

AN ABSTRACT OF THE DISSERTATION OF

Mohammad Amin Alipour for the degree of Doctor of Philosophy in Computer Science

presented on May 1, 2017.

Title: Leveraging Generated Tests

Abstract approved:

Alex David Groce

The main goal of automated test generation is to improve the reliability of a program by exposing

faults to developers. To this end, testing should cover the largest possible portion of the program

given a test budget (i.e., time and resources) as frequently as possible. Coverage of a program

entity in testing increases our confidence in the correctness of that entity.

Generating various tests to cover a program entity is a particularly hard problem to solve for

large software systems because the test inputs are complex and they often exhibit sophisticated

feature interactions. As a result, current test generation techniques, such as symbolic execution

or search-based testing, do not scale well to complex, large-scale systems.

This dissertation presents a test generation technique which aims to increase the frequency of

coverage in large, complex software systems. It leverages the information of existing test cases

to direct the automated testing. We show the results of the application of this technique to some

large systems such as GCC compiler (850K Lines of code), and Mozillas JavaScript engine

(120K lines of code). It increases the frequency of coverage upto the factor of 9x, compared to

the state-of-the-art technique.

It also proposes non-adequate test-case reduction for reducing the size of test cases by cov-

erage and mutant detection criteria. C%-coverage test reduction technique reduces a test case

while preseving at least C% of coverage in the original test case. N -mutant test reduction tech-

nique reduces a test cases while preserving detection of N mutants of the original test case. We

evaluate the effectiveness of these test reduction techniques on different attributes of test cases.

This research suggest that the generated test cases should be treated as first-class artifacts in

the software development and they can be leveraged for interesting testing tasks.

c©Copyright by Mohammad Amin Alipour
May 1, 2017

All Rights Reserved

Leveraging Generated Tests

by

Mohammad Amin Alipour

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Presented May 1, 2017
Commencement June 2017

Doctor of Philosophy dissertation of Mohammad Amin Alipour presented on May 1, 2017.

APPROVED:

Major Professor, representing Computer Science

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection of Oregon State
University libraries. My signature below authorizes release of my dissertation to any reader
upon request.

Mohammad Amin Alipour, Author

ACKNOWLEDGEMENTS

I would like to thank my advisor Alex Groce. Alex was a true supporter and my champion

throughout my doctoral study. Alex allowed me to assume different roles at his research group

and collaborate on different projects. His thoughtful feedbacks made my experience at Oregon

State University very enriching.

I am grateful to Darko Marinov for many hours that he spent mentoring me on different

aspects of graduate school, research, and career. Collaboration with Darko has been one of the

best learning experience that I ever had. Thank you, Darko!

Gratitude to my fellow (former) students at the Software Engineering Lab at Oregon Stay

university: Ali Aburas, Iftekhar Ahmed, Sogol Balali, Caius Brindescu, Chris Chambers, Souti

Chattopadhyay, Mihai Codoban, Rahul Gopinath, Michael Hilton, Rafael Leano, Shane McKee,

Nicholas Nelson, David Piorkowski, and Sruti Srinivasa Ragavan for the friendship, insights,

and support which made the lab a pleasant place to work.

I owe a great debt of gratitude to my family. I thank my amazing parents, Ebrahim and

Saltanat, who their love and emphasis on education motivated me to pursue a career in science.

I greatly appreciate my wife, Sahar, and my lovely sons Daniel and Ideen, whom with their

support, encouragement, and patience made this journey possible.

CONTRIBUTION OF AUTHORS

Dr. Darko Marinov helped in the inception of the ideas and interperation of the results in the

corresponding papers. Agust Shi, Rahul Gopinath, and Arpti Christi contributed in the evaluation

and summarization of results.

TABLE OF CONTENTS
Page

1 Introduction 1

1.1 Structure . 2

1.2 Contributions . 2

2 Generating focused random tests using directed swarm testing 5

2.1 Introduction . 5

2.2 Preliminary Concepts . 8
2.2.1 Triggers and Suppressors . 9

2.3 Directed Swarm Testing . 10

2.4 Configuration Strategies . 12
2.4.1 Single-Target Strategies . 13
2.4.2 Multiple-Target Strategies . 14

2.5 Evaluation Methodology . 16

2.6 Results . 19
2.6.1 RQ1 and RQ2: Single-Target Strategies 20
2.6.2 RQ3 and RQ4: Multiple-Target Strategies 23
2.6.3 RQ5: Actual Fault Detection . 24
2.6.4 RQ6: Comparison with Random Testing 26

2.7 Threats to Validity . 28

2.8 Discussion . 28

2.9 Related Work . 29

2.10 Conclusions and Future Work . 30

2.11 Acknowledgements . 31

3 Evaluating Non-adequate Test-Case Reduction 33

3.1 abstract . 33

3.2 Introduction . 33

3.3 Non-adequate Test Reduction . 36
3.3.1 Reduction Algorithm . 37
3.3.2 C%-Coverage Reduction . 38
3.3.3 N -Mutant Reduction . 38

3.4 Metrics . 39
3.4.1 Size Reduction Rate (SRR) . 39

TABLE OF CONTENTS (Continued)
Page

3.4.2 Coverage Preservation Rate (CPR) 40
3.4.3 Mutant Preservation Rate (MPR) . 40
3.4.4 Reduction Requirements vs. Metrics 41

3.5 Evaluation Methodology . 41
3.5.1 Projects . 41
3.5.2 Experimental Setup . 44

3.6 Research Questions . 45
3.6.1 RQ1: SRR . 45
3.6.2 RQ2: CPR and MPR . 45
3.6.3 RQ3: Trade-Offs . 50
3.6.4 RQ4: Comparison with Random . 53

3.7 Discussion . 57

3.8 Threats to Validity . 59

3.9 Related Work . 60

3.10 Conclusion . 60

3.11 Acknowledgements . 61

4 Conclusions and Future Work 62

4.1 Future Work . 62

Bibliography 63

LIST OF FIGURES
Figure Page

2.1 Features for Random Test Cases . 9

2.2 Workflow of directed swarm testing. 12

2.3 Hitting fraction in undirected swarm testing (HFu) versus directed swarm testing (HFd)
over all strategies. 20

2.4 Single-target strategies compared. 22

2.5 Multi-target strategies compared. 25

2.6 Merge strategies over all multi-target strategies. 26

2.7 Number of targets after merging, by merge strategy. 27

2.8 HFd

HFr
, random vs. directed. 28

3.1 SRR for C%-coverage . 46

3.2 SRR for N -mutant . 46

3.3 CPR for C%-coverage . 47

3.4 CPR for N -mutant . 48

3.5 SRR vs. MPR, contrasting minimal mutants against randomly chosen mutants,
for N -mutant test-case reduction . 48

3.6 MPR for C%-coverage . 49

3.7 MPR for N -mutant . 49

3.8 SRR vs. CPR for YAFFS2 . 51

3.9 SRR vs. MPR for SpiderMonkey . 52

3.10 CPR vs. MPR for all four projects . 54

3.11 Comparing CPR of non-adequate test-case reduction with random test-case re-
duction . 55

3.12 Comparing MPR of non-adequate test-case reduction with random test-case re-
duction . 56

LIST OF FIGURES (Continued)
Figure Page

3.13 Percentage of mutants used for N -mutant test-case reduction vs. MPR 58

LIST OF TABLES
Table Page

2.1 Experimental Subjects . 17

2.2 Experimental Parameters. 18

2.3 Results for single-target directed random testing. 21

2.4 Detection rate of actual faults in the test suites generated by each technique in a
30-minute test suite generated by each test strategy. 26

2.5 The result of t-test comparing the hitting fraction of targets in directed random testing
and random testing without swarm. 27

3.1 Four projects used in our evaluation and some statistics of their test cases and
mutants . 41

3.2 Time in seconds to perform test reduction . 57

LIST OF ALGORITHMS
Algorithm Page

1 Algorithm for Merging using Subsumption only. 15

2 Algorithm for Aggressive Merging, with randomized approximation of optimal

merges (n = # of trials). 15

Chapter 1: Introduction

There are an increasing number of systems and devices that embody software as their center-

piece. Defects in software systems can cause failures with disastrous effects on the economy,

personal life or security of nations. A recent study estimated the software defects impacted 1.1

trillion US dollars in assets, in 2016 [1]. Thus, techniques to assure the correctness of software

are highly desirable.

There are three major approaches to increase the confidence in the correctness of existing

programs: (1) dynamic analysis techniques which are based on observing the behavior of in-

dividual runs of software and reasoning about their correctness, (2) static analysis techniques

which try to reason about (a superset of) all possible executions of a program by examining the

source code, and (3) hybrid dynamic-static techniques which combine the information of both

static and dynamic techniques.

Software testing is a dynamic analysis technique that attempts to increase the confidence

in the correctness of programs by observing the behavior of execution programs with multiple

inputs and checking them against the expected behavior of the program. Any deviation from the

expected behavior can stem from a defect in the program. To expose a software defect in the

software under test (SUT), a test case has to reach the buggy statement(s). Then, the execution

of the buggy statement should perturb the state of the program to an error state. Finally, the error

state that resulted from execution of the buggy statement needs to propagate through the rest of

execution of the program to be observed by an external entity or the oracle.

Writing test cases that can meet all the conditions mentioned above is difficult. Moreover,

studies [10] have shown that developers do not spend sufficient time writing tests. Thus, auto-

mated test case generation is very desirable. Furthermore, as the complexity and size of software

systems increase, automated test generation becomes a necessity, because the (in)correctness of

complex software systems would have significant economic or social impact.

Automated test generation has been a very active aree of for many years. Over the years,

numerous studies proposed novel techniques for generating new test cases (see [4] for a survey

of these techniques). However, the generated test cases have been often overlooked. It can be

due to the fact that they are being generated by a tool. If a software artifact can be created by a

2

tool efficiently, developers tend not to store or analyze them.

In this research, our insight is that the generated tests cases can be analyzed or refined for

other testing tasks. To this end, we propose: (1) a technique that leverages the statistics in the

generated test cases to recommend new configurations for test case generator to direct the testing,

and (2) we evaluate two novel test reduction techniques for test cases.

In this research, we focus on the simplest, yet very effective test generation technique: ran-

dom test cases generators. A random test case generator, as it name suggests, randomly chooses

an input from the input space of SUT. Unlike other techniques, it does not have any objective

function to maximize or a test target to cover. We demonstrate how the analysis and reduction

of seemingly random tests can be profitable in testing.We evaluate our techniques on large C

programs, such as the GCC C compiler or the SpiderMonkey JavaScript engine.

1.1 Structure

This dissertation is based on the following two papers.

• Generating focused random tests using directed swarm testing. (Chapter 2)

with Alex Groce, Rahul Gopinath, and Arpit Christi.

In Proceedings of the 25th International Symposium on Software Testing and Analysis

(ISSTA 2016).

• Evaluating Non-adequate Test-Case Reduction. (Chapter 3)

with August Shi, Rahul Gopinath, Darko Marinov, and Alex Groce.

In Proceedings of the 31st IEEE/ACM International Conference on Automated Software

Engineering (ASE 2016).

Chapter 4 concludes this dissertation and presents potential future work.

1.2 Contributions

Contributions of this research include:

• Introduction of the (to our knowledge) novel goal of increasing the frequency with which

an automated test generation method produces tests covering specific code targets.

3

• A novel method (directed swarm testing) for generating focused random tests: randomly

generated tests that have significantly increased probability of covering selected source

code targets.

• Strategies for targeting both individual source code targets and multiple source code tar-

gets at once.

• Introduction of two novel test-case reduction approaches: non-adequate test-case reduc-

tion: C%-coverage and N -mutant reduction.

• Evaluation of the relationship between the size reductions obtained with varying parame-

ters for these reductions, and the code coverage and killed mutants for reduced test cases

relative to the original, unreduced test cases.

4

Generating focused random tests using directed swarm testing

Mohammad Amin Alipour, Alex Groce, Rahul Gopinath, and Arpit Christi

In Proceedings of the 25th International Symposium on Software Testing and Analysis (ISSTA

2016).

ACM, New York, NY

pp 16-26.

5

Chapter 2: Generating focused random tests using directed swarm testing

2.1 Introduction

Random testing [32] (sometimes called fuzzing) is now widely recognized as an effective ap-

proach for testing software systems, including compilers [52, 53, 60], standard libraries [46],

static analysis systems [15], and file systems [30]. Random testing is used in both complex

custom-built testing systems (such as those just cited) and simple test harnesses built in a couple

of hours. Random testing is often easy to use, widely applicable, and can perform well in theory

as well as practice [9]. However, random testing has a few important limitations. One critical

limitation is that, for the most part, random testing has little ability (without considerable human

effort) to focus on part of a system under test (SUT). Random testers typically target an entire

program or module, and have no mechanism for focusing testing on code of particular interest,

other than writing a new, customized random test generator.

Much of the efficiency of random testing comes from its blind, undirected nature [64]. It is

seldom practical to implement different random testers for all the potential focuses that might be

needed, and many powerful random testers [30, 52, 60] tend to be based on generating complete

inputs (e.g. programs or function call sequences) as whole system tests; these tools seldom

even attempt to provide module-level testing. Of course, tests generated by a random tester

can be selected from based on their coverage, but replaying pre-existing tests defeats much of

the point of random testing, losing the ability to produce an essentially unlimited number of

tests automatically, making effective use of any available testing budget and exploiting massive

parallelism.

Techniques for making better use of random tests in situations requiring more focus, such

as regression testing, are now appearing [27], but these do not allow the creation of true focused

random tests: newly generated random tests that are specifically intended to test targeted (for

instance, changed) code in a system. Focus can be highly desirable for a variety of reasons. For

example, recently changed code is often buggy (perhaps up to one third of code changes intro-

duce some bug [39]). Moreover, newly changed code has, by definition, been far less tested than

long-standing code, especially in systems where aggressive random testing is applied routinely.

6

At present random testing does not even support an easy way to direct testing to aggressively

cover changed code. In addition to changed code, focused random tests are useful in any cases

where a part of a system is suspected to be more fault-prone or difficult to cover than the remain-

der of the SUT. The inability to perform efficient targeted testing is a real deficiency in random

testing.

While some other techniques (symbolic execution [22,59] and search-based techniques [34,

44]) for test generation allow for targeting of specific source code, those techniques usually have

not been scaled to the generation of, e.g., whole-program inputs for industrial strength compil-

ers1. Hand-tooled whole-program random testers, however, are a popular technique for testing

such systems, including C compilers [41, 60], JavaScript engines [36, 52, 53], and Google’s Go

language [56]. More critically, search-based and symbolic techniques are designed to support

the generation of a test that covers a desired target, not the production of an arbitrary number

of different tests hitting a target. For example, most search-based systems attempt to produce

one test for each coverage target, and consider a statement tested once it has been covered once,

only covering it additionally as needed to cover other targets. While very useful for generating

a high-coverage suite, this does not address the need to test a suspect statement in a diverse and

essentially unlimited number of ways, given sufficient compute resources. Focused random tests

combine the nearly unlimited novelty of random test generation with the ability to target testing

to code of particular interest, without forcing developers to write custom random testers for code

components.

