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Learning Functional Descriptions from Examples

Chapter 1

Introduction

Concept learning from examples has been studied for over 15 years within the AI

community and is perhaps the best understood facet of machine learning. Sys-

tems that learn from examples consist of two parts: a learning component that

takes the training instances and forms a general concept description, and a perfor-

mance component that applies the newly learned descriptions to some task, usually

recognition. One of the earliest such systems was Winston's (1975) ARCH pro-

gram. Here, descriptions of arches are presented to the system in a simple language

of observable structures and features such as block, touching, standing, on-top-of

etc. The learning component constructs a general concept description written in

the same structural language by comparing the current concept description with

the new instance and letting any differences drive generalization and specialization.

The performance component applies this description of an arch to classify future

instances by a matching process similar to that used for learning.

In Winston's work, the structural representation of the concept was suitable

for both the learning and recognition tasks. Its suitability for the learning task is

evident because relatively few training instances were required to learn the concept

and the concept language was easy to design. The representation is suitable for

recognition because instances were classified quickly via a simple matching opera-
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tion.

Many other successful learning systems employ this approach of using only one

representation to capture the concepts of interest for both the learning and perfor-

mance tasks. Michalski (1980) has applied the Aq algorithm to numerous learning

tasks including soybean disease classification. In this domain, the single structural

representation of observable leaf features, such as black spots, curled end etc. was

employed to describe the recognition rules learned from examples.

However, when Quinlan (1982) attempted to pursue this approach in his work on

learning chess end-game concepts, he encountered difficulties. His representation for

high-level chess features was effective for the task of recognizing end-game positions,

but it introduced many problems for the learning task. First, the concept language

was very difficult to design. Quinlan spent two man-months iteratively designing

and testing the language until it was satisfactory. The second problem was that it

took a large number of training instances (334) to learn the concept of lost-in-3-ply

completely. These problems illustrate that the approach of employing the same

representation for learning and for performance was inappropriate for this domain.

In this thesis, we show that inductive learning places constraints on the repre-

sentation for training instances and concepts and that these constraints can conflict

with the requirements of the performance task. Hence, the difficulty that Quinlan

encountered can be traced to the fact that the concept lost-in-3-ply is an inher-

ently functional concept that is most easily represented and therefore learned in a

functional representation. However, the performance task (recognition) requires a

structural concept representation. The vocabulary that Quinlan painstakingly con-

structed was a compromise between these functional and structural representations.

In this thesis, we propose an alternative approach to learning functional con-

cepts that avoids the problems Quinlan encountered. Rather than employ a single

representation and design a concept language that can only partially satisfy the
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two conflicting constraints, we use two distinct representations, one for learning,

one for performance. The learning representation satisfies the constraints of in-

ductive learning, while the performance representation satisfies the constraints of

recognition. By using two representations, the learning system becomes effective at

both learning and recognition: few examples are needed to learn the concepts, the

concept language is easy to design, and finally, recognition is fast and simple.

The remainder of this chapter is organized as follows. First, we describe the

constraints that the task of inductive learning places on the representation of con-

cepts and instances. Second, we relate these constraints and the form of the concept

(functional or structural) to choosing the most appropriate representation. Third,

we present an overview of an implemented system, Wyl, that learns functional con-

cepts in checkers and chess from structural training instances by first mapping them

into a functional representation, generalizing them there, and converting the learned

concepts back into a structural representation for efficient recognition. Finally, we

give a guide to the rest of the thesis.

1.1 Inductive learning and the representation of concepts

The goal of an inductive learning program is to produce a correct definition of a

concept after observing a relatively small number of positive (and negative) training

instances. Gold (1967) cast this problem in terms of search. The learning program

is searching some space of concept definitions under guidance from the training

instances. He showed that (for most interesting cases) this search cannot produce

a unique answer, even with denumerably many training instances, unless some

other criterion, or bias, is applied. Horning (1969), and many others since, have

formulated this task as an optimization problem. The learning program is given a

preference function that states which concept definitions are a priori more likely to

be correct. The task of the learning program is to maximize this likelihood subject
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to consistency with the training instances.

This highly abstract view of learning tells us that inductive learning will be eas-

iest when (a) the search space of possible concept definitions is small, (b) it is easy

to check whether a concept definition is consistent with a training instance, and

(c) the preference function or bias is easy to implement. In practice, researchers in

machine learning have achieved these three properties by (a) restricting the concept

description language to contain few (or no) disjunctions, (b) employing a represen-

tation for concepts that permits consistency checking by direct matching to the

training instances, and (c) implementing the bias in terms of constraints on the
syntactic form of the concept description.

Let us explore each of these decisions in detail, since they place strong constraints

on the choice of good representations for inductive learning.

Consider first the restriction that the concept description language must contain

little or no disjunction. This constraint helps keep the space of possible concept

definitions small. It can be summarized as saying "Choose a representation in which

the desired concept can be captured succinctly."

The second decisionto use matching to determine whether a concept definition

is consistent with a training instanceplaces constraints on the representation of

training instances. Training instances must have the same syntactic form as the

concept definition. Furthermore, since the concept definition contains little or no

disjunction, the positive training instances must all be very similar syntactically. To

see why this is so, consider the situation that would arise if the concept definition

were highly disjunctive. Each disjunct could correspond to a separate "cluster" of

positive training instances. With disjunction severely limited, however, the positive

training instances must form only a small number of clusters.

In addition to grouping the positive instances "near" one another, the represen-

tation must also allow them to be easily distinguished from the negative instances.
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This is again a consequence of the desire to keep the concept definition simple.

The concept definition can be viewed as providing the minimum information neces-

sary to determine whether a training instance is a positive or a negative instance.

Hence, if the concept definition is to be short and succinct, the syntactic differences

between positive and negative instances must be clear and simple.

The third decisionto implement bias in terms of constraints on the syntactic

form of the concept descriptionmakes the choice of concept representation even

more critical. Recall that the function of bias is to select the correct, or at least

the most plausible, concept description from among all of the concept descriptions

consistent with the training instances. Typically, the bias is implemented as some

fixed policy in the program, such as "prefer conjunctive descriptions" or "prefer

descriptions with fewest disjuncts." The bias will only have its intended effect

if conjunctive descriptions or descriptions with fewest disjuncts are in fact more

plausible. In other words, for syntactic biases to be effective, the concept description

language must be chosen to make them true. The net effect of this is to reinforce

the first representational constraint: the concept representation language should

capture the desired concept as succinctly as possible.

Now that we have reviewed the constraints that inductive learning places on the

representation of training instances and concepts, we can explain why some machine

learning systems have been more successful than others. Consider Winston's ARCH

program. In his structural representation, the positive examples of arches are all

very similar (three objects that are restricted in shape and arrangement). Negative

examplesnon-archesare all easily distinguished by some simple observable fea-

tures such as touching or standing. This explains why the ARCH system was so

successful.

In contrast, consider Quinlan's work on the chess concept lost-in-3-ply. When

positive and negative examples of lost-in-3-ply are represented as simple board
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positions, there are no obvious distinguishing features. Moving a piece one square

often changes the classification of an instance. When we consider that there are 1.8

million distinct training instances, it is clear that inductive learning in this low level

representation would require that the concept description include vast numbers of

disjuncts. It is not surprising that Quinlan chose to design a higher-level vocabulary

for describing his training instances.

In his (1982) article, Quinlan showed how one could evaluate the correctness of

an inductive learning program by asking how many training examples are required

for the program to discover a concept of a given complexity (i.e., with a given num-

ber of disjuncts). His definition of a perfect learning program was one that required

only one positive training example for each disjunct in the concept definition. Such

a learning program would possess a perfect bias.

We can turn this analysis around and use it to evaluate the combined appro-

priateness of the bias and the representation language. If a program requires few

training instances to discover a concept, then the combination of the bias and rep-

resentation is working well to select the proper concept definition.

By this measure, the ARCH program has an excellent bias and representation

language, since very few training instances are required. On the other hand, even

after Quinlan carefully engineered the representation language so that it included

high level structural and functional terms, his system required 334 training instances

to learn the concept lost-in-3-ply. This indicates that the representation language

and the bias were still not very appropriate for learning this concept.

We can summarize this section by stating the following constraints on the choice

of representation languages for inductive learning. First, the language should be

able to represent the desired concept succinctly (i.e., conjunctively or as a short dis-

junction). Second, the training instances should have the same form as the concept

definition. Third, the representation should capture semantic similarities among
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the positive training instances directly in syntactic forms. Fourth, the representa-

tion should capture semantic differences between the positive and negative training

instances syntactically.

1.2 Choosing the most appropriate representation for learn-

ing functional concepts

Now that we have reviewed the constraints that inductive learning places on the

representation, we must consider how to satisfy those constraints in a given learning

task. In particular we look at the task of learning end game concepts in chess and

checkers. It should be clear that we want to select the representation that captures

the concept most "naturally."

The "natural" representation is the one that formalizes the underlying reason

for treating a collection of entities as a concept in the first place. A concept (in the

machine learning sense anyway) is a collection of entities that share something in

common. Some entities are grouped together because of the way they appear (e.g.,

arches, mountains, lakes), the way they behave (e.g., mobs, avalanches, rivers),

or the functions that they serve (e.g., vehicles, cups, doors). Occasionally, these

categories correspond nicely. Arches have a common appearance and a common

function (e.g., as doorways or supports). More often, though, entities similar in one

way (e.g., function) are quite different in another (e.g., structure).

The performance task for which a concept definition is to be learned may re-

quire a structural representation (e.g., for efficient recognition), a functional repre-

sentation (e.g., for planning), or a behavior representation (e.g., for simulation or

prediction). When we review the successes and failures of machine learning, we see

that difficulties arise when the representation required for the performance task is

not the natural representation for the concept.

Winston's ARCH program was successful because the natural representation
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traps. Only if the operators are of particular types (the first normal-moves, the

second take-moves) and interact in certain ways (the second move jumps over the

destination square of the first move), can the position be considered a trap. Hence,

the functional representation must not only be capable of describing concepts as

operator sequences and goals, but it must be able to capture both particular kinds

of operators and interelations between them.

Now that we have presented a justification of the use of a rich yet simple func-

tional language to learn end game concepts, we give a brief overview of the imple-

mented system that exploits such a representation.

1.3 An overview of Wyl

We have developed a learning system named Wyl 1 that applies two representations,

one for learning and one for performance, to learn concepts in board games such

as checkers and chess. We have chosen this domain because there are simple and

complete "domain theories" available (the rules of the games) and there are many

interesting concepts that are naturally functional (e.g., trap, skewer, fork, lost-in-

2-ply) and yet have complex structural definitions. Wyl has been applied to learn

definitions for trap and 1-move-to-trap in checkers and skewer and knight-fork in

chess.

The performance task of Wyl is recognition. Given a board position, represented

simply in terms of the kinds and locations of the playing pieces, Wyl must decide

whether that position is, for example, a trap. To perform this task, the trap con-

cept must be represented in a structural vocabulary that permits efficient matching

against the board positions. However, as we have noted above, concepts such as

trap are most easily learned in a functional representation.

In addition to requiring a structural representation for performance, a structural

'Named after James Wyllie, checker champion of the world from 1847 to 1878.
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Structural
Representation

instance

concept

envisionment

compilation

Functional
Representation

-instance

generaisation

concept

Figure 1.2: Representations in Wyl

representation is also needed for the training instances. To teach Wyl checkers and

chess concepts, we want to simply present board positions that are examples of

those concepts.

The organization of Wyl is shown in Figure 1.2. Wyl learns from positive in-

stances only. These training instances are board positions, represented in an in-

stance language of simple structural featuresnamely, the kinds and locations of

the playing pieces.

Wyl converts these training instances into a functional representation through

a process of envisionment. The purpose of envisionment is to determine how a

given board position relates to the known goals of the players (e.g., loss or win).

Wyl knows the rules of checkers (and chess), so it is able to conduct a forward

minimax search to see what outcomes the given board position might lead to. Once

it has related the board position to some known goal, it constructs an AND/OR

graph that explains the relationship (along the lines of Mitchell, et al.,1986). We

call this AND/OR graph a functional training instance. Wyl employs functional

training instances to conduct inductive inference in the functional representation.

This results in a functional concept definition that captures the desired concept.

The final task is to convert this functional definition into an equivalent structural

description that can support efficient recognition. This is accomplished through a
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compilation process that generates, as a side-effect, a generalized structural vocab-

ulary for representing the concept.

The initial knowledge given to Wyl takes four forms. First, there is the structural

instance langauge for board positions. Second, there is a representation for each of

the legal operators in the game (e.g., normal-move and take-move). Third, Wyl is

given the rules of the game, represented as a recursive schema that describes what

moves are legal at what points in the game. Finally, Wyl is given definitions of the

important goals of the game, such as loss, win, and draw. For chess, Wyl is also

told that lose-queen is an important goal.

These given goals are the key to Wyl's learning ability. Wyl learns new func-

tional concepts as specializations of these known concepts. For example, we know

that the checkers concept trap is a specialization of loss. Once Wyl learns a recog-

nition predicate for trap, it is added to the pool of known concepts, where it may

be specialized further to form some future concept. Hence Wyl learns new concepts

that fit into a generalization/specialization hierarchy under the presupplied goals.

This completes our overview of the Wyl system and the information that it is

initially given. Chapter 2 gives a detailed description of Wyl.

1.4 A guide to the Thesis

In Chapter 2, we describe the control and representation used in the program Wyl.

First both the initial structural and functional languages are described and illus-

trated with examples of representations of board positions and concepts. Next each

method involved in the learning process is presented to a detail sufficient for others

to reproduce the work.

In Chapter 3, we present traces of Wyl learning four concepts. First we present

Wyl learning in checkers with trap and trap-in-2-ply. Then we present Wyl learn-

ing in chess with skewer and knight-fork. With each learning session we give the
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training instances, test instances, the dialogue with Wyl and both the machine

representation and first order logic description of the learned concept.

Finally in Chapter 4, we present the summary and conclusions of this thesis.
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Chapter 2

Representation and Process in Wyl

In this chapter we present Wyl, a concept learning program working in the domains

of chess and checkers. The chapter begins with an overview of Wyl that describes

the main learning loop and the knowledge transformation methods employed at

each stage. Next a comprehensive description of the representations of both the

structural and functional spaces is given. There follows a description of the methods

that interpret and transform the knowledge. Finally the process that constructs new

structural descriptions representing the functional concepts learned, is given.

Wyl has successfully learned concepts in both chess and checkers. In this chap-

ter, to aid in the explanation of Wyl, we use examples from checkers; in particular,

we illustrate the representations and operation of Wyl with the checkers concept

trap. In Chapter 3 we give traces of Wyl learning an additional concept in checkers

and two concepts in chess along with representations of the training instances and

concepts learned in functional and structural form.

2.1 An Overview of Wyl

The main learning loop for Wyl is given below:

(setq domain (get-domain?))
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(while (continue-with-this-domain?)

(setq conceptname (get-concept?))

(setq conceptdefinition (lookup-concept-def conceptname))

(while (continue-with-concept?)

do (setq instance (get-instance?))

(if (test-concept conceptdefinition instance)

(if (not (example-of-concept?))

(ERROR))

(if (example-of-concept?)

(setq conceptdefinition (generalize (envisionment instance) concept))))

(if (translate-to-structural?)

(compact (generate-instances conceptdefinition)))

Wyl first takes a domain and enters the main concept learning loop. The main

concept learning loop gets a name of a concept from the user (get-concept?), looks

up the definition of the concept (conceptdefinition) and enters the training instance

loop. The concept definition may be nil (new concept), a functional definition

(continuing with a training session) or a structural definition (previously learned

concept). Within this training loop, Wyl first gets a new training instance from

the user (get-instance?), then tests it against the current concept definition. The

result of the test (either pass or fail) is presented to the user who is asked for

the correct classification (example-of-concept?). If the current concept classifies the

instance correctly, no action is taken. If, on the other hand, the current concept

definition is incorrect, two actions can be performed depending upon the kind of

classification error. If the current concept requires generalization, (i.e. Wyl said

fail, the user said pass) the structural training instance is first transformed into

a functional instance by the envisionment stage. Next Wyl forms the maximally

specific generalization of the current functional concept definition and the new in-
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stance. If the current concept is too general, that is, it incorrectly classifies the

instance positive, Wyl cannot do anything, since the learning component of Wyl

is similar Vere's (1975) method of forming maximal unifying generalizations and

performs no specialization.

The compilation stage is performed after all learning has taken place and the

user decides that the current inductively learned concept is "correct" (translate-

to-structural?). Forming the structural concept representation involves two stages.

First the concept description is interpreted as a generator and employed to form the

full set of positive structural instances by the function generate-instances. Second

the set of structural instances is translated into a more compact form through the

function compact. The function compact creates a new structual lanngauge in which

to describe the original set of instances.

The various methods and processes in Wyl can be divided into three kinds; those

that form the functional concept definition during learning, those that apply the

functional concepts to the performance task, and finally the compaction stage that

transforms expressions in the structural space.

The methods employed to form the functional concepts are:

Envisionment: Takes a structural training instance (board position) and performs

min/max search to form the functional training instance.

Generalization: Takes the functional instance and the current concept definition

(possibly nil) and produces a more general concept definition that covers the

new instance.

The methods employed to apply the functional concepts are:

Test: The functional concept definition is employed as a test of structural instances.

