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DISCRETE-TIME EXPLICIT MODEL REFERENCE ADAPTIVE CONTROL
FOR ROBOTIC MANIPULATORS

I. INTRODUCTION

In the present work a direct approach using a discrete-

time model reference adaptive control (MRAC) system based

on hyperstability theory is described in order to control

industrial robotic manipulators.

When the parameters of the plant dynamic model (in this

case a robotic manipulator) and the associated

disturbances are poorly known or vary in time, it is very

difficult to achieve high performance with conventional

control strategies. A more robust and sophisticated

control scheme which gives high performance in spite of

poor information regarding the plant and operating

circumstances is therefore desired. It has been reported

that adaptive control techniques can provide this robust

property in several applications [1-3].

The main problem of adaptive control schemes is to find a

proper way to adjust the controller parameters to follow

changes in the plant parameters and disturbances without

losing stability of system. Depending on the method for
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adjusting the parameters of the controller, various

approaches to adaptive control can be classified in the

following three schemes: gain scheduling [4,5], model

reference adaptive control [6-9], and self-tuning

regulators [10,11]. Among these the model reference

adaptive control method is discussed here. This scheme was

originally introduced by Whitaker, Yamron and Kezer(1958)

[12] for the servo problem, and its objective is to find

an adaptation mechanism which assures that the difference

between the output of the reference model and the output

of the plant tends to zero as time goes to infinity for

any initial conditions.

From the stability point of view, two basic approaches to

the design of MRAC systems can be considered. The first

approach is to use a suitable Lyapunov function and derive

an adaptation mechanism assuring the global asymptotic

stability for the whole system. This approach can be found

in the earlier works of Park and others [13-17]. The

second approach is to use the hyperstability and

positivity concepts of Popov [18] which provide sufficient

stability conditions for a feedback system which can be

formed by a linear time-invariant feedforward block and a

nonlinear time-varying feedback block. The error equation
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of the MRAC system can be represented by this equivalent

feedback system. Thus the adaptation structure is

determined by the stability conditions for this equivalent

feedback system. This approach has been proposed by

several authors [19-21]. In the present work the second

approach is used since it has been shown by Landau [22]

that the use of hyperstability theory gives a larger

class of adaptation algorithms than is obtained when using

the direct Lyapunov method.

In the last few years, several industrial robots and

manipulators have been introduced as applications of the

MRAC approach [23-27]. Conventional linear control

techniques usually give only limited dynamic performance

for robotic manipulators.> This poor performance is due to

the highly nonlinear and complex dynamic equations which

often have unknown inertia characteristics. In most

previous work, continuous-time MRAC schemes for robotic

manipulators have been proposed. However, since practical

implementation of the manipulator control is performed on

a digital computer which is low-cost and reliable, a

discrete-time MRAC scheme is desired. One approach for a

discrete-time MRAC for manipulators has been proposed by

R. Horowitz [28]. In his work, only the linear terms for



the manipulator were considered, allowing simplified

dynamic equations to be obtained. The discrete-time MRAC

system was then developed using only velocity feedback.

The position feedback was implemented in a conventional

way. Using this approach, step-responses for the system

were reported. In the present work, the complete nonlinear

manipulator dynamic equations are considered and both

position and velocity feedback are utilized in the MRAC

system. Considering the effects of gravity, process noise

and payload uncertainty the MRAC scheme is investigated

using computer simulation. Also the reference input is

computed using a trapezoidal speed law along a desired

trajectory.

The remaining chapters in the thesis are organized as

follows: In chapter 2 the definitions and basic theorems

of stability theory, the concept of a positive system, and

hyperstability theory are introduced. In chapter 3 a

parameter adaptation algorithm (PAA) based on

hyperstability theory is determined for single-input

single-output plant systems and discussed in terms of

stability. In order to provide more understanding of this

PAA, an adaptation scheme based on a Lyapunov function is

compared to the adaptation scheme based on hyperstability
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theory. In chapter 4 a linear model following control

(LMFC) system for tracking and regulation of linear plants

with known parameters is determined. Based on the

structure of the liner model following control law, a

MRAC system is determined using the PAA of chapter 3 and

is studied with a time-varing adaptation gain. In chapter

5 a three degree of freedom industrial robot similar

the SEIKO Model PN-700 is modelled. The discrete-time MRAC

obtained in chapter 4 is used to control this manipulator

with a given trajectory and speed law. Considering the

effects of gravity, process noise and payload

uncertainty, this approach is investigated by simulation.

Chapter 6 summarizes this work and gives some comments on

directions for further research.
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II. THEORETICAL BACKGROUND

2.1 Introduction

Adaptive control systems have been introduced to achieve

high control performance when the plant dynamic

characteristics are poorly known or when large and

unpredictable variations occur.

To answer the question introduced by Landau [29] regarding

the difference between conventional feedback control and

adaptive control, we propose that adaptive control is

focused on the elemination of the effects of parameter

variations in the plant to be controlled, while

conventional feedback control is focused on the

elemination of the effect of modeled disturbances. For

example, a D.C. servo motor used in robotic applications

is subject to important variations in the load moment of

inertia. Thus to achieve high performance in such a

system, adaptive control techniques are attractive.

Among the various types of adaptive control techniques, we

consider the model reference adaptive control (MRAC)

systems. The main hypothesis for MRAC systems is that in
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order to achieve desired performance when plant parameters

vary, only the values of the parameters of the controller

have to be changed and not the structure of the

controller.

Basically a MRAC system is formed by:

(1) A reference model which gives the desired

performance.

(2) A plant whose performance should be as close as

possible to that of the reference model.

(3) A differencing element which forms the error

between the output of the reference model and of

the plant.

(4) An adaptation mechanism which processes the

error in order to modify the parameters

of the controller.

Figure 2.1.1 shows the basic structure of the MRAC system.

A MRAC system can be equivalently represented as

nonlinear time-varying feedback system which will be shown

in chapter 3. Thus we can use results on the stability of

this type of feedback system for the design of the

adaptation algorithm. In the work presented here, the

results of hyperstability theory whose concept was first
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Figure 2.1.1 Basic Structure of a MRAC System
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introduced by Popov [30] is used for the design of the

adaptation algorithm.

The concept of hyperstability theory is closely related to

the positivity concept. Thus in section 2.2, 2.3, and 2.4

of this chapter, we will discuss some definitions and

basic theorems of the following subjects:

(1) System stability

(2) Concept of a positive system

(3) Hyperstability

The reader should realize that only the discrete time

version of each theorem will be included here since our

interest lies solely with discrete-time systems. For

readers interested in a deeper study of the above

subjects, references are indicated in each section.
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2.2 System Stability

Stability refers to the boundedness of the variables of a

system as time goes to infinity. There are two major

points of view with respect to the stability. First, the

system is presumed to possess an equlibrium state and the

concern is with the ability of the system to maintain its

state in the vicinity of this equlibrium in the absence of

any inputs. Another point of view concerns the behavior

of the state variables when the system is subjected to

bounded input.

In this section a Lyapunov function is defined and the

stability of discrete-time systems is described. A basic

reference for this section is Freeman [31].

Consider a sampled-data system to which no input is

applied:

x(tk+1) F(x(tk)'tk)
(2.2.1)

where x is the n-dimensional vector, tk is the

independent, discrete-time variable, t k+1 >tk
for all

integer k, -co <k<00, and tic as k+ co .
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Consider the vector fuction P(tk ,x
o'

t
o
), a solution of

equation (2.2.1) for an initial state x® and an initial

time to :

x(t
k

) = P(tk,xo,to) for all tk
>

o
(2.2.2)

We assume that for the systems under consideration the

vector function P is always continuous in all its

arguments. Clearly,

P(to,x0,t0) = xo (2.2.3)

P(texo,to) = P(te,P(tb,xo,t ) for all ta>tb>t c
(2.2.4)

A state xe of the system given by equation (2.2.1) is

called an equlibrium state if

F(xe,tk) = xe for all tk (2.2.5)

Definition 2.2.1

The equlibrium state xe is said to be L-stable (stable in

the sense of Lyapunov) if, for any to and any E>0, there

corresponds a 6(E,t0) > 0 such that if

ilx0 -xe (I < 6 (e,t0),

then IIP(tk,x0,t0)-xell < E for all tk>to.

Definition 2.2.2

The equlibrium state xe is said to be uniformly -stable

if, for any to and anyE >0, there corresponds a 8(E )>0
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such that if Ilx0-xell<6(E), then IIP(tk,x0,t0) -xell<c for

all t t
o

Definition 2.2.3

The equlibrium state xe is said to be asymptotically

stable if it is L-stable and if there exists a n(to )>0

such that

lim IIP(t ,x 0,t0)-xell = 0 for all lIxo-xell<n(to)
k-*oo

(2.2.6)

If n is independent of to, the state is uniformly

asymptotically stable.

Definition 2.2.4

The equilibrium xe is said to be globally asymptotically

stable if it is asymptotically stable for any initial

state x
o

.

Definition 2.2.5

A scalar function V(x, k) is said to be positive definite

in a neighborhood N of the point xe if V(xe,tk)=0 and if

there exists a continuous nondecreasing, scalar function W

such that

W(0) = 0 (2.2.7)
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V(x,tk) > W(11301) for all tk and all x in N (2.2.8)

Definition 2.2.6

A positive definite function V(x,tk) is said to be

decrescent in a neighborhood N if there exists a

continuous nondecreasing scalar function S such that

S(0) = 0 (2.2.9)

V(x,tk) < S(11,01) for all tk and all y =xe in N

(2.2.10)

Definition 2.2.7

A positive definite function V(x,tk) is said to be

infinitely large if IV(x,tk)1400 as 11,014.00 for all tk

Let V(x,tk) be a positive definite function with

continuous first partial derivatives with respect to x.

Let V(x,tk) denote the first forward difference in

V(x,tk) along the positive time axis, that is,

V(x(tki.1),tk.4.1) - V(x(tk),tk)
V(x,tk) = (2.2.11)

-t k+1 t
k

when x(tk)

Consider the system given by equation(2.2.1) where

F(O,tk) = 0

that is, an equlibrium state xe=0.