In this paper, we propose a method, directed swarm testing, that makes the generation of

random tests that focus on selected code targets possible. Using swarm testing [31] (a variation

of random testing) and recording statistical data on past testing results [25] enables generation

of new random tests that target (that is, have higher probability of covering, and thus higher

coverage frequency for) any given source code element, usually without modifying an existing,

highly-tuned random tester. This ability has further uses than just simple change-based “regres-

sion testing”; for example, a compiler developer using Csmith [60] and concerned about the

correctness of a particular set of seldom-executed lines in a complex optimization’s implementa-

tion may apply this technique. Assuming that data on past testing has already been collected, the

process can be as simple as putting the source lines of interest into a file and running a simple
1SAGE [21] for symbolic execution, and the work of Kifetew et al. [38] for search-based testing are promising

exceptions, though in the first case only a limited evaluation over coverage, not faults, was performed, and in the
second case the Rhino JavaScript tests are arguably more limited than those generated by jsfunfuzz.

7

script that launches in parallel a large set of Csmith instances tuned to have high coverage of the

suspect code. In our experiments, the fraction of tests that cover targeted code was improved by

up to nearly 9x over running the random tester as usual, and the improvement is typically on the

order of 2x or more. The more rarely code is covered in undirected tests — so long as it has

been covered enough in past data to make a basis for statistical analysis — the more its coverage

frequency can be boosted.

To our knowledge, this goal of increasing frequency of coverage (as opposed to generating

at least one test hitting a coverage target, a common goal of testing methods) is both novel and

clearly useful. The goal is, in a sense, incomparable to the goal of covering never-before-covered

code targets, since our assumption is that some test(s) hitting the targeted code already exist; we

aim to produce many more tests hitting the targets, since it is well known that for most faults it

is not sufficient simply to cover the faulty code — it must be covered under the right conditions.

This motivates producing a diverse set of tests covering any code warranting extra attention,

whether that code is suspicious due to modification, static analysis warnings (that may be false

positives), code smells, or any other heuristics for potential faults.

Our experimental results show that, for single targets, across all strategies proposed, directed

swarm testing improves the fraction of tests that hit a target by 3.5x on average for YAFFS2, 2.5x

on average for GCC, and 1.6x on average for SpiderMonkey. Directed swarm testing improved

coverage for 100%, 95%, and 69.5% of targets (again, across all strategies) for YAFFS2, GCC,

and SpiderMonkey respectively. Results for multiple targets are more complex, but still promis-

ing, though as the number of targets increases the effectiveness over swarm testing decreases (as

it must, in the limit: targeting all code is equivalent to targeting none). We compare our method

both against the baseline random test generators (hand-tooled optimized random testing) and

modified test generators using swarm testing.

Contributions of this paper include:

• Introduction of the (to our knowledge) novel goal of increasing the frequency with which

an automated test generation method produces tests covering specific code targets.

• A novel method (directed swarm testing) for generating focused random tests: randomly

generated tests that have significantly increased probability of covering selected source

code targets (Section 2.3).

• Strategies for targeting both individual source code targets and multiple source code tar-

gets at once (Section 2.4).

8

• Empirical results showing the effectiveness of these strategies on large real-world software

systems and test generators with complex test features (the YAFFS2 flash file system, the

GCC compiler, and Mozilla’s SpiderMonkey JavaScript engine) (Sections 2.5 and 2.6).

• Empirical results of effectiveness of these strategies on finding real faults in a large soft-

ware system (Sections 2.5 and 2.6).

2.2 Preliminary Concepts

Swarm testing [31] is a testing approach that improves the diversity of tests by randomizing the

configuration of a test generation system (typically a random tester, though it is also applicable

to model checking [2, 26]). The idea behind swarm testing is simple: most random test gen-

erators support a natural concept of features. A feature is a property of a test case that can be

controlled by a test generator. A configuration of a test generator is often defined by a set of

features. For example, in grammar-based testing, features are usually terminals or productions

in the grammar, and in API-based testing each function or method call is a feature. The tradi-

tional approach to random testing is to always make all features available in the construction of

each test. Swarm testing, in contrast, randomly chooses (with base probability of 50%) which

features to include in each test, omitting about half of all available features in each test. This

often increases the effectiveness of testing due to interactions between features, and the fact

that, since tests are limited in size, including many features necessarily means including less of

each individual feature. Swarm testing has been recognized as essential to getting good results

from compiler fuzzers [41] and has sometimes nearly doubled fault detection and/or coverage

for mature random testers [25]. Swarm testing has also been applied to the CCG C compiler

testing tool [45] and the GoSmith [56] fuzzer for Google’s Go language, and a Constraint Logic

Programming technique extending the ideas in swarm testing has been used to discover faults in

the Rust type system [17].

Adapting most random testers to support swarm testing is simple. Features are often op-

portunistically chosen to match existing configuration. For example, Csmith supports numerous

controls on C code generated, in order to, e.g., test compilers with known bugs. Using Csmith

with a configuration simply requires calling it with command line arguments (e.g., csmith

--no-pointers --no-structs --no-unions). For jsfunfuzz configuration of

features for generating JavaScript code was introduced using a 50-line Python script that con-

9

static uint16_t func_1(void) {
uint16_t l_24[3][2] = {{0xD44FL, 0xD44FL},
{0xD44FL, 0xD44FL}, {0xD44FL, 0xD44FL}};

return l_24[1][1]; }
int main (int argc, char* argv[]) {

func_1();
return 0; }

(A) Simplified random test case generated by Csmith, (boilerplate removed). This test case features arrays but does not feature

pointers, structs, jumps, or volatiles.

tryItOut("L: {constructor = __parent__; }");
tryItOut("prototype = constructor;");
tryItOut("__proto__ = prototype;");
tryItOut("with({}){__proto__.__proto__=__parent__;}");

(B) Simplified random test case (without jsfunfuzz infrastructure) for SpiderMonkey JavaScript engine. Features here include
labels, assignments, and with blocks, but do not include try blocks, infinite loops, or XML.

Figure 2.1: Features for Random Test Cases

siders each choice in the recursive code generator to be a feature. Random testing based on API

calls is usually trivial to modify to exclude calls at will, as in our YAFFS2 tester. Figure 2.1

shows examples of features for C and JavaScript tests. Note that a feature can be a relatively

simple grammatical construct or, depending on how tests are generated, a more complex seman-

tic feature (e.g., irreducible control flow). Given a configuration, a tester can usually generate an

unbounded number of different tests containing (at most) those features.

2.2.1 Triggers and Suppressors

A target is any behavior of the SUT that is produced by some (but usually not all) test cases. The

most obvious targets are faults and coverage entities, e.g.: whether a test case exposes a given

fault, whether a given block or statement is executed, whether a branch is taken, or whether

a particular path is followed. Hence, faults, blocks, branches, and paths are targets and a test

case hits a target if it exposes or covers it. Given the concepts of features and targets, we can

ask whether a feature f “helps” us to hit a target t: that is, are test cases with f more likely to

hit t? That some features are helpful for some targets is obvious: e.g., executing the first line

of a method in an API library usually requires the call to be in the test case. Less obviously,

features may make it harder to hit some targets. For example, finite-length tests of a bounded

stack that contain pop calls are less likely to execute code that handles the case where the stack

is full, closing files may make it harder to cover complex behavior in a file system, and including

10

pointers in a C program prevents some optimization passes from running [31].

There are three basic roles that a feature f can serve with respect to a target t: a trigger’s

presence makes t easier to hit, a suppressor’s presence makes t harder to hit, and an irrelevant

feature does not affect the probability of hitting t. The relation between features and targets can

be non-trivial to predict and understand in large programs with complex features.

In previous work [25], it was shown that for all non-trivial SUTs examined, most targets had

a few triggers and a few suppressors. We adopt from that work a formal definition of trigger

and suppressor features based on Wilson scores [58] over hitting fractions in pure (undirected)

swarm testing. Given feature f , target t, and test case population P where f appears in tests at

rate r, compute a Wilson score interval for a given confidence (e.g., 95%) (l, h) on the proportion

of tests hitting t that contain f . If h < r, we can be, e.g., 95% confident that f suppresses t. The

lower h is, the more suppressing f is for t. When l > r, f is a trigger for t. If neither of these

cases holds, we can say that f is irrelevant to t. The appropriate bound (lower or upper) may

then be used as a conservative estimate for the true fraction F of tests with f hitting t:

F (f, t) =

r iff l ≤ r ≤ h; (irrelevant)

l iff l > r; (trigger)

h iff h < r. (suppressor)

F is easily interpreted when the rates for features are set at 50% in P , as in normal swarm test-

ing. Critically, because of the way swarm testing works, feature/target relationships are always

causal, evidence of a genuine semantic property of the SUT [25].

2.3 Directed Swarm Testing

We can exploit the fact that most targets of real-world SUTs have both triggers and suppressors

to focus swarm testing on a given target, or set of targets. Directed swarm testing is performed

similarly to conventional swarm testing, and like swarm testing, usually requires little or no

modification of the base test generator. The difference between directed swarm testing and

conventional swarm testing is that, instead of using completely random configurations, directed

swarm testing uses configurations based on the trigger and suppressor information collected

for a single target or a set of targets. Rather than a single algorithm, directed swarm testing

is a family of strategies for choosing features in testing, with one constraint: when targeting t,

11

directed swarm testing never uses configurations containing any suppressors of t.

When directed swarm testing is applied to multiple targets T at once, as is often useful in

testing changed code, it may only target some subset of T in each individual test generation.

A directed swarm testing strategy is effective if it increases the average rate at which tests hit-

ting targets t are generated above the base rate for non-directed swarm testing. The larger the

increase, the more effective the directed swarm testing strategy.

A typical application of directed swarm testing could be targeting changes made to the SUT.

A developer has just implemented a new feature, and in the process added a new function f to the

code, modified four lines of code in an existing function g, and added calls to f in three locations

scattered throughout the program, all guarded by an existing conditional. The developer can

run existing regression tests [27], and run an existing random tester in swarm mode, to detect

bugs in the new feature. However, the function g is called by relatively few regression tests,

and undirected swarm testing only calls g once in every twenty tests. The calls to f are only

slightly more frequent. Assuming the unmodified code is correct, many of the tests generated

in undirected swarm testing will be useless. Fortunately, it is easy to construct a set of targets

for directed swarm testing in this situation: the modified lines in g are obvious targets, and

previous random testing results should contain enough information to calculate their triggers

and suppressors with high confidence. The code for f, in contrast, is new; the developer has

no information on triggers and suppressors for f itself. However, the developer always has

information on some existing code that precedes new code to be targeted, and is as close as

possible to it in the revised CFG for the SUT (the proof is trivial: if new code has no such nodes,

it is either unreachable in the CFG, or the new code is the first node in the CFG, in which case

it is always called and does not need to be targeted)2. The developer performs directed swarm

testing, using this set of targets, and, if directed swarm testing is effective, is able to either find

a bug or establish that the new code is likely correct much more quickly, since she has increased

the frequency with which tests validate the changes. The measure of success is how many tests

covering changed code are produced within a given testing budget (or how quickly a fault is

detected, when the code is faulty).

A major advantage of directed swarm testing is that, like swarm testing, it has essentially

the same extremely low overhead as all random testing. The only additional cost for directed

swarm testing is to collect coverage information when running some swarm tests, in order to
2It might also be possible to use code dominated by the changed code as a target, but there does not always exist

any such code.

12

Swarm Testing Configuration Strategy
[(coverage,configuration)]

Directed Swarm Testing
[configuration]

Figure 2.2: Workflow of directed swarm testing.

compute triggers and successors for a program. Running some random tests with coverage

instrumentation is already a common practice in aggressive testing, so this is hardly a major

burden, even with the need to re-baseline trigger/suppressor information as code evolves over

time. In previous work, triggers and suppressors for lines of code that continued to exist through

many software versions did not change dramatically, even from major release to major release,

for Mozilla’s SpiderMonkey JavaScript engine [25]. In short: baselining is cheap, part of ex-

isting good testing practice, and there is considerable evidence that re-baselining of coverage

relationships can be performed infrequently in various testing applications [27, 28, 54].

2.4 Configuration Strategies

Figure 2.2 shows the overall workflow of directed swarm testing, which is simple. First, swarm

testing is performed as usual, without any targets, to detect faults and collect coverage informa-

tion over the entire SUT. In order to apply directed swarm testing, the only information from

this testing that is required is the set of (coverage, configuration) tuples for all tests generated in

undirected swarm testing. This information can, as described in the introduction (Section 2.2.1)

and in more detail in the empirical work of Groce et al., [25], be used to compute, for each source

code target t (in this paper’s experiments, a statement), the set of triggering features T (t), sup-

pressing features S(t), and irrelevant features I(t). The heart of a directed swarm testing method

is a strategy for producing configurations for new tests based on T (t), S(t), and I(t). This can

be done for a single t or for a set of targets T . While the idea that knowledge of triggers and

suppressors should enable us to improve testing for targets seems clear, there are trade-offs to

consider in determining the actual configurations to use in testing for targets. Most importantly,

the triggers and suppressors are determined with respect to a distribution of test cases such that

most tests have about half of all features enabled; causal patterns may change when using a very

different configuration distribution. While hitting the targets is important, it is also essential to

maintain some test diversity to maximize the value of each individual test run — after all, sim-

ply running a single chosen test case that hits a target (with mutation fuzzing) may “maximize”

13

target coverage, but loses almost all advantages of random testing.

2.4.1 Single-Target Strategies

We first consider the simplest case, targeting a single source code element. This is likely to be

a very common goal, even for regression testing. If a developer only changes code in a single

basic block, it is essentially one target with one set of triggers and suppressors (since the coverage

vectors for all statements in a basic block are necessarily the same). Even modifying a few lines

of code that are nearby in the CFG of the SUT is probably likely to involve similar triggers and

suppressors, in most cases. In fact, multiple nearby targets can probably be effectively targeted

in most cases by choosing their nearest common control flow dominator (for example, when all

the modified code is in a single function)3.

We propose three basic strategies for a single target, t:

1. Half-swarm: The Half-swarm strategy produces configurations for testing in the same

way as undirected swarm testing, with the exception that all features in S(t) (the suppres-

sors) are omitted from each configuration and all features in T (t) are included in each

configuration. It can be trivially implemented by applying an AND mask for suppressors

(with all 1 bits except for suppressors) and an OR mask for triggers (with all 0 bits except

for triggers) as a final stage in undirected swarm testing. In other words, a configuration

Ci = {f |f ∈ T (t) ∪ randomSample(f |f 6∈ S(t))}, where randomSample returns a

random sample of a set such that each element has a 50% chance of being included.

2. No-suppressors: The No-suppressors strategy uses only one configuration, which in-

cludes all triggers and irrelevant features, but no suppressors: C = {f |f 6∈ S(t)}.

3. Triggers-only: The Triggers-only strategy, as the name suggests, also uses a single con-

figuration for all testing, where all triggers are included and no other features are included:

C = {f |f ∈ T (t)}.

The motivation for Half-swarm is that swarm testing is effective, and directed swarm test-

ing should, perhaps, remain as close to undirected swarm testing as possible, except for taking

triggers and suppressors into account. The motivation for the other two strategies is that while
3A common statement dominated by all targets can also be used, if such a statement exists.