Generator: The functional definition is employed as a generator of all the struc-

tural instances that satisfy the definition.
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Wyl is implemented as an interpreter in LISP operating on top of MRS, the

logic programming language. MRS is semantically and syntactically similar to first

order logic. Syntactically, MRS uses prefix notation and denotes universally quan-

tified variables as atoms beginning with $. The most important semantic departure

from first order logic is the implicit closed database assumption, exploited to solve

a variety of representation and reasoning problems including the frame problem

(Reiter 1980). In the writing below we give brief descriptions, where needed, of the

primitives and representations of MRS. The reader should refer to Russell (1985)

for more information.

2.2 Representation of Knowledge

In this section we describe the functional and structural languages used in Wyl.

Wyl is domain independent, in the sense that general structural and functional

languages are supplied in which the domains of chess and checkers are specified. A

domain is specified by the following;

Structural Language: A language describing the board and playing pieces writ-

ten in MRS.

Functional Language: A language describing the moves, goals and search schema:

Actions The legal moves of the game specified as rules in MRS (which is

extended to deal with state variables).

Goals The definition of a win, loss, and any other goals of interest in MRS.

Search Schema This specifies to Wyl, how to used the move and goal defin-

tions during search (see below).

First we discuss the representation of structural knowledge and functional knowl-

edge. In both discussions we give examples of instances and concepts. Following
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this discussion of representation we turn to the three processes of Wyl. First, how

Wyl learns concepts. Second, how Wyl applies the functional concepts as both tests

and generators. Third, how Wyl constructs the new compact structural langauge.

2.2.1 Structural Knowledge

One of the goals of this thesis is to demonstrate a learning system which does not

require a highly engineered structural language. The initial structural language

is very simple, one which could be formed by a vision system viewing a checker

or chess board. Descriptions are formed by conjunctions of directly observable

features, such as the color or type of a playing piece. This language can only

describe structural instances, that is, board positions. Initially, the only way to

describe a concept in structural terms is as a disjunction of all the.positive instances.

Later, after a functional concept definition is learned, Wyl will use it to construct

a better structural language for representing concepts. This improved structural

language includes new structural terms that are defined from the original structural

primitives. We illustrate both the initial instance language and the constructed

concept language with examples of the checkers concept trap.

The structural instance language

The instance language consists of descriptive and relational terms, were each term

represents an observable feature and has a fixed, bounded, number of values. The

ontology of the observable features needs to represent the relationship between play-

ing squares on the board and the contents of squares (whether empty or occupied

by a playing piece). In Figure 2.1 we show the standard numbering scheme for

checker boards.

A board is described by a set of relational terms defining the relationship between

playing squares. In checkers this takes the form of 98 facts asserting all the directions
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The facts that refer to the contents of squares are time dependent; their truth

changes nonmonotonically during state search. The analytic frame problem is

solved by a situation calculus scheme (McCarthy 1958) and the archeological model

(Waldinger 1977). Each occupied fact has a state variable, for example:

(occupied state-0 s1 empty)

(occupied state-0 s2 empty).

The empty board is state-0, represented as 32 occupied facts asserting the playing

squares are empty. Original states created by Wyl, such as training instances, are

described as changes to state-0. For example, a positive training instance of the

concept trap is given in Figure 2.2. To represent this board position as state-1, the

following facts are asserted:

(occupied state-1 s15 rml)

(occupied state-1 s23 wml)

(nextstate state-0 state-1).

New states created by Wyl during state search are described as changes to cur-

rent state. Each applicable operator in state state-m, creates a new state variable

state-n, asserts the new occupied facts in state-n, and extends the search tree appro-

priately by asserting (nextstate state-m state-n). Any unification of occupied facts

during interpretation selects the most recent binding by searching back in time via

nextstate relationships to state-0. By reifying playing pieces and treating empty as

an object, all the forms of queries, including state unbound, are covered.
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(simplified) example:

(if (and (occupied $state $square-1 $piecel)

(side $piecel red)

(type $piecel man)

(sq $square-1 center)

(occupied $state $square-2 $piece2)

(side $piece2 white)

(type $piece2 anytype)

(connected $square-1 Ssquare -2 south-2-square)

(new-name $name trap))

(terminate-state $name trap $state red)).

This concept description covers the set of instances of trap where a red man is

trapped by either a white king or man in the center of the board. The instance of

trap illustrated in Figure 2.2 is included in this set and hence, is covered by this

description.

The predicate says that state is a trap for red if red to move and

There exists a square squarel that is occupied by a red man and is located

in the center of the board, and

the square that is two rows directly south of squarel is occupied by either a

white king or man.

The descriptive terms are either the primitives of the instance language or are

named disjunctions of values of the primitives. For example, consider the feature

type given previously. The instance language allows pieces to have a type value of

man or king. In the examples of trap covered by the description above, the red

man is trapped by either a man or a king. It was convenient for Wyl to name this

disjunction (man V king), anytype. The definition for anytype is given below. We
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employ implication to define generality: If X and Y are terms describing the same

feature then, X D Y, states that Y is more general than (or equivalent to) X.

(if (or (type $playing-piece king)

(type $playing-piece man))

(type $playing-piece anytype))

In general, after descriptive term construction, the values of each feature will

be arranged in a hierarchy of named disjunctions. Descriptive terms are defined

recursively as sets of instance values or terms. The sq primitive encodes the

hierarchy of terms describing sets of squares on the board. Initially the sq primitive

is defined for all the squares, (sq si sl). (sq s2 s2) .... and can be employed as

a generator or test of all the squares. For example, the term center used above is

defined as a disjunction of 10 squares.

(if (or (sq $square s23)

(sq $square s7)

(sq $square sil)

(sq $square s22)

(sq $square s19)

(sq $square s14)

(sq $square s10)

(sq $square s15)

(sq $square s18)

(sq $square s6))

(sq $square center))

Relational concept terms are formed by a conjunction of the relational primitives

of the instance language. The terms are similar to macros; they define a path
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through the board by a composition of smaller paths. For example the relational

term south-2-squares is defined as follows:

(if (and (connected $square-1 $square-3 sw)

(connected $square-3 $square-2 se))

(connected $square-1 $square-2 south-2-squares))

(if (and (connected $square-1 $square-3 se)

(connected $square-3 $square-2 sw))

(connected $square-1 $square-2 south-2-squares))

Note that the representations given above can support both forward (data

driven) reasoning and backward (goal driven) reasoning.

2.2.2 Functional Knowledge

This section consists of two parts: First, we describe how a domain is specified

in the functional language using the example of checkers. Second, we explain how

functional concepts are described in this language using examples from the concept

trap.

Representation of Domain Knowledge

In order to learn concepts in a domain, Wyl must be provided with a domain

specification that provides the basic rules of the domain. A domain specification

consists of the definition of the goals, actions and search schema of the domain.

Each is described below and illustrated with the domain of checkers.

Representation of Search Schema

The search schema represents to Wyl how the forward search is to be performed,

when the termination condition is to be checked, and which operators are legal at
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each state. The schema is an expression written in a simple programming language.

The schema language, being a programming language, has primitives and com-

position methods for constructing larger expressions out of those primitives. The

language is best explained by an example. Below we give the schema for checkers:

(o-or (single-terminate terminate)

(multiple-recursive take-move)

(multiple-recursive normal-move)).

During forward search in checkers, Wyl must first check if the current state

is a recognized goal such as loss or trap etc. This is indicated in the schema by

(single-terminate terminate)). If no termination goal is satisfied, Wyl must find the

legal moves available. In checkers, one important restriction on moves is that if

"take" moves exist they must be taken in preference to "normal" moves. Hence,

the recursive schema specifies that Wyl first check if there are take moves available

(by (multiple-recursive take-move)), if so they are taken, otherwise normal moves are

explored (by (multiple-recursive normal-move)).

The schema encodes this search knowledge by directing the behavior of Wyl

during interpretation. The schema is interpreted by three different interpreters:

envisionment, test, and generation. A detailed description of the interpreters is

given in Section 2.3, here we give a brief overview of the commonalities of the inter-

pretation process. Each interpreter performs forward search through the space of

board positions. At each point in the search, the schema is interpreted to determine

the actions to be taken. Information is carried through the search tree by means

of binding lists, which are updated and passed down the recursion. Two important

bindings are the current state name, which is held on the variable $state, and the

current side to move, which is held on the variable $side. All the interpreters up-

date these bindings at each recursive invocation. The $side binding is automatically
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switched between red and white at each depth of the search, while the $state binding

is changed to the new state if new operators are applicable.

The language has two primitives, single-terminate and multiple-recursive, and two

connectives, o-or and o-and .

First consider the primitives. Each primitive takes one argument, which is the

name of a unit (or frame) with predefined slots. One of the slots is named mrsform,

and its value is an MRS formula representing a consequent of some rule in the MRS

data base. The consequent represents either the goal or the actions in the domain.

For example, the frame terminate is the argument of the single-terminate primitive

above and specifies a test for termination of search. Hence, the MRS formula stored

on the mrsform slot of terminate unifies with the consequences of the rules defining

the goals of the domain. We give the frame terminate below:

(terminate mrsform (terminate-state $name $result $state $side))).

Upon interpretation of the (single-terminate terminate) expression, Wyl looks up

the MRS formula, plugs any bindings in, including $state and $side, and calls the

backward chaining theorem prover of MRS, truep, on the form. For example, if the

board position illustrated in Figure 2.2 were analyzed with the binding list (($side

. red) ($state . state-1)), the interpreter will call the following:

(truep (terminate-state $name $result state-1 red)).

The resulting binding list will determine whether the current state is a goal state.

In this case the current state is an example of a trap with red to play, and if Wyl

had already learned the concept, then the backward chaining would succeed (on the

structural rule given above in the description of the structural concept space), with

$result bound to trap and $name bound to a unique name.

The single-terminate primitive determines if there exists a condition, defined

through the mrsform, for the current state in the search. If so, the recursion is

terminated and the new bindings are returned.
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The multiple-recursive primitive, on the other hand, determines all the solutions

to the supplied MRS formula, and continues the state search for each solution. For

example, the value of the mrsform slot of frame normal-move is an MRS formula that

unifies with the consequent of the rule defining legal non-take moves in checkers.

This frame is illustrated below, (the move rule is given in the subsection on actions

later):

(normal-move mrsform (move $name $state $newstate $type $from St° $side)).

The MRS primitive trueps is employed on the form after $state and $side

have been plugged in. Trueps returns a list of lists of bindings, each of which is

processed by the current Wyl interpreter and used to continue the search. To ensure

the correct binding for $state, the binding for $newstate returned from trueps is

reassigned to the $state variable at each recursive invocation. This process is similar

to renaming variables during recursive invocation of a rule in logic programming

languages.

The connectives of the schema language operate on the binding lists returned

from the primitives in different ways depending upon the current interpreter.

First, consider the connective o-or under the envisonment interpreter. In this

mode, o-or is rather like a LISP or, in that the computation continues until a

non-nil value is returned from one of the primitives. The clauses are evaluated in

left-to-right order. For the checkers schema given above, during envisionment Wyl

will first determine if the current state is any of the known goals (such as loss or

trap). If so, evaluation will cease and, because the primitive is single-terminate, the

search will terminate. If the state is not recognized (i.e., single-terminate returns

nil), Wyl determines if take moves exist, if so the o-or will terminate and, because

the primitive is multiple recursive, the search will continue in the new states. If none

of the above applies, the normal moves will be evaluated. If none of them apply

then the o-or terminates with nil.



27

The connective o-and is used in the specification of the search scheme for chess

and is given in Appendix A. During interpretation by the envisonment interpreter

o-and is like the LISP andcomputation continues until a nil is encountered.

Representation of Goals

Goals are defined by rules written in MRS. Initially, as part of the domain specifi-

cation, the standard goals of loss and win are defined. Other goals can be defined.

For example, in chess, a predicate is supplied that recognizes when a queen is lost.

During learning, the system will add new definitions of goals such as trap above.

The consequents of the rules defining goals must unify with the form used in the

specification of the search schema discussed above. For example, loss in checkers is

given below:

(if (and (unprovable (move $name $state $newstate $type $from $to $side))

(unprovable (take $name $state $newstate $type $from $over $to $side)))

(terminate-state $name loss $state $side)).

Note that the goal is not specified structurally, in fact it is very difficult to

structurally define loss correctly in checkers. The correct definition of a loss is

when a player has no legal moves available as defined above. A fair approximation

to a loss is when the side to play has no legal playing pieces on the board, but this

is not the correct definition and fails when pieces exist but are blocked.

The full power of MRS stepping outside of first order logic is exploited here.

The modal operator unprovable is used to determine if there exist no legal moves

for the side $side in state $state.

Representation of Actions

The actions of a domain are defined by supplying rules which compute the legal

moves available given a state and a playing side. The operator specifications must
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conform with those definitions given on the mrsform slot of the frames for the

multiple-recursive primitives discussed earlier. In addition the forms must include

the variable $newstate, which is bound to the state formed by applying the operator

to the originally supplied state.

In keeping with one of the stated goals of this thesis, the operators are defined in

terms of the simple structural languageno special features are introduced. Each

operator in checkers is defined by the squares and type of piece involved. For

normal moves, only the from and to squares are specified, while take moves require

an additional over square.

To illustrate the simplicity of the operator specification, we give the rule defining

normal moves in checkers. The rule has two parts, one that creates legal moves and

one that makes the moves on the board.

First the main rule:

(if (and (find-move $state Stype $from $to $player hide)

(make-move $state $name $from $to $player $newstate))

(move $name $state $newstate $type $from $to $side))

The consequent unifies with the MRS formula stored on the normal-move frame

of the search schema. The first subgoal find-move acts as a generator of legal normal

moves, while the second subgoal is side-affecting and creates the new name ($name)

and state ($newstate).

(if (and (side $player $side)

(type $player $type)

(occupied $state $from $player)

(connected $from $to $direct)

(legal-direction $side $type $direct)

(occupied $state $to empty))

(find-move $state $type $from $to $player $side))
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The first part of the move predicate above finds the legal moves by determining

if the playing pieces of the side under consideration can move into adjacent empty

squares connected in a direction which is legal for the piece concerned.

(if (and (newname $from $to $name)

(new-state $newstate)

(add-info ( (occupied $newstate St° $player)

(occupied $newstate $from empty)

(nextstate $state $newstate))))

(make-move $state $name Worn $to $player $ newstate))

The second part includes all the side-affecting code. First a new name for the

move is created, then a new state name. The add-info predicate asserts the given

formulae into the MRS database to define the new state as described in Section 2.1.

Representation of Functional Concepts

Functional concept descriptions are formed by combining specifications of action

sequences with goals. Initially the domain knowledge and the general search pro-

cedure characterize a functional description of the most general conceptany legal

board position. Specified functionally as any number and kind of legal operators

resulting in any known goal. Wyl, as a result of learning, forms descriptions repre-

senting particular sets of board positions as specializations of this general definition.

For example, trap (discussed below) describes a particular way to lose a game of

checkers and is therefore a specialization of the concept loss.

In this section we first describe a typical functional concept, trap in checkers.

We next describe how Wyl represents such concepts in its functional language.
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sequence of operators, the other describing the goal. Generally, concept definitions

consist of a fixed number of operator descriptions and a known goal.

A position is a trap for sidel iff the following are true:

All legal moves available to sidel are normal and involve moving

from square sql to square to1 forming state nextstatel.

At nextstatel there exists a move for the opponent from square

sq2 that captures the piece on tol leading to state nextstate2.

The state nextstate2 is an recognized loss for side sidel.

There are two important aspects of the concept description. The first aspect

is the quantification over the operators and how this is employed to specify forced

moves. The second aspect is how the goals and the operators are described. We

discuss each aspect below:

Quantification of operators. The first move defined for sidel in trap is forced.

The moves available are restricted to be from square sql and all lead to a loss.

On the other hand, the moves for the opponent are not forced; a position is

a trap if there exists a move taking the piece on square tol. This alternating

quantification is a product of the "adversary game" domain. In general the

quantification is dependent upon whether the outcome is favorable to the

current player. To prove that a position is unfavorable to player (e.g. sidel in

trap above) we must prove that all the moves available lead to an unfavorable

result. To prove a position is favorable (e.g., side2 in trap above), we need

only prove that there exists a move leading to a favorable result.

Operator and goal description The operators in the description of trap are re-

stricted to be certain kinds (normal first take second) and interact in certain

ways (the take move jumps over tol, the destination square of the normal

move). The final goal is restricted to be a loss.
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Representation in Wyl

The representation of trap in Wyl consists of three descriptions that correspond

to the descriptions given above. The first describes the normalmove, the second

describes the takemove while the third describes the loss goal. Each of the descrip-

tions is represented in a uniform way as instantiations of the general search schema

given earlier. The descriptions (termed concept states) denote a set of constraints

on the primitives in the general schema. The first concept state of trap specifies

constraints for the multiple recursive primitive normal-move, the second for the mul-

tiple recursive primitive take-move, and finally the third specifies constraints on the

single-terminate primitive terminate-state.

The three concept states are given below:

(checkers/trap-0

normal-move

tstate-O ( ($quantification . for-all)

($next-concept-state . nextfc-2)

($type . $typel)

($from . $sql)

($to . $tol)

(t . t)) )

(checkers/trap-0

take-move

nextfc-2 ( ($quantification . there-exists)

($next-concept-state . nextfc-3)

($type . $typel)

($from . $sq2)

($over . $tol)

($to . $to2)
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(checkers/trap-0

terminate-state

nextfc-3 ( ($result . loss)

(t . )

A concept state is a four tuple; the first item is the concept name, the second is

the primitive the constraints apply to, the third is the concept state name, and the

last gives the actual constraints on the primitive. All concepts begin at tstate-O,

the remaining states are found by following $next-concept-state values.

