
An Abstract of the Thesis of

Youfeng Wu for the degree of Doctor of Philosophy

in Computer Science presented on November 10. 1988

Title: Parallel Simplex Algorithms and Loop Spreading .

i 1 I)

Redacted for Privacy
Abstract approved:

Ted. G. Lewis

Parallel solutions for two classes of linear programs are

presented. First we parallelized the two-phase revised simplex

algorithm and showed that it is possible to get linear improvement in

performance. The simplex algorithm is the best known algorithm for

solving linear programs, and we claim our result is the best one

which can be achieved.

Next we study the parallelization of the decomposed simplex

algorithm. One of our new parallel algorithms has achieved 2*P time

of performance improvement over the decomposed simplex

algorithm using P processors. Meanwhile, we discovered a particular

variation of the decomposed simplex algorithm which can run 2
times faster than the original one. The new parallel algorithm

linearly speedups the fast sequential algorithm.

As in any parallel program, unbalanced processor load causes

the performance of the parallel decomposed simplex algorithm to

drop significantly when the size of the input data is not a multiple of
the number of available processors. To remove this limitation, we

invented a load balance technique called Loop Spreading that evenly

distributes parallel tasks on multiple processors without a drop in
performance even when the size of the input data is not a multiple of
the number of processors. Loop Spreading is a general technique

that can be used automatically by a compiler to balance processor

load in any language that supports parallel loop constructs.

Parallel Simplex Algorithms
and Loop Spreading

by

Youfeng Wu

A Thesis

submitted to

Oregon State University

in partial fulfillment of the requirements for the

degree of

Doctor of Philosophy

Completed November 10, 1988

Commencement June 1989

Approved:

Redacted for Privacy

Ted G. Lewis, Professor of Computer Science in Charge of Major

Redacted for Privacy
Chairman of Department of Computer Science

Redacted for Privacy

Dean of Graduate IcI ool

Date thesis is presented November10. 1988

Typed by Youfeng Wu for Youfeng Wu

Acknowledgements

I would like to thank my thesis advisor Dr. Ted Lewis for

directing me through the thesis work. Without his patient guidance,

strong support, and many inspiring suggestions and discussions, this

work could not be possible.

Also, many thanks are to the other members of my thesis

committee: Dr. Bella Bose, Dr. Dave Birkes, Dr. Curtis Cook, and Dr. Joe

Minne, for their invaluable comments and suggestions, and to Anita
Osterhaug at Sequent for her professional proof-reading of the thesis.

Table of Contents

page

Chapter 1. Introduction

1.1. Parallel Program Design 2

1.2. Processor Load Balance 4

1.3. Thesis 5

Chapter 2. Performance of Parallel Simplex Algorithm

2.1. Introduction

2.2. Two-phase Revised Simplex Algorithm and Its

Parallelization 11

2.3. Performance Analysis 20

2.4. Performance Experiment 25

2.5. Performance Comparisons 30

2.6. Conclusions 33

Chapter 3. Parallel Algorithms for Decomposed Linear Programs

3.1. Introduction

3.2. Background

3.3. Computational Procedure for Decomposed Simplex

Algorithm 44

3.4. Parallelizing Decomposed Simplex Algorithm 48

3.5. Parallel Algorithms for Decomposed Linear Programs 57

3.5.1. First Finished First (FFF) Algorithm 57

3.5.2. Tightly Synchronous (TS) Algorithm 61

3.5.3. Lookahead First Finish First (FFFL) Algorithm 65

3.5.4. Wypior's Approach 68

37

39

3.5.5. Lookahead Tightly Synchronous (TSL) Algorithm 70

3.5.6. Processor Assignments for Lookahead Algorithms, 71

3.5.7. Performance Comparison 73

3.5.8. Fast Sequential Algorithm 75

3.5.9. Performance vs. Number of Processors 77

3.5.10. Removing Last Round Effects 79

3.5.11. Why TS algorithm is Good 82

3.6. Conclusions 87

Chapter 4. Parallel Processor Balance Through Loop Spreading

4.1. Introduction 88

4.2. Data Dependence and Process Scheduling93
4.3. Loop Spreading and Problems 100

4.4. Loop Spreading When Substatements are Independent 103

4.5. Loop Spreading in Nested Loops and Matrix Multiplication

Example 106

4.6. Loop Spreading When Substatements are Dependent 109

4.7. Reducing Synchronization Overhead of Loop Spreading_l 20

4.8. Experiments With

Memory Machine

Dependent Substatements on a Shared

158

4.9. Related Work 164

4.10. Conclusions 166

Chapter 5. Implementation of Synchronization Primitives for

Loop Spreading

5.1. Introduction 169

5.2. Straightforward Implementation of SYNC and WAIT 178

5.3. Implementation of SYNC/WAIT for Column-major

Spreading Scheme, 181

vii

viii

5.4. Implementation of SYNC/WAIT for Row-major Spreading

Schemes 183

5.5. Summary 190

Chapter 6. Conclusions and Future Work

6.1. Conclusions 192

6.2. Limitations of the Study 193

6.3. Future Work 194

Bibliography 195

Appendices

Appendix A. Two-Phase Revised Simplex Algorithm

A.1. Simplex Algorithm

A.2. Revised Simplex Algorithm

204

208

A.3. Two-phase Revised Simplex Algorithm 210

A.4. Computational Procedure for Two-phase Revised Simplex

Algorithm 211

Appendix B. Sequential Algorithm for Decomposed Linear

Programs

B.1. Decomposed Linear Programs 214

B.2. Dantzig and Wolfe's Decomposition Principle 215

B.3. Decomposed Simplex Algorithm 219

B.4. Retaining Sub-solutions Cross Central Iterations 223

Appendix C. Pascal Program for Parallel Matrix Multiplication

With Loop Spreadin 225

Appendix D. Pascal Program for Parallel Modified Matrix

Multiplication With 1/2/3/4-Sequence and Column-major

Loop Spreading 230

List of Figures

Figure Page,

1.1. Performance of Parallel Simplex Algorithm

1.2. Performance of TS Parallel Decomposed Simplex Algorithm 6

1.3. Effect of Processor Load Balance on Performance of Parallel

Simplex Algorithm Using Eight Processors 7

2.1. Data Dependency Graph of the Two-phase Revised Simplex

Algorithm 15

2.2. Modified Data Dependency Graph For the Parallel Algorithm

One 16

2.3. Modified Data Dependency Graph For the Parallel Algorithm

Two 16

2.4. Task Graph of the Parallel Algorithm One 19

2.5. Task Graph of the Parallel Algorithm Two 19

2.6. Analytical Speedup of Algorithms One and Two 2 2

2.7. Task Allocation of Algorithms One and Two 2 3

2.8. Average Speedup of Algorithm One vs Number of Processors

27
2.9. Average Speedup vs Input Size Using Seven Processors 2 9

2.10. Performance Comparison With [FINKEL-87] 31

2.11. Performance Comparison With [CHOI-88] 3 2

3.1. Convex Polyhedron in 3-space Showing Region of Feasible

Solutions to Sample Problem, 40
3.2. Pattern of a Decomposed Linear Program 41

3.3. Data Dependency Graph of The Decomposed Simplex

Algorithm 4 8

3.4. Straightforward Parallelization Algorithm 4 9

3.5. Timing of The Straightforward Parallel Algorithm 5 0

3.6. Speedup of Straightforward Algorithm

3.7. SLAM II Code for Determining Expected Efficiency of

Straightforward Algorithm

52

53
3.8. Timing of Subsolver Parallelizing Algorithm 5 5

3.9. Speedup of Subsolver Parallelizing Algorithm 5 6

3.10. Parallel FFF Algorithm 5 8

3.11. Timing of Parallel FPI, Algorithm 5 8

3.12. Performance of Two FFF Implementations 6 0

3.13. Parallel TS Algorithm 6 2

3.14. Timing of Parallel TS Algorithm 6 2

3.15. Lookahead 1-fr.1-. Algorithm 6 7

3.16. Timing of Lookahead FFF Algorithm 6 7

3.17. Wypior's Algorithm 6 8

3.18. Timing of Wypior's Algorithm 6 9

3.19. Lookahead TS Algorithm 7 0

3.20. Timing of Lookahead TS Algorithm 7 1

3.21. Speedup of The Parallel Algorithms Over The Sequential

Algorithm 74
3.22. Execution Times of SF/TS Sequential Algorithms 7 6

3.23. Speedup of Parallel TS Over Sequential TS and SF 7 7

3.24. Speedup of Parallel TS Over Sequential TS and SF When

Number of Processors Changes From Three to Eight 7 8

3.25. Balanced Performance of Parallel TS Algorithm 8 0

xi

3.26. Speedup of Spread TS over sequential TS and SF When Number

3.27.

3.28.

of Processors Changes From Three to Eight 8 2

Total Numbers of Subiterations

Total Numbers of Central Iterations

8 5

8 6

4.1. Effect of Processor Load Balance on Performance of Parallel

Simplex Algorithm Using Eight Processors 9 0

4.2. Effect of Processor Load Balance on Performance of Parallel

Matrix Multiplication Algorithm 91

4.3. Loop Spreading for Parallel Load Balance 9 2

4.4. Static Scheduling Method 1 (a) and 2 (b) 9 7

4.5. Loop Spreading for Independent Substatements 103

4.6. Performance of Parallel Matrix Multiplication Algorithm With

Loop Spreadin 1 09

4.7. Inconsistent Loop Spreading With Dependent Substatements

110

4.8. Example of Evenly Distributed Dependent Substatements 1 13

4.9. Spreading Dependent Substatements 114

4.10. Synchronization Pattern for Spreading Dependent

Substatements 1 16

4.11. Row-major Spreadin g 120

4.12. Column-major Spreadin: 121

4.13. Example Row-major Spreading Using Minimum Number of

SYNCs 12 4

4.14. Example of 2-sequence Spreadin 13 2

4.15. A 2-sequence Spreading That Uses Less Than (N MOD P) * (K-1)

SYNC/WAITs 13 5

4.16. A Non-optimal 2-sequence Spreadin 13 6

xii

4.17.

4.18.

4.19.

4.20. Illustration for Case c>b &b<a

4.21. Example of 3-sequence Spreading Using

(K-1) SYNC/WAITs

4.22. Column-major Spreading With Minimum Number of

SYNC/WAITs 15 3

4.23. Column-major Spreading With Minimum Number of

SYNC/WAITs and Optimal Time Saving15 4
4.24. Performance of 1/2/4-sequence Spread and Nonspread MMM

Algorithm Using Eight Processors 15 9

4.25. Performance of Column-major Spreading and 2-sequence Row-

major Spreading on MMM Algorithm Using Eight Processors

160

4.26. Performance of 1/2-sequence Spreading on MMM' Algorithm

1 6 1

Illustration for Case c = b 13 7

Illustration for Case c < b 13 8

Illustration for Case c > b a 14 0

141

Less Than (N MOD P) *

146

4.27. Performance of Decomposed Simplex Algorithm With 2-

sequence Row-major Spreading (a) and Column-major

Spreading (b) 1 63

4.28. Performance of Collapsed and Spread Matrix Multiplication

Algorithm 1 6 6

5.1. Example of Unbalanced Processor Load 17 0

5.2. Load Balance Through Loop Spreading 17 0

5.3. Synchronization Pattern of Column-major Spreading_1 7 2
5.4. Synchronization Pattern of 1-sequence Spreading .1 73

5.5. Synchronization Pattern of 2-sequence Spreading 17 5

5.6. Synchronization Pattern of 3-sequence Spreading 176

5.7. Synchronization Pattern of 4-sequence Spreading177
5.8. Example of a Row-major Spreading in Which Multiple SYNCs

Must Be Buffered 181

List of Tables

Table Page

2.1. Data Dependency in Two-phase Revised Simplex Algorithm 14

2.2. Complexity of Parallel Algorithms One and Two 2 0

2.3. Analytical Speedup of Algorithms One and Two 2 2

2.4. Execution Times of Sequential Algorithm and The Parallel

Algorithm One 2 6

2.5. Execution Times of Sequential Algorithm and The Parallel

Algorithm Two 2 6

2.6. Speedup of the Parallel Algorithm One 2 7

2.7. Speedup of the Parallel Algorithm Two 2 7

2.8. Execution Times of Sequential (a) and Parallel (b) Algorithms2 8

2.9. Speedup of the Parallel Algorithms 2 9

2.10. Performance of [FINKEL -87]'s Parallel Simplex Algorithm 3 0

2.11. Performance Comparison With [FINKEL-87] 3 1

2.12. Performance of Choi's and Our Parallel Simplex Algorithms 3 2

3.1. Speedup of Straightforward Algorithm 51

3.2. Speedup of Subsolver Parallelizing Algorithm 5 5

3.3. Synchronization Intervals of TS algorithm 6 4

3.4. Execution Times of Parallel and Sequential Algorithms 7 3

3.5. Execution Time of Sequential SF, TS and Parallel TS Algorithms

76

3.6. Execution Time of Sequential TS, SF, and Parallel TS and The

Speedup of Parallel TS Over Sequential TS and Sequential SFJ 8

3.7. Execution Time of Sequential TS, SF, and Spread TS and the

XV

Speedup of Spread TS Over Sequential TS and Sequential SF8 1

3.8. Local Optimizability of SF Criterion 8 4

3.9. Local Optimizability of F1414 Criterion 8 4

3.10. Local Optimizability of TS Criterion 8 4

3.11. Global Optimizability 8 5

Parallel Simplex Algorithms

and Loop Spreading

Chapter 1

Introduction

The demand for more powerful computers is rapidly growing

in both numerical computation and symbolic processing (e.g. artificial

intelligence) areas. The performance increases achieved through

increases in components density are becoming more and more costly

([RIGEOUT -80], [SEITZ -84]), and designers are trying instead to

achieve cost effective performance through logical structuring of

these components, namely multiple processor architectures.

In recent years, several cost effective multiprocessor

computers, such as Sequent/Balance and Transputers, have entered

the applications world. Using these computers efficiently, however,

requires solving many new issues, such as parallel program design

and processor load balance.

2

1.1. Parallel Program Design

To solve a problem using a computer can be thought of as

performing a partially ordered set (poset) of operations on a

computer. For example, to calculate the sum of a, b, c, and d, the

poset of operations can be f(((a+b)+(c+d)) (a+b)), (((a+b)+(c+d)) (c+d))),

or, represented graphically:

Usually, the number of posets for a problem is tremendous. To

design a computer program for the problem involves two tasks: 1)

select one of the posets for the problem, and 2) represent the poset
in a programming language.

In the early days of sequential program design, people

underwent the difficulty of writing "good" programs. Since there are
so many posets to choose from and so many ways to put the chosen

poset to a sequence, writing a good program was in the domain of art

that demands talent until the advent of the techniques such as
structured programming. Using the structured method, a unique

poset is selected systematically and this poset is purposively sorted

3

out to a total sequence. Any partial relations are hidden from the

programmer.

Parallel programming is in its early stage. Since independent

operations should be performed on multiple processors to achieve

high performance, partial relations among the operations must be

clearly understood. Thus, the methods for sequential programming

are no longer valid for designing parallel programs.

Many researchers tried to invent new methods for designing

parallel programs GACKE-79MARVI-78], [CAMP-78], [DENN-74],

[GAJSKI-82], and [IIZAWA-84]). However, very few of them are

successful because most of their attentions focus on how to represent

the partial relations of a program, and ignore the question of how to

choose a poset for a given problem.

We studied parallel program design issues by examining two

real problems: the parallel Simplex algorithm and parallel

decomposed Simplex algorithm. It is our understanding that

methods for designing sequential programs are still helpful in

selecting a poset for a given problem. We may start designing a

parallel program from a given sequential program. The sequential

program should be analysed to reveal the partial relations existing

inside the problem and then be rewritten in a parallel

representation.

4

Since the choice and representation of the partial relations

inside the problem are critical to a parallel solution, the analysing of

the sequential program should focus on the data dependency existing

in the program (which is part of the partial relations inherent to the
problem). Then the performance of the parallel execution of the

program is evaluated through analysis, simulation, or

experimentation, by allowing tasks that are not data dependent to be
performed by different processors. Based on the performance

analysis, the choice of the poset and the representation of the poset

is revised and the analysis process is repeated until an acceptable

performance is obtained.

1.2. Processor Load Balance

When running a parallel program on a multiprocessor machine,

either the programmer or the system has to distribute the parallel
program on multiple processors. The traditional approach is that to

represent a parallel program as a partially ordered graph (task

graph) with each node and edge weighted by execution cost and to
use some partitioning algorithm to allocate the tasks to processors.

There are several drawbacks to the traditional approach. First,

for general graph, the optimal allocation is proven to be NP complete

even for only three processors ([COFFMAN-76], [KASAHARA-84]).

Numerous heuristics have been proposed to achieve reasonably good

processor load balance ([ADAM -74], [HU-74], [KAUFMAN-74],

[KOHLER-75], [GONZALEZ-77], [OUSTERHOUT-80, -82], [LO -87],

5

[KRUATRA-88]). Secondly, the approach tries to derive allocation by

statical analysis of the source program. This is often inefficient, as

the number of parallel tasks may not be known and the execution

time of a task usually is not a constant.

A better approach, in our opinion, is to restrict the structure of

a parallel program to a "simple" structure, for example, the one that

results from any parallel program using only the PAR s1, ...sk

ENDPAR and PAR i:=1 TO n DO s(i) ENDPAR statements. For this

restricted class of parallel programs, we invented a new scheduling

method (a mixture of static analysis and dynamic decision) that can

allocate parallel tasks to multiple processors optimally with

negligible runtime overhead.

1.3. Thesis

In Chapter 2, we parallelize the simplex algorithm through data

dependency analysis and performance analysis. The performance of

the parallel algorithm on the Sequent/Balance shared memory

machine shows very close to linear speedup (Figure 1.1). This result

is much better than those of [FINKEL-87] and [CHOI-88].

Furthermore, we discover several facts that suggest that shared

-memory machines are better than distributed memory machines for

solving linear programs (LPs). In particular, we suggest that any

problem characterized by dynamic data partitioning can be

parallelized on a shared memory machine more efficiently than on

message-passing machines.

6

o_
cr)

=
-0
43)

sa_
a)
co

8
7
6
5
4
3

2
1

1 2 3 4 5 6 7 8 #processors

Figure 1.1. Performance of Parallel Simplex Algorithm.

S
p
e
e
d
U

p

18.0

16.2

14.4

12.6

10.8

9.0

7.2

5.4

3.6

1.8_

0.0

3 4 5 6 7 8

processors
0 -rs\sF 0 #procs*2

Figure 1.2. Performance of TS Parallel Decomposed

Simplex Algorithm.

7

In Chapter 3, we study six different ways to parallelize the

sequential decomposed simplex algorithm (Appendix B). Although

the decomposed simplex algorithm appears to have good parallelism,

we demonstrate that straightforward parallelization results in very

inefficient performance. The parallel solution proposed in literature

([WYPIOR -77]) is shown to have only half of the efficiency of one of

our solutions, which speeds up the sequential algorithm by 2*P using

P processors (Figure 1.2).

The load balance problem shown in the parallel decomposed

simplex algorithm is that the performance of the algorithm drops

significantly when the input data size is not a multiple of the number

of processors available. Figure 1.3 shows the speedup of the best

parallel algorithm over the sequential algorithm using 8 processors

to solve decomposed LPs consisting of 3 to 20 subproblems.

p
e
e
d

8.0

7.2

6.4

5.6__

4.8

4.0

3.2.
2.4__

1.6

0.8

0.0

3 4 5 6 7 8 9 10 11 2 13

sub-problems

1.11.0.1.

r7.-

14 15 16 17 18 19 20

MparaTS/seqTS

Figure 1.3. Effect of Processor Load Balance on Performance of

Parallel Simplex Algorithm Using Eight Processors.

8

In Figure 1.3, when the input data changes from 8 to 9

subproblems, the speedup drops from 6+ to around 4. The reason for

such a drop is that when using 8 processors, the parallel execution of

9 tasks must be done in two rounds. The last round uses only one

processor, leaving the remaining 7 processors idle.

In Chapters 4 and 5, we study Loop Spreading, a new technique

to automatically restructure parallel loops so as to balance parallel

tasks on multiple processors. Experimental results show that our

new method gives excellent performance improvements. Using this

method, we succeeded in keeping the performance of the parallel

simplex algorithm always at its peak value.

9

Chapter 2

Performance of Parallel Simplex Algorithm

abstract

The performance of new parallel simplex algorithms for
the Sequent/Balance shared memory machine is studied.

The speedup is close to linear with the number of
processors used in the parallel computation.

2.1. Introduction

In [FINKEL -87], parallel simplex algorithms for a loosely

coupled message-passing machine are described. The observed

performance "was seldom above 0.5", meaning that only 50% of the

available processors were effectively used. By studying Finkel's

algorithm we found that the simplex algorithm is by nature more

suitable for implementation on a shared memory machine than on a

loosely coupled machine because the kernel of the simplex algorithm

is the pivot operation, which performs operations on both the rows

and columns of the base matrix. For a loosely coupled machine, the

parallel algorithm can either partition the matrix by row or by

column, but not both, and distribute portions of the matrix to the

local memories of individual processors. If the matrix is distributed

by row (or column), expensive message passing is the only way for a

processor to obtain the column (or row) data that is not stored in its

10

local memory. But, in a shared memory machine, the matrix is

shared by all of the processors. A shared-memory processor can

access all portions of the data equally well, thus resulting in better

performance.

Arguably, contention for access to a shared memory can

negate performance gains due to global access. In addition,

lock/unlock operations incur overhead in the form of blocking. The

question addressed by this research is whether the overhead of

contention and locking is less than the overhead incurred by message

passing. In what follows, we show that a shared memory solution to

simplex algorithm is the "best" one in terms of scalability.

Performance Metrics

For a parallel algorithm (PA) obtained from a sequential

algorithm (SA), the performance improvement of PA over SA can be

measured by the speedup of PA over SA and the goodness of PA can

be measured using the efficiency of PA. Formally, if SA takes Ts time

units to execute and PA takes Tp(i) time units to execute using i

parallel processors then speedup of PA over SA using i processors is

defined as:

Sp(i) = Ts/Tp(i),

and the efficiency of the parallel program using i processors is

defined as:

Ep(i) = Tp(1)/(i*Tp(i)).

11

2.2. Two-phase Revised Simplex Algorithm and Its
Parallelization

A linear Program (LP) is a system that finds vector x that

minimizes
T

Z = C x,

subject to Ax = b, x >= 0

where A is a matrix of m*n (n > m), c is an n element cost vector, b is

an m vector, and x is an n unknown vector. The superscript T

denotes vector transposition. The equations Ax = b stand for m
constraints on the unknowns. An example of an LP is:

Find (xi, x2, x3) that

minimizes z = 2xi + x2 + x3

subject to 2xi + x2 3x3 = 0

xi + x2 + x3 = 1

Xi, x2, x3 .. 0.

T T 2 1 -31For this example, C = (2, 1, 1),b = (0, 1), and A = [1
1 1

The two-phase revised simplex algorithm GDANTZIG-631,

[ORCHARD-54], [SYSLO-83]) is the well known solution to this linear

system and can be described as follows, where we assume ak is the

k'th column of the matrix A, and Uk is the k'th row of matrix U.

12

Input. A, an m*n matrix; b, an m vector; c, an n vector.

Initialization. Extend A to an (m+2)*n matrix by adding CT to be its

m+l'th row and all zeros to be its m+2'th row;

-1 0
the inverse of initial base U = B =

;-e 11

the initial base feasible solution x = (xi, x2, ..., xm+i, xm+2) = (b,
m

0, libi);
i=i

the numbers of the base columns corresponding to the

components of the optimal solution are remembered in vector

w, with initial values of w 1 = n+1, w2 = n+2, ... , and Wm+2 =

n+m+2; phase = 1; q = m+2.

Iteration.
step 1. If xq = 0 and phase = 1, set phase = 2, q = m+ 1.

For j = 1, ... , n, calculate Sj = uq * ai.

step 2. Calculate Sk = min(Si I j = 1, ..., n).

If Sk 0 and phase = 1, then the original LP is infeasible and

stop. If Sk .. 0 and phase = 2, then xq is the maximal and -xq is

the minimal value of the original LP, exit the repetition.

Otherwise, ak is the new column to enter the base.

step 3. Compute yi = Ili * ak, i = 1, ... , q, and 8i =xi/yi if yi >0,

i=1,...,m.

13

step 4. If all yi 0, i=1,...,m, and phase =1, then the original LP is

infeasible, stop. If all yi 0, i=1,...,m, and phase =2, then the

original LP is unbounded. Otherwise, calculate

0 = ot = min (0,)
1 <i<m&yi> o

at is the column to be removed from the base.

step 5. Calculate the new values of the variables in the base

solution and update U:

= k, xt = 0

xi = xi-Oyi (i*t, i =1,..,q),

uij = uij yi*utilyt (i*t, i =1,..,q, j=1,..m)

utj = utj /yt

Output. The optimal objective value is -Xq, and the components of

the optimal base feasible solution are xi, , xm, where xi

corresponds to awi.

In the above algorithm, a normal iteration needs n(m+2) +

q(m+2) + q(q +l) multiplications and additions, 2q divisions and 2n

comparisons. If we assume a relation of 1 : 5 : 10 for the execution

times of addition/comparison : multiplication : division, and

q= m +l,n =2m, an iteration takes 24m2 + 84m + 44 time units to

execute.

14

In an iteration, we can see that Sj's are modified in step 1 and

used in step 2; k is determined in step 2 and used in step 3; yi's and

Oi's are computed in step 3 and used in both step 4 and step 5; t is

found in step 4 and is used in step 5; IN is updated in step 5 and

used in step 1 of the next iteration; and ui's are modified in step 5

and used in step 3 of the next iteration. These data dependency

relations are summarized in Table 2.1, and the data dependency

graph is shown in Figure 2.1.

data items modified used

8j,j=1...n

k

yi

Oi,i=1...m+2

t

u q

ui,i=1...m+2

step 1 step 2

step 2 step 3

step 3 step 4,5

step 3 step 4,5

step 4 step 5

step 5 step 1

step 5 step 3

Table 2.1. Data Dependency in Two-phase Revised Simplex

Algorithm

15

Figure 2.1. Data Dependency Graph of the Two-phase Revised

Simplex Algorithm.

We have several ways to parallelize the two-phase revised

simplex algorithm, all of which preserve the data dependency

relations shown in Figure 2.1. In method one, we simply let the data

dependency edges that go from step i to step i+k, k > 1, go to step i+1.

The modified data dependency graph for this method is shown in

Figure 2.2.

In method two, step 5 only updates 11q, and the updates of ui's,

i<>q, are postponed to step 1 of the next iteration, as they are not

used in the next iteration until step 3. The modified data

dependency graph for method two is shown in Figure 2.3.

16

Figure 2.2. Modified Data Dependency Graph For the Parallel

Algorithm One.

Figure 2.3. Modified Data Dependency Graph For the Parallel

Algorithm Two.

17

The iterations of the parallel algorithm 1 can be described as

follows (We use PAR i:=1 TO n DO s(i) ENDPAR; to denote the parallel

execution of n statements s(i), i=1,2,...n). The task graph for the

iterations is shown in Figure 2.4.

Iteration of parallel algorithm 1.

step 1. PAR j:=1 TO n DO sl(j);

where si(j) is the following code:

oj = uci * aj;

step 2. the same as before.

step 3. PAR i:=1 TO q DO s3(i);

where s3(i) is the following code:

yi = * ak;

IF yi >0 then Oi

step 4. the same as before.

step 5. PAR j:=0 TO q DO s5(j);

where s5(0) is the following code:

wt = k, = 0;

FOR i:=1 TO m+2 DO

IF i <> t THEN xi =

and 55(j), j 1, is the following code:

utj = utj /yt

FOR i:=1 TO m+2 DO

IF i <> t THEN uij = uij yi*utj

18

Similarly, the iterations of the parallel algorithm 2 can be

described as follows. Its task graph is shown in Figure 2.5.

Iteration of parallel algorithm 2.

step 1. PAR j:=1 TO n+q-1 DO si(j);

where si(j), j<=n, is the following code:

Sj = uq *

si(n+t) is the following code:

wt = k, xt = 0;

FOR i:=1 TO q DO

IF i t THEN xi =

si(j), n+q-1>j>n, jet, is the following code:

k:=

FOR i:=1 TO m+2 DO

IF i <> t THEN uik = Uik Yi*Utk

step 2. Omitted.

step 3. PAR i:=1 TO q DO s3(i);

where s3(i) is the following code:

yi = ui * ak;

IF yi >0 then ei =xi/yi;

step 4. Omitted.

step 5. PAR j:=0 TO m DO s5(j);

where s5(j) is the following code:

uti = Utj/Yt

uqj = uqj yq *utj

19

(Initialization)

step 1 PAR)

ye s

step 2

step 3 PAR

step 4

step 5 PAR

more

C

iterations)
+ no

Output

Figure 2.4. Task Graph of the Parallel Algorithm One.

yes

(Initialization)

step I PAR

C

step

step 3 PAR)

sl (n+q -1)

step 5 PAR

more iterations)
+ no

Output

Figure 2.5. Task Graph of the Parallel Algorithm Two.

20

Note that, in both of the parallel algorithms, matrix U is

partitioned by rows among the processors in some steps and also are

partitioned by columns in some other steps. For example, in the

parallel algorithm 1, different processors in step 3 use different rows

of matrix U and in step 5 they modify different columns of the

matrix. Similarly, in algorithm 2, different processors in step 1

modify different columns of U and in step 3 they use different

columns of the matrix.

2.3. Performance Analysis

Table 2.2 summarizes the complexity of the operations in

parallel algorithms 1 and 2. For example, the first row of the table

says that s 1 of algorithm 1 needs to be done n times and each time

needs m+2 multiplications and m+2 additions. s 1 of algorithm 2

needs to be done n+q- 1 times, and each time needs m+2

multiplications and m+2 additions.

task

algorithm 1 algorithm 2

* +- / #tasks * +- / #tasks
s 1 m+2 m+2 n m+2 m+2 n+q- 1

s2 n 1 n 1

s3 m+2 m+2 1 q m+2 m+2 1 q

s4 m 1 m 1

s5 q +1 q +1 1 q +1 1 1 1 q

Table 2.2. Complexity of Parallel Algorithms One and Two.

21

We assume a relation of 1:5:10 for the execution times of

addition/comparison:multiplication:division, and q=m+1,n=2m.

Further, we assume that we have p processors available. Then, one

iteration of parallel algorithm 1 takes

rn/p1 sl + s2 + Fq/p1 s3 + s4 + rq/p1 s5

= in/p1(6(m+2)) + n + rq/p1(6(m+2)+10) + m + Fq/p1(6(m+2)+10)

= 12m/p1(6m+12) + rm+1/p1(12m+44) + 3m

One iteration of the parallel algorithm 2 takes

r(n+q-1)/p1 sl + s2 + fq/p1 s3 + s4 + Fq/p1 s5

= r(n+q-1)/p1(6(m+2)) + n + Fq/p1(6(m+2)+10) + m + iq/p1(6+10)

= r3m/p1(6m+12) + im+1/p1(6m+38) + 3m.

Remember that one iteration of the sequential algorithm takes

24m2 + 84m + 44 time units to execute. Using these formulas, we

have the following speedup estimates, shown in tabular form in

Table 2.3 and graphically in Figure 2.6.

ranges
p5m/ 2
p5m
m<p52m+1

2tn+1<p3m+1
3m+1<p

alg. 1.

p

0.86p
0.86m
1.1m
1.1m

alg. 2.
p= # of processors
0.86p
0.86m
1.1m
1.5m

22

Table 2.3. Analytical Speedup of Algorithms One and Two.

-o
a) m
U)

alg. 2

alg. 1

processors

Figure 2.6. Analytical Speedup of Algorithms One and Two.

Although algorithm 2 performs better when p is three times m,

in the real world m is usually very big compared to p. We will

encounter mostly the case where p m/2. In this case, both parallel

algorithm 1 and 2 have the same performance, and nearly 100%

processor utilization can be achieved.

Figure 2.7 illustrates the task allocation of the two algorithms.

Figure 2.7.(1) shows that when p is large, algorithm 1 performs

23

better than algorithm 2. Figure 2.7.(2) shows that when p is not

large, algorithm 1 has the same performance as algorithm 2 (see

Figure 2.7.3)) because the si's of algorithm 1 have to be fit into the

limited processor resource.

1 2 3 P >3m

1 2 P<31n

1 2 P<In

(1)

step 1

step 2

step 3

step 4
step 5

step 1

(2)
step 2

step 3

step 4
step 5

step 1

step 2

step 3

step 4

step 5 (3)

Figure 2.7. Task Allocation of Algorithms One and Two.

In the above analysis, we ignored the overhead associated with

parallelization, such as process creation/termination, scheduling,

locking, etc. For example, each parallel operation PAR i:=1 TO n DO

s(i) will not only take time to execute s(i), but also time to create and

terminate n processes. Since both parallel algorithms 1 and 2 have

exactly three parallel statements, we can consider that the two

24

algorithms have the same overhead caused by parallelization.

In summary, when p, the number of processors is no more than

m, the number of constraints of the input LP, the two parallel

algorithms have the same performance and the speedup is nearly

linear in the number of processors used.

Loosely Coupled Processor Solution.