14

swarm testing is effective for general testing of an SUT, it may not be ideal when generating fo-

cused random tests. The diversity that makes swarm testing useful may be useless or harmful for

increasing frequency of coverage for a single target; however, it is not clear if a minimal or max-

imal configuration that respects triggers and suppressors would be best, given this assumption.

Triggers-only uses a minimal configuration, with only those features known to improve cover-

age of the target included, while No-suppressors is maximal, only omitting features known to

hinder coverage of the target. The computational cost for all techniques is the same (and essen-

tially identical to that of non-directed swarm testing or pure random testing). As we see below,

in addition to the basic empirical question of effectiveness, the idiosyncracies of some random

testers may also determine which of these strategies should be chosen. In particular, for some

testers, if very few features are present in a configuration, it may not generate any valid tests.

When there are many features and a 50% chance of inclusion, the problem does not arise, but

using Triggers-only may frequently fail to generate valid configurations.

2.4.2 Multiple-Target Strategies

For multiple targets, T , our strategies reduce the problem to that for single targets t ∈ T :

1. Round-robin: The Round-robin strategy simply applies a single-target strategy in a round-

robin fashion, for t ∈ T .

2. Merging: The Merging strategy attempts to merge triggers and suppressors for targets in

T to produce a minimal set of meta-targets, then uses round-robin.

The motivation behind Round-robin is simple: to cover a set of targets, split the testing time

between those targets. If multiple targets have similar suppressors and triggers, we may end up

covering a target with tests not aimed at that target, but the basic idea is simply to assume all

targets are equally important and cannot be tested at once. Round-robin is parameterized on a

single-target strategy.

Merging approaches are more complex. They are motivated by an observation: if for two

targets, t1 and t2, ¬∃f.(f ∈ S(t1) ∧ f ∈ T (t2)) ∨ (f ∈ T (t1) ∧ f ∈ S(t2)), then there may

be no reason we have to target t1 and t2 with different configurations. They do not have any

conflicts, where a conflict is a feature that suppresses one target but triggers the other target.

Algorithm 1 illustrates one simple algorithm to produce a set of targets T ′ for targets T .

Given targets ti, tj ∈ T , we say tj subsumes ti, denoted tj = ti, if and only if, S(ti) ⊂

15

S(tj) ∧ T (ti) ⊂ T (tj). In other words, tj requires a stricter combination of features than ti.

Subsumption merging removes ti and only keeps the stricter combination of features, assuming

that it will test both targets. The computational cost of the algorithm is quadratic in the number

of targets to consider merging (and thus negligible for likely sets of targets).

Algorithm 1 Algorithm for Merging using Subsumption only.
1: for ∀ti ∈ T do
2: if ∃tj ∈ T |tj = ti then
3: D = D ∪ ti
4: end if
5: end for
6: return t ∈ T |t /∈ D

Algorithm 2 Algorithm for Aggressive Merging, with randomized approximation of optimal
merges (n = # of trials).

1: B = T
2: for i = 0 . . . n− 1 do
3: M = T
4: while ∃ti, tj ∈M : ti 6= tj ∧ (¬∃f.(f ∈ S(ti)∧f ∈ T (tj))∨ (f ∈ T (ti)∧f ∈ S(tj)))

do
5: pick ti, tj
6: T (tm) = f |f ∈ T (ti) ∨ f ∈ T (tj)
7: S(tm) = f |f ∈ S(ti) ∨ f ∈ S(tj)
8: I(tm) = f |f 6∈ T (tm) ∧ f 6∈ S(tj)
9: M =M∪ tm − ti − tj

10: end while
11: if |M| < |B| then
12: B =M
13: end if
14: end for
15: return B

It is also possible to merge in a more Aggressive fashion. In the absence of conflicts, we

can in principle merge any two targets even where neither is stricter than the other, treating them

as one target t′, with T (t′) = f |f ∈ T (t1) ∨ f ∈ T (t2), S(t′) = f |f ∈ S(t1) ∨ f ∈ S(t2),
and I(t′) = f |f 6∈ S(t′) ∧ f 6∈ T (t′). In this way, we can keep merging targets (replacing

the two non-conflicting targets with the new meta-target) without conflicts to produce a small

16

set of configurations that are directed at many targets at once. However, finding the merges to

produce a truly minimal set of configurations is in NP-complete, equivalent to the optimal tuple

merge problem [50]. We implemented an SMT-based exact solver for merging targets using

Z3 [16], which was able to construct perfect solutions for up to 20 targets (typically solving for

300 features in less than 2 minutes, but sometimes taking more than 10 minutes), but did not

scale to 40 targets at all, even with very few features (timing out after many hours). Fortunately,

due to the fact that most targets have either absolutely few (< 3) triggers and suppressors or

at least relatively few (< 5% of features) triggers and suppressors [25], random ordering of

matches (using the best solution after a fixed number of trials) approximates exact solutions

effectively and quickly. In our experiments, a random approximation of optimal merging, even

using 1,000 trials, always produced a nearly-optimal set of configurations (at most one larger

than the optimal set produced by Z3) in less than 1 second, for up to 20 targets. In experiments,

we used 10,000 trials. Algorithm 2 shows the randomized algorithm for Aggressive Merging of

targets. We assume that Subsumption Merging has already been applied before this algorithm is

called.

Both the Subsumption and Aggressive Merging strategies are, like the Round-robin strategy,

parameterized on a single-target configuration strategy. It is, in part for this reason, not clear

whether (and how much) we should merge configurations. Merging targets produces “more

specialized” configurations that leave little room for the basic single-target strategies to oper-

ate (because merging increases the numbers of fixed triggers and suppressors for each merged

target). Round-robin maintains maximal configuration diversity (consistent with directing the

testing). Subsumption Merging assumes that when one target subsumes another, they are truly

similar and can be tested in the same way. Aggressive Merging uses as few configurations as

possible, but may result in a very small number of targets with very few irrelevant features.

Whether such targets can actually be effectively tested by the same configurations is not obvious

without empirical investigation.

2.5 Evaluation Methodology

We used three medium-moderately large C programs (shown in Table 2.1) to evaluate directed

swarm testing. While not extremely large, these are all important systems-software programs, the

typical of the kind of program for which an effective dedicated random tester can be expected

to exist. For YAFFS2 (formerly the default image file system for Android), we used custom

17

Table 2.1: Experimental Subjects
SUT LOC Fuzzer Description

YAFFS2 15K yaffs2tester Flash File System
GCC 4.4.7 860K Csmith C and C++ Compiler

SpiderMonkey 1.6 118K jsfunfuzz JavaScript Engine For Mozilla

test generation tools descended from those used to test the file systems for NASA’s Curiosity

Mars Rover [30], and applied in previous work on combining random testing and symbolic

execution [64]. For GCC, we used the Csmith [60] C compiler fuzzer to generate tests. Csmith

is a highly effective tool that has been used to detect more than 400 previously unknown bugs

in GCC, LLVM, and other production C compilers. For SpiderMonkey, Mozilla’s JavaScript

engine, we used jsfunfuzz [52], a well-known JavaScript fuzzer responsible for finding more

than 6,400 bugs in SpiderMonkey, combined with a small Python script to add swarm testing.

The other two test generators already supported swarm testing.

Our subjects were chosen with two criteria in mind: first, they represent different kinds

of features for swarm testing. YAFFS2 features are API calls, but (unlike the Java libraries

more commonly used in the literature of API-call test generation), the calls modify a single,

very complex program state (the file system itself) with complex dependencies. Features for

SpiderMonkey testing using jsfunfuzz are actual production rules in a recursive generator,

very difficult for a human engineer to understand (but easy to implement in a swarm tester).

The complex recursive generation makes it an interesting subject to gauge the limits of our

technique. Finally, test features in Csmith [60] are high-level semantic features of C programs,

some of which do not correspond to simple grammar productions, and the features were devised

to help compiler engineers deal with compilers with limited support for various C features, not

for use in swarm testing. Second, we wanted our subjects to be representative of the kinds of

system software subjected to aggressive, sophisticated random testing.

Table 2.2 shows parameters for our experiments. In this table: # Features shows the number

of features in the SUT that can be tested by the corresponding fuzzer, seed time shows time

spent in minutes to generate the initial (undirected swarm) test suite that is used for extracting

trigger/suppressor features for statements, and directed time shows the time spent for directed

testing of targets. The stochastic nature of random testing required us to run experiments multiple

times to ensure results are statistically significant. For each test subject we generated between

30 and 60 initial test suites (# Suites) using undirected swarm testing. We collected data on

18

Table 2.2: Experimental Parameters.
SUT # Features Seed

time
(min.)

Directed
time
(min.)

Undirected
Suites

YAFFS2 43 15 5 60
GCC 25 60 10 30

SpiderMonkey 171 30 10 54

configurations and coverage from these tests, and computed Wilson scores (and thus triggers

and suppressors) for all statements covered in the tests. For each such test suite, we picked up

to 35 sets of random targets (statements), with sizes 1, 5, 10 and 20 (up to 5 for each size) to

evaluate directed swarm testing4. We also used the default configuration of each test generator

to produce one traditional (non-swarm) random test suite for each swarm test suite produced

(thus from 30-60 pure random suites), to compare the effectiveness of directed swarm testing

and traditional random testing, using the same time budget.

We randomly chose targets (statements) covered by 10% to 30% of test cases in the original

test suite, to restrict evaluation to targets that are at least somewhat difficult to cover, but for

which a statistical basis for directed swarm testing definitely exists. For more rarely covered

targets, where triggers and suppressors are less certain, the nearest control-flow dominator with

sufficient coverage in tests can be used as a replacement target. Note that with a large amount of

historical coverage data, as might be collected in an overnight test run on a stable version, many

more targets would have statistical support for accurate triggers and suppressors. The 10%-30%

selection is only to enable experiments using limited coverage data, not a limitation of directed

swarm testing.

For the single-target sets we applied each of the Half-swarm, Triggers-only, and No-suppressors

strategies. For all multiple target sets, we also applied Round-robin, Subsumption, and Aggres-

sive strategies (in each case paired with a single-target strategy, for nine strategies in all). We

varied the time for undirected testing and directed testing according to suite complexity in each

case. In total, we ran tests for slightly more than 3,000 hours and generated over 20,000 test

suites.
4We also collected data for size 2, 3, and 4 target sets, which will be provided in a technical report; in the interests

of space, these results, which shed little light on multi-target strategies and were similar to results for size 5, are
omitted from this version.

19

Our primary measure of effectiveness is simple. For any test suite, we compute the hitting

fraction HF for tests that cover a target t (if there are n tests in a suite and m tests cover t

then,HF = m
n) — if every test in a suite covers t, HF = 1.0 and if no tests cover t, HF =

0.0. Suppose the hitting ratios in an undirected suite and directed suite are HFu and HFd

respectively, we use the ratio HFd
HFu

to measure the effectiveness of directed testing in hitting

targets more frequently. Note that directed test suites with HFd
HFu

> 1.0 offer improvement over

undirected test suites. This is the measure a developer wants to increase via targeting.

2.6 Results

Our experimental results address six basic research questions:

• RQ1: (How much) does directed swarm testing improve coverage for single targets?

• RQ2: Which strategies for single-target directed swarm testing are most effective?

• RQ3: (How much) does directed swarm testing improve coverage for multiple targets at

once?

• RQ4: Which strategies for multiple-target directed swarm testing are most effective?

• RQ5: Can directed swarm testing help detect actual faults?

• RQ6: How much does directed swarm testing improve coverage over traditional random

testing?

Figure 2.3 illustrates the distribution of targets’ hitting fraction (HF) for (undirected) swarm

testing and directed swarm testing. It shows that, in most cases, the hitting fraction for targets

in directed swarm testing is much higher than the hitting fraction for undirected swarm testing.

For brevity, in the rest of this section, we use “directed swarm testing” and “directed testing”

interchangeably, as directed swarm testing is the only directed testing approach we evaluate

(and, to our knowledge, the only one applicable to our subject programs).

Table 2.3 provides much more detailed information about the performance of directed testing

for single-target directed testing5. It summarizes HFd
HFu

for different strategies. In this table,

5Tables containing detailed results for multi-target testing were omitted due to space limitations, and appear in
tech report online.

20

●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●
●●●
●●●
●●●
●●●
●●●

●●●
●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●

●

●

●

●

●

●

●●

●

●●●●
●
●●

●

●●

●

●●

●

●●
●●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●

●
●

●

●

●

●
●●

●

●

●

●

●

●●●

●
●

●

●
●
●

●

●

●●

●

●●●
●
●

●

●

●

●●

●

●

●

●

●

●
●

●●

●
●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

0.00

0.25

0.50

0.75

1.00

YAFFS2 GCC SpiderMonkey

H
F

Technique
Undirected Swarm Testing
Directed Swarm Testing

Figure 2.3: Hitting fraction in undirected swarm testing (HFu) versus directed swarm testing (HFd)
over all strategies.

“count” contains the number of test suites generated by directed swarm testing using strategies

described in the corresponding row. The HFd
HFu

> 1.0 column shows the fraction of test suites

where target(s) were covered more often by the directed swarm testing than the corresponding

initial undirected swarm testing. For example, the value 0.8 in this column means: in 80% of

test suites generated by directed swarm testing, the HF for targets is higher than the original

undirected swarm. “mean”,“std. dev”, “min”, “25%”, “50%”, “75%” and, ”max“ respectively

denote average, standard deviation, minimum, first quartile, second quartile (i.e. median), third

quartile and maximum of HFd
HFu

in test suites generated by corresponding strategies in each row.

2.6.1 RQ1 and RQ2: Single-Target Strategies

Table 2.3 shows the results for single-target directed swarm testing under different directed test-

ing strategies, including p-values for Wilcoxon tests. Figure 2.4 visualizes these results. Ta-

ble 2.3 shows that directed swarm testing has been successful in increasing HF for targets for

YAFFS and GCC. For all strategies with YAFFS, directed swarm testing always increased hit-

21

Table 2.3: Results for single-target directed random testing.
Strategy HFd

HFu
> 1 count mean std. dev min 25% 50% 75% max p-val

YAFFS2
Half-swarm 1.0 218.0 3.56 0.59 1.38 3.11 3.7 3.96 5.01 0.0

No-suppressors 1.0 216.0 3.03 0.7 1.03 2.4 3.19 3.56 4.44 0.0
Triggers-only 1.0 218.0 3.94 0.64 2.26 3.57 4.0 4.25 7.87 0.0

GCC
Half-swarm 0.99 138.0 2.4 0.99 0.94 1.69 2.19 3.0 6.33 0.0

No-suppressors 0.94 135.0 2.56 1.0 0.0 1.86 2.59 3.23 5.58 0.0
Triggers-only 0.92 129.0 2.28 1.0 0.53 1.53 2.13 2.94 5.29 0.0

SpiderMonkey
Half-swarm 0.73 260.0 1.75 1.06 0.0 0.88 1.74 2.49 4.39 0.0

No-suppressors 0.65 260.0 1.15 0.62 0.0 0.61 1.27 1.6 3.14 0.30234
Triggers-only 0.84 19.0 4.56 3.01 0.11 2.6 3.62 7.23 8.82 0.0006

ting ratio. The hitting fraction of targets using directed swarm testing was more than three times

more than the hitting fraction in the undirected testing, on average. For GCC, directed swarm

testing increased the hitting fraction of targets for more than 90% of targets. On average, the

directed testing increased the hitting fraction of targets by a factor of 2 or more.