The constraints are defined as bindings for each of the variables found in the

MRS form attached to the corresponding primitive of the general schema. The

binding values can be constants or variables. An example of a constant parameter

is the $result value for the primitive terminate-state of nextfc-3, which is loss. This

constrains the terminating states to be losses.

Binding values that are variables are used to express the operator descriptions

given above. The variables can express unrestricted constraints on MRS form (the

$type of piece can be a king or man) by giving a unique variable as a binding. For

example, the Stype binding for the first operator is given as $typel, which appears

no where else in the concept description.

In addition, by using variables as binding values we can capture constraints

between operators. In trap the second take move must jump over the square the

first operator moved into. This is captured in the description of trap above by giving

the binding of the $to variable for the first concept state (the normal-move) the same

value ($tol) as the $over variable of the second concept state (the take-move).

To see how this technique enforces the constraint between the operators, some

understanding of the test interpreter is needed. The test interpreter is fully de-

scribed in Section 2.3.2.1, here we give only a brief overview. The test interpreter
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performs forward search passing bindings down the tree in similar manner to the

other interpreters, it differs on how the primitives are interpreted. First, at each

recursive invocation during search the current concept state (i.e., tstate-O) is up-

dated and used to access the constraints information. Only those primitives that

have constraints specified are interpreted. Before calling the required MRS func-

tion, such as trueps , for the first operator, the constraint bindings are plugged

in. The resulting bindings are then passed down the search. During interpretation

at the second level, therefore, the binding lists will contain a binding for Stol, say

squarel. The constraints for the take move will be looked up and plugged in the

mrsform, replacing Sto of the (take ...) form with Stol. Next the bindings passed

down the tree are plugged in, further replacing the Stol variable with squarel. The

resulting form,

(takemove $name state2 Snewstate Stypel Ssql squarel Sto2 red).

is backchained on, and will therefore return only those take moves existing on

the board which jump over squarel.

The constraints of the operators (the multiple-recursive primitives) have an ad-

ditional binding named $quantification. This is used by the test interpreter to check

for forced moves when the value is for-all and non-forced moves when the value is

there-exists.

In addition, the scope of the variable bindings can be specified as part of a

concept definition. In the beginning of this section, we gave a first order logic

description of the concept trap. Note that the two variables sql and sq2 have

global scope over the whole concept description. It is important to capture this

information in Wyl's concept descriptions, as the scope of variables is needed to

correctly describe concepts. For example, there are many positions which are similar

to trap but involve the first players piece being captured by either of two opposing

pieces (i.e., sq2 has only local scope). Wyl, with its expressive power of scope, is
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able to differentiate between the two versions of trap. During concept formation,

Wyl identifies variables that have global scope. The trap concept definition includes

the following facts which express this global scope:

(global $sql)

(global $sq2).

2.3 Process in Wyl

The processes in Wyl are summarized in three sections. First the processes of

envisonment and generalization, which inductively learn the functional concepts,

are described. This is followed by a description of the processes that apply the

learned functional concepts to the performance tasks of test and generation. Finally

the procedures that construct the structural concept language are given.

2.3.1 Learning the Functional Concepts

Wyl inductively learns concepts in the functional space, yet it is supplied with

simple structural instances, that is, board positions. The first task of the learning

component, therefore, is to translate the supplied instance to a functional form

ready for generalization.

This section first describes the envisionment interpreter that performs this knowl-

edge transformation. This followed by a description of the inductive generalizer.

The Envisonment Interpreter

The envisionment interpreter takes as input the supplied structural instance and

the specification for the domain and produces as output the equivalent functional
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Figure 2.4: Preference of recognizable states for checkers

instance. To form the functional instance (refered to as FI), Wyl applies two pro-

cedures. The first constructs a search tree while computing the outcome of the

structural instance (SI) by performing forward min/max search looking for recog-

nizable states. The second traverses the resulting search tree and extracts from

it only those operators and termination states that were relevant to the proof of

outcome.

Min/max search determines the outcome of a position by applying knowledge

about the main goals of the players concerned. To correctly predict the outcome,

it is important therefore to not only be capable of recognizing termination states,

but to know which of them are preferable to the players. This preference ordering

is represented in Wyl as facts asserting (better-than statel state2), when statel is

preferable to state2. The ordering is illustrated in Figure 2.4 as a directed graph.

Trap is not initially part of this ordering, but it is added as the result of the learning

process. (Note that trap is considered better than loss as it delays the end of the

game.)

First, consider the min/max search procedure. The procedure searches forward
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depth first, interpreting the general domain schema at each recursive invocation.

During the search down the tree, the current state and side to play are passed

down in the manner previously described. The primitives of the schema are eval-

uated left to right. If the state is recognized, the search terminates and binding

for $result and $side are returned. A depth limit is imposed on the search that,

when reached, terminates the search and returns a result of draw. Otherwise all

legal operators are found and explored. At each invocation of the general schema,

a cache is made of the computation to form the search tree. Each node in the tree

represents a complete instantiation of the general schema. First each primitive of

the schema which was interpreted is saved. In the case of checkers, because the

connective is o-or, only one can apply. For trap the cache of the first state includes

the primitive (multiple-recursive normal-moves). The MRS form of the normal-moves

slot will generally have many instantiations, one for each operator available. Each

is cached in the tree.

On the return from recursion, the envisionment interpreter determines the out-

come for each state in the standard min/max manner. The outcome for statel with

playerl to play is either a recognized goal or the most preferred goal according to

playerl, returned from applying all the legal operators. The outcome is then cached

on the node.

The resulting tree will be the exhaustive forward search tree to the depth limit.

Once the outcome is known, the parts of the tree relevant to that outcome can be

distinguished from those parts irrelevant. Considering state, with player to play

and result outcome, we can identify two cases: when outcome is advantageous to

player (i.e., outcome > draw) or when the converse is true. First considering the

advantageous case. Here it sufficient for there to exist one operator leading to

outcome (out of the many possible operators) for the outcome to be better than a

draw. It is this case where the full tree is pruned. Only the operator that leads to the
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selected goal is included in the proof, as the others have no effect on the computed

outcome. To encode the fact that there need only exist one operator to guarantee

the outcome, the state is marked with 3 as a quantification over the operator. The

other case is where, when all the operators available were explored, the best result

found was worse than a draw. No pruning can occur here because there must not

have existed an operator which returned a better result, making all the operators

from this state forced, and therefore necessary to the outcome. Another way of

viewing these forced moves is counterfactually: if any other operator existed which

returned a different result, the outcome of the whole proof would be changed. It is

for this reason that the quantification over the operator from this state is marked

V to encode the fact that these moves are necessary to the outcome.

The operation of pruning and quantification of the nodes in the explanation

tree can be viewed as incorporating tests into the instance that are implicit in the

preference order and goals of the players used during the min-max search. This

knowledge is used as tests by the test interpreter during classification to avoid a

full exhaustive search (see Section 2.3.2.1).

The Generalizer

The generalizer takes a functional instance that is an example of the concept (formed

by the envisonment interpreter) and the current functional concept description, and

returns a more general functional concept description that covers the instance. Gen-

eralization is inductive and driven, as are all inductive generalizers, by a combination

of syntactic similarities in the concept space and bias. The resulting concept is the

maximally specific unifying generalization of the two inputs.

Generalization by simple syntactic matching and rewriting will only work when

the concept and instance descriptions satisfy the constraints introduced in Chapter

1. The constraints can be summarized by saying the that most effective representa-
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tion is the one in which the concepts can be described "naturally." These constraints

are satisfied in Wyl since a functional representation is employed to learn functional

concepts.

Bias is characterized by generalization operators that act on the syntactic forms

of the instances and the concept. The biases of concept languages, by their very

nature, are stated in vocabulary-specific terms. In Wyl, because of the simplicity

of the expressions in the functional space, the biases used are straightforward and

do not require any complex hierarchy of vocabulary terms, common in structural

concept languages. Two simple biases are employed in Wyl:

Single line of play: Functional instances are trees of fully instantiated (i.e., ground)

search schema describing particular operators and goals. One the other hand,

functional concepts are single generalized sequences of search schema describ-

ing general operators and goals. To form the concept from the instance, the

generalization step "compresses" the branches of the tree in the instance. The

resulting single sequence is the maximally specific unifying generalization of

the instance. The compression is achieved by applying the inverse enumera-

tion rule given below:

Operatori(Al B1...Z1)

AOperator2(A2 B2...Z2)....

A Operatorn(A, B,....Zn)

Va b...zOperator(a b...z).

Compression applies the inverse enumeration rule to the schema instantiations

begining at the root and terminating at the leaves.

No coincidences: This particular bias applied to Wyl can be stated more con-

cretely. If the same constant appears at different points in the same instance,

it is asserted that these points are necessarily equal. It is this bias that
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identifies and preserves the interrelation constraints found in concepts. The

checkers concept trap demonstrates this bias. For the example illustrated in

Figure 2.3, the proof tree has two branches corresponding to the choices avail-

able to the first player. On the branch where the player moved to s6, the take

move of the second player jumped over s6. This bias says that the two oc-

currences of s6 are equal. On the other branch where the player moves to s7,

the take move of the second player jumped over s7. Again the bias says these

occurrences of s7 are equal. When the two branches are matched against each

other during generalization, the squares s6 and s7 will match in two places, as

to squares of the first operator and over squares of the second operator. This

bias says that these two sets {s6 s7} are equal and hence, are generalized to

the same variable. This bias also applies to matches of variables to constants,

where the same variable may match against the same constant.

Before taking a more detailed look at the generalization procedures, it is nec-

essary to describe the representation employed in expressing functional instances

and concepts. The representations employed for functional instances and concepts

in the generalizer differs from that presented in Section 2.2.2.2; a more uniform

representation is adopted to simplify the generalization process. The envisionment

interpreter builds functional instances in this representation and the final gener-

alized concept is similarly represented. To build the expressions given in Section

2.2.2.2 representing concepts used by both the test and generator interpreter, the

final form is traversed.

An important characteristic of representations employed in inductive general-

izers is their simplicity and uniformity. One of the most universal, powerful but

simple representations is the frame, with slots and values. Trees are captured in

this representation by allowing slot values to be frames themselves. Each schema

instantiation is represented as a sub tree of frames, which are arranged in a tree,
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mirroring the computation.

The functional instance created by the envisonment interpreter (when it is given

the structural instance of a trap shown in Figure 2.3), is illustrated in Figure 2.5.

The boxed nodes are frames, representing two levels of instantiation of the gen-

eral schema. The beginning frame and those others called state name each recur-

sive instantiation of the general schema and coincide with the board states created

during search. Each instantiation or concept state, represents a cache of the com-

putation performed during the particular invocation. For example the first concept

state records the fact that at this point in the search the (multiple-recursive normal-

move) primitive was invoked. The primitives also have invocations, that represent

the solutions found to the mrsform attached to the primitive's unit. When the

primitive is multiple-recursive there will usually be many such invocations, while

single-terminate primitives only have one invocation. Each primitive invocation is

named as a separate frame whose slot values are the variables found in the relevant

mrsform. For example the instantiations of the first normal-move are named, s2 -s6-

5, s2-s7-3 which represent the legal operators available to the first player and have

slots such as to, from, type giving the bindings values found for the mrsform. When

the primitive is multiple-recursive, additional quantification information is included

as described in the previous section.

The simple frame slot value representation needs some extension to enable the

generalization procedure to uniformly traverse the tree. Each frame is associated

with an additional value, which represents the kind of invocation it describes,

whether it is an invocation of part of the schema such as normal-move or par-

ticular instantiations of a primitive. The tree structure is represented implicitly by

describing each individual fact as a four tuple in the MRS data base, for example

the following describe the top of the instance:

(normal-move state-6 quantification for-all)
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state-2(

normal-move

quantification instantiation

for-all

from next to type

I I

s7 king
I I

s2 Istate-4(

take-move

luantification instantiation

there-exists

from next over

I I I
slO Istate -8I Si

terminate-state

instantiation

Iloss-term-9I

result

loss

to

s3

from next

I I

. I

s2 Istate-6( s6

I

take-move

quantification instantiation

there-exists

type

man

from next over

slO 1state-111 s6

terminate-state

instantiation

floss- term -12i

result

loss

to

sl

type

man

Figure 2.5: Functional instance of trap position in Figure 2.3



43

(normal-move state-6 instantiation s2-s6-5)

(normal-move state-6 instantiation s2-s7-3)

(mrs-invocation s2-s6-5 from s2)

(mrs-invocation s2-s6-5 to s7).

The general form of these four tuples is (instantiationkind framename slot value)'.

The algorithm that generalizes the functional instances and concepts is relatively

straightforward. It basically traverses the tree from root to leaves, compressing

instantiations of frames at each level to single frames.

The algorithm recursively invokes a procedure compress, which takes a f ramename,

representing many invocations, and compresses it to one general instantiation by

applying the single line of play bias. Compress first obtains a list of sets of frame

values that need generalization in order to reduce the frame to a single instan-

tiation. Each member of the list is the set of value's whose framename is equal

to f ramename and whose instantiationkind and slot are unique. Considering the

example illustrated in Figure 2.5, when framename is state-2 one of the sets of

values will be {s2 -s6-5. s2- s7 -3 }, (for the instantiation slot), another {s6, s7} (for

the to slot). To form a single instantiation each slot must have only one value,

therefore each of the value sets must be reduced to a singleton. This is achieved

by a procedure maximally-specific-generalization that returns a unique name repre-

senting the input set. In the example, the set {s2-s6-5, s2-s7-3}, is generalized to

instantiationfc0 and the set {s6. s7} is generalized to Stofc-0. All slot types other

than instantiationkind are turned into MRS variables2.

Next the tree is modified. The original facts (the 4 tuples introduced earlier)

containing the values in value set are all replaced by a single fact involving the new

'The graph of the instance in Figure 2.5 does not included the MRS-invocation information for

clarity and brevity.

2instantiationfc0 is a variable for the Wyl interpreters.
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value returned from (maximally-specific-generalization sets. When the values are

frame names (e.g., s2-s6-5, s2-s7-3), another modification is required in addition to

changing the value informationthat is, changing the framename's themselves. How

this forces the correct compression can be seen when we consider the next invocation

of compress with instantiationfc. In this case, because the facts associated with

the two frames {s2-s6-5. s2-s7-3} are now all associated with only the one frame

instantiationfc, the list of value sets obtained will include sets of values from the

original two frames. For example, the values relating to the slot over will be {s6.

s7 }. The process continues with each value set being mapped to a single variable by

maximally-specific-generalization. The set {s6, s7} is mapped to the MRS variable

$tofc-0, while the set of frame names, {state-8. state-11} is mapped to nextfc-1.

The process terminates when the procedure maximally-specific-generalization creates

no more new frames. That is, compress has reached the leaves of the tree. The

generalized functional instance formed from compressing the FI in Figure 2.5 is

illustrated in Figure 2.6.

Note that the generalization process is in no sense knowledge intensive. The

only slot values treated any differently during compaction are those whose values

are frames. There can be any number of other slots relating to objects in the domain

such as from, to, toemptysquare. etc., but to compress they are all simple syntactic

forms.

Biases are encoded in the procedure maximally-specific-generalization which we

will now describe in some detail. If the set passed to the procedure is a singleton, it is

returned, else a single variable representing the set is returned. The procedure treats

sets of frames differently, in that the value returned is simply a new framename as

in the case above. Otherwise the set represents instantiations of the MRS forms

'In fact no real modification takes place, changes are implemented by marking all facts with

situation variables and using the STRIPS assumption and current situations to retrieve facts.
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Itstate-ol

normal-move

quantification instantiation

for-all

from next

sZ Inextfc-01

take-move

Stoic -0

quantification instantiation

there-exists

type

king

from

I I I
slO Inextfc-11 Stofc-O

terminate-state

instantiation

loperatorfc-21

result

loss

next over to type

Stofc-1 man

Figure 2.6: Generalized functional instance of trap position Figure.2.3
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structural instance looks very different from the first instance (Figure 2.3) and so

has a very different structural representation. However, the resulting generalized

functional instance, given in Figure 2.8, is very similar to both the previous instance

and the current concept definition.

This second FI is generalized against the current concept in a similar manner

to that used to generalize the alternating lines of play in an instance. The de-

scriptions linked into a tree with one branch being the new FI and the other being

the FC. The tree is traversed by compress applying the inverse enumeration rule.

Consider generalizing the first FI (Figure 2.6) with the second FI, (Figure 2.8).

The procedure maximally-specific-generalization simply renames variables when two

match such as {Stofc-2, Stofc-0} to $tofc -4. Frame names are similarly renamed

such as {operatorfc-0. operatorfc-3} to operatorfc-6. Real generalization takes place

when there are two constants that match. For example, while compressing the first

operator the constants {s12. s15} match and are generalized to Sfromfc-0. Here,

because this generalization is over concepts, the new variables created at this stage

are given global scope over the concept. Hence, the generalizer asserts the following

as part of the concept definition:

(global $fromfc-0)

(global $fromfc-1).

