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An extensive theory of symmetric error control coding has been developed in the

last few decades. The recently developed VLSI circuits, ROM, and RAM memories have

given an impetus to the extension of error control coding to include asymmetric and

unidirectional types of error control.

The maximal numbers of unidirectional errors which can be detected by systematic

codes using r checkbits are investigated. They are found for codes with k, the number

of information bits, being equal to 2r and 2r+ 1. The importance of their characteristic in

unidirectional error detection is discussed.

A new method of constructing a systematic t-error correcting/all-unidirectional error

detecting(t-EC/AUED) code, which uses fewer checkbits than any of the previous

methods, is developed. It is constructed by appending t + 1 check symbols to a

systematic t-error correcting and (t+1)-error detecting code. Its decoding algorithm is

developed. A bound on the number of checkbits for a systematic t-EC/AUED code is also

discussed.

Bose-Rao codes, which are the best known single error correcting/all-unidirectional



error detecting(SEC/AUED) codes, are completely analyzed. The maximal Bose-Rao

codes for a fixed weight and for all weights are found. Of course, the base group and the

group element which make the Bose-Rao code maximal are found, too. The bounds on the

size of SEC/AUED codes are discussed.

Nonsystematic single error correcting/d-unidirectional error detecting codes are

constructed. Three methods for constructing the systematic t-error correcting/d-

unidirectional error detecting(t-EC/d-UED) codes are developed. From these, simple and

efficient t-EC/(t+2)-UED codes are derived. The decoding algorithm for one of these

methods, which can be applied to the other two methods with slight modification, is

described. A lower bound on the number of checkbits for a systematic t-EC/d-UED code is

derived.

Finally, future research efforts are proposed.
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Unidirectional Error Correcting/Detecting Codes

Chapter 1

Introduction

1.1. Coding Problem

It is desirable, and in many cases vital, that information remains correct when

transmitted from here to there or stored and later recovered. In communication links or

computer memories, noise causes the received data to differ slightly from the original data.

A block diagram of a typical communication or storage system is shown in

Figure 1.1.

Source Encoder

Noise

Channel
or

Storage Medium
Decoder

Figure 1.1. Block diagram of a typical communication or storage system.

Destination

In addition to the data bits one wishes to transmit, one also transmits some

additional redundant checkbits. Even though the noise causes some errors in both the

transmitted data bits and the transmitted checkbits, there is usually still enough information

available to the receiver to allow a sophisticated decoder to correct or detect the errors

unless the noise is extremely severe.

Depending on how the system operates on its input of a continuous sequence of
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information digits, there are two fundamentally different types of codes a class of block

codes and a class of tree codes. Of these two classes of codes, the older block codes have

a considerably better developed theory. In the class of tree codes, only the subset called

convolutional codes have a substantially developed theory [61]. However, here we

consider only block codes. More precisely, we consider only binary block codes, i.e. the

source symbols consist of only two possible symbols, which we take to be "0" and "1". A

binary block code for the communication system in Figure 1.1 is shown in Figure 1.2,

where u. , v. , i = 1, , k, x
J J

, y. , j = 1, , n, E {0, 1).

Source >U ( ui, , uk) >I Encoder 1> X = (x1, , xn

-->Y = ( y , yn ) >I Decoder 1---)NT ( v , vk ) Destination

Figure 1.2. A binary block code for the communication system in Figure 1.1.

As suggested by Figure 1.2, the encoder for a binary block code breaks the continuous

sequence of information bits into blocks of k bits. It then maps each k-bit source block U

independently into an n-bit codeword X, where k < n. The n-bit codeword is transmitted

over the channel and received, possibly garbled, as Y. The decoder maps each n-bit noisy

codeword Y independently into a k-bit block V, which is an estimate of the original

source sequence U. The quantity n is referred to as the code length or block length. And

the ratio k/n is referred to as the information rate.

The types of error statistics which generated by the noise are many and varied.
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However, they can be broadly classified as symmetric, asymmetric, and unidirectional

errors. These error classes are defined below [20].

Definition 1.1. If both 0 -4 1 errors and 1 --> 0 errors occur in a received word with

equal probability then the channel is called a binary symmetric channel (the BSC for short)

and the errors are called symmetric type.

Definition 1.2. In an ideal asymmetric channel, sometimes called Z-channel, only one type

of error can occur and the error type is known a priori. These errors are called asymmetric

type.

Definition 1.3. If both 0 > 1 errors and 1 > 0 errors can occur in received words, but

in any particular word all errors are of one type, then they are called unidirectional errors.

1.2. Importance of Asymmetric and Unidirectional Error Control Codes for

VLSI Technology

Almost four decades have passed since famous mathematician Claude Shannon had

published his classic paper "A Mathematical Theory of Communication" in 1948 [69],

when he created a completely new branch of applied mathematics which is today called

information theory and/or coding theory.

In the first three decades, most of the communication error control codes have been

developed under the fault assumption of symmetric errors in the data bits and an extensive

theory of symmetric error control coding has been developed, e.g. in [5], [6], [51], [61].

However, in many types of recently developed VLSI circuits the error statistics are

different. For example, the failure in the memory cells of some of the VLSI single-



4

transistor-cell memories and metal-nitride-oxide semiconductor (MNOS) memories are

most likely caused by the leakage of charge. If we represent the presence of charge in a cell

by 1 and the absence of charge by 0, then the errors in these type of memories can be

modelled as 1 -4 0 type asymmetric errors. This is because the charge cannot be created

except by a rewrite process, and hence 0 - 1 type errors in the memory cells are almost

impossible [23], [65].

On the other hand, it is well established that the various faults in many digital

devices are the sources of unidirectional errors [1], [24], [31], [32], [52], [60], [64], [81],

[82], [84]. Typical digital units which exhibit unidirectional nature of errors caused by

their internal failure are: data transmission systems, shift-register and magnetic-recording

mass memories, and LSI/VLSI circuits such as ROM memories, PLA's, and

interconnection networks. More detailed description of these faults follows.

(1) Typical faults in data transfer systems which cause unidirectional errors are the

following:

(a) single faults in serial data bus or byte-serial processor (assuming that they

are used repeatedly) [82],

(b) a failure to enable a register onto a bus [84],

(c) bridging faults on a bus or broken bit lines [84].

(2) The faults of shift-register and magnetic-recording mass memories causing

undirectional errors are:

(a) permanent stuck-at faults in a single register or the malfunctions of the

read/write circuitry in shift-register mass memories,

(b) the malfunctions of a head due to stuck-at faults of the control circuit or

bursts on the magnetic-recording surface due to dust particles, minute

scratches, and defects in the coating, both in magnetic-recording mass

memories, are assumed in [32], [60], [81], [82] to result in unidirectional
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errors.

(3) Very likely sources of unidirectional errors in ROM's are the following [24], [30],

[64]:

(a) the faults in address decoder which result in either no access (all O's word

is readout) or multiple access (the OR of several words is readout),

(b) the word line faults such as open line or two word lines shorted together,

which beyond the point of the fault cause the same errors as in case 3(a),

(c) power supply faults.

(4) Any of three general types of faults that commonly occur in a PLA, i.e. classical

stuck-at fault, the short between two adjacent lines, and the contact fault (it includes

the missing device fault and the extra device fault), produce only unidirectional

errors at the external outputs of the PLA [30], [52].

(5) Many functional failures in switching elements and failures in the links of the

following classes of VLSI implemented interconnection networks: f x 2n delta

networks, centralized control networks with 2 x 2 crossbar switches, and

time-shared buses, also are sources of unidirectional errors [31].

The above specification shows that unidirectional errors are widespread in digital systems

and that their correction or detection is a serious problem in the areas of error

correcting/detecting codes and fault-tolerant system design.

1.3. Systematicity and Why Systematic Codes?

We start with the well known definition of "systematicity" as follows:

Definition 1.4. Let C be a binary code with codewords of length n, C is a systematic
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code if there is a subset of k bits which represent the information bits which are not

modified while the remaining n k bits represent the checkbits. A code which is not

systematic is called a nonsystematic code.

The information contained in a codeword in a nonsystematic code cannot be

obtained without using a special decoder circuit. Therefore, nonsystematic codes are of

restricted use in most computer applications. In contrast, the systematic codes have the

advantage that the encoding/decoding and data manipulation can be done in parallel.

1.4. Definitions, Notations, and Theorems

The following special symbols perhaps need explanation: "fi" signals the end of a

proof or example; "iff' means if and only if; [Xi denotes the largest integer x; and rx1

denotes the smallest integer x.

Now, let us introduce two fundamental concepts in coding theory [6], [35], [51],

[61].

Definition 1.5. Let Q be the set of information symbols.

If X = (xi, , xn) E Qn, Y = (yi, , yn) E Qn, then the Hamming distance of X

and Y, denoted as DH (X, Y), is defined by

DH(X,Y)= I{ it 1 in, xi#yill.
The Hamming weight of X, denoted as WH (X), is defined by WH(X) = DH (X, 0),

where 0 = (0, , 0).

In our case, Q = GF(2) = {0, 1} .

Using this concept, Hamming [35] has described the conditions for symmetric error
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correcting/detecting codes.

Theorem 1.6. A code C is capable of detecting t or fewer errors iff the minimum

Hamming distance of the code is at least t + 1.

Theorem 1.7, A code C is capable of correcting t or fewer errors iff the minimum

Hamming distance of the code is at least 2t + 1.

Theorem 1.8. A code C is capable of correcting t or fewer errors and detecting up to d

(d > t) errors iff the minimum Hamming distance of the code C is at least t + d + 1.

As described in Section 1.2, the asymmetric and unidirectional error control codes

are becoming important in modern technology. In order to discuss these types of codes,

which is the main theme in this thesis, we need some more concepts and notations.

Definition 1.9. If X = (x1, , Xn) E GF(2)n, Y = (y1, yri) E GF(2)n , then the

number of 1 > 0 crossovers from X to Y, denoted as N(X, Y), is defined by

N(X, Y) = 1{ i I 1 i n, xi = 1, yi = 0 )1.

For example, N(0011, 1101) = 1 and N(1101, 0011) = 2.

Hamming distance of two binary n-tuples X and Y can be expressed in terms of

1 9 0 crossovers as

DH (X, Y) = N(X, Y) + N(Y, X).

Using the parameter N(X, Y), Rao and Chawla [65] and Anderson [1] have

defined "asymmetric distance" with reference to the asymmetric error correcting capabilities

of binary block codes as follows.
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Definition 1.10. If X = (x1, , xn) e GF(2)n, Y = (y1, , yn) E GF(2)n, then the

asymmetric distance of X and Y, denoted as DA (X, Y), is defined by

DA(X, Y) = max( N(X, Y), N(Y, X) ).

Theorem 1.11. A binary code C is capable of correcting t or fewer asymmetric 1 * 0

errors (or 0 > 1 errors) iff the minimum asymmetric distance of the code is at least t + 1.

Note that DH(X, Y) = t implies L t 2+ li 5 DA(X, Y). Hence, a code C capable

of correcting t symmetric errors must be capable of correcting t asymmetric errors.

Therefore, one expects that for a given length n, a t-asymmetric error correcting code will

have more codewords (i.e. higher information rate) than a t-symmetric error correcting

code. Asymmetric error correcting codes having information rates better than symmetric

error correcting codes have been derived in [23], [26], [41], [65], [73], [76], [77], [78],

[79]. Also, see [37] which has a clear description of the development of asymmetric error

correcting codes. Bose and Cunningham [15] have an interesting discussion on systematic

asymmetric error correcting codes, which shows that when n # 2r , 2r + 1, where n =

the code length and r = the number of redundant checkbits, Hamming codes are also

optimal systematic asymmetric codes.

Another useful concept is needed when one discusses unidirectional (asymmetric,

too) error control codes.

Definition 1.12, A n-tuple X = (x1, , xn) is said to cover another n-tuple

Y = (y1, , yd if 0 < N(X, Y) and N(Y, X) = 0. Also, they are called an

"ordered pair". If X # Y and neither X covers Y nor Y covers X, then X and Y

are said to be "unordered".
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Bose and Rao [20] use this concept and asymmetric distance to describe the

unidirectional error correcting capabilities of binary block code.

Theorem 1.13. A code C is capable of correcting t or fewer unidirectional errors iff the

following condition holds.

For all distinct X, Y E C,

2t + 1 5 DA(X, Y) = DH(X, Y) , if X and Y are ordered pair,

t + 1 5 DA(X, Y) , otherwise.

By this theorem, a code capable of correcting t symmetric errors is also capable of

correcting t unidirectional errors. But, at this point the problem of constructing

t-unidirectional error correcting codes having information rates better than that of

t-symmetric error correcting codes is still an open research question. Similarly, the

problem of constructing t-asymmetric error correcting codes having information rates better

than that of t-unidirectional error correcting codes is an open research question, too.

The conditions for asymmetric error detection and the conditions for unidirectional

error detection will be discussed in Chapter 2. The conditions for symmetric error

correction and unidirectional error detection will be discussed in Chapters 3 and 5.

1.5. Outline of the Thesis

From Chapter 2 through Chapter 5, each topic is treated as an independent topic.

The background and the previous work in the literature related to each topic are reviewed in

its own chapter. So, we will not do those reviewings here.

In [17] systematic codes are constructed which detect 5.2r 4 + r 4 unidirectional

errors by using r checkbits independent of the number of information bits. The question
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of the optimality of these codes raises further discussion in Chapter 2. There, we still have

no conclusive answer to it. However, we show some facts which tend to indicate the

codes might be optimal if k, the number of information bits, is beyond some threshold

number.

In Chapter 3, t-error (symmetric error) correcting/all unidirectional error detecting

(t-EC/AUED) codes are designed and their decoding algorithms are developed. These

codes have been shown to be more efficient than any previous codes. The number of

checkbits and the size of a t-EC/AUED code are discussed, too.

Due to the importance of single error correcting/all unidirectional error

detecting(SEC/AUED) codes and that Bose-Rao codes are the best of this type so far, even

though they are nonsystematic, a complete study of Bose-Rao codes is shown in Chapter

4. There, maximal Bose-Rao codes are found. Also, their sizes are compared with upper

bounds derived by Bose.

In Chapter 5, t-error correcting/d-unidirectional error detecting (t-EC/d-UED) codes

are designed, which are the first such kind of codes ever designed, and their decoding

algorithms are developed. The number of checkbits and the size of a t-EC/d-UED code are

discussed, too.

Chapter 6 is the conclusion of this thesis. Some future research topics continuing

from this thesis are described.
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Chapter 2

Unidirectional Error Detecting Codes

2.1. Introduction

It has been described in Chapter 1 how the recently developed VLSI circuits,

ROM, and RAM memories have given an impetus to extension of error control coding

to include asymmetric and unidirectional types of error control.

The following notations will be used repeatedly in this chapter.

k : the number of information bits.

r : the number of checkbits.

n : the length of a code.

The basic theorems of unidirectional error detection, which are the principles used

in constructing and verifying a code, will be reviewed in Section 2.2. Then all of the

previous works related to unidirectional error detection will be reviewed in Section 2.3.

The codes in [17] were thought to be near optimal, but afterwards the authors have realized

that if k is not much larger than 2r, then the codes are not optimal (special thanks to

Dr. George A. Converse for pointing this out). As a matter of fact, in the recent paper [40]

a class of codes is constructed which detects more errors for certain values of k. The

various bounds on a unidirectional error detecting code will be discussed in Section 2.4.

Basically, this chapter is a supplement of the paper [17].

2.2. The Basic Theorems of Unidirectional Error Detection
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The following fundamental theorems describe the necessary and sufficient

conditions for an all-unidirectional error detecting code [4], [29] and a t-unidirectional error

detecting code [17].