The results for SpiderMonkey are mixed partly because the design of jsfunfuzz is such

that, if we remove certain features, the fuzzer cannot produce any test cases at all. Moreover

jsfunfuzz encodes SpiderMonkey’s feature set by paths through a complex recursive code

generation system that resembles a grammar. In many cases, with SpiderMonkey, the triggers

for a target are low-level productions that are only reachable through top-level parts of the fuzzer

that correspond to irrelevant features — they are highly redundant. This makes it hard to iden-

tify triggers and suppressors, since the chance of undirected swarm generating a configuration

disabling all paths is small. However, even for SpiderMonkey, directed swarm testing increases

the hitting fraction of more than half of targets, and Half-swarm had mean improvement close

to 2x. Note that most configurations for the Triggers-only strategy could not generate any test

cases.�
�

�

Observation 1: Directed swarm testing, with the exception of one strategy for Spider-

Monkey, significantly (p < 0.01) increases coverage frequency over undirected testing.

The average improvement for single-target directed testing ranges from 1.15x for Spider-

Monkey with the No-Suppressor strategy to nearly 4x for Triggers-only with YAFFS2.

22

0.0

2.5

5.0

7.5

GCC SpiderMonkey YAFFS2
SUT

H
F

d

H
F

u

Strategy

Half−Swarm

No−Suppressors

Triggers−only

Figure 2.4: Single-target strategies compared.

23

�
�

�

Observation 2: There is no clear best strategy for single-target testing, though it is clear

that adopting Triggers-only may be risky in some settings.

2.6.2 RQ3 and RQ4: Multiple-Target Strategies

For analysis of multi-target directed testing, we use the average hitting fraction, i.e. HF , for

comparison of effectiveness of directed testing. Figure 2.5 shows results HFd

HFu
with various target

set sizes. The most obvious trend is that, while it is effective, the effectiveness of directed testing

decreases with an increase in number of targets. For YAFFS, targeted testing always increases

the hitting fraction of targets, on average between 1.89x to 2.82x .

In GCC, directed testing improves hitting fraction for 81.2% of all target sets. No-suppressors

and Half-swarm strategies improve the hitting fraction of targets in 95.7% of cases. On average,

they improve hitting factor between 1.3x to 2.26x.

Directed swarm testing improves the hitting fraction for 73.4% of target sets in SpiderMon-

key. The Triggers-only strategy for SpiderMonkey could not generate tests for many targets,

due to the complex recursive code generation in jsfunfuzz (mentioned earlier) generating

test suites for only about 41% of targets. Half-swarm and No-suppressor strategies improve the

hitting fraction for 72.2% of their targets, between 1.07x and 1.48x on average, for target set

sizes of 10 and 5, respectively.

The result of rank-sum test of effectiveness of multiple-target testing suggests that the Triggers-

only strategy does not perform well in generating effective configurations to increase the fre-

quency of coverage for targets6. Given the risks seen in single-target testing and the lackluster

results here, we believe that Triggers-only may be the least effective strategy, despite its good

results for YAFFS2 single-target directed swarm testing. It may be that Triggers-only is simply

too extreme: conventional random testing uses all features in every test, and swarm testing can

often improve this by reducing the fraction of features by half. Lowering it to the small number

of triggers for many targets may simply not match the behavior most random testers are designed

to work with, or produce too little complex interaction of software components to provide good

testing.�
�

�
�

Observation 3: For YAFFS, GCC, and SpiderMonkey, for No-suppressor and Half-

swarm strategies, the hitting fraction of at least 95% of target sets increases significantly

using directed swarm testing (p < 0.01, Wilcoxon rank-sum).

6Full statistical test results in tech report.

24

Figure 2.6 shows the performance of different merge strategies across test subjects, and Fig-

ure 2.7 shows how merge strategies affected the number of effective targets (how much merging

was possible). Aggressive merging produced consistently very small sets of targets, while Sub-

sumption results are generally closer to Round-robin than to Aggressive. The difference between

the Round-robin and Subsumption strategies in hitting fractions was therefore minimal (and in

most cases, not statistically significant). The most likely explanation is that when two targets

have similar enough triggers and suppressors to merge, for our subjects, testing one target in

round robin is likely to “accidentally” target the other target as well. Aggressive merging im-

proved hitting fractions for GCC and SpiderMonkey, but performed poorly for YAFFS2.

2.6.3 RQ5: Actual Fault Detection

In addition to our basic results showing that directed swarm testing can improve the frequency of

coverage of targets, we also performed experiments on actual fault detection — the hypothesis

that producing more tests hitting a code target will likely find faults involving that code more

easily seems obvious, but there could be confounding factors, such as reduction of some other

form of test diversity produced by swarm testing. These experiments are based on 7 randomly

chosen known (fixed) SpiderMonkey faults. For each of these faults, we targeted the statements

in the code commit that introduced the fault. Evaluation was based on comparing 30 minute

undirected and directed swarm suites, and counting how many times the fault was detected, on

average, over a large (¿ 50) number of trials. For two of the faults, neither directed nor undirected

testing ever detected the fault. The commit sizes for the remaining 5 faults were 40, 13, 5, 17,

and 15 statements, respectively. Table 2.4 shows detection rates for undirected swarm testing and

directed strategies, with the best detection rate for each fault in bold. Triggers-only is omitted

from results, due to its difficulties producing valid SpiderMonkey tests, and Aggressive merging

did not actually produce any additional merges over those provided by Subsumption. While no

single strategy dominated all others, some basic points are clear: first, undirected swarm never

had the best detection rate, and had the worst detection rate for 3 of the 5 faults. Second, Round-

robin Half-swarm never had the worst detection rate, and had the best detection rate for 2 of the

5 faults, and improved the detection rate compared to undirected swarm testing by an average

of 2.56x. Subsumption No-suppressors also always improved on undirected testing. Due to the

large number of similar results (most runs did not detect a fault), however, these differences were

only statistically significant for Fault #5.

25

YAFFS2

Number of Targets

H
F

d

H
F

u

1

2

3

4

5 10 20

●
● ●

●
●
●●
●
● ●

●●
●●

Half−swarm
Aggressive

5 10 20

●

●
●

No−suppressors
Aggressive

5 10 20

●
●

●

●●●●
●

●
●

●
●

●

●
●●

Triggers−only
Aggressive

● ●
●

●●

Half−swarm
Subsumption

●
● ●

●

●

No−suppressors
Subsumption

1

2

3

4

● ●
●

●
●●

Triggers−only
Subsumption

1

2

3

4

● ● ●

Half−swarm
Round−robin

●
● ●

●
●

No−suppressors
Round−robin

● ● ●

Triggers−only
Round−robin

GCC

Number of Targets

H
F

d

H
F

u

0

1

2

3

4

5 10 20

● ● ●

●●● ●●

Half−swarm
Aggressive

5 10 20

● ● ●

●

No−suppressors
Aggressive

5 10 20

● ● ●

●

●
●
●

●●

Triggers−only
Aggressive

● ● ●

●

●●●
●

Half−swarm
Subsumption

● ● ●

●●●

●

No−suppressors
Subsumption

0

1

2

3

4

● ● ●

●
●

●
●

●

Triggers−only
Subsumption

0

1

2

3

4

● ● ●

●
●

●

Half−swarm
Round−robin

● ● ●

●

● ●

No−suppressors
Round−robin

● ● ●

●

●

●
●

Triggers−only
Round−robin

SpiderMonkey

Number of Targets

H
F

d

H
F

u

0

1

2

3

4

5 10 20

● ● ●

●●
●

●

●
●

Half−swarm
Aggressive

5 10 20

● ● ●

●
●

●

●

●●

No−suppressors
Aggressive

5 10 20

●
● ●

Triggers−only
Aggressive

● ● ●

●

●

Half−swarm
Subsumption

● ● ●

●

●

●

No−suppressors
Subsumption

0

1

2

3

4

●

●
●

●

●

Triggers−only
Subsumption

0

1

2

3

4

● ● ●

●

●●

●●

Half−swarm
Round−robin

● ● ●

●

No−suppressors
Round−robin

●

●
●

●

Triggers−only
Round−robin

Figure 2.5: Multi-target strategies compared.

26

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●
●

●●

●
●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●
●

●●●
●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●●●

●

●●●
●

●

●

●

●●●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

0

1

2

3

4

YAFFS2 GCC SpiderMonkey

ne
w

ra
tio

/in
itr

at
io

MergeMode

Aggressive

Round−robin

Subsumption

Figure 2.6: Merge strategies over all multi-target strategies.

Table 2.4: Detection rate of actual faults in the test suites generated by each technique in a
30-minute test suite generated by each test strategy.

Test Strategy Fault #1 Fault #2 Fault #3 Fault #4 Fault #5
Undirected Swarm 13.6 0.07 0.24 0.26 0.07

Round-robin Half-swarm 31.9 0.19 0.35 0.56 0.29
Round-robin No-suppressors 34.2 0.26 0.17 0.46 0.69

Subsumption Half-swarm 33.0 0.24 0.12 0.10 0.29
Subsumption No-suppressors 33. 1 0.31 0.29 0.31 0.46

�
�

�
�

Observation 4: Directed swarm testing, for 5 real SpiderMonkey faults, ususally detected

real faults much more frequently than undirected testing. Round-robin Half-swarm was

arguably the most effective approach.

2.6.4 RQ6: Comparison with Random Testing

We chose to use random testing without swarm configuration as an external evaluation. If di-

rected testing cannot improve the hitting fraction of targets over pure random testing, the appli-

cability of our technique would be questionable. Comparison with other techniques would have

little value, as the testing strategies in most search-based and symbolic testing methods we are

aware of essentially aim to cover each code target once, not to maximize frequency of cover-

age, unless the target coincidentally is hit when covering other targets. Frequency of coverage

27

●●●

●●●

●●●

●

5

10

15

20

YAFFS2 GCC SpiderMonkey

C
on

fig
ur

at
io

n
S

iz
e

MergeMode

Aggressive

Round−robin

Subsumption

Figure 2.7: Number of targets after merging, by merge strategy.

is therefore a largely meaningless metric for these methods, while it is often used by engineers

evaluating random testers (if a random tester hits a code target very infrequently it can be seen

as a problem with the tester) [30]. We compared the average hitting fraction of targets in single-

targeted experiments over all strategies for each SUT (HFd), with the average hitting fraction in

test suites generated by traditional random testing (HFr) under the same time budget as in the

single-target directed swarm experiments, with the same number of trials as in the earlier single-

target experiments. Figure 2.8 illustrates the results. We used a paired t-test between HFd and

HFr. Table 2.5 summarizes the results, showing average hitting fractions, confidence intervals

on the effect size, and p-values.

Table 2.5: The result of t-test comparing the hitting fraction of targets in directed random testing and
random testing without swarm.

SUT HFr HFd confidence-interval p-value
YAFFS2 0.671 0.819 (0.126,0.170) 0.0000
GCC 0.342 0.425 (0.053,0.113) 0.0000
SpiderMonkey 0.198 0.276 (0.059,0.097) 0.0000

�
�

�

Observation 5: Directed swarm testing significantly (p < 0.01) increases hitting frac-

tions over pure random testing.

28

●
●

●

●
●
●

●

●

●

●
●●

●

●

●

●

●

●●

●
●

●

●
●
●
●
●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

0

1

2

3

4

5

6

7

8

9

10

YAFFS2 GCC SpiderMonkey

Figure 2.8: HFd

HFr
, random vs. directed.

2.7 Threats to Validity

Threats Due to Sampling Bias: Our results are based on results from only three large open

source software programs. While we believe that these programs are well tested examples of

real-world programs, there is a possibility that they are not representative. All our subjects are

“systems” software in C, for example. Generalizing to other languages and types of code may

be unwarranted.

Limited External Evaluation: We used pure random testing as our external evaluation. We

are aware that there are other techniques that aim to cover particular code targets, most notably

search-based techniques and symbolic execution. However, to our knowledge, all of these tools

aim to produce a single test covering each target, not a set of highly diverse tests that frequently

cover the target(s); even tools aiming to test code patches (e.g. KATCH [43]) aim to hit targets

only once.

2.8 Discussion

While our results generally support the effectiveness of directed swarm testing, it is surprising

how difficult it is to identify a single best strategy for directed swarm testing. Triggers-only

is likely ineffective, but choosing between Half-Swarm, No-Suppressors, Round-Robin, Sub-

sumption, and Aggressive strategies is not simple. In part we attribute this to the underlying

complexity of what is happening in (directed) swarm testing: each configuration defines a (usu-

29

ally effectively infinite) set of tests. This is, of course, the point of random testing, that an

unbounded number of diverse tests can be generated, using all available testing budget.

Swarm testing improves random testing in many cases, in the long run, by increasing the

diversity of generated tests. This diversity can come with a price, however: for a fixed testing

budget, because swarm testing improves diversity, the hitting fraction for many individual targets

will be lower than for pure random testing (when swarm testing increases overall coverage, this

is almost required — hitting more targets means hitting each target less often [31]). In fact, we

noticed that comparing hitting fractions for undirected swarm testing and pure random testing,

we often saw better hitting fractions for pure random testing, despite the fact that fault detection

and overall coverage tend to show swarm testing performing much better for reasonably-long test

runs [31]. Configuration strategy not only determines individual test behavior, but determines

how quickly coverage saturates due to (lack of) diversity of tests created. Swarm testing produces

very diverse tests; random testing without swarm configuration produces much less diverse tests.

Our directed swarm testing strategies introduce a large number of choices in between these

extremes, with a given focus [26]. Our experiments show that a variety of configuration methods

can improve hitting fractions, but understanding how to best choose a strategy for, e.g., short vs.

long budget directed testing is an open question we would like to address. However, the primary

aim of directed swarm testing will typically be to detect faults quickly. One reasonable approach

is to extend the diversity-centric ideas of swarm testing to strategy selection, and run in parallel

directed tests for a change set using all of the viable strategies (e.g., all but Triggers-only).

2.9 Related Work

The most closely related work is our previous work introducing swarm testing [31] and the no-

tions of triggers and suppressors [25]. We expand on that work by using the concepts introduced

to enable a practical way to generate focused random tests.

There are several approaches for generating a test case that covers a chosen source code target

once. Of these, search-based testing [34, 44] and (dynamic) symbolic execution [22, 59] are the

most notable ones. Symbolic execution [40] formulates an execution path in the program as a

constraint formula problem and generates inputs that satisfy the path conditions and hence cover

the target. Dynamic symbolic execution improves the scalability of pure symbolic execution

by using information from concrete executions to replace over-complex constraints, simplifying

problems of handling, e.g. system calls and pointers [22]. Search-based testing reduces the

30

problem of covering a particular entity in the program to a search problem and uses techniques

such as genetic algorithms and hill climbing, to solve that problem [34, 44].

There are many previous efforts to improve random testing. Randoop [46] generates tests

for object-oriented programs by calling random APIs, but uses feedback to guide test sequence

creation. Nighthawk [6] uses genetic algorithms on top of a random tester to modify the configu-

ration of the random tester to optimize it for a given goal (i.e., fitness function). Adaptive random

testing [11, 12] aims to improve random testing by using a distance measure to select more uni-

formly distributed tests, though its effectiveness in practice has been criticized [8]. ABP-based

testing uses reinforcement learning to guide test generation [29].