The final functional concept trap is given in Figure 2.9, after being show the two

training board positions, Figure 2.3 and Figure 2.7. Note that in the final concept

the globally scoped variables are boxed lightly. The concept description given in

Section 2.2.2.2 is formed by traversing the tree representation of the concept in

Figure 2.9.
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1tstate-01

normal-move

quantification instantiation

for-all

from

s23

next

1nextfc-21

take-move

to
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type

man

nextext over

s15 nextfc-31 Stofc-2

terminate-state

instantiation

loperatorfc-51

result

loss

to

Stofc-3

type

king

Figure 2.8: Generalized functional instance of trap position Figure 2.7
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Itstate-01

normal-move

quantification instantiation

for-all loperatorfc-61

from next to type

I I I I

ISfromfc-01 Inextfc-41 Stofc-4 Stypefc-0

take-move

quantification instantiation

there-exists loperatorfc-71

from next over to type

I I I I

ISfromfc-11 Inextfc-51 Stofc-4 Stofc-5 Stypefc-1

terminate-state

instantiation

loperatorfc-81

result

loss

Figure 2.9: Generalized functional Concept of trap
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2.3.2 Applying the Functional Concepts

Once a functional concept definition has been learned, Wyl applies it to two tasks.

First, the functional concept is used to test whether new structural training in-

stances are examples of the concept. Second, during compilation, the functional

concept is used to generate all possible structural examples of the concept. The

first task is performed by the "test interpreter," and is discussed in the first part of

this section. The second task is performed by the "generation interpreter" and is

discussed in the second half of this section.

Applying FC to Test Structural Instances

The test interpreter takes a functional concept, the domain specification, and a

structural board position and returns T or NIL indicating whether the instance

is an example of the functional concept. The main idea behind using a functional

concept as a test is to view it as a proof procedure. Recall that the functional

instances generated by envisionment are proofs of the outcome of the position. The

functional concepts are generalized proofs, and specify a series of constraints on the

outcome and operators of structural instances, which if satisfied, determine that

the instance is an example of the concept.

More concretely, an instance is an example of a concept if it satisfies the follow-

ing:

The instance has the same outcome as the concept.

The moves involved in the outcome are those that satisfy the constraints of

the concepts operator descriptions.

Any quantification constraints, such as globally scoped and shared variables,

are satisfied by the instance.
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The test interpreter is like the envisionment interpreter in that forward domain

search is performed. It differs in the concept description applied during search:

the test interpreter applies the particular concept under test (i.e., the concept's

search schema instantiations), while the envisionment interpreter applies the general

concept (i.e., the domain schema). The envisionment interpreter attempts to prove

that outcome of the given instance is any one of the known goals. In contrast, the

test interpreter attempts to prove that the given instance satisfies all the constraints

in the given concept.

The test interpreter determines whether the board position under question can

form a legal instantiation of the functional concept. To do this, the test interpreter

performs forward search. Each concept state of the concept is re-instantiated with

the values from the board position, rebuilding a functional instance. For example,

if one of the original training instances were given, the resulting proof tree formed

would be exactly the same as the functional instance constructed by the envision-

ment stage. If the instance can form a legal instantiation it is deemed an example:

otherwise, it is not an example.

The search is done depth first and builds an and/or proof tree of schema instan-

tiations. Each and node corresponds to a concept state that specifies a universally

quantified multiple-recursive primitive, while each or node corresponds to an exis-

tentially quantified multiple-recursive primitive. The search terminates either when

the current concept state specifies a single-terminate constraint to be satisfied or

when the instance fails to satisfy a constraint. Each schema instantiation may in-

volve an and/or subtree corresponding to the original structure of the connectives

of the domain schema. In checkers, because the only connective is one or, there is

no subtree, but in chess where both and and or are used, this must be considered4.

The test interpreter is like the envisionment interpreter in that bindings lists are

41n chess the corrective is an and because at each stage of the search the side to play must determine

whether they are in check. See Appendix for more information.
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concept-state binding given on the concept states.

The concept state information is used to access the constraints for each prim-

itive in the general schema. First, for each primitive in the general schema, any

constraints are looked up. Only those primitives with constraints are interpreted.

In the example (Figure 2.10) when analyzing statel, the (multiple-recursive normal-

move) form is interpreted with those constraints illustrated in Figure 2.9. Before

the mrsform specified on normal-move is used for backward chaining, the constraints

are first plugged in, then the bindings on the binding list passed down from above

are plugged in. The resulting form which trueps is called on is:

(move $name statel $newstate $typefc-0 $fromfc-0 Stofc-0 red).

The MRS move rule that unifies with the form above will compute the legal

normal moves available for red. Here, only one move is available, from s29 to

s25. As the primitive is multiple-recusive, the interpreter will recur on each of

the new bindings returned. The new binding list passed to the next invocation

has &conceptstate. $side, and $state set as previously discussed. Where the test

interpreter differs from the envisionment interpreter is that the other bindings,

usually cached, are passed down the search tree. Therefore, the binding list of the

next invocation of the search will include the following bindings: (($state . state2)

($side . white)(8econceptstate . nextfc-2) ($tofc-0 . s25) ...). This passing of

bindings is the same process MRS and other logic programming languages use to

solve conjunctive goals.

At this new state in the search, the same process will occur, with the current

concept constraints applying to the (multiple-recursive take-move). The mrsform,

after the constraint bindings and values bindings have been plugged in, is given

below:

(takemove $name state2 $newstate $typefc-1 $fromfc-1 s25 $tofc-1 white).

5See Figure 2.9
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Hence we see how Wyl captures the important relational constraints by sharing

bindings. The take move must be one which jumps over the piece on square s25.

The MRS rule defining the take moves will find the move for white from s30 to s21,

creating a new state (state3) in which red has no playing pieces. The process con-

tinues for the next level where the &conceptstate nextfc-3 specifies single-terminate

constraints. The resulting mrsform after binding is:

(terminate-state Sname loss state3 red).

This will succeed.

We have now discussed how the test interpreter performs forward search. Now

we consider how values are passed back up the proof tree and the conclusion of the

proof, either T or NIL is computed.

First consider the schema language connectives. The o-or returns T if the prim-

itive which has constraints specified returns T, while the o-and returns T if all the

primitives return T.

The simplest primitive is single-terminate, illustrated above with the loss po-

sition. The interpreter uses the single solution MRS backward chainer truep to

determine if the form is true for the supplied state. If so, T is returned, otherwise

NIL is returned.

The primitive multiple-recursive is more complex, as the quantification assigned

during envisionment must be taken into account. The quantification information is

important to the concept definition, because it encodes the knowledge gained from

the min/max search. The test interpreter need not perform full min/max search,

because if the quantification constraints are met, the outcome is guaranteed to be

that defined in the concept. The justification for this is the same as that presented

during the envisionment stage. Here we demonstrate how the test interpreter em-

ploys this knowledge to prune its search.

For a multiple-recursive existentially quantified primitive to return T, there must
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exist at least one instantiation of the constrained mrsform that returns T. In other

words, the existentially quantified primitives form the or nodes of the proof tree. In

the trap case above, this is not well illustrated, as there was only one move available.

But in the chess concept skewer given in chapter 3 there are many moves available.

These nodes apply to operators for the side that is gaining the advantage, in the

chess case Wyl must show there exists a move that can capture the opponent's

queen.

When the quantification is universal, the operators are defined as forced. The

test interpreter, to return T, must show that two conditions are met: (1) there exist

no operators other than those specified by the constraints and (2) for each of these

operators, a T is returned from the corresponding subtrees. It is here that the search

can be terminated prematurely with NIL when there exist operators that are not

described by the constraints. The rationale behind this is that these universally

quantified operators represent forced moves, ones which where taken in the original

training instances because there was no other alternative. Therefore if the test

interpreter can demonstrate that in this case there does exist an alternative, the

current instance cannot share the same functional features of the concept examples

and must not be an example of the concept. An example of this is given in the next

chapter for the chess concept skewer, where the king is forced to move out of check,

unavoidably exposing his queen to capture. The test interpreter is able to check

if indeed this move is forced, by determining if any other moves exist. It is often

the case that a board position looks like a skewer, (i.e., is structurally similar) but

because there exists a way to block the check, the king is no longer forced to move,

and the queen is safe.

The implementation of forced moves is straight forward. Recall (from Section

2.2.2.2) that a forced move is represented in logic as follows:
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V state move nextstate type from to

legalmove(state sidel move) D

normalmove(move state nextstate type from to sidel).

This is true only when the set of all legal moves is equal to the set of constrained

moves. The test interpreter generates all legal moves using the general mrsform from

the current primitive and the legal moves from the constrained mrsform. If the sets

are equal, T is returned. If they are not equal, NIL is returned.

Once the general operation of the test interpreter is understood, the method

of dealing with the global variables can be explained. These variables complicate

the interpreter, because they represent constraints across branches of the search

tree. For example, in the trap cases illustrated previously, when the first player has

two moves available, the second player's move must originate from the same square

($fromfc-1 in the concept given in Section 2.2.2.2) for both branches of the search

tree. Therefore once a binding is established for Sfromfc-1, it must be communicated

to the other branch to ensure the constraint is met. This communication is achieved

by global assertions of bindings of the variables in question and by having the

test interpreter check whether any of the variables in a form are global. If so,

the interpreter looks to see if any bindings have been posted. When alternate

bindings are available, the system uses a very simple chronological backtracking

algorithm. A much better way to efficiently solve this problem is by dependency

directed backtracking.

Applying FC to Generate Structural Instances

The generation interpreter takes a functional concept and the domain specification

and returns the set of all structural instances that are examples of the concept. The

idea behind the generator is to use the functional concept as a constructive proof

and run it "backwards" to generate all the instances that would return T if tested.
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The procedure is computationally expensive6.

The easiest way to implement such a generator is to create a procedure that

generates arrangements of checkers or chess pieces on a board and test them with

the procedure described previously. A better way is to incorporate some of the tests

into the generator so the generator only produces instances that are examples of

the concept.

The generator incorporates tests by incrementally assembling the structural in-

stances of playing pieces that meet the constraints in the functional concept. It is

similar to the test interpreter in the way the concept is used, but instead of test-

ing a supplied structural instance at each level of search, the generator forms new

instances that satisfy the constraints by making assumptions about squares being

occupied by playing pieces. The assumptions are made and controlled by applying

residue (Finger & Genesereth 1983). Residue is like normal backward chaining

in that the top level goal is proved by decomposition into simpler subgoals that

are eventually proved by direct binding with ground terms. It differs when a sub-

goal cannot be proved by simple monotonic means. Here, the interpreter can make

assumptions under control of a set of "assumable rules."

The interpreter uses the MRS residue (s) in place of truep(s) to call on the

bound mrsforms of the functional concept similar to the test interpreter. Residue

will return sets of mrsform instantiations, each holding under different assumptions.

These assumptions must be arranged in a context tree to ensure the remaining

constraints of the functional concept are tested/satisfied under each assumption

separately.

The operation of the interpreter is illustrated by considering the generation of

one trap position given earlier in Figure 2.3. The resulting reasoning is given as a

tree in Figure 2.11.

6Approximately 14 hours of unloaded VAX11/750 time for 72 trap red to play positions. It has

therefore only been run on the checkers concept trap (see Section 2.2).
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(occupied statel slO wml)

{C1 C3} is a trap position

Figure 2.11: Reasoning tree formed during generation of trap in Figure 2.3
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The generation interpreter is similar to the test interpreter in the way bindings

are passed down the search tree and in the way the current concept state is used

to build the mrsform for backward chaining. Initially the interpreter is given $side.

$state, and &conceptstate bindings as before, with $state being bound to statel (an

empty board position) and $side bound to red'. During residues' analysis of the

first mrsform,

(move Sname statel $newstate $type $from Sto red),

64 assumptions are created. One assumption for each king or man on the 32 playing

squares. In the example in Figure 2.11, Cl is the assumption that square s2 is

occupied by a red king. The set returned from residues' analysis of the normal

moves associated with this assumption will contain both the legal moves available,

s2-s6 and s2-s7. These moves form a conjunctive goal for the interpreter, and they

must both be proved correct for the assumption to represent a trap position.

First the s2-s6 is explored in state2 (refer to Figure 2.11). At this point the

take move constraints will apply, and during the residues backward chaining, the

interpreter will make assumptions for the white side capturing the red king. A total

of 5 assumptions are made8:

(occupied statel si wkl) {C2}

(occupied statel s10 wml) {C3}

(occupied statel slO wkl) {C4}

(occupied statel s9 wkl) {C5}

(occupied statel s9 wml) {C6}

Each of these assumptions satisfies the constraints in the take move and allows

the legal capture of the red king. The assumption of a white king in square s2

'Only instances for one side are generated the other side can be computed through symmetry.

8All assumptions are made in statel and framed forward.
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is excluded because, in Cl, statel has square s2 occupied by the red king. These

restrictions to the assumptions permissable are encoded in the assumable rules.

The system continues the forward search under the assumption set {C1 C2} and

tests the current board position (state3) against the final constraints of the concept.

This succeeds because the current board position is a loss for red. The remaining

goal of the conjunction, exploring s2-s7, is now invoked under {C1 C2 }. The system

makes the move s2-s7 forming state4, which has a white king on sl (from C2) and

a red king on s7 (from C1 and s2-s7). The constraint for determining whether

there exists a take move over s7 for white is now explored. This fails because of

the constraints imposed on global variables. Recall that the variable denoting the

square the takemove moves from ($fromfc-1) is globally scoped and can have only

one binding. In other words, the trapped piece must be taken by the same piece

whichever move it makes. The assumption C2 gave a binding to $fromfc -1 of si,

but the piece on this square cannot take the piece on s7. Hence, the take move

constraint fails, and the assumption set {C1 C2} cannot be a trap.

A simple chronological backtracking scheme is used to recover from contradic-

tions. Reasoning begins again under Cl with the square s2 occupied by a red king.

The next assumption is explored, C3, that places a white man in square s10. The

loss constraint is satisfied, and when the alternative move s2-s7 is explored, the

take move for white is satisfied with the single binding for $fromfc -1 of s10. Thus,

the generator has found an assumption set {C1 C3} that represents an example of

trap.

It can be seen that the generation interpreter reverts to generate and test when

dealing with constraints that must be satisfied between different concept states

(such as shared variables and global variables). Here the variables are bound in

one state and tested in another. There appears to be little that can be done about

this, since the tests are separated from the point of generation and, therefore, the
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generated results must be propagated to the tests before they can be pruned.

There are, however, steps that can be taken to minimize generate and test within

the concept states. Consider the case above when the system is trying to satisfy

the constraints of the second concept state of trapthe take move mrsform. The

take move rule is like the normal move rule in that it has two sub rules: a rule that

generates the legal take moves and a rule that makes the moves on the board. The

rule that generates the take moves is given below:

(if (and (side Splayerl $sidel)

(type $playerl $typel)

(occupied $state $from Splayerl)

(opside $sidel Sside2)

(connected $from Sover $direct)

(legal-direction $ sidel Stypel $direct)

(side $player2 Sside2)

(occupied $state $over Splayer2)

(connected $over $to $direct)

(occupied $state $to empty))

(find-take $state Stypel $from $over $to $playerl $ sidel)).

Normally MRS, or any other logic programming language, solves each subgoal

in a conjunction as above in fixed left to right order. This usually works fine,

because the rule is always going to be invoked with known variables bound and the

programmer can order the clauses appropriately so that generate and test within

the conjunction is minimized. In the case of the generation interpreter, the variables

bound at the time of invocation are not fixed and could be any combination.

What is needed is a dynamic ordering over the clauses in the conjunction, so

at each new subgoal invocation, the one with the minimum number of solutions

is used as a generator in preference to any other. This was explored by Smith &
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Genesereth (1984). To implement this, it was necessary to change the way MRS

handles conjunctive goals. The residues backward chainer in MRS employs an

agenda of possible solutions. Each of these agenda tasks includes a list of bindings

found so far and the list of goals remaining to be proved. The changes made where

to treat this list of subgoals, for the take and normal move rules, as sub agendas to

be deliberated over.

Consider the case when, in the previous example for trap, the white take move

in state2 (with a red king in s6) was to be satisfied (see Figure 2.11). The take move

mrsform will have the over square bound from the previous move (s7). The clauses

are given below with the bindings plugged in and an estimation of the number of

solutions.
SUBGOAL NUMBER OF SOLUTIONS

(side $playerl white) 2

(type $playerl $type) 4

(occupied state2 $from Splayed) 64

(opside white $side2) 1

(connected $from s6 $direct) 4

(legal-direction white $typel $direct) 6

(side $player2 Sside2) 4

(occupied state2 s6 $player2) 5

(connected s6 Sto $direct) 4

(occupied state5 $to empty) 32

The number of solutions information is computed by first performing trueps and

caching the size of the set associated with the query. The number of solutions for the

side and type predicates is computed with there being two red playing pieces (king

and man) and two white playing pieces in the data base. For example, information

cached for the legal-direction predicate includes:
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(number-of-solutions (legal-direction $side $type $direct) 16)

(number-of-solutions (legal-direction white Stype $direct) 6)

(number-of-solutions (legal-direction white king $direct) 4)

(number-of-solutions (legal-direction white man $direct) 2)

The deliberation algorithm is "greedy" and will choose the (opside white $side2)

goal to pass to residue because it has the fewest number of estimated number

of solutions. Residue will return possible bindings for the $side2 variable. In

this case there is only one: red. With $side2 bound, the number of solutions is

recomputed, and both side goals have only two solutions. Following the processing

of both side goals and the type goal, four alternative tasks will be on the MRS

agenda, corresponding to the four different combinations of king and man. Below

we consider the task with a red king and white man.