(2.2.12)
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Theorem 2.2.1

The equlibrium state xe=0 is L-stable if there exists a

positive definite function V(x,tk) possessing a

nonpositive forward difference dli(x,tk).

Proof: We refer to definitions 2.2.1 and 2.2.5. Given a

particular E>O, we select a d(c,to )>0 such that for

11x011< 6(E,t0) we obtain both lixoll<E and V(xo,t0)<W(E).

Such a choice of 6 is possible because of the continuity

in x of V(x ,tk). Since V(x,tk) is nonpositive,

V(x0,t0) > V(P(tk,x0,t0),tk) (2.2.13)

> W(IIP(tk,x ,t0)11) (2.2.14)

and therefore

W(E) > V(x0,t0) > W(IIP(tk,x0,t0)11) (2.2.15)

Since, however, W is a nondecreasing function, it follows

that

11P(tk,x0,t0)11 < E for all t >to and all 11x011<6 (S ,t0)

(2.2.16)

Q.E.D.

Theorem 2.2.2

The equlibrium xe =0 is asymptotically stable if there

exists a decrescent positive definite function V(x,tk)
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possessing a negative definite forward difference

LV(x,tk).

Proof: From the proof of the L-stablility theoreom 2.2.1

we know that the positive definite function V(x,tk) has a

non-negative limit as tk00. We denote this limit by VL.

Since V(x,tk) is decrescent by hypothesis,

V(x,tk) < S(I1x11) (2.2.17)

Hence V
L

>0 implies that the state magnitude of

11x(tk) 11=11 P(tk,x0,t0)11 will always larger than some

positive number p. Since tV(x,tk) is negative definite,

LV(x,tk) < - (2.2.18)

where r is a continuous, nondecreasing scalar function

such that r(0)=0, and where we have for simplicity assumed

that t
k+1

-t
k
=1 in equation (2.2.11). Then V >0 implies

LV(x,tk) < -r(u) < 0 (2.2.19)

We now write V(x,t
k

) in terms of its forward difference

AV(x,tk):
k-1

V(x(t = V(x0,t0) + E V(x(ti ),ti)
i=0

< V(x
o'

t
o

) -kr(1.1) (2.2.20)

Since V(x,t
k

) is positive definite, the right-hand side

of equation (2.2.20) may not become negative. The only way

this can be satisfied for large k is to have r(1.1)=0. Hence



/A=0 and IIP(t
k
,x

o
,t

o
)I1+= as K+=.
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Q.E.D.

Theorem 2.2.3

The equlibrium state x
e
=0 is globally asymptotically

stable if it is asymptotically stable and if V(x,tk ) is

such that W(11x11)+00 as 11301+00

Proof of theorem 2.2.3 is not included here since it

follows directly from the proofs of the foregoing

theorems.

We note that the stability (in the sense of Lyapunov) of

an equlibrium point depends on the existence of a positive

definite function V(x,tk ) possessing a nonpositive first

difference AV(x,tk). This function is referred to as a

Lyapunov function. It is clear that this function will

normally not be unique for a given equlibrium point.

Theorem 2.2.4

The equlibrium state
xe=O of the linear discrete-time

autonomous dynamic system:

x(k+1) = Ax(k) (2.2.21)

is asymptotically stable if and only if given any positive

definite matrix Q there exists a symmetric positive

definite matrix P which is the unique solution of the



matrix equation

ATPA - P = -Q

and V(x) = x(k) T
Px(k)

is a Lyapunov function for the system

(2.2.21).
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(2.2.22)

(2.2.23)

equation

Proof: Let Q be a symmetric positive definite matrix such

that

pV(x(k)) = -x(k)T00x(k)

Then pV(x(k)) = V(x(k+1)) - V(x(k))

= V(Ax(k)) - V(x(k))

(2.2.24)

(2:2.25)

Substituting a Lyapunov function (2.2.23) and making use

of the fact that (Ax(k)) T
=x(k)

T
A
T

, we find

x(k)
T
A
TPAx(k) - x(k) TPx(k) = -x(k )TQx(k) (2.2.26)

and hence

A
TPA - P = -Q (2.2.27)

If we can solve equation (2.2.27) for the matrix P and

then P is a symmetric positive definite matrix, the system

(2.2.21) will be asymptotically stable by theorem 2.2.2.

Q.E.D.

Now we investigate the stability of linear discrete-time

systems which have a non-zero input. Since we shall permit

a nonzero input for all future time, we must modify our
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definition of stability to take into account a boundness

condition on the input. Roughly speaking, we shall regard

a system as stable if a bounded input produces a bounded

output. The following definition which is applicable to

continuous-time and discrete-time systems is introduced.

Definition 2.2.8

A linear system is stable if and only if at any time t ,

with the system in any initial state x(to), every input u

that satisfies the condition 11u(t)I1<ni for all to<t<0, ,

yields a state x and an output y such that 11x(t)11<n2 and

Ily(t)11<n3 for all to <t< co where n
n 2

and n
3

are

positive finite constants.
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2.3 Concept of a Positive System

The concept of positive systems was introduced by Popov,

Kalman, and Yakubovitch. This concept will be used to

develop hyperstability theory in section 2.4. Basic

references for this section are (32-34].

Consider the linear discrete-time system

x(k+1) = Ax(k) + Bu(k) (2.3.1)

y(k) = Cx(k) + Du(k) (2.3.2)

where x is an n-dimensional state vector, u and y are m-

dimensional vectors representing the input and the output,

respectively and A, B, C and D are matrices of appropriate

dimension. We assume that (A,B) is completely controllable

and that (C,A) is completely observable. The system of

equations (2.3.1) and (2.3.2) is also characterized by the

discrete square transfer matrix,

H(z) = D + C(zI - A)
-1

B ( 2.3.3)

Definition 2.3.1

An m x m discrete matrix H(z) of real rational functions

is positive real if

1. All elements of H(z) are analytic outside the unit

circle, that is, they do not have poles in Izi>1.
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2. The eventual poles of any element of H(z) on the unit

circle 1z1=1 are simple, and the associated residue matrix

is a positive semidefinite Hermitian.

3. The matrix

F(w) = H(e iw) + H(e-jw)T (2.3.4)

is a positive semidefinite Hermitian for all real values

of w which are not a pole of any element of H(ejw), that

is, for all z on the unit circle 1z1=1 which are not

pole of H(z).

Definition 2.3.2

An m x m discrete matrix H(z) of real rational functions

is strictly positive real if

1. all the elements of H(z) are analytic in IzI>1.

2. The matrix

F(w) = H(ejw) + H(e-Jw)T (2.3.4)

is a positive definite Hermitian for all w, that is, for

all z on the unit circle 1z1=1.

Definition 2.3.3

The discrete matrix kernal c(k,i) is termed positive

definite if for each interval [ko,ki] and for all the

discrete vectors f(k) bounded in (k0,k1) the following

inequality holds:



E
1

f(k)
T

[ k c(k,i)f(i)] > 0 for all k >
1

i=kk=k
0 0
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(2.3.5)

Definition 2.3.4

The system of equations (2.3.1) and (2.3.2) is positive if

the sum of the input-output scalar products over the

interval [0,k1 ] can be expressed by

1
E y(k)

T
u(k) = 5(x(k1+1)) - 5(x(0)) + EX(x(k),u(k))

k=k
0

k=0
(2.3.6)

for all k1>0 withA(x(k),u(k))>0 for all x(k)ERn, u(k)ERm.

Some of the equivalent formulations of the properties of

the linear discrete-time positive systems are given in the

following theorem 2.3.1. These properties are necessary

and sufficient conditions for a linear discrete-time

system to be positive.

Theorem 2.3.1

The following properties concerning the system of

equations (2.3.1) and (2.3.2) are equivalent to each

other:

1. The system of equations (2.3.1) and (2.3.2) is positive

(Definition 2.3.4).

2. H(z) given by equation (2.3.3) is a positive real

discrete transfer matrix.
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3. There exist a symmetric positive definite matrix P,

symmetric positive semidefinite matrix Q, and matrices S

and R such that

A
T
PA P = -Q

B
TPA + ST = C

D + DT B
TPB = R

rQ S

> 0

(2.3.7)

(2.3.8)

(2.3.9)

(2.3.10)

4. [Kalman-Szego-Popov Lemma] There exist a symmetric

positive definite matrix P and matrices K and L such that

A
TPA - P = -LLT (2.1.11)

B
TPA + KTLT = C

KTK = D + DT - BTPB

(2.3.12)

(2.3.13)

5. Every solution x(k) of equations (2.3.1) and (2.3.2)

satisfies the following equality:

k
E

1
1

y(k)
Tu(k) = - x(k

1
+1)

T
Px(k

1

1

+1) - - x(0) Px(0)
k=0 2 2

1

+ - E[x(k) TQx(k) + 2u(kTSTx(k)
2 k=0

+ u(k) TRu(k)]

(2.3.14)

where P is a positive definite matrix and the matrices P,

Q, S, and R satisfy equations (2.3.7) and (2.3.10).

6. [Impulse response matrix] The discrete matrix kernal,

c(k-i) = DS(k-i) + CA -(1 -1)
Bulk -i) (2.3.15)
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where w(k) means a unit step function, C is a positive

definite discrete kernel.

Proof of theorem 2.3.1 will be shown in Appendix A.