To our knowledge, none of these approaches are applicable to the problem we address. First,

we believe that our approach is the only attempt to produce a large set of diverse tests (due

to random variation, in our case, but any type of diversity would be useful) that cover certain

code targets with high frequency. While symbolic execution and search-based testing may be

helpful for producing tests targeting a given element in source code, they simply attempt to hit

the target, not produce many tests hitting the target in various ways. Moreover, these approaches

are not always easy to apply to complex SUTs (such as a production quality compiler that takes

as input full programs in a complex language), and symbolic execution in particular is often

far less efficient than random testing [64]. Symbolic execution unfortunately simply fails to

scale to very large systems with complex input, in many cases, or requires seed tests. The

approach proposed in this paper is often trivial to apply to existing random test generators for

complex software systems and, like pure random testing, has extremely low overhead (collecting

coverage information on some random test runs is the only real cost, and this is only paid during

data collection, not during new testing runs). While other methods are suitable for generating

a single test targeting specific code (and this is their common usage), the high cost of each test

generated by many methods might make them unsuitable for our purposes of high frequency

of coverage in diverse tests, even if some variation were proposed allowing the generation of

multiple tests for a target.

2.10 Conclusions and Future Work

In this paper we demonstrate that using collected statistics on code coverage and swarm testing, it

is possible to produce focused random tests — truly random tests that nonetheless target specific

source code. While results for the various strategies for directed swarm testing vary, in general

31

the method is able to increase the frequency with which tests cover targeted code by a factor

often more than 2x, and sometimes up to 8 or 9x. This approach is readily applicable to existing,

industrial-strength random testing tools for critical systems software, and therefore out-of-the-

box scalable to applications such as testing production compilers and file systems.

In conjunction with existing regression suites and other methods, we hope that applying some

element of “regression testing” (targeting code changes) to highly diverse and cost-effective

random testing can make it easier to find faults in changed or otherwise suspicious parts of

complex systems. For example, if static analysis indicates that a source code line may have a

bug, but the analysis technique is subject to false positives, it may be useful to subject such lines

to further scrutiny with targeted tests. If mutation testing reveals that many mutants of certain

code lines survive an existing test suite or a large number of random tests, directed swarm testing

can be used to produce random tests that have more chance of killing these mutants, for inclusion

in regression tests. Targeting source code that is very infrequently covered during extensive

random testing, but covered enough to provide a basis for statistical estimation of triggers and

suppressors may lead to covering code that the seldom-covered code dominates in the CFG,

improving the overall effectiveness of large-scale random testing. Targeting faults, rather than

source code lines, can help improve suites for fault localization, by producing more failing tests

to analyze. We believe there may be further practical applications of the combination of test

suite statistics and variation in test case configurations. The changes in effectiveness of directed

swarm testing, depending on the strategy chosen for balancing focus and diversity also show the

difficulty of understanding complex testing systems.

2.11 Acknowledgements

The authors thank Scott Davies for discovering the equivalence to optimal tuple matching, and

John Regehr, Darko Marinov, Milos Gligoric, Josie Holmes, and Mihai Cobodan for useful

discussions. A portion of this work was funded by NSF grants CCF-1217824 and CCF-1054786.

32

Evaluating Non-adequate Test-Case Reduction

Mohammad Amin Alipour, August Shi, Rahul Gopinath, Darko Marinov, and Alex Groce.

In Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engi-

neering (ASE 2016).

ACM, New York, NY

pp 16-26.

33

Chapter 3: Evaluating Non-adequate Test-Case Reduction

3.1 abstract

Given two test cases, one larger and one smaller, the smaller test case is preferred for many pur-

poses. A smaller test case usually runs faster, is easier to understand, and is more convenient for

debugging. However, smaller test cases also tend to cover less code and detect fewer faults than

larger test cases. Whereas traditional research focused on reducing test suites while preserving

code coverage, recent work has introduced the idea of reducing individual test cases, rather than

test suites, while still preserving code coverage. Other recent work has proposed non-adequately

reducing test suites by not even preserving all the code coverage. This paper empirically evalu-

ates a new combination of these two ideas, non-adequate reduction of test cases, which allows

for a wide range of trade-offs between test case size and fault detection.

Our study introduces and evaluates C%-coverage reduction (where a test case is reduced

to retain at least C% of its original coverage) and N -mutant reduction (where a test case is

reduced to kill at leastN of the mutants it originally killed). We evaluate the reduction trade-offs

with varying values of C% and N for four real-world C projects: Mozilla’s SpiderMonkey

JavaScript engine, the YAFFS2 flash file system, Grep, and Gzip. The results show that it

is possible to greatly reduce the size of many test cases while still preserving much of their

fault-detection capability.

3.2 Introduction

Smaller test cases are, in many ways, preferable to larger test cases. For example, smaller test

cases tend to run faster, which can improve the efficiency of running test suites [24], i.e., sets of

of individual test cases. Smaller, simpler test cases are also easier to understand and enable more

effective debugging. This was the initial motivation for delta-debugging [63]—a technique for

reducing the size of failing test cases. Because of the advantages of smaller test cases, random

test generation is often combined with delta-debugging, making research on effective reduction

techniques itself an important topic [14,30,42,49]. Test suites with small test cases (that focus on

34

separate functional properties) also make it possible for test-case selection [19] and prioritization

to operate more effectively than when applied to test suites mostly consisting of large, complex

test cases.

While smaller test cases have advantages, it is also true that smaller test cases, all else being

equal, detect fewer faults than larger test cases [5]. The trade-off between size and effectiveness

for individual test cases is similar to the trade-off between smaller and larger test suites. Re-

searchers have extensively studied test-suite reduction [33, 35, 51, 54, 61], which removes entire

test cases from test suites.

The problem of test-suite reduction is to reduce a given test suite while preserving most of its

fault-detection capability. Various techniques have been proposed, and many are summarized in

a survey by Yoo and Harman [61]. Test-suite reduction trades off reduced fault-detection capa-

bility (most often measured by the number of killed mutants) for reduced test-suite size (typically

measured by the number of test cases). Traditional techniques completely preserve some prop-

erty of a test suite, e.g., its code coverage, while removing test cases that are redundant and do

not contribute to that property. Recently, we evaluated non-adequate test-suite reduction [54]

that only partially preserves the property of interest, e.g., preserves 90% of code coverage.

The problem of test-case reduction is to reduce an individual test case while preserving most

of its fault-detection capability. Reducing a test case essentially requires “slicing and dicing”

the atomic parts that make the test case. For example, if a test case is a unit test composed

of a sequence of function calls, reduction usually involves removing function calls. If a test

case is defined by an input file, reduction can involve removing characters from the file. Note

that measuring the size of a test case is inherently project-specific, depending entirely on the

semantics of test cases, whereas the size of test suites can be defined in a project-agnostic way as

the number of test cases in the test suite (though not perfectly correlated with the time to execute

the tests). While test-suite reduction has been studied in depth at least since 1993 [35], test-case

reduction research is much more recent.

Zeller and Hildebrandt proposed delta-debugging [63], the best known test-case reduction

technique, usually applied to reduce a failing test case to a minimal test case that still fails.

Recently, we proposed cause reduction [24,28] as a generalization of delta-debugging, and used

it to reduce a (passing or failing) test case while preserving its original coverage. Cause reduction

completely preserves coverage: the reduced test case has to cover all the code elements that

the original test case covered (and can potentially cover even more). We call such reductions

adequate because they preserve 100% of some property. Note that “adequate” in our context

35

refers to the relationship between the reduced and original test cases, although the original test

case itself may provide far from adequate code coverage.

The utility of non-adequate reduction for test suites [54] naturally suggests that non-adequate

reduction may be useful for test cases as well. Non-adequate reduction, either for test suites

or test cases, greatly enlarges the number of points to explore in trading off size and fault-

detection capability. For test cases, requiring adequacy limits how much size can be reduced

(some test cases cannot be reduced substantially without sacrificing at least some coverage or

killed mutants) and increases the time required to reduce test cases (because searching for an

adequate reduction is often harder than finding a “good enough” reduction).

Combining the recent ideas of non-adequate reduction for test suites [54] and adequate re-

duction for test cases [24,28], this paper empirically evaluates a new combination: non-adequate

reduction for test cases. To the best of our knowledge, ours is the first such evaluation.

Specifically, we evaluate C%-coverage reduction (where a test case is reduced to retain at

least C% of its original coverage) andN -mutant reduction (where a test case is reduced to kill at

least a given set of N mutants it originally killed). Both reductions reduce a larger test case to a

smaller test case while only partially preserving some property. Hence, we call these reductions

“non-adequate” because they do not necessarily preserve completely either the code coverage or

all mutants killed. However, the reduced test case could, in theory, cover code elements or kill

mutants that the original test case does not, even if the reduced test case does not cover all code

elements or kill all mutants that the original test case did; in fact, the reduced test case can even

cover more code or kill more mutants.

Non-adequate test-case reduction further generalizes previously proposed test-case reduc-

tions. By parameterizing the level to which the reduced test case needs to preserve a property,

we allow more freedom to explore trade-offs between size reductions and preservation of fault-

detection capability [54, 62]. For example, cause reduction [24, 28] becomes just a special case

of our C%-coverage with C = 100. Preserving to kill only one mutant that encodes some fault

(N -mutant with N = 1) can mimic delta-debugging. At the other extreme, setting N to equal

the total number of all mutants originally killed results in a very strict test-case reduction that

preserves all mutants killed; however, such reduction may be prohibitively expensive to perform

(and would likely provide very little reduction unless test cases have excessive redundancy), so

our evaluation concerns only small values for N .

We evaluate non-adequate test-case reduction on four real-world C projects: Mozilla’s SpiderMonkey

JavaScript engine, the YAFFS2 flash file system, Grep, and Gzip. We used manual Grep test

36

cases, and automatically generated test cases for the other projects. We evaluate C%-coverage

for various levels of C%, from 70% to 100%. We evaluate N -mutant with (1) randomly se-

lected mutants for various values of N from 1 to 32, and (2) mutants that are hard to kill based

on the minimal mutant set [3]. We measure size reduction, code coverage, and mutants killed,

with the latter two1 used as proxies for fault-detection capability. Our results show that in many

cases, non-adequate test-case reduction can substantially reduce the size of the given test cases

while still preserving considerable fault-detection capability. Perhaps most interestingly, when

performing C%-coverage reduction, the largest gain in size reduction for all cases comes when

C% changes from 100% to 95%; the gain is typically twice as large as for any other C% change.

This gain does not result in a similarly large loss in mutation detection. In brief, simply giving

up on perfection enables a larger reduction in size than the associated reduction in effectiveness.

Additionally, preserving even a small number N of mutants killed usually indirectly preserves a

large fraction of all other mutants killed, often more than 70%.

This paper makes the following contributions:

• Novel test-case reduction approach: We define two types of non-adequate test-case

reduction: C%-coverage and N -mutant reduction.

• Evaluation of reduction trade-offs: Using four real-world C projects, we evaluate the

relationship between the size reductions obtained with varying parameters for these re-

ductions, and the code coverage and killed mutants for reduced test cases relative to the

original, unreduced test cases.

3.3 Non-adequate Test Reduction

We next describe our test-case reductions in more detail. We use to to denote the original test

case and tr to denote the reduced test case. We use t to denote an arbitrary test case, Cov(t)

to denote the set of statements2 covered by t, Mut(t) to denote the set of mutants killed by t,

|S| to denote the cardinality of the set S, and Size(t) to denote the size of t. Measuring the

size of a test case is specific to the project or the format of test cases; Section 3.5.1.1 precisely

defines size for the projects used in our evaluation. Conceptually, we define size as the number
1Although they are not ideal proxies, code coverage is often used by developers to evaluate quality of test cases

and both are commonly used to evaluate test cases in research.
2While we present and evaluate C%-coverage only for statement coverage, it can generalize, e.g., to branch

coverage.

37

of atomic parts that a test case has. The parameterized nature of parts is taken from the original

delta-debugging work [63]. In some projects, parts are function calls; in other projects, they

are lines or characters in a file/string; and in rare cases, they may be much more complex, e.g.,

defined by a grammar. For example, reduction of test cases that are computer programs (e.g., an

input to a compiler) [49] often relies on a semantically involved notion of part.

The high-level goal of test-case reduction is to produce a reduced test case tr with size

smaller than the size of to, i.e., Size(tr) < Size(to) (and ideally Size(tr) � Size(to)), such

that tr still retains (either completely or partially) some desirable property of to. That is, for

some notion of “quality”, tr has similar quality to to. to itself may have good or bad quality, but

tr should not have much worse quality than to. While in principle the reduction process can stop

at various steps (and in the limit, even the original test case can be considered a reduced version

of itself), we are interested in so called “1-minimal” test cases [63] where no single part of tr
can be removed without losing some desired property.

3.3.1 Reduction Algorithm

The test-case reduction algorithm we use is derived from the original delta-debugging [63] algo-

rithm, and we modify it to support non-adequate test-case reduction. Delta-debugging takes as

input a failing test case and reduces it by removing parts that are not relevant for the failure. A

generalized algorithm for cause reduction [24, 28] extends delta-debugging to reduce a test case

with respect to any property, not just failure, that can be detected when running the test case.

The most direct application of cause reduction is to completely preserve code coverage.

At a high level, the delta-debugging algorithm (described in detail by Zeller and Hilde-

brandt [63] and extended in the work on cause reduction [24, 28]) iteratively splits a test case

into multiple candidate test cases. At each of these steps, the algorithm checks if any candi-

date satisfies the desired property (which, in traditional delta-debugging, is whether the test case

fails). If there is a satisfactory candidate, it becomes the new base test case to be reduced further

in the future steps. If no candidate is satisfactory, the granularity for splitting is increased, until

the algorithm determines that the test case is 1-minimal: removing any single part produces a

test case that does not satisfy the property. In this paper, we further generalize delta-debugging

and cause reduction by allowing the candidate test case to only partially preserve some property.

38

3.3.2 C%-Coverage Reduction

We relax the requirement from cause reduction [24,28]—that the reduced test case tr preserve all

code coverage obtained by the original test case to—with the requirement that tr preserve at least

C% of coverage obtained by to. Reducing large test cases to preserve all (statement) coverage

can be prohibitively expensive. For example, we previously reported that cause reduction of a

single test case for the GCC compiler could take days [24,28]. Moreover, preserving 100% of the

coverage may not be necessary, because a test case that preserves less may still have acceptable

quality. Hence, we propose C%-coverage reduction:

Definition 1 C%-coverage test-case reduction produces a reduced test case tr that covers at

least C% of the statements covered by the original test case to:

|Cov(tr)∩Cov(to)|
|Cov(to)| ≥ C%

Note that the percentage is determined by the coverage of the original test case and not

by coverage over all statements in the code under test. The property is not |Cov(tr)|
|Cov(to)| ≥ C%,

because tr could then end up covering statements unrelated to those covered by to. Coverage-

based cause reduction [24, 28] can be (re)defined as C%-coverage with C = 100: |Cov(tr) ∩
Cov(to)|/|Cov(to)| = 100%, or equivalently Cov(tr) ⊇ Cov(to). C%-coverage does not

impose any requirements over statements not covered by the original test case: the reduced test

case may or may not cover those statements. Also, C%-coverage does not (directly) require any

relationship between |Cov(tr)| and |Cov(to)|, so it can even happen that |Cov(tr)| > |Cov(to)|
if tr covers some statements that to does not cover.