If we are to implement the parallel algorithms on a loosely

coupled message-passing machine, there will be significant

communication overhead associated with the parallel algorithms 1

and 2. Take the parallel algorithm 1 as example. First, the 8j's found

in step 1 must be passed through all of the processors to find the

minimum and determine the k. Then the k has to be broadcasted to

all of the processors to calculate yi's. In step 3, each process

independently works on an individual row of U and calculates an

individual yi and Oi. The Oi's found in step 3 must be passed through

all of the processors to find the minimum and determine the t in step

4. In step 5, it is no longer practical to partition matrix U by columns

since U has been partitioned by rows in step 3. However, to update a

row of U in step 5 requires another row ut be available. Because the

value of t changes constantly, ut has to be obtained from other

processors at runtime through message passing. These expensive

communication costs make it hard to implement the parallel

algorithms on a loosely coupled parallel machine.

25

The message passing overhead can be alleviated somewhat by

overlapping computation with message passing, such as approached

in [FINKEL-87] and [CHOI-88]. We will compare our result with the

results of these two approaches implemented on message-passing

systems.

2.4. Performance Experiment

The parallel algorithms have been implemented on the

Sequent/Balance shared memory machine [THAKKAR-85]. The

parallel statement

PAR i:=1 TO n DO s(i) ENDPAR;

is directly implemented by using the parallel library routine m_

pfork(n, s(i)) ([OSTERHAUG -86]), which creates n processes to execute

the n statements s(i) in parallel. If the number of processors p is less

than n, the parallel statement is implemented as follows:

m_pfork(p, s'(i));

where s'(i) is FOR j:=i STEP p TO n do s(j).

In the first experiment, five randomly generated linear

programs (100 constraints and 200 variables) are solved using eight

processors. Because p << m, both algorithms 1 and 2 should show the

26

same performance improvement over the sequential algorithm. The

execution times (in milliseconds) of the sequential and parallel

algorithms are summarized in Tables 2.4 and 2.5. The speedup of

the parallel algorithms over the sequential one is summarized in

Tables 2.6 and 2.7. From these tables, we can see that the two

parallel algorithms do perform roughly the same. The average

speedup for parallel algorithm 1 is plotted in Figure 2.8.

procs 1p1 1p2 1p3 1p4 1p5

seq. alg. 1282310 1330890 1263030 1424590 1398720
1 1291800 1339000 1269510 1433340 1407060
2 656270 681100 644550 727290 715140
3 441840 458390 434460 490400 481540
4 334700 347490 329210 371810 364860
5 270770 280850 266430 300270 294620
6 225970 234470 222260 250860 245950
7 197030 204600 193910 218710 214670
8 173240 179800 168940 190280 188550

Table 2.4. Execution Times of Sequential Algorithm and

procs

The Parallel Algorithm One.

1p 1 1p2 1p3 1p4 1p5

seq. alg. 1282310 1330890 1263030 1424590 1398720
1 1257520 1303080 1235050 1397000 1367520
2 638060 662010 627610 707670 695020
3 428510 444470 421280 475440 466740
4 325090 337380 320020 360160 354250
5 262180 271910 257670 290660 285620
6 219000 227040 215280 243000 238280
7 189940 196990 186500 210200 206220
8 167460 173750 164770 187050 183270

Table 2.5. Execution Times of Sequential Algorithm and

The Parallel Algorithm Two.

27

procs 1p 1 1p2 1p3 1p4 1p5 average

1 0.993 0.994 0.995 0.994 0.994 0.994
2 1.954 1.954 1.960 1.959 1.956 1.956
3 2.902 2.903 2.907 2.905 2.905 2.904
4 3.831 3.830 3.837 3.832 3.834 3.833
5 4.736 4.739 4.741 4.744 4.748 4.741
6 5.675 5.676 5.683 5.679 5.687 5.680
7 6.508 6.505 6.513 6.514 6.516 6.511
8 7.402 7.402 7.476 7.487 7.418 7.437

Table 2.6. Speedup of the Parallel Algorithm One.

procs 1p 1 1p2 1p3 1p4 1p5 average

1 1.020 1.021 1.023 1.020 1.023 1.021
2 2.010 2.010 2.012 2.013 2.012 2.012
3 2.992 2.994 2.998 2.996 2.997 2.996
4 3.944 3.945 3.947 3.955 3.948 3.948
5 4.891 4.895 4.902 4.901 4.897 4.897
6 5.855 5.862 5.867 5.863 5.870 5.863
7 6.751 6.756 6.772 6.777 6.783 6.768
8 7.657 7.660 7.665 7.616 7.632 7.646

Table 2.7. Speedup of the Parallel Algorithm Two.

8
7

CL 6
-cs 5
a) 4
co

3
2
1

1 2 3 4 5 6 7 8 #processors

Figure 2.8. Average Speedup of Algorithm One vs.

Number of Processors.

28

Note from Tables 2.4 and 2.5 that the absolute execution times

of all of the sample problems are not very fast, for the following

reasons: 1) the Pascal compiler used does not generate very efficient

code; 2) Sequent/Balance processors are not very fast, and 3) the

algorithm uses double precision real arithmetic. However, the

average speedup shown in Figure 2.8 increases almost linearly with

the increase in the number of processors used.

input size Ipl 1p2 1p3 1p4 1p5

60*120 a 264940 243460 236750 272640 266620
b 43190 39910 38740 44430 43500

80*160 a 624280 561990 622510 681440 649820
b 96960 87580 97120 105740 100990

100*200 a 1282310 1330890 1263030 1424590 1398720
b 197030 204600 193910 218710 214670

120*240 a 2314850 2367340 2380870 2333450 2542770
b 355010 362470 365260 357170 390970

140*280 a 4140750 3892170 3941780 3719990 3941920
b 625570 586760 593910 561360 594920

160*320 a 6837310 6866120 7743190 6967900 6917390
b 1020870 1024710 1155470 1039290 1032910

180*360 a 9408680 9610250 10141900 10298910 10080230
b 1395800 1427840 1506650 1528320 1496910

200*400 a 13861780 13368460 13736320 14327070 13599180
b 2051120 1981640 2029910 2112910 2013680

Table 2.8. Execution Times of Sequential (a) and Parallel (b)

Algorithms.

A second experiment was carried out to study how parallel

algorithm 1 improves performance over the sequential algorithm

when the size of the input changes. Seven processors were used.

The input LPs have 60, 80, 100, 120, 140, 160, 180, and 200

constraints. The number of variables is always taken as two times

29

the number of constraints. For each input size, five randomly

generated linear programs were solved. The execution times (in

milliseconds) of the sequential and parallel algorithms are

summarized in Table 2.8. The speedup of the parallel algorithm over

the sequential one is summarized in Table 2.9. The average speedup

is plotted in Figure 2.9.

Input size 1pl 1p2 1p3 1p4 1p5 average

60*120 6.134 6.100 6.111 6.136 6.129 6.122
80*160 6.439 6.417 6.410 6.444 6.434 6.429

100*200 6.508 6.505 6.513 6.514 6.516 6.511
120*240 6.521 6.531 6.518 6.533 6.504 6.521
140*280 6.619 6.633 6.637 6.627 6.626 6.628
160*320 6.698 6.701 6.701 6.704 6.697 6.700
180*360 6.741 6.731 6.731 6.739 6.734 6.735
200*400 6.758 6.746 6.767 6.781 6.753 6.761

Table 2.9. Speedup of the Parallel Algorithms.

+---f---÷-1--i---I---1'

P-
I i IIIII I sizesofLPs
60 80 100 120 140160 180 200

Figure 2.9. Average Speedup vs. Input Size Using Seven

Processors.

30

Figure 2.9 tells us that the parallel algorithm's speedup over

the sequential algorithm increases as the input size increases. Even

for a relatively small input size, the parallel algorithm comes close to

linear improvement in computation time.

2.5. Performance Comparisons

Comparison With Finkel's Results

In [FINKEL-87], the simplex algorithm is implemented using

Lynx [SCOTT-84] on Crystal [DEWITT-84], a message-passing

machine. Two processors are used, and the results are summarized

in Table 2.10 (according to the data in Table 1 of [FINKEL -87D.

m speedup efficiency

3 0.03 0.01

5 0.08 0.04

10 0.34 0.17
15 0.65 0.32
20 0.69 0.34
25 0.85 0.42
30 1.00 0.50
35 0.84 0.42
40 1.11 0.55

45 1.01 0.50
48 0.92 0.46

Table 2.10. Performance of [FINKEL -87]'s Parallel Simplex

Algorithm.

Running our parallel simplex algorithm on the same input data,

we obtained the performance data shown in Table 2.11. In Figure

2.10, we plot the efficiency of the two results.

31

m seq time para time speedup efficiency

3 118 380 0.31 0.15
5 244 458 0.53 0.26

10 1026 888 1.16 0.58
15 4000 2472 1.62 0.81
20 7348 4224 1.74 0.87
25 16716 9132 1.83 0.91
3 0 25926 13896 1.87 0.93
35 46268 24418 1.89 0.94
40 66050 34580 1.91 0.95
45 92154 48094 1.92 0.96
4 8 125802 65376 1.92 0.96

Table 2.11. Performance Comparison With [FINKEL-87].

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

3 5 10 15 20 25 30 35 40 45 48
size m (n = 2*m)

o Our efficiency ci Finkel's efficiency

Figure 2.10. Performance Comparison With [FINKEL-87].

From Figure 2.10, we can see that our parallel algorithm is

about twice as efficient as Finkel's algorithm using two processors.

32

Comparison With Choi's Results.

In [CHOI-88], an experimental simplex algorithm is

implemented in OCCAM on Transputers ([MAY-84]). Table 2.12.

summarizes the performance of Choi's algorithm (From Figure 3-6 of

[CHOI-88]) and our result on the same randomly generated LPs of

100 constraints and 200 variables. Figure 2.11. plots the respective

speedup.

#processors speedup/Choi efficiency/Choi speedup/ours efficiency/ours

5 4.61 0.92 4.90 0.98
6 5.58 0.93 5.86 0.98
7 6.25 0.89 6.77 0.97
8 6.85 0.86 7.75 0.97

Table 2.12. Performance of Choi's and Our Parallel Simplex

Algorithms.

8.0

7.6

7.2
S

p
6.8

e 6.4

e
d

6.0

5.6

p 5.2._

4.8

4.4

4.0

5 6 7

processors
o speedup/Ours o speedup/Choi

8

Figure 2.11. Performance Comparison With [CHOI-88].

33

Even though the Transputer is a specially designed parallel

processor that supports message passing at the hardware level, our

result is again better than that on a message-passing machine. More

importantly, Choi's performance shows a clear tendency to drop

when the number of processors increases, while our result linearly

increases as the number of processors increases.

2.6. Conclusions

The simplex algorithm can be quite easily parallelized on the

Sequent/Balance shared memory machine. Unlike the result in

[FINKEL-87] and [CHOI-88], this parallelization can achieve nearly

100% efficiency. This is due to the fact that the simplex iteration can

be parallelized by partitioning both the rows and the columns of the

base matrix. In general, we argue that a shared memory machine is

a better choice for implementing the simplex algorithm, based on the

following observations.

34

1) A shared memory machine allows dynamic data partitioning.

Consider the following problem: for an input matrix A(n*n), calculate

A(i, j) = A(i, j) +/A (i, k) EA (k, j) . If we solve this problem on a
k=1 k=1

message-passing system, we encounter the problem of how to

distribute matrix A to multiple processors. If we partition A by row,

then it is relatively easy to calculate /A (i, k) as all of the A(i, k)'s
k=1

are stored on the same processor, but it is very expensive to

calculate /A (k, j) as each A(k, j) is on a different processor for k = 1,
k=1

..., i. If we solve the problem on a shared memory system, both row

partitioning and column partitioning are equally cheap, as no explicit

data distribution is necessary. The Simplex algorithm requires

dynamic data partitioning.

2) Processor load balance is cheaper to achieve in a shared

memory system. As shown in Chapter 4, loop spreading is a

powerful technique used to balance processor load for parallel

programs. However, loop spreading converts certain data that are

local to a single processor to global data among multiple processors.

As we know that data sharing in a message passing system is more

costly than in a shared memory system, loop spreading on a message

passing system is much more costly than on a shared memory

system.

3) A shared memory system permits more parallelism than a

message passing system. To see this, consider the example of

multiple processors accessing common data. Assume value x is to be

35

used by process pl, p2, pn.

The code to do this in a shared memory system can be the

following lock-access operations:

on processor pi (i=1.. n)

lock(x);
x' := x;
unlock(x);
the code that uses x'

The code to do this in the message passing system can be the

following broadcasting operation:

P0 pi (i =1.. n)

receive(x, c[i]);
seq i:=1 to n do send(x, c[i]); code that uses x;

The sender in the message passing system has to make multiple

copies of the same data by itself and send the copies to other

processes. This tends to make the sender process the bottleneck of

the program. But in the shared memory system, the copy operations

can be distributively done by the processes that use the data. Also

in this example, the receiving processes must receive data in the

same order it is sent (assuming the message passing takes constant

time), while in the shared memory system, the readers can compete

to read the shared data and the actual sequence of the reads is

36

dependent on the processes' relative execution speeds. The latter

case obviously has better performance because the faster processes

also use the data sooner and don't have to wait their turn.

4) The message-passing model is more restricted than the

shared memory model, so some well known techniques to obtain

parallelism cannot be applied. Consider the reader/writer problem.

In the shared memory system, a reader/writer lock can be used to

allow multiple reader processes to access the common data

simultaneously. However, in the message passing system, the only

way to permit one process to modify a value while other processes

read the value is to implement the modification/broadcast solution.

Concurrent accesses by the reader processes are impossible.

37

Chapter 3

Parallel Algorithms for

Decomposed Linear Programs

gbstract

New parallel algorithms for the decomposed linear programs are

developed. Our experiment on a shared memory machine shows
that one of the new algorithms achieves more than 2*P times
performance improvement over the sequential algorithm using
P processors. Furthermore, we discovered a particular variation
of the sequential algorithm which runs more than 2 times faster
than the normal sequential algorithm on the shared memory
machine.

3.1. Introduction

People have been looking for fast Linear Program solvers for a

long time because linear programs model many real world

applications and solving linear programs is computationally intensive

([DANTZIG-63], [BEN-68], [CHARNES-80], [GROTSCHL-81]). New

sequential linear program solvers such as Karmarkar's algorithm

([KARMARKAR -84]) reduce the worst-case time complexity to a

polynomial bound. But results of recent computational study ([GILL-

85]) cast doubt on Karmarkar's claim that his algorithm will replace

the simplex algorithm.

38

An alternate approach to solving computationally difficult

linear programs is to devise parallel solutions that run on fast

parallel machines ([WYPIOR -77], [FINKEL-87], [THOMPSON-87],

[PANG-87], [CHOI-88]).

In Chapter 2, we parallelized the revised two-phase simplex

algorithm with linear performance improvement in terms of number

of processors used. In this paper, we study parallel algorithms for

solving decomposed linear programs.

Direct parallelization of the sequential algorithm often results

in very limited performance improvement using multiple processors

because a sequential algorithm is designed without parallel

consideration in mind. When we were parallelizing the decomposed

simplex algorithm, we found that, without changing the algorithm

itself, the sequential decomposed simplex algorithm can be improved

by only half of the number of processors used. But by redesigning

the algorithm, we achieved more than 2*P times performance

improvement over the sequential algorithm, where P is the number

of processors used in parallel computation. Furthermore, a particular

variation of the sequential algorithm runs more than 2 times faster

than the original sequential algorithm. The new parallel algorithm

linearly speedups the new sequential algorithm.

3.2. Background

A Linear Program (LP) is a system that finds vector x which

minimizes

subject to

T
Z =C x,

Ax = b, x 0,

39

where A is an m by n matrix (n > m), c is an n element cost vector, b

is a vector of length m, and x is an unknown vector of length n. The

superscript T denotes vector transposition. The equation Ax = b

stands for m constraints on the unknowns. An example of an LP is:

Find (xi, x2, x3) that
minimizes z = 2xi + x2 + x3
subject to 2x1 + x2 3x3 = 0

xi + x2 + x3 =1
xi, x2, x3 0

For this example, cl.= (2, 1, 1), bT= (0, 1), m = 2, n = 3, and

1 1A =
ri 1

Geometrically, the constraints Ax = b and x 0 define a

convex polyhedron of dimension m in an n dimensional space. The

polyhedron of the above LP is shown in Figure 3.1.

40

Figure 3.1. Convex Polyhedron in 3-space Showing Region of

Feasible Solutions to Sample Problem.

The end points pi and p2 in Figure 3.1 are the extreme points

of the system. An extreme point is a solution that has no more than

m non-zero components. It can be shown that if an LP has a minimal

solution, then one of its extreme points must be a minimal solution.

In the above example, pi is the minimal solution.

The simplex algorithm [DANTZIG-63] solves an LP by starting

from an extreme point and repeatedly going to the next adjacent

extreme point that decreases the z value, until it goes to an extreme

point where the z value can not be further decreased.

The decomposed linear programs are a special class of LPs in

which the coefficient array A contains all zeros except in the first

few rows and along diagonal blocks according to the pattern shown

41

in Figure 3.2, where for j=1..n, Aj is an m by nj matrix; Di is an mj by

nj matrix; bj is an mj vector; and b is an m vector.

Al A2 An b

Di

D2

bi

b2

D n bn

Figure 3.2. Pattern of a Decomposed Linear Program.

An example of a decomposed LP is:

Find (xi, x2, x3, x4) that

minimizes z = 2x1 + X2 + X3 + 5x4
subject to 2x1 + x2 3x3 + x4 = 0

X1 +x2 =1
3x1 -x2 =0

x3 + 5X4 =1

In this example,

Al = (2, 1) , A2 = (-3, 1)

1 1D.
1 [3 -11'

D2 = (1, 5)

b = (0), bi = (1, 0)T, b2= (1).

42

The decomposition principle of Dantzig and Wolfe [DANTZIG-60,

61] is an elegant method for solving decomposed LPs. According to

this principle, an input decomposed linear program is treated as the

central program, and the diagonal blocks are treated as the

coefficient matrices of sublinear programs. Each central iteration

first determines the solutions of the sublinear programs and then

uses the solutions to determine its own pivot operation. Although

there are many sequential implementations of the principle ([ADLER-

73], [BEALE-65], [KUTCHER-73], [HO -81]), there are very few

discussions on the parallelization of the algorithm ([WYPIER-77]).

Performance Evaluation Metrics

There are two ways that a program can be parallelized: 1)

implicit parallelization ([KUCK-72, 76, 81, 84]), in which the parallel

algorithm is the same as the sequential algorithm except that certain

statements of the sequential algorithm are allowed to be executed in

parallel; 2) explicit parallelization, in which the parallel algorithm

employs a different approach to the problem than the sequential

algorithm.

Implicit parallelization is limited because the original program

was designed with sequential semantics in mind. Only very few

programs can be implicitly parallelized with nearly linear speedup,

and in most cases an efficiency of 10% is considered quite

satisfactory ([LEE-85]), as stated in [WOLFE-87], "users rarely achieve

43

the peak speed of the machine unless they are willing to rewrite

their programs."

Explicit parallelization requires that a programmer redesign the

sequential algorithm to exploit parallelism in both the problem and

the underlying parallel machine. However, explicit parallelization is

a difficult job because the programmer has to think in terms of

multiple threads of program execution and take care of many

possible interactions among the parallel processes.

For a parallel algorithm (PA) obtained through implicit

parallelization from a sequential algorithm (SA), the performance

improvement of PA over SA can be measured by the speedup of PA

over SA and the goodness of PA can be measured using the efficiency

of PA. Formally, if SA takes Ts time units to execute and PA takes

Tp(i) time units to execute using i parallel processors, then the

speedup of PA over SA is defined as:

Sp(i) = Ts/Tp(i)

and the efficiency of the parallel program using i processors is

defined as:

Ep(i) = Tp(1)/(i*Tp(i)).

44

We note that Sp(i) 5 i in the implicit parallelization case. This

may not be true in the case of explicit parallelization. Assume SA is

parallelized explicitly through algorithm changes to PA. Then PA can

be executed sequentially by using only one processor. Clearly, we

can rewrite PA as another sequential program (SA') using sequential

constructs as if the program is executed by only one processor. Now

suppose PA is "obtained" from SA' through implicit parallelization,

and we compute the speedup of PA over SA' using i processors. The

speedup of PA over SA' will be 5 i. However, SA' can run many times

faster than SA. If SA' runs F (> 1) times faster than SA, then the

speedup of PA over SA can be as high as F*i.

For both implicit and explicit parallelization, Ep(i) 5 1. The

efficiency of a parallel program is a variable of the number of

processors used and is independent of which sequential program it

corresponds to.

3.3. Computational Procedure for Decomposed Simplex
Algorithm

Based on Dantzig-Wolfe's decomposition principle, we

developed a decomposed simplex algorithm for solving decomposed

linear programs, as follows (see appendix B for derivation):

Input. Ai, m*ni matrices and Di, mi*ni matrices, i = 1, ... n; bo, an m

vectors; bi, mi vectors, i = 1, ... n; ci, ni vectors, i = 1, ... n.

45

Initialization. Assume e be a vector of all l's.

The inverse of initial base

rm+n+1
U =(t11, 112,...11m+n+2) = B =

e 1

the initial base feasible solution

m

S = (si, 52, ..., Sm +n +2) = (bo, 1, ... 1, 0, n+/boi);
i=1

the central left hand side vector b = (bo, 1, ... 1, 0, 0);

the initial subsolutions ex = (exi, ex2, exm+n) = (0, 0, ,0)

and the corresponding indices of the subproblems that lead to

the subsolutions w = (wi, w2, wm+n) = (0, 0, ,0), meaning

that the initial subsolutions are not solutions of any

subproblems (sub-problems range from 1 to n); phase = 1; q =
m+n+2.

Iteration.

Step 1. If sq = 0 and phase = 1, then set phase = 2, q = m+n+1, and

redo step 1. If sq < 0 or phase = 2, then

a) calculate ci = (uq>1..mAi + uq,m+n+icj), for j = 1,...,n.

46

b) using the two-phase revised simplex algorithm to solve

sublinear problems Si, for j=1, ..., n,

Si: minimize cixi,
subject to Aixi=bi and xi..0

for optimal solutions or extreme homogeneous solutions (if Si is

unbound) xi, j = 1, .., n. If any of the subproblems is infeasible,

the original problem is infeasible, stop.

c) If xi is an optimal solution of Si, make aj = (Aixi3O,...,0,

1,0,...,0,cixj,0), otherwise, make aj = (Aixi3O,...,0, 0,0,...,0,cixi3O).

d) For j = 1, ... , n, calculate 8j = uci * aj. If phase = 2 then for j =

1, ... , n, calculate A.i = Um+n+2 * aj and if ?Li * 0 then set Sj = 0.

Step 2. Calculate Sk = min(5i I j = 1, ..., n). If ok 0 and phase = 1,

then the original LP is infeasible, stop. If ok 0 and phase = 2,

then Sq is the optimal solution and -Sq is the minimal value of

the original LP, exit. Otherwise, ak is the new column to enter

the base.

Step 3. Compute yi = ui * ak, i = 1, ... , q.

Step 4. If all yi _. 0 and phase =1, then the original LP is infeasible,

stop. If all yi 5_ 0 and phase =2, then the original LP is

47

unbounded, stop. Otherwise, calculate

s,
8= t = min

yt 1.1sim+n & y. >0 Yi

and at is the column to be removed from the base.

Step 5. Calculate the new values of the variables in the base

solution:
wt= k, Sk = 0
si = si-Oyi i =1,..,m+n+2)
exk = xk,

and update U, the inverse of the base:

uii = uij yi*uti/yt, (i*t, i =1,..,m+n+2,j=1,..,m+n+2)
utj = utilyt.

Output. The optimal objective value is -sq, and the optimal feasible

solution (may not be basic) is x =(x 1, , xn), where xi is

obtained from:

x. = s.*ex.
n I

' w.= j
i= 1

48

3.4. Parallelizing Decomposed Simplex Algorithm

The kernel of the procedure is the iteration of the steps 1 to 5.

The data dependency graph of the iteration is shown in Figure 3.3,

from which the parallelism can be easily seen as each iteration (the

central iteration) requires the solutions from the subLPs, which can

be solved independently. In addition, the calculation of yi, yq and

ul, ug can be done in parallel.

Figure 3.3. Data Dependency Graph of The Decomposed

Simplex Algorithm.

p1... pi ... pn-1

uq

pn
I

get uq

49

find ci xis; find Cnxnan8n

I

Cd-et k).4---1 k

I-

1

--1<et 8 1.. 8 n.:

1

k= min(81..8n

In Y n , get Y 1- Yn-

update L>. 11_14 t=min(s i /y i , i = 1..n
1

update un s w

Figure 3.4. Straightforward Parallelization Algorithm.

A straightforward parallelization is to invoke the subLP solvers

in parallel and continue the central iteration when all of the subLP

solvers finish. In this algorithm (call it SF algorithm), n processes, pi,

p2, ... pn, are used and pi is assigned to solve the subproblem i in

step 1, as in Figure 3.4. When all of the subproblems find their

solutions, the subprocesses send 8i's to one of the processes (say pn)

and this process determines 8k=min(80. After k is determined, it is

broadcasted to all of the other processes, and the process pi

calculates yi (i=1,...m). Then, yi's are sent to pn. Pn determines

Ot=min(si/yi) and broadcasts t to all of the other processes. Finally,

the process pi updates ui (i=1,...q), and the next iteration begins.

50

A timing chart of the algorithm is sketched in Figure 3.5, where

pi represents process i, i=1,...n, and the circle indicates the point in

time when the optimal xk is produced.

pl p2 pi pn

AAAAAAAA

step 1

step 2
step 3
step 4
step 5

Figure 3.5. Timing of the Straightforward Parallel Algorithm.

The straightforward algorithm seems to exploit the inherent

parallelism fairly well. However, step 2 cannot proceed until all of

the subproblems finish. As indicated by [KUNG-76], the efficiency of

this kind of synchronous algorithm is heavily affected by the

structures of the subproblems. A synchronous algorithm performs

best when the subproblems are of equal size and take the same

amount of time to finish. Even with the assumption that all

subproblems have the same number of constraints and same number

of variables, the subproblems will take a very different number of

iterations to finish, depending on the starting bases and the cost

functions. It is even possible for one subproblem to find its solution

51

in one iteration, while another takes exponential number of

iterations ([KLEE -76]). Each central iteration has to wait until the

slowest subproblem finishes.

The algorithm has been implemented on the Sequent/Balance

shared memory machine. We ran the algorithm using 8 processors

on randomly generated decomposed LPs of 3 to 20 subproblems.

Table 3.1 summarizes the speedup of the algorithms over the

sequential algorithm.

subs

Figure 3.6.

speedup

plots the speedup.

time: seqSF time : paraSF

3 1.97 3070 1562
4 2.47 4358 1764
5 3.10 12160 3928
6 3.69 29170 7900
7 4.06 41034 10106
8 3.41 87406 25662
9 3.01 152902 50812

10 2.95 189146 64158
11 3.20 352422 110170
12 4.24 643048 151668
13 4.63 721400 155776
14 5.04 1009842 200524
15 5.31 1868304 352124
16 5.33 1972218 370326
17 5.20 2971756 571646
18 5.04 4414118 876038
19 5.14 5051584 982986
20 5.27 6984076 1324426

Table 3.1. Speedup of Straightforward Algorithm.

93

(0

(0
0.

(1/0.
V'

4,)62

..t,.0..1

0!'0°J

* qa40

''''0co..

11%.

b
4/7

e.)(1.)

tsc,

co

b4-)

0
b

fi

017

(tY

.4

c.,

..,

tow

s1/4,

Lz)

.4

;1

'''

,,,t

:,,-,

0

0

(s,'

0

k'
a/1"

fib

"

(t)

'''''

C4

..°

cl

'49

(9

0

C?

40

R

c°

e'
/40

*v.

0

tr.

co-',

:40

.,.

.4)

N.,

0

.*v.

,v

ter

(0

'1

P..",

-

Si,

°
...,

't.3'

,..S;

v.

(\..1/

(111

44

$'
v

fi

(4;4

fi

0 v

(CS

:67

co

or.,

$
&
?

4,

0
,..,

$.-

0

44...,

0
...,,

.0

,
.,,

,*,

0
,,

co

4.0

0
'4,

Sy

..'r

0
el

qy

0

'r

4'

(t:

$
40

.8.(

0
v...

tu

'",,

cfi'

;

a?

L5,3

.c?

f;?

0

.Se

r?

0
`1

tz?

.4
°

'1/49

,,z?

c7

.4)

°

t
a-7

bb

44?

4)

0

c,F,'

.400

ct/

Nv

47.)

IV*4'v

cb.

4ct

53

Solving them sequentially requires a total of Ts = Ti + T2 + ... + TN =

N*1.td iterations, and solving them in parallel using N processors needs

Tp = max (Ti, T2, ..., TN) iterations. The efficiency using N processors

is:

T *11 u
E(N) = --.1.-- =N...._sl. = sl_

N*T N*T T
P P p

To evaluate E(N), instead of determining the mean value of Tp

analytically, we used simulation to estimate E(N). A SLAM II

program ([PRITSKER -86]) is shown in Figure 3.7, and the expected

efficiency for N = 10, d = 10 is 65.3%. This low efficiency matches

our experimental result well.

INTLC, N=10, MEAN=40.86, STD=10.67;
NETWORK;

CREATE, 1,,, 1000, 1;
ASSIGN, 11=1, TS:), TP=O;

LOOP ASSIGN, TI = RNORM(MEAN, STD);
ASSIGN, TS = TS + TI, 1;

ACT TI .LT. TP, SKIP;
ACT;

ASSIGN, TP = TI;
SKIP ASSIGN, II = II + 1, 1;

ACT, H .LT. N, LOOP;
ACT;

ASSIGN, TS = TS / N, EFF = TS / TP;
COLCT, EFF, Efficiency;
TERM;
ENDNETWORK;

FIN;

Figure 3.7. SLAM II Code for Determining Expected Efficiency

of Straightforward Algorithm.

54

Because the big variance (ad) on the number of simplex

iterations does not allow all subproblems to find their minimal

solutions at the same time, new approaches or algorithm changes are

needed to achieve better performance.

Parallelizing Subproblem Solvers.

An alternative way to parallelize the decomposed simplex

algorithm is to parallelize individual subproblem solvers (see Chapter

2 or [WU-88a]). In this algorithm, step 1) can be solved as follows:

. Perform step 1 a) in parallel;

. Solve the n subproblems in b) one after the other in sequence

and each subproblem is solved by multiple processors in

parallel;

. Execute step 1 c) and d) in parallel.

In this algorithm, no subproblem needs to wait for the other

subproblems to finish. A timing chart for the algorithm is shown in

Figure 3.8.

We ran the algorithm using 8 processors on randomly

generated decomposed LPs of 3 to 20 subproblems. Table 3.2.

summarizes the speedup of this algorithm over the sequential

algorithm. Figure 3.9. plots the speedup.

55

p1 p2 p3 pn

f Ar AMf Ane A' A

vavi.M%.4 %.7 74%2
AM11111111111111111=1111117 47 47 AV 47 47 4% A%

VAVA7AVAVAVAVAVA
VAVZ Z AIME
or /NNE ems
111111111-1111INIM

AAAAAAAAmilimmumimmommvrry
AArAAyA

r
AAA

sub-problem 1

sub-problem 2

sub-problem 3

sub-problem n

step 2
step 3
step 4
step 5

step 1

Figure 3.8. Timing of Subsolver Parallelizing Algorithm.

nbrSubs SFPS/se SF se a SF SFPS
3 1.53 3070 2004
4 1.90 4358 2294
5 2.44 12160 4984
6 2.98 29170 9790
7 3.33 41034 12324
8 3.91 87406 22368
9 3.73 152902 40960

10 3.81 189146 49608
11 3.54 352422 99602
12 3.91 643048 164602
13 3.93 721400 183334
14 4.29 1009842 235622
15 4.65 1868304 401532
16 4.67 1972218 422358
17 4.29 2971756 692824
18 4.60 4414118 959350
19 4.64 5051584 1088842
20 4.95 6984076 1411766

Table 3.2. Speedup of Subsolver Parallelizing Algorithm.

56

S

e

e
d

8.0

7.2

777

4 6 8 10 2 14

sub-problems
SFPS/seqSF ['Linear Speedup

18 20

Figure 3.9. Speedup of Subsolver Parallelizing Algorithm.

The performance of the algorithm is even worse than the

straightforward algorithm (see Figure 3.9). The reasons for the

inefficiency are that 1) the subproblems are usually of relatively

small size compared to the original problem and we know from

Chapter 2 the performance drops when the input data size decreases;

2) in this algorithm, each subiteration needs a fork-join of processes

(an invocation of the PAR construct, which costs CPU time), while the

straightforward algorithm requires a fork-join only for each central

iteration; 3) When the sizes of the subproblems are not the multiple

of the number of processors, lots of last round effects are

encountered, leaving several processors idle at the end of solving

each subproblem. From these we conclude that parallelizing the

subsolvers is not an appropriate approach to improve performance.

57

These two parallelizing approaches have one thing in common,

that is, they both extract the parallelism in the sequential algorithm

without modification to the algorithm itself. Better performance may

result if we adapt the algorithm to parallel execution.

3.5. Parallel Algorithms for Decomposed Linear Programs

We note that in step 1, finding the best xk among all of the

solutions of the subproblems after waiting for all subproblems to

finish is equivalent to moving from the current extreme point to an

adjacent extreme point such that the objective function is improved

by the greatest amount. Statistics shows that moving to the best

adjacent extreme point performs only moderately better than

moving to any of the adjacent extreme points which improves the

objective function ([DANTZIG -63]). Thus, we can use any solution xk

that makes Sk < 0. In this way, there is less chance that a fast

subproblem waits for a slow subproblem. We have several ways to

implement this strategy.