Theorem 2.1. A code C is capable of detecting all unidirectional(asymmetric) errors iff

the codewords are unordered (i.e. for all X, Y E C with X # Y implies 1 N(X, Y)

and 1 N(Y, X))

Theorem 2.2, A code C is capable of detecting t-unidirectional errors iff it satisfies the

following condition:

for all X, Y E C with X# Y implies

either t + 1 DH(X, Y)

or 1 N(X, Y) and 1 N(Y, X).

In [17], it has been shown that the necessary and sufficient condition for a code

being capable of detecting t-asymmetric errors is exactly the same as in Theorem 2.2.

Thus, there is no difference in constructing and verifying a code being t(or all)

unidirectional error detecting and being t(or all)-asymmetric error detecting.

2.3. Previous Works in the Literature

In this section, all previous code constructions related to unidirectional error

detection will be reviewed.

The first such codes were found by Berger [4]. They are systematic all

unidirectional errors detecting codes. Freiman [29] gave nonsystematic constant weight
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codes to detect all unidirectional errors. However, when not all 21( information symbols

are present, Smith [70] has proposed systematic codes which need fewer check bits than

the Berger codes. Berger codes, 1_11/2 j-out-of-n codes, and Smith codes are optimal when

all unidirectional errors are required to be detected. But when only t-unidirectional errors

are required to be detected these codes are not optimal. That is, a better code can be

designed. Dong [28] has given modified Berger codes to detect 2', i = 2, 3, 4, --- ,

unidirectional errors. The number of checkbits needed to detect 2' unidirectional errors is

i + [log2(i + 1)1. Then, Bose and Lin [17] have constructed systematic t-unidirectional

errors detecting codes which require a fixed number of checkbits independent of the

number of information bits. Also, the codes presented in [17] have higher error-detecting

capabilities than the codes presented in [28].

The codes constructed in [17] are shown to be optimal in the sense of the following

two theorems.

Theorem 2.3. Any systematic t-unidirectional error detecting code, where t = 2, 3, or 4,

requires at least t checkbits.

Theorem 2.4. Any systematic code that detects seven unidirectional errors requires at least

five checkbits, if 20 .5 k.

For 5 5_ r, the codes constructed in [17] are capable of detecting up to

5.2r - 4
+ r 4 unidirectional errors. Recently, in [40] a class of systematic

t-unidirectional error detecting codes is constructed which detects more than

5.2r 4
+ r 4 unidirectional errors when k is not too much larger than 2r. For longer

k, codes in [17] still perform better than codes in [40]. The bounds on the number of

errors can be detected by using r checkbits for certain values of k will be discussed in

Section 2.4. Although the codes in [40] perform better than the codes in [17] for some
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range of k, the latter is much easier to implement(encoding/decoding).

On the other hand, Borden [8] has proved that among all t-unidirectional error

detecting codes of length n, the set of codewords with weight LIV2 j mod (t+1) forms the

optimal code.

Two interesting papers [14], [45] require attention, too. Even though the codes in

[14], [45] are nonsystematic the encoding/decoding algorithm is simple and easy to

implement. First, Knuth [45] has designed balanced codes with 2r information bits and r

checkbits, which need serial decoding. A so-called balanced code is a code with k

information bits and r checkbits such that each codeword contains equally many zeros and

ones. Naturally, a balanced code is unordered. Therefore, it detects all unidirectional

errors. Knuth's coding scheme is interesting in that to construct a systematic unordered

code with 2r information bits requires at least r + 1 checkbits, whereas Knuth's code

needs only r checkbits. In [45], a parallel coding scheme for the design of balanced codes

with 2r- r 1 information bits and r checkbits is also developed. Bose [14] has extended

Knuth's results and designed several efficient unordered codes. They are

(i) parallel unordered coding scheme with 2r information bits and r checkbits,
T T 1

(ii) balanced codes with r checkbits and up to 2 + 2 1 information bits

which need serial encoding/decoding,

and

(iii) unordered codes with r checkbits and up to 2r + 2r
- 1

1 information bits

which are shown to be optimal.

In [14], a nonsystematic code capable of detecting 2r 1- 1 unidirectional errors using r

checkbits has also been designed.

2.4. Bounds on the Size of a Code and the Number of Errors which can be

Detected by Using r Checkbits
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Probably the most basic problem in coding theory is to find the most efficient code

of given conditions, such as to fmd the largest code of a given length and minimum

distance(or some given error correcting/detecting properties), to fmd the minimum number

of checkbits of a given length of the information and given error correcting/detecting

properties in a systematic construction, or to find the maximum number of errors that can

be corrected/detected for given lengths of the information and the check, etc..

By studying Berger's paper [4], Freiman's paper [29], and Borden's paper [8], we

have already learned the minimum number of checkbits needed for systematic all-

unidirectional error detecting code and the upper bounds for an all-unidirectional error

detecting code and a t-unidirectional error detecting code. For clarity, their results are

restated as the following three theorems.

Theorem 2.5. The minimum number of checkbits needed for a systematic all-unidirectional

error detecting code is Flog2(k+1)1

Theorem 2.6. The number of codewords in an all-unidirectional error detecting code is no

more than 11

(1_2J)

(Note: This is also a result from Sperner's Lemma [72].)

Theorem 2.7. The number of codewords in a t-unidirectional error detecting code is no

more than

w =Ln /2 jmod (t + 1)

The codes in [4], [8], and [29] all reach the bounds, i.e. they are optimal.

However, the codes in [4] are all-unidirectional error detecting and the codes in [29] and
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[8] are nonsystematic. The bounds on systematic t-unidirectional error detecting code still

require discussion. Instead of asking for the minimum number of checkbits to detect t

errors, one could look for a code using r checkbits which detects the maximal number of

errors. Because of Theorems 2.3 and 2.4, here 5 r is considered. Also, as mentioned

in [17], when k < 2r Berger codes are superior to any systematic t-unidirectional error

detecting codes, so only 21.5_ k is considered. Before the main theorems are developed,

some lemmas are needed.

IT Li]
Lemma 2.8. 2 + 2 5 2b + 2a b for integers a, b, 0 b < a .

Proof. Let f(x) = 2x + 2a x be a real function defined over the interval [0, a]. Then,
a a

simple calculus shows that f(x) is decreasing over [0, -2 and increasing over [-2- , a] .

Therefore, the inequality holds. //

Lemma 2.9. 2a 1 2 < 2a- 2b 2a b for integers a, b, 1 b < a- 1.

Proof. Let f(x) = 2 a 2x 2a x- 2a 1 + 2 be a real function defined over the interval

[1, a -1]. Then, simple calculus shows that f(x) is increasing over [1,1 ] and decreasing

over [-2a , a -1] . And f(1) = f(a -1) = 0. Therefore, the inequality holds. //

a b
b

Lemma 2.10. 2- 2 2 2 2 3.2 + 1 for integers a, b, 0 5 b 5 a,

and b

a
[-1 -

a x a xProof.Proof. Let f(x) = 2- 2 3.2 + 1 2 + 2 + 2be a real function defined
a

over the interval [0, a] . Then, simple calculus shows that f(x) is decreasing over [0, 2]
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and increasing over [i , a] . And f(iii 1) = f(1-11 + 1) > 0. Therefore, the inequality

holds. //

a

Lemma 2.11. 0 < 2a 1 - 2 Lf--I - a + 1 for integer 0 < a .

Proof. This lemma will be proved by induction. It is obvious that the inequality holds for

a = 0, 1, 2, 3. Assuming it holds for a - 1, then

HL11
2a 2_ 2L 2 _I (a 1) + 1 .

And,

a a-1

2a
1-

2
13,

a+ 1 > 2a 1 2L a+ 1

a - 3

0. //

1-
(a - 1) + 1+ 2a - 2

L
12

1

1

(by the induction hypothesis)

Theorem 2.12. Let k = 2r. Then, the maximum number of unidirectional errors which

ril L2 IJ

can be detected by a systematic code using r checkbits is 2
r 2
- 2 - 2 + 1

In fact, such code exists.

Proof. The proof will be done in two parts. First, a code which detects

Ffl j
2" - 2 - 2 + 1 errors will be constructed. Then, it will be shown that it is optimal.

Let R be a r-tuple vector with WH (R)

Define

M = { S I S is a r-tuple vector with 1 N(S, R) and 1 N(R, S) },



(i.e. M contains those r-tuples which are unordered with R.)

U={SIS is a r-tuple vector with 0 < N(S, R) and 0 = N(R, S) },

(i.e. U contains those r-tuples which cover R.)

and

L= S IS is a r-tuple vector with 0 = N(S, R) and 0 < N(R, S) }.

(i.e. L contains those r-tuples which are covered by R.)

Note that M, L, U, and {R} form a partition of the set of all 2r r-tuple vectors.

FIlAlso, I M I = 2r - 2 2 2 + 1. Now, arrange the elements in U, M, and L as

U = {So, , andSul - 1) M {Sul + + !mil

{Sul + + 2' ' SIUI + IMI + ILI + 1}
such that WH (Si) 5 WH (Si)

18

if 05i<j5IUI- 1, IUI+15i<j51U1+IMI,

or 1U1+1M1+ 2 5 i < j 51U1+ IMI+ IL I+ 1. (i.e. The elements in each set of U, M

and L are arranged in nonincreasing weight order.)

Then, let Ciul Clul + +1 = R and Ci = Si for all 0 .5 i S k and i #1UI and

IUI+IMI+1.

e.g. For r = 5, let R = 11100. Then,

M = { 11011, 10111, 01111, 11001, 11010, 10101, 10110,

01101,01110, 10011, 01011, 00111, 00101, 01001,

10001, 00110, 01010, 10010, 00011, 00001, 00010} ,

L = {11000, 10100, 01100, 10000, 01000, 00100, 00000} ,

U = {11111, 11110, 11101}

Now, assign the check symbol to the information symbol I as CW
H

(I)

By Theorem 2.2, it is easy to see that the construction above detects

r 21T- 2 Li2 d+ 1 errors.

Next, this value has to be proved optimal. Let t be the number of errors which can

be detected by a code C with k(= 2r) information bits and r checkbits. Let us consider
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the check symbols C C1, , Ck for the information symbols Io = 0 0,

= 0 01, 12 = 0 011, , '1(4 = 011 1, and Ik = 1 1. Since there are only

2r different check symbols, it must have some Ci = C . Assume i < j. If WH(Ci) = 0

or W
H

(C.) = r, then by Theorem 2.2,

r j
t r 5 2 2 - 2

a
+ 1 .

For 0 < WH(Ci) = w < r, the proof will be discussed in three cases.

Case (i) any Cm, i < m < j, is unordered with Ci .

Since the number of symbols which are unordered with Ci is no more than

2r 2w 2r w+ 1, by Theorem 2.2 and Lemma 2.8, we have

t j i 1 5 2r 2w 2r w+ 1 2r -2 -2 L j+ 1. (by Lemma 2.8)

Case (ii) some Cm , i < m < j, covers Ci .

Let q be the smallest integer such that i < q < j and Cq covers Ci .

Also, let p be the largest integer such that i 5 p < q and Cq covers Cp .

Then, any Cm , p < m < q, is not covered by Cq also does not cover Ci .

And, there are no more than 2r 2w r-
w (2w' 2w 2w w) such Cm 's ,

where w' = WH ( q). By Theorem 2.2 and Lemmas 2.9, 2.8, we have

t q p 1 + (w' - 1)

5 2r 2w 2r w (2w - 2w- 2w w) + (w' 1)

< 2r 2w 2r w 2w' 1+ We + 1

5 2r 2w 2r w+ 1

< 2r 2T- 2W+ .

(2. 1)
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Case (iii) some Cm, i < m < j, is covered by Ci .

Similar to the last case, Cp and Cq are chosen such that Cq covers Cp ,

C also does not cover

Cp . Then, the same argument as in the last case shows

t 5 . . 2r 2r w.- 2w 1+ w + 1 (2. 2)

where w' = WH (Cp ) and w' < w

< 2r- 2w'- 2r + 1

< 2r- 2I-11- 21-1J+ 1 .

Therefore, the assertion holds. //

Theorem 2.13. Let k = 2r+ 1. Then, the maximum number of unidirectional errors which

1-1 1 + 2 .can be detected by a systematic code using r checkbits is 2r 2 2 3.2

In fact, such code exists.

Proof. The proof consists two parts: the existence of the code and the optimality of the

code.

The Existence.

Let X, Y be two r-tuple vectors with WH(X) = r21 and WH(Y) = IA] , also

N(X, Y) = r21 - L2 J + 1 and N(Y, X) = 1.

Define

B
1

= {S IS covers X)

B2 = IS IS covers Y but not X} ,

B3 = I S is unordered with X and Y} ,

B4 ={ SISis covered by X but not Y} ,

and
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B5 = IS IS is covered by Y }.

The elements in each of the sets above are ordered so that the weights of the elements in

each set are nonincreasing. Then CO, C1, , Ck are defined as in the following order.

B1, X, B2, Y, B3, X, B4, Y, B5.

e.g. For r = 5, let X = 11100, Y = 10010. Then

B
1

= {11111, 11110, 11101 },

B2 = (1 101 1, 101 1 1, 1 1010, 101 10, 1001 1)

B3 = (01111, 00111, 01101, 01110, 01011,

00101, 01001, 10001, 00110, 01010,

B4 = (11000, 10100, 01100, 01000, 00100)

B5 = f 10000, 00010, 00000) ,

C
I

= 11110, C3 = 11100, C6 = 11010,

,

10101, 11001,

00011, 00001) ,

,

C9 = 10010, C30 = 10010, etc..

Now, assign the check symbol to the information symbol I as CwH(I)

By Theorem 2.2, it is easy to see that the construction above detects

mint! B2I +1 B3I + 1, I B3I + I B4I + 1) errors.

Since

IT Li j 1 41+ 1 j
1 B

2
1.1B

4
I= 2 - 2 -1 and IB 31= 2-r 2 2

Li
+2 ,

r rfl Li j - 1
+ 2 .thus, min{lB21 +1B3I + 1, I B31+1 B41+ 1} = 2-2 2 3- 2

Therefore, such code exists.

The Optimality.

Let t be the number of errors can be detected by a code C with k(= 2r + 1)

information bits and r checkbits. Let us consider the check symbols C C1, , Ck

for the information symbols Io = 0 - 0, I1= 0 - 01, 12. 0 011, , Ik_i= 011 --- 1,

and Ik= 1 - 1. Since there are only 2r different check symbols, either some symbol is

used at least three times or at least two symbols are used twice.
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Case (i) some symbol is used at least three times.

Say Cf = Cg = Ch , 05f <g<h 5k = 2r + 1 . By Theorem 2.2, it is easy to see

that

22 r 1 < 2r - 2 Ffl - 3 2Lt 1 + 2t5minfg-f- 1, h-g- 1) 5

Case (ii) at least two symbols are used twice.

Say Cf = Ci and Cg = C. May assume f < g, f < i, and g < j.

Then, we have these possibilities: f < i < g < j, f < g < j < i, and f < g < i < j.

The proof on this case will be discussed in three subcases according to these

possibilities.

Subcase 1 f < i < g < j.

This is an easy case. By Theorem 2.2, we have

22 r 2 15tminfi-f- 1, j-g- 1)5 5 2r - 2 -3.21- +2 .

Before the discussion of the next two subcases, trimming will be done here to

shorten the discussion.

First of all, if WH (Cf) ) (or WH(Cg)) = 0 or r, then no matter which case,

by Theorem 2.2,

1L-2 j -1
t r 2r - 2 + 2 .

So, assume 0 < WH (Cf ), WH (Cg) ) < r.