3.3.3 N -Mutant Reduction

We define N -mutant reduction in a similar fashion, but with three important differences: (1) N -

mutant uses killed mutants instead of covered statements; (2) N -mutant preserves the ability of

a test case to kill an absolute number N of mutants rather than a relative ratio of mutants; and

(3) N -mutant considers the same set of selected mutants for all steps of the reduction algorithm:

Definition 2 N -mutant test-case reduction produces a reduced test case tr that kills a specific

set of N mutants selected from the set of Mut(to), where typically N � |Mut(to)|.

39

The difference (3) from C%-coverage is largely motivated by the cost of determining the

complete set of mutants killed for every candidate test case at each step of the reduction algo-

rithm. We did initially experiment with allowing the set of mutants to change, while requiring

only that the number of mutants be preserved through reduction steps be at least N . However,

by allowing the algorithm to only preserve at least any N mutants, it can be necessary to run

a large number of mutants at each step of the reduction algorithm (until at least N mutants are

killed or all mutants are run and N are not killed). As a result, the time to perform non-adequate

test-case reduction was often prohibitively long. Again, we only require the selected N mutants

to be a subset of Mut(to). Mutants other than those in the selected set may or may not be killed

by tr.

3.4 Metrics

We describe three metrics for evaluating the effectiveness of test-case reduction: Size Reduction

Rate (SRR), Coverage Preservation Rate (CPR), and Mutant(-killing) Preservation Rate (MPR).

We define all metrics such that higher values are better and values are normalized to the range

0%–100%.

3.4.1 Size Reduction Rate (SRR)

The goal of test-case reduction is to reduce the size of a test case. As such, it is important to

measure how much smaller the reduced test case is compared to the original test case. Recall

that Size(t) denotes the size of a test case t, i.e., the number of the atomic parts that the test case

has.

Definition 3 For an original test case to and its reduced test case tr, Size Reduction Rate (SRR)

is:

SRR(to, tr) =
Size(to)−Size(tr)

Size(to)

A higher SRR is desirable as it indicates that more parts have been removed from the test

case, resulting in a smaller reduced test case.

40

3.4.2 Coverage Preservation Rate (CPR)

Our reduction is non-adequate test-case reduction, so we need some metrics to measure how

much fault-detection capability the reduced test case loses compared to the original test case.

Structural code coverage, although not an ideal proxy for fault-detection capability [20, 23, 37],

is commonly used to evaluate the quality of test cases: the more code a test case covers, the

higher the chance it can detect a fault. We therefore use statement coverage as one way to

evaluate quality. Recall that Cov(t) denotes the set of statements covered by a test case t.

Definition 4 For an original test case to and its reduced test case tr, Coverage Preservation

Rate (CPR) measures the ratio between the number of statements covered by both tr and to and

the number of statements covered by to:

CPR(to, tr) =
|Cov(tr)∩Cov(to)|

|Cov(to)|

A higher CPR is desirable as it indicates the reduced test case covers a larger subset of

statements covered by the original test case. Note that while a reduced test case can potentially

cover more statements than the original test case, CPR is limited to 100% as it considers only

the statements covered by to.

3.4.3 Mutant Preservation Rate (MPR)

MPR is essentially the same as CPR, except measured with respect to mutants killed, not state-

ments covered:

Definition 5 For an original test case to and its reduced test case tr, Mutant Preservation Rate

(MPR) measures the preservation of mutants killed by tr relative to the mutants killed by to:

MPR(to, tr) =
|Mut(tr)∩Mut(to)|

|Mut(to)|

A higher MPR is desirable as it indicates the reduced test case is better at killing mutants

among those that the original test case kills. Like CPR, MPR is relative to the original test and

cannot exceed 100%.

41

Table 3.1: Four projects used in our evaluation and some statistics of their test cases and mutants
project NCLOC # test cases definition of an atomic part # mutants min killed max killed test pool # minimal mutants
SpiderMonkey 81, 920 99 A statement of JavaScript program 69, 067 8101 12825 850 256

YAFFS2 10, 356 99 One API call 15, 046 2071 3439 1000 57

Grep 8, 433 112 A character in command-line arguments 7, 591 19 993 840 99

Gzip 5, 129 73 A byte in the input file 7, 175 1813 2046 1000 32

3.4.4 Reduction Requirements vs. Metrics

Although both of the reduction algorithms and the metrics are based on coverage and mutants,

note that the requirements for reduction are not the same as the metrics used to evaluate the

reduced test cases. Therefore, we cannot a priori tell how high or low the metrics will be for

all reductions. For C%-coverage reduction, we know that CPR will be at least C%, but it could

be much higher (up to 100%), and MPR could in theory range from (literally) 0 to 100%. For

N -mutant reduction, we know that MPR will be at least N/|Mut(to)|, but it could be much

higher (in our experiments, even when N/|Mut(to)| < 1%, MPR can be quite high), and CPR

could range from almost 0 to 100%.

3.5 Evaluation Methodology

We describe the projects, test cases, and mutants used in our evaluaton (Section 3.5.1) and the

experimental setup (Section 3.5.2). Our experiments ran on a high-performance cluster of com-

modity computing nodes; each node had 6–12 2.6Ghz Intel Xeon cores.

3.5.1 Projects

Table 3.1 lists the projects used in our evaluation. We tabulate the project name, the number

of non-comment lines of code, the number of test cases used in our evaluation, what an atomic

part is, the total number of mutants used, and the minimum and maximum number of mutants

killed by each test case. The last two columns are the number of tests in a randomly gener-

ated test pool for each project and the number of minimal mutants determined for each project;

these last two columns are metrics relevant for our analysis involving minimal mutants (Sec-

tion 3.5.1.3). We use four small- to medium-size C projects: SpiderMonkey is Mozilla’s

JavaScript engine, YAFFS2 is a popular flash file system used in the early Android versions,

Grep is the standard Unix utility for searching files, and Gzip is the standard Unix utility for

42

compressing/decompressing files.

3.5.1.1 Test Cases

We use automatically generated test cases for SpiderMonkey, YAFFS2, and Gzip, and we

use manually written test cases for Grep. The SpiderMonkey test cases are JavaScript pro-

grams randomly generated using the highly successful jsfunfuzz [52] fuzzer. The YAFFS2

test cases are sequences of API calls to the file system, randomly generated using a publicly

available test generator for YAFFS2 that has been used by several research projects on test gen-

eration [13, 24, 28]. The Gzip test cases are files that have 500 to 3,500 random bytes. For

Grep, we use the manually written test cases obtained from SIR [18]; each test case consists of

command-line arguments to Grep.

How best to measure the size of a test case is an open question in software testing research.

Researchers use a variety of metrics, such as the number of API calls, execution time, or number

of assertions. As in our previous work [24, 28], we define size as the number of atomic parts of

atest case. The concrete part differs from one project to another, as summarized in Table 3.1. A

part is a JavaScript code fragment in the generated program for SpiderMonkey, one API call

in the generated sequence of API calls for YAFFS2, a character in the command-line arguments

for Grep, and simply one byte in the input file for Gzip.

We limit the size of generated test cases to enable experiments to finish in a reasonable

amount of time. Time complexity of the basic delta-debugging algorithm is quadratic [63] in

the number of parts in a test case. For SpiderMonkey, YAFFS2, and Gzip, we control the

number of parts based on the specific limits from our initial experiments, trying to finish most

test-case reductions within 30 minutes. In particular, we limit each SpiderMonkey test case

to be exactly 200 lines of JavaScript code, each YAFFS2 test case to be a sequence consisting of

exactly 200 API calls, and each Gzip test case to be a file consisting of at most 3,500 bytes. For

Grep, we use all the test cases manually written by others [18], and we do not limit their sizes;

the largest test case for Grep has 146 characters in the command-line arguments.

3.5.1.2 Mutants

We use a mutation-testing tool for C code developed by Andrews et al. [7] and used in many

previous studies. Quoting [7], the tool provides the following four classes of mutation operators:

43

“(1) Replace an integer constant I by 0, 1,−1, ((I)+1), or ((I)−1); (2) Replace an arithmetic,

relational, logical, bit-wise logical, increment/decrement, or arithmetic-assignment operator by

another operator from the same class; (3) Negate the decision in an if or while statement; and (4)

Delete a statement.”

Each mutant was compiled with GCC using the highest optimization -O3 and compared with

other binaries to avoid trivially equivalent mutants [48]. About 15% of the generated mutants

were found to be trivially equivalent. Table 3.1 shows the number of mutants for each project and

the minimum and maximum number of mutants killed by each test case. A mutant is considered

killed if its output (including stdout, stderr, and produced files) differs from the output of

the original code.

3.5.1.3 Minimal Mutants

To evaluate N -mutant reduction, we use two methods to select mutants. The first method is

simple random sampling: we select N mutants from the set of mutants killed by the test case.

In the second method, we wanted to alleviate the impact of redundant and trivial mutants on the

results. Redundant mutants are those mutants that are semantically equivalent to one another,

albeit syntactically different. Trivial mutants are those mutants that are killed by a majority of

test cases. The impact of these two kinds of mutants can be alleviated by using minimal mutant

sets introduced by Ammann et al. [3].

A minimal mutant set is computed based on an original set of killed mutants and a test suite,

The first step is to construct a minimal test suite from the original test suite, i.e., a subset of the

original test suite that kills all the mutants killed by the original test suite. Removing any test

case from the minimal test suite means failing to kill some mutant. Given a minimal test suite,

a minimal mutant set is the smallest subset of mutants from the original mutant set such that

killing all the mutants from the minimal mutant set (using the minimal test suite) also kills all

the mutants from the original set of killed mutants.

We generated minimal mutant sets for projects as follows: first, we generated a large test

pool of random test cases for each project. We used these larger pools because minimal mutants

require (almost) adequate test suites to ensure that useful mutants are not removed. Then, we

obtained the complete set of mutants killed by each test pool. We minimized each test pool

with respect to its corresponding project’s set of mutants to obtain the minimal set of test cases

from the test pool that kill all those mutants, using a greedy test-suite reduction algorithm [61].

44

Using this minimal set of tests, we minimized the mutant set to obtain the minimal mutant set.

Table 3.1 shows the number of test cases in these pools and the sizes of the minimal mutant sets.

We later compare randomly selected mutants with minimal mutants by reducing the test cases

taken from the large test pool for each project.

3.5.2 Experimental Setup

For C%-coverage, we perform experiments with the non-adequacy value C chosen from the set

{70, 80, 90, 95, 100}. For each original test case, we create a reduced test case that preserves at

least C% of the statements covered by the original test case. We use GCov to obtain the set of

statements covered by each test case.

For N -mutant, we perform experiments with the non-adequacy value N chosen from the set

{1, 2, 4, 8, 16, 32}. For each original test case, we first determine what mutants the test case kills

and then randomly select N of those mutants (for a small number of test cases that kill fewer

than N mutants, we use all mutants) to create a reduced test case that preserves these N selected

mutants. To compare randomly sampled mutants with the harder to kill minimal mutants, we

take each test case from the minimal test suite (constructed from the large test pool is described

in Section 3.5.1.3) and reduce the test case while preserving one randomly selected mutant and

then reduce it to perserve the one mutant (N = 1) from the minimal mutant set that the test case

uniquely contributes to the minimal mutant set. If a test case kills no mutants in the minimal

mutant set, we do not reduce the test case at all.

Performing test-case reduction can take a long time for some test cases. We limit reduction

to 30 minutes per test case. We observed that N -mutant test-case reduction starts having many

timeouts when N gets greater than about 40, so we restrict our choices of N to values less than

40. The experiments ignore test cases whose reduction times out.

For each reduced test case, we further generate three randomly reduced test cases that have

exactly the same size as the reduced test case. We create such a randomly reduced test case

by starting from the original test case and iteratively choosing to remove (uniformly randomly

selected) one part at a time until the resulting test case has the same number of parts as the

reduced test case. We perform random test-case reduction merely as some kind of baseline to

show the benefits of preserving benefits of a test case; we do not actually recommend actually

using random test-case reduction in practice.

45

3.6 Research Questions

Our evaluation addresses the following questions about the effects of non-adequate test-case

reduction:

• RQ1: How much are test cases reduced (SRR)?

• RQ2: How much are code coverage and mutants killed preserved (CPR and MPR)?

• RQ3: How do SRR, CPR, and MPR trade off?

• RQ4: How do CPR and MPR for our approaches compare to CPR and MPR for random

test-case reduction?

3.6.1 RQ1: SRR

Figures 3.1 and 3.2 summarize the results for SRR on the test cases reduced using C%-coverage

and N -mutant, respectively. For each project and level of C and N , the boxplots show the

distribution of SRR. From the figures, we see that both approaches can greatly reduce the size

of test cases. In most configurations, the median SRR for all test cases reduced using either C%-

coverage or N -mutant is greater than 50%: the size of a reduced test case is usually less than

half the size of the original test case. For both reductions, Grep behaves somewhat differently,

with median SRR. The likely cause is the small size of test cases in Grep: most have < 100

characters.

SRR decreases when C orN increases, as expected. We emphasize that SRR for C = 100 is

particularly low compared with SRR for other values; allowing coverage to miss even a small set

of statements increases SRR substantially. For example, for Grep, the median SRR forC = 100

and C = 95 differ by over 30pp3.

3.6.2 RQ2: CPR and MPR

Figures 3.3 and 3.4 summarize the results for CPR on the test cases reduced using C%-coverage

and N -mutant, respectively. CPR is, of course, always at least as high as the C% value given to

the reduction. From Figure 3.3, for SpiderMonkey and YAFFS2, CPR is almost exactly the
3The “pp” metric (from “percentage points”) represents differences in values that are already expressed as per-

centages.

46

0

25

50

75

100

SpiderMonkey YAFFS2 Grep Gzip
Project

Si
ze

 R
ed

uc
tio

n
Ra

te C
70

80

90

95

100

Figure 3.1: SRR for C%-coverage

0

25

50

75

100

SpiderMonkey YAFFS2 Grep Gzip
Project

Si
ze

 R
ed

uc
tio

n
Ra

te

N
1

2

4

8

16

32

Figure 3.2: SRR for N -mutant

47

70

80

90

100

SpiderMonkey YAFFS2 Grep Gzip
Project

C
ov

er
ag

e
Pr

es
er

va
tio

n
Ra

te

C
70

80

90

95

100

Figure 3.3: CPR for C%-coverage

given C%, but for the other two projects, CPR is sometimes much higher. Overall, the median

CPR across different values of C across all projects ranges from 70.07% to 100%.

Figure 3.4 illustrates the relation between different values of N and CPR. The range of

median CPR here goes from 78.39% to 100%, which is quite high, showing that preserving even

just one mutant leads to CPR close to 80%.