3.5.1. First Finished First (FFF) Algorithm

Instead of finding the best solution among the subsolutions of

all of the subproblems that make Sj < 0, we use the solution of the

first finished subproblem that satisfies the condition.

pi, i<>j
4.1

get Lig

find

(update ui

Yi

4G-end j)

Ind yi , get yi <>

411:=112111MWt

58

update ui s w

Figure 3.10. Parallel P1-P Algorithm (assume pi finds Si < 0).

p 1 p2 p1 pn

r 'Ay/yr
:1111 A Ana
===M11=111111MIle Ar Vr

r
,AAAAAAA

step 1

step 2
step 3
step 4
step 5

Figure 3.11. Timing of Parallel P1.14 Algorithm.

59

In this method, every time a subproblem Sj finds its optimal

solution xj, it checks to see whether or not this solution makes 8j =

ugai < 0. When its solution satisfies the condition, it proceeds to step

2 and signals all other subprocesses to stop searching. When step 5

finishes, a new cycle starts. The modified algorithm is illustrated in

Figure 3.10, and the timing chart of the algorithm is sketched is

Figure 3.11 (where the circle indicates when the qualified solution xk

is found).

The above discussion assumes that there are unlimited number

of processors available for the parallel computation. However, in

reality, the number of processors, P may be less than the number of

subproblems, n. In this case, n subproblems will be solved in n/P

rounds, and in each round P subproblems are solved. Notice that, the

subproblem that could finish first when there are unlimited

processors may be scheduled in a later round, so it may actually

finish later than several other subproblems.

When we have only limited processor resource, we have no

way to implement the pure PPP algorithm, since at least one of the

subproblems in the first round have to be finished before going to

the next round. If the fasted subproblem in not in the first round,

the finished subproblem in the first round has be executed more

iterations than it should be in the pure 1-141-i algorithm.

Two approximations can be used to implement the PPP

60

algorithm. In the first implementation, whenever a subproblem

finds a qualified solution in a round, this subproblem is considered

the first finished subproblem, and all the subproblems in the

remaining rounds will not be executed and a new central iteration is

pursued. In the second implementation, the subproblems in all

rounds are always executed, and the best subproblem in all of the

finished ones is chosen to continue the central iteration. Although

the first approach finds a qualified solution faster in a few early

central iterations, it actually results in slower convergence. Figure.

12. shows our experimental result of the two implementations on LPs

of 3 to 16 subproblems using 8 processors. When number of

processors is less than the number of the subproblems, the two

implementations show the similar performance, and when the

number of the subproblems is more than the number of the

processors, the second implementation clean outperforms the first

approach.

S

p

e
d

°III I I I I I I 1 1 1 1 I

3 4 5 6 7 8 9 1 0 1 1 12 13 14 15 16
#s ubs

o pFFF1 /SF a pFFF2/SF nbrProcs

Figure 3.12. Performance of Two FFF Implementations.

61

3.5.2. Tightly Synchronous (TS) Algorithm

We further notice that the minimal solution of one subproblem

may not be as good as the non-minimal solutions of the other

subproblems. For example, it is possible that a subproblem that

takes a very long time to find a minimal solution may have already

found a non-minimal solution that is better than the minimal

solutions of the other subproblems. When this happens, the 141-r

algorithm will ignore these good solutions.

In the TS algorithm described here, instead of determining

optimal solutions, each subproblem sends its current solution (not

necessarily optimal) to the central process after some number of

iterations. The central process selects from the n solutions the one

that makes 8i = uciaj negative if one exists, or else repeatedly invokes

the subproblems. If we assume that the subproblems are the same

size, then all subproblems will take equal time to finish a single

iteration, and this algorithm can synchronize all subproblems after

they perform an equal amount of computation. The TS algorithm is

shown in Figure 3.13. The timing of the algorithm can be sketched as

in Figure 3.14 (where the circle indicates when the qualified solution

xk is found).

pi, i<>j
akt

ucl> uq

62

find y

(update uJ =min(s i/y i , i = 1..n
j

update uj s

Figure 3.13. Parallel TS Algorithm (assume pj finds Sj < 0).

p 1 p2 p1 pn
oW.I /Zed WI 4,4,./4 WI, WI 07.010MAI IMKOMM
Wirgai.L.W.GlaMICAVAIWZOVAZGWA
11111M10111111=MMIIIIMMINIMrvvrvv,
A AAAAAArrv rv
AAA.AAAAA

step 1
step 2
step 3
step 4
step 5

Figure 3.14. Timing of Parallel TS Algorithm.

If the subproblems have different sizes, it is not difficult to

assign subproblem Sj a constant Iij as the number of iterations it

should perform in central iteration i before participating in the

synchronization, so that all subproblems take the same amount of

63

time to finish. Assume it is known that in the average SIi

subiterations should be performed before a qualified subsolution can

be found in central iteration i, and subproblem j, j takes Cj

time units to execute one subiteration. In order to find the number

of iterations that the subproblem j should perform before

participating in synchronization, we need to find Iij, j such that

n
= SIi and Cy*Iif = Cj"*Iii", j` j".nj =1

SI. xl-,1

An approximation is to let
n*C

= L
j j=1

There is synchronization overhead associated with the TS

algorithm, if SIi (call it the synchronization interval in central

iteration i) is not chosen properly. For example, if Ri rounds of

synchronization take place before a qualified solution is found in

central iteration i, the TS algorithm has additional overhead of (Ri-

1)*T(step 1 c and d). On the one hand, we may want to reduce Ri, by

increasing the number of subiterations that the subproblems should

execute before participating in synchronization. In the extreme, we

may let every subproblem execute until it finds the minimal

subsolution. In this case, Ri is always 1, and the TS algorithm

becomes the straightforward algorithm. On the other hand, we may

want to let the subproblems participate in synchronization more

frequently, which may cause Ri >> 1. We want the synchronization

interval SIi to be the minimal number of subiterations that the

subproblems have to perform in central iteration i before finding out

64

a qualified subsolution.

In order to determine SIi, we did experiment to see how many

central iterations take 1, 2, 3, or 4 and more subiterations. The

result is shown in Table 3.3, obtained by experiment on the random

LPs of P=3 to 15 subproblems, each subproblem has m = P/2 1, P/2,

and P/2 + 1 constraints and 2*m variables. In Table 3.3. we see that

all but one central iterations takes only one subiteration (for

example, when # subs = 10 and m = 4, 47 out of 48 central iterations

take only one subiteration).

2 3 4 5 6 7 8
#sulDE 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

3 10 0 0 1

4 11 0 0 1 15 0 0 1

5 16 0 0 1 19 0 0 1

6 17 0 0 1 21 0 0 1 28 0 0 1

7 19 0 0 123 0 0 133 0 0 1

8 28 0 0 1 35 0 0 1 46 0 0 1

9 37 0 0 1 39 0 0 1 48 0 0 1

10 :47 0 0 152 0 0 1 66 0 0 1

11 41 0 0 163 0 0 164 0 0 1

12 55 0 0 1 70 0 0 1 89 0 0 1

13 56 0 0 1 82 0 0 1 95 0 0 1

14 88 0 0 1101 0 0 1124 0 0 1

15 82 0 0 1 97 0 0 1124 0 0 1

Table 3.3. Synchronization Intervals of TS algorithm.

We did further experiments to determine which central

iteration is the one that takes more than one subiterations. The

answer is always the first central iteration. More importantly, we

found that the first central iteration always takes exactly m+1

subiterations when the subproblems consist of m constraints.

65

An explanation to the above fact is that, in the first central

iteration, every subsolvers must run through a complete phase 1 to

determine an initial feasible solution. A complete phase 1 usually

takes more than m iterations for an LP consists of m constrains.

Among the multiple subproblems, the probability that at least one

subproblem has a qualified solution right after the m'th iteration is

very high (our experiment shows that this probability is 1). On the

other hand, in the later central iterations, the probability that at least

one subproblem has a qualified solution right after one iteration is

close to one.

According to this experiment result, we choose the

synchronization interval as

m + 1, i = 1
SIi =

i > 1

3.5.3. Lookahead First Finish First (FFFL) Algorithm

The consideration that leads to the lookahead algorithms is the

observation that the optimal solution of a subproblem constantly

changes as the objective vector of the subLPs changes. A non-

minimal solution for one objective vector may be optimal or very

close to optimal for another objective vector. This suggests that,

during steps 2 to 5 of the central iteration, the subproblems should

not wait for the next iteration to start. Instead, the subprocesses can

66

keep optimizing on the current objective functions, and when the

next iteration starts, the solutions of some subproblems may already

be good enough to satisfy the condition Si < 0. So step 2 of the next

iteration of the central problem can start immediately.

The lookahead algorithms use n processes (the subprocesses)

for the n subproblems. An n+l'th process (the central process)

controls the central problem. These processes all share a global

value uq, and each subprocess Si maintains the values Si and xi which

can be are accessed by the central process.

Each subprocess calculates its own objective vector from the

global uq that is updated by the central process. When it finds a

solution with oi < 0, it recommends the solution (xi and Si) to the

central process. The central process periodically checks whether or

not any of the Si is negative, and once it finds such a Si, it starts steps

2 to 5. Meanwhile, the subproblems continue optimizing on the

current objective vectors. When the central process finishes

updating uq, the subproblems update their objective vectors.

The Lookahead 1-1-4, algorithm is based on the FFF algorithm.

When a subproblem finds its optimal solution that makes Si < 0, it

will not signal the other subproblems to stop, so the other

subproblems continue running as the central problem proceeds. The

algorithm is shown in Figure 3.15. The timing of the algorithm is

shown in Figure 3.16.

pl...pi...pn
-44
get uci

67

pA

update u

pdate u1 s

Figure 3.15. Lookahead PH- Algorithm (assume pi finds Si < 0).

Iteration I

Iteration 1+1

step 1

step 2
step 3

step 4
step 5'uq

step 5"u1..q-1

Figure 3.16. Timing of Lookahead FFF Algorithm.

68

3.5.4. Wypior's Approach

Wypior's approach is a variation of the lookahead FFF

algorithm. In this approach, n processes, pl, p2 pn, are assigned

to solve the n subproblems, and these processes continually perform

steps 1 a) to c), send the result aj's to another process PA, and wait

for the liq before performing the next iteration. Process pA

continually collects aj's and performs steps 1 d) and 2, and if it finds

an ak that makes Sk < 0, it sends the ak to yet another process pa.

Process pB continually asks for ak from pA and performs steps 3, 4,

and 5. This situation can be described in Figure 3.17. The timing of

the algorithm is shown in Figure 3.18.

p1...pi...pn

get u

find c.

uq

pA pB

get a i , i=1..j,j<=n

Eid81.4)

.15:firrlin(81..5j)-*1 a

Figure 3.17. Wypior's Algorithm.
update ug

update U.

69

Iteration

p1 p2 Pi pnpApp

Iteration 1+1

step 1'

step 1- 61..n
step 2
step 3

step 4

step 5'uq

step 5"u1..q-1

Figure 3.18. Timing of Wypior's Algorithm.

The reason for using process PA is that passing the solutions

from pi, i=1,...,n, to PB may take some non-trivial time, especially in a

message passing system. Using PA, the collection of the solutions

from pi,...,pn can be overlapped with the update of u done by PB.

One drawback of this method is that PA can be the bottleneck

of the algorithm, as all of Si's are calculated in PA sequentially

without overlapping with any other processes and each 5i needs an

inner product operation. An improvement is to let each subproblem

solver calculate 5i and send 5j and aj to PA. In this way, PA only

needs to determine 5k= min(5i) and send ak to PB. Even with this

modification, we see that among all of the vector aj's sent to PA, only

ak is used in later computation. We can further modify the algorithm

so that each process pi only sends 5i to PA, and when PA finds 5k, it

sends k to process pk, asking for the vector ak; and pk directly sends

70

ak to PB. With these two modifications, only very few data are

shared among pi's and PA and PB. With the decreased data sharing,

however, the consideration that leads to the necessity of PA is no

longer valid, and we can merge PA to PB, thus resulting in the

lookahead 14F14 algorithm. For this reason, we consider Wypior's

algorithm less efficient than the lookahead Ft.14 algorithm and will not

evaluate Wypior's algorithm further.

3.5.5. Lookahead Tightly Synchronous (TSL) Algorithm

pl...pi...pn pA

si <0 or new uci arrives

Figure 3.19. Lookahead TS Algorithm.

71

Another lookahead algorithm is based on the tightly

synchronized algorithm. In this algorithm, each subproblem checks

to see whether or not its current solution makes 8j < 0 after a

constant number of iterations. When one such solution is found, the

subproblems continue running as the central problem proceeds. The

algorithm is shown in Figure 3.19. The timing of the algorithm is

shown in Figure 3.20.

'ter I

Iter I +1

step 1
step 2

step 3
step 4
uq

ul..q-1

Figure 3.20. Timing of Lookahead TS Algorithm.

3.5.6. Processor Assignments for Lookahead Algorithms

In SF, 1-1-1-, and TS parallel algorithms, all processors can be

used to parallelize the central pivot operation after a qualified

subsolution is found in step 1. In the lookahead algorithms (FFFL,

TSL), after a qualified solution is found, the processors assigned to

the subproblems continue to lookahead for new subsolutions. Thus

the central pivot operation requires additional processors. For a

system that has limited number of processors, we have to be careful

72

about how many processors should be given to the subproblem

solvers and how many should be given to the central solver. For this

reason, we take a close look into the lookahead algorithms.

To overlap central pivot operation with the subiterations, we

partition the solving of subproblems into two stages: Stage I) for

basic subiterations that determine the qualified solution and Stage

II) for lookahead subiterations. As the basic stage can not begin

until new Ug is updated by the central pivot operation, we also

partitioned a central pivot operation into two stages: Stage III) for

updating Uq and Stage IV) for updating U 1Uq-1. Using these

partitions, we can overlap the subiterations and the central pivot

operations as follows:

subiterations

I) basic central pivots

II) lookahead III) update Uq

I) basic IV) update Ui...Uq -i

II) lookahead III) update Uq

IV) update U1...Uq-1

The overlapping has the best efficiency if stages I and IV, II

and III take the same amount of time to complete. Assume that we

have a total of P processors, and X of them are for the subiterations

and Y for central pivot operations. The complexity of the stages can

be summarized as follows:

Stage Complexity

Stage I)

Stage II)

Stage III)

Stage IV)

48m2*n / X;

48m2 * n / X;

24m2 / Y;

64m2 / Y.

73

Based on this data, we find that when X = P 1 and Y = 1 the stages I

and IV, and stages II and III roughly take the same time to

complete, for n > P. In other words, we need to specify only one

processor for the central pivot operation.

3.5.7. Performance Comparison

nbrSubs seqSF paraSF paraFFF paraTS paraFFFL paraTSL

3 3070 1562 1436 1108 1492 1600
4 4358 1764 1808 1228 2160 1982
5 12160 3928 3708 2420 4308 4542
6 29170 7900 6534 3808 8658 8114
7 41034 10106 7992 4830 10884 10034
8 87406 25662 21756 7446 19146 18326
9 152902 50812 44418 22048 31360 28514

10 189146 64158 63802 21952 35280 36406
11 352422 110170 142150 34570 63430 50584
12 643048 151668 219028 54724 94854 87684
13 721400 155776 263860 54888 93038 89708
14 1009842 200524 382862 75660 144098 113630
15 1868304 352124 670166 107174 213986 216058
16 1972218 370326 751294 114248 216034 213598
17 2971756 571646 1189230 226332 313058 310242
18 4414118 876038 805628 296108 463522 425990
19 5051584 982986 896552 314346 473002 486510
20 6984076 1324426 1059104 389814 661032 631356

Table 3. 4. Execution Times of Parallel and Sequential

Algorithms.

p
e
e

d

p

p
e
e

d

p

18.0

16.2
14.4
12.6

10.8
9.0
7.2-.
5.4
3.6
1.8_61

0.0 11
1

4

18.0
16.2
14.4
12.6
10.8
9.0

7.2

5.4
3.6
1.8

0.0

mr

74

6 8 10 2 14 16 18 20
sub-problems

FFF/seqSF o Linear Speedup

..

4 6 8 0 12

'IMF VW,

:

t
14 16 18

sub-problems
0 FFFUseqSF o Linear Speedup

rr-

4 6 8 10 12 14
sub-problems

TS/seqSF o Linear Speedup

16

18.0

16.2
14.4
12.6
10.8

9.0

7.2-
5.4
3.6_.
1.8

0.0

18 20

20 4 6 8 10 12 14 16 18 20
sub-problems

ElTSL/seqSF o Linear Speedup

Figure 3.21. Speedup of Parallel Algorithms Over the

Sequential Algorithm.

Table 3.4. summarizes the execution times (milliseconds) of the

parallel algorithms and the sequential algorithm on the

Sequent/Balance machine using 8 processors. The input LPs consist

of n=3 to 20 subproblems, each with m=2+2n/3 constraints and v=2m

75

variables. For each fixed triple (n,m,v), 5 different cases are run and

averaged. Figure 3.21. plots the speedup of the parallel algorithms

over the sequential algorithm.

The parallel TS algorithm has a peak speedup of more than

twice the number of processors used (see Figure 3.21). The parallel

PPP algorithm has a speedup a little less than the linear speedup.

The Lookahead algorithms (FEN, and TSL) have nearly linear

speedup in the number of processors used. All of the algorithms

here perform much better than the parallel SF algorithm, which has

only half of linear speedup.

3.5.8. Fast Sequential Algorithm

In the above, we showed that the parallel TS algorithm

achieves more than 2*P speedup over the sequential algorithm. This

implies that the TS criterion can reduce the execution time of the

sequential algorithm by half as well. In order to see whether or not

this is the case, we implemented a particular version of the

sequential algorithm which uses the TS criterion. Table 3.5.

summarizes the execution time of the new sequential algorithm

together with that of the normal sequential algorithm and TS

algorithm. Figure 3.22. plots the execution times of the two

sequential algorithms, and Figure 3.23. plots the speedup of the TS

algorithm over the two sequential algorithms.

t
i

m
e

(

m
S

)

#s ub s normal seq seq TS parallel TS

3 3070 2518 1108
4 4358 3408 1228
5 12160 9190 2420
6 29170 17914 3808
7 41034 27220 4830
8 87406 49434 7446
9 152902 92560 22048

10 189146 100020 21952
1 1 352422 174810 34570
12 643048 302282 54724
13 721400 327004 54888
14 1009842 483288 75660
15 1868304 734916 107174
16 1972218 834966 114248
17 2971756 1224076 226332
18 4414118 1668260 296108
19 5051584 1868262 314346
20 6984076 2432204 389814

Table 3.5. Execution Time of Sequential SF, TS and Parallel TS

Algorithms.

6984080

6285672

5587264

4888856

4190448

3492040

2793632

2095224

1396816

698408

0

76

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
subs

* seq SF o seq TS

Figure 3.22. Execution Times of SF/TS Sequential Algorithms.

p
e

e

d

p

77

4 6 8 10 12 14 16 18 20

sub-problems
EITS/seqTS ri TS/seqSF 2*Linear Speedup Linear Speedup

Figure 3.23. Speedup of Parallel TS Over Sequential TS and SF.

From Figure 3.22, the sequential algorithm using TS criterion

runs twice as fast as the normal sequential algorithm. Figure 3.23.

shows that the parallel TS algorithm has nearly linear speedup over

the sequential TS algorithm and nearly twice the linear speedup over

the sequential SF algorithm.

3.5.9. Performance vs. Number of Processors

In order to observe the behavior of the parallel TS algorithm

when the number of processors changes, we run the TS parallel

algorithm using 3 to 8 processors. The 5 input LPs are fixed to have

16 subproblems, each with 12 constraints and 24 variables. Table

3.6. summarizes the execution time of the parallel TS algorithm and

78

speedup of the parallel TS algorithm over the sequential algorithms.

Figure 3.24. plots the corresponding speedup.

algfitprocs paraTS(time) seqTS/paraTS seqTS/paraSF

seq SF 1972218
seq TS 834966
paraTS/3 329774 2.53 5.98
paraTS/4 224636 3.72 8.78
paraTS/5 219304 3.81 8.99
paraTS/6 167860 4.97 11.75
paraTS/7 167120 5.00 11.80
paraTS/8 114640 7.28 17.20

Table 3.6. Execution Time of Sequential TS, SF, and

Parallel TS and The Speedup of Parallel TS Over

Sequential TS and Sequential SF.

18.0

16.2

S

p
e

12.6_

10.8_
e 9.0_

7.2_

p
5.4

3.6

1.8

0.0
I

3 4 5 6

processors
o paraTS/seqSF o paraTS/seqTS 2iinear speedup linear spreedup

I

7 8

Figure 3.24. Speedup of Parallel TS Over Sequential TS

and SF When Number of Processors Changes

From Three to Eight.

79

From Figure 3.24, we see that, as the number of processors

increases from 3 to 8, the parallel TS algorithm has nearly linear

speedup over the sequential TS algorithm, and the parallel TS

algorithm has improved the performance of the normal sequential

algorithm by twice the linear speedup.

3.5.10. Removing Last Round Effects

In Figure 3.23, a drop-off in speedup occurs when the number

of subproblems goes from P to P + 1, where P is the number of

processors used. This because when the N subproblems are

executed by P processors in parallel, they are solved in IN /Pi rounds,

and in the last round only N MOD P subproblems are solved by N

MOD P processors and the remaining processors are left idle.

We also observe last round effects in Figure 3.24. For the input

LPs of 16 subproblems, the parallel TS algorithm has the best

performance when the number of processors used is a divisor of 16.

For example, when 4 (a divisor of 16) processors are used, the

parallel TS algorithm has a speedup of 3.72 over the sequential TS

algorithm. But when the number of processors increases from 4 to 7,

the speedup only increases from 3.72 to 5.0. When the number of

processors changes from 7 to 8 (a divisor of 16), the speedup jumps

from 5.0 to 7.28.

s
P
e
e
d
u

P

80

20

18

16

14

12

10

8

6

4

2

0

E
f
f
i
C

i

e
n

C

Y

0

1.0

0.9

o.8

0.7_
60.6

0.5

0.4

0.3

0.2

0.1"I

4 6

spreadTS/seqTS

I I I

8 10 12 14

sub-problems
o spreadTS/seqSF 21inear Speedup

I I I I I I I I I

16

I

18

Linear Speedup

I I I

20

I

4 6 8 10 12 14 16 18 20

sub-problems
o Effeciency of Spread TS

Figure 3.25. Balanced Performance of Parallel TS Algorithm.

This is the typical processor load balance problem ([COFFMAN-

76]). The performance drop-off can be prevented using the Loop

Spreading technique described in Chapter 4. Figure 3.25. shows the

81

balanced speedup of the parallel TS algorithm over sequential TS

algorithm and the efficiency of the parallel TS algorithm when loop

spreading is used.

Comparing the results in Figure 3.25. to those in Figure 3.23,

we see that the performance of the parallel TS algorithm is quite

stable, showing an efficiency of around 90%, without drop-off when

the number of subproblems changes.

Table 3.7. and Figure 3.26. show the balanced speedup of the

parallel TS algorithm with loop spreading over sequential SF and TS

algorithms when the number of processors changes from 3 to 8.

From Figure 3.26, we see that the performance of the parallel TS

algorithm is always more than two times the linear speedup when

compared to the sequential algorithm and is very close to linear

speedup over the fast sequential algorithm.

alg/#procs spreadTS(time) spreadTS\seqTS spreadTS\seqSF

seq SF 1972218
seq TS 834966

3 291816 6.76 2.86
4 215034 9.17 3.88
5 184358 10.70 4.53
6 158664 12.43 5.26
7 132008 14.94 6.33
8 116706 16.90 7.15

Table 3.7. Execution Time of Sequential TS, SF, and

Spread TS and the Speedup of Spread TS Over

Sequential TS and Sequential SF.

S

p
e
e
d
U

p

82

18.0

16.2

14.4

12.6

10.8

9.0

7.2

5.4

3.6

1.8_

0.0
I I I I I I

3 4 5 6 7 8

processors
o spreadTS/seqSF a spreadTS/seqTS 2iinear speedup linear spreedup

Figure 3.26. Speedup of Spread TS over sequential TS and SF

When Number of Processors Changes From Three to

Eight.

3.5.11. Why TS algorithm is Good

The evolution from SF to F1-1-, and then to the TS algorithm aims

at speeding up the step 1 of the decomposed simplex algorithm. We

call this optimization local optimization. The side effect of this

optimization is that the time saving in step 1 might increase the

execution time of the step 1 in the next central iteration. Also, it

might increase the total number of central iterations (and also the

total number of subiterations) required to solve the given LP. We

call the minimization of the total number of sub/central iterations

the global optimization.

83

To see the relative goodness of the three algorithms in local

optimization, we collected the number of subiterations in central

iterations for each of the algorithms, shown in Tables 8 to 10. These

data are the results of the experiment on the random LPs of P=3 to

15 subproblems, each subproblem with m = P/2 -1, P/2, and P/2+1

constraints and 2m variables. For each (P, m, v), we collected the

number of central iterations that requires 1, 2, 3, and 4 or more

subiterations.

From Tables 8 to 10, the number of central iterations that

require more than one subiterations decreases. In Table 3.8, the SF

algorithm takes lots of central iterations that require 4 or more

subiterations. For example, when P=14, m=6, 53 out of 87 central

iterations take 4 or more subiterations. In Table 3.9, the situation

gets a little better: only 26 out of 86 central iterations take 4 or more

subiterations. From Table 3.10 we see that for the TS algorithm, all

but one of the central iterations take 1 subiteration. We conclude

that the TS algorithm does have the best local optimizability.

84

%%%.21 2 3 4 5 6 7 8
#subs 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

3 8 2 0 1

4 9 3 0 1 9 5 2 1

5 12 4 0 1 6 4 4 1

6 13 4 1 1 8 7 3 1 8 511 5
7 18 6 0 1 12 8 5 2 15 7 6 7
8 11 9 5 2 14 12 9 7 10 10 14 16
9 15 7 7 212 4 6 11 13 10 9 15

10 16 6 7 14 14 5 7 30 11 10 17 33
11 10 4 11 16 14 10 21 23 13 2 9 38
12 18 7 9 24 13 8 9 43 12 3 956
13 19 7 13 30 1711 14 42 16 11 11 52
14 17 9 6 53 18 6 10 56 16 13 7 82
15 1811 15 57 17 5 11 67 20 3 13 81

Table 3.8. Local Optimizability of SF Criterion.

m
#su 1

z
') 1 4

31?141?1,11?1d111d111d111.14 3 0 i 5

3 8 2 0 1

4 11 2 0 1 9 5 1 1

5 13 3 0 1 8 4 3 1

6 13 5 0 1 11 6 1 1 11 9 7 1

7 14 6 0 1 13 10 3 1 19 8 4 2
8 15 12 3 1 18 10 6 4 19 11 12 7
9 17 6 4 116 7 7 5 18 12 7 8

10 22 5 8 7 20 14 12 10 2614 11 18
11 20 10 6 3 20 16 10 10 2214 10 19
12 28 13 10 9 2411 14 21 23 17 12 32
13 21 17 11 16 2816 8 21 25 19 9 34
14 2823 13 26 26 18 19 30 41 14 1748
15 2723 12 25 33 22 16 36 30 15 2246

Table 3.9. Local Optimizability of PPP Criterion.

m
#su.

z 3 4 3 b 7 5

3 10 0 0 1

4 11 0 0 1 15 0 0 1

5 16 0 0 1 19 0 0 1

6 17 0 0 1 21 0 0 1 28 0 0 1

7 19 0 0 1 23 0 0 1 33 0 0 1

8 28 0 0 1 35 0 0 1 46 0 0 1

9 37 0 0 1 39 0 0 1 48 0 0 1

10 47 0 0 1 52 0 0 1 66 0 0 1

11 41 0 0 1 63 0 0 1 64 0 0 1

12 55 0 0 1 70 0 0 1 89 0 0 1

13 56 0 0 1 82 0 0 1 95 0 0 1

14 88 0 0 1101 0 0 1124 0 0 1

15 82 0 0 1 97 0 0 1124 0 0 1

Table 3.10. Local Optimizability of TS Criterion.

85

subs

SF Alg. Alg. TS Alg.PPP

total subs total cens total subs total cens total subs total cens

3 61 10 61 12 57 9
4 111 13 110 13 95 12
5 176 16 177 16 154 16
6 346 25 323 24 278 24
7 408 27 405 27 377 29
8 700 36 670 36 512 35
9 1053 46 1037 47 730 44

10 1540 57 1328 52 1078 58
11 2088 66 2062 70 1280 62
12 2639 74 2594 76 1772 79
13 3412 84 3256 84 1997 82
14 4734 103 4259 103 2783 105
15 5991 114 5356 110 3358 119
16 7732 136 7016 134 4087 136
17 9226 141 8126 143 4433 138
18 12412 183 10788 180 5891 175
19 13388 177 11999 172 6313 178
20 16389 208 17133 224 7947 215

17140
15426

13712

11998
10284
8570

6856
5142
3428 ..
1714

0

Table 3.11. Global Optimizability.

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
sub-problems

o total sub iters/SF o total sub iters/FFF total sub iters/TS

Figure 3.27. Total Numbers of Subiterations.

86

230

207

184

161

138

115

92

69

46

23

0

3 4 5 6 7 9 10 11 12 13 14 15 16 17 18 19 20
sub-problems

o total cen iters/SF o total cen iters/FFF total cen iters/TS

Figure 3.28. Total Numbers of Central Iterations.

In order to compare the parallel algorithms in global

optimization, we collected in Table 3.11 the total number of

subiterations and the total number of central iterations taken to

solve random LPs. These LPs range from P=3 to P=20 subproblems,

each with m = P/2 -1, P/2, and P/2+1 constraints and 2m variables.

Figure 3.27. plots the total number of subiterations, and Figure 3.28.

shows the total number of central iterations.

From Figure 3.27., we see that the TS algorithm has only about

half of the total number subiterations used by the SF algorithm, and

the SF and PH. algorithms have similar total numbers of

subiterations. From Figure 3.28, we further see that all three

algorithms have similar numbers of central iterations. It is clear

that algorithm TS is not only the best in local optimization but also

87

the best in global optimization. This conforms our experimental resul

3.6. Conclusions

Direct parallelization of the sequential algorithm yields very

limited performance improvement using multiple processors. For

example, without changing the algorithm itself, the performance of

the sequential decomposed simplex algorithm can be improved by

only half the number of processors used.

We discovered four new ways to parallelize the decomposed

simplex algorithm. The parallel TS algorithm can achieve more than

2*P times performance improvement over the sequential algorithm

using P processors. Furthermore, sequential execution of the TS

algorithm runs more than 2 times faster than the original sequential

algorithm.

88

Chapter 4

Parallel Processor Balance Through Loop

Spreading

Abstract

When the number of processors P is less than the number of
tasks N in a parallel loop construct, the tasks have to be executed
in NIP] rounds and the last round executes only (N mod P) tasks.
In many cases, N mod P is close to one, so in the last round all but
one processor is idle, which causes a significant drop in

performance. This performance drop becomes more and more
detrimental as the number of processors increases. Loop
spreading is a technique for restructuring parallel loops so as to

balance parallel tasks on multiple processors. A spread loop runs
at least as fast as the nonspread loop even when N mod P = 0, and
shows no performance drop when N changes. We show how the
method keeps the performance of the matrix multiplication and

simplex algorithm from decreasing as the input data changes
size.

4.1. Introduction

Parallelizing a sequential program with an automatic compiler

is desirable not only because of the need to restructure large

amounts of existing sequential software, but also because

programmers become less competent at optimization as computer

complexity increases ([LAMPORT -75], [APPELBE-85], [LUBECK-85]).

It has been long recognized that designing parallel programs imposes

89

a heavy burden on programmers -- it is sometime difficult for a

programmer to ensure that the components of a parallel program do

not interact unexpectedly. For example, when a programmer has to

decide whether to use a PAR i:= 1 TO n DO S ENDPAR parallel

construct or a FOR i:= 1 TO n DO S ENDFOR sequential construct,

he/she has to find out whether or not the executions of S in different

iterations will interfere with one another. To discover such an

interference, the programmer may have to mentally unwind the loop

and imagine the many possibilities of interactions between different

iterations. People tend to ignore such considerations, while a

computer tool can analyze such loops faster and with greater

precision.

There are rather sophisticated techniques for parallelizing FOR

loops (for example, see [PADUA-86]). However, one problem that has

been ignored in parallelizing FOR loops is the "processor balance

problem". When the number of processors P is less than the number

of tasks N in a parallel loop construct, the tasks are usually executed

in FN/Pi rounds with the last round executing only (N mod P) tasks.

In the worst case when N mod P is one, all but one processor are idle

in the last round, and the performance of the parallelized program

degrades sharply. This performance drop becomes more and more

pronounced as the number of processors increases. For example, a

chart describing the performance of the parallel decomposed simplex

algorithm using 8 processors is shown in Figure 4.1 ([WU-88b]), in

which, when the input data changes from 8 to 9 subproblems, the

speedup drops from 6+ to around 4. The reason for such a drop is

that when using 8 processors, a parallel loop of 9 tasks must be

executed in two rounds. The second round uses only one processor

leaving the other 7 processors idle.

p
e
e

d

p

8.0
7.2
6.4
5.6

4.8
4.0

3.2_
2.4
1.6

0.8
0.0

3
f

5 6 7 8

paraTS/seqTS

9 1 0 1 1

777

2 13 14 15 16 17
sub-problems

18 19 20

90

Figure 4.1. Effect of Processor Load Balance on Performance of

parallel simplex algorithm using Eight Processors.