Lemma 2.3.1

The discrete transfer matrix H(z) given by equation

(2.3.3) is strictly positive real if there exists

symmetric positive definite matrix P, a symmetric positive

definite matrix Q, and matrices K and L such that

A
T
PA - P = -LLT - Q

B
T
PA + KTLT= C

K K = D + DT -B
T
PB

(2.3.16)

(2.3.17)

(2.3.18)

Proof of lemma 2.3.1 is not included here but using the

continuous version [35] of the strictly positive real

lemma, it can be proven by the same procedure of the proof

of proposition 4 of theorem 2.3.1, which is shown in

Appendix A.
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2.4 Hyperstability

Let us consider the feedback system represented in Figure

2.4.1 which is formed by a linear time-invariant

feedforward block and a nonlinear time-varying feedback

block. When a feedback system shown in Figure 2.4.1 is

globally stable for all the feedback blocks satisfying the

inequality:
k

n(ko,ki) = r w(k) y(k) > -r 2
(2.4.1)

.0.

k=0
where r

o
2

is a finite positive constant, this feedback

system will be said to be hyperstable.

In this section, hyperstability is defined and basic

results of hyperstability theory are introduced. Basic

references for this section are [36-38].

Consider the closed-loop system having

block:

a feedforward

x(k+1) = Ax(k) + Bu(k) (2.4.2)

y(k) = Cx(k) + Du(k) (2.4.3)

and a feedback block:

u(k) = -w(k) (2.4.4)

w(k) = f(y,k) (2.4.5)

where x is an n-dimensional state vector, u and y are m-



w (k)

Linear
time-invariant

Nonlinear
time-varying

y (k)

y (k)

Figure 2.4.1 Nonlinear time-varying feedback system
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dimensional input and output vectors respectively, A, B, C

and D are matrices of appropriate dimension, (A,B) is

completely controllable, (C,A) is completely observable,

and f is a functional-vector.

Definition 2.4.1

The closed-loop system of equations (2.4.2) to (2.4.5) is

hyperstable if there exists a positive constant 6>0 and

positive constant r0>0 such that all the solutions

x(x(0),k) of equations (2.4.2) and (2.4.3) satisfy the

inequality

IIx(k)II < d[ilx(0)11 + ro] for all k > 0 (2.4.6)

for any feedback block of, equation (2.4.5) satisfying the

inequality of equation (2.4.1).

Definition 2.4.2

The closed-loop system of equation (2.4.2) to (2.4.5) is

asymptotically hyperstable if it is globally

asymptotically stable for all the feedback blocks given by

equation (2.4.5) which satisfies the inequality of

equation (2.4.1).
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Theorem 2.4.1

The necessary and sufficient condition for the feedback

system described by equations (2.4.1) to (2.4.5) to be

(asymptotically) hyperstable is as follows:

The discrete transfer matrix

H(z) = D + C(zI - A)' 1B (2.4.7)

must be a (strictly) positive real discrete transfer

matrix.

Proof of theorem 2.4.1 can be found in ref. [39].
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III. THE PARAMETER ADAPTATION ALGORITHM

3.1 Introduction

In this chapter, a parameter adaptation algorithm (PAA) is

determined and its stability is discussed. This discussion

centers on the problem of output prediction since the

feedback structure for this system is simpler than the

structure of the model reference adaptive control (MRAC)

system. This simplicity allows a clearer understanding of

the stability properties of the hyperstebility and

positivity concepts. The application to the MRAC problem

will be discussed in chapter 4.

In section 3.2 a simple PAA is determined using

hyperstability theory with the following procedure:

(1) Define the plant equation and an adjustable

predictor equation.

(2) From (1) define the error equation between the

output of the plant and the output of, predictor.

(3) Determine the equivalent feedback system for the

error equation, which has a time-invariant

feedforward block and a time-varying feedback

block.
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(4) Using hyperstability theory and the positivity

concept, determine a PAA giving a feedback system

which is globally asymptotically stable.

In section 3.3 the general PAA is introduced and analyzed

from the stability point of view. This PAA will be used to

develop the explicit MRAC system in chapter 4.

In section 3.4 a PAA is determined using a Lyapunov

function and is compared to the PAA of section 3.2. This

approach is described in order to help in understanding

the stability properties of the PAA. The advantages of

the hyperstability and positivity concepts are readily

contrasted with the direct Lyapunov approach for this

prediction problem.
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3.2 PAA based on Hyperstability Theory

In this section the structure of the adjustable predictor

is defined and then a PAA is developed so that the

adaptation error is globally asymptotically stable for any

initial conditions.

We will consider the following dynamic model for the

plant:

Y(k+1) = A(q- )Y(k) + B(q-)(k) (3.2.1)

where y is a scalar output, u is a scalar input, A and B

are the scalar operators involving time delays and q-1 is

single time step delay operator, and the a posteriori

output of the adjustable predictor can be described by:

cr(k+1) = R(k+1,q1)Y(k) + B(k+1,q-1)u(k) (3.2.2)

where

-1 -n+1A(k,q ) = a1(k) + + a
n
(k)q (3.2.3)

i(k,q-1) = to(k) + +1,21(k)q-m (3.2.4)

The a posteriori output of the adjustable predictor of

equation (3.2.2) can be rearranged so that

ii(k+1) = 6(k+1)T0(k) (3.2.5)

where



0(k)T =
1

...
n
1b m

]

0(k)
T

= [y(k) Y(k-n+1) u(k) u(k-m)]
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(3.2.6)

(3.2.7)

This form gives the structure of a parallel model

reference adaptive system which is shown in Figure 3.2.1.

The a priori output of the adjustable predictor will be

given by:

o
(k+1) = ;(k) 0(k) (3.2.8)

A priori here refers to conditions priori to the error

feedback adjustment to the predictor. Thus, the a priori

prediction error is defined by:

eo(k+1) - y(k+1) - Yo(k+1)

= y(k+1) - p(k)T0(k) (3.2.9)

and the a posteriori prediction error is defined by:

e(k+1) y(k+1) - y(k+1)

= y(k+1) - e(k+1) 0(k) (3.2.10)

Using equations (3.2.1) and (3.2.5), we can rewrite the

equation (3.2.10):

e(k+1) = - A(k+1,q
-1

)y(k)

+ [B(q-1) - B(k+1,q-1)]u(k)

= A(q )e(k) + [A(q-1) - i(k+1,q- 1)]Y(k)

+ [B(q-1) - iii(k+1,q-1)]u(k) (3.2.11)

--1



u (k)

Plant

y(k+1)

B(k+1,q1)

q
1 1
A(k+1,q )

Adaptation
mechanism

(k+1)

e(k+1)

Figure 3.2.1 Structure of Parallel MRAC System
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Thus, the a posteriori prediction error equation is given

by:

e(k+1) = A(q-1)e(k) - [0(k+1) e)T0(k)

= A(q-1)e(k) - 1)' ((k+1)T0(k)

1

0(k+1)T0(k)(1-q-1A(4-

where

0
T
= [a

1
. an bo bm]

b(k) = 6(k) -0

The design objective is to find a PAA of the form:

e(k +1) = 0(k) + f0[e(k+1)]

e(k+1) = fe[eo(k+1)]

(3.2.12)

(3.2.13)

(3.2.14)

(3.2.15)

(3.2.16)

such that lim e(k+1)=0 for any initial conditions e(0) and
k4w

0 (0).

From equation (3.2.15) using equation (3.2.14) we obtain

the following equations:

nk+1) = 0(k) + f0[e(k +1)] (3.2.17)

0 (k)74(k+1) = 0(k)T.4(k) + 0(k)Tfe[e(k+1)] (3.2.18)

From the equations (3.2.12), (3.2.17), and (3.2.18), we

have an equivalent feedback representation shown in Figure

3.2.2 for this parallel adaptive predictor. Equation
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(3.2.12) corresponds to a linear time-invariant

feedforward block, with transfer function [1-z -1 A(z-1 )]
-1

The input is -0(k+1)T0(k) and output is e(k+1). Equations

(3.2.17) and (3.2.18) correspond to a nonlinear time-

varying feedback block with input e(k+1) and output

25(k+1)T0(k).

Using hyperstability theory, a function f0[e(k +1)] for the

adaptation algorithm can be found such that the feedback

system (Figure 3.2.2) is globally asymptotically stable.

First, the Popov inequality condition will be checked for

the feedback block of this system and then the stability

conditions for the feedforward block (ie, a strictly

positive real transfer function) will be checked.

From equations (3.2.17) and (3.2.18) the Popov inequality

for the feedback block is defined by:

n(0,k ) = El e(k+1)0 0((k) k+1)
1

= e(k+1)0(k) [ Ekf [e(i+1)] + 0(0)]
k=0 i=0

-r
o

(3.2.19)

To find the f0 [e(k+1)] which satisfies the Popov



O - (k+1)
T
0(k)

(x)
6(k+1)

1 1A(q-1)
e(k+1)

[e(k+1)]

0(k)

Figure 3.2.2 Equivalent Feedback System Representation

LJ
11
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inequality (3.2.19) the following lemma 3.2.1 is

introduced.

Lemma 3.2.1

Consider a sequence of real vectors x(k) and a constant

vector c. The following relation is true:

k
1

1 k,
k1

E x(k) T
[ E x(i) + c] = -[E' x(k) + c] T

[: x(k) + c]
k=0 1=0 2 k=0 k=0

E1

x(k)Tx(k) -
1_cTc - 1cTc

2 k=0 2 2

(3.2.20)

Proof: Assuming that the relation (3.2.20) is true up

(k
1
-1), one gets at ki:

k,-1 m k
E1 x(k) (Z x(i) + c] x(k)T[ E x(i) + c]
K=0 1=0 k=0 1=0

+ x(k )[
1 x(i) + c]

1

T

1=0

1 k-1 k,-1
= -[ '`E x(k) + c] [ f x(k) + c]

2 k=0 k=0

1 k-1 1

+ - x(k)
Tx(k) - -cTc

2 k=0 2

1 1

+ -x(k1)Tx(k1) + -x(k
1

) x(k )

2 2



T
k
1-1+ x(k ) [E x(i) + c]

1
i =0

However
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(3.2.21)

1 k
1 T 1

1 k
1 - 1 k1 -1

-[E x(k) +c] x(k)-1-c] = -[E x(k)+c] [E x(k)+c]
2 k=0 k=0 2 k=0 k=0

1

+ -x(k )Tx
2

T
k
1
-1

+ x(k ) [Z x(k) + c]
1

(3.2.22)

Thus, using equations (3.2.22) and (3.2.21) it results

that equation (3.2.20) is true by induction.