SUBGOAL NUMBER OF SOLUTIONS

(occupied state2 $from wml) 32

(connected $from s6 $direct) 4

(legal-direction white man $direct) 2

(occupied state2 s6 rkl) 1

(connected s6 $to $direct) 4

(occupied state2 $to empty) 32

The (occupied states s6 rk1) fact is first trivially satisfied. Next the legal-direction

predicate is chosen, which returns two different bindings for $direct. Below we give

the agenda task with direction bound to nw (north west).
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SUBGOAL NUMBER OF SOLUTIONS

(occupied state2 $from wml) 32

(connected $from s6 nw) 1

(connected s6 $to nw) 1

(occupied state2 $to empty) 32

The connected facts are run giving binding for $from slO and $to sl. The

(occupied state2 si empty) fact is trivially satisfied leaving the single occupied fact.

Residue consults the assumable rules and make the assumption (occupied statel

$from wml) in C3 satisfying this occupied fact in state2 through frame axioms.

2.3.3 Summary of Wyl's Interpreters

This completes our discussion of Wyl learning functional concepts and applying

these concepts to performance tasks.

First we described how Wyl learned new concepts via a two stage process. First

the envisionment interpreter is applied to translate the supplied structural instances

into functional form. Next the functional instances are generalized inductively to

form the functional concepts.

Second we described how these functional concepts get applied to performance

tasks. First we described applying the functional concepts as tests of structual

instances. Next we described how to use the functional concepts as generators of

instances.

We follow with a description of the process that forms more compact structural

concept descriptions.
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2.3.4 Compaction

The compaction process takes the set of positive structural instances produced by

the generation interpreter and creates a new structural concept language in which

the instances can be described succinctly. The procedure has been run on the

trap instances, and produced the structural concept language described in Section

2.2.1.2. and fully given in Appendix B.

It might appear that compaction is unnecessary. After all, given the complete

set of positive instances, recognition can be simply achived by a complete lookup.

There are, however, many reasons for building a concept language, some of which

are listed below:

The recognition predicates written in the concept language may be more effi-

cient than simple table lookup. This result was found by Quinlan (1986).

The new terms created may be useful in describing future concepts.

The knowledge learned by the system is easier to understand (Arbab & Michie

1985).

The problem of new term creation is of great interest to the machine learning

community. This thesis attempts to demonstrate a method of learning that does

not require highly engineered structural language. Rather the system, beginning

with a very simple observational language, can incrementally build a suitable struc-

tural language that captures the concepts learned. The results from the trap case

illustrate the kind of language that would have had to have been engineered and

presupplied to allow a traditional structural similarity based learning system, such

as AQ11 or I D3, to succeed. Currently Wyl has only used the concept language

in recognition predicates. The issue of further uses of the new terms, such as for

learning other concepts, as generalization hierarchies, or in the enumerator, are

discussed in the conclusions.
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Two new term creation techniques are employed in Wyl. First we describe

the method that creates new relational terms by composition of the primitives

in the instance langauge. Then we describe in detail the method that creates new

descriptive terms by naming common disjunctions. We describe the rationale behind

the disjunction method and describe some relevant work. This is followed by a

description of the disjunction naming algorithm, called Tax, employed in Wyl.

Relational term creation

Relational terms describe relations between objects in a description. Examples of

relational terms in Winston's ARCH are touching, on-top-of, etc. In Wyl, as part

of the domain specification, primitive relational terms are supplied, that describe

the local relationships between squares. Each square has a relational term that

describes its relation to its immediate neighbours. For example s2 is connected to

the square s6 in the south west (sw) direction.

Wyl discovers new relational terms that describe the relation between squares

in concept instances. For example, in the instance of trap given in Figure 2.3, the

white man on square slO is south-2-squares from the red king on square s2. This

relationship south-2-squares is defined in terms of the relational primitives. Two

squares si and s2 are connected south-2-squares when the square connected in the

sw direction from square si is also connected in the se direction to 82. This term is

defined in the structural language below:

(if (and (connected $square-1 $square-3 sw)

(connected $square-3 $square-2 se))

(connected $square-1 $square-2 south-2-squares))

There is another path from $square-1 to $square-2 that is included as part of

the definition:

(if (and (connected $square-1 $square-3 se)
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(connected $square-3 $square-2 sw))

(connected $square-1 $square-2 south-2-squares))

Relational terms are formed in an analogous way to the main Wyl functional

learning process. A general functional term is defined that describes the relation-

ship between any two squares on the board by as search. This schema describes

the relationship as a breadth first search, moving forward through the board by

applying any of the primitive connected relationships. The term south-2-squares is

a specialization of this general schema.

To find a new relation between two squares, the general schema is applied to

perform a breadth first search through the board from one of the squares in an

instance to the other square(s). Each path found is formed into a definition for the

new term. In the example above, two paths are found: one through s6, the other

through s7. The primitive connected relations making up the path are first formed

into a conjunction, for example:

(if (and (connected s2 s7 se)

(connected s7 slO sw))

(connected s2 slO south-2-squares)).

Then the rule is generalized by turning constants into variables, to produce the

rule given above.

Descriptive term creation

The method that creates new descriptive terms in Wyl works by identifying common

disjunctions in the set of instances and naming them. The idea is best illustrated

by a simple example taken from Thagard and Holyoak (1985).

VxMacDonalds(x) A Hamburger(x) D Greasy(x)

VxBurgerKing(x) A Hamburger(z) D Greasy(x)
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From this Thagard proposes forming the inductive generalization (via the drop-

ping condition rule)

VxHamburger(x) D Greasy(x).

The alternative, employed by Wyl, is to perform a deductive transformation by

factoring out the disjunction and naming it

VxMacDonalds(x) V BurgerKing(x) D Fast f ood(x)

bixFastf ood(x) A Hamburger (x) D Greasy(x)

This has advantages over the inductive approach. First, becuase of the nature

of induction, the generalization will usually be incorrect, especially if not driven

by strong bias. Second, the deductive approach allows incremental change as it is

truth preserving. Third, the new term can help in the explanation of reasoning.

There is nothing new in this idea. Wolff, in 1982, developed a language acquisi-

tion system (called SNPR) that identified common disjunctions in sentences. After

seeing "the dog chased... " and "the cat chased, " SNPR forms the term

noun = {dog cat}. In 1983, Quinlan talked of using this method to form new de-

scriptive terms automatically as part of the research with ID3. Many lost-in-3-ply

chess positions share common arrangements of all but one of the pieces on the board.

The remaining piece can be on any of a set of squares. What Quinlan proposed

was to name this set of squares to form a new term and then use it to describe

the previous set of board positions by reducing them all to one description. This

method reduces the number of instances by the size of the set in the disjunction.

A similar method is employed by Fu and Buchanan (1985) in the work on forming

hierarchies in knowledge bases.

What these systems share is the identification of common disjunctions. Consider

a set of instances that are all known to be examples of a concept, CON. Suppose

each instance is represented as a conjunction of attribute values. Initially, because
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the conjunctions are instances, the attribute values will relate to directly observable

values, such as red, sl, or king. In the general case when we have n attributes, an

instance can be described as

attl(V alp A) V att2(Val4 A) ...att,,(V al, A) D CON(A),

where att,n(volk A) means the instance A, has attribute att., with value valk (for

example att, could be color with vale being red).

A common disjunction of attribute values can be identified by collecting together

a set of positive instances that differ in attribute values for only one attribute. This

is equivalent to factoring out all the other similarly-valued attribute facts leaving

the disjunction of different values for the single attribute. This condition of sets

of instances will be referred to as focus. In the example below we have a set of

instances which have focus for the jth attribute:

attl(valp A) V ... V attj(val, A) V ... V att(val, A) D CON(A)

attl(valp D) V ... V atti(vale D) V ... V attn(val, D) D CON(D)

attl(valp F) V ... V att1(val, F) V ... V attn(val, F) D CON(F)

attl(valp H) V ... V atti(valc, H) V ... V attn(val, H) D CON(H)

attl(valp 0) V ... V att1(val# 0) V ... V attn(val 0) D CON(0)

To compact this set of instances requires a two stage process. First the set of

values for the 5 attribute is named and the new term defined:

V x atti(vol, x)

atti(vals x)

atti(valp x)

atti(vala x)

attj(valo x)

D atti(val N EW x)
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Then the original set of instances is replaced by a single expression that describes

the same set:

V y attl(va/p y) V ... V att i (V al NEW y) V ... V attn(val, y) D CON(y).

We have described what a focus set is and how it can be used to create a new

descriptive term. Now we describe the methods used by Tax and another learning

system to locate focus sets in a given set of instances. Generally, systems search the

space of all subsets looking for those that satisfy the focus condition. Once these

are found, the new term is created and the defining instances replaced by the new

single concept description. The process continues until there are no more subsets

with the focus condition.

Clearly there is need for search control, because the space being searched, all

possible subsets, is too large. We review two approaches to search control, one used

in GLAUBER (Langley et al. 1985) and the one used in Tax.

GLAUBER

GLAUBER works in the domain of simple chemical reactions. From instances of

particular reactions, it forms general laws. The laws are described in new terms

formed by the system by naming disjunction. Examples of the terms are acid,

alkali and salt. Instances are presented in vectors of attribute names and values.

For example the following reactions form one of GLAUBER's training sets:

(reacts inputs {HCl NaOH} outputs {NaCI })

(reacts inputs {HC1 KOH} outputs {KCI })

(reacts inputs {HNO3 NaOH} outputs {NaNO3 })

(reacts inputs {HNO3 KOH} outputs {KNOB })

The first term is the predicate name, the second, one of the attribute names,

next come the two values that form the input for the reaction, finally the other

attribute name and a value that describes the output of the reaction.
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GLAUBER does not search for sets that differ in only one attribute (i.e., satisfy

the focus condition) as this would lead to no new terms being created. Rather,

GLAUBER searches for sets that are different in two attribute values. To see why

allowing two differences rather than one works, we need to follow GLAUBER futher.

GLAUBER searchs this space exhaustively by generating all the instantiations of

the query (?predicate ?attribute ?value), where ?predicate binds predicate names

(such as reacts), ?attribute binds attribute names (such as inputs) and ?value

binds values (such as NaOH). The instantiation with the most bindings is used to

form the new terms. In the example above, the instantiation,

(reacts inputs HC/)

is one that has the most bindings. The other attribute values of the set that satisfy

the instantiation are used to create the new terms:

alkali = {NaOH KOH}

salt = {NaC1 KC1}

The original instances are rewritten with the new terms and put back in to the

instance set. The process continues.

There are two reasons why GLAUBER searches for sets that differ in two values

rather than one. First, most obviously, the method of searching for simple focus

sets does not work. Secondly, of more relevance, is that there is a relationship

between the two inputs and the output that is not apparent in the representation

chosen. The output is functionally determined (in the database sense) by the two

inputs. Suppose that we have two reactions that are different in one input, because

of this functional dependency, the outputs will also be different. Hence, with this

representation, it is imposible to get any focus sets. In Tax we apply a technique that

solves this problem and allows us to search only for focus sets. Rather than represent

the inputs and outputs of a functional dependency in the vector, we replace one of
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Figure 2.12: Checker board numbering scheme

the terms with the name of the dependency that applies. For example, above we

could repace the output with the relationship reacts-to-form. In the description

of Tax we give another example of this process.

TAX

In this section we describe how Tax compresses a set of positive instances of a

concept by searching for and replacing focus sets. We illustrate Tax's operation with

an extended example from the checkers concept trap. We show Tax compressing a

set of 22 trap instances into 3 high level descriptions and creating 4 new descriptive

terms.

In Figure 2.12 we give the numbering scheme used in checkers for reference.

In this example we consider only the set of trap instances that describe a white

piece trapped in squares s13. s21 and s29. We give the instances in vector form
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below 9:

(trap s21 man ne-2-square king) (trap s13 man north-2-square king)

(trap s21 man north-2-square king) (trap s29 man east-2-square king)

(trap s21 man ne-2-square man) (trap s13 man ne-2-square king)

(trap s29 king north-2-square king) (trap s29 man north-2-square man)

(trap s21 king east-2-square king) (trap s13 man ne-2-square man)

(trap s29 king east-2-square king) (trap s29 man ne-2-square man)

(trap s13 man east-2-square king) (trap s29 king north-2-square man)

(trap s13 king east-2-square king) (trap s29 king ne-2-square king)

(trap s21 man north-2-square man) (trap s29 king ne-2-square man)

(trap s29 man north-2-square king) (trap s21 man east-2-square king)

(trap s13 man north-2-square man) (trap s29 man ne-2-square king).

The instances are in vector form, the five tuple has the following attributes:

(concept-name trapped-square trapped-piece-type relative-direction trapping-piece). The

relative-direction attribute is the relational term created for this instance that de-

scribes the relationship between the trapped-square and the square where the trap-

ping piece is. This solves the problem discussed in the GLAUBER section above.

The search method used by Tax is not like that used in GLAUBER because the

space of all focus sets soon becomes too large and the algorithm becomes exponen-

tial. Rather, Taxi° locates focus sets in a very directed manner through repeated

partitions of the input set. Tax partitions the instance set by attribute values in a

fixed order. In this example we first partition the instance set using the values of

the trapped-square attribute, then with the trapped-piece-type attribute, and finally

9The sets are randomized before Tax is run, for a curious reason. After generation, the instances

have a regular order due to the way the primitive generators of the process work. If this ordered

set is input to Tax, only some of the descriptive terms are found. This is due to the order imposing

artificial patterns on the data that influence Tax.

19Tax is a polynomial algorithm.
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with the relative-direction attribute.

When Tax partitions on the on the trapped-square attribute, three sets are pro-

duced. Tax explores the smallest set first for reasons that will become clear later on

in the example. The set for the value s21 is the smallest with only 6 members so it

is processed first. Tax now partitions this set of 6 elements on the trapped-piece-type

attribute, and again follows the smallest set. This set is a singleton,

(trap s21 king east-2-square king).

In Figure 2.13 we illustrate this partitioning process. Tax backtracks from the

singleton and explores the next smallest set (s21 man east-2-square king), which is

also a singleton. Backtracking again Tax explores the next set and finds the first

focus set:

(trap s21 man north-2-square man)

(trap s21 man north-2-square king).

The focus set is boxed in Figure 2.13. The user is prompted for a name of the set

{man king} and returns anytype. Tax now defines the new term in MRS, by refering

to the form of the type primitive:

(if (or (type $playing-piece man)

(type $playing-piece king)

(type Splaying-piece anytype)).

Tax returns and explores the other set where the relative-direction attribute has

the value ne-2-square. Here Tax encounters the same set {man king }. This time,

because a name is known for this set, the value anytype is returned.

Tax now returns to the relative-direction attribute. The state of the search is

illustrated in Figure 2.14.
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We come to a key point in the operation of Tax that illustrates how focus sets

are found for attributes other than the last. In the Figure 2.14 a focus set is boxed

given below:

(trap s21 man north-2-square anytype)

(trap s21 man ne-2-square anytype).

Once Tax has explored all subsets below an attribute, as in this case with the

attribute relative-direction, the new sets returned are repartitioned. The set returned

from below north-2-square was (anytype) while the set returned from ne-2-square was

(anytype). The sets returned are combined with their respective attribute values to

form partial vectors:

(north-2-square anytype)

(ne-2-square anytype).

These partial vectors are partitioned on all attribute values other than the first.

In this case the partitioning gives only one set {north -2- square ne -2- square }. The

user is queried and the set is named north-east-triangle. Tax defines the new term

in MRS:

(if (or (connected $s1 $s2 north-2-square)

(connected $s1 $s2 ne-2-square)

(connected $s1 $s2 north-east-triangle)).

The results of this partitioning will find focus sets for the current attribute

for two reasons. First, because the values of all the attributes prior to the current

one (in this case concept-name trapped-square trapped-piece-type) will have the same
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values due the partitioning on the way down the tree. Second the remaining at-

tributes (in this case trapping-piece) will have the same values because of the recent

partitioning. The next level will further clarify this process.

Tax now returns to the trapped-square and, because there are no more sets to

explore, the partial vectors are constructed. The king value had one set returned,

while the man value has two sets returned. The partial vectors are given below:

(king east-2-square king)

(man east-2-square king)

(man north-east-triangle anytype).

These sets are repartitioned on the (relative-direction trapping-piece) attributes. The

set {man king} is rediscovered, and the following sets are returned to the trapped-

square level:

(anytype east-2-square king)

(man north-east-triangle anytype).

Let us summarize the operation of Tax so far. Tax has processed 6 of the trap

instances and compressed them to 2 descriptions given below:

(trap s21 anytype east-2-square king)

(trap s21 man north-east-triangle anytype).

The second description covers 4 of the original instances and states that a white man

on s21 is trapped if there is a red man or king on the squares directly north-2-square

or ne-2-square (squares s13 s14).

In Figure 2.15 we show the result of Tax processing the remaining subtrees under

the trapped-square attribute (s13 s29). Tax is now at the position to repartition the
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sets to locate focus sets for the trapped-square attribute. The partial vectors are

given below:

(s21 anytype east-2-square king)

(s21 man north-east-triangle anytype)

(s13 anytype east-2-square king)

(s13 man north-east-triangle anytype)

(s29 anytype east-2-square king)

(s29 anytype north-east-triangle anytype).

It is here that we see hierarchies of new terms being constructed. Note there are 3

distinct vector values for the last three attribues:

(anytype east-2-square king)

(man north-east-triangle anytype)

(anytype north-east-triangle anytype).