The problem of unbalanced processor load when executing

parallel loops on multiple processors is not peculiar to the parallel

simplex algorithm. This phenomenon can be observed even more

clearly in our experiment with the parallel matrix multiplication

algorithm. Figure 4.2. shows the speedups of the parallel algorithm

over the sequential algorithm using 6 to 9 processors with input

matrix sizes ranging from 20 to 50.

p
e
e
d

p

10.0

9.4

8.8

8.2

7.6

7.0

6.4

5.8

5.2

4.6

4.0
11 Iii 111111111111ifill

20 30 40 50 20 30 40 50

matrix size
o 6/7 procs o 8/9 procs

91

Figure 4.2. Effect of Processor Load Balance on Performance of

Parallel Matrix Multiplication Algorithm.

From Figure 4.2. we see that not only the performance drops

when the input size is not a multiple of the number of processors,

but also that the drop becomes more significant when the number of

processors increases. It is desirable to devise a strategy that keeps

performance at the peak value.

Loop Spreading

Loop spreading is a technique for automatically restructuring

parallel loops so as to balance the parallel tasks better on multiple

processors. We describe loop spreading by first studying an

example.

92

EXAMPLE 1. Assume in the following loop

FOR i:=1 TO 4 DO
sl(i);
s2(i);
s3(i);

END FOR;

sj(i)'s are independent, and they all take T time units to execute on a

single processor. Also assume that we have 3 processors to run the

loop in parallel. The usual way to execute a loop in parallel is to let

each processor execute one iteration and if more iterations remain

then let each processor execute one more iteration and so on. In this

way, at least one processor needs to execute two iterations of the

above loop and the total execution time will be 6 * T. However, if we

are allowed to run sl(4), s2(4), and s3(4) on multiple processors, as

shown in Figure 4.3, we can reduce the total execution time to 4*T,

which is a significant performance improvement.

Figure. 4.3. Loop Spreading for Parallel Load Balance.

93

In the following, we study ways to restructure parallel loops

that balance processor loads with minimal additional overhead. In

Section 2 we first present the theoretical background. In Section 3

we introduce loop spreading and the problems we want to solve. In

Section 4 we study the case when the statements inside a loop are

independent, and in Section 6 we discuss how loop spreading works

when the statements are not independent. In Section 7, we study in

depth how to reduce the number of synchronization operations that

are required for restructuring the loops whose substatements are

dependent. In Sections 5 and 8 we present the experimental results

on matrix multiplication and Simplex algorithm using our new

methods. In Section 9, we compare our method with a similar

method called "loop collapsing". Finally in Section 10 we summarize

the results.

4.2. Data Dependence and Process Scheduling

We first introduce the concepts of iteration vector, data

dependence, and loop carried dependence ([ALLEN-83]).

Iteration vector. For a k-level nested loop, a vector

(i 1 ,i2,...ik) is called an iteration vector if the loop body can be

executed when the j'th level loop is in the Oh iteration for all j =

1,..,k.

94

We use S(I) to denote the execution of statement S during the

iteration I = (il,i2,...ik).

Data dependence. Statements S1 and S2 have data

dependence if and only if (iff) Si and S2 have either read/write or

write/write conflicts.

Loop carried dependence. Statements Si and S2 have loop

carried dependence if there exist I = (il,i2,...ik) and 1. = i, i2,..., i.k),

I # 'L, Sl(I) and S2 (1) have either read/write or write/write

conflicts. Further, Si and S2 have level j loop carried dependence iff

il= i2 =11, ij-1 = tj-1 , #

EXAMPLE 2. In the following FOR loop,

FOR i:=1 TO 100 DO
FOR j:=1 TO 100 DO

S: x[i,j] := comp (x[i, j-1]);
END FOR;

END FOR;

S((i, j)) reads x[i, j-1] and S((i, j-1)) writes x[i, j-1]. Since iteration

vectors (i, j) # (i, j-1), we conclude that S has (level 2) loop carried

dependence on itself.

There are various techniques ([WOLFE -82] and [ALLEN-83]) to

break up loop carried dependencies (especially those false

95

dependencies: anti-dependence and output-dependence [KUCK-81]).

In this paper, we assume that these techniques will be applied

automatically whenever appropriate. Also, our context of loop

parallelizability is constrained to the possibility of parallel execution

of the loop iterations on multiple processors, and we assume that any

partial parallelism of a loop has been properly handled by other

techniques such as expression-tree height compression and loop

splitting etc (see [PADUA-86]).

Based on these definitions and assumptions, we can state the

following as a theorem.

Theorem 4.1. A FOR loop at level j is parallelizable if the loop

body does not have any loop carried dependence at level j.

Proof. Conflict will occur only if there exist iteration vectors I

= (il,i2,...ik) and 1. = (11, 1k), I # 'L, Sl(I) and S2 ('L) are executed

by two processes and the two processes simultaneously access a

common data value. No loop carried dependence at level j says that

for all such I and L, ij = ij. So, if we parallelize the j'th loop which lets

a single process execute all statements with the same ij indexes

sequentially, conflict can never occur.

Q.E.D.

EXAMPLE 3. Even though the loop in EXAMPLE 2 has level 2

loop carried dependence, it has no level 1 loop carried dependence

96

and can be safely parallelized as follows, since each level 2 loop is

executed sequentially on a single processor:

PAR i:=1 TO 100 DO
FOR j:=1 TO 100 DO

S: x[i,j] := comp (x[i, j-1]);
END FOR;

ENDPAR;

Process Scheduling

A parallelizable FOR loop of form [I] can be parallelized using

the parallel construct of form [I].

[I] FOR i:=1 TO N DO [I'] PAR i:=1 TO N DO
s(i); s(i);

ENDFOR; ENDPAR;

The parallel construct PAR uses N processes to execute the N

iterations in parallel. To reduce the process creation and context

switch overheads, most systems (e.g., the Dynix system [THAKKAR-

85]) use only P (or less than P) processes, where P is the number of

processors in the system. For simplicity, we assume the program

that contains the loop being discussed is the only job running on the

P processors. To run the N iterations of loop [I] on the P processors,

either static or dynamic scheduling strategies are used ([OSTERHAUG-

861).

97

Figure 4.4. Static Scheduling Method 1 (a) and 2 (b).

In static scheduling, the N iterations are partitioned into (N /P1

rounds and in each round except the last one, P adjacent iterations

are solved by the P processors. In the last round N mod P iterations

are executed. A parallel code with static scheduling for loop [I] is

given in [II]. Figure 4.4 (a) illustrates how the static scheduling

works for the loop in EXAMPLE 1 (assume P = 3).

[II] PAR g:=1 TO P DO
FOR i:=g TO N STEP P DO

s(i);
ENDFOR;

ENDPAR;

98

In the parallel code above, each processor executes code that

are P iterations apart. For example, in Figure 4.4 (a), iterations 1 and

4 are executed by the first processor.

In another static scheduling method, the first N MOD P

processors each execute IN /Pi iterations and the remaining (P N

MOD P) processors each execute LN/P j iterations. In this method,

each processor executes adjacent iterations. [II'] shows parallel code

for this schedule. Figure 4.4 (b) illustrates this static scheduling

method. The code for this method is much more complex than the

code for method 1 because each processor has to know how much

work it needs to do.

[II'] shares := (N+P-1) DIV P;
S := shares;
B := (N*K + 1) MOD (P+1);
PAR g:=1 TO P DO

lF g > B THEN
S := shares - 1;

ENDIF;
FOR j :=1 TO S DO

i := (g-1) * S + j;
s(i);

ENDFOR;
ENDPAR;

Static scheduling is frequently used when the iterations take

roughly the same time to execute. However, even when the

iterations are of the same size, the multiple processors may be left

99

unbalanced, as shown in Figure 4.4 .

In dynamic scheduling, the N iterations are managed in a

common queue, and are taken by processors as they finish previous

iterations, until all iterations finish. Parallel code with dynamic

scheduling for loop [I] is given as follows.

PAR g:=1 TO P DO
i := Top0fQueue();
WHILE NOT Queue Empty() DO

s(i);
i := Top0fQueue();

ENDWHILE;
ENDPAR;

There is overhead associated with the management of the

common queue in dynamic scheduling (see [FANG-87] and [TANG-

85]). In this paper, we assume the iterations are the same size (take

the same time to execute) and study Loop Spreading, an efficient

method for scheduling the iterations on multiple processors

optimally.

100

4.3. Loop Spreading and Problems

During the execution of [II], unbalanced processor loading will

result if N mod P is not zero (see Figure 4.4). The reason is that in

the last round, all but N mod P processors are idle. Among the N

processors, N mod P processors take IN /P1 *T(s) time to execute the

loop and (P - N mod P) processors take (IN/Pi 1) *T(s) time. If N

mod P * 0, the time difference between the heavily loaded

processors and the lightly loaded processors is T(s).

Notice that when we break statements s(i) in [I] into K pieces of

equal size, as in [III], and the K pieces are independent, we have N*K

iterations to schedule on P processors, as in [IV].

[HI] FOR i:=1 TONDO [IV] PAR g := 1 TO P DO
s 1(i); FOR i:=g TO N*K STEP P DO
s2(i); IF i <= N THEN

sl(i);
sk(i); ELSE IF i <= 2*N THEN

ENDFOR; s2(i-N);

ELSE IF i <= (K-1)*N THEN
sk- 1 (i-(K-2)*N);

ELSE
sk(i-(K-1)*N);

END IF;
END FOR;

ENDPAR;

If each substatement sj(i) takes execution time of T(sk) =

T(s)/K, then the time difference between the heavily loaded

101

processors and the lightly loaded processors will be at most T(sk).

This gives a much better load balance, especially when K is large. For

example, if we can break statements s(i) into optK pieces, where

optK = min(k I k*N mod P = 0),

then we can perfectly balance the loop on P processors.

The strategy of scheduling N*K subtasks instead of N tasks is

called Loop Spreading. The time saved through loop spreading is

FN/Pl*K*T(sk) FN*K/Pl*T(sk), or

K*T(sk) r(N mod P) * K / P1 *T(sk).

Assume the probability that N mod P takes the value of 0, 1, ...,

P-1 is uniformly 1/P, then the expected value of r(N mod P) * K / P1

is

V4
E(F(N mod P) * K / P1) = PZd 1((i-1)*K)/131 K/2.

1.4

So the average time saved through the loop spreading is K*T(sk)/2.

While loop [IV] can balance the N iterations evenly on P

processors, we introduced K IF checks in each of the N*K iterations.

Assuming on the average K/2 IF checks are executed in each of the

102

N*K iterations, loop [IV] introduces additional overhead of

N*K*K*T(IF)/2P in each processor. Compared to the time saved

through loop spreading, the code in [IV] can speedup the execution of

the loop only if

K*T(sk)/2 > N*K*K*T(IF)/2P.

This condition is not easy to check because the loop bound N is

usually unknown. Secondly, this condition is hard to satisfy as N is

usually quite big compared to P. Third, [IV] will run slower than [II]

when N mod P is zero. Finally, when sl(i), .., sk(i) are data

dependent, the method above does not work.

We want the loop spreading method to have the following

properties:

1) Applicability can be checked without knowing N.

2) The method can be applied to most loops.

3) When N mod P = 0, the spread loop should not run slower

than the nonspread loop.

4) Can be applied when sj(1), .., sj(N) are data dependent.

103

4.4. Loop Spreading When Substatements are Independent

Assume statements sl(i), s2(i), ..., sk(i) in [III] are independent

and assume M = N mod P. Then the first N M iterations can be

evenly distributed on P processors, and we only need to spread the

remaining M iterations. This approach is illustrated in Figure 4.5,

and is based on the parallel code in [V].

sl(2) \ !sl(3

s2(2)

s3(2)

s2(3)

s3(3)

Figure 4.5. Loop Spreading For Independent Substatements.

104

[V] PAR g := 1 TO P DO
M := N mod P;
U := N - M;
FOR i:=g TO U STEP P DO

sl(i);s2(i), ..., sk(i);
ENDFOR;

FOR i:=g TO M*K STEP P DO
j := (i-1) DIV M + 1;
ii := U + (i-1) MOD M + 1;
CASE j OF

1: sl(ii);
2: s2(ii);

k: sk(ii);
END CASE;

END FOR;
ENDPAR;

The CASE switch is usually implemented using a jump table so

we can ignore the overhead in the CASE statement. The overhead

due to spreading in [V] is K*M*T(DIV, *)/P. The code in [V] can

speedup the execution of loop [II] when K*M*T(DIV, *)/P is less than

K*T(sk)/2, or (assuming M ,-- P/2)

T(DIV, *) < T(sk).

This condition can be easily checked, as T(DIV, *) is a constant known

to the compiler.

To further reduce the overhead of loop spreading, we can

replace the division and multiplication operations in [V] by iterative

additions and subtractions. This is a well-known compiler technique

(strength reduction, [AHO -77]), and it is always possible that

operations like:

105

j := (i-1) DIV M + 1, or
i := (i-1) MOD M + 1,

performed in each iteration are replaced by one or a few additions or

subtractions in each iteration, such as in [VI].

[VI] PAR g := 1 TO P DO
M := N mod P;
U := N - M;
FOR i:=g TO U STEP P DO

sl(i);s2(i); ... , sk(i);
ENDFOR;
a := g; j := 1;
FOR ij:=g TO M*K STEP P DO

WHILE a > M DO
a := a M; j := j + 1;

ENDWHILE;
i:=a+ U; a:=a+P;
CASE j OF

1: sl(i);
2: s2(i);

k: sk(i);
END CASE;

END FOR;
ENDPAR;

In [VI], for each ij in the second FOR loop, there are two

additions for updating a and i, and the WHILE loop inside the FOR

loop iterates at most P/M times. Thus the overhead of the loop

spreading is (assuming M = P/2),

2*M*K*T(+)/P + 2 *(M *K *P /M) *T(+)/P = 3K*T(+).

106

So, when 3K*T(+) is less than K*T(sk)/2, or

6*T(+) < T(sk),

the code in [VI] can speedup the execution of loop [II]. This

condition is quite easy to satisfy as 6T(+) is a very small overhead,

usually smaller than a multiplication or a division. So, with the

scheme in [VI], loop spreading can be applied to independent parallel

loops with the properties:

1) Applicability can be checked using 6*T(+) < T(sk), without

knowing N.

2) The condition 6*T(+) < T(sk) can be easily satisfied by most

loops.

3) When N mod P = 0, the spread loop will run as fast as the

nonspread loop.

4.5. Loop Spreading in Nested Loops and Matrix
Multiplication Example

A special case, and probably the most useful case, of loop [III]

is when the loop body is itself a loop, as in [VII].

[VII] FOR i:=1 TO N DO
FOR j:=1 TO K DO

s(j,i);
ENDFOR;

ENDFOR;

107

In this case, each iteration of the outer loop is naturally broken into

K substatements s(1,i), s(2,i), ..., s(K,i). If these substatements are

independent, the scheme in [VI] can be used to spread the loop, as in

[VIII]. [VIII] will run no slower than [II] even if N mod P = 0. The

condition for this restructuring to be beneficial is that T(s(j,i)) > 6T(+).

[VIII] PAR g := 1 TO P DO
M := N mod P;
U := N - M;
FOR i:=1 TO U STEP P DO

FOR j := 1 TO k DO
sj(i);

ENDFOR;

ENDFOR;
a := g; j := 1;
FOR i:=g TO M*K STEP P DO

WHILE a > M DO
a := a M; j := j + 1;

ENDWHILE;
ii := a + U; a := a + P;
s(j, ii);

END FOR;
ENDPAR;

As an example, we apply this technique to matrix

multiplication. The algorithm for calculating the product of two

matrices X and Y of size N*K is as follows.

FOR i:=1 TONDO
FOR j:=1 TO K DO

Z[i,j] := innerProd(X[i], Y[j]);
ENDFOR;

ENDFOR;

108

It is not difficult to check that this loop has no level 1 (and

level 2) loop carried dependence. The parallelization of the loop

without loop spreading is the following:

PAR g := 1 TO P DO
FOR i:=g TO N STEP P DO

FOR j:=1 TO K DO
Z[i,j] := innerProd(X[i], Y[j]);

ENDFOR;
ENDFOR;

ENDPAR;

The speedup of the parallelized loop over the sequential loop was

shown in Figure 4.2. From Figure 4.2., we see that the speedup drops

significantly when N increases q*P to q*P + 1, for q = 1, ..., LN/13 j. In

order to remove the performance drop when N is not a multiple of P,

we apply the scheme in [VIII] to the above parallelized matrix

multiplication algorithm as in [IX].

[IX] PAR g := 1 TO P DO
M := N mod P; U := N M;
FOR i:=g TO U S'TEP P DO

FOR j:=1 TO K DO
Z[i,j] := innerProd(X[i], Y[j]);

ENDFOR;
ENDFOR;
a := g; j := 1;
FOR i:=g TO M*K STEP P DO

WHILE a > M DO
a := a - M; j := j + 1;

ENDWHEE;
ii: =a+ U; a := a + P;
Z[ii,j] := innerProd(X[ii], Y[j]);

END FOR;
ENDPAR;

109

We measured the speedup of the parallel algorithm with and

without loop spreading over the sequential algorithm. In Figure 4.6,

the algorithm with loop spreading shows stable speedup as the input

size changes, regardless of whether or not N is a multiple of P.

Furthermore, for all N the spread loop shows a speedup of no less

than the nonspread loop.

9.0

8.6

8.2

p 7.8

e
7.4

7.0

6.6

6.2

5.8

5.4

5.0

e

e

d

20 25 30 35

minx site

+=spree o spreadll

9.0

8.6

8.2

7.8

7.4

7.0

6.2

5.8

5.4

5.0

40 45 50 20 25 30 35

fuNrix size

ononspread/8 ospreadf8

40

Figure 4.6. Performance of Parallel Matrix Multiplication

Algorithm With Loop Spreading.

45

4.6. Loop Spreading When Substatements are Dependent

50

Now we consider the case when the k substatements s 1(i),

s2(i), sk(i) in [III] are dependent. We first assume that sl(i)

sk(i) are totally dependent, meaning that si+i(i) depends on si(i) for j

=1, ... k-1. Later we will extend the result to partially dependent

cases.

110

When sl(i), ..., sk(i) are dependent, the spreading method

discussed in Section 4 needs modification, or else inconsistent results

may be produced by the spread loop. For example, if we spread the

loop in Example 1, when s3(i) depends on the result of s2(i) and s2(i)

depends on sl(i), using scheme [VI], we get the result shown in

Figure 4.7 (a).

Figure 4.7. Inconsistent Loop Spreading With Dependent

Substatements.

Depending on the relative speed of the processors, sl(4) can finish

either before or after s2(4) starts. If sl(4) finishes after s2(4) starts,

s2(4) will not be able to use the result of sl(4), and the result will be

incorrect. On the other hand, if s2(4) waits until sl(4) finishes and

s3(4) waits until s2(4) finishes, the spreading will not be able to

improve execution time (Figure 4.7 (b)).

111

Without a mechanism to enforce the ordering that s1(4)

finishes before s2(4) starts, the only way to guarantee a correct

result is to let sl(4) and s2(4) run on a single processor. In general,

if sj(i), j=1,...,k, are totally data dependent, we can guarantee correct

results without using explicit synchronization only if sj(i), j=1,...,k run

on a single processor.

However, if all sj(i), for j=1,..,K are run on a single processor, we

will have no way to improve the execution time using loop spreading

over that the nonspread loop, no matter how we arrange the

statements on the multiple processors. To see this, notice that there

must be at least one processor to execute IN/P1 of sj(i), i=1 , ... , N. If

all sj(i), j=1,...k, run on a single processor, this processor will need K*

IN /P1 *T(sk) time to execute the loop. The nonspread loop takes K*

IN /P1 *T(sk) time to execute the loop as well.

Synchronization

Sync/wait primitives (Chapter 5, [MIDKILL-86], and [WOLFE-

87]) can be used to enforce sequential execution when dependent

statements are executed on multiple processors. SYNC(i, j) is used to

indicate that statement sj(i) has finished execution, and WAIT(i,j) is

used to force a statement that is dependent on statement sj(i) to

delay execution until statement sj(i) finishes.

As long as proper SYNC/WAITs are used, loop spreading is safe

112

in producing a correct result. Our objective is to improve the total

execution time as much as possible through loop spreading, and

meanwhile, to keep the number of SYNC/WAITs needed to conserve

data dependency at a minimum.

We cannot simply insert SYNC/WAITs in [VI] or [VIII] to

achieve the objective of loop spreading while conserving data

dependence. This will become clear after we prove Theorem 4.2.

Theorem 4.2. If N < P and sl(i), s2(i), ..., sk(i) are totally data

dependent, loop spreading can not improve performance over [II].

Proof. As si+i(i) must run after WO for j = 1, ..., k-1, using

SYNC/WAITs or not, at least K*T(sk) time is needed to run the loop.

K*T(sk) is also the time needed by [II] when N < P.

Q.E.D.

In [VI], we only spread the last N mod P iterations of [III]. As

(N mod P) < P, it is immediate from Theorem 4.2 that [VI] can not

improve performance over [II] by inserting SYNC/WAITs.

Although we can not spread only the last (N mod P) iterations

of [III] when s 1(i), s2(i), ..., sk(i) are dependent to achieve the same

time saving as when sl(i), s2(i), ..., sk(i) are independent, we are

able to spread the last M, for any M P, iterations of [III] to achieve

the desired time saving. For example, the loop in Example 1 can be

spread as in Figure 4.8.

Figure 4.8. Example of Evenly Distributed

Dependent Substatements.

113

In Figure 4.8., the spread loop achieved the same time saving

as when sl(i), s2(i), ... , sk(i) are independent because the dependent

statements are executed in different rounds so that when a WAIT is

issued the corresponding SYNC would have already been issued. In

this case, SYNC/WAITs are used only for safe-guard purpose. This

observation leads to the following theorems.

Theorem 4.3. If N P, we can spread the N iterations of loop

[III] so that the total execution time of the spread loop is

minimized.

Proof. Assume N = q*P + R, 1 R < P, and mj = (j*N) MOD P.

First, sl (1), ..., sl (N) are placed on the P processors so that sl (i), 1 5_ i

114

P are placed on processor i in the first round, sl(P+0, 1 i P are

placed on processor i in the second round,..., and sl(q*P+i'), 1 <

ml are placed on processor i' in the (q +l)'th round. In general,

assume sj(1),...,sj(N) have been placed in 1(j*N)/P1 *P rounds and the

last round has only used the first In processors. We assign

si+1(1),...,si+I(P-mi) to the remaining processors on that round, si+i(P-

mj+1), sj +i(P- mj +2), si+I(P-mi+P) to the next round, ... , and so on.

An example of the above spreading scheme for loop

FOR i := 1 TO 8 DO sl(i); s2(i); s3(i) ENDFOR;

is shown in Figure 4.9.

facts:

Figure 4.9. Spreading Dependent Substatements.

From the above arrangement, we can observe the following

1) sj(i) must be at least one round before sji-i(i). This is

115

because sj(i) is executed in round

rj = 1((j-1)*N + i)/P1 = i((; -1)*(N mod P + q*P) + i)/P1

(j-1) * q + r(j-1)*(N mod P) + i)/P1

and sj+i(i) is executed in round

and

rj+1 = r(j*N + i)/P1 = r(j*(N mod P + P) + i)/P1

j * q + r(j*(N mod P) + i)/P1

rj+i rj = q + 1(j*(N mod P) + i)/P1 -1(j -1)*(N mod P) + i)/P1 q.

Since N ?.. P, we know q 1.

2) The data dependency relation can be preserved by issuing a

SYNC(i, j) after every statement sj(i), and issuing a WAIT(i, j) before

every sj+i(i) for j = 1 to k-1. From 1) we know that sj+i(i) is in a later

round than sj(i). This implies that when the WAIT(i, j) from sj+i(i) is

issued, the corresponding SYNC(i, j) from sj(i) must has already been

issued (remember that we assumed that sj(i) all have the same size).

Since the arrangement above leaves no unused processor in the first

LK*N/P j rounds and no actual waiting takes place, the total execution

time of the loop is FIC*N/Pl*T(sk).

Q.E.D.

116

It can be seen that in Figure 4.9, every statement sj(i) is in a

different processor as sj+i(i). Thus we need explicit synchronization

between each pair of sj(i) and sj+i(i), as in Figure 4.10. Theorem 4.4

shows that this observation it true in general.

Figure 4.10. Synchronization Pattern for Spreading

Dependent Substatements.

Theorem 4.4. When using the arrangement of Theorem 4.3 to

spread the N*K iterations of loop [III] to achieve optimal time saving,

we need at least N*(K-1) SYNC/WAITs whenever N MOD P * 0.

Proof. With the arrangement of Theorem 4.3, it is not difficult

to see that sj(i) is placed on processor

p(sj(i)) = ((j-1)*N + i - 1) MOD P + 1,

and si+i(i) is on processor

117

P(si+I(i)) = (j*N + i 1) MOD P + 1.

p(sj(i)) - p(sj +1(i)) = N MOD P. Since N MOD P 0, we know p(sj(i)) -

p(si+i(i)) 0, meaning that sj(i) and sj+i(i) run on different

processors. So, all statements sj(i) need SYNCs and all statements

si+i(i) need WAITs, for j = 1, ... k-1, i=1,...N, resulting in a total of N*(K

1) SYNC/WAITs.

Q.E.D.

The above two theorems state that we can always achieve

optimal time saving through loop spreading using N*(K-1)

SYNC/WAITs as long as N > P. This suggests that, for any N > P, we

can always separate the N iterations into two parts: iteration 1 to

iteration U, and iteration U+1 to iteration N, where the value of U is

chosen such that U is a multiple of P and minimizes (N-U) > P. Once

we find U, we can evenly execute the first U iterations without using

SYNC/WAITs and spread the remaining N-U iterations using our

method. Obviously, U = N - (P + N MOD P). So, for any given N, we

only need to spread the last P + N MOD P iterations. In general, the

value of U can be determined as follows:

IFN<=PTHENU:=N
ELSE U = N - (P + N MOD P);

We code the spreading scheme in Theorem 4.3 as follows.

118

[X] PAR g := 1 TO P DO
IFN<=PTHENM:=0
ELSE M := N mod P + P;
U := N - M;
FOR i := g TO U STEP P DO

sl(i);s2(i), sk(i);
ENDFOR;
FOR ij := g TO M*K STEP P DO

i := (ij-1) MOD M + 1;
j := (ij-1) DIV M + 1.
CASE j OF

1: sl(i + U); SYNC(1,i);
2: WAIT(1, i); s2(i + U); SYNC(2,i);

K: WAIT(k-1, i); sk(i + U)
END CASE;
i:=i+P;

END FOR;
ENDPAR;

We can replace the MOD and DIV operations in [X] by additions

and subtractions as in [VI]. Compared to the overhead of the

spreading in [VI], the code above needs one additional SYNC/WAIT in

each of the M*(K-1) iterations. Thus, the overhead of loop spreading

[X] is

(2*M*K*T(+)/P) + 2*(M*K*P/M)*T(+)/P

+ M*(K-1)*T(SYNC/WAIT)/P

= 2*K*T(+)*(M/P + 1) + M*(K-1)*T(SYNC/WAIT)/P.

Since P 5 M < 2*P, we can assume M = 3P/2. The loop spreading is

beneficial if this value is less than K*T(sk)/2, or,

119

2*K*T(+)*(3/2+1) + 3*(K-1)*T(SYNC/WAIT)/2 K*T(sk)/2, or

10*T(+) + 3*T(SYNC/WAIT) T(sk). (6.1)

The condition above can be easily tested since T(+) and

T(SYNC/WAIT) are constants known to the system. For a shared

memory machine, T(SYNC/WAIT) can be as cheap as an addition (see

Chapter 5). However, this cost can be very high in a message passing

based system. We will study the methods to reduce the number of

SYNC/WAITs in the later sections.

If 51(i), s2(i), ..., sk(i) in [III] are only partially dependent, then

we can use the strategy in Theorem 4.3 with less than (P + N mod P)

* (K-1) SYNC/WAITs to conserve data dependency. First, only the

substatements in the last (P + N mod P) iterations need SYNC/WAITs.

We can use the following guidelines to issue SYNCs and WAITs.

1) Transitive dependency can be ignored. This guarantees that

the total number of SYNC/WAITs for partially dependent 51(i), s2(i),

..., sk(i) will be no more than for totally ordered sl (i), s2(i), ..., sk(i).

2) Only one SYNC is needed for multiple dependency from the

same source statement.

3) If sj(i) depends on s (0 5 s k-1) statements, it should issue

s WAITs before starting execution. Since s can be zero, if sj(i) does

not dependent on any other VW, it does not need to issue a WAIT

120

operation.

4.7. Reducing Synchronization Overhead of Loop Spreading

In the above, we showed that we can always spread the last P +

N MOD P iterations using (P + N MOD P) * (K-1) SYNC/WAITs to

achieve optimal time saving. Since SYNC/WAITs may become

expensive in a message passing system, we should reduce the

number of SYNC/WAITs when possible.

processors: 1 2 3 P

c

(7-

Figure 4.11. Row-major Spreading.

We first focus our attention on the loop spreading schemes that

are similar to [X]. That is, we place statements p(s1(1)),..., p(si(N)), ...,

p(sj(1)),..., p(sj(N)), ..., p(sk(1)), ..., p(sk(N)) on the P processors

consecutively and wrap them into rounds without leaving free

121

processors in between, where p(sj(1)),..., p(sj(N)) stands for a

permutation of sj(1), sj(N). We call this kind of spreading scheme

row-major spreading (Figure 4.11). The other type of spreading

scheme, called column-major spreading (Figure 4.12), in which

p(s1(1)),..., p(sk(1)), p(sk(i)), p(s1(N)), p(sk(N)) are

placed on a single processor and continue to the next processor, is

studied later.

processors: 1 2 3 p

...

r r-N

I

:
I
I

:
I
I

I
I
I
I

J ., .,.
1

Figure 4.12. Column-major Spreading.

The following theorem establishes the lower bound on the

number of SYNC/WAITs for row-major spreading schemes.

Theorem 4.5. For any row-major spreading scheme, the tight

lower bound on the number of SYNC/WAITs needed to spread loop

[III] to P processors is

122

min(N MOD P, (P N MOD P)) * (K-1).

Proof. For N MOD P = 0 the theorem holds trivially. Assume N

MOD P > O.

We say that statements sj(i) and sj'(i) are a pair of statements

if j' = j + 1. Obviously, a SYNC/WAIT is needed between two

statements if and only if they are a pair of statements and they are

not placed in the same processor. Assume LN/P j = t. Then for any

row-major spreading scheme, each processor has either 2*t, 2*t + 1,
or 2*t + 2 statements from sj's and si+r's. There are two cases to

consider:

1) N MOD P < P/2. Then each processor can have at most 2*t +

1 statements from sj's and si+I's. Since only one si and one si+i can

be a pair, among the 2*t + 1 statements on a processor, there are at

most 2*t statements in pairs. Thus the P processors can have at most
t*P pairs and the remaining N t*P = N MOD P pairs need

SYNC/WAITs.

2) N MOD P > P/2. Then in the best case 2*(N MOD P) - P

processors have 2*(t+1) statements from sj's and sj+1's and the others

have only 2*t + 1 statements. Thus the P processors can have at

most (t*P + 2*(N MOD P) P) pairs and the remaining N - (t*P + 2*(N

MOD P) - P) = P - N MOD P pairs need SYNC/WAITs.

123

From 1) and 2), we need min(N MOD P, P - N MOD P)

SYNC/WAITs between sj(1) , sj(N) and si+1(1), si+I(N). Thus we

need a total of min(N MOD P, (P N MOD P)) * (K-1) SYNC/WAITs, for

all , j = 1, ..., K-1.

To show that this lower bound is tight, we construct a row-

major spreading scheme to achieve the lower bound as follows.

Initially, p(s1(1)),..., p(s1(N)) are spread consecutively in the P

processors. Assume p(sj(1)),..., p(si(N)) have been placed

consecutively. N MOD P of the P processor will have t + 1 sj's and P

(N MOD P) will have only t of the sj's. For p(si+1(1)),..., p(sj +i(N)), we

can always pick out t*P of them and place them in t rounds so that

none of them needs SYNC/WAIT. For the remaining N MOD P

statements, if N MOD P P / 2, we proved the theorem. We need

only to consider the case when N MOD P > P/2.

Since N MOD P > P/2, any of (P - N MOD P) statements of

si+1(1),..., ski-1(N) can form a full round with the remaining N MOD P

of sj(1),..., sj(N). We can pick out (N MOD P) (P N MOD P) of the

remaining (N MOD P) of si+1(1),..., sj +i(N) to place on the processors

without SYNCs. So, we need at most (P - N MOD P) SYNCs.

QED.

124

EXAMPLE 4. Assume we have P = 5 processors, and we want to

spread the following loop (N = 8, K = 3) to the P processors with

minimal execution time. Figure 4.13 shows a row-major spreading

arrangement that uses 4 (4 = min(N MOD P, (P - N MOD P)) * (K-1))

SYNC/WAITs.

FOR i :=1 TO 8 DO
sl(i), s2(i), s2(i);

END FOR;

Figure 4.13. Example Row-major Spreading Using Minimum

Number of SYNCs.

The row-major spreading scheme in Theorem 4.3 uses (P + N

MOD P) * (K-1) SYNC/WAITs, which is far from the lower bound

established in Theorem 4.5. We would like to categorize the class of

row-major spreading so that we can distinguish a good spreading

scheme from a bad one. Notice that the 8 statements s3(1),...,s3(8) in

the above example are broken into five sequences (7 8), (2 3), (1), (5

6), and (4) when placing them on the 5 processors. In the loop

spreading arrangement of Theorem 4.3, the N substatements sj(1),

sj(2), ..., sj(N) are always kept as one sequence: (sj(1), ..., sj(N)). Since

125

the number of sequences that the statements sj(1),..,sj(N) are broken

into stands for the number of conditions the spread loop must check

in each iteration in order for a processor to pick up the right

statement to execute, we should try to keep that number as small as

possible. On the other hand, using more sequences might reduce the

number of SYNC/WAITs. So, we want a spreading scheme that uses

less SYNC/WAITs and at the same time separates sj(1), sj(2), sj(N)

to fewer subsequences. Hopefully this is better than a spreading

scheme that uses more SYNC/WAITs and/or separates sj(1), sj(2),

sj(N) into more subsequences.