Figures 3.6 and 3.7 summarize the results for MPR on the test cases reduced using C%-

coverage and N -mutant, respectively. For C%-coverage reduction, the median MPR ranges

from 41.51% to 100% across all projects and all values of C. Concerning general trends, we

see that MPR is positively correlated to the value of C: more coverage preserved yields more

mutants killed. With C of 95 or higher, the reduced test cases have the median MPR of at least

70% for all projects. Kendall-τ values for SpiderMonkey, YAFFS2, Grep, and Gzip were

0.89, 0.80, 0.67, and 0.76, respectively, all with p < 0.001, showing a strong positive correlation

between the value of C and MPR.

Comparing across the projects, we see that YAFFS2 has the lowest median MPR when

reduced usingN -mutant reduction (33.10%). YAFFS2 test cases are sequences of function calls

to the file-system API, such as mount, open, or close. There is little dependency across

those functions (e.g., only a few functions call one another), so it is the YAFFS2 test cases

48

70

80

90

100

SpiderMonkey YAFFS2 Grep Gzip
Project

C
ov

er
ag

e
Pr

es
er

va
tio

n
Ra

te

N
1

2

4

8

16

32

Figure 3.4: CPR for N -mutant

50

60

70

80

90

100

0 25 50 75 100
Size Reduction Rate

M
ut

an
t P

re
se

rv
at

io
n

Ra
te

Mutant
Minimal

Random

SpiderMonkey

0

25

50

75

100

0 25 50 75 100
Size Reduction Rate

M
ut

an
t P

re
se

rv
at

io
n

Ra
te

Mutant
Minimal

Random

YAFFS2

40

60

80

100

20 40 60 80 100
Size Reduction Rate

M
ut

an
t P

re
se

rv
at

io
n

Ra
te

Mutant
Minimal

Random

Grep

40

60

80

100

0 25 50 75 100
Size Reduction Rate

M
ut

an
t P

re
se

rv
at

io
n

Ra
te

Mutant
Minimal

Random

Gzip

Figure 3.5: SRR vs. MPR, contrasting minimal mutants against randomly chosen mutants, for
N -mutant test-case reduction

49

40

60

80

100

SpiderMonkey YAFFS2 Grep Gzip
Project

M
ut

an
t P

re
se

rv
at

io
n

Ra
te

C
70

80

90

95

100

Figure 3.6: MPR for C%-coverage

25

50

75

100

SpiderMonkey YAFFS2 Grep Gzip
Project

M
ut

an
t P

re
se

rv
at

io
n

Ra
te N

1

2

4

8

16

32

Figure 3.7: MPR for N -mutant

50

that effectively control the interaction among the functions by the ordering of the API calls.

Thus, individual mutants can be isolated reasonably well from the other mutants, due to better

decoupling between functions. On the other hand, modules in SpiderMonkey, like in any

other interpreter or compiler, are deeply intertwined. Thus, each test case exercises multiple

functions. As a result, killing a mutant in the parsing module, may also correlate with killing

many other mutants in passes before or after parsing, such as lexing or interpretation. Therefore,

it is expected that reduced test cases based on even a single mutant in SpiderMonkey could

still kill a large portion of the mutants killed by the original test cases, with median MPR of

60.26%.

As N grows, MPR of the reduced test cases increases, unsurprisingly: more interdependent

mutants can be killed. This observation is validated by the Kendall-τ values: 0.66, 0.69, 0.56,

and 0.51 for SpiderMonkey, YAFFS2, Grep, and Gzip, respectively, all with p < 0.001,

suggesting that there is a strong positive correlation between N and MPR. However, a trade-off

is that as N increases, the time to perform the reduction increases as well, because intermediate

test cases need to be checked against more mutants, and the chance of timeout increases.

In addition to performing N -mutant test-case reduction using N random mutants, we also

used minimal mutants. Figure 3.5 shows for each project the relationship between SRR and

MPR for test cases from the large, randomly generated test pool reduced using N -mutant with

a randomly selected mutant or a minimal mutant. These plots only show the values for N = 1,

because each test case can kill at most one minimal mutant. Surprisingly, there is no statistically

significant difference (p < 0.001), except for YAFFS2. For YAFFS2, test cases reduced based

on minimal mutant often result in a better trade-off between SRR and MPR: for the same SRR,

test cases tend to have a higher MPR.

3.6.3 RQ3: Trade-Offs

Figure 3.8 shows the trade-off between SRR and CPR for YAFFS2 test cases reduced using

C%-coverage and N -mutant. We show plots only for YAFFS2 due to space reasons; the plots

for the other projects are similar. For C%-coverage, the CPR values cluster very closely with

C values, but the SRR values vary, with higher SRR usually corresponding to lower CPR. For

N -mutant, many test cases have high SRR, but CPR values vary widely.

Figure 3.9 shows the trade-off between SRR and MPR for SpiderMonkey test cases.

Again, we show plots only for SpiderMonkey; the other projects are similar. For C%-

51

70

80

90

100

50 60 70 80 90
Size Reduction Rate

C
ov

er
ag

e
Pr

es
er

va
tio

n
Ra

te

C
70

80

90

95

100

C%-coverage

85

90

95

100

40 60 80 100
Size Reduction Rate

C
ov

er
ag

e
Pr

es
er

va
tio

n
Ra

te

N
1

2

4

8

16

32

N-mutant

Figure 3.8: SRR vs. CPR for YAFFS2

52

60

70

80

90

100

20 40 60 80 100
Size Reduction Rate

C
ov

er
ag

e
Pr

es
er

va
tio

n
Ra

te

C
70

80

90

95

100

C%-coverage

50

60

70

80

90

100

0 25 50 75 100
Size Reduction Rate

C
ov

er
ag

e
Pr

es
er

va
tio

n
Ra

te

N
1

2

4

8

16

32

N-mutant

Figure 3.9: SRR vs. MPR for SpiderMonkey

53

coverage, we obtain good SRR and MPR without preserving all coverage: many points for

C = 90 or C = 95 cluster in the upper-right of the plot. For N -mutant, more reduced test cases

have high SRR, and larger N values have higher MPR.

Finally, Figure 3.10 visualizes the trade-off between CPR and MPR for all projects. For both

plots, we see a linear correlation between CPR and MPR, especially for test cases reduced using

C%-coverage. This trend suggests that the more statements a test case covers the more mutants

it kills. For N -mutant, especially for YAFFS2, there is more clustering towards the right side

of the plot, indicating that even with a high CPR, MPR can still vary widely for the test cases

reduced using N -mutant.

3.6.4 RQ4: Comparison with Random

We also compared our approaches to simple random test-case reduction that simply forces a

certain size reduction on test case. For each test case reduced using non-adequate test-case

reduction, we generate three reduced test cases of exactly the same size, by randomly removing

parts from the original test case. SRR is exactly the same for a randomly reduced test case as

for its corresponding test case. Therefore, we measure only CPR and MPR for these randomly

reduced test cases.

Figure 3.11 shows boxplots that compare CPR for test cases reduced using C%-coverage

and N -mutant with test cases reduced randomly. We see from these figures that the median CPR

computed for test cases reduced by non-adequate test-case reduction is greater than the median

CPR computed for the test cases reduced randomly. Figure 3.12 shows the same comparison for

MPR. Once again, we see from these plots that the median MPR computed for test cases reduced

by non-adequate test-case reduction is greater than the median MPR computed for the test cases

reduced randomly. The median CPR/MPR for test cases reduced using non-adequate test-case

reduction is greater than the median CPR/MPR for the test cases reduced randomly. A values of

randomly reduced test cases are significantly different (p < 0.001) from the test cases reduced

using non-adequate test-case reduction.

This is hardly surprising, but confirms that our approaches add value. For YAFFS2, there

is also a specific cause for the extreme differences due to the validity of the reduced test cases:

if the original test case is valid, our non-adequate test-case reduction is unlikely to produce an

invalid reduced test case. Each valid test case in YAFFS2 starts by calling a startup function that

prepares for mounting the file system. If a test case does not start with this function, the other

54

40

60

80

100

70 80 90 100
Coverage Preservation Rate

M
ut

an
t P

re
se

rv
at

io
n

Ra
te

Project
SpiderMonkey

YAFFS2

Grep

Gzip

C%-coverage

25

50

75

100

70 80 90 100
Coverage Preservation Rate

M
ut

an
t P

re
se

rv
at

io
n

Ra
te

Project
SpiderMonkey

YAFFS2

Grep

Gzip

N-mutant

Figure 3.10: CPR vs. MPR for all four projects

55

40

60

80

100

SpiderMonkey YAFFS2 Grep Gzip
Project

C
ov

er
ag

e
Pr

es
er

va
tio

n
Ra

te

Reduction
C%-coverage

Random

C%-coverage

25

50

75

100

SpiderMonkey YAFFS2 Grep Gzip
Project

C
ov

er
ag

e
Pr

es
er

va
tio

n
Ra

te

Reduction
N-mutant

Random

N-mutant

Figure 3.11: Comparing CPR of non-adequate test-case reduction with random test-case reduc-
tion

56

0

25

50

75

100

SpiderMonkey YAFFS2 Grep Gzip
Project

M
ut

an
t P

re
se

rv
at

io
n

Ra
te

Reduction
C%-coverage

Random

C%-coverage

0

25

50

75

100

SpiderMonkey YAFFS2 Grep Gzip
Project

M
ut

an
t P

re
se

rv
at

io
n

Ra
te

Reduction
N-mutant

Random

N-mutant

Figure 3.12: Comparing MPR of non-adequate test-case reduction with random test-case reduc-
tion

57

Table 3.2: Time in seconds to perform test reduction
project C%-coverage N -mutant

Min Med Max Min Med Max
SpiderMonkey 2 74 1003 1 9 1746

YAFFS2 12 102 794 1 24 1700

Grep 1 1 15 1 5 483

Gzip 4 430 1544 1 82 1799

function calls in the test case fail. The random test-case reduction is unaware of this, so if it has

to reduce a sequence of 200 function calls to 4, each function call, including the startup function,

has only 4
200 = 2% chance to be in the reduced test case, i.e., there is a high chance the reduced

test case does not include the startup call and is invalid.

3.7 Discussion

Inter-dependencies among mutants. From the MPR values for N -mutant reduction, we see

that focusing the reduced test case to preserve only a small number of mutants killed by the

original test case still kills a large fraction of all those mutants. For example, by reducing test

cases based on only one mutant (i.e., N = 1), the median MPR values are 60.26%, 33.10%,

80.28%, and 43.92% for SpiderMonkey, YAFFS2, Grep, and Gzip, respectively. These

high MPR values for such a small N suggest that many mutants killed by a test case have strong

dependencies. Figure 3.13 illustrates this. The x-axis shows the ratio ofN to the total number of

mutants killed by the original test case, i.e.,N/Mut(to), and the y-axis shows the corresponding

MPR. For space reasons, we show plots only for YAFFS2 and Grep; the other two projects are

similar to YAFFS2, but Grep is different from all others. We see that a test case reduced based

on less than 0.5% of the mutants can still kill more than 50% of originally killed mutants. Note

that when a test case reduced to kill some mutant M1 also kills another mutant M2, it does not

imply that M1 subsumes M2 in the sense that all tests killing M1 also kill M2 [47].

Time for non-adequate test-case reduction. The time for reducing a test case depends

on (1) the number of parts in the test case, (2) the time to execute the test case, and (3) the

cost of computing coverage or mutants killed. Table 3.2 summarizes the time required for test-

case reduction in our experiments. For 50% of the test cases in SpiderMonkey, YAFFS2

and Grep, both C%-coverage and N -mutant non-adequate test-case reduction finish relatively

58

25

50

75

100

0.0 0.5 1.0 1.5
% Mutants Sampled

M
ut

an
t P

re
se

rv
at

io
n

Ra
te

YAFFS2

25

50

75

100

0 20 40 60 80
% Mutants Sampled

M
ut

an
t P

re
se

rv
at

io
n

Ra
te

Grep

Figure 3.13: Percentage of mutants used for N -mutant test-case reduction vs. MPR

59

fast (under two minutes for C%-coverage and under one minute for N -mutant). Gzip has

significantly more parts (up to 3,500) than the other projects, which increases the time needed

for reduction. In our experiment, all coverage-adequate reduction (i.e. C = 100) of Gzip

test cases failed due to timeout, but all C%-coverage non-adequate test-case reduction finished

within the time limit, with 50% of them being reduced in under ten minutes.

3.8 Threats to Validity

Based on our results, it appears that non-adequate test-case reduction can substantially reduce the

size of test cases while still preserving much of test case quality. As usual, experimental result

may not generalize to other projects beyond the four we evaluated or even to other test cases

and mutants than the ones we used for these projects. A particular threat is how we measure

quality. We do not consider some interesting metrics at all (e.g., the execution time of reduced

test cases), and the ones used are imperfect.

MPR considers all the mutants killed after performing N -mutant test-case reduction even

though the reduction already uses some killed mutants as guidance to reduce the test case; one

may argue that by construction the reduced test cases will be good by this metric, or, dually, that

this metric is bad. However, we perform non-adequate test-case reduction that does not aim to

preserve all mutants killed by the original test case, while MPR does consider all mutants killed.

Therefore, we do not produce test cases that necessarily have a high MPR. Moreover, we also

measure the CPR of these reduced test cases, and we do not use coverage to guide N -mutant

test-case reduction.

Mutants of C code can introduce undefined behavior. For example, a mutant that removes

initialization of a local variable can introduce such behavior. We did not explicitly remove such

mutants, but we expect them to be relatively few. Therefore, we generate a large number of

mutants for each project, reducing the chance that mutants that introduce undefined behavior

significantly bias our results.

Another problem was that of the non-deterministic load on the shared high-performance

cluster. Due to nodes having different configurations, and with different loads, a fixed timeout

of 30 minutes may not correspond to the same amount of reduction. Hence, some mutants that

happened to be evaluated on a slow machine may have been considered killed due to timeout

while similarly slow-running mutants evaluated on a fast machine may have managed to com-

plete successfully, thereby not considered killed.

60

3.9 Related Work

Test-case reduction aims to reduce the size or complexity of test cases while preserving some

desirable properties of these test cases. Reduction is essentially a search in the space of possible

modifications to the original test case. In many uses, the only modification allowed is removing

a part of the test case [55, 57, 63].

One goal of test-case reduction is to speed up testing, and this goal is shared with many

techniques for regression testing, including regression test selection, test prioritization, and test-

suite reduction [61]. The most similar to test-case reduction is test-suite reduction. Whereas

test-case reduction aims to reduce a single test case, test-suite reduction aims to reduce the

size of an entire test suite while preserving some desirable properties for the reduced test suite.

Many studies investigated test-suite reduction techniques (e.g., [33,35,51]), including our recent

work on non-adequate test-suite reduction [54]. However, this paper presents the first study

of non-adequate test-case reduction. Test-case reduction and test-suite reduction can be easily

combined [28], either in succession or in tandem.

Delta-debugging [63] is the best known technique for reducing the size of a failing test case:

it reduces the test case so that it still fails but no single part can be removed without passing.

Cause reduction [24,28] generalizes delta-debugging by reducing a test case so that it still has the

same coverage (or another property) but no single part can be removed without losing coverage

(or another property). Our non-adequate test-case reduction further generalizes cause reduction

by not requiring a test case to preserve the complete property the original test case satisfies.

