration

(refer also to variable list for AGAPIP)

NX, NY = number of grid points parallel to X and

Y axes. (64 and 5)

SOILS (I,J,K) = sediment properties at grid

points.

I: 1-64 = X grid number

J: 1-5 = Y grid number

K: 1 = cohesion of sediment (c) or 0.

2 = effective sediment unit weight (Ye) or

axial friction coefficient (pi)
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Table A.2 (continued)

SUBROUTINE

INTCAL

3 = sediment stress factor (N
a
) or lateral

friction coefficient (112)

4 = bearing capacity factor (Nc) or O.

ZG (I,J) = Z location of grid points.

I: 1-64 = X grid number.

J: 1-5 = Y grid number.

VPS (4,8) = statisical covariance estimation for

the sediment properties for BLUE.

(refer also to variable list for AGAPIP and

SUBROUTINE STRKIN)

E = Youngs modulus.

F = -Moment of inertia.

S = Element length.

DI = cross-sectional diameter of load bearing

pipe section.

D2 = diameter of outer sleeve.

EM = pipeline mass per unit length.

AS = cross-sectional area of load bearing pipe

section.

P = initial axial load in element.

XO, YO, ZO = X,Y,Z components of the element

length in the original element position.
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Table A.2 (c ontinued)

SUBROUTINE SOIL

SUBROUTINE

SOILSM

CD, CL, CM = drag, lift, and inertial

coefficients.

SKII (6,6), SIKH (6,6), SKJJ (6,6) = upper

left, upper right, and lower right

submatrices which form the representation

of the local elastic element stiffness

matrix.

(refer also to the variable lists for AGAPIP,

and SUBROUTINES GRIDIN and STRKIN).

SOILN (K,J) = sediment properties at pipeline

nodes

K: 1 = cohesion (c) or 0.

2 = effective sediment unit weight (ye) or

axial friction coefficient (pi)

3 = sediment stress factor (N ) or lateral

friction coefficient (42).

4 = bearing capacity factor (Nc) or 0.

J: 1-1NNODES= pipeline node nunber

X(I,J) = current pipeline nodal location

(description same as XR(I,J).

(refer also to the variable lists for AGAPIP,

and SUBROUTINES SOIL and INTCAL).

SOYL (I,J) = sediment spring characteristics at

pipeline nodes
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Table A.2 (c ontinued)

I: 1 = 0.0 (cohesionless) or 1.0 (cohesive).

2 = Lateral yield displacement.

3 = Lateral friction coefficient

(cohesionless) or sediment capacity per

unit length (cohesive).

4 = Axial yield displacement.

5 Axial friction coefficient

(cohesionless) or sediment capacity per

unit length (cohesive).

J: 1(NNODES 1) = element number.

C = cohesion

WS = effective sediment unit weight (ye).

CN = bearing capacity factor (Nc).

QN = sediment stress factor (Na).

WP = effective pipeline weight per unit length.

D = settlement of pipe section into cohesive

sediment.

DD = ratio of pipe settlement to pipe diameter.

FD = stress imbalance between pipe weight and

supporting sediment.

TD = tangent to the stress imbalance function.

SUBROUTINE DYPIPE refer also to variable lists for AGAPIP and

SUBROUTINES STRKIN, INTCAL, GRIDIN, and SOILSM.



Table A.2 (continued)

DYPIPE (cont.)

CSN (I,J,K) = nodal and local direction cosines

for pipeline.

J: 1-NNODES = node or element number.

I: 1 = X direction.

2 = Y direction.

3 = Z direction.

K: 1 = nodal T direction.

2 = nodal n direction.

3 = nodal a direction.

4 = local T direction.

5 = local n direction.

6 = local a direction.

SCSN (I,J,K) = local direction cosines for

sediment reference for pipeline.

J: 1-NELEMS = element number

I: 1 = X direction.

2 = Y direction.

3 = Z direction.

K: 1 = local T direction.

2 = local n direction.

3 = local a direction.

R (I) = RA (I) = force imbalance for each degree

of freedom.