We qualify the concept of "Number of Spreading Sequences" as

follows.

DEFINITIONS. The number of Spreading Sequences is the

maximum number of out-of-order elements which occur when

placing sj(1), sj(N) onto processors in a row-major spreading

scheme. If we use i sequences in a spreading scheme, we call the

spreading an i-sequence spreading scheme.

Theorem 4.6. Assume N P. Using only one sequence to

spread the N*K statements of loop [III] to achieve optimal time

saving requires at least (P + N MOD P) * (K-1) SYNC/WAITs.

Proof. This is the direct consequence of Theorems 3 and 4.

Q.E.D.

126

To simplify the discussion that follows, we assume N < 2*P,

since for any N 2*P we can always spread the first N (P + N MOD

P) iterations without using SYNC/WAITs.

Theorem 4.7. If N P, we can use a 2-sequence spreading

scheme to spread the N iterations of loop [III] using only (N MOD

P)*(K-1) SYNC/WAITs to achieve the optimal time saving.

Proof. N P implies N = P + N mod P. Assume mj = (j*N) MOD

P and rj = (j*(N MOD P)) MOD N. The N*K statements can be spread

as follows.

First, sl(1), sl(N) are spread on the P processors so that

sl(i), 1 5 i P, are placed on processor i in the first round, and

sl(P+i'), 1 i ri are placed on processor i' in the second round.

Then, s2(ri+1), s2(P), s2(P+1), s2(P+2), s2(N), s2(1), s2(2),

s2(ri) are assigned to the remaining processors in the second round

and extended to later rounds. Note that, no SYNC/WAIT is needed to

force data dependency between sl(i) and s2(i), for i = 1.1+1, N,

because s2(i) is in the same processor as sl(i), i=r1+1, ..., N. Only

s2(i'), it=1,..,ri may need to WAIT. In general, sj(1) sj(N) are

placed as two sequences sj(ri-i+1), ...sj(N), sj(1) sl(ri-i). After that,

we can assign sji-i(rj+1),...,sj+I(N),si+I(1),...,si+I(rj) to the remaining

processors on that round and extend to the following rounds. This

arrangement is shown below.

127

sl(1) sl(2) sl(P)
sl(P+1) sl(N) s2(ri+1)... s2(P)
s2(P+1) s2(N) s2(1),... , s2(ri)

sj(rj-i+1) sj(N)sj(1) si(2)
sj(rj-1) sj+i(rj+1) sj+1(N) sj+I(1)

From this arrangement, we establish the following facts:

1) There must be at most (K-1)*(N mod P) SYNC/WAITs. To

show this we need only show that for any two statements sj(i) and

sj+i(i), they must be on the same processor for all i = 1, N, except

for (N MOD P) of them. From the above arrangement we can see that

sj(1), sj(N) are in the two sequences (sj(rj-i+1) sj(N)) and (sj(1)

si(2) sj(rj-1)), and sj+I(1), sj +i(N) are in the two sequences

(sj+i(rj+1) sj+I(N)) and (sj+1(1) sj +1(rj)). It is not difficult to see

that the statements are placed on processors according to the

following criteria:

statement processor ranges

sj(i)
sj(i)
sj+i(i)
sj+i(i)

(mj-t+i-rj-1-1) MOD P +1
(mj-i+N + i-rj-i-1) MOD P +1
(mj+i-rj-1) MOD P +1
(mj+N + i-rj-1) MOD P +I

i = rj-i +1, N;
i= 1, ..., rj-i;
i = ri + 1, ..., N;
i= 1, ..., rj.

To see whether or not we need SYNC/WAIT for statement sj(i)

128

and sj+i(i), we need to determine whether or not sj(i) is on the same

processor as sj+i(i). We consider two cases, rj .?. rj-1, and rj < rj-1.

Assume rj rj-i. Then,

rj rj - 1

= ((j*(N MOD P)) MOD N - ((j-1)*(N MOD P)) MOD N
= ((j*(N MOD P) - (j-1)*(N MOD P)) MOD N
= (N MOD P) MOD N
= N MOD P

For i e (rj +1, ..., N), sj+i(i) is on processor (mj + i - rj-1) MOD P

+1. Since I] rj-1, we also have i E (rj -1 +1, ..., N) and the

corresponding sj(i) is on processor (mj-i+i-rj-i-1) MOD P +1. The

following calculation establishes that (mj + i rj) MOD P = (mj -1 + i - rj-

1) MOD P, which says that sj+1(i) and sj(i) are on the same processor.

(mj + i - rj) MOD P (mj-1 + i - rj-i) MOD P
= (mj+ i rj mj_l - i + rj-i) MOD P
= (mj mj-1 (rj rj-i)) MOD P
= ((j*N) MOD P ((j-1)*N) MOD P (N MOD P)) MOD P
= (N MOD P N MOD P) MOD P
= 0.

For i E (1, ..., rj (N MOD P)), sj+i(i) is on processor (mj+N+i-rj-1)

MOD P +1. Since rj rj-1 = N MOD P, we also have i E (1, ..., rj-1), and

sj(i) is on processor (mj -1 +N + i-rj-1-1) MOD P +1. The following

calculation establishes the equality of (mj+N+i-rj) MOD P and (mj -1 +N +

i-rj_1), which shows that sj+i(i) and sj(i) are on the same processor.

129

(mj + N rj + i) MOD P (mj-1 + N rj -1 + i) MOD P. (mj + N + i - rj mj-i N - i + rj-i) MOD P. (mj - mj-1 - (rj - rj-1)) MOD P
= O.

Thus for both i e (rj +1, ..., N) and i e (1, ..., rj (N MOD P)),

sj+i(i) and sj(i) are on the same processor. We only need SYNC/WAIT

for the remaining N MOD P sji-i(i), i E (rj (N MOD P)+1, ..., rj). Note

that, when i E (rj (N MOD P)+1, ..., rj), we also have i E (rj-i +1, ..., rj).

Thus the N MOD P SYNC/WAITs are used by the last N MOD P

statements of sj+i(i), i E (rj - (N MOD P)+1, ..., rj), to wait for the

SYNCs from the first (N MOD P) statements of sj(ri-i+1)... sj(N)sj(1)

si(2) ... sj(rj-1). This fact is useful when implementing the spreading

scheme.

Assume rj < rj-1. Then,

rj -1 - rj
= (((j-1)*(N MOD P)) MOD N (j*(N MOD P))) MOD N
= ((j-1)*(N MOD P) (j*(N MOD P))) MOD N
= (- (N MOD P)) MOD N
= (N (N MOD P)) MOD N
= N - N MOD P

For i E (rj +1, ..., rj_i), sj+1(i) is on processor (mj + i - rj-1) MOD P

+1. Since rj < rj-1, the corresponding sj(i), i E (rj +1, ..., rj-1), is on

processor (mj-i+N + i-rj_1-1) MOD P +1. The following calculation

establishes that (mj + i rj) MOD P = (mj_1 + N + i - rj-1), which shows

that sj+i(i) and sj(i) are on the same processor.

130

(mj + i rj) MOD P - (mj_H-N+ i-rj-1) MOD P
= (mj + i - rj mj-i - N - i + rj-1) MOD P
= (mj - mj-i -N + (rj-1 rj)) MOD P
= ((j*N) MOD P - ((j-1)*N) MOD P N + (N (N MOD P))) MOD P
= (N MOD P N MOD P) MOD P
= 0.

Note that, sji-t(i) and sj(i), i2 E (rj-1 +1, ..., N), will not be on the

same processor. Neither will sj+i(i) and sj(i), for i E (1, ..., rj).

However, as rj-1 rj = N N MOD P, the number of i's in the range of

(rj +1, ..., rj-1) is already N - N MOD P. Therefore, we only need

SYNC/WAITs for the remaining N MOD P pairs of statements sj(i), i e

(rj-i +1, ..., N) u (1, ..., rj), and sj+1(i), i E (rj -1 +1, ..., N) u (1, ..., rj).

Again, the N MOD P SYNC/WAITs are used by the last N MOD P

statements of sj+1(i) to wait for the SYNCs from the first (N MOD P)

statements of sj(i), because sj(i), i e (rj-i +1, ..., N) u (1, ..., rj), are the

first N MOD P statements of sj(rj-i+1) ... sj(N)sj(1)si(2) ... sj(rj-i), and

sji-i(i), i E (rj_i +1, ..., N) u (1, ..., rj) are the last N MOD P statements of

sj+1(rj+1) ... sj+i(N) sj+1(1) ... sji-i(rj).

2) If a SYNC/WAIT is needed between sj+I(i) and sj(i), then sj(i)

must be at least 2 rounds before sj+i(i).

From the above discussion, we know that only the first N MOD

P statements of sj(rj-1+1) ... sj(N) sj(1) ... sj(rj-1) need to issue SYNCs to

the last N MOD P statements of si-o(rj+1) ... sj+i(N) sj+1(1) ... sj +1(rj).

131

Thus, if a SYNC/WAIT is needed between si÷i(i) and sj(i), there must

be exactly 2*N N MOD P statements between them. Since (2*N - N

MOD P) = 2*P + N MOD P, sj(i) must be at least 2 rounds before sj+i(i).

From 2) we know that si+i(i) is scheduled two rounds later than

sj(i). This implies that when the WAIT from si+i(i) is issued, the

corresponding SYNC from sj(i) has already been issued (remember

that we have assumed that sj(i) all have the same size). Since the

arrangement above leaves no unused processor in the first LK*N/P

rounds and no waiting actually takes place, the total execution time

of the loop is IK *N /P1 *T(sk).

Q.E.D.

Informally, the 2-sequence spreading scheme is that: after

sj(1),.... sj(N) have been placed in two sequences, such as:

sj(t)... sj(u-l)sj(u) sj(N)sj(1) si(2)
sj(t-1)

we place sj+i(1) sj +i(N) to the P processors in two sequences si+i(u)

sj+i(N) sj +i(1) si+i(u-1).

132

EXAMPLE 5. Assume we have a loop

FOR i:=1 TO 7 DO sl(i), s2(i), s3(i), s4(i) END FOR;

and we want to place it on 5 processors. In the 2-sequence

spreading of Figure 4.14, only 6 instead of 21 SYNC/WAITs are used.

Figure 4.14. Example of 2-sequence Spreading.

It is also shown in the proof of Theorem 4.7 that 2-sequence

spreading ensures that any SYNC is 2 rounds before the

corresponding WAIT. Compare this with the result of Theorem 4.3,

where any SYNC is only 1 round before the corresponding WAIT.

This new spreading scheme allows more variation on the time

difference between the substatements. Thus when a WAIT is issued

the corresponding SYNC is more likely to have been issued.

[XI].

133

The code using the 2-sequence spreading scheme is shown in

[XI] PAR g := 1 TO P DO
R := N mod P;
M := R + P;
U := N - M;
FOR i:=g TO U STEP P DO

sl(i);s2(i), ..., sk(i);
ENDFOR;
FOR i:=g TO M*K STEP P DO

j := (i-1) DIV M + 1;
In := ((j-1) * R) MOD M;
b := (j-1)*M;
a := b + P - rjl;
CASE j OF

1: ;
.... ,

IF (i <= a) THEN
ii := i + rj1 + U - (j-1)*M;

ELSE

ii := i + U - a;
END IF;
IF (j > 1) AND ((i-b) > P) THEN WAIT(j -1, ii);
sj(ii)
IF (j < K) AND ((i-b) <= R) THEN SYNC(j, ii);

K:

END CASE;
END FOR

ENDPAR;

.... ;

;

Compared to the overhead of the spreading in [X], this code

needs two more additions, three more IF checks in each of M*K

iterations. Each processor performs a total of R*(K-1)/P

SYNC/WAITs. The overhead of loop spreading [XI] is

134

2*K*(M/P + 1)*T(+) + 2 *M *K *T(+)/P

+ 3*M*K*T(IF)/P + R*(K-1)*T(SYNC/WAIT)/P

= 2*K*(2*M/P + 1)*T(+)

+ 3*M*K*T(IF)/P + R*(K-1)*T(SYNC/WAIT)/P,

Assume R = P/2 and M = 3P/2. The additional overhead of loop

spreading is

8*K*T(+) + 9*K*T(IF)/2 + (K-1)*T(SYNC/WAIT)/2,

Thus, the 2-sequence loop spreading is beneficial if this value

is less than K*T(sk)/2, or

16*T(+) + 9*T(IF) + T(SYNC/WAIT) < T(sk). (7.1)

Comparing (7.1) to (6.2), we see that 2-sequence spreading is

better than 1-sequence spreading when 6*T(+) + 9*T(IF) <

2*T(SYNC/WAIT).

Although the lower bound on the number of SYNC/WAITs for

any row-major spreading is min(N MOD P, (P - N MOD P)) * (K-1) (see

Theorem 4.5), no 2-sequence row-major loop spreading scheme can

achieve this lower bound. In fact, only in one case when there is a 2-

sequence loop spreading which can use one less than (N MOD P) * (K -

1) SYNC/WAITs. One such example is shown in Figure 4.15, where

we can use 14 instead 15 SYNC/WAITs the given loop. Note that in

135

Figure 4.15, sj(1), ..., sj(8), j=1, ..., 5, occupy 8 full rounds of five

processors and s5(1), ..., s5(8) are placed as a single sequence. In

general, for a loop of N iterations of K substatements to be spread on

P processors, we may use one less SYNC/WAITs only if there is a j < K

such that j*N MOD P = 0 (and sj(1), ..., sj(N) are placed in a single

sequence). Except this, we can show that (N MOD P) *(K-1) is the

minimum number of SYNC/WAITs we must use in any 2-sequence

loop spreading scheme.

Figure 4.15. A 2-sequence Spreading That Uses Less

Than (N MOD P) * (K-1) SYNC/WAITs.

136

Theorem 4.8. If N MOD P > 0, and there is no such a j < K that

(j*N) MOD P = 0, then (N MOD P) *(K-1) is the minimum number of

SYNC/WAITs in any 2-sequence loop spreading scheme that achieves

optimal time saving.

Proof. Note that the lower bound is only for the 2-sequence

spreading that achieves optimal time saving. A 2-sequence

spreading that does not achieve optimal time saving can use less

SYNC/WAITs, bounded only by the lower bound for general row-

major spreading. For example, we can spread the following loop on 4

processors, as shown in Figure 4.16 with a 2-sequence spreading

using only 1 SYNC/WAIT, instead of 3.

FOR i:=1 TO 7 DO sl(i); s2(i) ENDFOR;

Figure 4.16. A Non-optimal 2-sequence Spreading.

137

Let N = P + r, where P is the number of processors and r = N

MOD P > 0. Assume se's are placed as two sequences si(a+1), ..., si(N)

and si(1), ..., sj(a), si+i's are placed as two sequences si+i(b+1), ...,

si+i(N) and si+1(1), ..., si+i(b). Assume sj+i(b+1) is placed on processor

g+1. Assume the statement in se's that is placed in the same

processor as sj+i(b+1) is sj(c+1). There are four cases to consider, and

we show that for each of the four cases, we need at least r

SYNC/WAITs among the si+'s and sj+i's.

Case 1: c = b. In this case si+i(a+1), ..., si+i(c) must be placed in

the processors starting at g+1 (see Figure 4.17). Therefore, we need

at least r SYNC/WAITs since si(t) is r processors away from sj+i(t), for

all t = a+1, ..., c.

processors 1 ... g-r+1 ... g+1

Figure 4.17. Illustration for Case c = b.

P

Case 2: c < b. Consider the first statement (assume it is si(x) in

Figure 4.18) in the round where si(b+1) is placed. Since si(c+1) is on

processor g+1, si(x) is P-g statements later than si(c+1) in the

sequence si(a+1), ..., si(N)sj(1), ..., si(a). If x b + 1 (Figure 4.18.a),

then sj+ 1 (x) is no more than P-g-1 statements after si+i(b +1)

according to c < b. Since si+i(b+1) is only g processors apart from

1

138

si(x), we know that sj(x) and si+i(x) are at most g+P-g-1 = P-1

processors apart. Taking into account the fact that si(x) is the first

statement in a round, we know that si+1(x) will be in the same round

as si(x). Thus when c < b, x b + 1 is not allowed.

If x < b + 1, and b+1 5 a (Figure 4.18.b), then si(b+1) is among

si(x), ..., sj(a) and thus si+i(b+1) is in the same round as sj(b +1). This

is not allowed either.

processors 1 ... g-r+1 ...

(a)

g+1

processors 1 ... g-r+1 ... g g+1

(b)

...

processors 1... g-r+1 ...

(c)

g g+1

P

P

Figure 4.18. Illustration for Case c < b.

P

139

If x < b + 1, and b+1 > a (Figure 4.18.c), then si(b+1) is d

processors away from si(c+1), where 1 d r. Since si(c+1) is in the

same processor as sj+i(b+1), si(b+1) and si+i(b+1) is also d processors

away. Consequently, for each statement in sj(b+1), sj(c)si(c+1),

si(a), its pair statement must be in the same relative position in

sj+i(b+1), si+i(c)si+i(c+1), sj+i(a), and therefore they are also d

processors away. So we need at least P SYNC/WAITs in this case

(note that there are at least P statements in the sequence si(b+1),

si(c)sj(c+1), si(a)).

Case 3: c > b a. Assume c = b + y (y > 0). If sj(c +l) in the first

sequence (see Figure 4.17.a), then c = a + r - 1 and y < r (Figure 4.19).

Note that when c > a, it is impossible for si(c+1) to be in the second

sequence (see Figure 4.17.b), since when si(c+1) is in the second

sequence, a P and c r must be true, which implies c < a, a

contradiction. When si(c+1) is in the first sequence, for t = c+1, N

si+i(t) has to be placed on processor

pi+i(t) = (g + y + t - c 1) mod P + 1,

and si(t) has to be placed on processor

pi(t) = (g + t c 1) mod P+ 1.

Since pj+i(t) - pi(t) = y mod P = y 0, si(t) and si+i(t) are in different

140

processors. Similarly, for t = 1, ..., a, si+i(t) has to be placed on

processor

pi+i(t) = (g + N b + t 1) mod P + 1,

and sj(t) has to be placed on processor

pi(t) = (g + N - c + t 1) mod P + 1.

Since pj+i(t) pi(t) = (c - b) mod P = y 0, si(t) and si+I(t) are in

different processors. So, the P pairs of statements si(t) and sj+i(t), t =

1, ..., a, c+1, N, all are not in the same processor and thus need

SYNC/WAITs between them.

processors 1... g-r+1

Figure 4.19. Illustration for Case c > b a.

P

Case 4: c > b and b < a. By assumption si(a) must be in the same

round as si+i(b), or else si+I(b+1) is the first statement in a round and

(j*N) mod P = 0. If si(1), si(a) are all in the same round as

sj+i(b +l), si+I(b+1) then is in the same round as si(b+1) since b < a.

This violates the optimal time saving requirement. If only some of

141

si(1), ..., si(a) are in that round, say they are si(z), ..., si(a), si(z) must

be the first statement in that round. If z < b + 1, si(b+1) is among

si(z), ..., si(a) and si+i(b+1) and si(b+1) is in the same round and the

optimal time saving requirement is violated. If z > b+1, we consider

two possibilities: either si(c+1) is in the first sequence of sits, or

si(c+1) is in the second sequence of sits.

processors 1... g -r +l ...

(a)

a-z+1

processors 1... g -r +l ...

(b)

g+1

<z

g+1

Figure 4.20. Illustration for Case c > b & b < a.

...

P

P

When si(c+1) is in the first sequence of sits (see Figure 4.20.a), a

< P since si(1) is placed after si(c+1). si(z) and si(c) are a-z+1

processors apart and si+i(b+1) and si+i(z) are at most z-1 processors

apart. This implies that si(z) and si+i(z) can be at most a z + z = a <

P processors apart. So si(z) and si+i(z) will be in the same round.

Again a violation to the optimal time saving requirement.

142

When sj(c+1) is in the second sequence of sj's (see Figure

4.20.b), sj(b+1) is d processors away from sj(c+1), where 1 d 5_ r.

Since sj(c+1) is in the same processor as sj+i(b+1), sj(b +l) and

sj +i(b +l) is also d processors away. Consequently, for each of

statement in sj(b +l), sj(c)sj(c+1), sj(a), its pair statement must be

in the same position in sj+I(b+1), sj +i(c)sj +i(c +l), sj+i(a), and

therefore they are also d processors away. So we need at least P

SYNC/WAITs in this case (note that there are at least P statements in

the sequence sj(b+1), sj(c)sj(c+1), sj(a)).

Q.E.D.

We can devise a 3-sequence row-major spreading scheme

similar to the 2-sequence spreading scheme that uses no more than

(N MOD P) * (K-1) SYNC/WAITs.

Theorem 4.9. If N P, we can use three sequences to spread

the N iterations of loop [III] with optimal time saving using (N MOD

P)*(K- 1) SYNC/WAITs.

Proof. Assume mi = (N*i) mod P, i=1, ..., K. The N*K statements

can be spread as follows.

First, sl(1), sl(N) are spread on the P processors so that

sl(i), 1 P are placed on processor i in the first round, and

sl(P+i'), 1 < mi are placed on processor i' in the second round.

The remaining P-mi processors in that round are assigned to

143

s2(m1+1), s2(m1+2), ..., s2(P). Then, if all of the remaining s2(i)'s can

be placed in the third round, s2(1), s2(2), ..., s2(ml), s2(P+1), ...,s2(N)

are assigned to the third round, otherwise, only s2(1), s2(2), ...,

s2(ml), s2(P+1), ...,s2(2P-ml) are assigned to that round and s2(2P-

m1+1), ..., s2(N) are assigned to the beginning m2 processors of the

next round. Note that no WAIT is needed to force s2(i), i=1..P to be

executed after sl(i), as s2(i) is in the same processor as sl(i), i=1..P.

Only s2(P+i'), i'=1,..,N-P) may need to WAIT because they may not be

in the same processor as sl(P+i'). In general, assume that

sj(1),...,sj(N) have been placed in r(j *N)/Pi*P rounds and the last

round has only used the beginning mj processors. We can assign

sj +i(mj +1),...,sj +i(P) to the remaining processors on that round. If 2P

mj ?.. N, we place sj+1(1), sj+1(2), ..., si+i(mi), si+I(P+1), ...,sj+i(N) in the

next round, or if 2P -mj < N, we place si+1(1), sj+1(2), ..., si+i(mi),

si+i(P+1), ...,si4.1(2P mj) in the next round, and si+1(2P-mj +1), ...,

si+i(N) in the beginning mi+i processors of yet another round... This

arrangement is shown below.

sl(1) sl(2)
sl(P+1) ...
s2(1) s2(2) .

s3(1)s3(2) ..

...
s 1 (N)s2(mi+ 1)...

.. s2(mi)s2(P+1) ...
s2(N)s3(m2+1) ...

. s3(m2)s3(P+1) ...

sj(1) si(2) .. . sj(mj-i-1) sj(P+1) ...

sj(N)si+i(mi +1) ...

s 1 (P)
s2(P)

s3(P)

si+I(P)

144

From this arrangement, we can observe the following facts:

1) we need at most (K-1)*(N mod P) SYNC/WAITs. That is

because sj(1), sj(2), ..., sj(P) are always in processors 1, 2, ..., P and

thus no SYNC/WAITs are needed for the statements. Only sj(P+1) to

sj(N) need SYNC, for j = 1 to K-1, and sj(P+1) to sj(N) need WAITs for j

=2 to K.

2) sj(i), i (P+1, ..., N), must be at least 1 round before si+I(i).

This is because sj(i) is executed in round

rj = r((j -1)*N + i)/P1 = r((j-1)*(N mod P + P) + i)/P1

= j-1 + r(j-1)*(N mod P) + i)/P1

and sj+i(i) is executed in round

rj+1 = r(j*N + i)/P1 = r(j *(N mod P + P) + i)/P1

= j +1(j *(N mod P) + i)/P1

and

rj+1 - rj = 1 + 1(j *(N mod P) + i)/P1-1(j -1)*(N mod P) + i)/131 1.

3) The arranged loop above takes time FIC*N/Pl*T(sk). From 2)

we know that sj+i(i) is in a later round than sj(i). This implies that

when the WAIT from sj+i(i) is issued, the corresponding SYNC from

145

sj(i) has already been issued (remember that we have assumed that

sj(i) all have the same size). Since the arrangement above leaves no

unused processor in the first LK *N /PJ rounds and no waiting actually

takes place, the total execution time of the loop is 1K*N/P1 *T(sk).

Q.E.D.

Compared to the 2-sequence spreading scheme, the 3-sequence

spreading scheme needs one more IF check in each of M*K iterations.

Thus the overhead of the 3-sequence spreading is

2*K*(2*M/P + 1)*T(+) + 4*M*K*T(IF)/P

+ R*(K-1)*T(SYNC/WAIT)/P,

and the 3-sequence spreading is beneficial if this value is less than

K*T(sk)/2, or

16*T(+) + 12*T(IF) + T(SYNC/WAIT) < T(sk). (7.2)

Note that (N MOD P)*(K-1) is not the lower bound for 3-

sequence spreading. This can be observed from Figure 4.21. In

Figure 4.21, N = 8, P = 5, and K = 2. The 3-sequence spreading places

the 16 statements on 5 processors using only 2 SYNC/WAITs, instead

of 3 = (N MOD P) * (K-1) SYNC/WAITs.

146

Figure 4.21. Example of 3-sequence Spreading Using Less Than

(N MOD P) * (K-1) SYNC/WAITs.

Also notice that, in general, no 3-sequence spreading scheme

can achieve the minimum number of SYNC/WAITs for row-major

spreading. To see this, consider the following loop:

FOR i := 1 TO 4 DO sl(i); ...; s8(i) ENDFOR;

For this loop, K=5, N = 4. If we were to place them on 5 processors

using only three sequences, we have no way to use only 4 (min(2,

1)*4) SYNC/WAITs.

Even though the 3-sequence spreading in Theorem 4.9 does not

improve the number of SYNC/WAITs over the 2-sequence spreading

in Theorem 4.7, it is the basis of the next theorem, which shows that

there is a 4-sequence spreading scheme that uses the minimum

number of SYNC/WAITs.

147

Theorem 4.10. If N .?.. P, we can use a 4-sequence spreading

to spread the N iterations of loop [III] with optimal time saving using

only min((N MOD P)*(K-1), (P N MOD P)*(K-1)) SYNC/WAITs.

Proof. When 2*(N MOD P) P, the theorem is true from

Theorem 4.9. So we assume 2*(N MOD P) > P.

In the proof of Theorem 4.9, we showed that using 3-sequence

spreading, statements sj(1), ..., sl(N) are in three sequences (symi-

1+1), ..., sj(P)), (s1), ..., s(mi-1)), and (sj(P+1), ..., sj(N)), and only

statements in the last sequence sj(P+1), ..., sj+I(N) need SYNC/WAITs.

We use induction to show that we can always separate the last

sequence (sj+i(P+1), ..., sj +i(N)) into two sequences: (sj+1(ci+P+1), ...,

sj+i(N)), and (sj+i(P+1), ..., sj+I(P+cj)), where

cj = (N MOD P) - (j*(P N MOD P)) MOD (N MOD P)
= (N MOD P) (j*P) MOD (N MOD P)

and only the first (P - N MOD P) statements of sji-i(cj+P+1), ...,

si+1(N)sj+I(P+1), ..., sj+I(P+cj) need to wait for the SYNCs from the last

(P N MOD P) statements of si(ci-i+P+1), ..., sj(N)sj(P+1), ... , sj(P+ci-i).

For j=1. Using 3-sequence spreading, the statements sl(i) and

s2(i), i = 1, ..., N are placed on P processors as follows.

148

sl(1), ... sl(P)
sl(P+1), ..., sl(N) s2(mi+1),.., s2(P)
s2(1), ..., s2(mi) s2(P+1), ..., s2(t)
s2(t+1),..., s2(N),

where t = N - (2*(N MOD P) P). Clearly, if we exchange s2(P+1),

with a statement in s2(t +l), ..., s2(N), we can use fewer SYNC/WAITs,

since doing so will bring s2(P+1) to the same processor as sl(P+1). In

fact, all of the N t statements s2(P+1), ..., s2(P+N t) can be brought

to the same processors as sl(P+1), We can rearrange s2(P+1), ...,

s2(N) as s2(P+N - t), as shown in the following.

s2(2*(N MOD P)+1), ..., s2(N)
s2(P+1), ..., s2(2*(N MOD P)),

For the rearrangement, only s2(2*(N MOD P)+1), ..., s2(N) need SYNCs

from sl(2*(N MOD P)+1), ..., sl(N), respectively. Since 2*(N MOD P)+1

= P + (N MOD P) (P - (N MOD P)) +1 = P + cl + 1, we proved the case

for j = 1.

Assume that we have separated si(P+1), ..., sj(N) into two

sequences: si(cm+P+1), ..., sj(N) and sj(P+1), ..., sj(P+ci-i), and only the

first (P N MOD P) statements of si(ci-i+P+1), ..., si(N)si(P+1), ..., si(P+ci-

1) need to wait for the SYNCs from the last (P- N MOD P) statements

of sj-1(ci-2+P+1), ..., si-1(N) and si-1(P +1), ..., si-I(P+ci-2). Without loss of

generality, we can assume sj(ci_i+P+1) is placed on processor 1. Then

if we use the 3-sequence spreading to place si+i(P+1), ..., sj+I(N), we

end up with the placement:

149

sj(cj-i+P+1), ..., si(N)si(P+1), ... , sj(P+ci-i)sj+I(mi-i+1), ...,sj+i(P)
sj +i(1),
sj+i(t+1),..., si+i(N).

sj+I(mj-i)sj+i(P+1), ... , sj+i(t)

By Theorem 4.9, we know that only sj +i(P +1), ... , sj+i(N) need

SYNC/WAITs. However, we can further rearrange si+i(P+1), ... sj +i(N)

to reduce the number of required SYNC/WAITs. We try to re-

arrange si+I(P+1), ... sj +i(N) as in the following,

sj +i(cj +P +l), ...,sj +i(cj -i +P)
sji-i(ci-i+P+1), ..., sj+i(N)sj +i(P +1), ...sj+i(ci+P).

1) There is no free processor unused in between the si+its.

That is because

Cj-14-P - ((Cj + P) + 1) + 1 = Cj-i - cj

=(N MOD P) - (j*P) MOD (N MOD P) - (N MOD P) - ((j-1)*P) MOD (N MOD P)

= P MOD (N MOD P)

= P - (N MOD P).

2) Only sj+I(ci+P+1), ...,si+I(ci-i+P) need to issue WAITs. This is

because si+I(ci-i+P+1), ..., si+i(N)sj+i(P+1), ...sji-i(ci+P) are in the same

processors as sj(cj-i+P+1), ..., si(N)si(P+1), ...si(ci+P) respectively.

3) The SYNCs that the (P - N MOD P) statements sj +i(cj +P +1),

...,sj +i(cj -i +P) need to wait for are from the last (P - N MOD P)

statements of si(cj-i+P+1), ..., sj(N)si(P+1), ... , si(P+cj-1). This is because

cj+P+1, ..., N,P+1, ..., P+cj is the result of P+1, ..., N circular right shift

j*(P - N MOD P) locations, and the last P-N MOD P locations always

correspond to the first P N MOD P locations of the sequence after

circular shifting P N MOD P locations.

Q.E.D.

[XII].

The code for the 4-sequence spreading scheme is shown in

[XII] PAR g := 1 TO P DO
R := N mod P;
M:=R+P;
U := N - M;
FOR i := g TO U STEP P DO

sl(i);s2(i), ..., sk(i);
ENDFOR;
FOR i := g TO M*K STEP P DO

j := (i-1) DIV M + 1;
mjl := ((j-1)*M) mod P;
a := (j -1) * M + P - mil;
cj 1 := R- ((j-1)*P) mod R;
b := j * M - cjl;
CASE j OF

1:

j: IF i <= a THEN
sj(mj1 + i + U - (j-1)*M)

ELSE IF i <= (a + mil)
sj(i + U - a)

ELSE
IF i <= b

ii := i - (a + mil) + U + P + cj 1
ELSE

ii := i + U - b+P;
IF (j > 1) AND (1 5 (i - (a + mjl)) 5 (P-R))

THEN WAIT(j-1, ii);
sj(ii);
IF (j < k) AND ((2*R-P) 5 (i - (a + mjl)) S R)

THEN SYNC(j,ii);

k:

END CASE;
END FOR;

ENDPAR;

Compared to the overhead of the spreading in Theorem 4.9,

150

this code takes one more addition and one more IF check in each of

151

M*K iterations, and a total of G*(K-1) SYNC/WAITs, where G =

min((N MOD P), (P - N MOD P)). The overhead of loop spreading [XII]

is

2*K*(3*M/P + 1)*T(+) + 5*M*K*T(IF)/P

+ G*(K-1)*T(SYNC/WAIT)/P.