Each of these will lead to a set of trapped-square values being defined. Tax sorts

these sets smallest first before the user is asked to name them. Hence, the first set

the user is asked to name is {s21 s13 }, which is named west-center-side. This set

describes squares where only a man can be trapped by a king or a man in directions

east-2-square or ne-2-squares (man north-east-triangle anytype). The trapped-square

s29 has a different partial vector that describes the same kind of traps, but includes

a king as a trapped-piece-type (anytype north-east-triangle anytype). Tax first defines

the set west-center-side named above:

(if (or (sq $square s13)

(sq $square s21)

(sq $square west-center-side)).
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Now Tax finds the set {s21 s29 s13} (from partial vectors (anytype east-2-square

king)) to be named by the user. Before Tax offers this set or any other for naming,

a search is made to see if the set has any known subsets. In this case there is a

subset known and Tax replaces the set {s21 s13} by its definition. Hence, when the

user is asked, the set offered is {west-center-side s29}. Tax builds the definition of

this term as a disjunction of the term west-center-side and the value s29:

(if (or (sq $square west-center-side)

(sq $square s29)

(sq $square west-south-side)).

The reason for searching the sets smallest first on the way down recursion can

now be understood. By searching for focus sets smallest first, new terms for at-

tributes are defined smallest first, hence, new term hierachies are built bottom up.

If the sets where identified in the opposite order or in an arbitrary order, the prob-

lems of hierachy reformation experienced by Utgoff (1983) would need to be dealt

with. By ordering, building heirarchies is incrementala new term definition never

requires the reformation of a previously defined term.

It is apparent that the attribute order is important to the results of the algo-

rithm. Different terms are created depending upon the supplied order. Some initial

experiments have been run to develop some feel for mechanical means of deter-

mining the ideal attribute order. The order does not effect the truth preserving

nature of the algorithm, only some orders give a more succinct description or create

more intuitive, already known terms. The order given here and in the example of

Tax running on the full trap set produced the well known terms. In all 13 new

terms were discovered and the final structural trap description was captured in 12

disjunctions.
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2.4 Chapter Summary

To summarize, in this chapter we have presented a detailed description of the pro-

gram Wyl. The description included a trace of Wyl learning the checkers concept

trap.

The next chapter gives examples from checkers of Wyl compiling the concept

trap and learning the concept trap-in-2-ply. In chess we show a Wyl learning two

concepts: knight-fork and skewer.
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Chapter 3

Examples of Wyl Learning

In this section we illustrate Wyl learning four different concepts, two in checkers

and two in chess. The first lesson is the checkers concept trap described in Chapter

2. Next we teach the concept trap-in-2-ply, which relies on Wyl 's previous lesson.

Next Wyl learns two concepts in the domain of chess. Both concepts describe

stratagems to win the queen by forcing the king to move out of check. The first

concept knight-fork captures the queen by exploiting the power of the knight move

and simultaneously threatening the king and queen. The second concept skewer,

employs a different technique. The king is threatened by a piece, thereby forcing

it to move out of check, the threatening piece now captures the queen which was

sheltered behind the king.

In the description of Wyl learning the first concept trap we emphases the com-

pilation stage as the learning stage was discussed in detail in Chapter 2. We give a

dialogue of Wyl compiling trap and timed recognition tasks before and after com-

pilation. In each of the remaining concept learning descriptions we emphases the

training session. Each description begins with Wyl learning the concept from two

well chosen examples, next the new concept definition is tested against some "near

miss" negative instances and more positive examples. Each description of the train-

ing sessions include the training instances illustrated as board positions and a first
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order logical formalization of the concept learned. In addition, for the checkers

concept trap-in-2-ply, we give an annotated dialogue with Wyl and the machine

representation of the concept.

3.1 Lesson 1: Checkers concept trap

In Chapter 2 we illustrated Wyl by describing in detail how the concept trap was

learned. Here we give an annotated dialogue with Wyl during the compilation stage

once the functional concept is learned. The dialogue includes timing information

as a guide to the computational resources required for the current implementation.

The program runs on a Vax-11/750 during periods of low activity.

Script started on Thu Apr 10 15:01:33 1986

-> (Wyl)

Domain: checkers, Concept name:trap

Thu Apr 10 15:11:15 1986 Start learning loop 3.

state name:q

Who plays first?:red

Max search depth?:2

Example number:1

Square:s2

Playing piece:rml

Square:s10

Playing piece:wml

Square:q
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Domain State:state-24

Domain: checkers, Concept name:trap

Thu Apr 10 15:11:39 1986 Testing instance with current theory.

Thu Apr 10 15:15:00 1986 Example number 1 classified as positive.

Is this an example of the concept?yes

Wyl tests the functional concept definition with a position very like the second train-

ing instance given in Chapter 2 (Figure 2.3), the only difference is that the white

king is replaced by a white man. Recognition takes 3 minutes, 21 seconds.

Should Compilation commence?yes

Thu Apr 10 15:15:06 1986 Begin Compilation.

Wyl checks if compilation should begin whenever the functional concept definition

correctly classifies an instance.

Thu Apr 10 15:15:23 1986 Begin Enumeration.

Thu Apr 10 16:19:24 1986 Total instances found :0

Thu Apr 10 16:41:18 1986 Total instances found :1

Thu Apr 10 16:44:46 1986 Total instances found :2

Thu Apr 10 18:20:42 1986 Total instances found :6

Fri Apr 11 04:47:16 1986 Total instances found :65

Fri Apr 11 05:08:06 1986 Total instances found :67

Fri Apr 11 05:31:15 1986 Total instances found :69

Fri Apr 11 05:56:25 1986 Total instances found :72

The enumeration stage is very time consuming, taking a total of 14 hours, 41 min-

utes. Note only one white traps are generated.
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Should code generation commence?yes

Fri Apr 11 06:05:43 1986 Begin code generation.

Fri Apr 11 06:09:41 1986 Building the vector forms of the instances.

The states generated are translated into a vector form suitable for the main com-

paction routineTax. It is at this stage that the new relational terms are created

such as north-2-square.

Fri Apr 11 06:41:46 1986 Begin randomize of vectors.

The vectors are randomized before Tax is called for reasons given in section 2.8.4

Fri Apr 11 06:51:21 1986 Enter Tax.

Tax queries the user for a name for each focus set identified.

Classification

Classification

Classification

Classification

Classification

Classification

Classification

Classification

Classification

side

Classification

side

Classification

set:{king man}? anytype

set:{ne-2-square north-2-square}? north-east-triangle

set:{south-2-square se-2-square}? south-east-triangle

set:{south-2-square sw-2-square}? south-west-triangle

set:{s30 s31}? south-center-side

set:{s2 s3 }? north-center-side

set:{s12 s20 }? east-center-side

set:{s21 s13 }? west-center-side

set:{west-center-side south-single-corner}? west-single-

set:{east-center-side north-single-corner}? east-single-

set:{s23 s7 sll s22 s19 s14 slO s15 s18 s6 }? center

The terms constructed are illustrated in Figure 5.1 below
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Fri Apr 11 06:54:12 1986 writing out code generated.

Fri Apr 11 06:54:14 1986 Translate new terms into MRS code.

Fri Apr 11 06:56:20 1986 Finished!!

Wyl has generated recognition predicates written in MRS code that define trap. We

now test these structural descriptions with two of the original trap positions. First

the position (state-24) used above in learning loop 3, red to play with a red man on

2 and white man on 10. Although the recognition predicates where generated using

white trapped positions, the concept descriptions can be used to recognize both white

and red postitions as Wyl uses symmertry.

Domain checkers, Concept: trap

Fri Apr 11 06:56:21 1986 Start learning loop 4.

state name:state-24

Who plays first?:red

Max search depth?:2

Domain State:state-24

Domain checkers, Concept: trap

Fri Apr 11 06:58:32 1986 Testing instance with current concept.

Fri Apr 11 06:58:38 1986 Example number 4 classified as positive.

Is this an example of the concept?yes

The recognition task is much faster with structural descriptions, 6 seconds compared

with 201 seconds for functional descriptions.

continue with next example ?:yes
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Domain checkers, Concept: trap

Fri Apr 11 07:02:03 1986 Start learning loop 5.

state name:q

Who plays first?:white

Max search depth?:2

Example number:5

Square:s23

Playing piece:wml

Square:s15

Playing piece:rml

Square:q

Domain State:state-458

This position illustrated in Figure 2.2.

Domain checkers, Concept: trap

Fri Apr 11 07:03:45 1986 Testing instance with current theory.

Fri Apr 11 07:03:54 1986 Example number 5 classified as positive.

In Figure 3.1 we illustrate the new terms defining sets of squares, constructed

by the compilation stage above. Each term describes an area of the board that is

important in describing the concept trap. For example, the term south-center-side

names a set that is useful in describing trap because s30 and s31 are the only two

squares where both a white king and man can be trapped by a red king. The

squares in the center are useful in describing all trap positions where a white man

can be trapped by either a red man or red king. The "single corner" squares (s4,

s29) are especially important as they are the only squares on the board where you

can be trapped three different ways. The only squares not to be included in any
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terms are equally important: The so called "double corner" squares (sl. s5 and s28.

s32) describe squares in which you cannot be trapped.

This concludes the review of Wyl compiling the concept trap.

3.2 Lesson 2: Checkers concept trap-in-2-ply

The first training instance is given in Figure 3.2, with red to move. The red

king on square 16 has four options, two of these lead to an immediate loss (16-11.

16-19), the other two lead to a trap postion (16-12 then 15-11 and trap, or 16-20

then 15-19 and trap). Wyl analyses this position and determines that the outcome

is an unavoidable trap for red in 2 ply. The moves which lead to the loss are pruned

from the functional instance because Wyl considers trap better than loss. Although

trap is known to be a kind of loss, goals which delay an immediate loss are prefixed.

The second training instance is given in Figure 3.3, with white to move. In this

position the pieces move towards each other, either way the white man moves, the

red king can trap.
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The final concept learned from these two training instances is given below in

logic. A state (statel) with side (sidel) to move is a trap-in-2-ply iff:

All legal operators available to sidel are normalmoves and lead to a position

which

there exists a move leading to a position in which

is a trap for sidel.

V statel sidel 2PlyToT RAP (state]. sidel)

V movel state2 side2 f roml tol typel

oppositeplayer(sidel side2)

Alegalmove(statel sidel movel) D

normalmove(statel movel state2 f roml tol sidel typel)

A 3 move2 state3 f rom2 to2 type2

normalmove(move2 state2 state3 from2 to2 side2 type2)

AT RAP(state3 sidel)

The terms in this description are described fully in Chapter 2. The legal move

predicate generates all legal moves while the normal move predicate only generates

none take moves consistent with any bindings.

The concept definition is tested with two more positions. First we present a

negative instance illustrated in figure 3.4.

In this case the red king on square 6 is not in a trap-in-2-ply position because it

can move to square 1 where it cannot be trapped. This method of avoiding a trap

by retreating into the "double corner" (squares 1, 5 and 28. 32) is one of the first

lessons learned by any checker player.

Wyl correctly identifies the position as a negative instance of trap-in-2-ply. The

proof fails at the sub goal,
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trapped by the red king moving into square 22.

3.2.1 A dialogue with Wyl

In this section we give the dialogue with Wyl learning the concept trap-in-2-ply

using the training session detailed above.

Script started on Sat Apr 12 14:52:15 1986

1 :mrs

MRS Version 7.1 in Franz Lisp, Opus 38 created 1-24-84

-> (load 'load.load)

t

-> (Wyl)

continue with new domain ?:y

DOMAIN:checkers

checkers/fc-cache.mrs

checkers/board.mrs

checkers/meta.mrs

checkers/legal.mrs

checkers/players.mrs

checkers/playmoves.mrs

checkers/state-0.mrs

checkers/trap-structural.mrs

checkers/relation.mrs

Wyl loads the functional and structural definition of the checkers domain

Concept name?:trap-in-2-ply
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Domain: checkers, Concept: trap-in-2-ply

Sat Apr 12 14:56:24 1986 Start learning loop 1.

state name:q

Who plays first?:red

Max search depth?:2

Example number:1

Square:s16

Playing piece:rkl

Square:s15

Playing piece:wkl

Square:q

Domain State:state-2

The first training instance (figure 54 is tested against the current (non existent)

concept definition.

Domain: checkers, Concept: trap-in-2-ply

Sat Apr 12 14:57:33 1986 Testing instance with current concept.

Sat Apr 12 14:57:33 1986 Example number 1 classified as negative.

Is this an example of the concept?yes

Domain: checkers, Concept: trap-in-2-ply

Sat Apr 12 14:57:42 1986 Current concept being generalized.

Sat Apr 12 14:57:42 1986 Performing domain state search.

The envisionment stage, builds the complete min/max search tree.

Sat Apr 12 15:11:09 1986 Walking over the tree trace
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The sufficient and necessary conditions are extracted from the complete explanation

Sat Apr 1.2 15:12:16 1986 Generalizing search trace.

The first stage of generalization, the functional instance is compressed to a single

generalized sequence of operators.

Sat Apr 12 15:12:59 1986 Matching generalized trace with current concept

The final stage of generalization, in this case trivial as there is no previous concept

definition

Sat Apr 12 15:14:32 1986 Walking the concept.

Translates the result of the generalizer (in the frame/slot/value representation dis-

cussed in section 2.5.1.2) to the binding list representation used by the test and

generator interpreters (section 2.2.2.1).

continue with next example ?:y

Domain: checkers, Concept: trap-in-2-ply

Sat Apr 12 15:20:04 1986 Start learning loop 2.

state name:q

Who plays first?:white

Max search depth?:2

Example number:2

Square:s10

Playing piece:rkl

Square:s26

Playing piece:wml

Square:q



96

Domain State:state-41

Domain: checkers, Concept: trap-in-2-ply

Sat Apr 12 15:21:46 1986 Testing instance with current concept.

Sat Apr 12 15:22:51 1986 Example number 2 classified as negative.

This training instance is illustrated in Figure 5.5

Is this an example of the concept?yes

Domain: checkers, Concept: trap-in-2-ply

Sat Apr 12 15:23:37 1986 Walking over the tree trace

Sat Apr 12 15:23:39 1986 Generalizing search trace.

Sat Apr 12 15:23:40 1986 Matching generalized trace with current concept

Sat Apr 12 15:23:51 1986 Walking the concept.

continue with next example ?:y

Domain: checkers, Concept: trap-in-2-ply

Sat Apr 12 15:29:41 1986 Start learning loop 3.

state name:q

Who plays first?:red

Max search depth?:2

Example number:3

Square:s6

Playing piece:rkl

Square:s7

Playing piece:wkl
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Square:q

Domain State:state-47

Domain: checkers, Concept: trap-in-2-ply

Sat Apr 12 15:31:02 1986 Testing instance with current concept.

Sat Apr 12 15:32:19 1986 Example number 3 classified as negative.

This test instance is illustrated in Figure 5.4

Is this an example of the concept?no

continue with next example ?:y

Domain: checkers, Concept: trap-in-2-ply

Sat Apr 12 15:34:24 1986 Start learning loop 4.

Who plays first?:white

Max search depth?:2

Example number:4

Square:s17

Playing piece:rkl

Square:s25

Playing piece:wml

Square:q

Domain State:state-56

Domain: checkers, Concept: trap-in-2-ply

Sat Apr 12 15:36:03 1986 Testing instance with current concept.

Sat Apr 12 15:37:15 1986 Example number 4 classified as positive.
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This test instance is illustrated in Figure 3.5

Is this an example of the concept?yes

continue with next example ?:no

continue with new concept ?:no

continue with new domain ?:no

->(exit)

The machine representation of the concept trap-in-2-ply is given below and

illustrated as a tree in Figure 3.6:

(checkers/trap-in-two-ply-0 normal-move

tstate-O final-constraints

(($quantification . for-all)

($next-theory-node . nextfc-O)

($type . $typefc-2)

($from . $fromfc-2)

($to . Stofc-2)

(t . t)) )

(checkers/trap-in-two-ply-0 normal-move

nextfc-O final-constraints

(($quantification . there-exists)

($next-theory-node . nextfc-1)

($type . $typefc-1)

($from . $fromfc-1)

($to . $tofc -1)

. t)) )

(checkers/trap-in-two-ply-0 terminate-state
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nextfc-1 final-constraints

(($result . trap)

(t . t)) )

This completes lesson 2, we follow with two more lessons in chess.

3.3 Lesson 3: chess concept knight-fork

The first training instance is illustrated in Figurer 3.7, by with white to play.

The red knight on square c2 (refer to Appendix A, Figure 6.1 for board notation)

threatens both the queen on al and the king on el. White is forced to move the

king out of check, allowing the knight to capture the queen.

In the second instance illustrated in figure 3.8 it is red's turn to loss the queen.

The white knight on square d6 threatens both the queen and the king. As there is

no alternative other than to move the king to avoid check, the queen is lost.

Following these two training instances Wyl learns the following description:

V stl sidel KNIGHTFORK(st1 sidel) <#.

V ml st2 side2 knightsq kingsq dirl typel

oppositeplayer(sidel side2)

n[2 st3 m2 dir2 Move(sm2 stl st3 knightsq kingsq take knight dir2 side2 king)]

ALego1M ove(stl sidel ml)

D Move(m1 stl st2 kingsq tonew2 nontake king dirl side]. nil)

A 3 m3 st4 dir3 queensq

Move(m3 st2 st4 knightsq queensq take knight dir3 side2 queen)

ALOSEQUEEN(st4 sidel)

'The user may instruct Wyl to ignore certain playing pieces that are irrelevant to the concept to

reduce the size of the search space during envisionment.