Next, if some Cm, f < m < i (or g < m < j) , is ordered with Cf (or Cg )

then by the proof of Theorem 2.12 and Lemmas 2.8, 2.11, we have

t< 2r- 2w- 2r -w
- 2r

1 +r +1 forsome 05w5r

5 2r 2 IT
2 2r - 1

+ r + 1

(see (2. 1) and (2. 2))

(by Lemma 2.8)
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-1

+ 2
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(by Lemma 2.11)

Last, in either case, even if any Cm , f < m < i (or g < m < j) , is unordered

with Cf (or Cg) but if WH(Cf ) (or WH(Cg )) , then by the proof of

Theorem 2.12(Case (i)) and Lemma 2.10, we have

t < 2r- 2w- 2r w+ 1 where w ,

< 2
r

2 - 3. 2
lid 1

+ 2 . (by Lemma 2.10)

r
tTherefore, only when WH (Cf) = r21 or L-fi , WH(Cg) = or L2J , any Cm ,

f < m < i , is unordered with Cf , and any Cm, g < m < j , is unordered with

Cg , further discussion is needed. So, the following discussions on Subcases 2

and 3 are based on these conditioins.

Let WH (Cf )=w W
H (C

g
) = w2 ' N( Cf ' Cg) = v

1 ' and N(Cg 9
C

f
) = V2

Since Cf has to be unordered with Cg for either case, so 1 v1 and 1 5_ v2

Subcase 2 f < g < j < i.

Any Cm, g < m < j, has to be unordered with Cf and Cg. There are no more

than 2r- 271 2r- wl + 1 2w2 + 2 w1
v1_ w2 - -

(called S) such Cm's.

And,

r rr Lij v, w i

S= 2 2 2 +2 2 2 +1

i
= ( 2r 2 3. 2

Lj -1
+ 2 )

( 2
IT+

2
Li 1

r L

2 2 3.22,
-1

+2.

2w1
vl 2r" wl "v2 +1)
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Therefore,

Ffl -t5j-g-15S52r-2 -3.2 +2 .

Subcase 3 f < g < i < j.

Let S be the number of symbols which are unordered with Cf and are not covered

by Cg .

Then,

rrl i,
= 2r- 2 2

L

+ 1 - 2W2 +2W1 vl

If some Cm , f<m<g, is covered by Cg , then let p be the largest such m.

Also, let q be the smallest integer such that p < q S g and Cq covers Cp .

Thus, any Cm, p < m < q , must be unordered with Cf and not be covered by

Cg , also does not cover C .

And, there are at most

Hence,

S -2r 4 + 2

t5q-p- 1 +r- 1

S 2r w2 -v1 +r 1

such Cm 's.

ITI 1

1-

it!=(2r-2 -3.2 +2)-(2E11+2 -2w

IT
2r 2 3- 2

1

+ 2 .

-"I 2r- w2 -v1 r )

If no Cm' f < m < g , is covered by Cg, then any f<m<i, must be

unordered with Cf and not be covered by Cg .

Thus,

t S

H L2J -1 L2,
1 w2 w

= ( 2 2 3 . 2 +2)+(2 _2 1_1)
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< 2r 21-21 3 2 L1-11 1 + 2 .

Therefore, the assertion holds. //

Theorems 2.12 and 2.13 still depict very little about the bounds on the number of

unidirectional errors can be detected by using r checkbits. But, the phenomenon of the

decrease of t, the number of errors which can be detected by a code using r checkbits,

(if one tries to extend Theorems 2.12 and 2.13 to k = 2r + 2, one may find that

r
r + 2t= 2 -2 1 -2 2+ , if r = odd, 2 - 2 +2 +1, if r = even),

makes us ponder again whether the codes constructed in [17] may be optimal if k is large

enough. Even the codes constructed in [40] show this phenomenon, too. Last, a note

about the codes in [40] and Theorems 2.12 and 2.13. The codes in [40] are not optimal.

For instance, when k = 33 and r = 5, the code in [40] detects 18 errors but the code in

Theorem 2.13 detects 20 errors; also when k = 2048 and r = 11 the code in [40] detects

1949 errors but the code in Theorem 2.12 detects 1953 errors.
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Chapter 3

t-Error Correcting and

All-Unidirectional Error Detecting Codes

3.1. Introduction

Error correcting/detecting codes that are effective against both symmetric and

unidirectional errors are useful in providing protection against transient, intermittent, and

permanent faults [19], [21], [58], [59], [62]-[64], [81]. Transient faults are likely to cause

a limited number of symmetric errors or multiple unidirectional errors [62], [64]. Also,

intermittent faults, because of short duration [74], are expected to cause limited number of

errors. On the other hand, permanent faults cause either symmetric or unidirectional errors,

depending on the nature of the faults [32], [60], [64]. The most likely faults in some of the

recently developed LSI/VLSI, ROM, and RAM memories, such as faults that affect

address decoders, word lines, power supply, and stuck-fault in a serial bus, etc. [19],

[24], [60], [64], cause unidirectional errors. The number of symmetric errors is usually

limited while the number of unidirectional errors, caused by the above mentioned faults,

can be fairly large. Therefore, people are interested in designing codes which correct all

patterns of t or fewer symmetric errors and detect all (t + 1 or more) unidirectional errors

[10], [11], [19], [20], [59], [75].

In this chapter, the basic theorem of a t-error correcting/all unidirectional error

detecting(t-EC/AUED) code is reviewed (see Section 3.2). Some previous code

constructions, including nonsystematic codes and systematic codes, are also reviewed (see

Section 3.3). Then improved systematic codes are proposed (see Sections 3.4, 3.5, and

3.6). Further, bounds on the size of a code and on the number of redundant bits for the
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systematic code are investigated (see Section 3.6).

3.2. The Basic Theorem of t-EC/AUED Code

Using the parameter N(X, Y) introduced in Chapter 1, a t-EC/AUED code can be

characterized as below [9], [19]-[21], [62], [63].

Theorem 3.1. A code C is t-EC/AUED iff it satisfies the following condition:

for all X, Y E C with X # Y implies t + 1 5 N(X, Y) and t + 1 5 N(Y, X).

Among all t-EC/AUED codes the single error correcting/all unidirectional error

detecting(SEC/AUED) codes are particularly popular. In fact, some feel that in the future

SEC/AUED codes may become as popular as today's distance four Hamming codes, which

now dominate the applications in computer memories [10], [39]. For this sake the special

case, when t = 1, of Theorem 3.1 is restated as a corollary.

Corollary 3.2. A code C is SEC/AUED iff it satisfies the following condition:

for all X, Y E C with X # Y implies 2 5 N(X, Y) and 2 5 N(Y, X).

3.3. Previous Works in the Literature

Nonsystematic SEC/AUED codes have been constructed in [9], [20], [63]. For the

codes constructed in [63] and the codes constructed by the first method in [9], [20] no

efficient encoding/decoding algorithm have been found. Also, the encoding/decoding
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algorithm devised in [9] for the codes constructed by the second method in [9], [20] is

efficient only for very short information lengths. Nonsystematic t-EC/AUED codes with

low redundancy have been constructed in [58].

Although the codes constructed by the first method in [9], [20] are nonsystematic

and have no efficient encoding/decoding algorithm, their sizes, being close to the upper

bounds, require particular attention. These codes will be analyzed in Chapter 4.

Systematic SEC/AUED codes have been given in [9], [10]. In [62] Pradhan has

devised systematic t-EC/AUED codes. More efficient systematic t-EC/AUED codes have

been constructed in [19] for moderate and long information lengths. Recently, in [59],

[75] new methods for the construction of systematic t-EC/AUED codes, which for most

cases are more efficient than the methods used in [9], [10], [19], [62], have been given.

In the next section, a method for the construction of systematic t-EC/AUED codes

which is more efficient than the methods used in [59], [75] will be proposed.

3.4. Code Construction

To construct a systematic t-EC/AUED code, t + 1 check symbols are appended to

a t-error correcting and (t+1)-error detecting systematic parity check code.(e.g. a linear

systematic (n, k) code with Hamming distance 2t + 2. Refer to [6], [51], or [61] for this

type of codes.) One may add an even parity bit to a systematic parity check code with

Hamming distance 2t + 1 to make a systematic parity check code with Hamming distance

2t + 2. In the sequel, let C represent a linear systematic (n, k) code with DH(C) = 2t + 2,

and C* be the systematic t-EC/AUED code constructed from C. Then, any X* E C*

has the following form:



X* = X CH`lic t+
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iX C and CHx. , = 1, , t + 1, are the added check symbols.

Before describing how to construct CHi , i = 1, , t + 1, let us partition C into

n + 1 parts, Co , C1 , , Cn}, where Ci = [X E C I WH(X) = i} and n = the code

length of C. Note that some of the Ci 's may be empty. Now for the construction.

Procedure (for generating CHi , i = 1, , t + 1)

Step 1.

For i : = 1 to t + I do

begin

partition the collection Co , C1 , , CO into k(i) + 1 subcollections,

called blocks B.
j , j = 0, 1, , k(i), where

k(i) =
r(n+1) - (2t+2) +

2t+2

as

Bi = (Co, C1, , C21_2i+31

containing (2t + 2) - 2(i - 1) consecutive Ci's starting Co ,

Bi (k(i)-1) IC2t-2i+4' ' C4t-2i+5}

containing the next 2t + 2 consecutive Ci's,

Bi (k(i)-2) {C4t-21+6' ' C6t-21+7}

containing the next 2t + 2 consecutive Ci's,

and so on till Bi

(i.e. Each of B. j , j = 1, , k(i) 1, is of size 2t + 2 and contains the

and

k(i)
Cis2t + 2 consecutive C.' of C C L.) B. .)0 " n m

m=j+1
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Step 2.

k(i)
B. = (CO3...,Cn} u B..

j =1j=1

Bi contains the rest of C. 'S.)

end.

For X e C, X E C for some w. Then CHX. is the binary representation of j

(in [loge (k(i) + 1)1 bits), where Cam, E Bi .

End(of Procedure).

Before showing that the proposed code C* is t-EC/AUED, an example is shown

here to illustrate the proposed code construction technique.

Example 3.1. A systematic 3-EC/AUED code with three information bits will be

constructed. Let C be the 3 -error correcting and 4 -error detecting code with generator

matrix

G=

100110011000111

010000011111101 .

001111100110001

Then, n = 15, DH(C) = 8, k(1) = 1, k(2) = 2, k(3) = 2, and k(4) = 2. Also,

B1 1 tC0' ' C7), B1 = {C8, , Ci5};

B2 2 tC0' ' CO' B2 1 = (C6' ' C13), B2 0 { C14' C15};

B3 = (CO3 , C3), B3 = tC4, , C11 ), B3 = tC12, , C15);

B42 = {C0' C 1}, B4 1
{C2, , C9}, B40 = (C10, , Cis }.

(3. 1)
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Table 3.1 presents all the codewords of the 3-EC/AUED code constructed from the

above parity check code C, according to the proposed technique. Column X contains the

codewords from C, each of which is presented as three information bits followed by

twelve check bits. //

Table 3.1. 3-EC/AUED code based on C and the Procedure.

X CH1 CH2 CH3 CH4

000 000000000000 1 10 10 10
001 111100110001 0 01 01 01
010 000011111101 0 01 01 01
011 111111001100 0 01 01 00
100 110011000111 0 01 01 01
101 001111110110 0 01 01 00
110 110000111010 0 01 01 01
111 001100001011 0 01 01 01

Before proving that the proposed codes are indeed t-EC/AUED codes, we prove the

following two lemmas which give some properties of distance 2t + 2 code. These

properties are useful in proving the error correcting and detecting capabilities of the codes

designed in this chapter and the codes will be designed in Chapter 5.

Lemma 3.3. Let C be a distance 2t + 2 code with length n. Then there exists a code C'

with I C' I = I C I, same minimum distance and length. In addition, all the codewords in

C' will have even number of l's.

Proof. Delete the least significant bit of C. Then the resultant codewords will have

minimum distance at least 2t + 1. Now append an even parity bit to these codewords. The
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resultant codewords, C', will have even number of l's and minimum distance 2t + 2

with I C' I = I C I. 1/

Thus we can always assume that the weight of each codeword in a distance 2t + 2

code is even.

Lemma 3.4. Let C be a code with DH (C) = 2t + 2. For any X, Y E C,

let q = WH(X) -WH(Y). (Without loss of generality we assume that 0 q.) Note that q

is an even number.

(i) If 2t + 2 .5 q then q S N(X, Y) and 0 5 N(Y, X).

2t+2+q 2t+2-q
(ii) If 0 S q 5 2t then

2 2
N(X, Y) and 5 N(Y, X).

Proof. Since 0 q, there exists q positions where X has l's and Y has O's. X and

Y will have the same number of l's in the remaining n q positions. Thus, the numbers

of crossovers from X to Y and from Y to X are equal in these remaining n q

positions . That is,

N(X, Y) = q + N(Y, X). (3. 2)

Also, recall that DH (C) = 2t + 2. Therefore, by (3. 2), we have

2t + 2 5_ DH(X, Y) = N(X, Y) + N(Y, X) = q + 2N(Y, X). (3. 3)

(i) If 2t + 2 .5 q, it is obvious that q N(X, Y) and 0 5. N(Y, X).

(ii) If 0 q 5 2t, by (3. 3), we have 2t + 2 - q 2N(Y, X), or equivalently

2t + 2 q
N(Y, X).

2

And hence, by (3. 2), we also have

2t+2+q 2t+2-q
2 2

+q N(Y, X) + q = N(X, Y).
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Now, let us prove that the proposed codes are indeed t- EC/AUED codes.

Theorem 3.5. The proposed code C* is t-EC/AUED.

Proof. Let X*, Y* E C*, X* = XCHx CH
x
t+ i

, and Y* = YCHY CHt+1 '

where X, Y E C. According to Theorem 3.1, it needs to be shown that

t + 1 5 N(X*, Y*) and t + 1 N(Y*, X*). Without loss of generality, assume

WH (Y) 5 WH(X). And, let q = WH(X) - WH(Y).

The theorem will be proved by discussing the following two cases.

Case (i) 2t + 2 q.

By (i) of Lemma 3.4, t + 1 < q N(X ,Y).

Hence, t + 1 < N(X, Y) N(X*, Y*).

Since 2t + 2 5_ q, CwH and will never be in the same block in Step 1

of the Procedure. Thus,

CH.
X

< CH. for all i = 1, , t + 1.

Therefore,

t + 1

t + 1 5 / N(CHY , CHxi ) N(Y*, X*).
=

Case (ii) 0 q 5_ 2t.

By (ii) of Lemma 3.4, t + 1 N(X, Y) N(X*, Y*). Since 0 q 2t,

and CWH can be in the same block in Step 1 of the Procedure at most

2t + 2 q
2

times. Thus, there are at least 2- Ps in which CH).0 < CH. .
1

Therefore, by this reason and (ii) of Lemma 3.4, we have
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2t+2 -q q
t + 1 2 ±

t + 1

N(Y, X) + N(CF1:17,

=

= N(Y*, X*). //

3.5. Decoding Algorithm

In this section a decoding algorithm for error correction and detection of the code

described in Section 3.4 is developed. Let X* = XCHxi CHxt+i be an error free

transmitted codeword in the proposed t-EC/AUED code and

(X*)' = X1(CHx1 )' (CHt+i) ' be the received word with some errors in X.

Decoding Algorithm

(1) Compute syndrome S of X' as usual in code C. (May refer to any coding

theory book listed in the bibliography, such as [48], [56], or [61], etc..)

Let m be the multiplicity of errors corresponding to the syndrome S.

(2) Compute CH)f , i = 1, , t + 1, for X' using the Procedure described

in Section 3.4.

(3) If m = 0 and DH((C ) (CHxt+i)', CHx: CHxt_:i) = 0, then output the

codeword X'(CFIxi )1 (CFI)tc÷i)' and stop.

(4) If t < m then signal "errors detected" and stop.

(5) Decode X' using a decoding algorithm in code C to get X".

Compute Clfi, i = 1, , t + 1, for X".