If we assume the possibility that G = 0, 1, ..., P/2 are equal,

then in the average G = P/4. The overhead of the 4-sequence

spreading is

11*K*T(+) + 15*K*T(IF)/2 + (K-1)*T(SYNC/WAIT)/4,

Thus, the 4-sequence loop spreading is beneficial if this value is less

than K*T(sk)/2, or

22*T(+) + 15*T(IF) + T(SYNC/WAIT)/2 < T(sk). (7.3)

Comparing (7.3) to (7.2), we see that 4-sequence spreading is

better than 3-sequence spreading when 3*T(+) + 6*T(IF) <

T(SYNC/WAIT)/2.

152

Column-major Spreading

Theorem 4.11. If N > P, we can use a column-major

spreading scheme to spread the N iterations of loop [III] with

optimal time saving and use no more than (P 1) SYNC/WAITs.

Proof. Assume r = (K*N) mod P. Then r processors have

1(N*K)/P1 statements and P r processors have L(N*K)/P j statements.

Without loss of generality, we let the first r processors have

r(N *K) /P1 statements and the remaining processors have L(N*K)/13

statements. We can place the N*K statements

sl(1),...,sl(N),

sj(1), sj(N),

sk(1), sk(N),

in the P processors column by column and when the quota of the

current processor is reached we continue to place the statements in

the next processor. This placement is shown in Figure 4.22.

From this placement we see that we only need one SYNC/WAIT

between the last statement of a processor t and the first statement of

the next processor t+1, for t = 1, ..., P-1, if these two statements have

the same index. For any other statements, we don't need

SYNC/WAITs. This suggests that we need at most P - 1 SYNC/WAITs.

153

Furthermore, if these two statements have different subscripts, there

is no need to place a SYNC/WAIT between the two processors. This

can happen if (t * r(N *K) /P1) MOD K = 0 for t = 1 ... ((N*K) MOD P), or t

* L(N*K)/13 j MOD K = 0 for t = ((N*K) MOD P) + 1, ..., P -1. Thus the

total number of SYNC/WAITs we need is:

P -1 - Et t I ((t e (1 ... ((N*K) MOD P)) A (t * r(N*K)/P1MOD K = 0)

v ((i e (((N*K) MOD P) + 1, ..., P -1) A (t * L(N*K)/P J MOD K = 0)).

s1(1)
s2(1)

sk(1)
sl(2)
s2(2)

sj2(2)

sj2+1(2)
sj2+2(2)

sk(2)
sl(3)
22(3)

sj 3(3)

__1

Figure 4.22. Column-major Spreading with Minimum Number

of SYNC/WAITs.

However, we can not have optimal time saving with this

placement since a SYNC always goes from the last statement of one

processor to the first statement of the next processor. For example, if

WO, ..., si(i) are the last j statements of processor t and sj+1(i), ...,

sk(i) are the first k-j statements of the next processor t+1, then

154

processor t+1 can not start execution until processor t finishes

executing all of the WO, ..., si(i).

We modify the above placement as follows. If WO, ..., sj(i) are

the last j statements of processor t and sj+1(i), ..., sic(i) are the first k-

j statements of the next processor t+1, then we let sx-j+1(i), ..., sic(i) be

the last j statements of processor t and WO, ..., sic-j(i) be the first k-j

statements of processor t+1. This modification is shown in Figure

4.23.

sk -j+ 1 (i)
sk -j+ 2(i)

sk(i)

91(i)
s 2(i)

sk -j(i)

Figure 4.23. Column-major Spreading With Minimum Number

of SYNC/WAITs and Optimal Time Saving.

First, this modification will not affect the total number of

SYNC/WAITs, because both the modified placement and original

placement need exactly one SYNC/WAIT between processor t and

t+1.

Secondly, in the modified placement, sji(i) must be executed in

155

an earlier round than si2(i) for all ji < j2, because N P and each

processor has at least K statements.

Q.E.D.

Code for the above spreading scheme is presented in [XIII],

where we assume 2P > N > P, and we have spread the first U = N-(P +

N MOD P) iterations evenly.

[XIII] shares:= (N*K + P - 1) DIV P;
busyOnes := (N*K + 1) MOD (P+1);
PAR g:=1 TO P DO

IF g > busyOnes THEN
quota := shares - 1;
first := busyOnes + (g-1)*quota + 1;

ELSE
quota := shares;
first := (g - 1)*quota + 1;

ENDIF;
i := (first - 1) DIV K + 1;
firstPart := i*K - first + 1;
lastPart := (quota - firstPart) MOD K;
lastStart := quota - lastPart + 1;
jK := firstPart;
j := 1;
FOR q :=1 TO quota DO

IF (q = lastStart) AND (lastStart < K) THEN
j := n - lastStart + 1;
WAIT(j-1, i);

ENDIF
CASE j OF

1: sl(i);
2: s2(i);

k: sk(i);
END CASE;
IF (q = firstPart) AND (j < K) THEN SYNC(j, i);
j := j + 1;
IF j > jK THEN

jK := K; j := 1; i := i + 1;
ENDIF

ENDFOR;
ENDPAR;

156

Since each processor has to execute statements sl(i), sx(i),

sl(i+1), sk(i+1), sl(i+i'), sk(i+i'), sy(i+i'+1), sk(ii'+1), it has to

know how many statements it should execute and the values of x

and y. This requires an initial startup time of:

Tinit = 4T(*) + 2T(/) + 2T(MOD) + 15T(+).

Further, there is an overhead of three IF checks per statement

executed and one SYNC/WAIT per processor. The last IF condition

will be true for 1(N *K)1/K times, and whenever the condition is true

three more additions are required. So, the total overhead per

processor is (assume N = 3*P/2):

Tinit + T(SYNC/WAIT) + 3*(N*K)*T(IF)/P + 3*T(+)*(N*K)/(P*K)

= Tinit + T(SYNC/WAIT) + 9*K*T(IF)/2 + 9*T(+)/2.

When this cost is less than K*T(sk)/2, or,

(2*Tinit + 2*T(SYNC/WAIT) + 9*T(+))/K + 9*T(IF) < T(sk), (7.4)

the spread loop will run faster than the unspread loop. Comparing

(7.4) to (6.2), we can see that when

(2*Tinit + 2 T(SYNC/WAIT)+9*T(+))/K + 9*T(IF)

< 7T(+) + 3T(SYNC/WAIT)

157

this spreading is better than the spreading in Theorem 4.3. But, for

small loops, Tinit may dominate the cost and this spreading may not

be better than the spreading in Theorem 4.3.

In some sense, the row-major scheme is like static scheduling

method 1 (see Figure 4.4 (a)), and the column-major scheme is

similar to the static scheduling method 2 (see Figure 4.4 (b)). We

know from Section 3 that method 2 is much more difficult to code

than method 1, and it is not surprising that the spreading method

above is also much more difficult to code than the row-major

spreading schemes.

158

4.8. Experiments with Dependent Substatements on a
Shared Memory Machine

We first modify the matrix multiplication algorithm to make

the iterations of the second level FOR loop totally data dependent.

This algorithm (call it MMM) can be specified as follows, where

innerProd(i, j, X, Y) finds the inner product of i'th row of X and j'th

column of Y, and Z[i3O] are zeros:

FOR 1:=1 TONDO
FOR j:=1 TO K DO

Z[i,j] := innerProd(i, j, X, Y) + Z[i,j -1];
ENDFOR:

ENDFOR;

It is not difficult to check that the loop has no level 1

dependence, and the iterations in level 2 FOR loop are totally

dependent, since Z[i,j] uses the value of Z[i,j-1]. The parallelization of

the loop without loop spreading is:

PAR g := 1 TO P DO

FOR i:=g TO N STEP P DO

FORj:=1 TO K DO
Z[i,j] := innerProd(i, j, X, Y) + Z[i,j-1];

ENDFOR;
ENDFOR;

ENDPAR;

We want to experiment with the four spreading schemes:

1/2/4-sequence spreading and the column-major spreading. Four

versions of the MMM algorithm described in the Sequent/Balance

shared memory system Pascal can be found in Appendix D.

The performance of the spread and nonspread loops using 8

processors are plotted in Figure 4.24.

8.10

7.89

7.68

7.47

7.26

7.05

6.84

6.63

6.42

6.21

6.00

20 25 30 35 40 45

nonspread/8 D 1 -spread/8 2-spre ad/8 4-spread/8

50

159

Figure 4.24. Performance of the 1/2/4 Sequence Spread and

Nonspread MMM Algorithm Using Eight Processors.

From Figure 4.24, it is clear that all of the spreading schemes

remove the drop-off effect of the nonspread loop. This is because

the T(sk) in the MMM algorithm is more than 20*T(*), and all of the

spreading schemes are beneficial. Also from Figure 4.24, we can that

all of the spreading schemes are nearly identical in performance

(except that the 1-sequence spreading is a little worse). This is not

surprising, because the overhead of the spreading schemes differ

only by a small number of SYNC/WAITs and additions. On a shared

memory machine, a SYNC/WAIT costs about the same as an addition

(Chapter 5), thus all of the spreading schemes have similar overhead.

9.10

8.89

8.68

8.47

8.26

8.05

7.84

7.63

7.42

7.21

7.00
1 1

20 25 30 35 40 45

160

o 2-spread/8 o 2-spread/9 column spread/8 column spread/9

Figure 4.25. Performance of Column-major Spreading and 2-

sequence Row-major Spreading on MMM Algorithm

Using Eight and Nine Processors.

In Figure 4.25, we compared the column-major spreading with

the 2-sequence row-major spreading. Again they show similar

improvement over the nonspread loop.

In order to see the difference between the spreading schemes,

we need to find a loop in which T(sk) is small enough so that we can

tell which spreading scheme is (or is not) beneficial. For this, we

further modify the MMM algorithm as follows (call it MMM'), where

function doSum(a, b) finds the sum of a and b:

FOR i:=1 TONDO
FOR j:=1 TO K DO

Z[i,j] := doSum(X[i, i], Y[j, j]) + Z[i,j-1];
ENDFOR;

ENDFOR;

161

In MMM' algorithm, T(sk) has been reduced from more than 20*T(*)

to T(proc call) + 2*T(+).

8.0

7.6

7.2
S

6.8

e 6.4
e 6.0

5.6

5.2

4.8

4.4

4.0

20 25 30 35 40 45 50

size
o 1-spread/8 0 2-spread/8 nospread/8

Figure 4.26. Performance of 1/2-sequence Spreading on MMM'

Algorithm.

Figure 4.26. shows the performance of 1/2-sequence spreading

schemes on MMM' using eight processors. We can see that 1-

sequence spreading is not beneficial for the MMM' algorithm because

in most cases the spread loop runs slower than the nonspread loop.

On the other hand, 2-sequence spreading shows outstanding

performance since the spread code is almost always better than the

nonspread code.

We next experimented with the decomposed simplex algorithm

because the statements inside the parallel loops are totally

162

dependent. When applying the loop spreading techniques, we

encountered a more complex situation that requires flexible

application of the techniques. First, the loop in the algorithm to be

spread is of the form:

PAR g:=1 TONDO
sl; ...; ski;
FOR i:=1 TO M DO

tl (g,i); ...; tk2(g,i);
END FOR;
ul; ...; uk3;

END PAR;

For this loop, we first need to consider it as a loop that has

k 1 +M*k2+k3 substatements, and then apply the loop spreading

techniques.

The second problem we encountered is that, when we spread

s1, sk, which were originally run on a single processor, to multiple

processors, the variables that cause the dependency among the

statements must be made global to multiple processors. On a shared
memory system, this poses no problem. However, on a message

passing system, the spread loop may have to frequently pass large

amounts of data from processor to processor, making the spreading

technique hard to use.

p
e

e
d

p

(a)

p
e
e
d

p

8.0
7.2
6.4
5.6

4.8
4.0__.

3.2__.

2.4

1.6

0.8

0.0

"Cr

W.P.W
?Tat. r".

163

3 4 5 6 7 8 9 1 0 1 1 12 13 14 15 16 17 18 19 20
subs

spreadTS/seqTS o paraTS/seqTS

8.0
7.2

4.8__.

4.0

3.2__.

2.4

1.6_,
0.8_,
0.0

3

'"F.7..
'77

77

4 5 6 7 8 9 1 0 1 1 12 13 14 15 16 17 18 19 20
subs

(b) E3sTScol/seqTS o paraTS/seqTS

Figure 4.27. Performance of Decomposed Simplex Algorithm

With 2-sequence Row-major Spreading (a) and

Column-major Spreading (b).

Figure 4.27. summarizes the performance of the algorithm after

applying the 2-sequence row-major and column-major spreading

methods to the decomposed simplex algorithm on the

Sequent/Balance machine (Chapter 3). Eight processors are used in

164

the experiment. Clearly, the loop spreading technique significantly

reduced the last round effect.

4.9. Related Work

Notice that loop spreading resembles loop collapsing of [Padua-

86]. Loop collapsing was proposed to improve processor utilization

when the number of iterations N of a given loop is less than the

number of processors and the second level iterations of the loop are

independent. For example, loop [VII] is converted to the following

using loop collapsing:

FOR ij := 1 TO N*K DO
j := (ij-1) DIV N + 1;
i := (ij-1) MOD N + 1;
s(j,i);

END FOR;

and parallelized as:

PAR g := 1 TO P DO
FOR ij := g TO N*K STEP P DO

i := (ij-1) MOD N + 1; j := (ij-1) DIV N + 1;
s(j,i);

END FOR;
END PAR;

Although when N < P, loop collapsing is the same as our loop

spreading scheme [VI], in general, loop collapsing will perform much

worse than our loop spreading scheme. First, in loop collapsing, the

additional overhead is proportional to N, which makes it hard to

165

check the applicability of the scheme when N is unknown. Secondly,

when N mod P = 0, the collapsed loop will run slower than the

noncollapsed loop. Third, the additional overhead with loop

collapsing is much higher than that for loop spreading (when N > P).

Finally, loop collapsing can not be used on loops with dependent

substatements. Even if we insert SYNC/WAITs for loop collapsing

when substatements are dependent, in general, we have to use N*(K-

1) SYNC/WAITs. This is because loop collapsing keeps sj(1), sj(N)

in only one sequence (see Theorem 4.4).

To experimentally show the relative performance of loop

spreading over loop collapsing, we applied the following code for

collapsing the loop of the matrix multiplication algorithm (which

replaces DIV/MOD with repetitive addition and subtraction):

PAR g := 1 TO P DO
i := g; j := 1;
FOR ij := g TO N*K STEP P DO

WHILE i > N DO
i := i N; j := j + 1;

END WHILE;
s(j,i);
i:=i+P;

END FOR;
END PAR;

The performance of the collapsed matrix multiplication

algorithm and the spread matrix multiplication algorithm is plotted

in Figure 4.28. From this example, it is evident that loop spreading is

superior to loop collapsing in avoiding performance drop-off when

166

the loop bound is not a multiple of the number of processors.

8.0

7.7

7.4

7.1
p
e 6.8.

6.5

u 6.2

5.9

5.6

5.3

5.0
1 1

25 30 35 40 45 50

o spread, 6 & 8 procs ocollapse, 6 & 8 procs spread,? collapse,7

Figure 4.28. Performance of Collapsed and Spread Matrix

Multiplication Algorithm.

4.10. Conclusions

General processor load balancing is a very hard problem, even

NP complete if the parallel tasks are not well structured ([COFFMAN-

76], [GAREY-79, p.239], [KASAHARA-84], [HU-74], [ADAM-74],

[KAUFMAN-74], [KOHLER-75], [GONZALEZ-77], [OUSTERHOUT-80], [LO-

87], [KRUATRA-88]). We propose loop spreading as a means to

balance parallelized loops. Our experiment shows that loop

spreading schemes are very efficient solutions to the restricted

processor balance problem. Furthermore, loop spreading can be

completely performed by an automatic tool when analysing the input

167

program. Thus it is a technique which can be used by a parallelizing

compiler.

For a loop whose body s(i) can be partitioned into K

independent substatements, Si O, ..., sk(i), we can spread it evenly to

multiple processors with improved performance as long as

T(sk) 6T(+).

When the K substatements are data dependent, the spreading

has to use synchronization primitives (SYNC/WAIT) to conserve data

dependency.

Column-major spreading uses less SYNC/WAITs (only P-1) but

introduces high startup overhead and complex code. Several row-

major spreading schemes were shown to be as efficient as the

column-major spreading on shared memory machines and easier to

code. The spreading sequences, and the corresponding number of

SYNC/WAITs of row-major spreading schemes are summarized as

follows.

sequences # SYNC/WAITs
1 N*(K-1)
2 (N MOD P) *(K-1)
3 (N MOD P) *(K-1)
4 min((N MOD P), (P - (N MOD P))) *(K-1)

The tight lower bound on the number of SYNC/WAITs for any

row-major spreading scheme is min(N MOD P, P N MOD P). This

168

lower bound is achieved by 4-sequence spreading.

In considering the trade-off between the cost of SYNC/WAITs

and the computational overhead, we qualified the conditions when

we can apply loop spreading with improved performance as follows:

1-sequence row-major spreading:

10*T(+) + 3*T(SYNC/WAIT) < T(sk); (6.1)

2-sequence row-major spreading:

16*T(+) + 9*T(IF) + T(SYNC/WAIT) < T(sk); (7.1)

3-sequence row-major spreading:

16*T(+) + 12*T(IF) + T(SYNC/WAIT) < T(sk); (7.2)

4-sequence row-major spreading:

22*T(+) + 15*T(IF) + T(SYNC/WAIT)/2 < T(sk); (7.3)

Column-major spreading:

(2*Tinit + 2*T(SYNC/WAIT) + 9*T(+))/K + 9*T(IF) < T(sk). (7.4)

Three facts make the 2-sequence row-major spreading

attractive: 1) it is easy to code and the additional overhead is small,

2) in 50% of cases (when N MOD P P - N MOD P) it uses the

minimum number of SYNC/WAITs, 3) a SYNC and the corresponding

WAIT are at least 2 rounds apart, which allows the technique to be

applied to loops containing substatements that are not of the same

size.

169

Chapter 5

Implementation of Synchronization

Primitives for Loop Spreading

Abstract

Loop spreading is a technique to restructure parallel loops so as
to balance parallel tasks on multiple processors. The
implementation efficiency of the synchronization primitives
(SYNC/WAIT) decides whether or not the loop spreading
technique is practically useful. We present an implementation
strategy in which a SYNC operation takes only a shared memory
access (or sends only a message), and a WAIT operation takes only
one conditional check (receives a message). Most importantly,
the implementation of the primitives require only a working
space of size P, where P is the number of processors used in
parallel computation.

5.1. Introduction

When the number of processors P is less than the number of

tasks N in a parallel loop construct, the tasks are usually executed in

IN /Pi rounds, with the last round executing only N mod P tasks. In

the worst case when N mod P is one, all but one processor are idle in

the last round, and the performance of the parallelized program

degrades sharply. This performance drop becomes more and more

significant as the number of processors increases.

Loop spreading (Chapter 4) is a technique to automatically

restructure parallel loops so as to balance the parallel tasks on

multiple processors. For example, without using loop spreading, the

170

following loop usually is allocated to 3 processors as in Figure 5.1.

PAR i:=1 TO 4 DO sl(i); s2(i); s3(i); END PAR;

1(1) 1(2 51(3 sl(4 sl(1 1(3) s1(4

s2(1) s2(2) s2(3) s2(4) s2(1) s2(3) s2(4)

s3(1) s3(2) s3(3) s3(4) s3(1) s3(3) s3(4)

81(2

s2(2)

s3(2}

Figure 5.1. Example of Unbalanced Processor Load.

However, using loop spreading, the above loop can be allocated to 3

processors evenly as in Figure 5.2.

Figure 5.2. Load Balance Through Loop Spreading.

171

The diagonal arrows in Figure 5.2. represent the

synchronization operations. Since sl(4), s2(4), and s3(4) are

originally run on the same processor, synchronization operations

(SYNC/WAIT [MIDKIFF-86] [WOLFE-87]) are required to guarantee

correct results when spreading them to multiple processors. More

specifically, the arrow from statements sj(i) to sji-i(i) represents a

pair of SYNC(i, j) and WAIT(i, j) operations, where the SYNC(i, j)

operation is issued from the processor which executes sj(i) after sj(i)

finishes execution, and the WAIT(i, j) operation is issued at the other

processor which executes sj+i(i) before sji-i(i) starts execution. The

semantics of SYNC(i, j) indicate that statement sj(i) has finished

execution, and those of WAIT(i,j) force statement sj+i(i) to delay

execution until the corresponding SYNC(i, j) has been issued.

In Chapter 4, four row-major spreading schemes and one

column-major spreading scheme are described. All of the spreading

schemes spread a loop to multiple processors evenly, and each of the

schemes uses a different number of SYNC/WAITs to spread the loop.

The reader should study Chapter 4 for details of the Loop Spreading

technique, we only briefly survey the methods, here. Assume loop

PAR i:=1 TO N DO sl(i), ..., sk(i) ENDPAR is to be spread on P

processors, and P N < 2*P. These spreading schemes can be

summarized as follows.

172

Column-major spreading

Assume r = (K*N) mod P. Then r processors have 1(N*K)/P1

statements and P r processors have L(N*K)/P j statements. Let the

first r processors have r(N*K)/P1 statements and the remaining

processors have L(N*K)/P j statements. We place the N*K statements

sj(i), i=1,...,N, j=1,...,k, in the P processors column by column. When

only ji statements of sl(i), sK(i) can be placed on the current

processor before the processor reaches its quota, we separate sl(i),

sK(i) into two sequences (sK-ji+1(i), sK(i)) and (sl(i), sK-ji(i)) and

place the first sequence on that processor and the second sequence at

the beginning of the next processor. This placement is shown in

Figure 5.3.

s1(i)
s2(i)

sk-j i (i)

AA

sk-ji+1(i)
sk-ji +2(i)

sk(i)

Figure 5.3. Synchronization Pattern of Column-major Spreading.

For this spreading scheme, we need SYNC/WAITs only for the

pairs of statements sj(i) and si+i(i) that are on two different

173

processors, thus yielding a total of (P 1) SYNC/WAITs.

1-sequence Row-major Spreading

Assume N = P + R and mj = (j*N) MOD P. First, sl (1), ..., sl(N)

are placed on the P processors so that sl(i), 1 i P are placed on

processor i in the first round, sl (P +i), 1 5_ i R are placed on processor

i in the second round. Assume that sj(1),...,sj(N) have been placed in

ri*N/Pi*P rounds and the last round has only used the first mj

processors. We can assign si+1(1),...,si+I(P-mj) to the remaining

processors on that round, si+I(P-mj+1), sj +i(P- mj +2), si+i(P-mi+P) to

the next round, ... , and so on. An example of 1-sequence spreading

is shown in Figure 5.4.

PAR i:=1 TO 8 DO sl(i), s2(i), s3(i) ENDPAR;

Figure 5.4. Synchronization Pattern of 1-sequence Spreading.

174

For this spreading scheme, we need one SYNC/WAIT for every

pair of statements sj(i) and si+i(i), thus yielding a total of N*(K-1)

SYNC/WAITs.

2-sequence Row-major Spreading

Assume mj = (j*N) MOD P and rj = (j*(N MOD P)) MOD N. First,

sl(1), ..., sl(N) are spread on the P processors so that sl(i), 1 i P

are placed on processor i in the first round, and sl(P+i), 1 < i 5 ri are

placed on processor i in the second round. Then, s2(ri+1), ..., s2(P),

s2(P+1), s2(P+2), ..., s2(N), s2(1), s2(2), ..., s2(ri) are assigned to the

remaining processors in the second round and extended to later

rounds. Note that, no SYNC/WAIT is needed to force data

dependency between sl(i) and s2(i), for i=r1+1, ..., N, because s2(i) is

in the same processor as sl(i), i=r1+1, ..., N. Only s2(i'), 1=1,..,ri may

need to WAIT. In general, sj(1) ,..., sj(N) are placed as two sequences

sj(ri_i+1), ...sj(N), sj(1) ,..., sl(ri-i), and after they are placed on the P

processors the last round uses only the first mj processors. After

that, we can assign sj +i(rj +1), ..., sj +i(N), si+I(1), ..., sj +i(rj) to the

remaining processors on that round and extend to the following

rounds. An example of 2-sequence spreading is shown in Figure 5.5.

For this spreading scheme, we need one SYNC/WAIT from

every statement sj(i) in the first N MOD P statements of sj(ri-i+1),

...sj(N), sj(1) ,..., sl(ri-i) to their successor statements, which must be

among the last N MOD P statements of sj +i(rj +1), ..., si+i(N), si+1(1), ...,

175

si+i(rj), thus yielding a total of (N MOD P)*(K-1) SYNC/WAITs.

PAR i:=1 TO 7 DO sl(i), ..., s5(i) ENDPAR;

Figure 5.5. Synchronization Pattern of 2-sequence Spreading.

3-sequence Row-major Spreading

Assume mi = (N*i) mod P, i=1...K. The N*K statements can be

spread as follows. First, sl(1), ..., sl(N) are spread on the P

processors so that sl(i), 1 5. i P are placed on processor i in the first

round, and sl(P+i), 1 < i <_ ml are placed on processor i in the second

round. The remaining P-ml processors in that round are assigned to

s2(m1+1), s2(m1+2), ..., s2(P). Then, if all of the remaining s2(i)'s can

be placed in the third round, s2(1), s2(2), ..., s2(m1), s2(P+1), ...,s2(N)

are assigned to the third round, otherwise, only s2(1), s2(2), ...,

s2(ml), s2(P+1), ...,s2(2P-ml) are assigned to that round and s2(2P-

m1+1), ..., s2(N) are assigned to the beginning m2 processors of the

176

next round. Note that no WAIT is needed to force s2(i), i=1..P to be

executed after sl(i), i = 1, ... p respectively, as s2(i) is in the same

processor as sl(i), i=1..P. Only s2(P+i'), i'=1,..,(N-P) may need WAITs

because they may not be in the same processor as sl(P+i'). In

general, assume sj(1),...,sj(N) have been placed in rj*N/P1*P rounds

and the last round has only used the first mj processors. We can

assign si+i(mi +1),...,sj+i(P) to the remaining processors on that round.

If 2P - mj N, we place sj+i(1), ski-1(2), ..., sj+i(mj), sj+I(P+1), ...,si+I(N)

in the next round, or if 2P-mj < N, we place sj+i(1), sj+1(2), ..., sj+i(mi),

sj +i(P +1), ...,sj +i(2P -mj) in the next round, and si+1(2P-mi+1), ...,

ski-1(N) in the first mi+i processors of yet another round. An example

of 3-sequence spreading is shown in Figure 5.6.

PAR i:=1 TO 7 DO sl(i), ..., s5(i) ENDPAR;

Figure 5.6. Synchronization Pattern of 3-sequence Spreading.

For this spreading scheme, we need one SYNC/WAIT for every

177

pair of statements sj(i) and sj+i(i), for i > LN /PJ* P, thus yielding a

total of (N MOD P)*(K-1) SYNC/WAITs.

4-sequence Row-major Spreading

This is the same as 3-sequence spreading except that the last

sequence sj(P+1)sj(P+2) sj(N) of the 3-sequence spreading scheme

is separated into two sequences (si+i(ci+P+1), si+i(N)) and

(sj+i(P+1), ...sj +i(cj +P)), where cj = (N MOD P) (j*P) MOD (N MOD P) if

N MOD P > P - N MOD P, otherwise cj = 0. An example of 4-sequence

spreading is shown in Figure 5.7.

PAR i:=1 TO 8 DO sl(i), s5(i) ENDPAR;

410
sl(2) sl(3)

411)
sl(8)

s2(4)

0 CD 0406
CD GIL

411)70

s4(7)

Cif CO

s4(8) CO s5(5)

Figure 5.7. Synchronization Pattern of 4-sequence Spreading.

178

For this spreading scheme, only the first min(N MOD P, (P N

MOD P)) statements si+i(ci+P+1), ...,si+I(ci_i+P) of sj+i(ci+P+1),

sj+i(N)si+i(P+1), sj +i(P +cj) need to wait for the SYNCs from the last

min(N MOD P, (P N MOD P)) statements of sj(cj- i +P +l),

si(N)si(P+1), , sj(P+cj-i), thus yielding a total of min(N MOD P, (P N

MOD P)*(K-1) SYNC/WAITs.

In Section 2, we present a straightforward implementation for

the SYNC/WAITs operations, and raise the problem we want to solve.

Section 3 describes the SYNC/WAITs for column-major spreading

scheme, and in Section 4, efficient implementation of SYNC/WAITs

for row-major spreadings are derived.

5.2. Straightforward Implementation of SYNC/WAITs

In a shared memory system, the SYNC(i,j) and WAIT(i,j)

operations in the spread programs can be implemented by setting

and busy-waiting on the shared array element syncBuffer[i,j].

SYNC(i,j) sets syncBuffer[i,j] to a special number:

syncBuffer[i,j] := special number;

and WAIT(i,j) busy-waits for syncBuffer[i,j] to become the special

number, using the following code:

WHILE (syncBuffer[i,j] <> special number) DO;

179

Initially, we set the special number to 0. Before the L'th

parallel loop is executed, we let the special number be L. In this

way, no matter how many parallel loops are in a program, we need

to initialize the array syncBuffer only once:

syncBuffer[1..MAXROW, 1..MAXCOLUMN] := 0;

In a message passing system that has no shared memory, SYNC

and WAIT are implemented as sending and receiving messages.

Therefore, the sending processor must know which processor to send

and the receiving processor must know from which processor to ask

for the signal. Assume each processor has a local copy of syncBuffer.

Then, SYNC(i, j) and WAIT(i,j) operations can be implemented as

follows:

SYNC(i,j):

WAIT(i,j):

determine receiving processor g';
send(g', i, j);

determine sending processor g";
WHILE syncBuffer[i, j] <> special number DO

receive(g", x, y);
syncBuffer[x, y] := special number;

ENDWHILE;

These implementations of SYNC/WAIT are fast, especially when

we have carefully arranged the code so that when a WAIT is issued

the corresponding SYNC most probably has been issued (this is true

for all of the above spreading schemes). In this case, a SYNC

180

operation needs only a single shared memory access (sending a

message) and the WAIT operation needs merely one conditional

check (receiving a message).

However, the size of the array syncBuffer poses a storage

problem and introduces additional system overhead. More

importantly, if the size of the array can not be decided from the

program source, loop spreading cannot be applied automatically,

since a potential runtime error is introduced. For example, in the 1-

sequence spreading scheme, implementation of syncBuffer requires a

row size equal to (P + N MOD P), and a column size equal to (K-1).

The array has to be kept very large to prevent runtime error when

the value of K is unknown.

In the most general case, the above implementations are the

only choices, because multiple SYNCs required by the statements in

one processor may come from several different processors in

nondeterministic order, requiring each processor to buffer the SYNCs

and match up the buffered SYNCs with the corresponding WAITs.

For example, in the spread loop in Figure 5.8, when processor p3

issues WAIT(1,2), it is not impossible that SYNC(1,1), SYNC(2,7),

SYNC(3,4), and SYNC(3,1) all have been issued. Since all of these

SYNCs are used by processor p3, they have to be buffered.

However, for the kind of spreading schemes summarized in

Section 1, we can use less memory to implement the SYNC/WAITs.

181

PAR i:=1 TO 7 DO sl(i), ..., s4(i) ENDPAR;

Figure 5.8. Example of a Row-major Spreading In Which

Multiple SYNCs Must Be Buffered.

5.3. Implementation of SYNC/WAIT for Column-major
Spreading Scheme

We already know that column-major spreading needs at most

one SYNC per processor. Further, we know that the processor g

which issues a SYNC(i, j) knows that only the previous processor

g' = (g + P - 2) MOD P + 1

may wait for the signal, and the processor g which issues a WAIT(i, j)

knows that only the next processor

g" = g MOD P + 1

182

will issue the corresponding SYNC(i, j) operation. Based on these

facts, only one buffer element per processor is needed. For a shared

memory machine, SYNC(i, j) and WAIT(i, j) issued at processor g can

be implemented as follows:

SYNC(i, j): syncBuffer[g'] := true;
WAIT(i, j): WHILE NOT syncBuffer[g] DO.

For a message passing machine, the SYNC(i, j) issued from

processor g can be implemented as

send(g');

and the WAIT(i, j) operation issued in processor g can be

implemented as

receive(g");

183

5.4. Implementation of SYNC/WAIT for Row-major
Spreading Schemes

For row-major spreading schemes, each processor may issue

many SYNC/WAITs. For example, for the 1-sequence spreading

scheme, at least one processor must issue N*(K-1)/P SYNC/WAITs, as

there is a total of N*(K-1) SYNC/WAITs among the P processors. Thus

the implementation in Section 3 for column-major spreading does not

apply to the row-major spreading schemes.

However, if we can find a mapping

(i, j)) o(i, j),

such that for any two SYNC(i, j) and SYNC(i', j') received by processor

g, o(i, j) < o(i', j') if and only if SYNC(i, j) is received before SYNC(i', j'),

then each processor only needs to store the number o(i, j) for the

most recently received SYNC(i, j), and when it issues a WAIT(i', j')

operation, it only needs to check o(i', j') against the stored o(i, j). If

o(i', j') 5 o(i, j), then the corresponding SYNC(i' j') must have been

issued. Otherwise, it must wait for SYNC(i', j').

In order to determine the mapping o(i, j), we first establish the

following results.

184

Theorem 5.1. For any of the four row-major spreading

schemes, all of the SYNCs received at one processor are issued from

the same processor.

Proof. Let p(sj(i)) denote the processor that executes

statement sj(i). It is sufficient to show that if sy+I(F) and si-+I(i") are

on the same processor, then statements si,(F) and sr(i") must be on

the same processor. We prove this for each of the row-major

spreading schemes.

1-sequence spreading scheme. For 1-sequence spreading

scheme, statements sj(i) is executed on processor

then

p(sj(i)) = ((j-1)*N + i 1) MOD P + 1.