3.10 Conclusion

Having smaller test cases is desirable for developers: such test cases run faster and make de-

bugging easier. Test-case reduction reduces the size of test cases. Previous research has studied

how to conduct test-case reduction while completely preserving some property of the original

test case, e.g., failure or coverage. We evaluate a more general approach to test-case reduction,

called non-adequate test-case reduction, that allows only partially preserving a property. Specifi-

cally, we propose and evaluate C%-coverage andN -mutant. Our results show that non-adequate

test-case reduction can substantially reduce the size of test cases while still preserving a large

percentage of all coverage or mutants killed by the original test cases. For C%-coverage in par-

ticular, simply giving up on a very small percentage of coverage can greatly reduce reduction

61

time and produce a higher gain in size reduction than the associated loss in coverage. The idea

of non-adequate test-case reduction greatly expands the options available in exploring trade-offs

between test suite size (measured by adding sizes of individual test cases) for fault-detection

capability.

3.11 Acknowledgements

We thank Nicholas Lu and Michael Hilton for comments on an earlier draft of this paper. This

research was partially supported by the National Science Foundation Grant Nos. CCF-1054876,

CCF-1409423, and CCF-1421503. Darko Marinov and August Shi also gratefully acknowledge

the Google Faculty Research Award.

62

Chapter 4: Conclusions and Future Work

The goal of this research was to demonstrate that processing generated tests is profitable, as

they can be used for other tasks in software testing. We presented two applcations of generated

tests: (1) recommendation of new configuration for generation of focused random tests, and (2)

reduction of tests for quick testing scenarios.

In this research we demonstrated with using collected statistics on code coverage of gener-

ated tests and swarm testing, it is possible to produce focused random tests — truly random tests

that nonetheless target specific source code. While results for the various strategies for directed

swarm testing vary, in general the method is able to increase the frequency with which tests

cover targeted code by a factor often more than 2x, and sometimes up to 8 or 9x. This approach

is readily applicable to existing, industrial-strength random testing tools for critical systems soft-

ware, and therefore out-of-the-box scalable to applications such as testing production compilers

and file systems.

We also evaluated a more general approach to test-case reduction, called non-adequate test-

case reduction, that allows only partially preserving a property–in contrast to cause reduction

that preserves the property completely. Specifically, we propose and evaluate C%-coverage and

N -mutant. Our results show that non-adequate test-case reduction can substantially reduce the

size of test cases while still preserving a large percentage of all coverage or mutants killed by the

original test cases. For C%-coverage in particular, simply giving up on a very small percentage

of coverage can greatly reduce reduction time and produce a higher gain in size reduction than

the associated loss in coverage. The idea of non-adequate test-case reduction greatly expands

the options available in exploring trade-offs between test suite size (measured by adding sizes of

individual test cases) for fault-detection capability.

4.1 Future Work

Leveraging generated tests for different tasks can help us to understand tests better and guide us

to improve the quality of tests.

Directed random testing can be extended to regression testing using dominators of changes

63

as the test targets. Coverage of dominators can increase the probability of covering the changes.

Evaluation of non-adequate test-case reduction, described in Chapter 3, on different subjects

shows that N -mutant for a small N preserves a large portion of mutants. This observation can

be used to quantify the subsumption relation between mutants and potentially that detection of

one can imply that the other one will be detected.

64

Bibliography

[1] Software fail watch: 2016 in review. https://www.tricentis.com/
resource-assets/software-fail-watch-2016/.

[2] Mohammad Amin Alipour and Alex Groce. Bounded model checking and feature omission
diversity. In International Workshop on Constraints in Formal Verification, 2011.

[3] Paul Ammann, Marcio Eduardo Delamaro, and Jeff Offutt. Establishing theoretical mini-
mal sets of mutants. In ICST, pages 21–30, 2014.

[4] Saswat Anand, Edmund K Burke, Tsong Yueh Chen, John Clark, Myra B Cohen, Wolfgang
Grieskamp, Mark Harman, Mary Jean Harrold, Phil Mcminn, et al. An orchestrated survey
of methodologies for automated software test case generation. Journal of Systems and
Software, 86(8):1978–2001, 2013.

[5] J. H. Andrews, A. Groce, M. Weston, and Ru-Gang Xu. Random test run length and
effectiveness. In ASE, pages 19–28, 2008.

[6] James H. Andrews, Felix C. H. Li, and Tim Menzies. Nighthawk: A two-level genetic-
random unit test data generator. In Proceedings of the Twenty-second IEEE/ACM Inter-
national Conference on Automated Software Engineering, ASE ’07, pages 144–153, New
York, NY, USA, 2007. ACM.

[7] J.H. Andrews, L.C. Briand, and Y. Labiche. Is mutation an appropriate tool for testing
experiments? In ICSE, pages 402–411, 2005.

[8] Andrea Arcuri and Lionel Briand. Adaptive random testing: An illusion of effectiveness.
In International Symposium on Software Testing and Analysis, pages 265–275, 2011.

[9] Andrea Arcuri, Muhammad Zohaib Z. Iqbal, and Lionel C. Briand. Formal analysis of the
effectiveness and predictability of random testing. In International Symposium on Software
Testing and Analysis, pages 219–230, 2010.

[10] Moritz Beller, Georgios Gousios, and Andy Zaidman. How (much) do developers test?
In Proceedings of the 37th International Conference on Software Engineering - Volume 2,
ICSE ’15, pages 559–562, Piscataway, NJ, USA, 2015. IEEE Press.

[11] Tsong Yueh Chen, Fei-Ching Kuo, Robert G. Merkel, and T. H. Tse. Adaptive random
testing: The art of test case diversity. J. Syst. Softw., 83(1):60–66, January 2010.

65

[12] Tsong Yueh Chen, Hing Leung, and IK Mak. Adaptive random testing. In Advances in
Computer Science-ASIAN 2004. Higher-Level Decision Making, pages 320–329. Springer,
2005.

[13] Yang Chen, Alex Groce, Chaoqiang Zhang, Weng-Keen Wong, Xiaoli Fern, Eric Eide, and
John Regehr. Taming compiler fuzzers. In ACM SIGPLAN Notices, volume 48, pages
197–208. ACM, 2013.

[14] Koen Claessen and John Hughes. Quickcheck: A lightweight tool for random testing of
haskell programs. In ICFP, pages 268–279, 2000.

[15] Pascal Cuoq, Benjamin Monate, Anne Pacalet, Virgile Prevosto, John Regehr, Boris
Yakobowski, and Xuejun Yang. Testing static analyzers with randomly generated pro-
grams. In NASA Formal Methods Symposium, pages 120–125, 2012.

[16] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In Tools
and Algorithms for the Construction and Analysis of Systems, pages 337–340, 2008.

[17] Kyle Dewey, Jared Roesch, and Ben Hardekopf. Fuzzing the rust typechecker using CLP.
In Automated Software Engineering, pages 482–493, 2015.

[18] Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. Supporting controlled experimen-
tation with testing techniques: An infrastructure and its potential impact. ESE, 10(4):405–
435, 2005.

[19] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. Practical regression test selection
with dynamic file dependencies. In ISSTA, pages 211–222, 2015.

[20] Milos Gligoric, Alex Groce, Chaoqiang Zhang, Rohan Sharma, Mohammad Amin Alipour,
and Darko Marinov. Comparing non-adequate test suites using coverage criteria. In ISSTA,
pages 302–313, 2013.

[21] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. Grammar-based whitebox
fuzzing. In Proceedings of the 29th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’08, pages 206–215, New York, NY, USA, 2008.
ACM.

[22] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: Directed automated random
testing. In Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’05, pages 213–223, New York, NY, USA, 2005. ACM.

[23] Rahul Gopinath, Carlos Jensen, and Alex Groce. Code coverage for suite evaluation by
developers. In ICSE, pages 72–82, 2014.

66

[24] A. Groce, M.A. Alipour, Chaoqiang Zhang, Yang Chen, and J. Regehr. Cause reduction
for quick testing. In ICST, pages 243–252, 2014.

[25] A. Groce, Chaoqiang Zhang, M.A. Alipour, E. Eide, Yang Chen, and J. Regehr. Help,
help, I’m being suppressed; The significance of suppressors in software testing. In 2013
IEEE 24th International Symposium on Software Reliability Engineering (ISSRE), pages
390–399, Nov 2013.

[26] Alex Groce. (Quickly) testing the tester via path coverage. In Workshop on Dynamic
Analysis, 2009.

[27] Alex Groce, Mohammad Amin Alipour, Chaoqiang Zhang, Yang Chen, and John Regehr.
Cause reduction for quick testing. In Software Testing, Verification and Validation (ICST),
2014 IEEE Seventh International Conference on, pages 243–252. IEEE, 2014.

[28] Alex Groce, Mohammad Amin Alipour, Chaoqiang Zhang, Yang Chen, and John Regehr.
Cause reduction: Delta debugging, even without bugs. STVR, 26(1):40–68, 2015.

[29] Alex Groce, Alan Fern, Jervis Pinto, Tim Bauer, Amin Alipour, Martin Erwig, and Cam-
den Lopez. Lightweight automated testing with adaptation-based programming. In IEEE
International Symposium on Software Reliability Engineering, pages 161–170, 2012.

[30] Alex Groce, Gerard Holzmann, and Rajeev Joshi. Randomized differential testing as a
prelude to formal verification. In International Conference on Software Engineering, pages
621–631, 2007.

[31] Alex Groce, Chaoqiang Zhang, Eric Eide, Yang Chen, and John Regehr. Swarm testing.
In Proceedings of the 2012 International Symposium on Software Testing and Analysis,
ISSTA 2012, pages 78–88, New York, NY, USA, 2012. ACM.

[32] Richard Hamlet. Random testing. In Encyclopedia of Software Engineering, pages 970–
978. Wiley, 1994.

[33] Dan Hao, Lu Zhang, Xingxia Wu, Hong Mei, and Gregg Rothermel. On-demand test suite
reduction. In ICSE, pages 738–748, 2012.

[34] Mark Harman, S. Afshin Mansouri, and Yuanyuan Zhang. Search-based software engi-
neering: Trends, techniques and applications. ACM Comput. Surv., 45(1):11:1–11:61, De-
cember 2012.

[35] M. Jean Harrold, Rajiv Gupta, and Mary Lou Soffa. A methodology for controlling the
size of a test suite. TOSEM, 2(3):270–285, 1993.

67

[36] Christian Holler, Kim Herzig, and Andreas Zeller. Fuzzing with code fragments. In Pro-
ceedings of the 21st USENIX Conference on Security Symposium, Security’12, pages 38–
38, Berkeley, CA, USA, 2012. USENIX Association.

[37] Laura Inozemtseva and Reid Holmes. Coverage is not strongly correlated with test suite
effectiveness. In ICSE, pages 435–445, 2014.

[38] Fitsum Meshesha Kifetew, Roberto Tiella, and Paolo Tonella. Combining stochastic gram-
mars and genetic programming for coverage testing at the system level. In Search-Based
Software Engineering, pages 138–152, 2014.

[39] Sunghun Kim, E.J. Whitehead, and Yi Zhang. Classifying software changes: Clean or
buggy? Software Engineering, IEEE Transactions on, 34(2):181–196, March 2008.

[40] James C King. Symbolic execution and program testing. Communications of the ACM,
19(7):385–394, 1976.

[41] Vu Le, Mehrdad Afshari, and Zhendong Su. Compiler validation via equivalence modulo
inputs. In ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, pages 216–226, 2014.

[42] Yong Lei and James H. Andrews. Minimization of randomized unit test cases. In Interna-
tional Symposium on Software Reliability Engineering, pages 267–276, 2005.

[43] Paul Dan Marinescu and Cristian Cadar. Katch: high-coverage testing of software patches.
In Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2013, pages 235–245, 2013.

[44] P. McMinn. Search-based software testing: Past, present and future. In Software Testing,
Verification and Validation Workshops (ICSTW), 2011 IEEE Fourth International Confer-
ence on, pages 153–163, March 2011.

[45] E. Nagai, A. Hashimoto, and N. Ishura. Scaling up size and number of expressions in
random testing of arithmetic optimization in c compilers. In Workshop on Synthesis and
System Integration of Mixed Information Technologies, pages 88–93, 2013.

[46] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. Feedback-
directed random test generation. In Proceedings of the 29th International Conference on
Software Engineering, ICSE ’07, pages 75–84, Washington, DC, USA, 2007. IEEE Com-
puter Society.

[47] Mike Papadakis, Christopher Henard, Mark Harman, Yue Jia, and Yves Le Traon. Threats
to the validity of mutation-based test assessment. In ISSTA, pages 354–365, 2016.

68

[48] Mike Papadakis, Yue Jia, Mark Harman, and Yves Le Traon. Trivial compiler equivalence:
A large scale empirical study of a simple, fast and effective equivalent mutant detection
technique. In ICSE, pages 936–946, 2015.

[49] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun Yang. Test-
case reduction for C compiler bugs. In Conference on Programming Language Design and
Implementation, pages 335–346, 2012.

[50] Edward L. Robertson and Catharine M. Wyss. Optimal tuple merge in NP-complete. Tech-
nical Report TR599, Indiana University Bloomington, July 2004.

[51] Gregg Rothermel, Mary Jean Harrold, Jeffery von Ronne, and Christie Hong. Empirical
studies of test-suite reduction. STVR, 12(4):219–249, 2002.

[52] Jesse Ruderman. Introducing jsfunfuzz, 2007. http://www.squarefree.com/
2007/08/02/introducing-jsfunfuzz/.

[53] Jesse Ruderman. Releasing jsfunfuzz and DOMFuzz. https://www.squarefree.
com/2015/07/28/releasing-jsfunfuzz-and-domfuzz/, 2015.

[54] August Shi, Alex Gyori, Milos Gligoric, Andrey Zaytsev, and Darko Marinov. Balancing
trade-offs in test-suite reduction. In FSE, pages 246–256, 2014.

[55] Donald R. Slutz. Massive stochastic testing of SQL. In VLDB, pages 618–622, 1998.

[56] Dmitry Vyukov. gosmith: Random Go program generator. https://code.google.
com/p/gosmith/.

[57] David B. Whalley. Automatic isolation of compiler errors. TOPLAS, 16(5):1648–1659,
1994.

[58] E. B. Wilson. Probable inference, the law of succession, and statistical inference. J. of the
American Statistical Assoc., 22:209–212, 1927.

[59] Tao Xie, Nikolai Tillmann, Jonathan de Halleux, and Wolfram Schulte. Fitness-guided
path exploration in dynamic symbolic execution. In Dependable Systems & Networks,
2009. DSN’09. IEEE/IFIP International Conference on, pages 359–368. IEEE, 2009.

[60] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and understanding bugs
in C compilers. In ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 283–294, 2011.

[61] S. Yoo and M. Harman. Regression testing minimization, selection and prioritization: A
survey. STVR, 22(2):67–120, 2012.

69

[62] Shin Yoo and Mark Harman. Pareto efficient multi-objective test case selection. In ISSTA,
pages 140–150, 2007.

[63] Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating failure-inducing input.
TSE, 28(2):183–200, 2002.

[64] Chaoqiang Zhang, Alex Groce, and Mohammad Amin Alipour. Using test case reduction
and prioritization to improve symbolic execution. In ISSTA, pages 160–170, 2014.