If m + DH((CH)(1)' (CHtx+i)', CHx: CHx:d < t , then

x"
output the codeword X"CHi CHt+i and stop,

else signal "errors detected" and stop.



End(of Decoding Algorithm).

Notice that steps (1) and (2) of the above algorithm can run in parallel. Before

proving the validity of the algorithm, an example is shown here to illustrate how the

algorithm works.

Example 3.2. Let us consider the 3-EC/AUED code of Example 3.1 in Section 3.4.

The parity check matrix which corresponds to the generator matrix G is

H =

_ -111111111111111
101100000000000
101010000000000
001001000000000
001000100000000
110000010000000
110000001000000
011000000100000
011000000010000
010000000001000
110000000000100
100000000000010
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Let X* = 101001111110110 0 01 01 00

X CHx aix CHx CHx
1 2 3 4

Suppose that three random errors have occurred in the above codeword when transmitted,

in the positions marked with e, shown below. Let the received word be

e e e
(X*)' = 111001111100110 0 01 00 00

X' (CHilic)' (CH)2()' (C1-4)' (CH,(1)' .



36

The decoding.

(1) Compute syndrome S of X'. S= H (K)T= [ 0 0 0 0 0 1 1 1 0 1 1 0]T.

Since S is equal to the sum of the second and the eleventh columns of the parity

check matrix H, it indicates that two errors have occurred. Thus, m = 2.

(2) Using (3. 1) of Example 3.1, compute Clic, i = 1, , t + 1.

CHx: CH2 CH): CH):

01 01 00

Steps (3) and (4) are skipped, since conditions are false.

(5) Decode X' to get X" = 101001111110110.

Using (3. 1) of Example 3.1, compute CH)c", i = 1, , t + 1.

CHx" CHx
" x"

CH3 CH4
1 2

0 01 01 00

Then, m + DH(0010000, 0010100) = 3 5_ 3. Thus, the Algorithm outputs

1010011111101100010100, which is the correct codeword X*.

Next, let us consider the occurrence of six unidirectional errors in the same codeword X*.

Let the received word be

eeee e
(X*)' = 101001100000010 0 01 00 00

X' (CHxd' (CH2 )' (C1-133)1 (C

The decoding.

(1) Compute syndrome S of X'. S= H (X')T = [ 1 0 0 0 0 1 1 1 1 0 1 0

S indicates that three errors have occurred (in second, twelfth, and fifteenth bits).

Thus, m = 3.

(2) Using (3. 1) of Example 3.1, compute Cfeic, i = 1, , t + 1.
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CHx CH2 CFI):

1 10 01 01

Steps (3) and (4) are skipped.

(5) Decode X' to get X" = 111001100001011. Compute CHxi , i = 1, , t + 1.

CHx
"

CHx CI-1)3(" CHI:"

0 01 01 01

Then, m + DH(0010000, 0010101) = 5 > 3. Thus, the Algorithm signals

"errors detected". //

The validity of the Decoding Algorithm will be proved in the next theorem.

Theorem 3.6. The Decoding Algorithm described above is valid.

Proof. To prove the validity of the algorithm, it needs to be shown that

(i) if t or fewer errors have occurred in the received word, the algorithm outputs

the correct codeword,

and

(ii) if t + 1 or more unidirectional errors have occurred in the received word, the

algorithm should signal "errors detected".

Let m
1

and m2 be the numbers of errors that have occurred in X and
x

(C F1111( CH+i) , respectively.

Case (i) t or fewer errors.

It is obvious that if m1 + m2 = 0 the algorithm outputs the correct codeword at

step (3). Now, let us consider the situation 1 m1 + m2 S t .

Naturally, m1 t , therefore, m = m1 at step (1). It is obvious that the algorithm

skips steps (3) and (4). And, at step (5), by the structure of C, X" = X.
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Hence, CH7 CHt+xi =

m + D
H((C

C Hti-i Thus,

(CHtx+i)', C CHt+x i) = mi + m2 5_ t .

Therefore, the algorithm outputs the correct codeword

X"CHx CHxt+1 = XCHX CHX
1 1 t+1

Case (ii) t + 1 or more unidirectional errors.

If t < m, then step (4) does the job. Thus, it needs only to discuss the situation

m t . And, the discussion will be divided into two subcases.

Subcase (1) m1 t .

Since C is t-error correcting and (t+1)-error detecting code, we have m = m1 .

If m
1

= 0 ' then X = X' and t + 1 5. m2. Hence, the condition in step (3) will

never happen. Also, since m = m1 5_ t , step (4) is skipped, too. Thus, whether

m = 0 or not, the algorithm always executes step (5).

It gets X" = X. Hence, CHxi CHxt:i = CH31( CHxt+i . Then,

t + 1
1

+ m2 = m + D
H

((C (CHtx+1)1, CHx: CHxt:1)

Therefore, the algorithm signals "errors detected".

Subcase (2) t < m1.

First of all, let us notice that we have the following fact:

(i) CHxi 5. (CFfc)' for all i = 1, , t + 1, if 0 ---> 1 error occurred,

or (3. 4)

(ii) (CH. CHi for all i = 1, , t + 1, if 1 0 error occurred.

This subcase will be proved by discussing the following two subsubcases

(a) m = 0 and (b) 0 < m .
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Subsubcase (a) m = 0.

If m = 0, then X' = X + Y with 0 # Y E C. Since the error is unidirectional, we

have

WH (r) WH(X) =

WH (Y), if 0 --> 1 error occurred,

WH(Y), if 1 -4 0 error occurred.

According to the code structure of C, 2t + 2 WH(Y), thus,

(1) CHx. < CFIx for all i = 1, , t + 1, if 0 > 1 error occurred,

or (3. 5)

(ii) CX EI < CH).( for all i = 1, , t + 1, if 1 --> 0 en-or occurred.

Combining (3. 4) and (3. 5), we have

0 < t + 1 5_ D
H

((C )' (CHt+x 1)', CH1 CHt÷1) . (3. 6)

Therefore, the algorithm skips step (3). Since 0 = m 5_ t, the algorithm skips step

(4), too. In step (5), the algorithm computes X" = X', because of m = 0. Thus,

by (3. 6), we have

t < m + DH((C x(CH )1 CHlx x"
CH t+i) .

Therefore, the algorithm signals "errors detected".

Subsubcase (b) 0 < m .

Recall that m t . Then, the algorithm skips steps (3) and (4) and executes step

(5). It decodes X' as X" = X' + A with WH(A) = m . Since the error from X



to X' is unidirectional, we have X' = X + B with WH(B) = ml, and

W
H

(K) W
H (X) =

ml' if 0 1 error occurred,

- m if 1 -4 0 error occurred.
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(3. 7)

Note that A + B = X + X" E C. Hence,

2t + 2 5_ m + mi . (3. 8)

Now, consider this

WH (X") WH (X) =WH (X' + A) WH(X) = WH(X') WH(X) ± d,

where 0 d m. (3. 9)

Combining (3. 7) and (3. 9), we have

m1± d
, if 0 ---> 1 error occurred,

W
H (X") WH (X) =

- m
1

+ d if 1 -4 0 error occurred,

where 0 d m.

(3. 10)

By (3. 10) and the construction of CHi 's, we have the following results.

(i) If 2t + 2 < m1 d, then

CH.
x

< CI-13.( for all i = 1, , t + 1, if 0 1 error occurred,

or (3. 11)

x"
CH).( < CH. for all i = 1, , t + 1, if 1 0 error occurred.



41

mi d(ii) If mi d 2t + 1, then at least
2

i's in which we have

CHx. < CI-13.c, if 0 1 error occurred,

or (3. 12)

CHX < CH .

, 1 ) 0 error occurred.

Recall that 0 5_ d m, then by (3. 8), (3. 4), (3. 11), and (3. 12), we have

t + 1 <
ml + m + m

2

= m + I mi d I
L 2 j

m + DH((C x"
(CHt+i)', CHX CH i) .

Therefore, the algorithm signals "errors detected". //

3.6. On the Number of Checkbits and the Size of a Code

It has been mentioned in Chapter 2 that probably the most basic problem in coding

theory is to find the most efficient code of given conditions, such as to find the largest code

of given length and minimum distance (or some given error correcting/detecting

properties), to find the minimum number of checkbits of a given length of the information

and given error correcting/detecting properties in a systematic construction, or to find the

maximum number of errors that can be corrected/detected for given lengths of the

information and the check, etc.. In this section, the number of checkbits used in the

proposed code and some previous methods will be examined. Also, bounds on the number
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of checkbits and on the size of a code will be discussed.

It has been mentioned in Section 3.3 that the methods used in [59] and [75] are

more efficient than the methods used in [9], [10], [19], and [62]. Thus, only the proposed

method and methods used in [59] and [75] will be compared, Since all these three methods

have similar structure, by adding t + 1 check symbols to some kind of t-error correcting

code, let R1, R2, and R3 denote the total number of bits in these t + 1 check symbols

(i.e. CH1 CHt+i ) in the proposed method, the method in [59], and the method in [75],

respectively. Then,

R1 =
t + 1

(n+2)
io

[(2t+2) - 2(i-1)]
g

2t+2
= 1

t + 1
n+1

R2 = loge
(2t+1)

n+i

2(t-i+1)
i = 1

t + 1

and R3 = Flog2 t+11
i = 1

where n = the length of C, the linear t-error correcting systematic code with

DH (C) = 2t + 1. Recall that in the proposed method the construction started with C and

its parity check bits, hence n + 2 instead of n + 1 appears in the formula R1 . Also, let

n* = the code length, then n* = n + 1 + R1 for the proposed method and n* = n +Ri ,

i = 2, 3, for the methods in [59] and [75] respectively. It is evident that the proposed

method has the shortest n*. In Tables 3.2 and 3.3, which are adopted from [75] with

some modification, the comparisons of n* in all three different methods are presented for

2-EC/AUED codes and 3-EC/AUED codes. In the tables, n* for the methods in [59] and

[75] may be smaller than n +Ri , i = 2, 3, because of some modifications have been done

(see [59] and [75]). Even with these modifications, the proposed method still shows

smaller n*. k denotes the number of information bits in Tables 3.2 and 3.3.
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Table 3.2. 2-EC/AUED codes.

k n n*

Niko los et. al. Tao et. al. Proposed
7 15 23 24 22

8 16 25 25 23

9 17 27 26 24

10 19 29 28 27

11 20 30 29 28

12 21 32 30 30

22 32 45 44 42

26 38 51 50 48

32 42 56 54 52

51 63 77 78 76

53 65 81 80 78

64 76 92 91 89

112 125 142 143 141

113 127 144 145 143

Table 3.3. 3-EC/AUED codes.

k n n*

Niko los et. al. Tao et. al. Proposed

8 19 31 30 28

9 20 32 32 29

11 22 34 34 31

12 23 36 35 32

16 29 43 41 41

23 37 53 53 50

27 41 58 57 54

32 47 64 63 60

46 62 79 78 78

64 81 102 101 98

106 127 148 150 148

231 255 280 282 280
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Now, let us consider how low the redundancy can be when constructing a

t-EC/AUED code. A lower bound on the number of checkbits required for any systematic

t-EC/AUED code has been given in [19], the only result so far. It is restated as the

following theorem.

Theorem 3.7. For any systematic t-EC/AUED code, with k information bits and r

checkbits, r must satisfy the following condition:

\ /loge (2 [1+ (f) + (D ++ (t)1+(t+1)A t+1
2t+1

r.

This bound, when t « k, has asymptotically required ((t + 1)log2k) checkbits.

The proposed method has saved quite a few bits when compared with any previous

method, though, the asymptotical behavior of the proposed method and all other methods

in [9], [10], [19], [59], and [75] require approximately ((2t + 1) log2k) checkbits

(including checkbits in C). Thus, there is still a bit to go. By comparing the reasoning for

getting the bound in Theorem 3.7 and the conditions in Theorem 3.1, we think that the

bound can be pushed further. On the other hand, we think that to construct a t-EC/AUED

code directly from information part may shorten the redundant check part. (Because we

think that starting the construction from a t-error correcting systematic code, the proposed

method almost reaches its extremity.) But, so far there is no significant result yet in either

direction.

As to a bound of the maximum size of a t-EC/AUED code, in general including

nonsystematic codes, no significant result has been found so far in the literature, except for

the case of a SEC/AUED code. By applying the famous Sperner's theorem, Bose has

derived a good bound for a SEC/AUED code, which will be stated in Theorem 4.17 of

Chapter 4.



Chapter 4

Study of Bose-Rao Codes

4.1. Introduction
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In Chapter 3 t-EC/AUED codes have been discussed and for practical purpose the

discussion was concentrated on systematic construction, whereas an ingenious

nonsystematic construction for a class of SEC/AUED codes given by Bose and Rao [20]

plays an important role in error control. Therefore, a deeper study of Bose-Rao codes will

be developed in this chapter.

First of all, let us review Bose-Rao codes construction. Let Fnw be the set of (wn)

binary vectors of length n and weight w, where 2 S w S n 2, and G be any Abelian

group of order n. Suppose the elements of G be indexed as

g(0) = 0, g(1), , g(n-1).

Define a mapping T : Fnw ---> G as

n 1

T(X) = xi g'1)
i =13

where X = (x xi, , xn_i) and xi g(1) = g(i) if xi = 1 , or g(°), the summation is

taking place in G. Then Fnw is partitioned into n subsets,

{V.= X E Fn T(X) = g(1)}, i = 0, 1, , n 1.

Bose and Rao have shown that each of these subsets is a SEC/AUED code. Further, they

have observed that at least one of these subsets has cardinality greater than or equal to



46

crA.) However, they have not given formulas for I Vi l's and have not known what

group G and which element g(i) of G make V. the maximal size.

Here the technique which McEliece and Rodemich [57] used in analyzing

Constantin-Rao codes [23] is applied to analyze Bose-Rao codes and the following results

will be obtained (see Section 4.4).

(i) For n = Pakk and a fixed 2 5 w n 2, take

G = ( Z Z ) ED ( Z ED ED Z )
131 131 Pk Pk

and

(1, 0, , 0), if w -a- 2 (mod 4) and (w, n) 2 (mod 4),
[g(i)

0, otherwise,

then I V. I is maximal over all possible Abelian groups and their elements.

The formula will be given in Theorem 4.14 of Section 4.4.

a
(ii) For n = 1)1a 1 Pkk and w = L-Iiii , take G as in (i) and

(1, 0, ... , 0), if i -== 2 (mod 4),

0, otherwise,

then I V.
1

I is maximal over all possible values 2 5 w n 2, all possible Abelian

groups and their elements. That is, the maximal size of Bose-Rao SEC/AUED code

has been found.

The formula will be given in Theorem 4.16 of Section 4.4.

Further, the result (ii) will be compared with an upper bound of the size of a SEC/AUED

code, which has been found by Bose (see Section 4.5). The background knowledge

needed for deriving the above results will be discussed in Sections 4.2 and 4.3.
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For readers' convenience a list of the notations used in this chapter is listed below.

Zn : the (cyclic) additive group of integers modulo n.

o(g) : the order of an element g in a group G.

G 9 H : the direct sum of Abelian groups G and H.

n

I® Gi : the direct sum of Abelian groups G1, , Gn .

i =1

n

Ee G : the direct sun of n copies of the Abelian group G.
1

Fiviv
: the set of (nw) binary vectors of length n and weight w.

(
GVg

w) : Let G be an Abelian group of order n and their elements be indexed as

g(0) g(1), g(n-1).

V()
n -1

Gg =,XE Fw I xi gii = g)
i =0

where X = (x0, xl, , xn-1)

_ Av)
If there is no ambiguity, this may be simply denoted as vg , GVg , or Vg .

I A I : the cardinality of the set A.

a I b : the integer a divides the integer b.

a -F b : the integer a does not divide the integer b.