Q.E.D.

Using lemma 3.2.1, the following solution for f [e(k+1)]

results:

f [e(k+1)] = F(k)0(k)e(k+1), F(k) > 0 (3.2.23)
0

Thus,

'15(k+1) = 8(k) + F(k)0(k)e(k+1), F(k) > 0 (3.2.24)

In simple form a positive constant adaptation gain matrix,

F(k)=F>0 can be used instead of a time-varying adaptation
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gain matrix. The general adaptation algorithm which

includes, a time-varying adaptation gain matrix F(k) will

be discussed in next section.

We now have to find the relationship between the a priori

adaptation error e0(k+1) and the a posteriori adaptation

error e(k+1) to implement this PAA. Using equation

(3.2.24) from equations (3.2.9) and (3.2.10), we have

e(k+1) - e0(k+1) = -[0(k+1) - 6(k)1T0(k)

= -0(k)
TF0(k)e(k+1) (3.2.25)

Thus, the relationship between e(k+1) and e0(k+1) will be

given by:

e(k+1) =
e
0
(k+1)

[1 + 0(k)TF0(k))
(3.2.26)

We have obtained a feedback block which satisfies the

Popov inequality. Therefore if the linear time-invariant

feedforward transfer function [1-z
-1

A(z
-1

)]
-1 is strictly

positivity real, global asymptotic stability will be

assured. This positivity condition on the feedforward

block can be made less restrictive by filtering the error
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as shown in the next section. Also we must make sure that

0(k) is asymptotically bounded in equation (3.2.26) so

that lim e
0
(k)=0 when lim e(k)=0. The positivity

k4co k-4"1°

condition on the feedforward block and the boundedness of

0(k) will be discussed again in section 3.3 and section

4.3.
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3.3 Stability Analysis of the General Time Varying PAA

In this section an approach due to Landau and Lozano [40]

is introduced to design and analyze a general time varying

PAA for asymptotic stability of the equivalent feedback

system representation shown in Figure 3.3.1.

Theorem 3.3.1

Assume that the following adaptation algorithm is used to

update the parameter vector e(k):

15(k+1) = 0(k) + F(k)0(k)v(k+1) (3.3.1)

where

F(k+1)
-1

= X1(k)F(k)
-1

+ )(k)0(k)0(k)

with F(0)>O, 0< yk)<1, 0 <X2(k)<2; for all k.

(3.3.2)

Assume that the relation between 0(k) and v(k) is given by:

v(k+1) = G(q-1 e(k+1)] 0(k) (3.3.3)

where 0(k) is a bounded or unbounded vector sequence,

G(z-1) is a rational discrete transfer function normalized

under the form:

G(q-1 ) 1 (3.3.4)



6(k+1) T 0(k)

0 (k)

(x) T
(3'(k+1)

G(g 1)
v(k+1)

F (k) X

Figure 3.3.1 General Equivalent Feedback System Representation
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with G (q-1) = 1 + Z.3 gl q -1
i=1

and 0
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= 1 + q-1 G, *
(q

-1
), j=1,2 (3.3.5)

is a constant parameter vector. Then if it exists

2> X>max[a2 (k)], 0<k< cc (3.3.6)

such that G(z 1) (3.3.7)
2

is strictly positive real, one has, for anyv (0) and 0(0),

bounded:

lim v(k) = 0 (3.3.8)

The other related results and proof of theorem 3.3.1 can

be found in ref. [40,41].

Thus, with the positivity condition (3.3.7) we can

summarize the general parameter adaptation algorithm in

the following form:

0(k+1) = 0(k) + F(k)0(k)v(k+1) (3.3.1)

v(k+1)
[1 + 0(k)TF(k)0(k)]

F(k+1)- A/(k)F(k)-1 + 2,2(k)0(k)0(k)T

0 < Xi(k) < 1, 0 < (k) < 2, F(0) > 0

vo(k+1)



where 0(k)

adaptation

v0(k +1) is

defined by:
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is an adjustable parameter vector, F(k) is the

gain matrix, 0(k) is the measurement vector,

the a priori filtered adaptation error which is

y0(k+1) = G(q)[e 0(k)]0 (k)

and v(k+1) is

(3.3.10)

the a posteriori filtered adaptation error

which satisfies the equation (3.3.3).

The adaptation gain matrix F(k+1) is computed recursively

from equation

3.3.1.

Lemma 3.3.1

Consider

(3.3.2) using the matrix inversion lemma

a nonsingular nxn- dimensional matrix F a

nonsingular mxm-dimensinal matrix R and a mxn-dimensional

matrix H of maximum rank, then the following indentity

holds:

-1 -1 -1+ HR H = F - FH(R + H
T
FH)

-1
H
T
F (3.3.11)

Proof: By right multiplication of equation (3.3.11) with

(F
-1 + HR-1HT ), one obtains:
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I = I + FHR-1 H
T

- FH(R + H
T
FH)

-1
H
T

- FH(R + H
T
FH)

-1
H
T
FHR

-1
H
T

= I + FHR 1HT FH(R + HTFH) -1
(R + H

T
FH)R-1H

T

= I (3.3.12)
Q.E.D.

Thus, from equation (3.3.11) making the following

substitutions

F
-1

+ HR -1H =
1
F(k+1)] -1

X1

R =

F = F(k)

(3.3.13)

(3.3.14)

(3.3.15)

H = 0(k) (3.3.16)

F(k+1) is given in the following form:

F(k+1)
1

X1 (k)

F(k)0(k)0(k) F(k)
[F(k)

x (k)

X2 (k)
+ 0(k)TF(k)0(k)

3.3.17)

xl(k) and x2(k) have opposite effects: X 1(k) tends to

increase the adaptation gain while X2(k) tends to decrease

the adaptation gain. By the different choices of X
1
(k) and

X2(k), different types of adaptation algorithm are

obtained. For the following choices of X1(k) and X2(k),
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different adaptation algorithms were discussed by the

several authors [42, 43, 44):

(1) X
1
(k)= , X

2
(k)=0: a constant adaptation gain

(2) Xi (k)= 1, A2(k)= A : a time decreasing adaptation

gain

(3) Xl(k).= )1, ), (k)= 1/2 : a time varying adaptation

gain which is useful for slowly time varying

plants

(4) A1(k), X2(k) such that trace [F(k)1 = constant: a

real time adaptation algorithm for tracking time

varying plants.
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3.4 Design of the PAA based on the Direct Use of a

Lyapunov Function

In this section a Lyapunov function is introduced to

derive a simple PAA assuring global asymptotic stability

for the error model described by equation (3.2.11). To do

this the following lemma 3.4.1 is introduced.

Lemma 3.4.1

Consider the linear time-invariant system:

x(k+1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k)

u(k) = p(k+1) 0(k)

and the adaptation law:

p(k+1) = p(k) F0(k)y(k)T

(3.4.1)

(3.4.2)

(3.4.3)

(3.4.4)

where x is an n-dimensional vector, y and u are mi-

dimensional vectors, 0 is an m
2
-dimensional vector, A,B,C

and D are matrices of approciate dimension, p is a time-

varying matrix of appropriate dimension, and F is an m
2
xm

2

dimensional matrix.

Given an nxn-dimensional matrix A with all its eigenvalues

within the unit circle, a symmetric positive definite

matrix F, (A,B) is completely controllable, (C,A) is
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completely observable and a bounded vector 0(k), the

equilibrium state of the set of n+m
2
xm

1
difference

equations (3.4.1) and (3.4.4) is stable and lim x(k)=0 if
k+00

the transfer function H(z)=D+C(zI-A)-1 B is strictly

positive real.

Proof: From the strictly positive real lemma 2.3.1 , it is

known that if H(z) is strictly positive real, there

exist a matrix P=PT>0, a matrix Q=Q >0, and matrices K and

L such that:

A
T
PA - P = -LL

B
T
PA + K L

Q

KTK = D + DT - BTPB

(3.4.5)

(3.4.6)

(3.4.7)

Defining a Lyapunov function candidate for the set

difference equations (3.4.1) and (3.4.4) as

V(x(k),p(k)) = x(k) TPx(k) + tr[p(k) T
F
-1
p(k)) 3.4.8)

we obtain

V(x(k) ,p(k) ) V(k)

= V(k+1) - V(k)

= x(k+1)TPx(k+1) + tr(p(k+1)TF-1p(k+1)]

x(k)TPx(k) - trtp(k)
T
F
-1
p(k))

(3.4.9)
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Using equation (3.4.1),

pV(k) = x(k)
T
[A

T
PA - P]x(k) + x(k)

T
A
T
PBu(k)

+ u(k) T
B
T
PAx(k) + u(k) T

B
T
PBu(k)

+ tr[p(k+1) T
F
-1

p(k+1)] - tr[p(k) T - p(k)]

(3.4.10)

Using equations (3.4.5) through (3.4.7),

V(k) = - [LTx(k) + Ku(k)] T
[L
Tx(k) + Ku(k)]

- x(k) T
Qx(k) + y(k) Tu(k) + u(k) y(k)

+ tr[p(k+1) T
F
-1
p(k+1)] - tr[p(k)TF-1 p(k)]

Using adaptation law (3.4.4)

AV(k) x(k) + Ku(k)] T
LTx( k) + Ku(k)]

- x(k) TQx(k)

- tr[y(k)0(k)TF-10(k)y(k)T]

(3.4.11)

(3.4.12)

Thus, the system of equations (3.4.1) and (3.4.4) is

stable and x(k) and p(k) are bounded if x(0) and p(0) are

bounded.

Q.E.D.