Itstate-01

normal-move

quantification instantiation

I I
for-all loperatorfc-01

from next to type

I

Sfrom1fc-0 Inextfc-01 Stoic-0 Stypefc-0

I

normal-move

quantification instantiation

Ithere-exists operatorfc-1

from

Sf romf c-1

next

Inextfc-11

terminate-state

instantiation

Ioperatorfc-21

result

trap

to type

Stoic-1 Stypefc-1

Figure 3.6: Functional Concept trap-in-2-ply

147

/

//
I

:at
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Figure 3.8: Training Instance 2: Chess concept knight-fork

The terms in this concept are fully described in Appendix A. They are simi-

lar to those used in checkers previously. The LegalMove predicate generates all

legal moves available to side sidel in state state', while the Move predicate gener-

ates only those moves consistent with any bindings. The implication between the

LegalMove predicate and the Move predicate is used to encode the notion of forced

move discussed in Chapter 2 and illustrated by the first test instance.

The Move predicate describes the legal moves of a chess game. It has the

following form:

M ove(name st newst f romsq tosq kind typemoved direct side typetaken)

Where name refers to the refied name of the move, st refers to the current state,

newst refers to the next state formed by applying the move, fromsq is the square

the move is from, tosq is the square the move is to, kind is either take or nontake,

typemoved refers to the type of piece (eg, knight. king etc.) moved, direct is the

direction the move is in (eg, ne. north etc.), side is red or white, and finally typetaken

refers to the piece taken (if any). For example the final knight move of the instance

illustrated in figure 3.7 taking the queen could be described;

Move(move34 state23 state25 c2 al take knight wsw red queen).

The first 3 clause of the concept definition above makes explicit the fact that
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Figure 3.9: Test Instance 1: Chess concept knight-fork

the king is currently in check. It describes a move for the opposite player (side2)

which can take the king. This test for check is included in the definition of the chess

recursive schema.

The concept definition can be summarized as:

A state (st1) with side (sidel) is in a knightfork iff:

sidel is in check from a knight (on square knightsq).

All current legal moves involve moving the king (on kingsq), leading to state

st2.

For all resulting states (st2), there exists a move of the knight from knightsq,

to queensq, that captures the queen.

The concept is tested with three more instances. First we present a negative

instance illustrated in figure 3.9.

This instance is very similar structurally to the first training instance. Where it

differs is the black pawn on square f5 has been moved one square forward to square

f4. This small change in the structural representation leads to a great change in the

functional representation. In this position, because the pawn is no longer blocking

the move, the bishop in square g6 can take the knight in c2. Hence, the king is no

longer forced to move out of check and the concept description does not apply.
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Figure 3.10: Test Instance 2: Chess concept knight-fork

The test for check was satisfied with kingsq bound to el, but failed at the

subgoal,

V ml st2 tonewl

LegalMove(statel2 white ml)

Move(statel2 state2 ml el tonewl nontake king white nil),

where statel2 is the original training instance. This failure is due to the implication

failing, the moves of the king from el (the Move predicate) do not describe all legal

moves generated from the LegalMove predicate.

The second test instance, illustrated in Figure 3.10, is a simple positive example

with white to play, to check that the concept was learned correctly. The knight in

square f3 forks both the king and the queen.

The third test instance (in Figure 3.11) is a negative example that illustrates a

different way in which the training instance can fail a concept definition. In this

case it is red to play. The king is not in check, hence, the constraint

3 st3 m2 dir2

Move(m2 st23 st3 knightsq kingsq take knight dir2 white king)

fails, and the instance is classified negative.
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Figure 3.12: Training Instance 1: Chess concept skewer

3.4 Lesson 4: chess concept Skewer

Skewer is a stratagem in chess to capture the queen using pieces other than the

knight. The first training instance is illustrated in Figure 3.12. The red bishop in

square g7 is checking the white king. White is forced to move out of check, exposing

the queen to capture by the same bishop.

The second instance is illustrated in figure 3.13. In this position it is the rook

in square ci threatening the king and capturing the queen.

Following these two training instances, Wyl learns the following description:

V stl sidel S K EW ER(stl sidel)

V ml st2 side2 threatsq threatdir dirl kingsq typel
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Figure 3.13: Training Instance 2: Chess concept skewer

oppositep/ayer (sidel side2)

A[2 st3 m2 type2

Move(m2 stl st3 threatsq kingsq take type2 threatdir side2 king)]

ALegalMove(stl sidel ml)

Move(m1 stl st2 kingsq to2 nontake king din side]. nil)

A 3 m3 st4 queensq

Move(m3 st2 st4 threatsq queensq take anytypel threatdir side2 queen)

ALOSEQUEEN(st4 sidel)

Skewer is a very similar to knightfork, and can be summarized as:

A State (stl) with side ( sidel) to play is in a skewer iff:

side1 is in check from a piece (on square threatsq) in direction threatdir.

All current legal moves involve moving the king (on kingsq) out of check,

(leading to state st2).

For all resulting states (st2), there exists a move of the piece from threatsq

square, to queensq in direction threatdir, that captures the queen.

The concept is tested with three more instances. First we present a negative

instance Figure 3.14, that is very similar structurally to the initial training instance.
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Figure 3.15: Test Instance 2: Chess concept skewer

The pawn on square b7 has moved forward one square allowing the bishop in square

b8 to block the threat of check.

The second test instance (Figure 3.15) demonstrates that Wyl has correctly

learned the concept. Here a queen is used to threaten the opponents queen.

In third test instance (Figure 3.16) the position is not a skewer because the

knight can take the threatening rook.

This concludes our illustration of Wyl learning.
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Figure 3.16: Test Instance 3: Chess concept skewer
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Chapter 4

Analysis and Conclusions

In Chapter 1 we identified constraints that inductive learning and recognition im-

pose on representation and noted that these constraints often conflict. We intro-

duced a learning system that satisfies both constraints by employing two repre-

sentations. In Chapter 2 we described in detail the operation of the implemented

system, Wyl. In Chapter 3 we gave examples of Wyl learning concepts in chess and

checkers.

In this Chapter, we give a summary of the thesis and detail the lessons we have

learned. The first section gives a brief critique of Wyl. The second section gives

some pointers for future research questions. In the final section we summarize the

main contributions of this research.

4.1 Summary

In the summary of Wyl we first develop a criterion to measure the effectiveness of

learning systems in general. We apply these criteria to evaluate Wyl and conclude

that, although limited, Wyl is an effective learner. Finally we give reasons that

explain Wyl's effectiveness.
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4.1.1 The Effectiveness of Wyl

There are two view points from which the effectiveness of a learning system can be

judged: from that of a teacher of a learning program or that of a learning program

designer. The teacher can judge performancehow good the system is at learning.

One such measure is the number of training instances needed to learn a concept. A

system that needs only one training instance is a much better learner than one that

needs ten. Another measure is correctness, does the system discover the correct

definitions of the concept? A further measure is the breadth, how many different

concepts can the system learn and in how many domains?

The system designer, on the other hand, takes an engineering approach and

looks inside the system to evaluate the representations and methods underlying the

learning behavior. Some issues are: How general are the methods and represen-

tations employed? How much domain and concept engineering is required? How

much time and space does the program need?

Performance level evaluation

At the performance level, Wyl is an effective learner: it learns from few training

instances, it discovers the correct concept definitions, and it learns concepts in two

different domains. For the concepts we have investigated two well chosen examples

suffice to correctly learn a concept. By the measure of bias described by Utgoff

(1986), Wyl has near perfect bias. Wyl learned concepts in two similar domains. In

each domain Wyl has learned two concepts, and demonstrated incremental learn-

ing (trap-in-2-ply from trap). Compared to human learners, Wyl's performance is

dismal. But compared to other learning systems, Wyl incorporates some relatively

new characteristics; learning multiple concepts in different domains and incremental

learning.
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Engineering Level evaluation

The generality of a technique can be determined by considering whether it is suitable

for different domains. The overall technique employed in Wyl of using different rep-

resentations (such as structural or functional) and performing different tasks (such

as induction or recognition) in the most appropriate one, appears to be very general.

Indead, the success of many explanation based learning systems can be attributed

to employing this technique. For example, Lex2 (Mitchell et. al. 1982) employs

two representations to describe the concept productive-operator. The functional

representaiton is employed to succinctly capture the concept, while a structural

representation is employed to allow efficient recognition.

The generality of performing induction in the most appropriate representation

has strong support considering the many successful inductive learning systems. Al-

though when the most appropriate representation is different from that of the con-

cept instances, the generality of the method is dependent upon the generality of the

translation methods available.

More specificly, the methods and representations employed by Wyl were cer-

tainly general enough for chess and checkers. The same program was used for each.

To the program, a domain is simply specified in the functional and structural lan-

guage described in Chapter 2. Both the functional and structural languges, although

simple, are powerful enough to capture many game playing domains. It is unclear,

however, whether the learning method would be suitable for learning concepts in

these new domains. Consider the game go-mocu. If we described a legal move as

simply a play in any vacant square, it is difficult to see how Wyl could learn any

concepts other than loss-in-l-ply, loss-in-2-ply, etc.

Perhaps the least general method in Wyl is the one employed to translate the

functional definition into structural form. Often the representation of a functional

concept in a simple structural representation is too disjunctive (consider loss-in-1-
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ply in go-moku described as all arangements of four squares in a row). The size of

this description makes complete enumeration impractical.

The amount of domain and concept engineering required for Wyl was minimal.

Both the functional and structural languages were simple to design and required no

special considerations for the learning task. The operators and goals that made up

the functional language are represented as simple predicates in logic and describe

the minimum required for a problem solver. The structural language entailed no

special design, it describes instances as they appear, in terms of playing pieces

occupying primitive squares.

Wyl was neither efficient in time or space. Wyl runs on a Vax11/750 and

is written in LISP and MRS. A typical recognition task in chess, applying the

test interpreter on a functional definition, takes approximantly 150 cpu minutes.

Recognition using structural definitions was the only task performed efficiently by

Wyl, with times in the order of 1 or 2 cpu seconds to classify a trap example.

However, to compile the trap concept into its structural form took approximately

700 cpu minutes and generated over 2000 MRS facts. Another example is the

complete training session for the concept skewer (given in Chapter 3) which took a

little over 1000 cpu minutes and generated over 3000 facts.

4.1.2 Why Wyl works

By employing two different representations, Wyl satisfies the conflicting constraints

on representation imposed by the two tasks, of learning and recognition. In this

section we expand on how these constraints are satisfied by Wyl. In particular

we emphasize how the functional representation employed made inductive learning

methods effective.

In the introductory chapter of this thesis, we developed a set of constraints on

the representation of concepts and instances for inductive learning to be successful.
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Below we reiterate these constraints and illustrate how Wyl satisfies them.

The first constraint states that the concept description should be able to rep-

resent the desired concepts succinctly, that is, with the fewest disjunctions. Wyl

is able to capture all the concepts of interest as conjunctions, because Wyl uses

the most "natural" representation. End game concepts all describe ways to achieve

goals through sequences of operators. Hence, a language of operators and goals is

most natural.

The second constraint states that the training instances and the concept descrip-

tion should have the same form. This is important as inductive learning methods

employ syntactic matching and similarity comparisons to drive generalization and

specialization. This constraint is satisfied by Wyl employing an envisionment stage

that translates the initial structural instances into functional instances before gen-

eralization.

The third constraint states that the representation should capture the semantic

similarities between the examples of the concept syntactically. This constraint is

satisfied as a product of employing the most "natural" representation. Examples

of an end game concept (such as trap) are syntactically diverse when described

in structural terms. But when described in terms of operators and goals they are

syntactically similar. It becomes evident that this constraint is satisfied for the trap

concept, when the diverse structural descriptions illustrated in Figures 2.2, 2.3, 2.7

and 2.10 are compared with the functional descriptions illustrated in Figures 2.5,

2.6, 2.8, and 2.9.

The final constraint is related closely with the thirdnamely that negative and

positive instances should be syntactically different. We demonstrated that this

constraint is satisfied in Chapter 3 during the teaching sessions of Wyl with chess

concepts. In both skewer, and knight-fork we gave both positive instances and "near

miss" negative instaces. To form a negative instance from a positive instance, 'a
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single piece is moved one square. Hence, the syntactic structural descriptions of

these different instances are very similar. In contrast, because the single move

completely changes the outcome of the position, the functional descriptions differ

wildly. The envisionment process maps the diverse structural descriptions into

separate clusters in the functional space that correspond to separate functional

concepts.

4.2 Future research

This section surveys some directions for future research at two distinct levels: First

we detail short-term questions on the current implementation and suggest exten-

sions that would considerably increase Wyl's effectiveness. Second, we apply what

we have learned from Wyl to the question of constructing more effective learning

machines.

In each of these discussions we cover research on learning functional descriptions

and research on the knowledge transformation methods employed. Lastly, we briefly

address research on the underlying architectures for AI systems employing such

methods.

4.2.1 Extensions to Wyl

On knowledge transformation methods

The method Wyl employes to translate its functional concepts into structural form

cannot be applied to concepts such as lost-in-3-ply or skewer because the current

implementation of the generator is too slow to generate the immense number of

positions. By using special purpose generators as Quinlan (1982) did, it will be

possible to evaluate better the compaction algorithms introduced in the thesis.

There are open questions about the compaction method. First, how general
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is it? Can it be applied to other domains? Second, how do we identify the best

attribute order in which to search for new terms? And finally how can the general

method of generation and compaction be changed to operate incrementally?

Of more general interest is to develop a method in Wyl that can construct mixed

functional and structural descriptions similar to those designed by Quinlan.

On learning functional descriptions

The functional language employed by Wyl is particularly simple. Concepts are

restricted to linear sequences of general move descriptions, terminating in a recog-

nized goal. There are many ways in which this language of concept descriptions

could be extended that would greatly increase the number of concepts that could

be learned. One extension is to include some disjunctions, such as allowing checker

concept definitions to specify operators as take or normal moves. Another instance

is in chess, where, instead of generalizing the values of each "slot" of the operators

(tosquare, fromsquare etc.) to variables, the sets of values can be retained in the

concept definition. For example, in the teaching of the concept skewer in Chapter

3, Wyl could have defined the piece types to be only {rook v queen} rather than

$typefcl.

Many concepts in chess and checkers include repeated sequences of moves that

could be described in Wyl's functional language if it were extended to include

recursion. The chess concept "square of the pawn law" is such a concept currently

being studied by Tadepalli (1985). Wyl could learn such concepts by incorporating

recursion in the concept language and employing some of the successful learning

methods that can identify repeated sequences in training examples (Dietterich, 1984;

Andreae, 1984).

The simplicity of the evaluation function, initially a priority ordering on the

known goals (win is better than loss), limits the learnable concepts. The important
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feature in any concept is not that it terminates in a known goal, rather that it

involves some form of gain (or loss). Consider learning the concept advantageous-

trade. The concept definition must include some description that compares the

values of the terminating and starting states. One way to achieve this would be to

include the reasoning that proved the outcome was better (worse) than the starting

state in the functional instances and hence, after generalization, in the concept

description.

4.2.2 General Issues

On knowledge transformation methods

There are many important issues in the knowledge transformation methods cur-

rently available. The method of envisionment is well understood and imposes few

constraints on the domain or the representation. In contrast, the compilation meth-

ods currently available are extremely limited and impose strong constraints on the

representation and domain. The compilation stage is becoming a "bottle-neck" in

learning systems.

Currently, the only method availableconstraint back-propagationtranslates

a restricted set of forms of functional concepts (see Porter & Kibler, 1985). More-

over, the method only provides a partial solution to the problem of designing a new

structural language. Utgoff (1986) shows that this method can create new struc-

tural terms to extend a given structural language. But it does not appear that this

method can generate the entire structural language.

Although currently, there is no general method developed to translate functional

descriptions to structural descriptions, the theoretical aspects of such a translation

are becoming better understood through the work of Bennett & Dietterich (1986).

We cast inefficient functional definitions as procedures which have many delayed

tests, that is search needs to be performed before the tests can apply. Compilation is
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viewed as moving the applicable tests to positions earlier in the search, reexpressing

them in a suitable structural language.

On learning functional concepts

When we turn to the issues inherent in applying the techniques employed in Wyl to

general learning problems, there are many open research questions. These questions

were cast in terms of explanation based methods and similarity based methods and

addressed in detail in Mitchell et al 1986.

In this thesis we cast these questions in terms of representation. We extrapolate

the lessons from Wyl and speculate on what they may tell us about an effective

learning machine.

A fair summary of Wyl is the following:

Wyl has limited effectiveness as a learner.

Wyl employees two simple representations of knowledge and primitive meth-

ods for translating knowledge.

This suggests a more general summary of a learning machine (LM)1:

LM has great effectiveness as a learner.

LM employs many complex representations of knowledge and powerful meth-

ods for translating knowledge.

The lessons we have learned from Wyl suggest that for LM to be effective this

hypothetical machine must:

Apply inductive methods only in the representation most natural for the con-

cept of interest.

1Via the "climbing generalization tree" rule.
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Translate any new knowledge into other representations where it can be ap-

plied to some performance task.

Maintain consistency between the different representations of the same knowl-

edge.

The first two conditions have been discussed above, the final issue has not been

discussed and is addressed here. In Wyl, the compilation stage is only suitable

for "one-shot" operation. If, after Wyl had translated a concept definition into

structural space, it were shown to be incorrect, the compiler would have to be

run again from scratch. Clearly a more incremental approach is needed were only

those affected parts of all the representations are updated following a change in the

concept definition.

This leads to two questions: In which representation should the concept descrip-

tion be modified? And how shall the updated description translate the changes to

the other representations effectively and incrementally?