I: 1-NDOF
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Table A.2 (continued)

DYPIPE (cont.)

TSTIF (I,J) = banded tangent stiffness matrix

for entire pipeline.

I: 1-NDOF

J: 1-6 (semi band width)

OFFST (I,J) = hystersis references for sediment

model.

I: 1 = axial reference for time step at the

element i node.

2 = lateral reference for time step at the

element i node.

3 = axial reference for time step at the

element j node.

4 = lateral reference for time step at the

element j node.

5 = axial reference for iteration at the

element i node.

6 = lateral reference for iteration at the

element i node.

7 = axial reference for iteration at the

element j node.

8 = lateral reference for iteration at the

element j node.
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Table A.2 (continued)

DYPIPE (cont.)

9 = axial sediment spring constant for the

previous iteration at the element i

node.

10 = lateral sediment spring constant for

the previous iteration at the element i

node.

11 = axial sediment spring constant for the

previous iteration at the element j

node.

12 = lateral sediment spring constant for

the previous iteration at the element j

node.

J: 1-NELEMS = element number.

ELFRC (I,J) = local element forces.

I: 1-12 = components of generalized force

corresponding to the six degrees of

freedom at both the i and j nodes of an

element

J: 1-NELEMS = element number

U (I) = an incremental correction in position

for each degree of freedom.

I: 1-NDOF

UAV (I,J,R) = wave- and current-induced fluid

acceleration or velocity at grid points.
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Table A.2 (continued)

DYPIPE (cont.)

I: X grid point number (1-64)

J: Y grid point number (1-5)

K: 1 = X component

2 = Y component

UA (I,J) = wave- and current-induced fluid

accelerations at pipeline node points.

I: 1 = X component.

2 = Y component.

3 = Z component.

J: 1-NNODES = node number.

UV (I,J) = wave- and current-induced fluid

velocities at pipeline node points.

I: 1 = X component.

2 = Y component.

3 = Z component.

J: 1-NNODES = node number.

VFW (4,8) = statistical covariance estimates for

the fluid kinematics

XS (I,J) = reference position of pipeline at the

beginning of an episode.

I: 1 = X location.

2 = Y location.

3 = Z location.

J: 1-NNODES = node number.
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Table A.2 (continued)

AA (6,6) , AB (6,6), AC (6,6), AD (6,6), AE

(6,6), AF (6,6), AG (6,6), AA (6,6), AI (6,6)

working space for creating, transforming and

assembling tangent stiffness and load imbalance.



Table A.3. PROGRAM AGAPIP INPUT/OUTPUT SPECIFICATION BY UNIT

Unit

1 (READ)

Routines

AGAPIP
SUB. GRIDIN
SUB. SOIL
SUB. DYPIPE

2 (READ) SUB. SOIL

3 (WRITE) SUB. SOIL

I/O Statement

READ (1) GS, GI, GY, DT, PREZ, (2G
(I,1), I 1,64), ((VPS, (I,J),
I - 1,4), J - 1,8), ((v1w (I,J),
I 1,4), J 1,8)

READ (2) (((SOILS (I,J,K), I 1,

64), J 1,5) K 1.4)

WRITE (3) ((SOILN (K,N), K' 1,4),
N 1, NNODES)

3 (READ) SUB. SOILSM READ (3) ((SOILN (K,N), K 1,4)
N 1, NNODES)

Variables

GS Grid spacing
GR - R location of grid origin
GY Y Location of grid origin
DT FFT time increment
PKHZ - Peak wave frequency (hertz)
ZG(64,5) - Z location of grid points
along R grid axis.

VPS (4,8) - sediment covariance
parameters.

VPW (4,8) fluid kinematic
covariance parameters.

SOILS (64, 5,4) - sediment
characteristics of grid points
I,J (R& Y grid point numbers)
K = 1 - cohesion (c) or 0.

2 - soil weight (y.) or axial
friction coefficient (pi).

3 - sediment stress factor (N )
or lateral friction
coefficient (02).