From equations (3.2.12) and (3.2.24), making substitutions

x(k)
T

[e(k-n+1) e(k-n+2) . e(k)]

u(k) = .4(k+1)0(k)

y(k) = e(k+1)

(3.4.13)

(3.4.14)

(3.4.15)
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we obtain a system of the form equations (3.4.1) through

(3.4.4) where

A = 0 1

0 . . . 0

0
1

a
n

a
n-1 a

1

B = 0
0

1

C [a
n

an-1 a 1]

D = 1

and p(k) = -?Ik). From equation (3.4.8) a Lyapunov

function for this system is obtained. Thus from equation

(3.4.4) the following adaptation law is obtained for the

error equation (3.2.12):

0(k+1) = 0(k) + FO(k)e(k+1) (3.4.16)

This adaptation law results in a stable error

equation (3.2.12) in which e(k) and 0(k) remain uniformly

bounded and lim e(k)=0 if 0(k) is uniformly bounded.

However from equation (3.4.12) we can have the following

equation
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V(k)I = 1V(00) - V(0), <CO
k=0

since tV(k) < 0.

50

(3.4.17)

Thus, having established the global stability of the error

equation we now state some of its other stability

properties:

(1) The boundness of e(k) and 6(k) are assured even

when 0 (k) is not bounded.

(2) e(k) tends to zero whether 0 (k) is bounded or

not.

(3) lim Le(k)=0(k+1)-0(k)] = 0
k4c.

A
But we cannot conclude directly that 0(k) tends

constant vector 0.

Using a Lyapunov function we have obtained the same

adaptation law as the simple form of sectin 3.2. However

this approach is limited since it is difficult to choose a

suitable Lyapunov functions in order to widen the class of

adaptation laws which lead to globally stable MRAC

systems.
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In the next chapter, we will design a MRAC system for

tracking and regulation control objectives, using the PAA

of section 3.3.
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IV. DESIGN OF THE DISCRETE-TIME EXPLICIT MODEL
REFERENCE ADAPTIVE CONTROL SYSTEM

4.1 Introduction

A parameter adaptation algorithm (PAA) has been developed

and analyzed from the stability point of view in chapter

3. This PAA can be generalized for a plant with a delay

greater than 1. Introducing such a plant time delay into

the previous PAA, we will design a model refernce adaptive

control (MRAC) system based on a unification of the

discrete-time explicit schemes proposed by Landau and

Lozano [44,45].

In section 4.2 the parameters of the plant are assumed to

be known and a reference model is defined. Then a linear

model following control (LMFC) system is designed for

independent tracking and regulation control objectives.

In section 4.3, based on the structure of the control law

of section 4.2 we obtain a control law which has

adjustable parameters which compensate for the unknown

parameters of plant. A PAA is then designed to adjust the

controller. In order to improve the performance of the

MRAC system in the stochastic environment, an
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asymptotically stable filter is introduced, and the MRAC

system is redesigned using filtered variables.
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4.2 Design of the Linear Control System

Consider a discrete-time linear time-invariant plant

described by:

y (k+d) = A (q-1)y (k+d-1) + B
P
(q-1 )u

P
(k) d>0, y (0)=0

(4.2.1)

where

A
p 1
(q-1) = aP apq-n+1

(4.2.2)

B (q-1) = bP + b
1
q-1 + + b

m
Pq-m (4.2.3)

-1
is the unit time delay operator, u(k) is input, y(k)

is output and d is the plant time delay. The zeros of

B(z-1 ) are all assumed to be inside the unit circle,

therefore they can be cancelled without leading to an

unbounded control input.

The following control objectives are considered:

(1) Tracking objective

The output of plant must be equal to the output

reference model

y (k) - y (k) = 0

The reference model is given by

ym(k+d) = Am(q-1 )y(k+d-1) + Bm(q- 1) m(k) (4.2.5)

where Am(q -1 ) is asymptotically stable, um(k) is a bounded

(4.2.4)
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reference input sequence and A (q-1 ) and BM(q -1) are

defined by:

A (q-1 ) = a
1

+ + a
n
M
q
-n+1

B M(q
-1

) = bM + bMq -1 + . ...+ b
m
q

M -m

(4.2.6)

(4.2.7)

(2) Regulation objective

An initial disturbance must be eliminated with the

following dynamics:

C (q-1 )y (k+d) = 0, k > 0 (4.2.8)

when the reference model is zero,

where

C
R 1
(q

-1
) = 1 + c q-1 + + cRq-

R

is an asymptotically stable linear operator.

(4.2.9)

The control law is designed to achieve the above two

objectives which can be summarized by the equation

CR (q
1
)(y (k+d) - y (k+d)] = 0, k > 0 (4.2.10)

Lemma 4.2.1 is introduced to represent C (q ) in a useful

equivalent form.



Lemma 4.2.1

Consider the following equation

-1) ) = A(q-1 )S(q
-1

) + q
-d

R(q
-1

)

where

C(q-1 ) = 1 + c
1
q-1 + .... + c

nc
q
-nc

-1)A(q ) = 1 + a
1
q
-1

+ .... + a
nA

q

-1) ) = 1 + s q-1 + .... + s
ns

q
-ns

1

R(q - 1) = r
o

+ r q -1 nR
1

For given C(q
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(4.2.11)

1) and A(q-1) a unique solution S(q-1),

R(q
-1

) exists for n
s

= d-1 and n
R

= max(n
A
-1,n

c
-d).

Proof: Let us rewrite equation (4.2.11) as a set

equations corresponding to the various power of q
-1

1 = 1

c
1

= a
1

+ s
1

c
2

= a2 + a1s1 + s2

(4.2.12)

= a + sd-1 d-1 d-1

cd = ad + + sd + ro

The number of coefficients to be computed is n
s

+ n
R

+ 1.

On the other hand, the number of equations in (4.2.12) is
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max (n
A + ns nR + d) and in order to have a unique solution,

we must verify:

ns + nR + 1 = max(n
A
+n

s
,n
R
+d) > n (4.2.13)

We can also see from equation (4.2.12) that n
s

must

verify:

n
s

d - 1 (4.2.14)

Let us take the smallest number n
s

= d - 1, then from

equation (4.2.13) we have

ns d -1

nR = max(n
A
-1

'

n
c
-d)

Thus taking into account equation (4.2.15),

(4.2.11) can be written by:

El
a1 1

a2 2 1

aa . ... a1 1
1a

d-1
ad-2

a
d d-1 a

a2d+1 2

0

0

s
d-

r
r
o

1

(4.2.15)

equation

1

nR

and since the determinant of a triangular matrix is always

different from zero, the solution exists and is unique.

Q.E.D.
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Using the lemma 4.2.1, write C
R
(q

-1
) in the form

C
R
(q
-1

) = (1-q-1 A (q-1 )]S(q
-1

) + q- dR(q -1 ) (4.2.17)

where

s(q 1
) = 1 + s

1
q
-1

+ + s
d-1

q
-d+1

(4.2.18)

R(q-1 ) = ro + r
1
q
-1

+ 000 + r
n-1

q
-n+1

(4.2.19)

Thus, using equation (4.2.17) we can rewrite the equation

(4.2.10):

where

C R( q
-1

)[y (k+d) - y (k+d)]

= Bp(q-1)S(q-1)up(k) + R(q1)yp(k) - CR(q-1)ym(k+d)

= Bs(q 1
)up(k) + R(q-1 )y(k) - CR(q-1 )ym(k+d)

= 0 (4.2.20)

-1 -1 -1B
s

q ) = B(q )S(q )

= b
o

+ q -1B*(q-1 )

= b bsq-1 + + bs
c1+d-1-m-d+1

(4.2.21)
m

From equation (4.2.20) we can find u (k) in the following

form:

u (k)
1

= ---[C
bo

-1 -1
q )y (k+d) - R(q )y (k) - FIPS u (k-1)]

(4.2.22)

The block diagram of the LMFC system is shown in Figure

4.2.1.



urn(k) ref. Nbdel
Eqn (4.2.5)

--R (q- )

R(q-1)

ym(k)

up(k)

Figure 4.2.1 Diagram of LMFC System

Plant
Eqn (4.2.1)

e(k).= 0

y (k)

U' 1
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If we consider the following plant dynamics with special

disturbance, w(k):

y
P
(k+d) = A

P
(q-1)y

P
(k+d-1) + Bp(q- 1)u(k) + w(k+d) (4.2.23)

where

w(k) = C
R (q-1)v(k) (4.2.24)

v(k) is a sequence of independent random variables with

zero mean N(0,5), the same control law of equation (4.2.

22) is obtained for minimum variance tracking and regulat

ion objectives.
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4.3 Design of the Adaptive Control System

When the plant parameter values are unknown, a controller

with the same model following structure as in the previous

section but whose parameters are adjustable can be

introduced.

Based on the structure of equation (4.2.22) of section

4.2, we get the following control law which has

adjustable parameters:

up (k)
1

[C,(q-1)ym(k+d)-g(k,q- )yp(k)-g:(k,q-1)up(k-1))
to(k) "

(4.3.1)

The filtered plant model error is therefore given by:

eo(k+d) = CR(q-1 )[yp(k+d) - ym(k+d))

' (0 6(k))T0(k) (4.3.2)

where

(7 = [bo bis ... ro ... rn_i] (4.3.3)

0(k) is an adjustable approximation for the parameters

at k-th time step, and

0(k) = [u
P
(k) up (k -1) ... up (k-m+d-1) y

P
(k) y (k-1) . . .

... y
P
(k-n+1)] (4.3.4)
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The design objective is to find an adaptation algorithm

such that

lim e
f
(k+d) = 0

°

and ii0(k)11 < M < co for all k.

(4.3.5)

(4.3.6)

Considering theorem 3.3.1, an asymptotically stable

adaptive system can be obtained if the following PAA is

used:

(.3(k+d) = (k+d-1) + F(k)0(k)v(k+d) ( 4 . 3 . 7 )

where the a posteriori adaptation error v(k+d) is governed

by:

with

v(k+d) = - (k+d) ] 0(k)

1

F(k+1) = -----(F(k)
Al(k)

F(k)0(k)0(k) F(k)

X (k)

1 + 0(k)TF(k)0(k)

2
(k)

where 0 < X1(k) < 1, 0 < X2(k) < 2, F(0) > 0.