(a, b) : the g.c.d. of integers a and b.

E(p; n) : the highest power of p dividing n. e.g. If n = 24, then E(2; 24) = 3.

flD : D is a set of integers. H D= H d.
de D

e.g. D = {2, 3, 5}, then HD =2x3x5= 30.

A(n, d, w) : the maximum number of codewords in any binary code of length n, constant

weight w, and Hamming distance d.
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N(X, Y) : X and Y are two binary n-tuples. N(X, Y) refers to the number of

0 crossovers from X to Y. For example, when X = 1010 and

Y = 0111, it will have N(X, Y) = 1 and N(Y, X) = 2.

4.2. Some Knowledge from Fourier Analysis

It is well-known that any finite Abelian group G is isomorphic to a unique direct

sum of cyclic groups of prime power order (references [25], [46], or [68].) Thus, any

finite Abelian group G may be written as

G = /8 Zni
i =1

with each ni a prime power and hence any g E G may be written as g = (g1, , g.)

with 0 5 gi < ni for i = 1, , m. Let g = (g1, , g.) and h = (h1, , h.) be

elements (not necessarily distinct) in G, define

g. h.
< g, h > = ci "

where
i
= a complex primitive n.- th root of unity.

Lemma 4.1. The definition of < g, h > satisfies the following properties.

(i) <g, h>=<h, g>.

(ii) <g, h><g, h' > = <g, h +h' >.

< g, jh > = < jg, h > = < g, h >i for any integer j.

0, if h 0,

(iv) < g, h > =
geG

I G I, if h = 0.
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Proof. (i), (ii), and (iii) can be derived straightforward from the definition. If h = 0, then

(iv) is obvious. If h = (h1, , hm) 0, there is some h
J

0, 0 then

< g'
gE G

n. 1

g. h. gi hi
h > = (

J

))
J

gJ
(g1, , gi, , gm)E G i=1; i#j

n - 1 h g"
cs= (gr gm)E G' gi"gJ

h n
1

,h (
1 (gr gm) E G' gj "

J

= . //

h.

( rim 1c.gi i))i=1;i#J

m 1.,gi hi

Di
= 1; i j

Now, let f be any function mapping G into the complex numbers. The Fourier
A

transform f of f is defined as

i\.(h) = (< g > f(g)) .

gE G

Lemma 4.2. (Fourier inversion formula)

f(g)
I G I (<11' g> 1\'(11)

hE G

Proof. Using (ii) and (iv) of Lemma 4.1, we have

I G I
(< h, g> f\.(h))

hE G
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1
(<11, g> (<h, g' >f(g')))

gle G

1

I G I
(<11, g - g' > f(g)

hEG g'E G

1 (<11, g-g'>f(g')
I G I geG hEG

I G I
I G I f(g)

= f(g) //

Lemma 4.3. The mapping g --> < h, g > is a homomorphism of G onto the complex

d-th roots of unity, where d = o(h).

Proof. By (ii) and (iii) of Lemma 4.1, it is easy to see that the mapping is a

homomorphism from G into the complex d-th roots of unity. Thus, it needs only to show

that the mapping is an onto mapping.

Since h = (h1, , hm) E G, where G = Zni with each ni a prime power,
i=1

one can find a subset (i1, , is) of the set 1, , m} such that o(hi.) , j = 1, , s,

are pairwise relatively prime, and d = o(h) = 11 o(h )

=1

Let g = (g1, , gm) with gi = 1 if i E {i1, , is}, gi = 0 otherwise. Then,

< h, g > is a primitive d-th root of unity. Therefore, the mapping is onto. //

4.3. Some Knowledge from Combinatorics
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Lemma 4.4.

(i) (1
J

) < (n) if 0 <
2

i < j < LE] or Fil _j<i_<_n, for 2n.
/ n \ n \

(ii) Liiii )

/
ril )

for 1 S n.

Proof. Both relations are well-known. Omitted. //

Lemma 4.5. If 0 < d2 < di _. n, 0 ... w n, and d1, d2 both divide n and w, then

(n/di ) < ( n/d2

kW/di W/d2)

where equality holds only when w = 0 and n.

Proof. If 0 < w Liii, then

(n/di (n/d2 (n/d2
kw/di ) k widii kw/d2

i
if ril w< n, then 0 < n w iii . Thus,

(n/di ) \ ( n/d2 \
kw/di J \ (n w)/cli J k (n w)/d

2
J \ w/d2 J

It is obvious that when w = 0 and n the equality holds. //

Lemma 4.6.

I (7)2 en)
i = 0

for 0 n.

Proof. We observe that the expression on the left-hand side is the constant term in

( 1 + x )n ( 1 + X-1)11 = X n( 1 + X )2n . Thus, the equality holds. //
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Lemma 4.7.

( 2n \ n

+
( ) (

kn-1) ' nn) for 1 n,

where equality holds only when n = 1 and 2.

Proof. A straightforward computation shows the inequality for n = 3 and the equality for

n = 1 and 2. For 4 n, we have

( 2nn) ( 2n 1 (21.1 1 (
n \2.

>
n 1 J n + 1 Ill )n + 1 \ n I (by Lemma 4.6)

n n nn 1>
n + 1 2 2 2+ 2 2( ( Ln] ) ( Lni ( Lni ) "n

Lemma 4.8. If 0 < w < n and n, w both are even, then

( \
kw/2l k1W1 ,

where equality holds only when w = 2 and (n 2).

Proof.

(1,11) (w2)n//2\ (n 1)(n 3) -. (n w + 1)
1 . 3 ... (w - 1)

(n/2)
( n 1) ( some number greater than or equal to 1 )

kw/2

/2l
> ( n - 1 ).

kw

It is easy to see that the equality holds only when w = 2 and (n 2). //



Lemma 4.9,.

Proof.

i nn nn/2 \ i \ in/2 \
k-i -1 71- -1) kn/2) k n/4) ' for 4 <_ n and 41 n.

n \
k n/2) kii- -1) n +2+ 2 kn/2)

\

( Trii/2 \ (n/2 \ 2n - 4 i n/2 \
\--4- 11 k n/4 1 n + 4 k n/4)

It is easy to check that (4. 2) < (4. 1) for n = 4 and 8. For 12 n, we have

>

>

2 ( n \ 2n -4 in/2\
n +2 `n /2) n +4 kn/4)

2 (n/2\2 2n 4 in/2 \
n + 2 kn/41 n + 4 k n/4)

n n n
i 2

2-- -1 2 -2
2 2n- 4 i\ n/2\

n+ 2 1 2 3 n+ 4 ) n/4)

n4 2n 3
64 n

2 + 32n + 192 (n/2 \
24n

2 + 144n 196
k n/4)

> 0.

Therefore, the assertion is true. //

Lemma 4. 10.

m n(
LT:J ) ( LU ) , for 0 < m < n.
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(4. 1)

(4. 2)

(by Lemma 4.6)

Proof. This can be proved by induction on n. It is obvious that when n = 2 it is true.

Assuming it is true for (n - 1), then
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(LO (Inji) (Cilli-) > ( )LTV 1.1 .

Therefore, the inequality holds. //

Lemma 4. 11, If n = odd and p = minimum prime dividing n, then

( n \
(n - p)/2p) 2( /I) 5 ( CR] )k (n p)/2)

+ (n- 1)

where equality holds only when n = 3.

Proof. If n is a prime then p = n. Thus,

( P \
( P/P )

(11 0/2) + (I) 1) (PP . p < (L:])_
/

where the equality holds only when p = 3.

If n = 9, it is easy to check that

t n \ n
+ (n 1) i 11/3 \l (n 3)/2) k (n 3)/6) < ( rn )

If 15 n, then by Lemmas 4.4 and 4.10

i n \
ri/P \ n \ (n 1)/2

+ (n 1) (
k (n - p)/2) k (n - p)/2p) < ( (n 3)/2) + (n l) ( in11 )L 4 j

Thus, it needs to be shown that the right-hand side of the above inequality is less than or

equal to
i
\ I:21 j ) k (n -n1)/2)

Equivalently, it will be shown that

/(n 1)/2

Ln1] ) n-1
1 r r n

( 1

\
L `(n- 1)/2/ ((n -3)/2) ]



And,

n - 1 L k(n 1)/2/ k(n-3)/2)

8n n - 1

n3 + 2 3 k(n 1)/2/

( (n -1)/2 \28 n

n3 +3n 2 - n 3 L 4 )
(8n (n 1)/2 \ ((n- 1)/2)

n3 + 3 n2 n 3 121.4-1] I \ 3

23 15n- 9 +--
n n2 t(n- 1)/2 \

18 6 3 k )6 + -
n 173

(n - 1)/2
> n -1 .

L 4 J

4.4. Analysis of Bose-Rao Codes
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(by Lemma 4.6)

In this section the maximal size of Bose-Rao code, for both cases fixed w and

over all possible w, will be discussed.
a

Let the prime factorization of n be n = pkk , i.e. 1 < k, 1 < (xi for

i = 1, , k, and pi's are distinct primes. If n is even, we may assume p1= 2. If G is

an Abelian group of order n, as explained in Section 4.2, G may be written as
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SP.

where 13 . = a. for j = 1, , k.
i = 1

Pi- 1 J

Also, E(p; n) will denote the highest power of p dividing n, e.g. if p = pi ,

E(p; n) = ai . And, m will denote the number of summands of G.

Let f be a function mapping G into integers defined as f(g) = I GV(gw) I for some

fixed w and f be the Fourier transform of f. can be calculated as follows.

Lemma 4.12.

(h) =

0+1)1_,'
(-1) " , if d I w,

w/d

0, if d 4 w, where d = o(h).

Proof.

(h) = (< - g > f(g)
gEG

I (< g > f(g)
gE

XE Fn
w

XE Fn

n-1
< - h, 2,-

1

x. g(1) >
i=o

i=0
< h , g" >1

(by (iii) of Lemma 4.1)

(by the definition of f(g))

(by (ii) and (iii) of Lemma 4.1)

By Lemma 4.3, we observe that the last quantity is the coefficient of xw in

(1 + X)d (1 CX)d
cd-1x)d =

(-1)d+lxd )cl

where = a complex primitive d-th root of unity. Therefore, the formula holds. //
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Using this formula and Fourier inversion formula, it is able to compute I G gV(w) I

for any Abelian group G, any element g of G, and any value w. But we are more

(interested in optimal values of IGVgw) I's for both fixed w and all possible G, g, and w.

Before developing the main theorems, we need one more formula.

Lemma 4.13. If n is even and G is an Abelian group of order n, then

2
sp

1 1, if all g1 through g8pi in g = (g1, , gm)

are even,

< h, g > =
hE 0; o(h)=2

_ -1 , otherwise,

for any g E G.

Proof. If all g1 through gspi are even, then < h, g > = 1 for any h E G with o(h) = 2.

And there are (2
sp1

1) elements of order two in G. Thus, the first part is proved.

Now, suppose not all g1 through gspi are even. Let gi, , git} be the set of

all those odd numbers in { gi, , gs } . For each { i , it} D_ A (I) , define
Pi

. - 1)
HA = { hE G lh = (h1, , hm) where hi = 2 P11 if i E A, hi = 0 if

(13 . - 1)
si{i

1' ' it} A or s
Pi

<i5_m, and other h.' can be either 0 or 2 Pi 1.

We have I HA I = 2
(s

r
t)

1 and < h, )
IA1

for any h E HA .

Also, define

H = t h E G l h = (hi, , hm) where hi = 0 if i E {ii, , it) or

. 1)
ss< m, and other h.' can be either 0 or 2 Pi } - { (0, , 0)) .

Pl



We have I H I = 2
t)

r1 1 and < h, g > = 1 for any

We observe that

{ HA I fir , it}QA#0}u{Ho}

forms a partition of the set {hE GI o(h) = 2 }. Thus,

< h, g>
h E G; o(h)=2

h E H .

( <h, g>) + <h, g>
{ii, itiDA#0 hEHA h E HO

1)1AI 2(sPi t))
- 1

,idDA#0

(it) (-1)i )2(sPi -t)

= -1.

1

Therefore, the second part is proved, too. II

Now, we have enough tools to tackle our main problems.

Theorem 4.14. For a fixed 2 5 w n 2, I GVg I is maximized by

al ak
G = o...o (I ©Z

PI
pk)

and

g=

(1, 0, --- , 0), if w E 2 (mod 4) and (w, n) E 2 (mod 4),

0, otherwise.

58
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Let I V I = m ax I V I, the maximum is taking over all possible Abelian group G ofmax G, G g

order n and all g e G. Then IV Imax is formulated as follows.

(i) If (w, n) = 1, then I V Imax = n

,(ii) If (w, n) 1 and w 2 (mod 4) or (w, n) = qi01 qs 2 (mod 4),

where {p1, , Pk} {q1, , qs}, then

IVI [( )+max ri
w) ) (wnTDioi

{q1, , ..QD#1) PED

(4. 3)

(iii) If (w, n) 1 , w = 2 (mod 4), and (w, n) = 2 ( 4 1 31 1 q si3s E.- 2 (mod 4),

where (1)2, , pk) {q1, , qs}, then

I V 'max

1 n n/2 (.(;.) nirpn/211DA[c ) (w/2)+ (
(winp,+(w

I , cis I Q1)#(1)pED

(4. 4)

( Note: In (iii), {q1, , qs } can be empty. If that is the case then the third term on

1 n n/2
the right-hand side of (4. 4) is dropped out. That is I V I max n

[k(w/ \
+C w/211 )

Proof.

Case (i) (w, n) = 1.

By Lemmas 4.2 and 4.12, it is easy to see that in this case I GVg I =I (wn) for any

Abelian group G and any g E G.

01 PsCase (ii) (w, n) 1 and w 2 (mod 4) or (w, n) = qi q 2 (mod 4),
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where {p1, , pk} D._ {q1, , cis) .

Take the group G as stated in the theorem and g = 0, then by Lemmas 4.2 and

4.12, we have

I

G
V

g 11 WI = 1 [ (n) + I (h)1
0*he G; o(h) I w

= the right-hand side of (4. 3).

The last equality holds because for any 0 #11 E G with o(h) I w iff there exists

{ qi, , cis} QD#0 such that o(h) = HD. Besides, there are
(pE(p; n)

peD

elements in G having order rm.

Next, it needs to show that the right-hand side of (4. 3) is greater than or equal to

I HVh I for all possible Abelian group H of order n and all h E H.

Let f(h) = IHVh I . For each (q1, , cis) D#(1), define

-1r YHD = {hE H I o(h)lw and o(h) =ii pP with 1 S 7
P

for all pc I)).
peD

By Lemmas 4.12 and 4.5, we have

I= ( n/o(h) \ ( n/FID)
for any h E HDkw/o(h)) kw/IID

Also, note that

I H I _< n (pE(P;n) 1)
D peD

Besides, {HD I {q1, , GO 2 D# 0} forms a partition of

{h E H I o(h) I w and o(h) # 1).

(4. 5)

(4. 6)
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Thus, for any h E H, we have

f(h) = I f(h) I

< 7 [(w) + I i\.(h(1)) I + - + I i\*(h(n 1)) 11

(by the definition of f and the triangle inequality)

[(w)
0*IIE H; o(h)lw

hEHD

[
(w)

(pE(p;n)_ ) (wrvirinDA

{q1,
Cis/ D-D#0 PED

(by (4. 5) and (4. 6))

PsCase (iii) (w, n) # 1, w E 2 (mod 4), and (w, n) = 2 qiPi 2 (mod 4),

where {p2, , qs).

Let G be an arbitrary Abelian group of order n and be written as

Spy

R
) CD CD

i= 1 pi Pli

spkIeZ
i=i Pk

Spi

where a , for j = 1, , k, and p1 = 2.
p

i = 1 j

And, f(g) denotes IGVg I .