If si.+1(i') and sr+i(i") are on the same processor, namely

p(sy-1-1(0) P(si"1-1(i "))

= (j'*N + i') MOD P (j"*N + i") MOD P

= ((j' - j")*N + (i' - i")) MOD P = 0,

P(sit(F)) P(si"(i"))

= ((j'-1)*N + i') MOD P - ((j"-1)*N + i") MOD P

= ((j' - j")*N + (i - i")) MOD P = 0,

185

So, statements sy(i') and sj-(i") must be on the same processor.

2-sequence spreading scheme. For 2-sequence spreading

scheme, it is not difficult to see that statements sj(i) and sji-i(i) are

executed on processors according to the following:

statements p(s) ranges

sj(i)
sj(i)
sj+i(i)
sj+I(i)

(mj-i+i-rj-i-1) MOD P +1
(mj-t+N + i-rj-1-1) MOD P +1
(mj+i-rj-1) MOD P +1
(mj+N + i-rj-1) MOD P +1

i = rj -1 +1, ..., N;
i= 1, ..., rj-i;
i = rj + 1, ..., N;
i= 1, ..., rj.

We only prove the case when rj-1 < rj. The proof is similar for rj

1 rj. We consider two cases.

1) Assume i' e (1, ..., rj-1) and i" E (1, ..., rj-i). Since sy+i(i') is on

processor (mj' +N + i' -rj' -1) MOD P + 1, and sj " +l(i ") is on processor

(mj- + N + i " -rj" -1) MOD P + 1, sy+i(C) and sr+I(i") being on the same

processor means that

p(sr+I(P)) p(sy.+1(i"))

= (mj' + N + i' -rj') MOD P - (my' + N + i"-rj-) MOD P

= (my my' + i' i" ry + rj-) MOD P = 0.

Then, sj'(i') and sj"(i") must be on the same processor because:

186

P(sf(P)) P(siu(i"))

= (my_l + N+ it-ry-l) MOD P - (mr_i + N+ i"-rr-l) MOD P

= (my-t- myi-1 + i i" - ry_i + ryi_i) MOD P

= (mj' mj" + i' i" -ry + ry') MOD P = 0.

2) Assume i' e (ri-1 +1, ..., N) and i" e (1, ..., rj -1). Since sy+1(i')

is on processor (mj' + i'-ry -1) MOD P + 1, and sj"+1(i") is on processor

(my. + N + i"-ry. -1) MOD P + 1, sy+I(P) and sy.+1(i") being on the same

processor means that

Then,

p(sy+i(F)) p(sr+i(i"))

= (my + i' -rj') MOD P - (my, + N + i"-ry,) MOD P

= (my - my, + i' i" -ry + ry, - N) MOD P = 0.

p(sy+1(0) p(si"+i(i"))

= (my_i+i'-ry-i) MOD P - (mr_i+N + i"-ry.-1) MOD P

= (my-i- mr-i + i' i" -ry-i + ry.-1 N) MOD P

= (my - my, + i - i" - ry + ry, N) MOD P = 0.

So, sj'(i') and sj"(i") must be on the same processor.

187

3-sequence spreading scheme. For 3-sequence spreading

scheme, statement sj(i) is executed on processor:

then,

p(sj(i)) = (j * N P + i - 1) MOD P + 1.

If sii+1(1) and si-+I(i") are on the same processor, namely

p(sj'+1(i')) p(sj"+1(i"))

= ((j'+1) * N - P + i') MOD P ((j"+1) * N P + i") MOD P

= ((j' - j")*N + (i' i")) MOD P = 0,

13(s100) P(si"(i"))

=(r*N-P-1-1)MODP-(j"*N-P+i")MODP
= ((j' - j")*N + (1 i")) MOD P = 0.

So, statements sj'(i') and sj "(i ") must be on the same processor.

4-sequence spreading scheme. The proof is similar to that

for the 2-sequence spreading, so we will omit it, here.

Q.E.D.

The fact that all the SYNC's received at one processor will be

sent from the same processor tells us that o(i, j) is also the ordinal

value of SYNC(i, j) within the SYNC(i, j)'s that are sent from the

sending processor. Therefore, to determine o(i, j), we need only to

188

know the order in which the SYNCs are issued from the same

processors. The following theorem determines the value of o(i, j) for

the row-major spreading sequences.

Theorem 5.2. 1) For 1-sequence row-major spreading

scheme, o(i, j) can be the lexical order of (j, i). 2) For all of the other

row-major spreading schemes, we can use o(i, j) = j.

Proof. The first result is immediate from the fact that for 1-

sequence row-major spreading scheme, sj(1), sj(N) are placed in

that order before any of the si+i(i) are placed, and each of the sj(i)

needs to issue a SYNC to sj+i(i).

The second result is immediate from the fact that for 2/3/4 -

sequence row-major spreading schemes, fewer than P of the sj(1),

sj(N) need to issue SYNCs, these SYNCs are sent to different

processors, and sj(i)'s are placed before any of the si+i(i) are placed.

Q.E.D.

The following theorem determines the sending processor g' and

receiving processor g" for a processor g.

Theorem 5.3. For the 1/2/3-sequence row-major spreading

schemes and for the 4-sequence spreading scheme when N MOD P 5_

(P N MOD P),

189

g' = (g - N 1) MOD P + 1,

g" = (g - 1 + N) MOD P + 1,

and for the four sequence spreading scheme when N MOD P ?_ (P N

MOD P),

g' = (g + N-1) MOD P + 1.

g" = (g - N 1) MOD P + 1.

Proof. This is based on the following three facts:

1. For the 1/3-sequence spreading schemes, when sj(i) sends

SYNC(i, j) to si+i(i), then sj+1(i) is N statements following sj(i).

2. For the 2-sequence spreading schemes, when sj(i) sends

SYNC(i, j) to sj+1(i), then sj+i(i) is N + P statements after sj(i).

3. If N MOD P (P - N MOD P), the 4-sequence spreading

scheme is the same as the 3-sequence spreading scheme. If N MOD P

> (P - N MOD P), when sj(i) sends SYNC(i, j) to si+i(i), then sj+i(i) is (P -

N MOD P) + P statements after sj(i).

Q.E.D.

Based on Theorems 4.1 to 4.3, for all of the four row-major

spreading schemes we have studied, we can implement the

SYNC/WAIT on a shared memory machine as follows:

190

Initialize: syncB uffer[1 ..P] := 0;

SYNC(i,j) from g to g': syncBuffer[g'] := o(i, j);

WAIT(i,j) at g: WHILE (syncBuffer[g] < o(i, j)) DO.

In a message passing system, the SYNC and WAIT operations

can be implemented as

SYNC(i, j) from g to g':

WAIT(i, j) for g":

send(g');

receive(g").

For the above shared memory and message passing

implementations, each processor needs to calculate g' and/or g" only

once.

5.5. Summary

For a parallel loop of form:

PAR i:=1 TO N DO sl(i), ..., sk(i) ENDPAR;

or

PAR i:=1 TONDO
FOR j : =1 TO K DO

s(i, j);
ENDFOR;

ENDPAR;

191

the straightforward implementation of the synchronization

primitives for loop spreading introduces potential runtime error,

because the implementation has to use an array of size (P + N MOD P)

* (K 1), in which the value of K has to be estimated if K is a

variable.

By looking more closely at the five spreading schemes, we have

succeeded in reducing the array from size (P+ N MOD P) * (K 1) to a

vector of size P without sacrificing performance. Since P is the

number of processors on line, it is a constant known to the system.

192

Chapter 6

Summary and Future Work

6.1. Summary

The major results of this research can be summarized as

follows.

. The revised two-phase simplex algorithm has been

parallelized with linear improvement in performance. This result is

much better than [FINKEL-87] and [CHOI-88].

. One of our new parallel decomposed simplex algorithms (TS)

has achieved more than 2*P performance improvement over the

sequential algorithm using P processors, which is nearly twice as

efficient as the algorithm proposed in literature ([WYPIOR-77]).

. A new processor load balance technique named Loop

Spreading is developed. Our experiment shows that this technique

can significantly improve the performance of matrix multiplication

and parallel decomposed simplex algorithms.

. As a general processor load balance technique, we showed

that the loop spreading technique has the following properties:

193

1) Applicability can be checked without knowing loop bound

(We supplied with the formulas) and appropriate version

can be chosen in different situation.

2) The methods introduce very small overhead and can be

applied to most loops.

3) When N mod P = 0, the spread loop will not run slower than

the non-spread loop.

4) The method can be applied when the substatements inside

the loop are data dependent.

6.2. Limitations of the Study

1) Many techniques that take advantage of the pattern of the

input data are not incorporated in our simplex algorithms. Also, the

strategies for controlling convergence, round-off error, etc. are not
the emphasis of the research.

2) The test data we used for obtaining the performance results

are generated randomly. This may restrict the validity of our result
to "theoretical" linear programs.

3) Our experiments were done on a parallel machine with only

10 processors. Whether or not we can scale up the result here when

more processors are added remains open.

194

6.3. Future Work

The following work is worthy of future research efforts:

1) Incorporating the techniques that take advantage of the

pattern of the input data and the strategies for controlling

convergence, round-off error etc. into our algorithms. One way to

achieve this is to use the parallelization strategies studied here on

some sequential program that has already been designed with these

considerations.

2) Implementing our TS parallel decomposed simplex algorithm

on a message passing based machine. We expect that the

implementation on a message passing based machine will present

even more challenges.

3) Automating the loop spreading techniques. Even though

we showed that loop spreading can be done automatically, it is not

trivial to implement such an automatic tool. For example, to decide

whether or not loop spreading should be used, the tool must estimate

the execution time of program segments. Further, it may turn out to

be very hard to convert local variables to global variables that must

span several processors.

195

Bibliography

[ACKE -79] W.B. Ackerman, "Data flow language", Proceeding of AFIPS

1979, 1087-1095.

[ADAM-74] Adam, T. L., K. M. Chandy, and J. R. Dickson, "A

Comparison of List Scheduling for Parallel Processing Systems,"

CACM, vol. 17, pp. 685-690, Dec. 1974.

[AHO-77] Aho, A. V. and J. D. Ullman, Principles of Compiler Design,

Addison-Wesley, Reading, Mass., 1977.

[ALDER-73] Alder, I. and A. iilkiicii, "On the number of iterations in

Dantzig-Wolfe Decomposition." in: D.M. Himmelblan, ed.,

Decomposition of Large Scale Problems. (North-Holland,

Amsterdan, 1973) pp. 181-187.

[ALLEN-83] Allen, J. R., Dependence Analysis for Subscripted

Variables and Its Applications to Program Transformations,

Ph.D. Thesis, Rice University, Houston, April 1983.

[APPELBE-85] Appelbe, W. F. and C. McDowell, "Anomaly Detection in

Parallel Fortran Programs," Proc. Workshop on Parallel

Processing Using the HEP, May 1985.

[ARVI-78] Arvind, K.P. Gosterlow, and W. Plouf, "An Asynchronous

Programming Language and Computing Machine," TR#114A,

Dept. of Inf. and Comp. Science, University of California, Irvine,

Dec. 1978.

[BEALE-65] Beale, E., P. Huges, and R. Small, "Experiences in Using a

Decomposition Program," Computer Journal 8 (1965) 13-15.

196

[BEN-68] Ben-Israel, A. and A. Charnes, "A Explicit Solution of a Class

of Linear Programming Problems," Oper. Res. 16:1166-1175

(1968).

[CAMP-78] R.H. Campbell, and T.J. Miller, "A Path Pascal Language,"

Dept. Computer Science, Univ. Illinois at Urbana-Champaign,

Tech. Report, (Apr. 1978), 20 pp.

[CHARNES-80] Charnes, A., W. W. Cooper, S. Duffuaa, and M. Kress,

"Complexity and Computability of Solutions to Linear

Programming Systems," International Journal of Computer and

Information Sciences, Vol. 9, No. 6, 1980.

[CHOI-88] Choi, Sungwoon and Ted Lewis, "Parallel Execution of the

Simplex Algorithm," Tech. Report, Dept. of Computer Science,

Oregon State University, 1988.

[COFFMAN-76] Coffman, E. G., Computer and Job-shop Scheduling

Theory. New York: Wiley, 1976.

[COURTOIS-71] Courtois, P.J., F. Heymans, and D.L. Parnas, "A

Concurrent Control With Readers and Writers," CACM, Vol. 14,

No. 10, October 1971, pp. 667-668.

[DANTZIG-60] Dantzig, G. B., and P. Wolfe, "The Decomposition

Principle for Linear Programs," Operations Research 8, 1960,

pp. 101-111.

[DANTZIG-61] Dantzig, G. B., and P. Wolfe, "The Decomposition

Algorithm for Linear Programs," Econometrica, 29, 1961, pp.

767-778.

[DANTZIG-63] Dantzig, G. B., Linear Programming and Extensions,

Princeton University Press, Princeton, NJ (1963).

197

[DENN-74] J. B. Dennis, "First Version of a Data Flow Procedure

Language," in Lecture Notes in Computer Science, 19, Springer-

Verlag, Berlin, 1974, pp. 362-376.

[DEWITT-84] DeWitt, D., R. Finkel, and M. Solomon, "The Cristal

multiprocessor: Design and implementation experience,"

Technical Report 553, University of Wisconsin-Madison

Computer Science (Sept. 1984).

[FANG-87] Fang, Zhixi, Pen-Chung Yew, Peiyi Tang, and Chuan-Qi Zhu,

"Dynamic Processor Self-scheduling for General Parallel Nested

Loops," Proceeding of 1987 International Conference on

Parallel Processing, Aug. 17-21.

[FINKEL-87] Finkel, Raphael A., "Large-grain Parallelism -- Three

Case Studies," The Characteristics of Parallel Algorithms, Leah

H. Jamieson (ed), The MIT Press, 1987.

[GAJSKI-82] D. D. Gajski, D. A. Panda, D. J. Kuck, and R. H. Kuhn, ", A

Second Opinion on Dataflow Machines and Languages," IEEE

Comp. Feb. 1982, pp. 58-70.

[GAREY-79] Garey, Micheal R., and David S. Johnson, Computers and

Intractability: A Guide to Theory of NP-Completeness, W. H.

Freeman and Company, New York, 1979.

[GILL-85] Gill, P., W. Murray, M. Saunders, J. Tomlin and M. Wright,

"A Note on Interior-point Methods for Linear Programming,"

MPS Committee on Algorithms Newsletter 13, 13-18 (1985).

[GONZALEZ-77] Gonzalez, M. J. Jr. "Deterministic Processor

Scheduling," Comp. Surveys, vol. 9, no. 3, Sept. 1977, pp. 173-

204.

198

[GROTSCHEL-81] Grotschel, M., L. Lovasz, and A. Schrijver, "The

Ellipsoid Method and its Consequences in Combinatorial

Optimization," Combinatorica, Vol. 1, No. 2, 1981, pp. 169-197.

[HO -78] Ho, J. K., "Implementation and Application of a Nested

Decomposition Algorithm," in: W.W. White, ed, Computer and

Mathematic Programming (National Bureau of Standards, 1978)

pp. 67-76.

[HO -80] Ho, J. K., and E. Loute, "A Comparative Study of Two Methods

for Staircase Linear Programs," ACM Trans. on Math. Software 6

(1980) 17-30.

[HO -81] Ho, J. K., and E. Loute, "An Advanced Implementation of the

Dantzig-Wolfe Decomposition Algorithm for Linear

Programming," Mathematical Programming 20 (May 1981)

303-326.

[HU-74] Hu, T. C., "Parallel Scheduling and Assembly Line Problems,"

Oper. Res., vol. 9, no. 6, pp. 841-848. 1961.

[IIZAWA-84] Iizawa, A., and T. L. Kunii, "Graph-based Design

Specification of Parallel Computation," Lecture Notes in

Computer Science, Vol 163, 1984, pp. 132-160.

[KARMARKAR-84] Karmarkar, N., "A New Polynomial Time Algorithm

for Linear Programming," Proceedings of the 16th Annual ACM

Symposium on the Theory of Computing, 302-311 (1984).

[KASAHARA-84] Kasahara and H. S. Narita, "Practical Multiprocessor

Scheduling Algorithms for Efficient Parallel Processing," IEEE

Trans. Comput., vol. c-33, pp. 1023-1029, Nov. 1984.

199

[KAUFMAN-74] Kaufman, M. T., "An Almost-Optimal Algorithm for

the Assembly Line Scheduling Problem," IEEE Trans. Comput.,

vol. c-23, p. 1169, Nov. 1974.

[KLEE-76] Klee, V. and G.J. Minty, "How Good is the Simplex

Algorithm?", in 0. Shisha, ed., Inequalities III (Academic Press,

New York, 1972).

[KOHLER-75] Kohler, W. H., "A Preliminary Evaluation of the Critical

Path Method for Scheduling Tasks on Multiprocessor Systems,"

IEEE Trans. Comput., vol. c-24, no. 12, p. 1235, Dec. 1975.

[KRUATRA-88] Kruatrachue, B. and Ted Lewis, "Grain Size

Determination for Parallel Processing," IEEE Software, Jan.

1988.

[KUCK-72] D. J. Kuck, Y. Muraoka, S. C. Chen, "On the Number of

Operations Simultaneously Executable in Fortran-like Programs

and Their Resultant Speedup," IEEE Trans. Comp. vol. C-21, no.

12, Dec. 1972, pp. 1293-1310.

[KUCK-76] D. J. Kuck, "Parallel Processing of Ordinary Programs," in

Advances in Computers, vol. 15, Rubinoff and Yovits, eds,

Academic Press, New York, 1976, pp. 119-179.

[KUCK-81] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M.

Wolfe, "Dependence Graphs and Compiler Optimizations," Proc.

8th ACM Symp. Principles Programming Languages, Jan. 1981,

pp. 207-218.

200

[KUCK-84] D.J. Kuck, A.H. Sameh, R. Cytron, A.V. Veidenbaum, C.D.

Polychronopoulos, G. Lee, T. McDaniel, B.R. Leasure, C. Beckman,

J.R.B. Davies, and C.P Kruskal, "The Effects of Program

Restructuring, Algorithm Change, and Architecture Choice on

Program Performance," 1984 ICPP, Aug. 1984, pp. 129-138.

[KUNG-76] Kung, H. T., "Synchronized and Asynchronous Parallel

Algorithms for Multiprocessors," in Algorithms and Complexity,

Academic Press, 1976, pp. 153-200.

[KUNZI-68] Kiinzi, P. Hans, H.G. Tzschach, and C.A. Zehnder, Numerical

Methods of Mathematical Optimization with ALGOL and

FORTRAN programs. Academic Press, New York and London,

1968.

[LAMPORT-75] Lamport, L., On Programming Parallel Computers, in

Proc. of a Conf. on Prog. Lang. and Compilers for Parallel and

Vector Machines, ACM SINGPLAN, New York, March 18-19,

1975.

[LEE-85] Lee, Gyungho, Clyde P. Kruskal, and David J. Kuck, "An

Empirical Study of Automatic Restructuring of Nonnumerical

Programs for Parallel Processors", IEEE Trans. on Computers,

Vol. c-34, No. 10, October 1985.

[LINDBERG-84] Lindberg, P. 0. and Snjolfur Olafsson, "On the Length

of Simplex Paths: the Assignment Case," Mathematical

Programming 30 (1984) 243-260.

[L0-87] Lo, Shau-Ping and Virgil D. Gligor, "Properties of

Multiprocessor Scheduling Algorithms," Proceeding of 1987

International Conference on Parallel Processing, Aug. 867-870.

201

[LUBECK-85] Lubeck, 0. M., P. 0. Frederickson, R. E. Hiromoto, and J.

W. Moore, "Los Alamos Experiences with the HEP Computer," in

Parallel MIMD Computation: HEP Supercomputer and Its

Applications (MIT Press, 1985).

[MAY-84] May, D. and R. Shepherd, "Occam and the Transputer," Proc.

IFIP WG10.3 Workshop on Hardware-Supported

Implementation of Concurrent Languages in Distributed

Systems, North-Holland, Amsterdam, Oct. 1984, pp. 19-33.

[MIDICIFF-86] Midkiff, Samuel P. and David A. Padua, "Compiler

Generated Synchronization for DO Loops," Proc. of the 1986 Int'l

Conf. on Parallel Processing, St. Charles, IL, IEEE Computer

Society Press, Wash., DC, Aug. 19-22, 1986, pp. 544-551.

[ORCHARD-54] Orchard-Hays, Wm., "Background, Development, and

Extensions of the Revised Simplex Method," RAND report (RM)

1433, 1954.

[OSTERHAUG-86] Osterhaug, Anita, Guide to Parallel Programming on

Sequent Computer Systems, 1986.

[OUSTERHOUT-80] Ousterhaut, J. K., et al., "Medusa: An Experiment in

Distributed Operating System Structure," CACM, vol. 23, no. 2,

Feb. 1980, pp. 92-104.

[OUSTERHOUT-82] Ousterhaut, J. K., Proc. of the 3rd Int. Conf.

Distributed Computing Systems, New York, p. 22, 1982.

[PADUA-86] Padua, D.A., and M.J. Wolfe, Advanced Compiler

Optimizations for Supercomputers, CACM, 29(12), Dec. 1986.

[PANG-87] Pang, Jong-Shi, Jiann-Min Yang, "Two-Stage Parallel

Iterative Method for the Symmetric Linear Complementarity

Problem," ORSA/TIMS St. Louis, Oct. 87.

202

[PRITSKER-86] Britsker, A. Alan, Introduction to Simulation and

SLAM II, John Wiley & Sons, New York, 1986.

[RIDEOUT-80] Rideout, V. L., "Limits to Improvement of Silicon

Integrated Circuits," Digest of Papers, IEEE Compcon (San

Francisco, CA. 1980).

[SCOTT-84] Scott, M. L. and R. A. Finkel, "LYNX: A dynamic distributed

programming language," 1984 International Conference on

Parallel Processing, (Aug. 1984).

[SEITZ-84] Seitz, Charles, and Juni Matisoo, "Engineering Limits on

Computer Performance," Physics Today (May 1984).

[SYSLO-83] Sys lo, Maciej M., Deo, Narsiugh, and Kowalik, Janusz S.,

"Discrete Optimization Algorithms--with PASCAL Programs,"

Prentice-Hall, 1983.

[TANG-85] Tang, Peiyi, Pen-Chung Yew, and Chuan-Qi Zhu, "Processor

Self-scheduling in Large Multiprocessor Systems," Proceeding

of 2nd SIAM Conference on Parallel Processing for Scientific

Computing, Oct. 1985.

[THAKKAR-85] Thakkar, S. P. Gifford, and G. Fielland, "Balance: A

Shared Memory Multiprocessor System," Proc. Int'l Conf.

Supercomputing, Institute for Supercomputing, St. Peterburg.

Fla., 1985, pp. 93-101.

[THOMPSON-87] Thompson, Karen M., "Parallel Algorithms for Solving

the Linear Complementarity Problem," ORSA/TIMS St. Louis,

Oct. 87.

[WOLFE-82] Wolfe, M.J., Optimizing Supercompiler for

Supercomputers, Ph.D. Thesis, University of Illinois, Urbana-

Champaign, 1982.

203

[WOLFE-87] Wolfe, M.J. and Utpal Banerjee, "Data Dependence for

Parallelism Detection," Int'l Journal of Parallel Programming,

Vol. 15, No. 2, April, 1987.

[WOLFE-88] Michael Wolfe, "Multiprocessor Synchronization for

Concurrent Loops," IEEE Software, vol. 5, No. 1, Jan. 1988, pp.

23 -33 .

[WYPIOR-77] Wypior, Peter, "A Parallel Simplex Algorithm," Parallel

Computers-Parallel Mathematics, M. Feilmeier (ed), Proceedings

of the IMACS (AICA)-GI, Symposium, March 14-16, 1977,

Technical University of Munich (North-Holland). pp. 235-237.

Appendices

204

Appendix A

Two-phase Revised Simplex Algorithm

In this appendix we give background on the two-phase revised

simplex algorithm for solving linear programs.

A.1. Simplex Algorithm

A linear Program (LP) is a system that determines x which

minimizes
T

Z = C x,

subject to Ax = b, x ?. 0

where A is an m by n matrix (n > m), c is an n element cost vector, b

is a vector of length m, and x is an unknown vector of length n. The

superscript T denotes vector transposition.

1Let B be any m columns of A. If B is nonsingular and x =B b
0, then B is called a feasible base and x is called a base feasible

solution (x is also an extreme point).

205

Assume B is a feasible base of A; N the non-base columns of

A; CB and xB the vectors of c and x corresponding to B; cN and xN

the vectors of c and x corresponding to N. That is

A = (B,N), x=(XB, XN),
T c= (CB, CN).

Then, we have:

Ax = b, or Bx B+ NXN = b

where

1 1=B b - B N xN

T T

Z = C X =C BXB + CNXN

T -1 T T -1
=CBB b + ON -CB B N) XN

T T T -1
= CB x0 + ON -CB B N)XN

T
= zo +p X

N

-1
xo =B b ,

T
ZO = C

B
X0 '

T T -1
pT = N)

206

If B is the current feasible base, then, we can let xN = 0, and xo
-1

= B = B b 0 is the current base feasible solution, zo is the current

objective value. We want to find a non-base column Nk =ak t o

replace a column of B so that the new base corresponds to a solution

that decreases z. We can achieve this by selecting ak that satisfies

T
Pk = CB B

1 \ < 0

to replace a column of B such that the resulting base B' is still a

feasible base.

-1Assume xk. B a Zk = CBXk , k = 1..n, and 13 which is a non-

negative scalar value. Then

b -0 ak= B X0 - 0 Bxk

b = eak+ B(x0 - xk)

Since xo 0, if at least one component of xk is larger than zero, then

we can always find 8 = xoi/xki = min(xoj /xkj I xki> 0) > 0 such that xo' =

(X0 e Xk, e) = xoi+1-exki+1,...,x0m-exkm) 0.

Let Bi be the column of B corresponding to xoi and ak be a column of

N corresponding to xki. If we let B' be the new base obtained by

replacing Bi with ak, then xo' is the base feasible solution

corresponding to B'.

207

Similarly, we have

T
ZO - 0 Zk= CB(X0 - 0 Xk)

T
ZO - 0 Zk+ 0 CNk= CB(XO -9 Xk) + 0 CNk

T

ZO + e(CNk Zd= CB(X0 -0 Xi + 9 CNk

For the base B' and base feasible solution xo', the corresponding

objective value is zo' = zo + 0(zk CNk). As

Pk = (CNk- ZI < 0,

we know that zo' < zo. Notice that if we start with a linear program

that maximizes z, we can use the same method as above except

requiring that pk > 0.

Note that if xk < 0 then zo' can be made arbitrarily large, and

the linear program is unbounded (-00). In this case, for any 0, xo +

0(1,-xk) is a feasible solution (may not be base feasible) of the linear

program. For the purpose of describing the decomposed algorithm

later, we point out here that, for any 0, 0(1,-xk) is called a

homogeneous solution of the LP, and the normalized homogeneous

solution

*(1,-xk)

208

is called an extreme homogeneous solution of the LP.

A.2. Revised Simplex Algorithm

To simplify the testing of pk < (or >) 0, the revised simplex

algorithm converts the LP

minimizes Z =C x

subject to Ax = b, x 0

into the following equivalent problem:

maximizes

subject to Ax = b, x >= 0, and c x + z = 0

This is equivalent to solving the following problem:

minimizes
T

Z =C X

subject to A'x = b', x 0

where A' is obtained by augmenting the coefficient matrix A to

[IA'= T
C

b' = (b 0) , and c' = (0,0,...,0, 1)T.

209

If the current base of the argumented problem is B,

ui,u2,---,um,urn+i are the rows of B ,
1

and ai,a2,...,am+i are the columns

of A', as z must always be in the current base feasible solution, c

0, and

T
-1

T
-1

Pk = CNk CB B ak= CB B air -um+i ak.

So, to determine whether or not ak can be brought into the base, we

only need to check that um +lak < 0.

To find an initial feasible base to start the simplex iterations,

usually m artificial variables xn +1,xn +2,...,xn +m are added, and the

coefficient matrix A' is further augmented to A"

A I
A" =

[CT 0 1

With this coefficient matrix, the initial base is trivially

When the simplex iteration stops, all of the artificial variables must

be zero, if the given LP is feasible (there is at least one feasible

solution).

210

A.3. Two-phase Revised Simplex Algorithm

In reality, a given LP may have no feasible solution at all. The

two-phase revised simplex [ORCHARD-54] algorithm adds

another constraint xn+1 -i-xn+2+...i-xn+m+xn+m+2=0 to determine whether

or not a given LP is feasible and to ensure that all of the artificial

variables converge to zero in the final base feasible solution. With

the new constraint added, the coefficient matrix A" is augmented to

A'",

A"'-=

The initial base is

A I 0
[cT 0 1

0 e 0
0
1

-1and B =
1

r-m+i

e

011

where e stands for a row vector of all one's. Assume 111,112,...,Um+2

are the rows of B,1and a1,a2,...,am+2 are the columns of Am.

Phase I. The first phase of the algorithm is to maximize

xn+m+2 (with maximal value zero). Since the artificial variables xn-f-i >

0, i=1,..,m, the constraint xn+1 -Exn+2+...+xn+m+xn+m+2=0 ensures that

xn+m+2 .- 0. If the maximal value of xn +m +2 < 0, then the original LP

has no feasible solution, since it means that xn+1, xn+2, ...,xn+m can not

be all zeros in any of the feasible solutions. In the first phase, the

211

condition to determine that the current objective value can be

improved is pk =Um+2 ai. 0.

Phase II. When the first phase finishes, if Xm+n+2 is zero, the

given LP is feasible and phase two can be started to maximize z. The

last base during phase one can be used as the starting base of phase
two. During phase two, xm+n+2 must be kept zero to make all artificial

variables remain zero when the simplex iteration finishes. To keep

xm+n+2 = 0, we always keep it a component of the current base

feasible solution (say it is xBm+2). Notice that after each iteration, xB'

= (XB - 0 Xk, 0) = (xB1-qxk1,..,xBi-1-qxki-1,0 , xsi+1-qxki+1,..,xBm-
-1

qxkm,z,xBm+2-qxkm+2) and xi(= B ak. As 0 > 0, to keep XBm+2

unchanged, we must make sure that Xkm+2 = 0. In other words, the

column a to enter the base must satisfy lim+2 a = 0 (two other

methods to keep artificial variables zero in phase two can be found

in [Murty-78, p72] and [Simmons-75, p140]). In the second phase,

the condition to determine that the current objective value can be

improved is pk =uni+i ak< 0.

A.4. Computational Procedure for Two-phase Revised
Simplex Algorithm

The two-phase revised simplex algorithm can be described

procedurally as follows [SYSLO-83] (we assume ak is the k'th column

of the matrix A , and uk is the k'th row of matrix U).

212

Input. A, an m*n matrix; b, an m vector; c, an n vector.

Initialization. Extend A to an (m+2)*n matrix by adding cT to be its

m+l'th row and all zeros to be its m+2'th row;
-1

the inverse of initial base U = B = ,-e 1

the initial base feasible solution x = (xi, x2, ..., xm+i, xm+2) = (b,
Ill

0, / bi);
i=i

the numbers of the base columns corresponding to the

components of the optimal solution are remembered in vector

w, with initial values of w 1 = n+1, w2 = n+2, ... , and Wm+2 =

n+m+2;

phase = 1; q = m+2.

Iteration.
step 1. If xq = 0 and phase = 1, set phase = 2, q = m+ 1.

For j = 1, ... , n, calculate Sj = uq * aj.

step 2. Calculate Sk = min(Sj I j = 1, ..., n).

If Sk 0 and phase = 1, then the original LP is infeasible and

stop. If Sk ?_ 0 and phase = 2, then xq is the maximal and -xq is

the minimal value of the original LP, exit the repetition.

Otherwise, ak is the new column to enter the base.

step 3. Compute yi = ui * ak, i = 1, ... , q, and Eli =xi/yi if yi >0,

i=1,...,m.

213

step 4. If all yi 0, i=1,...,m, and phase =1, then the original LP is

infeasible, stop. If all yi 0, i=1,...,m, and phase =2, then the

original LP is unbounded. Otherwise, calculate

0 = et = min (0.)
15i5.msyi>0

at is the column to be removed from the base.

step 5. Calculate the new values of the variables in the base

solution and update U:

wt= k, xt = 0

xi = xi-eyi (i*t, 1 =1,..,q),

uii = uii yi *utj /yt (i*t, i =1,..,q, j=1,..m)

uti = utilyt

Output. The optimal objective value is -xq, and the components of

the optimal base feasible solution are xi, ... , xm, where xi

corresponds to awi.

214

Appendix B

Sequential Algorithm for Decomposed

Linear Programs

B.1. Decomposed Linear Programs

A decomposed linear program is to find x = (xi, x2, ..., xn)T. 0

which

(I)

n

minimizes /cjxj
j=i

n

subject to /Ajxj = b, Djxj = bj, xj 0, for j = 1,...,n,
j=i

where for j=1..n, Aj is an m by nj matrix; Dj an mj by nj matrix; bj

an mj vector; cj an nj vector; xj an nj vector; and b an m vector.

n

The decomposed linear program in (I) has I nj variables and m
n j=1 n+I mj constraints. The coefficient matrix of (I) has I nj columns

j=1 n i=1

and m +/ mj rows. By directly applying the revised two-phase
j=1

simplex algorithm to solve this problem, each iteration will operate

215

n n

on a base of size (m +/ mj) * (m +1, mj), and the algorithm will take
jr71 j=1 n

in the average 2 (m + / mj) iterations. When (m + / mj) is large,
j=1 j=1

this program become intractable both in storage and execution time.