Since the discrete transfer function, G(z

(4.3.8)

(4.3.9)

1 in

equation (4.3.8) the positivity condition (3.3.7) is

satisfied.

Using equations (4.3.2), (4.3.7), and equation (4.3.8)

v(k+d) can be described by:
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v(k+d) = eo(k+d) + C0(k) - 0(k+d)] T
0(k)

d-1
= eso(k+d) - 0(k)

TE
F(k-d+i)0(k-d+i)v(k+i)

i=1
- 0(k)

T
F(k)0(k) v(k+d) (4.3.10)

Thus,

vo(k+d)
v(k+d) = 4.3.11)

[1 + 0(k)TF(k)0(k)]

where the a priori adaptation error vo(k+d) is governed

by:

Td-1vo(k+d) = eo(k+d) - 0(k) E F(k-d+i)0(k-d+i)v(k+i) (4.3.12)
i=1

The block diagram of this adaptive control system is shown

in Figure 4.3.1.

In order to improve the performance of the adaptive

control system in a stochastic environment, the

measurement vector 0(k) and yM(k) can be filtered by an

asymptotially stable filter such that:

-1
L(q )0

f
(k) = 0(k) (4.3.13)

L(q-1 )y
f
(k) = y (k) (4.3.14)

where

L(q
-1

) = 9b +
1
q
-1

+ + knq
-n

= + q 1L*(q )

(4.3.15)



um(k) ref model
Eqn (4.2.5)

-d
y
m

(k)

1q B:(k,q

1

b (k)

R (k,q

Plant
Eqn (4.2.1)

Figure 4.3.1 Diagram of Explicit MPAC System

PAA

CR(q-1)

Yp (k)



Therefore, the filtered vector 9
f

( ) is given by:

0
f
(k)

T
=

65

1

[u (k) ... u (k-m-d+1) y (k) ... y (k-n+1)]
L(q-1) P P P P

= [up(k) ... uf
P
(k-m-d+1) y f

(k) ... y
f
(k-n+1)]

P P

(4.3.16)

Using equations (4.3.14) through (4.3.16), the control law

(4.3.1) can be rewritten in following form:

up (k) = L(q -1 )u p(k)

1
-1 f

(4.3.17)

u (k) = A [C
R
(q )y

m (k+d)-B:(k,q
-1

)u
f
(k-1)-R(k,q

-1
)y

f
(k)]

bo(k)

(4.3.18)

Using equation (4.3.13) the filtered plant model error

equation (4.3.2) is redefined as:

e
f
(k+d) = C

R
(q

-1
(k+d) - y

m
(k+d)]

= L(q
- 1

-0(k)] T f
(k) (4.3.19)

In general el, can be further filtered before it is used

for adaptation. Thus the filtered error is defined as:

G (q-1 )

e
f
(k+d) 1

e
f
(k+d)

G (a-J-)
L

2 -

where G
1
(q

-1
) and G (q

-1
) are monic polynomials:

(4.3.20)



G,(q-1) = 1 + -1 G.* (q
-1

), j=1,2
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(4.3.21)

Using equation (4.3.19), from equation (4.3.20), the

filtered error is described by:

e
f
(k+d) = G(q-1 He - 0(k)] T

0(k)

where

G (q-1 )L(q )

G(q
-1

)

1

1

G
2
(q

-1
)

(4.3.22)

(4.3.23)

Applying theorem 3.3.1, asymptotic stability of the

adaptive system can be obtained if we use a PAA of the

following form:
A A

0(k+d) = 0(k+d-1) + F(k)0 f
(k)v(k+d) (4.3.24)

where the a posteriori adaptation error (k+d) is governed

by:

v(k+d) = G(q-1)(0 (k+d)1T0f(k)

with

-1 -1F(k+1) = X (k)F(k) + X (k)0
f
(k)0

f
(k)

T
1

where 0 < X
1
(k) < 1, 0 < X

2
(k) < 2, F(0) >0.

(4.3.25)

(4.3.26)

G
1
(q
-1

), G
2
(q
-1

) and L(q
-1

) are any finite dimensional

asymptotically stable linear operators satisfying the

positivity condition (3.3.7). It was shown by Dugard and
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Landau [46] that these operators have an important role in

a stochastic environment.

Using equations (4.3.20), (4.3.22), and (4.3.23) v(k+d)

can be described by
A

v(k+d) = ef(k+d) + G (q-1)[e(k) - 0(k+d))T0f(k)

d-1
= e f

(k+d) - G(q-1 )0
f (k)Z F(k-d+i)0 f

(k-d+i)v (k+i)
1=1

- G(q-1 )0
f
(k)

T
F(100 f

(k)v(k+d) (4.3.2?)

Using equations (4.3.15), (4.3.20), (4.3.21), and (4:3.23)

v(k+d) = - G2(q-1)v(k+d-1) + G1(q-1)e:(k+d)

Thus,

d-1
- G

1
(q
-1

)1,(q
-1

)0
f
(k) F(k-d+i)0(k-d+i)v(k+i)

i=1

- [G1(q -1 ) + L(q-1 ) + q-1GI(q-1 )L*(q
-1

))91
f
(k+1)

T

F(k-1)0 f
(k-1)v(k+d-1) -0 f

(k)
TF(k)0 f

(k)v (k+d)

(4.3.28)

vo(k+d)
v( k+d ) (4.3.29)

[1 + 0 f
(k)

TF(k)0 f
(k)]

where the a priori adaptation errorvo(k+d) is governed by:
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vo
(k+d) = - G*2 (q-1)v(k+d-1) + G

1 o
(q-1)e(k+d)

-1 f T
d-1

- G
1
(q

-1
)L(q )0 (k) Z F(k-d+i)0(k-d+i)v(k+i)

i=1

- (G*1 (q
-1

) + L*(q-1 ) + q-1 G*(q-1 )L*(q-1 f
(k-1)

T

F(k-1)0 f
(k-1)v(k+d-1) (4.3.30)

As mentioned in section 3.2, 0
f (k) of equation (4.3.29)

must be asymptotically bounded so that lim xi,(k+d)=0 whenk
lira v(k+d)=0. if 0

f
(k) is asymptotically bounded and

k.+00
-1limv(k+d)=0 with asymptotically stable polynomials CR(q )

k44.
-1and L(q ), we can say that lira e(k)=0 where e(k)=y

P
(k)-

k+03
ym(k) and 0(k-d) is bounded. The boundedness of 0(k) and

convergence to zero of e(k) have been discussed and proved

in ref. [47].
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V. APPLICATION OF MODEL REFERENCE ADAPTIVE CONTROL

TO INDUSTRIAL ROBOTIC MANIPULATOR SYSTEMS

5.1 Dynamic Model

In this section, a three degree of freedom (one rotation

and two translations) industrial robot similar to SEIKO

Model [48] is modelled as an application of the MRAC

system structure described in general in the previous

chapters.

The configuration of this robot is shown in Figure 5.1.1.

The horizontal arm is translated inside the horizontal

sleeve which is fixed to the upright column. The column

moves vertically and rotates about an axis in z-direction.

For simplicity of the dynamic analysis, we assume that:

(1) Arm, sleeve, and column are rigid,

(2) Friction forces are negligible, and

(3) The dynamics of the actuators are neglected.

The dynamic equations can be derived using the Lagrangian

approach:
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torque Mik

vertical motionalong the zaxis
due to force Kz

Figure 5.1.1 Three degree-of-freedom Robotic Manipulator



d 31, aL

Q(t) = --(--)
at aq a
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(5.1.1)

where Q is m-dimensional vector of the generalized forces

to be supplied by the actuators, q and q are respectively

the m-dimensional vector of the rotations or translations

and their velocities and L is the Lagrange function

described in terms of the kinetic energy T(q,q) and of the

potential energy V(q):

L = T(q,4) - V(q) (5.1.2)

For this robot, the kinetic energy T and the potential

energy V are given by equations (5.1.3) and 05.1.4)

respectively:

1
. . .T =

1

Mrr
2

+ Iz* 2
+ - Mzz 2

2 2 2

V = M
z
gz

(5.1.3)

(5.1.4)

where r(t) and z(t) describe translational motions, i(t)

describes the angle of rotation, Mr, Iz, and Mz are the

inertia terms corresponding to r, * and z, and g is the

gravity coefficient.

Since real robot systems usually consist of the

complicated mechanical parts (for instance, gears, chains

etc.), it is almost impossible to describe the inertia

terms by exact values or analytic functions. However, we
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can see that I
z
varies depending on the arm stroke r(t)

(ie, I
z
is a function of r(t)). Thus, using the Lagrangian

approach, the dynamic equations are given by:

1 aI
M
r
r - -11)4(---)] = Kr(t)

2

d
I i + [(I )]

dt z
M (t)

(5.1.5)

Mzz + Mzg = Kz (t)

where Kr (t), Kz(t), and NW) are the forces and the

torque corresponding to the degrees of freedom, r(t),

z(t), and Ot).

Introducing the following vectors:

plant state vector, xT= [x
pl

x
p2

x
p3

x
p4

x
p5

x
p6

]

= [r qi z (5.1.6)

plant input vector, uT= [u
pl

u
p2

u
p3

]

= [K
r

M K
z

] (5.1.7)

measurable disturbance vector, W = [0 Wi] (5.1.8)

the equation (5.1.5) can be written in the state space

model:



where

x (t) = A(x
P
,t)x

P
(t) + B(x

P
,t)u

P
(t) + W(x ,t)

0 I I

Al(xp,t) IA2(xp,t)

0 7

Al = 0 ]

A
2

ro

0

0

Fb
11

B
1

= 0

0

I wi
W1

2

w3

W
1
(xp,t)]

a
12

0

a
22

0

0 0

0 0

b
22

0

0 b
3
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x (t) + - - 1 u (t)
IB

1
(x
p

p

(5.1.9)

(5.1.10)

It is shown in Appendix B that all natural systems [49]

can be described in the form of equation (5.1.9).