4 - bearing capacity factor (Nc)
or 0.

SOILN (4, NNODES) - sediment pro-
perties at pipe nodes where K - 1,4
and corresponds with SOILS (I,J,K).



Table A.3. PROGRAM AGAPIP INPUT/OUTPUT SPECIFICATION BY UNIT (Continued)

Unit Routines I/O Statement

3 (WRITE) SUB. SOILSM WRITE (3) ((SOYL (M,N) , M 1,5),

N 1, NNODES-1)

3 (READ) SUB. DYPIPE

5 (READ) AGAPIP

SUB. BANNER
AGAPIP

READ (3) ((SOYL (4, N) M, 1,5),

N 1, NNODES-1)

Variables

SOYL (5,NNODES -1) sediment spring
characteristics N element number;
M - 1 flag; 1 cohesive; 0
cohesionless
2 lateral yield displacement
3 lateral friction coefficient

(cohesionless) or sediment
capacity per unit length

(cohesive)
4 axial yield displacement
5 axial friction coefficient

(cohesionless) or sediment
capacity per unit length
(cohesive).

READ (5,*) ETIM, ROF4, GRAV, PRSS, STEP ETIM Simulation ending time.

READ (5,*) VK, STRT, ALPHA, DELL ROW Fluid mass density.

READ (5,*) PINTVL GRAY Gravitational coustant.
READ (5,*) NNODES, NEPR, NMPR, RTOL, ETOL PRSS - Internal pipe pressure.

STEP Time step for simulation.

VK Fluid kinematic viscosity.
STRT - Nunber of initial time

substeps for first time increment.
ALPHA, DELL - Newmark integration
parameters.

PINTVL Nunber of solution steps
between output.

NNODES - Number of pipe nodes.
NEPR - Nunber of element property

types.
NMPR - Number of material property
types.

RTOL - fbrce convergence tolerance.
ETOL - Energy convergence tolerance.



Table A.3. PROGRAM AGAPIP INPUT/OUTPUT SPECIFICATION BY UNIT (Continued)

Unit Routines I/O Statement Variables

5 (READ)
(Continued)

6 (WRITE) SUB BANNER
SUB STRKIN
SUB GRIDIN
SUB DIM
SUB DYPIPE
SUB OUT

READ (5,*) (BRC (I), I 1,6)

READ (5,*) (BSC (I), I 1,4)

READ (5,*) (BSC (I), I 5,7)

OUPUT FORMATED: %aiding,

Structural data,
Grid data,
Solution results,
COuputation effOrt,
Aborted simulation data.

7 (WRITE) SUB STRKIN WRITE (7) ((RR (I,J), I 1,6),J -1,

NNODES)

ICODE (2, NNODES-1) Storage array
which identifies element and
material property selected for
each element.

ICODE (1,I) = element property
number.

ICODE (2,I) material property
nun ber.

BRC (6) Boundary restraint codes
(1 - free, 0 - fixed) .
BRC(I); I - 1-3; axial, lateral

and rotational codes for
node 1.

I - 4-6; axial, lateral and
rotational codes for node
NNODES.

BSC (7) - Boundary spring constants
and pretension
BSC (I); I - 1-3; axial, lateral
and rotational springs at
beginning of pipe.

I - 4; pretension load
I - 5-7; axial, lateral and
rotational springs at end of
pipe.



Table A.3. PROGRAM AGAPIP INPUT/OUTPUT SPECIFICATION BY UNIT (Continued)

Unit Routines

7 (READ) SUB DYPIPE

9 (WRITE) SUB STRICIN

I/O Statement

READ (7) ((X1t (1,3), I - 1,6), .1=4,
NNODES)

WRITE (9) ((XR (1,3), I
NNODES)

WRITE (9) (BRC (I), I -
WRITE (9) (BSC (I), I -
WRITE (9) (EPR (I), I -
WRITE (9) (MPR (I), I -
WRITE (9) ((ICODE (I,J)

J - 1, NNODES-1)

. 1,6), J 1,

1,6)
1,7)
1, 6* NEPR)
1, 4* NMPR)