By the properties of w and n, Lemmas 4.2 and 4.12, we have



f(g)

[ g>
hE G; o(h)=2
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(n/2\
kw/2)

1)(0)+1< ( n/o(h)\1
6 kW/0(1)ti

hE G; 1,2#o(h)I w

=n [Cyr) <h' g > C1/2)/2
hE G; o(h)=2 W

hE G;1 #o (h)=odd; o(h)lw

( n/o(h)
kw/o(h))

hE G; 2#o(h)=even; o(h)I w

1 Vwn)
'6

=
n kW/2)

hE G; o(h)=2

hE G;1#o (h)=odd; o(h) I w

n/o(h))]
< h, g > `w/o(h)

n/o(h) \
< h,

(
kw/o(h))

n/2o(h)\1
I kw/2o(h)li

hE G; 1 #o(h)=odd; o(h) lw h'E G; o(h')=2



[Gin)
g kw/2)

hE G; o(h)=2

he G;1#0 (h) =odd; o(h)lw

< h, g > (11/°(h)
kw/o(h))
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n/2o(h)\
< h, g > < h kw/2o(h)li

he G; 1=o(h)=odd; o(h)Iw h'e G; o(h')=2

(by (ii) of Lemma 4.1)

1 in
n
[

kw) (2
s
Pi 1)

\w/2)

(cn//00((hh))) (2s pi (wn//22o0((hh))))1

he G; 1 =o(h)=odd; o(h)lw

if all gi through gspi in g = (g1, , gm) are even,

[cvn) (wn//22)

(\w/o(h))
(wn//220o((hh))))]

hE G; 1=o(h)=odd; o(h)I w

otherwise.

(by Lemma 4.13)

(4. 7)

a
1

ak

Therefore, if G = (Iez (Iez ) and
Pi

1
Pk

g = (1, 0, , 0) we have f(g) = the right-hand side of (4.4).

Next, it needs to show that the right-hand side of (4. 4) is greater than or equal to
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I

HVh
I for all possible Abelian group H of order n and all h E H. For the rest of

the proof f(h) will denote IHVh I .

Similar to case (ii), for each tql, , qs) D D# 4), define

r-r 7
HD = t he H I o(h)lw and o(h) = p P with 1 5 7p for all pE D).

pE D

We have

I H I 5 n (pE(p; n)

p E D

Also, by Lemma 4.5,

i n/o(h)\ ( n/IID\
kw/o(h)) kw/nD) and

i n/2o(h)\
kw/2o(h))

( n/21-1D\
kw/HID)

(4. 8)

for any h E HD . (4. 9)

Besides, by Lemma 4.8, it can be seen that if o(h) = odd and o(h) I w, we have

(2sp1 (wn//2200((hh))) (://2200((hh))) Gn/70((hh)))
(4. 10)

Thus, by (4. 7), (4. 8), (4. 9), and (4. 10), for any h E H, we have

f(h)

ill [ (wn ) ktwn//22) (in/0(h) \ i n/2o(h) \\
kkw/o(h)) ± kw/2o(h)lii '

1

n

he H; 1 #o(h)=odd; o(h)lw

(by (4. 7) and (4. 10))

[(in) (wn//22)

+ I (( n/o(h) \ in/20(h) \ )1

{qv ... qs) hEHD \w/o(h)I \w/2o(h))i



5 the right-hand side of (4. 4).
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(by (4. 8) and (4. 9))

Remarks;

(i) Note that the group and the element of the group in the theorem is not the only

possibility which makes the Bose-Rao code maximal. For instance, when n = 2r ,

3 5 r, and (w, n) = 2, any Abelian group G and any g = (g1, , gm) # 0 with

at least one gi # even make Bose-Rao code maximal. Since our interest was

merely on finding the maximal size of Bose-Rao code, the theorem has not

exhausted all such groups and elements of the group that make the Bose-Rao code

maximal. A little further study of the proof of the theorem and the properties of all

possible Abelian groups of order n should easily bring out all such groups and

elements.

(ii) When w = 2 and n 2 both cases (ii) and (iii) in the theorem get the same value

I V I =max 2

(iii) Since (w, n) = (n w, n) it can be shown that

Iw -
max ITV' I = max Irv' WTI

)

g

(iv) Since Bose-Rao codes form binary codes of length n of constant weight w and

Hamming distance four, the value in the theorem becomes a lower bound for

A(n, 4, w). Some values in the theorem give better lower bounds than those

given by Graham and Sloane [33].

e.g. 2710 5_ A(18, 4, 9), 6330 5 A(20, 4, 8),

30789 5 A(24, 4, 8), 112952 5 A(24, 4, 12).

These were found independently by KlOve [44]. //

Next, the maximal size of Bose-Rao code over all possible value w will be



investigated. Here, a lemma in number theory will be needed.

Lemma 4.15. If n = pal ... pak k and {p1, , pkI (qv , cis ) ,
1

(
11

(pE(p;n)_ 1)) n 1 .

qs) pED

then
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Proof. The inequality will be proved by induction on k. If k = 1, it is obvious that the

inequality holds. Assuming the inequality holds for k 1, then, let n = nipakk , we have

(pE(p;n) )

{qv cls)2D#(p PED

(pE(p;n)_

{ , Pk LQD#4:0 PED

(pE(p;n)_

tpl, pk_p_D#0 PED

+ [1 ± (pE(p;,_ 0)]
(Pkk

(131' ' Pk-1)21)#0
pED

(n1 1) + n1 (p - 1) (by induction hypotheses)

= n 1 .

Thus, the inequality holds. //



Theorem 4.16. For all 2 5_ w .. n 2, G, and g e G, I GV8M1 is maximized by

and

al ak

W = L i ] , G = ( / eZ )e...e (IeZ,,),
1 1

Pi r k

g=

n
(1, 0, , 0), if -2- --,- 2 (mod 4),

0, otherwise.

And, their values are

(W11i (), if n = odd,

Cli) ri [( nni2) +
( (pE(p:n) ,

10)2.D)
(nni/IID

{c11' ' cis}1)#(1) PED

if n = even and L i 2 (mod 4);
2

where {p1, , pk } .D_ {q1, ... , qs} and (n, i ) = q1311 ql3ss,

.. 1(in) H [(nn,-,)+ G/4)

+ I ( (E(p;.)_

11)2, , poDD#0 PED

if n = even and 11- F- 2 (mod 4).
2
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(4. 11)

\ \ u nil-ID \ in/2FID1
1)/ kn/21-1D) k n/21-1D V_II

(4. 12)

Proof. By Theorem 4.14, it is only needed to compare I v(w) I max for all different values

2 5_ w n 2. Once the value of w is determined, the choices of G, g, and the

formula are direct results of Theorem 4.14. It will be discussed in three cases.

Case (i) n = odd.



If (w, n) = 1, then

max I V(w)I= 1 (n) 5 1 ( rni )G, gGgn w /
If (w, n) 1, let p0 = min {pi, , Pk } , then

max I,V(w )
G, g g
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(by (i) of Theorem 4.14)

( (pE(pn) 1)) (wn
/Pi.9]iii / o

, cid DD#00 Per'

where (pp , plc) ql, , cis)

(by (ii) of Theorem 4.14 and Lemma 4.5)

n/p0
5_ [(w) (n 1) (w/P0)]

1 [ Pno)/2) (n 1) ((n pn0/1n )3Y2p0)1

(by Lemma 4.15)

(by Lemma 4.4)

since (w, n) 1 implies 1 < w S (n p0)/2 or (n + p0)/2 w < n

Further, note that ( ,n ) = 1.

Therefore, the theorem holds for this case.

Case (ii) n = even and 11 2 (mod 4).
2

First of all, note that in this case p1 = 2 and

Thus,

a = 1 or 3

(by Lemma 4.11)



(n,
2 )

[

a2n nak
r2 rk '

al -1
1 Pa22 Piack ,

if al = 1,

if 3 ai .
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(4. 13)

Now, let us compare (4. 11) with all max IGV(w)I I.
G, g g

If (w, n) =1 or w 2 (mod 4), then by (i) and (ii) of Theorem 4.14 and (4. 13)

,,()max I,v I (4. 11)G, g ' g

is straightforward.

If w :.----= 2 (mod 4), then

(w, n) = 2 c1711 ... ditt with (P2, , Pk } Q {d1, , dd

Also, note that 1 < w 1-1 1 or II- + 1 < w < n.
2 2

Thus, by Lemma 4.4 and Lemma 4.7, we have

cn)
+ (wn//22) < (in- 1) + qi) <\ /2l

and

(4. 14)

( n/FID\ ( n/21-1D) t n/IID n/2111) \ i n /LID \
2nD- 11 Ln/4I-Ipil kni2TIDIkw/HD) + kw/211D

(4. 15)

where (1)2, , pk) Q [dr , dt} DD .

Then, by (iii) of Theorem 4.14, (4. 14), and (4. 15)



70

max I V(w)IG,g G g

1

n [(W1)+ (W1//4)

{d1, , dt)DD#(1)

i0) (w/nD\

i + kw/HID/J..]
1

(
(pE(p ;n)_ n/FIDn/2FID\\

pED

[( ni)2) / 1)) nn/211-IDD)

GE(p;n)

{P2, Pk )DD#(1) pe D

5 (4. 11).

Therefore, the theorem holds for this case.

Case (iii) n = even and n 2 (mod 4).
2

Note that in this case, p1 = 2, al = 2, and (n, ) = 2 pa22 p = 2 (mod 4).

So, by (iii) of Theorrem 4.14, we have

I

max I V
(L

2 1 = (4. 12).
G,g G g

_.(w)
Next, it is needed to compare (4. 12) with all max I,vs I .

G, g g

By (i) of Theorem 4.14, the case (w, n) = 1 is trivial. It is needed only to discuss

the case (w, n ) 1 . If w s : 2 (mod 4) then (w, n)=-7. 2 (mod 4).

Thus, by (iii) of Theorem 4.14, the result is obvious.

If w 2 (mod 4), then
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(w, n)

[

41 dtt , if w = odd,

4 dii dY` ' if w = even,

where { p2, , Pk } Q { d1, ... , dt) .

If w = odd then by (ii) of Theorem 4.14 and Lemma 4.4 the result is clear, too. If

w = even, then by (ii) of Theorem 4.14 and Lemma 4.9,

max I V(w)I
G, g G g

= in [ GI) +

{p1, di'

I( (pE(p; n) )
pE D

Cn/IIDA
w/IIDli

-- in 1RD

\ it nil-MN f n/2111) \\ \
+

{d1, li,dt iDD#4)((PLIED(PE(P;n)
1)) kwirm) + 3 N,N,/2I1D)))

+3 ( n/21
w/2 I

5_. (4. 12). (by Lemma 4.4 and Lemma 4.9)

Therefore, the proof of the theorem is completed. //

Remarks:

(i) Similar to Theorem 4.14, the third term in (iii) of Theorem 4.16 may be

dropped out. But this happens only when n = 4.

(ii) Also, the group and the element of the group in Theorem 4.16 is not the only

possibility which makes the Bose-Rao code maximal.
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4.5. On the Size of a SEC/AUED Code

In this section the superiority of Bose-Rao codes will be examined, In order to

explore this, it needs to know an upper bound on the size of a SEC/AUED code. Bose has

extended the famous Spemer's Lemma [72] ( also can be found in [34] and [50] ) to obtain

the following theorem.

Theorem 4,17. [Bose]* The number of codewords in a SEC/AUED code with

1

length n is no more than 1.2.1 i
L

( )
IT

(* Note: The result has not been published yet.)

Proof. Let C be a SEC/AUED code which gives maximum number of codewords. The

total number of bits in C will be n I C I. In C, either the total number of 0's or the total

number of 1's will be at least n I C I. Without loss of generality, it may assume that
2

the total number of l's in C will be at least n I C I. For X E C, let Sx represent the
2

set of all vectors obtained by a single 1> 0 crossover from X. Since C is capable of

correcting single errors, for any X, Y E C with X # Y implies Sx n Sy = $ l) .

Let S=
x E c ^
l...) Then,

2
S. Then ICI<ISI--11

Furthermore, for any X1 , X2 E S, with X1 # X2 it will have 1 5_ N(X1, X2)

and 1 5_ N(X2 , X1 ). (i.e. The elements in S are unordered.)
n \

Therefore, by Spemer's Lemma it will have I S I (
Lu)

-r-i

2 n
That is, ICI 5_ ( r21:_i) 11
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From Theorem 4.16, we knew that the maximal Bose-Rao code has size between

1 ( nn ) and 2." ( nn ) Thus, these group theoretic SEC/AUED codes are close
n n rd

to optimal. Besides, if one examines the proof of Theorem 4.17 and the statement of

Sperner's Lemma more closely, one may feel that the upper bound found by Bose can be

improved. According to Sperner's Lemma, I S I in the proof of Theorem 4.17 reaches to

r n \
n) only when S contains all weight n (or all weight RI] ) elements, which is

obviously not the case from the structure of S. This convinces us that more than likely

Bose-Rao codes are almost optimal.
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Chapter 5

t-Error Correcting and

d-Unidirectional Error Detecting Codes

5.1. Introduction

It has been mentioned in Chapter 3 that error correcting/detecting codes that are

effective against both symmetric and unidirectional errors are useful in providing protection

against transient, intermittent, and permanent faults. In Chapter 3 the discussion was

concentrated on t-EC/AUED codes, whereas for some practical performances we may not

need to detect all errors but only up to some limited d unidirectional errors. Here t + 2 d

is considered, since any t symmetric error correcting code can be easily and efficiently

converted, by adding one even (or odd) parity checkbit, to a t symmetric error correcting

and t + 1 symmetric error detecting code. Of course, we expect a better code (i.e. higher

rate or equivalently less redundant bits being used) for t-error correcting/d-unidirectional

error detecting(t-EC/d-UED) code than for t-EC/AUED code. A little discussion and a

construction for single error correcting/d-unidirectional error detecting(SEC /d -UED) code

have been brought up in [11]. Besides this, no other investigation has been done in this

area so far.

The basic requirements for a code being t-EC/d-UED are reviewed in Section 5.2.

A nonsystematic code construction for SEC/d-UEC code is developed in Section 5.3.

And, systematic code constructions for SEC/d-UED code and t-EC/d-UED (2 5 t) code are

constructed in Section 5.4. Then, a decoding algorithm of the code constructed in Section

5.4 is developed in Section 5.5. Last, a bound on the number of redundant bits for the

systematic code and the number of redundant bits used for the proposed code in Section
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5.4 are discussed in Section 5.6. Also, an upper bound on the size of a SEC/d-UED code

is developed in Section 5.6.

5.2. The Basic Theorem of t-EC/d-UED Code

The following fundamental theorem describes the necessary and sufficient

conditions for a t-EC/d-UEC code [11].

Theorem 5.1. A code is t-EC/d-UED iff it satisfies the following condition:

for all X, Y E C with X# Y implies

either t + d + 1 DH(X, Y)

Or t + 1 N(X, Y) and t + 1 N(Y, X).

By the same reason as SEC/AUED codes playing more important role in all

t-EC/AUED codes, the SEC/d-UEC codes will be expected to be more popular and more

important among all t-EC/d-UED codes. So, when t = 1, Theorem 5.1 is restated as the

following corollary.

Corollary 5.2. A code C is SEC/d-UED iff it satisfies the following condition:

for all X, Y E C with X# Y implies

either d + 2 ._ DH(X, Y)

or 2 N(X, Y) and 2 N(Y, X).

5.3. Nonsystematic Code Construction for SEC/d-UED Code
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There is no significant nonsystematic t-EC/d-UED (2 5 t) code so far. In this

section only nonsystematic SEC/AUED codes will be constructed. The code will be

constructed is an extension to the Bose-Rao code described in Chapter 4. Given n and

w, 2 5 w n 2, let V(W)be the maximal Bose-Rao code obtained in Theorem 4.14.