With the following further assumptions:

(1) Arm, sleeve, and column have purely cylinderical

shapes.
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(2) These three parts, and the balance weight and

payload are simply connected to each other as

shown in Figure 5.1.1.

(3) Additional parts except the above stated parts

are negligible for dynamic motion of the robot

system.

We can describe the elements of matrices A2, B
1

and vector

W
1
as follows:

where

a
12

= x
p5

h(x
p1)/(mR + m

L
)

a
22

= -2x
p4

h(x
p1)/I Z

b
11

= 1/(mR + m
L )

b
22

= 1/I

b
33

= 1/(m
R

+ mL + m + mT + m )

(5.1.11)

I = [m
R
(3a

R
2
+3b

R
2
+2.

1

2
) + m

S
(3a

S

2
+3b

S

2
+i

2

2
)

+ m
C
(a

C
2
+b

C
2
))/2 + m

R
(r-21 /2)

2 + m
s
(D-22 /2)

2

+ m r2 + mTD2 (5.1.12)

h(x
Pi

) = m
R
(x
pl

- 21/2) + mLxp (5.1.13)

mi, i = R, S, C, T, L: masses of arm, sleeve, column,

balance weight, and payload

ai and bi, i = R, S, C: the inner radius and the

outer radius of arm, sleeve, and column

D, k
2
are as defined in Figure 5.1.1.
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As can be seen from equation (5.1.11), the elements of

matrix A are complicated nonlinear functions of x .

Moreover the elements of matrices A and B are also

functions of the mass of the payload, mr., which may be

unknown and may change during the repititive task of the

manipulator. Thus, the dynamic characteristics of the

manipulator will change during a given task.

In order to obtain high performance in terms of speed and

accuracy, it is necessary to use a control system which

will consider the changes in the dyanamic characteristics

of the manipulator. For this purpose, we apply the

discrete-time MRAC system developed in the previous

chapter. To accomplish this goal, we need a discrete-time

model of the manipulator.

In order to design the specific structure of the adaptive

controller a discrete-time model can be approximated by

applying the Euler method to the continuous time model in

equation (5.1.9). It is further assumed that:

(1) A and B are slowly varing compared to the

adaptation speed.

(2) All inputs and disturbances acting on the

manipulator are constants or staircase inputs.



76

Thus, an approximate discrete-time model is given by the

following difference equation:

x (k+1) = (I + TA)x (k) + T(Bu (k) + W(k)] (5.1.14)

where T is the sampling time interval and k means the k-th

sampling time step.

Defining the matrices Ap and Bp, and the vector W
*

as

follows:
I TI

P ! TA (I+TA )

1 2 j

B = F-(3-1
P Bp where Bpi = TB]. (5.1.15)1_

0
W = -

W,
L _

where W
1

= TW
1

equation (5.1.14) can be written as

x (k+1) = A
P
x
P
(k) + B

P
up (k) + W (k) (5.1.16)
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5.2 Discrete-time Explicit MRAC Law

In the previous section, we have obtained an approximate

discrete-time model equation for the robotic manipulator.

We are now ready to design the discrete-time MRAC system

using the design procedure shown in chapter 4.

It should be noted that in comparing equation (5.1.16) to

equation (4.2.1), the former is written as a relation

between the state xp and the input up in vector form and

also has the added term W due to the measurable

disturbance W with plant time delay d=1. Considering

these points, the discrete-time MRAC system will be

described.

The tracking dynamics are given by a linear reference

model and since it has to be structurally similar to the

manipulator model, it is chosen to be:

xm(k+1) = Amxm(k)

where

+ BMuM(k) (5.2.1)

I
I TI

Am =
A
M1

1 A
M2

(5.2.2)

BM 0

B
M1
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A linear control can be found to satisfy the following

objective:

CR(q
-1

)[xp(k+1) - xm(k+1)] = 0

where

-1
C
R
(q-1 )=I+CR*q

(5.2.3)

(5.2.4)

which defines the regulation dynamics and has a

determinant with all zeros inside the unit circle.

Considering the structure of the matrix Ap, we can design

independent tracking and regulation control laws for the

manipulator system where the matrix C
R

in the following

form:

C
R

-TI

diag(cli) diag(c2i) 1=1,2,3
(5.2.5)

Thus, the linear control law is given by:

up(k) = B0[CR(q-1 )xm(k+1) - Rxp(k) - w*
(k)]

where

(5.2.6)

B0 = [0 1 B
pl

-1
]

* (5.2.7)
R = CR + Ap

Using this control law, the filtered error,

e
0
f
(k+1) = C

R
-1

)(x (k+1) - x (k+1)] (5.2.8)
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is equal to zero when the parameters of the manipulator

dynamic equation are known and the controller parameters

have the values given by this equation. However, since A ,

B and W are time-varying and include the terms involving

payload inertia which is often unknown, the filtered error

e
f

0 (k+1) will not actually be zero anymore. This value of

filtered error is used as the input to an adaptation

mechanism for the controller parameters with the following

purpose:

lim e f

0
(k+1) = 0

k+co

(5.2.9)

* * * * *
Defining W = -V d where V= [ 0 0 0 v1 v2 v3 ] and d

are arbitrary factors, the control law in the adaptive

case will be chosen as:

-1 n*
u (k) = B

o
(k)(C

R
(q )x (k+1) - R(k)x (k) + V (k)d ]

(5.2.10)

where A denotes evaluation using estimates of the

parameters.

From equation (5.2.3) and (5.2.10),

ef0 (k+1) = CR(q-1 )(x (k+1) - x (k+1)]

= le (3(k)]T0(k) (5.2.11)



where

0
T

= [B R V *

0(k)
T

= [u (k)
T

x (k)
T

d
*

]

Note that

e
o
(k+1) = - 0(k)T0(k)
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(5.2.12)

(5.2.13)

where

25(k) = (k) -0 (5.2.14)

is the a priori adaptation error which is assumed

measurable and

e
f
(k+1) = -0(k+1) T0(k) (5.2.15)

is the a posteriori adaptation error. These error

equations (5.2.13) and (5.2.15) have the same forms as

equations (4.3.2) and (4.3.8) except the additional terms
*

V and d in and 0(k). Therefore from equations (4.3.7),

(4.3.9) and (4.3.11) the following adaptation algorithm is

obtained directly:

0(k+1) = 16(k) + F(k)0(k)ef(k+1)T (5.2.16)

with the relationship between efo(k+1) and ef(k+1):

ef(k+1)
e
o
(k+1)

[1 + 0(k)TF(k)0(k)]

where the adaptation gain matrix,

(5.2.17)



F(k+1) =
1 F(k)0(k)0(k) T

F(k)
[ F(k) ]

(k) (k)
x1 xi(k)

+ 0(k)
T
F(k)0(k)

X
2
(k)
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F(0) > 0, 0 < Xl(k) < 1, 0 < X2(k) < 2

(5.2.18)

In ref. [50], various types of adaptation gain matrices

were discussed by the different choices of Al(k) and

X200 It has been shown that by using an adaptation gain

matrix obtained by choosing X1(k) and A2(k) so that

trace[F(k)] = constant, an improved performance of the

MRAC system can be achieved for a plant which has time-

varying parameters. From equation (5.2.18) we can get the

trace[F(k+1)] in the following form:

trace[F(k+1)] =

where
X
1
(k)

6(k)

1

trace[F(k)
X
1
(k)

F(k)0(k)0(k)
T
F(k)

6(k) + 0(k) T
F(k)0(k)

(5.2.19)

(5.2.20)
A2(k)

From equation (5.2.19) choosing 6(k) = const > 0, X1(k)

can be computed at each step such that trace[F(k+1)] has

the desired value.
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Since as mentioned in section 5.1 the manipulator equation

(5.1.14) has time-varying and unknown parameters, the

above stated approach was used to compute the adaptation

gain matrix, F(k) in the simulation.

Further discussion of different adaptation gain matrices

will not be included here. An interested reader may refer

to reference [47].

We can summarize this discrete-time explicit MRAC system

by the following equations:

Manipulator: x (k+1) = A
P
x
P
(k) + B

P
u
P
(k) + W (k) (5.1.16)

Ref. model: x
m (k+1) = AM

(k)x
M

+ B
M
u
M
(k) (5.2.1)

Control law: u (k) = B
0
(k)[C

R
(q

-1
)x
m (k+1) - R(k)x (k)

+ V (k)d ) (5.2.10)

Adaptation mechanism:

/6(k+1) = 6(k) + F(k)0(k)ef(k+1)T (5.2.16)

e0(k+1)
e
f (k+1) (5.2.17)

[1 + 0(k) T
F(k)0(k))

1 F(k)0(k)0(k)
T
F(k)

F(k+1) = [F(k) (5.2.21)
X
1
(k) 6 + 0(k)

T
F(k)0(k)

1 F(k)0(k)0(k) T
F(k)

trace(F(k+1)) -----trace[F(k)
A
1
(k) 6 + 0(k) TF(k)0(k)

(5.2.22)
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The diagram of this MRAC system is shown in Figure 5.2.1.



Um (k)

ref. model
Eqn (5.2.1)

CR(q 1
)

R (k)

Xm(k)

7

V* (k)

Bo(k)

W*

Plant
Eqn (5.1.16)

X (k)

PAA
Eqn (5.2.16, 17,

21, 22)

Figure 5.2.1 Diagram of MPAC System for Rbbotic Manipulator
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5.3 Results

In order to investigate the effects of process noise and

payload uncertainty on the MRAC system developed for the

manipulator model (5.1.9), the manipulator was redescribed

by the following equation which has the additional term Ws

compared to equation (5.1.9):

x (t) = A(x
p
,t)x

p
(t) + B(x

P
,t)u

P
(t) + W(x ,t) + W

(5.3.1)

where W
E° WS13'

the 3-dimensional vector Wsi

represents an independent stochastic process distui.bance

with zero mean, and the adjustable controller of equation

(5.2.10) was obtained initially assuming a 1 kg payload.