B.2. Dantzig and Wolfe's Decomposition Principle

The decomposition principle of Dantzig and Wolfe [DANTZIG-60]

converts the decomposed program into an equivalent extremal

problem of smaller size. To derive the equivalent extremal problem,

assume that wj = (xii,xj2,...,xie and vj = {yii,yi2,...,yjn1 } are the

extreme points and the extreme homogeneous solutions of the

subproblem Sj = {Dixi = bj , xj ?_ 0). According to the resolution

theorem of [MURTY-76], every solution xi of Si can be expressed as

a convex combination of the extreme points in wj plus a nonnegative

combination of the extreme homogeneous solutions in vj. Namely, we

can find sik's and tjg's such that,

e. 11 e.

xi =isikxjk +1 tigyig, and isjk = 1, sjk 0, tjg ?. 0.
k=1 g=1 k=1

216

For a solution x = X2, Xn) 0 of (I), xi must be a solution

of Si, j = 1...n, and thus should be able to be represented as above.

So, the constraints = b can be rewritten as:

n

IjXj = Sj(hjkXjk +Itjgyjg) = b, and
J=1 j=1 k=1 g=1

e.

iSjk = 1, sik0, tjg
k=1

and the objective function becomes

n 411,.

EjXj = + ILcitigyig
j=1 j=1 k=1 j=1 g=1

If we define the extremal problem as:

41.n e n

minimize dAti g
j=1 k=1 j=1 g=1

n e* n .411.vj,
subject to ILpiksik + //qigtig= b, and

j=1 k=1 j=1 g=1

v.%

idSjk = 1, Sjk-0, tjg
k=1

where Cjk = CjXjk, djl = corn, pjk = Ajxjk, qji = Ajyjk, and Ai and ci are

as defined in (I), then for every solution x = xn)

of (I), there is a solution of (II): (Si 1, s12,..., sie1,s21,...,sjej,

217

...,t11,t12,,t1h1,t21,Mhj,,), W = (X11,X12,,X1e1,X21,,Xjej,,), V =

(yi1,y12,..,y1h1,y21,...,Yihi,...,), and Sjk = 1, sjk?. 0, tjg 0, such that
e h. k=1

xi = SjkXjk tjgyjg. On the other hand, for every solution of the
k=1 g=1

extremal problem: (sii,s12,...,siei,s21,...,sjej,,tii,t12,...,tim,t21,-.,tini,,),

w = v =
e. h.

xi = tigyig is also a solution of (I). Especially, the optimal
k=1 g=1

solution of (II) corresponds to an optimal solution of (I). In other

words, to solve the decomposed LP is equivalent to solve the extreme

problem.

In matrix form, the extremal problem is to minimize c'x,

subject to A'x = b' and x 0, where,

C' = (cii,..,ciei,

A' = 1 ,..., 1 , 0 ,...., 0 ,..., 0 ,..., 0 , 0 ,..., 0

0 0

0 ,..., 0 , 0 ,...., 0 ,..., 1 ,..., 1 , 0 ,..., O.

b' = (b, 1, ..., 1)T.

218

To solve the extreme problem, we need a central solver to

control the extreme problem and a subproblem solver for each of the

subproblems for providing subsolutions to the central solver. We can

use the two-phase revised simplex algorithm to be both the central

problem solver and the subproblem solvers.

The extremal problem has as many variables as the total

number of extreme points of all of the subproblems. In addition, it

requires that the extreme points of Si , j = 1...n, be known when

needed. Since the number of extreme points of an LP is very large,

we can not know all of them beforehand.

However, each iteration of the central solver operates on the

current base which requires only m+n of the extreme points to be

known. To go to the next feasible base, we need only obtain another

non-base column by obtaining a new subsolution of one of the

subproblems.

219

B.3. Decomposed Simplex Algorithm

We use the two-phase revised simplex algorithm to be both the

central problem solver and the subproblem solvers. Assume that the

rows of the inverse of the central base are Ul, U2, ..., Um+n+2. In

phase one, column A'j of A' can be brought into the current base to

improve the objective value if um+h+zAj < 0 (for phase two, using

um+h+iAj < 0). As A'j = (Ajxjk,0,...,0, d,0,...,0,cjxjk,0), where d is 1 if xjk

is an extreme point of subproblem Sj or 0 if xjk is an extreme

homogeneous solution of subproblem Sj, Um+n+2 A'j = Um+n+2,1..mAjXjk

+ dum +n +2,m +j + Um+n+2,m+n+1CjXjk = (Um+n+2,1..mAj + Um+n+2,m+n+1CDXjk +

dum +n +2,m +j. To find the column A'j that has the smallest value of

Um+n+2 A'j as possible, the subproblems should try to find the xjk that

minimizes (um+h+2,1..mAj + Um+n+2,m+n+1Cj)Xjk, namely, using

(Um+n+2,1..mAj + Um+n+2,m+n+1Cj) as the objective vector of all of the

subproblems. If a subproblem is unbounded (when it finds a halfline

xe Oxh), the subproblem has a choice to either return the extreme

point Xe (if (Um+n+2,1..mAj + Um+n+2,m+n+1Cj)Xe + Um+n+2,m+j is smaller)

or the extreme homogeneous solution xh (if (um+n-4-2,1..mAj +

Um+n+2,m+n+1CDXh is Smailer).

Corresponding to the two-phase revised simplex algorithm for

solving normal LP's, we describe the algorithm for solving the

decomposed linear program as follows (we assume ak is the k'th

column of the matrix A', and uk is the k'th row of matrix U).

220

Input. Ai, m*ni matrices and Di, mi*ni matrices, i = 1, n; bo, an m

vectors; bi, mi vectors, i = 1, n; ci, ni vectors, i = 1, n.

Initialization. Assume e be a vector of all l's.

The inverse of initial base

[Im+n+1
U =(111, U2,...Um +n +2) = B = -e 1

the initial base feasible solution

m

S = (S1, S2, ..., Sm+n+2) = (bo, 1, ... 1, 0, WINO;
i=1

the central left hand side vector b = (bo, 1, ... 1, 0, 0);

the initial subsolutions ex = (ex 1, ex2, exm+n) = (0, 0, ,0)

and the corresponding indices of the subproblems that lead to

the subsolutions w = (wi, w2, wm+n) = (0, 0, ,0), meaning

that the initial subsolutions are not solutions of any

subproblems (subproblems range from 1 to n);

phase = 1; q = m+n+2.

Iteration.

Step 1. If sq = 0 and phase = 1, then set phase = 2, q = m +n +l, and

redo step 1. If Sq < 0 or phase = 2, then

221

a) calculate ci = (uq,1..mAj + uq,m+n+ici), for j = 1,...,n.

b) using the two-phase revised simplex algorithm to solve

sublinear problems Si, for j=1, ..., n,

Si: minimize cjxj,
subject to Aixi=bi and xj.0

for optimal solutions or extreme homogeneous solutions (if Si is

unbound) xj, j = 1, .., n. If any of the subproblems is infeasible,

the original problem is infeasible, stop.

c) If xi is an optimal solution of Si, make aj = (Aixi3O,...,0,

1,0,...,0,cjxj,0), otherwise, make aj = (Aixi3O,...,0, 0,0,...,0,cixj,0).

d) For j = 1, ... , n, calculate Si = uq * aj. If phase = 2 then for j =

1, ... , n, calculate Xi = Um+n+2 * aj and if Xj * 0 then set Si = 0.

Step 2. Calculate Sk = min(Si I j = 1, ..., n). If 8k .?.. 0 and phase = 1,

then the original LP is infeasible, stop. If Sk 0 and phase = 2,

then sq is the optimal solution and -sq is the minimal value of

the original LP, exit. Otherwise, ak is the new column to enter

the base.

222

Step 3. Compute yi = ui * ak, i = 1, , q.

Step 4. If all yi 0 and phase =1, then the original LP is infeasible,

stop. If all yi 0 and phase =2, then the original LP is

unbounded, stop. Otherwise, calculate

0 = = min
yt 15i5m+n & y1>0 yi

and at is the column to be removed from the base.

Step 5. Calculate the new values of the variables in the base

solution:
wt= k, Sk =
Si = si-qyi i =1,..,m+n+2)
exk = Xk,

and update U, the inverse of the base:

uij = uij - yi *utj /yt (i#t, i =1,..,m+n+2,j=1,..,m+n+2)
utj = utilyt.

Output. The optimal objective value is -sq, and the optimal feasible

solution (may not be basic) is x =(xi, , xn), where xi is

obtained from:

x. = si*exi
n

V W. =j
i=1 1

223

B.4. Retaining Subsolutions Across Central Iterations

One performance consideration to the algorithm above is that,

in different central iterations, the sublinear program that

minimize cjxi,

subject to Aixi=bi and xi.0,

all have the same Ai and bi, and only cj is changed from central

iteration to central iteration. If an LP is feasible it will remain

feasible when its object vector changes. Similarly a feasible solution

will remain feasible to the LP even when its object vector changes.

Thus a subproblem needs to run phase one only once. Later calls to

the subproblem should use the optimal solution of the previous call

as the starting point in phase two. Several complications result from

this implementation.

First, the two-phase revised simplex algorithm adds the

objective vector cj to be the m+l'th row of the coefficient matrix A j.

Consequently, when cj changes, the m+l'th row of the last base

should also be changed. Thus when provided with a new cj, the

subproblem solver not only needs to assign c to the m+l'th row of A j,

but also needs to update the m+l'th row of U.

A straightforward way to update U is to first determine B and

then invert it to get U. But we can do better than this. Assume the

224

previous U = B-1, and we want to get U' = B'-1 where B' is B except

that its m +l'th row is changed to c'=(c13,1,0), where CB is an m vector.

Since BB-1 = I,

B'B-1 = J
1 00in

7-Y1Y 2 ' *Ym +2
0 0 ,...0 1

J-1 = [
Im 0 0
Y1 Y2 1 Yin]

Ym+1 Ym+1 Yrn-Ft Ym+1
0 0 ,..., 0 1

where y = (yl,y2,...,ym +2) = c'U. So, U' = B'-1 = B-1J-1. The

computational procedure to find U' is:

y = (yl,y2,...,ym +2) = c'U,

u'ii = uii yi*ui,m+ilyin+i (i =1,..,m+2,j=1,...,m).

This operation is similar to a pivot operation in step 5 of the above

algorithm.

Secondly, the m+l'th component of the last base feasible

solution is the objective value of the last LP. With the new objective

vector c, the xm-fi should be assigned to xt..m*cwi..wm.

Finally, when a subproblem finds out that the current LP is

unbounded and finds a half line of feasible solutions in the form xo +

0(1, -xk), it returns to the central problem an extreme homogeneous

solution. However, when the next call to the subproblem is made

with a new objective vector, the initial base feasible solution should

still be xo.

Appendix C

Pascal Program for
Parallel Matrix Multiplication With Loop Spreading

(***)
{ this program experiments the effects of loop spread to balance }

{ processor loads on Matrix Multiplication, when sub-statements are
}

{ independent.
}

{ Modules:
}

(matmul -- sequential version
}

{ mmpara -- parallel but does not spread }

{ mmspre ad -- parallel and spread the last n mod p iterations }
(mmcollapse -- parallel and collapse n iterations)

PROGRAM matrix_mul ;
LABEL 99;
CONST

SIZE = 50 ; { size of matrices }
check = true;

TYPE
str20 = string[20];
matrix = array[1..SIZE, O..SIZE] of real;
integer = longint;

VAR
a : matrix ; { first array }

b : matrix ; { second array }

cO, cl : matrix ; (result arrays }

m, n : integer; { actual size of a matrix }

nprocs, ts, tp, tl : longint;
ret_val : longint;

FUNCTION cpus_online: longint; cexternal;
PROCEDURE m Jock; cexternal;
PROCEDURE m_unlock; cextemal;
FUNCTION m_set_procs(i : longint) : longint; cextemal;
FUNCTION m_pfork(PROCEDURE a): longint; cexternal;
FUNCTION m_get_numprocs : longint; cexternal;
FUNCTION m_get_myid : longint; cexternal;
PROCEDURE m_kill_procs; cextemal;
PROCEDURE m_multi; cextemal;
PROCEDURE m_single; cextemal;
FUNCTION sTime(maxSecs: longlnt): longint;cexternal;
FUNCTION gTime: longint;cexternal; { return time in minisecs }

225

226

(initialize matrix FUNCTION }
PROCEDURE init_matrix ;

VAR
i, j : integer ;
nprocs : integer;

BEGIN
nprocs := m_get_numprocs;
i := 1 + m_get_myid;
while (i <= n) do BEGIN

for j := 1 to n do BEGIN
a[i, j] := i + j;
b[i, j] := n - j;

END;
i := i + nprocs;

END;
END; (init_matrix }

PROCEDURE dummy;
BEGIN END;

{ number of processes)

(start at i'th iteration)

PROCEDURE innerProd(i,j : integer; VAR c : matrix);
VAR

k : integer;
ct : real;

BEGIN
ct := 0;
for k := 1 tondo

ct := ct + a[i, k] * b[k, j];
c[i,j] := ct;

END;

PROCEDURE matmul; (sequential procedure]
VAR

i, j, k : integer;

BEGIN
for i:= 1 to n do

for j := 1 to n do
innerProd(i,j, c0);

END; (procedure matmul }

PROCEDURE mmpara ;
VAR

i, j, k : integer;
nproc s : integer; f number of processes }

BEGIN
nprocs := m_get_numprocs;
i := 1 + m_get_myid; (start at i'th iteration 1

while (i <= n) do BEGIN
for j := 1 to n do

innerProd(i,j, cl);

i := i + nprocs;
END;

END; { mmpara}

{ spreading the last n mod p iterations }

PROCEDURE mmspread ;
VAR

ij : integer,
lu, start, m, u, i, j, k : integer;
nprocs : integer; { number of processes

BEGIN
nprocs := m_get_numprocs;
start := 1 + m_get_myid;

m := n mod nprocs;
u := n - m;
i := start;
while (i <= u) do BEGIN

for j := 1 to n do
innerProd(i,j, cl);

i := i + nprocs;
END;
lu := m * n;
i := start + U;
ij := start;
j := 1;
while (ij <= lu) do BEGIN

while i > n do BEGIN
i := i - M; j := j + 1;

END;
innerProd(i,j, cl);
i := i + nprocs;
ij := ij + nprocs;

END;
END; { mmspread }

PROCEDURE mmcollapse ;
VAR

{

}

start at i'th iteration

ij : integer,
lu, start, u, i, j, k : integer; { local loop indices
nproc s : integer; { number of processes }

}

BEGIN
nprocs := m_get_numprocs;
start := 1 + m_get_myid; { start at i'th iteration

i := start;
ij := start;
j := 1;
lu := n*n;
while (ij <= lu) do BEGIN

while i > n do BEGIN

}

}

227

228

i := i - n; j := j + 1;
END;
innerProd(i,j, cl);
i := i + nprocs;
ij := ij + nprocs;

END;
END; { mmcollapse }

PROCEDURE check_mats (algname: str20; VAR cl, c2 : matrix);
VAR

i, j : integer,
error : boolean;

BEGIN
error := false;
for i := 1 to n do

for j := 1 to n do BEGIN
if cl[i,j] <> c2[i,j] then BEGIN

{ writeln(id:2, i:5,j:5,cl[i,j] :8:2,'< >', c2[i,j]:4:2);)

error := true;
END;

END;
END;
if error then BEGIN

writeln;
writeln('Panic! result is incorrect in ', algname);

END;
END; { check_mats)

PROCEDURE abortIt(str: str20);
BEGIN

writeln(str, ' error');
goto 99;

END;

BEGIN { main program starts here)

write('Enter size of matrix:'); readln(n);
nprocs := 0;
while (nprocs < 1) OR (nprocs > cpus_online) DO BEGIN

write('Enter number of processes:');
readln(nprocs);

END;
IF (m_set_procs(nprocs) < 0) then abortIt('msetproc');

{ fork dummy processes to increase timing accuracy }

if (m_pfork(dummy) <> 0) then abortIt('fork dummy');

{ initialize data arrays }

if (m_pfork(init_matrix) <> 0) then abortIt('fork init_matrix');

{ timer counting down from 360000 (secs) }

if (sTime(360000) < 0) then abortlt('sTime');

writeln('Timing result in miliseconds:');
writeln(' nbr-procs sequential parallel para+spread collapse');

tl := gTime;
for i := 1 to 10 do

matmul; sequential run
is := gTime - tl;
write(nprocs:8, ", ts:8, ");

}

tl := gTime;
for i := 1 to 10 do

if (m_pfork(mmpara) <> 0) then abortlt('fork mmpara ');

tp := gTime - tl;
write(tp:8, ");

if check then check_mats('mmpara', cO, cl); { check results

tl := gTime;
for i := 1 to 10 do

if (m_pfork(mmspread) <> 0) then abortlt('fork mmspread ');

tp := gTime - tl;
write(tp:8, ");

if check then check_mats('mmspread', cO, cl); (check results

tl := gTime;
for i := 1 to 10 do

if (m_pfork(mmcollapse) <> 0) then abortlt('fork mmcollapse ');

}

tp := gTime tl;
write(tp:8, ");

if check then check_mats('mmcollapse', cO, cl);{ check results }

writeln;
m_kill_procs;

99:
END. { main program }

terminate child processes }

229

230

Appendix D

Pascal Program for
Parallel Modified Matrix Multiplication With

1/2/3/4-sequence Row-major and Column-major
Loop Spreading

(***)
{ this program experiments the effects of loop spreading to balance
{ processor loads on Modified Matrix Multiplication (MMM), when
{ sub-statements are dependent. }

(***)
MMM is like matrix multiplication but modified such that the second

{ loop iterations are totally data dependent.
{ Modules:

Mmatmul the sequential version
{ MMMpara the parallel one that does not spread

MMM1SS row-major 1 sequence spreading
MMM2SS row-major 2 sequence spreading
MMM3SS row-major 3 sequence spreading
MMM4SS - - row-major 4 sequence spreading)

{ MMMCo1S column-major spreading

PROGRAM modified_matrix_mul ; MMM algorithm
LABEL 99;

CONST
SIZE = 50 ; { maximum size of matrices }

NBRPROCS = 9; { max number of processors }

TYPE
str20
matrix
INTEGER

VAR
a
b
cO, cl

j, n
nprocs, ti, t2:
syncBuffer

= string[20];
= array[1..SIZE, 0..SIZE] of real;
= LONGINT;

: matrix ; { first array }

: matrix ; { second array }

: matrix ; { result array }

: INTEGER;
INTEGER;
: array[1..NBRPROCS] of INTEGER;

FUNCTION cpus_online: INTEGER; cextemal;
PROCEDURE m_lock; cextemal;
PROCEDURE m_unlock; cexternal;
FUNCTION m_set_procs(i : INTEGER) : INTEGER; cexternal;

FUNCTION m_pfork(PROCEDURE a): INTEGER; cexternal;
FUNCTION m_get_numprocs : INTEGER; cexternal;
FUNCTION m_get_myid : INTEGER; cextemal;
PROCEDURE m_kill_procs; cextemal;
PROCEDURE m_multi; cexternal;
PROCEDURE m_single; cexternal;

FUNCTION sTime(maxSecs: INTEGER): INTEGER;cextemal;
FUNCTION gTime: INTEGER;cextemal; { milliseconds }

{ initialize matrix FUNCTION }
PROCEDURE init_matrix ;

VAR
i, j : INTEGER ;
nprocs :INTEGER;

BEGIN
nprocs := m_get_numprocs;
i := 1 + m_get_myid;
WHILE (i <= n) DO BEGIN

FOR j := 0 to n DO BEGIN
a[i, j] := i + j;
b[i, j] := n - j;

END;
i := i + nprocs;

END;
END; { init_matrix }

{ number of processes }

{ start at i'th iteration }

PROCEDURE dummy;
{ remove the time diff between the first m_fork and later m_forks.
BEGIN END;

PROCEDURE innerProd(i,j : INTEGER; VAR c : matrix);
VAR

k :INTEGER;
c t : real;

BEGIN
ct := 0;
FOR k := 1 to n DO

ct := ct + a[i, k] * b[k, j];
c[i,j] := c[i,j-1] + ct;

END;

PROCEDURE Mmatmul; { sequential PROCEDURE }
VAR

i, j : INTEGER;
BEGIN

FOR i:= 1 to n DO BEGIN
FOR j := 1 to n DO BEGIN

innerProd(i,j, c0);
END;

END;
END; { PROCEDURE Mmatmul }

I

231

PROCEDURE MMMpara ;
VAR

i, j
nprocs

BEGIN
nprocs := m_get_numprocs;
i := 1 + m_get_myid;
WHILE (i <= n) DO BEGIN

FOR j := 1 to n DO BEGIN
innerProd(i,j, cl);

END;
i := i + nprocs;

END;
END; (MMMpara)

: INTEGER;
: INTEGER; { number of processes }

{ number of processes
{ start at i'th iteration

{ Sync/Wait procedures for 1-sequence spreading
PROCEDURE WAIT1(sendProc, j, i: INTEGER);

VAR oij : INTEGER;
BEGIN

oij := j*m+i;
WHILE (syncBuffer[sendProc] < oij) DO;

END;

PROCEDURE SYNC1(currProc, j, i: INTEGER);
VAR oij :INTEGER;

BEGIN
oij := j*m+i;
syncBuffer[currProc] := oij;

END;

}

}

)

{ Sync/Wait procedures for 2/3/4-sequence and column-major
PROCEDURE WAIT234C(sendProc, j, i: INTEGER);
BEGIN

WHILE (syncBuffer[sendProc] < j) DO;
END;

PROCEDURE SYNC234C(currProc, j, i: INTEGER);
BEGIN

syncBuffer[currProc] := j;
END;

{ use 1-sequence spreading: needs M*(k-1) syncs }

PROCEDURE MMM1SS ;
VAR

sendProc :INTEGER;
ij, r :INTEGER;
nprocs : INTEGER; (number of processes)

lu, currPid, m, u, ii, jj, i, j : INTEGER;

BEGIN
nprocs
currPid

IF n <=

:= m_get_numprocs;
:= 1 + m_get_myid;

nprocs THEN

spreading)

232

m := 0
else BEGIN

:= n mod nprocs;
m := nprocs + r,

END;
u := n - m;
i := currPid;
sendProc := (currPid - r);
IF sendProc <= 0 THEN sendProc := sendProc + nprocs;
WHILE (i <= u) DO BEGIN

FOR j := 1 to n DO innerProd(i,j, cl);
i := i + nprocs;

END;
lu := m * n;
i := currPid;
ij := currPid;
j := 1;
WHILE (ij <= lu) DO BEGIN

IF i >M THEN BEGIN{ we know: M >= nprocs }
i := i - M; j := j + 1;

END;
IF j > 1 THEN WAIT1(sendProc, j-1, i);
ii := i + U;
innerProd(ii,j, cl);
IF j < n THEN SYNC1(currPid, j, i);
i := i + nprocs;
ij := ij + nprocs;

END;
END; (MMM1SS)

{ use 2-sequence spreading: needs (M MOD P)*(k-1) syncs
PROCEDURE MIVIM2SS ;
VAR

sendProc :INTEGER;
Mrj, g, r :INTEGER;
nprocs : INTEGER; { number of processes)
lu, currPid, m, u, ii, jj, i, j : INTEGER;

BEGIN
nprocs := m_get_numprocs;
currPid := 1 + m_get_myid;
IF n <= nprocs THEN

m := 0
else BEGIN

:= n mod nprocs;
m := nprocs + r,

END;
u := n - m;
i := currPid;
sendProc := (currPid - r);
IF sendProc <= 0 THEN sendProc := sendProc + nprocs;
WHILE (i <= u) DO BEGIN

FOR j := 1 to n DO innerProd(i,j, cl);
i := i + nprocs;

}

233

END;
lu := m * n;
i := currPid;
g := currPid;
j := 1;
Mrj := m;
WHILE (g <= lu) DO BEGIN

IF i > M THEN BEGIN
i := i - M; j := j + 1;
Mrj := Mrj - r, IF Mrj <= 0 THEN Mrj := Mrj + M;

END { IF } ;

IF (i <= Mrj) THEN
ii:=i+M-Mrj+U

ELSE
ii := i - Mrj + U;

IF (j > 1) AND (i > nprocs) THEN WAIT234C(sendProc, j-1, ii);
innerProd(ii,j, cl);
IF (j < n) AND (i <= r) THEN SYNC234C(currPid, j, ii);
i := i + nprocs;
g := g + nprocs;

END;
END; { MMM2SS }

(use 3-sequence spreading: needs (M MOD P)*(k-1) syncs
PROCEDURE MMM3SS ;
VAR

sendProc :INTEGER;
r, x, y, z, j1M, Uj1M : INTEGER;
lu, currPid, s,t, m, u, nl, ii, jj, i, j : INTEGER;
nprocs : INTEGER; { number of processes }

BEGIN
nprocs := m_get_numprocs;
currPid := 1 + m_get_myid;
IF n <= nprocs THEN

m := 0
else BEGIN

r := n mod nprocs;
m := nprocs + r,

END;
u := n - m;
i := currPid;
sendProc := (currPid - r);
IF sendProc <= 0 THEN sendProc := sendProc + nprocs;
WHILE (i <= u) DO BEGIN

FOR j := 1 to n DO innerProd(i,j, cl);
i := i + nprocs;

END;

X := currPid;
Uj1M := U;
j := 1;
j1M := 0;
y := 0;

{ kept as (a+g) mod M }
{ kept as U-(j-1)*M }

(kept as (j-1)*M)
{ kept as (j-1)*M mod P }

)

234

235

z := nprocs;
lu := m*n;
i := currPid;
WHILE (i <= lu) DO BEGIN

IF x > M THEN { M always >= P } BEGIN
x := x - M; Uj1M := Uj1M - M; j := j + 1;
j1M := j1M+ M;
y := y + r, IF y >= nprocs THEN y := y - nprocs;
z := j1M - y + nprocs;

END;
x := x + nprocs;
IF i <= z THENBEGIN

ii := y + i + Uj1M;
innerProd(ii,j, cl);

END ELSE IF i <= (z + y) THEN BEGIN
ii := i + U - z;
innerProd(ii,j, cl);

END ELSE BEGIN
IF j > 1 THEN WAIT234C(sendProc, j-1, 0);
ii := i + Uj1M;
innerProd(ii,j, cl);
IF j < n THEN SYNC234C(currPid, j, 0);

END; { IF }
i := i + nprocs;

END; { WHILE }
END; (MMM3SS)

{ use 4-sequence spreading: needs MIN ((M MOD P), (P - (M MOD P))*(k-1) syncs
PROCEDURE MMM4SS ;
VAR

sendProc : INTEGER;
jm, jlpMODr, pMODr, cjl, r, x, mjl, a0, a, b, j1M, Uj1M : INTEGER;
lu, currPid, s,t, m, u, nl, ii, jj, i, j : INTEGER;
offset, nprocs : INTEGER; { number of processes }

BEGIN
nprocs := m_get_numprocs;
currPid := 1 + m_get_myid;
IF n <= nprocs THEN

m := 0
else BEGIN

r := n mod nprocs;
m := nprocs + r;

END;
u := n - m;
i := currPid;
WHILE (i <= u) DO BEGIN

FOR j := 1 to n DO BEGIN
innerProd(i,j, cl);

END;
i := i + nprocs;

END;

x := currPid; { kept as (a+g) mod M }

)

236

Uj1M := U; { kept as U-(j-1)*M }
j1M := 0; { kept as (j-1)*M }
mjl := 0; { kept as (j-1)*M mod P }
jm := M;
b := nprocs;
j1pM0Dr := 0;
a := nprocs;
a0 := nprocs;
lu := m*n;
i := currPid;
IF R > (nprocs - R) THEN BEGIN

cjl := R;
pMODr := nprocs MOD R;
sendProc := (currPid + R);
IF sendProc > nprocs THEN sendProc := sendProc - nprocs;

END ELSE BEGIN
cjl := 0;
sendProc := (currPid - r);
IF sendProc <= 0 THEN sendProc := sendProc + nprocs;

END;
WHILE (i <= lu) DO BEGIN

IF x > M THEN { M always >= nprocs } BEGIN
x := x - M; Uj1M := Uj1M - M; j := j + 1;
j1M := j1M + M;
jM := jM + M;
IF R > (nprocs - R) THEN BEGIN

j1pM0Dr := j1pM0Dr + pM0Dr,
IF j1pM0Dr >= R THEN BEGIN

j1pM0Dr := j1pM0Dr - R;
END;
cj 1 := R - j1pM0Dr,

END ELSE
cj 1 := 0;

b := jM - cjl;
mil := mj 1 + r,
IF mj 1 >= nprocs THEN mil := mj 1 - nprocs;
a0 := j1M + nprocs;
a := a0 - mj1;

END;
x := x + nprocs;
IF i <= a THEN BEGIN

ii := mj 1 + i + Uj1M;
innerProd(ii,j, cl);

END ELSE IF i <= a0 THEN BEGIN
ii := i + U a;
innerProd(ii,j, cl);

END ELSE BEGIN
offset := i - a0;
IF i <= b THEN

ii := offset + U + nprocs + cjl
ELSE

ii := i + U - b + nprocs;
IF (j > 1) AND (offset <=(nprocs-R)) THEN

WAIT234C(sendProc, j-1, 0);

237

innerProd(ii,j, cl);
IF (j < n) AND (offset > (r + R - nprocs)) AND ((i- a0) <=(R)) THEN

SYNC234C(currPid], j, 0);
END; { IF)
i := i + nprocs;

END; { WHILE)
END; { MMM4SS }

{ use column-major spreading. }

PROCEDURE MIAMColS ;
VAR

sendProc : INTEGER;
q, shares, quote, busyOnes : INTEGER;
first, firstPart, lastPart, lastStartq, jn : INTEGER;
i, j : INTEGER;
currPid, nprocs: INTEGER;

BEGIN
nprocs := m_get_numprocs;
currPid := 1 + m_get_myid;
shares:= (N*n + nprocs - 1) DIV nprocs;
quote := shares;
busyOnes := (N*n) MOD nprocs;
IF busyOnes = 0 THEN

busyOnes := nprocs;
IF currPid > busyOnes THEN BEGIN

quote := shares - 1;
first := busyOnes + (currPid - 1)*quote + 1;

END ELSE
first := (currPid - 1)*quote + 1;

i := 1 + (first - 1) DIV n;
firstPart := i*n - first + 1;
jn := firstPart;
lastPart := (quote - firstPart) MOD n;
lastStartq := quote - lastPart + 1;
j := 1;
sendProc := (currPid + 1);
FOR q :=1 TO quote DO BEGIN

IF (q = lastStartq) AND (lastPart < n) THEN BEGIN
j := n - lastPart + 1;
WAIT234C(sendProc, j-1, 0);

END;
innerProd(i,j, ci);
IF (q = firstPart) AND (j < n) THEN

SYNC234C(currPid, j);
j := j + 1;
IF j > jn THEN BEGIN

jn := n;
j := 1; i := i + 1;

END { IF };
END (FOR);

END; { MMMColS }

238

PROCEDURE check_mats (alg: INTEGER; VAR cl, c2 : matrix);
VAR

i, j : INTEGER;
error : BOOLEAN;

BEGIN
error := false;
FOR i := 1 to n DO BEGIN

FOR j := 1 to n DO BEGIN
IF cl[i,j] <> c2[i,j] THEN BEGIN

error := true;
END;

END;
END;
IF error THEN BEGIN

writeln('Panic!! ', alg, ' result incorrect!');
END;

END; (check_mats)

PROCEDURE abortIt(str: str20);
BEGIN

writeln(str, ' error');
goto 99;

END;

BEGIN { main program start here)

write('Enter size of matrix:');
re adln(n); { matrix size n*n }
write('Enter number of processes:');
readln(nprocs);
IF (m_set_procs(nprocs) < 0) THEN abortIt('msetproc');
IF (m_pfork(dummy) <> 0) THEN abortIt('fork dummy');

{ initialize data arrays }

IF (m_pfork(init_matrix) <> 0) THEN abortIt('fork init_matrix');

(timer counting down from 360000 (secs))
if (sTime(360000) < 0) then abortlt('sTime');

writeln('Timing result in miliseconds:');
writeln('procs sequential paralle 1-spread 2-spread 3-spread 4-spread c-spread');

FOR i := -1 TO 5 DO BEGIN
tl := gTime;
FOR j := 1 to 10 DO BEGIN { run 10 times on the same data }

CASE i OF
-1: { sequential run result in c0)

Mmatmul;
0: { parallel run w/o spreading result in c 1 }

IF (m_pfork(MMMpara) <> 0) THEN abortIt('fork MMMpara');
1: { parallel run with 1-spreading result in c1 }

IF (m_pfork(MMM1SS) <> 0) THEN abortlt('fork MMM1SS');
2: { parallel run with 2-spreading result in c 1 }

IF (m_pfork(MMM2SS) <> 0) THEN abortIt('fork MMM2SS');

3: { parallel run with 3-spreading result in ci }

IF (m_pfork(MMM3SS) <> 0) THEN abortlt('fork MMM3SS');
4: { parallel run with 4-spreading result in cl }

IF (m_pfork(MMM4SS) <> 0) THEN abortlt('fork MMM4SS');
5: { parallel run with col-spreading result in cl }

IF (m_pfork(MMMColS) <> 0) THEN abortlt('fork
END; { CASE)

END; { FOR)
t2 := gTime - tl;
IF i = -1 THEN

write(nprocs:5);
ELSE

check_mats(i, cO,
write(t2:5, ");

END; { FOR }
writeln;

99:
m_kill_procs;

END. { main program }

cl) { check results c0 and cl }

MMMColS');

{ terminate child processes }

239