For a fixed d, 3 5 d F-1:21-1 4, define

n-i-2

UV. =
L ]

V(1
j(d +2))

j = 0

for i = 2, , d + 3.

Theorem 5.3. Each Vi , i = 2, , d + 3, is SEC/d-UED.

( ,
Proof. Let X, Y E Vi , then X E v(i ÷il(d÷2))for some j1 and Y Vi+

j
z

(d+2))

for some j2. If j1= j2, then by the property of Bose-Rao code structure 2 5 N(X, Y)

and 2 5 N(Y, X). If j1 * j2, then d + 2 5. DH(X, Y). Therefore, by Corollary 5.2

V. is SEC/d-UEC. //

A few words have to be said about the value of d. If some ntains merely a
1

single V(w) for some w, then Vi is not only SEC/d-UED but SEC/AUED. Besides, if

this is the case then the construction makes no sense. (Because a better code has notrntains
P 1)

more than one V(w). At least the V. which contains V(13J) (or V 2 ) as a subset

Lbis strictly larger than Val) (recall that IV(
I = IV(11

2
-1)

I ). Then, by Theorem

4.16, the construction does get better codes than maximal Bose-Rao codes.

It has not been found yet which of these Vi , i = 2, , d + 3, has the maximal
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size. We conjecture that the Vi which has Yd.]) or V(41) as a subset has the

maximal size. The following example explains this situation.

Example 5.1. Let n = 32. The sizes of V(w), 2 S w S 16, are shown below. Recall that

I V(w)I = I V
(n-w)

I . (See remark (iii) of Theorem 4.14.)

w 2 3 4 5 6 7 8 9 10

I V(w) I 16 155 1240 6293 28336 105183 330460 876525 2016144

w 11 12 13 14 15 16

I V(w) I 4032015 7063784 10855425 14732720 17678835 18796230

Now, the sizes of Vi's are compared for five different values of d.

For d =3, I V4 I = I V3 I, I V5 I = I V2 I, V6 D v
xi's)

, and

i 2 3 6

1 V. I 26870255 26746525 26916932

For d = 4, 1 V5 I = I V3 I, I V6 I = I V2 I, V4 D V ( ) , and

i 2 3 4 7

I V. I 22155316 22593823 22830998 21921216

For d = 5, 1 V6 I = I V 5 I, IVY I = V4 I , I V8 I = V3 I, V2 V(16) , and
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i 2 3 4 5

I v. I
1

20549282 20025594 18871158 17953838

For d = 6, I V5 1 =IV3 I, I V6 I = V2 I, I V9 H I V7 I, V8 V(16) , and

i 2 3 4 7 8

1\7. I

1

16777216 14893888 14130048 18660543 19457150

For d = 7, I V3 I= 1 V2 I, I V8 1 =1V6 I, 1V9 I= I V5 I, I Vio H 1 V4 I, V7 V(16) , and

i 2 4 5 6 7

Iv. I
1

11095970 12872809 15615538 18037631 19006596

Although the maximal size of Vi , i = 2, , d + 3, is unknown, there is one

thing for sure. By Theorem 4.14, we have

1
n

24.1i±j(d+2)5_n-2 L-jd
±j ( d + 2 )

max
2 5_ i 5.d+3

Vi I (5. 1)

5.4. Systematic Code Construction for t-EC/d-UED (1 t) Code

In this section, three different methods of constructing systematic t-EC/d-UED

(1 t) code will be developed. To construct a systematic t-EC/d-UED code, some bits

are appended to a t symmetric error correcting and t + 1 symmetric error detecting code

(i.e. a systematic parity check code with Hamming distance 2t + 2.) Let C be a
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systematic parity check code with DH (C) = 2t + 2, then the t-EC/d-UED code constructed

from C, denoted as C', will have this form:

C' = X CHx I XEC and CHx is the appended symbol),

where CHx may be simply denoted as CH if there is no ambiguity.

How powerful C' can be, or equivalently how large d can be will depend on the

choice of the symbol CH and the number of bits in CH. The description of CH will be

discussed in three cases.

Method A: If there exists a set of s-bit symbols , called S, such that DH(S) = m and

2t + m + 2 5 I S I, then use s bits for CH to construct a
2

t-EC/(t + m + 1)-UED code.

Method B: Use s bits, here t + 3 .5 s, for CH to construct a t-EC/(2s t 1)-UED

code.

Method C: If there exists a t-EC/AUED code S with length s such that

s<ISI then use s bits for CH to construct a t-EC/(2 IS I- t- 1)-UED

code.

Method A

+ 2Theorem 5.4. Let S be a set of s-bit symbols such that DH(S) = m and 2t + m 5 I S I.
2

Also, let the elements of S be indexed as

S = (Z0, Z1, , Zisi-1)

Define a function f from (0, 1, , I S I - 1) to S as f(i) = Zi

If CHx is assigned as

X)
CHx f( n mod I S I) for all X E C,

2
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then C' is t-EC/(t + m + 1)-UED.

Proof. Let K = X CHx and Y' = Y CHy be any two codewords in C', and

q = WH (X) WH(Y). (It may assume 0 q.) By Lemma 3.4, we have the following

results.

(i) If 2t + m + 2 q , then 2t + m + 2 5 DH (X, Y), and hence

2t + m + 2 DH (X', Y').

(ii) If q = 0 then t + 1 N(X, Y) and t + 1 S N(Y, X), and hence

t + 1 N(X', Y') and t + 1 S N(Y', X').

(iii) If 2 5. q S 2t + m + 1, then 2t + 2 5 DH (X, Y).

By these results and Theorem 5.1, it is necessary only to consider the situation

+225q5.2t+m+1. Since 2,:i2t+m+land 2t+m 51S1 CHx #CH
2

Thus, m DH(CHX, CHy). Combine this with (iii), 2t + m + 2 5_ DH (X', Y')

when 2 5_ q 2t + m + 1. Therefore, C' is t-EC/(t + m + 1)-UED. //

Let us consider the special case m = 1 in Theorem 5.4. Let s = Flog2(t + 2)1 then

the set, S, of all s-bit symbols always satisfies DH(S) = 1 and

2t + 1 + 2 5t+21S I= 2s . Therefore, we have the following corollary.
2

Corollary 5.5. Let s = Flog2(t + 2)1 . Define a function f from {0, 1, , 2s- 1) to

s-bit symbols as

f(i) = the binary representation of i in s bits.

If CHx is assigned as

W,i( X)
CHx = f( " mod 2s ) for all X E C,

2

then C' is t-EC/(t+2)-UED.



By Corollary 5.5, a SEC/3-UED code can be constructed from the extended

Hamming code by merely adding two bits to each codeword.

Corollary 5.6. There exists a systematic SEC/3-UED code with code length two longer

than the extended Hamming code.

Now, consider the set S = {001, 010, 100). S satisfies DH(S) = 2 and
2.1 + 2 + 2

I S I. Thus, by Theorem 5.4, we have the following corollary.
2

Corollary 5.7. There exists a SEC/4-UED code using three bits for CH.

Method B

Theorem 5.8. Let t + 3 s. Define

Zo = 0 01 1, there are IT l's and a] 0's

and
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S = Zi I i = 0, 1, , s 1 and Zj+1= one bit (circularly) left shift of Z ,

2).

(e.g. If t = 1 and s = 4, then Zo= 0011, Z1= 0110, Z2 = 1100, and Z3 = 1001.)

Also, define a function f from {0, 1, , s 1) to S as f(i) = Zi .

If CHx is assigned as

Wu( X)
CHx = f( mod s) for all X E C,

2

then C' is t-EC/(2s t 1)-UED.
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Proof. First of all, notice that f has the following properties:

(1) N(f(i), f(j)) = m, if li-j1=m or s m, where m = 0, 1, , min(t, ),

(5.2)

(2) N(f(i), f(j)) t + 1, otherwise.

Let K, Y', and q be the same notations as in the proof of Theorem 5.4. By Lemma 3.4,

we have the following results.

(i) If 2s 5 q, then 2s 5 DH(X, Y), and hence 2s 5 DH (K, Y').

(ii) If q = 0, then t + 1 5 N(X, Y) and t + 1 5 N(Y, X), and hence

t + 1 5 N(X', Y') and t + 1 5 N(Y', X').

(iii) If 2 5 q 5 2t, then

2t+2+cl<N(X,Y)
2

and 2t +
2
2 q N(Y,

(iv) If 2t + 2 5 q 5 2s 2, then q 5 N(X, Y) and 0 N(Y, X).

By these results and Theorem 5.1, further discussion is needed for the situation

2 5 q 5 2s - 2. Let

WH(X) WH(Y)
i mod s and j

2 2

Then, when 2 5 q 5 2s 2, we have

. . q- j = 2 or - (s - ).

mod s.

(5. 3)

The discussion for the situation 2 5 q 5 2s - 2 will be divided into two cases, according

to the value of s.

Case (i) t + 3 5 s 2t + 1.

In this case, min(t, a) .w. Now, the discussion will be done on two

subintervals 2 5 q 5 s and s + 1 5 q 5 2s - 2 separately instead of the whole

interval 2 5 q 5 2s 2.



(a) 2 5 q5 s.

By (5. 2) and (5. 3), we have

5 qN(CHx, CHy) and 5 N(CHy , CHx ).

Combine (5. 4) with (iii), we have

t + 1 5 N(X', Y') and t + 1 5 N(Y', X').

(b) s + 1 5 q 5 2s - 2.

The condition of q implies

s- 1 q q q s 1
s 5 s (s ) < s - 1 and 1 < s <

2 2 2 2 2

Thus, by (5. 2) and (5. 3), we have

q q
s 2 N(CHx ' CHy ) and s - 2 5 N(CHy , CHx ).
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(5.4)

(5. 5)

Then, combine (5. 5) with (iii) and (iv), we have

DH(X', Y') = N(X, Y) + N(Y, X) + N( CHx, CHy) + N(CHy , CHx )

> 2s.

Therefore, when t + 3 5 s 5 2t + 1, the condition in Theorem 5.1 is satisfied for

the situation 2 5 q 5 2s - 2.

Case (ii) 2t + 2 5 s.

In this case, min(t, Lid) = t. Similar to Case (i), the discussion will be on three

subintervals 2 5 q 5 2t, 2t + 2 5 q 5 2s 2t -2, and 2s 2t 5 q 5 2s 2

separately. (Recall that q is an even number.)

(a) 2 5 q 5 2t.

q
The condition of q implies 1 5-2- 5 t.

Thus, by (5. 2) and (5. 3), we have



-j,(1 < N(CHx, CHy ) and 5- 5 N(CHY ' CHX )
2

Combine (5. 6) with (iii), we have

t + 1 5_ N(X', Y') and t + 1 5 N(Y', X').

(b) 2t+25q5 2s-2t-2.

The condition of q implies t + 1 552 5_ s - (t + 1).

Thus, by (5. 2) and (5. 3), we have

t + 1 5 N(CHx, CHy ) and t + 1 5 N(CHy , CHx ).

Hence, t + 1 5 N(X', Y') and t + 1 5 N(Y', X').

(c) 2s 2t 5 q 5. 2s - 2.

The condition of q implies

t+25s-t5_ 2 =s-(s--2)5s-1 and 15s- 2 5t.

Thus, by (5. 2) and (5. 3), we have

q
s

q 5 N(CHx, CHO and s - -j, 5 N(CHy , CHx ).
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(5. 6)

(5. 7)

Combine (5. 7) with (iv), we have 2s 5DH (X', Y').

Therefore, when 2t + 2 5 s, the condition in Theorem 5.1 is satisfied for the

situation 2 5. q 5 2s 2, too.

Thus, the proof of the theorem is completed. //

Method C

Theorem 5.9. Let S be a t-EC/AUED code of length s. Also, let the elements of S be

indexed as

S = {Z0, Z1, ,
Z1 sl- 1 }
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Define a function f from (0, 1, , I S I - 1) to S as f(i) = Zi

If CHx is assigned as

W,( X)
CHx = f( n mod I S I) for all X E C,

2

then C' is t-EC/(2 I S I- t- 1)-UED.

(Note: Naturally, one would choose S as large as possible and s as small as possible if

one would use this method to construct a t-EC/d-UED code. Also, one would like to have

s I S I, or Method B would be used.)

Proof. Let X', Y', and q be the same notations as in the proof of Theorem 5.4.

Since S is t-EC/AUED, we have

t + 1 _5 N(Zi , Zi) for any i*.j. (5. 8)

By Lemma 3.4, we have the following results.

(i) If 2 I S I 5 q, then 21S15q5 N(X, Y), and hence 2 I S I 5 DH (X', Y').

(ii) If q = 0, then t + 1 5 N(X, Y) and t + 1 5 N(Y, X), and hence

t + 1 N(X', Y') and t + 1 N(Y', X').

(iii) If 2 5. q52ISI- 2, then CHx CHy and hence by (5. 8)

t + 1 .5 N(X', Y') and t + 1 .5 N(Y', X').

Therefore, by Theorem 5.1, C' is t- EC /(21 S I - t - 1)-UED.

Remarks (on Methods A, B, and C):

(1) Notice that when t = 1 and 8 5 s, by Theorem 4.16 and the table of A(n, 4, w)

in [51], there always exists a SEC/AUED code S with length s such that s I S I.

Thus, when 8 5 s, Method C is the best method among all three methods to

construct a SEC/d-UEC code;

In Table 5.1, the number of unidirectional errors, d, can be detected by the
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SEC/d-UED codes, using the proposed methods, is shown for 2 5 s 5 15, where

s = the number of bits in CH. In the table, Method A is used for s = 2, 3,

Method B is used for 4 _5 s _5 7, and Method C is used for 8 5_ s _5 15. Also,

when 8 .5 s 5_ 15, the size of S(the SEC/AUED code of length s used for CH)

is from the table of A(n, 4, w) in [51].

Table 5.1. The values of d using s bits for CH in SEC/d-UED codes.

s 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d 3 4 6 8 10 12 26 34 70 130 262 284 430 868

In general, it can be seen that Method B is better than Method A when 2t + 2 5 s.

When t + 3 5 s .5. 2t + 1 Method A may be better than Method B. But, for

2t + 2 5 s, Method C is better than both Methods A and B. In Tables 5.2 -5.6,

the values of d using s bits in CH for t = 2, 3, 4, 5, 6 are shown. Whenever

the Method C is used in these tables, the values of I S l's can be refered to the

tables of A(n, 6, w), A(n, 8, w), and A(n, 10,w) in [51]. Also, some of the

values of I S l's in Method A are from the tables of A(n, d) in the same book

[51].

In Table 5.2(t = 2), Methods A, B, and C are used for s = 2 and 4, 5 5_ s 5. 11,

and 12 5 s 5 15, respectively. Notice that when s = 11, both Methods B and

C give the same d = 19.

Table 5.2. The values of d using s bits for CH in 2-EC/d-UED codes.

s 2 4 5 6 7 8 9 10 11 12 13 14 15

d 4 5 7 9 11 13 15 17 19 41 49 81 137



87

In Table 5.3(t = 3), Methods A, B, and C are used for s = 3 and 4, 6 s 15,

and s = 16 and 17, respectively. Notice that when s = 15, both Methods B and C

give the same d = 26.

Table 5.3. The values of d using s bits for CH in 3-EC/d-UED codes.

s 3 4 6 7 8 9 10 11 12 13 14 15 16 17

d 5 6 8 10 12 14 16 18 20 22 24 26 56 64

In Table 5.4(t = 4), Methods A, B, and C are used for s = 3, 4, 6, 8 5 s 5 19, and

s = 20, respectively. Note that for d = 8, if Method B is used it needs s = 7.