The most suitable representation in which the description should be modified

is, if our thesis is correct, the one in which the concept can be captured most

naturally. Wyl does not answer the second question, since it has no way of knowing

which parts of the structural description are affected by a change in the functional

description. A solution would be to maintain dependencies between the different

descriptions, that could be used to drive the modifications. For example in Wyl, the

single functional description of trap could be represented as a disjunction of more

specialized traps (such as king/king, king/man and man/man traps) each describing

a smaller set of structural instances. If the king/king trap were to be corrected only

that set of structural descriptions would need to be recomputed.
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4.2.3 Directions in the underlying architecture

Wyl is implemented as a set of interpreters working over expressions in a language

defined on top of MRS (Russell 1985). The advantages of using logic programming

in learning systems are numerous. First, the program is easy to analyze and modify.

Second, the logic descriptions support different kinds of reasoning. For example,

the functional concept definitions were interpreted as tests to classify instances by

use of the MRS interpreter trueps and generators by use of the MRS interpreter

residues. Third and last, logic tends to canonicalize the descriptions making them

explicit and easily manipulated syntactically by the machine.

The great disadvantage of using logic is its great inefficiency due to the time

spent in unification and building new index structures. What is needed is bet-

ter compliers that can translate the inference to some faster form of computation

invisibly, like today's LISP compilers.

4.3 Contributions of the Thesis

The first contribution of the thesis is that we have clarified the conditions under

which induction will be successful.

The second contribution is to incorporate both explanation-based and similarity-

based methods into a working system, gaining the advantages of both.

Finally, we have contributed to the development of methods for transforming

functional knowledge into a structural form efficient for recognition. The com-

paction method developed has been shown to create many useful new terms.
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Appendix A

Chess Domain Specification

In this appendix we give a summary of the domain specification of chess. Domian

specifications consist of the following:

A search schema.

Descriptions of the actions and goals of the domain.

Structural language in which to describe board positions.

In Figure A.1 we illustrate the numbering schema used in chess.

A.1 Search schema

The search schema of chess is given below:

(o-or (single-terminate terminate-state)

(o-and (single-terminate test-check?)

(multiple-recursive normal-moves))).

The first primitive checks for the termination. The mrsform of the terminate-

state frame is given below:



125

a8 PArtiO
A

c8 Pr. : e8

A
r g8

A
b7 d7 p f7 h7

a6 rAbO
A

c6 e: e6

A
g6g6

Ar :

A
b5 ir :

A
d5

A
p f5 a: h5

a4 Prill
A

c4 Ir:
A

e4 ro
A

g4 Pr ,

r . b3
d3 Ar f3 . h3

a2 IrrAi c2 Ir. e2

A
p g2 r

Ar .

A
bi

A
dl flgip

Al
. hl

A

Figure A.1: Chess board notation
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(terminate-state mrsform (terminate-state $name $result $state $side)).

The mrsform is the same for checkers and chess, the rules that recognize goals all

have the same form of consequent.

The second form in the search schema illustrates the o-and connective. This is

used to make explicit the test for check disscussed in Chapter 3. The first primitive

of the o-and has the following code mrsform defined:

(test- check? mrsform (move Sname $state $newstate $from $to Skind

$type $direct $side $typetaken)),

where the move predicate defines the legal moves in chess described later. In addition

to the mrsform slot, this test-checla has another slot giving "initial constraints"

(test- check? initial-constraints ( ($side . $lastside)

($kind . take)

($typetaken . king)))

These initial constraints define this move as a move by the opponent that takes

the king. The interpreters lookup this initial-constraints information and plug in the

bindings before any others. The variable $lastside is maintained by the interpreters

to be bound to the non-current player. As the primitive is single-terminate the

interpreters check whether the condition defined by the mrsform exists in the current

state.

The code mrsform for the final primitive is given below:

(normalmoves mrsform (move $name $state $newstate $from $to $kind

$type $direct $side $typetaken)
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The form unifies with the consequent of the main MRS rule defining legal chess

moves described next.

A.2 Actions and Goals

In chess the concept lose-queen was given to Wyl as part of the domain specification

and used in both the concepts learned. The definition of lose-queen in MRS is given

below:

(if (and (side $player $side)

(type $player queen)

(unprovable (occupied $state $square $player))

(newname $player $side $name))

(terminate-state $name lose-queen $state $side))

The main action rule is made up of two subrules like the actions rule for checkers,

a rule that generates legal moves and a rule that makes the moves. First the top

level rule:

(if (and (find-move $state $kind $from $direct $to $player $side $type $typetaken)

(make-move $state $from $to $player $newstate)

($side opside $opside)

(newname $from $to $name)

(unprovable (find-move $newstate take $anyfrom $anydir $anyto $anyp $opside $anyt

(move $name $state $newstate $from $to $kind $type $direct $side $typetaken))

The final form in the clause determines if the resulting state of the move ($new-

state) is a check position for side $side.

The rule that makes the move is very similar to the rule used in checkers:

(if (and (new-state $newstate)
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(add-info ((occupied $newstate $to $player)

(occupied $newstate $from empty)

(nextstate $state $newstate))))

(make-move $state $from Sto $player $newstate))

The rule that finds the moves is given below:

(if (and (side $player $side)

(type $player $type)

(occupied $state $from $player)

(legal-direction $side $type $direct $count)

(move-dir $state $kind $direct $count $from $from $to $side $typetaken))

(find-move $state $kind $from $direct $to $player $side $type $typetaken))

The side, type and legal-direction are similar to those used in checkers. The

legal-direction facts differ because, in addition to the legal direction of movement,

the legal number squares movable in the direction is also specified. The move-dir

form computes all the legal moves in a given direction. There are two kinds of

moves, those that end in taking a piece and those that end on an empty square.

The rules defining this move-dir form are given below:

First the recursive form of move-dir:

(if (and (not-zero $count)

(connected $tempfrom $next $direct)

(occupied $state $next empty)

(sub-1 $count $newcount)

(move-dir $state $kind $direct$newcount $from $next $to $side $typetaken))

(move-dir $state $kind $direct $count $from $ tempfrom $to $side $typetaken))

The connected facts are similar to checkers. The next rule is a termination

condition for move-dir that defines non-take moves:
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(if (and (not-zero $count)

(connected $tempfrom $to $direct)

(occupied $state $to empty))

(move-dir $state nontake $direct $count $from $tempfrom $to $side nil))

The final rule of move-dir defines take moves:

(if (and (not-zero $count)

(connected $tempfrom $to $direct)

($side opside $opside)

(side $player $opside)

(type $player $typetaken)

(occupied $state $to $player))

(move-dir $state take $direct $count $from $tempfrom $to $side $typetaken))

A.3 Structural Language

The board positions are described in a very simple langauge very like that used

for checkers. The chess playing squares on the board are described by 420 facts

enumerating all the connected relationships between each square and its neighbors:

(connected al a2 n)

(connected al b2 ne)

(connected al bi e) ....

Playing peices are named and described by type and side facts like checkers:

(type rbl bishop)

(side rbl red)

(type wkl king)
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(side wkl white)

The facts used in the legal moves definitions that define the legal directions of types

of peices is illustrated below:

(legal-direction white king ne 1)

(legal-direction white king n 1)

(legal-direction red bishop se 8)

(legal-direction red bishop ne 8)

(legal-direction red rook n 8)

(legal-direction red rook s 8)
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Appendix B

Checkers concept trap structural concept
langauge

In this section we give the complete structural concept language for trap created by

the compaction stage described in Section 2.3.4. First we give the relational terms

created by the path finding algorithm then the descriptive terms created by Tax.

B.1 Relational terms

The relational terms are all defined from the instance language primitive connected.

(if (and (connected $lsquarel $lsquare3 sw)

(connected $lsquare3 $lsquare2 se))

(connected $lsquarel $lsquare2 south-2-square))

(if (and (connected $lsquarel $lsquare3 se)

(connected $lsquare3 $lsquare2 sw))

(connected $lsquarel $lsquare2 south-2-square))

(if (and (connected $lsquarel $lsquare3 se)
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(connected $lsquare3 $lsquare2 se))

(connected $lsquarel $lsquare2 se-2-square))

(if (and (connected $lsquarel $lsquare3 ne)

(connected $lsquare3 $lsquare2 se))

(connected $lsquarel $lsquare2 east-2-square))

(if (and (connected $lsquarel $lsquare3 se)

(connected $lsquare3 $lsquare2 ne))

(connected $lsquarel $lsquare2 east-2-square))

(if (and (connected $lsquarel $lsquare3 ne)

(connected $lsquare3 $lsquare2 ne))

(connected $lsquarel $lsquare2 ne-2-square))

(if (and (connected $lsquarel $lsquare3 ne)

(connected $lsquare3 $lsquare2 nw))

(connected $lsquarel $lsquare2 north-2-square))

(if (and (connected $lsquarel $lsquare3 nw)

(connected $lsquare3 $lsquare2 ne))

(connected $lsquarel $lsquare2 north-2-square))

(if (and (connected $lsquarel $lsquare3 nw)

(connected $lsquare3 $lsquare2 nw))

(connected $lsquarel $lsquare2 nw-2-square))
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(if (and (connected $lsquarel $lsquare3 nw)

(connected $lsquare3 $lsquarel sw))

(connected $lsquarel $lsquare2 west-2-square))

(if (and (connected $lsquarel $lsquare3 sw)

(connected $lsquare3 $lsquare2 nw))

(connected $lsquarel $lsquare2 west-2-square))

(if (and (connected $lsquarel $lsquare3 sw)

(connected $lsquare3 $lsquare2 sw))

(connected $lsquarel $lsquare2 sw-2-square))

B.2 Descriptive terms

The descriptive terms are all created by Tax. There are new terms created for each

of the instance language descriptive terms.

Square terms

(if (or (sq $square s23)

(sq $square 87)

(sq $square s11)

(sq $square s22)

(sq $square s19)

(sq $square s14)

(sq $square s10)

(sq $square s15)
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(sq $square s18)

(sq $square s6))

(sq $square center))

(if (or (sq $square west-center-side)

(sq $square s29))

(sq $square west-single-side))

(if (or (sq $square east-center-side)

(sq $square 84))

(sq $square east-single-side))

(if (or (sq $square s21)

(sq $square s13))

(sq $square west-single-side))

(if (or (sq $square s12)

(sq $square s20))

(sq $square east-center-side))

(if (or (sq $square s2)

(sq $square s3))

(sq $square north-center-side))

(if (or (sq $square s30)

(sq $square s31))

(sq $square south-center-side))
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Connected terms

(if (or (connected $square-1 $square-2 south-2-square)

(connected $square-1 $square-2 sw-2-square))

(connected $square-1 $square-2 south-west-triangle))

(if (or (connected $square-1 $square-2 south-2-square)

(connected $square-1 $square-2 se-2-square))

(connected $square-1 $square-2 south-east-triangle))

(if (or (connected $square-1 $square-2 ne-2-square)

(connected $square-1 $square-2 north-2-square))

(connected $square-1 $square-2 north-east-triangle))

Type terms

(if (or (type $player king)

(type $player man))

(type $player anytype))
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Appendix C

Trap structural concept description

In this section we give the complete structural concept description for the concept

trap generated by the compaction stage described in Section 2.3.4. The descriptions

capture traps for both sides of the board by use of the mirror-square relation. If the

side is white the squares tested are mapped to their symmetrical equivalent. Some

examples of the mirror-square relation are given below:

(mirror-square si s32 white)

(mirror-square s2 s31 white)

(mirror-square si si red)

(mirror-square s2 s2 red).

The 12 members of the disjunction are given below:

(if (and ($sidel opside $side2)

(side $var-piece-1 $sidel)

(type $var-piece-1 anytype)

(occupied $state $var-square-1 $var-piece-1)

(mirror-square $var-square-1 $orientsql $sidel)

(sq $var-square-1 s4)
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(side $var-piece-2 $side2)

(type $var-piece-2 anytype)

(occupied $state $var-square-2 $var-piece-2)

(mirror-square $var-square-2 $orientsq2 $sidel)

(connected $orientsql $orientsq2 south-west-triangle))

(trap-0 $state relevant-side $sidel))

(if (and ($sidel opside $side2)

(side $var-piece-1 $sidel)

(type $var-piece-1 man)

(occupied $state $var-square-1 $var-piece-1)

(mirror-square $var-square-1 $orientsql $sidel)

(sq $orientsql center)

(side $var-piece-2 $side2)

(type $var-piece-2 anytype)

(occupied $state $var-square-2 $var-piece-2)

(mirror-square $var-square-2 $orientsq2 $sidel)

(connected $orientsql $orientsq2 south-2-square))

(trap-0 $state relevant-side $sidel))

(if (and ($sidel opside $side2)

(side $var-piece-1 $sidel)

(type $var-piece-1 king)

(occupied $state $var-square-1 $var-piece-1)

(mirror-square $var-square-1 $orientsql $sidel)

(sq $orientsql s29)

(side $var-piece-2 $side2)
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(type $var-piece-2 king)

(occupied $state $var-square-2 $var-piece-2)

(mirror-square $var-square-2 $orientsq2 $sidel)

(connected $orientsql $orientsq2 noth-east-triangle))

(trap-0 $state relevant-side $sidel))

(if (and ($sidel opside $side2)

(side $var-piece-1 $sidel)

(type $var-piece-1 man)

(occupied $state $var-square-1 $var-piece-1)

(mirror-square $var-square-1 $orientsql $sidel)

(sq $orientsql west-single-side)

(side $var-piece-2 $side2)

(type $var-piece-2 anytype)

(occupied $state $var-square-2 $var-piece-2)

(not-equal $var-square-1 $var-square-2)

(mirror-square $var-square-2 $orientsq2 $sidel)

(connected $orientsql $orientsq2 south-east-triangle))

(trap-0 $state relevant-side $sidel))

(if (and ($sidel opside $side2)

(side $var-piece-1 $sidel)

(type $var-piece-1 king)

(occupied $state $var-square-1 $var-piece-1)

(mirror-square $var-square-1 $orientsql $sidel)

(sq $orientsql s29)

(side $var-piece-2 $side2)
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(type $var-piece-2 anytype)

(occupied $state $var-square-2 $var-piece-2)

(mirror-square $var-square-2 $orientsq2 $side1)

(connected $orientsql $orientsq2 east-2-square))

(trap-0 $state relevant-side $sidel))

(if (and ($sidel opside $side2)

(aide $var-piece-1 $sidel)

(type $var-piece-1 anytype)

(occupied $state $var-square-1 $var-piece-1)

(mirror-square $var-square-1 $orientsql $sidel)

(sq $orientsql east-single-side)

(side $var-piece-2 $side2)

(type $var-piece-2 king)

(occupied $state $var-square-2 $var-piece-2)

(mirror-square $var-square-2 $orientsq2 $sidel)

(connected $orientsql $orientsq2 west-2-square))

(trap-0 $state relevant-side $sidel))

(if (and ($sidel opside $side2)

(side $var-piece-1 $sidel)

(type $var-piece-1 man)

(occupied $state $var-square-1 $var-piece-1)

(mirror-square $var-square-1 $orientsql $sidel)

(sq $orientsql s5)

(side $var-piece-2 $side2)

(type $var-piece-2 king)
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(occupied $state $var-square-2 $var-piece-2)

(mirror-square $var-square-2 $orientsq2 $sidel)

(connected $orientsql $orientsq2 east-2-square))

(trap-0 $state relevant-side $sidel))

(if (and ($sidel opside $side2)

(side $var-piece-1 $sidel)

(type $var-piece-1 anytype)

(occupied $state $var-square-1 $var-piece-1)

(mirror-square $var-square-1 $orientsql $sidel)

(sq $orientsql west-center-side)

(side $var-piece-2 $side2)

(type $var-piece-2 king)

(occupied $state $var-square-2 $var-piece-2)

(mirror-square $var-square-2 $orientsq2 $sidel)

(connected $orientsql $orientsq2 east-2-square))

(trap-0 $state relevant-side $sidel))

(if (and ($sidel opside $side2)

(side $var-piece-1 $sidel)

(type $var-piece-1 king)

(occupied $state $var-square-1 $var-piece-1)

(mirror-square $var-square-1 $orientsql $sidel)

(sq $orientsql south-center-side)

(side $var-piece-2 $side2)

(type $var-piece-2 king)

(occupied $state $var-square-2 $var-piece-2)
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(not-equal $var-square-1 $var-square-2)

(mirror-square $var-square-2 $orientsq2 $sidel)

(connected $orientsql $orientsq2 north-2-square))

(trap-0 $state relevant-side $sidel))

(if (and ($sidel opside $side2)

(side $var-piece-1 $sidel)

(type $var-piece-1 man)

(occupied $state $var-square-1 $var-piece-1)

(mirror-square $var-square-1 $orientsql $sidel)

(sq $orientsql east-center-side)

(side $var-piece-2 $side2)

(type $var-piece-2 anytype)

(occupied $state $var-square-2 $var-piece-2)

(mirror-square $var-square-2 $orientsq2 $sidel)

(connected $orientsql $orientsq2 south-west-traingle))

(trap-0 $state relevant-side $sidel))

(if (and (side $var-piece-1 $sidel)

($sidel opside $side2)

(type $var-piece-1 anytype)

(occupied $state $var-square-1 $var-piece-1)

(mirror-square $var-square-1 $orientsql $sidel)

(sq $orientsql north-center-side)

(side $var-piece-2 $side2)

(type $var-piece-2 anytype)

(occupied $state $var-square-2 $var-piece-2)
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(mirror-square $var-square-2 $orientsq2 $sidel)

(connected $orientsql $orientsq2 south-2-square))

(trap-0 $state relevant-side $sidel))

(if (and (trap-0 $state relevant-side $sidel)

(newname trap term $name))

(terminate-state $name trap $state $sidel))