, I 1,2) ,

9 (READ) SUB INTCAL READ (9) ((ER (1,3), I m. 1,6) , J 1,
NNODES)

READ (9) (BRC (I), I - 1,6)
READ (9) (BSC (I), I - 1,7)
READ (9) (EPR (I), I - 1, 6* NEPR)
READ (9) (MPR (I), I 1, 4* NMPR)
READ (9) ((ICODE (I,J), I 1,2), 3=1,

NNODE S-1)
READ (9) ((X(I,J), I - 1,6), J -1,

NNODES)
READ (9) (BRC(I), 1=1,6)
READ (9) (BSC (I), I - 1,7)

SUB DYPIPE

9 (WRITE) SUB DYPIPE

10 (WRITE) SUB INTCAL

WRITE (9) ((X(I,J), -1=1,
NNODES

WRITE (9) (BRC (I), I 1,6)
WRITE (9) (BSC (I), I - 1,7)

WRITE (10) E,F,S,D1,D2,EM,AS,P,X13,
Y(6,216,CD,CL,CM

WRITE (10) ((Mil (K,J),

Variable s

X(6,NNODES) - Current pipeline
location X(I,J);
I - 1-6; J- 1- NNODES;
I - 1-3; X,Y,Z position
I 4-6; X,Y,Z rotation.

E - Youngs Modulus
F ?bment of Inertia
S - Element Length



Table A.3. PROGRAM AGAPIP INPUT/OUTPUT SPECIFICATION BY UNIT (Continued)

Unit Routines

10 (READ) SUB FIX
(Continued)

SUB FIRM

I/O Statement

J -1,6), ((SKIJ (KM ,R=1,6),J=1,6)
WRITE (10) ((SKJJ (K,J),K- 1,6),J -1,6)

READ (10) E,F,S,D1,D2,E14,AS,P,X6
YO, ZO, GD., Ct., CM

READ (10) ((AA, (K,J), K -1,6), J -1,6)
((AB (K,J), K -1,6), 3 -1,6)

READ (10) ((AC (K,J), R=1,6), J -1,6)

11 (WRITE) SUB. STRKIN WRITE (11) (((WG(I,J,10,
SUB. DYPIPE J=1, NNODES), K=1,3)

11 (READ) SUB. DYPIPE READ (11) (((WG(I,J,10,
J-1, NNODES), K -1,3)

Variables

D1 - Diameter of load bearing pipe
section

D2 - Diameter of outer sleeve

EM . Mass per unit length of pipe
AS - Cross-sectional area supporting

load
P - Initial axial load
XO, Y0, ZO - X,Y,Z components of

element length in reference
configuration

CD,CL,CH - drag, lift, and inertial
coefficients

SKII (6,6) - AA (6,6) - upper left
1/4 of elastic stiffness matrix
for element.

SKJJ (6,6) AB (6,6) - upper right
1/4 of elastic stiffness matrix
for element

SKIJ (6,6) .= AC (6,6) v. lower right
1/4 of elastic stiffness matrix
for element

WG (6, NNODES, 3) Pipeline
displacements and kinematics

I - 1-6:
I - 1-3; X,Y,Z translational

components
I - 4-6; X,Y,Z rotational

components
K - 1-NNODES: node number
K - 1-3:
K . 1; displacements
K - 2; velocity
K - 3; acceleration



Table A.3. PROGRAM AGAPIP INPUT/OUTPUT SPECIFICATION BY UNIT (Continued)

Unit Routines I/O Statement Variables

12 ( READ) AGAPIP READ (12) NEVENT NEVENT = Number of wave episodes

12 (READ) AGAPIP READ (12) 10, T1 TO = beginning time for an episode
12 (READ) SUB WAVILD READ (12) (((UAV(I,J;K), 1=1,64), Tl m ending time for an episode

J=1,5), K=1,2) UAV (64,5,2) = X and Y components of
fluid acceleration or velocity
at grid points.

R = 1
R = 2 = Y