Table 5.4. The values of d using s bits for CH in 4-EC/d-UED codes.

s 3 4 6 8 9 18 19 20

d 6 7 8 11 13 31 33 71

In Table 5.5(t = 5), Methods A and B are used for s = 3, 4, 6, 7 and s = 9, 10,

respectively. Note that for d = 10, if Method B is used it needs s = 8.

Table 5.5. The values of d using s bits for CH in 5-EC/d-UED codes.

s 3 4 6 7 9 10

d 7 8 9 10 12 14

In Table 5.6(t = 6), Methods A and B are used for s = 3, 5, 7, 8, 9 and s = 11,

12, respectively. Note that for d = 11, if Method B is used it needs s = 9 and for

d = 12, if Method B is used it needs s = 10.
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Table 5.6. The values of d using s bits for CH in 6-EC/d-UED codes.

s 3 5 7 8 9 11 12

d 8 9 10 11 12 15 17

(2) The number of bits used for CH is independent of n, the code length of C,

contrast to the number of bits used for CH1, CH2, , and CHt+i in t-EC/AUED

code constructed in Chapter 3, which is dependent of n. Also, it has been

mentioned in Section 5.1 that it is expected a better code for t-EC/d-UED than for

t-EC/AUED. The comparison of R1 in Section 3.6 and Tables 5.1-5.6 tells us

these methods indeed do the job. For instance, if n = 64, the SEC/AUED code in

Chapter 3 needs 10 bits forCHi andCH2 . But, if we need to detect only up to 34

errors the proposed SEC/d-UED code uses fewer bits for CH (see Table 5.1.)

Similarly, if n = 128, the 2-EC/AUED code in Chapter 3 needs 15 bits for

CH1, CH2, and CH3. But, if we need to detect only up to 81 errors the

proposed 2-EC/d-UED code uses fewer bits for CH (see Table 5.2.)

(3) The number of bits used for CH may be reduced for some special code C. For

instance, if C is the extended Hamming (8, 4) code, then the codewords in C

have only three different weights, 0, 4, and 8. Thus, if we use CH = 0 for weight

zero codeword and weight eight codeword, and CH = 1 for all weight four

codewords, then C' is indeed SEC/3-UED. But, in general, reducing the number

of bits in CH may not always be feasible. Here, we would like to show that to

extend the extended Hamming (16, 11) code to SEC/3-UEDD, SEC/4-UED, and

SED/5-UED code we need at least 2, 3, and 4 bits, respectively, in CH.

Let C be the extended Hamming (16, 11) code with the parity check matrix



Then,

H =

0000111111110000
0111000111101000
1011011001100100
1101101010100010
1111111111111111

X
1
= 1110000000000001,

X2= 1101000110000001,
X3= 1110000111100001,
X4= 1101011111100001, and
X5= 1110111111110001

are codewords in C with

and

=N(X.

1+1'
X. ) 3, N(X.

1
,

1
X.

+1
) 1, for i =1,2,3,4,

N(Xi+2, Xi) 4, N(Xi X i+2) = 0, for i = 1, 2, 3.
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Case (i) need at least two bits for CH to extend C to SEC/3-UED.

In order to extend C to a SEC/3-UED code, X1, X2, and X3 have to have

distinct CH. Therefore, it needs at least 2 bits for CH.

Case (ii) need at least three bits for CH to extend C to SEC/4-UED.

Suppose C can be extended to a SEC/4-UED code by using two bits for CH.

Now, consider CH, . If CH, = 00 then CH, has to be 11.
`'3 X3 -4

But CH = 11 forces CH = 00 which is impossible, since CH can not be
4 2 2

same as CHX3* Also, CHX3= 11 forces CHx = 00 and CHx
2=

00 which
1

is impossible, since CH)(1 and CHx2 have to be distinct.
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If CHx= 01, then CH X= 10. Thus, no proper symbol can be assigned to
x1

CHX2. By the same reason a&
3

= 10 is also impossible. Therefore, in order

to extend C to be SEC/4-UED, it needs at least three bits for CH.

Case (iii) need at least four bits for CH to extend C to SEC/5-UED.

Suppose C can be extended to a SEC/5-UED code by using three bits for CH.

Same as case (ii), let us consider all possibilities of CI-Ix .

3

If CHX = 000, then both CH, and CH, have to be 111 which is
3 -4 `5

impossible. Similarly, CHx3 = 111 forces CHx1and CHx2 both have to be

000 which is impossible. If CHx3 = 001, then CHx5 = 110. Thus, no proper

symbol can be assigned to alx . Similarly, Cflx can not be 010 or 100. If
4 3

CHx = 011 , then Clix = 100. So, no proper symbol can be assigned to
3 1

CHx
2

. Similarly, C;
3

can not be 101 or 110.

Therefore, it needs at least four bits to extend C to a SEC/5-UED code. //

5.5. Decoding Algorithm

Since all three Methods A, B, and C in Section 5.4 use the same principle,

except using different set, S, for the check symbol CH. In this section only the decoding

algorithm for Method C is developed. As a matter of fact, the algorithm developed here

can be applied to all three methods, except the proof of the validity needs slight

modification.

Let X* = X Clix be an error free transmitted codeword in the proposed

t-EC/d-UED code and (X*)' = X'(CHx)' be the received word with some errors in X.

Decoding Algorithm

(1) Compute the syndrome of X' as usual in code C. Let m be the multiplicity



91

of errors corresponding to the syndrome.

(2) If t < m then signal "errors detected" and stop.

(3) Decode X' using a decoding algorithm in code C to get X" and compute

CHX for X".

(4) If m +DH ( (CHX )1, CHX ) < t, then

output X CHX and stop

else

signal "errors detected" and stop.

End(of Decoding Algorithm).

Theorem 5.10. The Decoding Algorithm described above is valid.

Proof. To prove the validity of the algorithm, it is necessary to prove that

(i) if t or fewer errors have occurred in the received word, then the algorithm

outputs the correct codeword,

and

(ii) if more than t but no more than d(= 2 1 S I - t - 1) unidirectional errors have

occurred in the received word, the algorithm should signal "errors detected".

Let m1 and m2 be the numbers of errors have occurred in X and CHX, respectively.

Case (i) t or fewer errors.

By the structure of C, ml S t implies m = m1 and X" = X in steps (1) and (3).

Then, in step (4), m + DH( (CHX )1, CHx ) = m
1

+ m
2

< t

Therefore, the algorithm outputs the correct codeword X"CHx = XCHx

Case (ii) more than t but no more than d unidirectional errors.

If t < m, then step (2) does the job. So, it is needed only to consider m t.

What needs to be shown is t < m +DH ( (CHX )', CHX ) for this case.

Two subcases will be discussed here.
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Subcase (1) m1 5 t .

Same argument as in Case (i), m +DH ( (CI-IX)', CHx ) = m1 + m2 in step (4).

Because t < ml + m2 , therefore, the algorithm signals "errors detected".

Subcase (2) t < m1 .

By the structure of S(being t-EC/AUED) and the characteristic of unidirectional

errors from CHx to ( CHx )', it is easy to see that if CHx # CHx then

t <DH ( (CHx)' , CHx). It will be shown that under the condition t < ml d

and m 5_ t, CHx. # CHx always holds.

If m = 0, then X" = X' = X + Y with WH (Y) = mi. That is, DH (X", X) = rni .

Since t < ml 5d=21S I- t- 1, according to the definition of CH, CHx., # CHx.

If 0 < m t, then X" = X' + A with WH(A) = m. On the other hand,

X' = X + B with WH (B) = ml. Thus, X" = X + A + B, and hence

M1 - m < DH (X", X) = WH(A + B) < mi+ m.

Since t < mi d = 2 IS I t - 1 and 0 < m 5_ t, we have

m
1

+ m 5_ 2 ISI- 1,

and

1 m m
1

(5.9)

(5. 10)

(5. 11)

In (5. 11), rn1- m = 1 happens only when m = t and m1 = t + 1. But since C is

a t-error correcting and (t+1)-error detecting code, this never occurs. Thus, (5. 11)

can be rewritten as

2 < m
1

m .

Now, combining (5. 9), (5. 10), with (5. 12), we have

2 DH (X", X) 5_ 21S 1- 1 .

(5. 12)
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Thus, by the definition of CH, CHx,. # CHx

Therefore, the algorithm signals "errors detected". //

5.6. On the Number of Checkbits and the Size of a Code

As any other type of systematic code, the number of checkbits always is a big

issue. In this section a lower bound on the number of checkbits in a t-EC/d-UED code will

be developed. And, when t = 1, the number of checkbits used in the code constructed in

Section 5.4 will be examined and compared with the code constructed in [11].

Furthermore, an upper bound on the size of a SEC/d-UED code is developed here,

too. Then, the size of the code constructed in Section 5.3 is compared with this bound.

First of all, a lower bound on the number of checkbits is described in the following

theorem.

Theorem 5.11. For any systematic t-EC/d-UED code (1 t) with k information bits and

r checkbits, r must satisfy the following condition:

1°g2 [ tk+i) _
(k

t
d

1

+t < r.
i = 0

Proof. Consider the following sets of k-tuple information symbols.

Bo = { I ik-1 ) I WH (I) t ) , and

Bj = I = (io, , ik
)

is = 1, for05s5j- Land WH(I)=t+j }

for 1 j d t.

d t

Now, define B = U B.
=o 1
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By Theorem 5.1, it is easy to see that all information symbols in B need distinct check

symbols. And

t d t tI ik. \
+

( k \ ( k-d+t \
I B I = / (n + E (ti) = kl) -,- kt-Fi/ k t+1 / .

i =0 i= 1 i =0

Therefore, the condition holds. //

r
2

d(2k d + 1) + 2 \
For t = 1, the lower bound in the theorem is log2t ), which is

approximately equal to log2(k) + log2(d) .

The number of checkbits used in the SEC/d-UED code described in Section 5.4 is

approximately equal to log2(k) + (1 + s), where s = the length of CH in the proposed

code. Thus, in Method C (in Section 5.4), if s << I S I the code is close to optimal.

On the other hand, let us look at the code construction in [11]. There two check

symbols are appended to information symbol. The first check symbol requires

approximately 2log2(k) bits and the second check symbol requires approximately log2(d)

bits. Thus, this construction uses log2(k) bits more than the bound developed in Theorem

5.11.

However, for moderate information length the proposed code is better than the code

in [11].

Next, similar to Theorem 4.17, Bose has extended Borden's bound [8] on

d-unidirectional error detecting code to obtain an upper bound on the size of a SEC/d-UED

code.

Theorem 5.12. [Bose]* The number of codewords in a SEC/d-UED code with

2
length n is no more than 71

w = Lni2J mod d
( * Note: The result has not been published yet. )
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Proof. Let C be a SEC/d-UED code which gives the maximum number of codewords.

The total number of bits in C will be n I C I. In C, either the total number of 0's or the
n

total number of l's will be at least -27 I C I. Without loss of generality, assume that the

total number of l's in C will be at leas n I C I. For X E C, let Sx represent the set of
2

all vectors obtained by a single 1> 0 crossover from X. Since C is capable of

correcting single errors, for any X, Y E C with X # Y implies Sx n Sy = O.

n
Let S = l.J

XeC
S Then, 2 ICIISI.

"i

Furthermore, for any X1, X2 E S, with X1 # X2 it will have either

1 5. N( Xi, X2) and 1 5 N(X2, X1) or d DH(Xi, X2 ). Thus, S forms a

(d-1)-unidirectional error detecting code.

Therefore, by Borden's bound, it will have I S I .. 1 (W)

w E L11/2.1 mod d

That is , I C I 5 -n
2 ( I (w))

w Lni2J mod d

From (5. 1), we knew that the code constructed in Section 5.3 has size at least

close to half of the bound in this theorem.
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Chapter 6

Conclusion

6.1. Summary and Future Research Efforts

In Chapter 2, we investigated the optimality of the codes constructed in [17] which

are capable of detecting up to 5. 2r
-4

+ r 4 unidirectional errors by using r checkbits

independent of the number of information bits. We found that the maximal number of

unidirectional errors which can be detected by a systematic code using r checkbits is

I iJ2r r2 ,l

r F1
L2

-J 1
r Tand 2 2 2 3.2 + 2 for k = 2 and k = 2 + 1 ,

respectively. By these two values and some informal checking, we feel that when k is

increasing the number of unidirectional errors which can be detected by a systematic code

using r checkbits is decreasing. The codes constructed in [40] shows this tendency, too.

Thus, we wonder again whether the codes constructed in [17] are optimal if k is greater

than some number. Therefore, we would like to investigate whether there exists some

number M such that when M k the maximal number of unidirectional errors which

can be detected by a systematic code using r checkbits becomes a constant, and if this

constant is equal to 5. 2r 4 + r - 4 .

In Chapter 3, a new method of constructing a systematic t-error correcting/all-

unidirectional error detecting code, which uses fewer checkbits than any of the previous

methods, was proposed. Its decoding algorithm was developed also. Even though this

new method shows some improvement it is not yet known whether these codes are

optimal. As a matter of fact, there is still some distance between the number of checkbits

used in this method and the best known lower bound on the number of checkbits [19].

Thus, further research effort is required to improve this gap.
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In Chapter 4, a complete study of Bose-Rao codes, which are the best known

single error correcting/all-unidirectional error detecting codes, was done. The maximum

Bose-Rao codes for a fixed weight and for all weights was found. Of course, the base

group and the group element which make the Bose-Rao code maximal were found, too.

An upper bound on the size of a SEC/AUED code, which is derived by Bose, was

discussed. This study showed that there is a gap between the maximal Bose-Rao codes

and the Bose-bounds. Thus, an improvement is still needed.

In Chapter 5, the nonsystematic SEC/d-UED codes were constructed. Even though

the size of the nonsystematic SEC/d-UED code is not yet known to be optimal, it was

shown at least close to half of the upper bound which is derived by Bose. Three different

methods were proposed for constructing the systematic t-EC/d-UED code. Basically they

were constructed in the same way by starting with a systematic parity check code with

Hamming distance 2t + 2 and appending a check symbol which is different for each

method. From these constructions, some nice codes were derived, for instance, a

systematic SEC/3-UED code with only two more checkbits than the extended Hamming

code and a systematic SEC/4-UED code with three more checkbits than the extended

Hamming code can be easily constructed from the extended Hamming code. Only the

decoding algorithm of one of these methods was developed, but it can be applied to the

other two methods. We also derived a lower bound on the number of checkbits for a

systematic t-EC/d-UED code. For t = 1, the number of checkbits used in the proposed

construction is very close to this bound. However, there are still gaps between bounds and

the proposed constructions. Thus, further research efforts are needed.

6.2. Totally Self-Checking Checkers

In a fault-tolerant system using error correcting codes the decoder forms the
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'hardcore' of the system, i.e. faults in the decoder are not tolerated. Similarly a checker

forms the hardcore if we use error detecting codes. Self-checking (SC) circuits are

particularly useful in reducing or eliminating this hardcore problem. Generally speaking, a

self-checking circuit is a circuit whose output is encoded in an error detecting code, which

is a simple code and it is easily observed or checked. Implementation of the circuit as an

SC circuit essentially reduces the probability of generating undetectable errors by the circuit

due to its internal faults. The other advantage of an SC circuit is that its faults, both

transient and permanent, are detected during normal operation. That means it provides

concurrent error detection. Moreover, necessary software diagnostic programs are made

much simpler or even eliminated. Very important classes of self-checking circuits are self-

testing (ST) and totally self-checking (TSC) circuits. Please see [2], [16], [22], [71], [80],

[82] for their descriptions, definitions, and conditions.

How to design TSC checkers for the new classes of codes proposed in this thesis is

also a topic for future research effort. The TSC checkers must use minimal gate levels for

high speed applications and at the same time must have small hardware complexity. Can

we implement these TSC checkers using PLA's?
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