The robot system described by equation (5.3.1) was then

simulated using a 20 kg payload.

In this simulation:

(1) The noise vector W
S1

was generated by a pseudo-random

number generator [51] which gives nearly Gaussian random

number.

(2) The reference input um(k) was computed using a

trapezoidal speed law (Figure 5.3.1) along the desired

trajectory (Figure 5.3.2).

(3) The controller sampling time was 0.01 sec.



fq

Figure 5.3.1 Speed Law (7e0.4616 m/s,
a=2.308 mis2)

Figure 5.3.2 Desired Trajectory (unit: n)
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(4) The manipulator dynamics were simulated by numerically

integrating the complete set of nonlinear equations

(5.3.1) with time interval 0.002 sec using a numerical

technique found suitable for stiff nonlinear dynamic

system equations [52].

The following numerical values were assumed from the

specifications of the SEIKO Model PN-700:

Mass(kg): mass of sleeve, ms = 1.26

mass of arm, m
R

= 0.37

mass of upright column, me = 1.97

mass of balance weight, mT = 0.4

Inner radius(m): as = 0.0125, Outer radius(m): bs = 0.019

a
R

= 0.0075 bR = 0.011

a0 = 0.02 b0 = 0.03

Length of horizontal arm: ti = 0.23m

Length of horizontal sleeve: t2 = 0.25m

Distance between center and balance weight: D = 0.17m

The marices and constants of equations (5.2.1), (5.2.5)

and (5.2.18) used in the simulation are as follows:
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A
M1

= (-188.01s-1 )I

A
M2

= -0.981

B
M1

= -A
M1

c1. = (100/3)s -1

c
2i

= 1/6

S = 0.5

d = 1 m/sec

v
1

(0) = v
2

(0) = 0

v
3

(0) = 0.098

F(0) = diag(fi(0))

where f
1

= 0.0001 (N-2 )

f
2

= 0.01 (N-2m-2 )

f
3

= 0.0001 (N-2 )

f
8

= 0.0001 (s 2
/rad 2

)

= 0.0001 (s 2
/m

2
)flO

f4 f5 f6 f7 f9 =°

With these values, the reference model (5.2.1) has the

repeated eigenvalue z=0.01, which gives a small trajectory

error, and regulation dynamics have the eigenvalues z=-0.5

and z=-0.3. With a different initial adaptation gain

matrix F(0), no significant difference has been observed

in the dynamic response. However, small values in the F(0)

matrix are preferred since this provides slow but smooth
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parameter adaptation. See Appendix C for detailed

description of the simulation model.

For the following three different operating tasks of the

robot system with respect to payload and stochastic

process noise:

Case 1: payload 1kg, no stochastic process noise

Case 2: payload 20kg, stochastic process noise

N(0,0.1)

Case 3: payload 20kg, stochastic process noise N(0,1)

the following simulation results were obtained:

(1) Outputs (r, z) of the robot system shown in

figures 5.3.4 to 12.

(2) Relative errors (EM1, EM2, EM3) between the

outputs (r, z) of the reference model and outputs of

robot system shown in figures 5.3.13 to 21.

(3) Absolute error (ET1) between trajectory and

manipulator shown in figures 5.3.22 to 24, absolute error

(ET2) along the trajectory shown in figures 5.3.25 to 27,

and absolute error (ET3) on the perpendicular to the

trajectory shown in figures 5.3.28 to 30.

(4) Input forces and torques (Kr, M4, Kz) shown in

figures 5.3.31 to 39.
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In these figures, the solid lines show the results with

adaptation while the dot lines show the results without

adaptive control. Figure 5.3.3 shows the elements of the

stochastic process noise vector which has zero mean and

unity standard deviation, N(0,1).
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Figure 5.3.3 Stochastic Process Noise Vector Ws , N(0,1)
1
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Figure 5.3.4 Arm Length (r) of Robot (case 1)
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Figure 5.3.5 Arm Length (r) of Robot (case 2)
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Figure 5.3.6 Arm Length (r) of Robot (case 3)
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1.

V

Figure 5.3.7 Arm Angle (T) of Robot (case 1)
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Figure 5.3.8 Arm Angle (T) of Robot (case 2)
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Figure 5.3.9 Arm Angle (T) of Robot (case 3)
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Figure 5.3.10 Arm Height (z) of Robot (case 1)
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Figure 5.3.11 Arm Height (z) of Robot (case 2)
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Figure 5.3.12 Arm Height (z) of Robot (case 3)
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Figure 5.3.13 Relative Error (EMI) in Radius r (case 1)
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Figure 5.3.14 Relative Error (k241) in Radius r (case 2)
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Figure 5.3.15 Relative Error (Elli) in Radius r (case 3)
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Figure 5.3.16 Relative Error (EM2) in Angle T (case 1)
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Figure 5.3.17 Relative Error (EM2) in Angle Y (case 2)

105



106

.85

TINE (SEC)

Figure 5.3.18 Relative Error =2) in Angle Y (case 3)
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Figure 5.3.19 Relative Error (OM3) in Height z (case 1)
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Figure 5.3.20 Relative Error (Dq3) in Height z (case 2)
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Figure 5.3.21 Relative Error (EM3) in Height z (case 3)
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Figure 5.3.22 Absolue Error (1721) between trajectory and
manipulator (case 1)
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Figure 5.3.23 Absolute Error (ET1) between trajectory
and manipulator (case 2)
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Figure 5.3.24 Absolute Error (ET1) between trajectory
and manipulator (case 3)
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Figure 5.3.25 Absolute Error (ET2) along the
Trajectory (case 1)

113



A
E

TPE (SEC)

Figure 5.3.26 Absolute Error (um) along the
Trajectory (case 2)
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Figure 5.3.27 Absolute Error (ET2) along the
Trajectory (case 3)
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Figure 5.3.28 Absolute Error (m) on the perpendicular
to the Trajectory (case 1)
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Figure 5.3.29 Absolute Error (gr3) on the perpendicular
to the Trajectory (case 2)
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Figure 5.3.30 Absolute Error (ET3) on the perpendicular
to the Trajectory (case 3)
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Figue 5.3.31 Inpute Force K1. (case 1)
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Figure 5.3.32 Input Force Kr (case 2)
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Figure 5.3.33 Input Force Kr (case 3)
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Figure 5.3.34 Input Tcrque /444) (case 1)
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Figure 5.3.35 Input Torque M4 (case 2)
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Figure 5.3.36 Input Torque Mlij (case 3)
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Figure 5.3.37 Input Force KZ (case 1)
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Figure 5.3.38 Input Force KZ (case 2)
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Figure 5.3.39 Input Force KZ (case 3)
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VI. CONCLUSIONS

Discrete-time model reference adaptive control (MRAC) for

single-input single-output (SISO) system has been reviewed

and a new approach using this adaptive control concept for

robotic manipulators which are multi-input multi-output

(MIMO) systems, has been presented in this work.

The simulation results of case 1, show that using an

approximate discrete-time model of the robot system is

justified since the discrete-time linear control law

gives almost perfect model following responses for the

continuous-time nonlinear robot model.

The simulations of case 2 and case 3 show the effects of

payload uncertainty and random process noise on the MRAC

scheme. Eventhough a 20 kg payload, which is extremely

heavy compared to 4 kg of estimated robot weight

(excluding the base portion) was used, the robotic

manipulator was well controlled by the adaptive control

scheme while the conventional linear control scheme

provided poor performance. These results show that the

MRAC scheme can be operated over wide range of payloads.

The range of payloads is usually very restrictive in most
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high performance industrial robots. In this work the power

limitations of each actuator was not considered. However,

the forces and torques which were generated in the

simulations for the three cases, are quite reascnable in

size except for few time steps.

It can also be seen in the results of case 2 and case

that the MRAC law provides acceptable control signals to

obtain the high performance of control system with respect

to stochastic process noise of the form introduced. It

shows that MRAC systems can have robust properties with

respect to stochastic process noise.

Besides the results presented here, this MRAC algorithm,

which was determined for a rigid robot model was

implemented for the flexible model of the robot system. It

was found in this case that the MRAC system becomes

unstable. The instability is presumed to be caused by

unmodelled flexible dynamics in control scheme, which is

well known problem in adaptive control techniques.

Therefore it should be mentioned that more study is needed

to apply adaptive control schemes in practical cases,

since it is almost impossible to obtain a perfectly rigid

model in real systems. The effect of-unmodelled flexible
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dynamics in discrete-time MRAC of a flexible link was

discussed in ref. (53].

As mentioned above, further research of adaptive

techniques should be directed toward studying the

robustness properties of control systems in the presence

of unmodelled dynamics.

MRAC techniques applied to flexible robot systems are

suggested as further research on this subject.
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APPENDIX A

PROOF OF THEOREM 2.3.1

We will first prove the equivalency between propositions 2

and 4 of the theorem. From the continuous version of the

positive real lemma [54], it is known that the square

transfer matrix H(s) = D + C(sI-A) -1
B is positive real

if and only if, there exist a real symmetric positive

definite matrix P and real matrices L and K such that

PA + ATP = -LLT

BTP + KTLT= C

KTK = D + DT

for the continuous-time system:

x(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

(A.1)

A.2)

Using this result,

Necessity: we consider first the case where H(z) of

equation (2.2.3) is analytic at z=-1. By means of the

bilinear transformation:

z - 1

s (A.3)
z + 1

the matrix H(z) is transformed into a matrix

Hc(s) = D
c

+ C
c
(sI - A

c
)

-1
B
c

(A.4)



where

A
c

= (A + I)
-1

(A - I)

B
c

= 2(A+I)
-1

B

C
c

= C

= D C(A + I) -1
B
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(A.5)

From the continuous version of positive real lemma, there

exist real matrices Pc = PT > 0, L
c

and We such that

Pc(A + I) -1 (A -I) + (A T - I)(AT + I)
-1

P
c

=
c c

-L L
T

(A.6)2BT(A
T

+ I)
-2Pc + K

c
LT = C

KTK
c

= D + DT - C(A + I) -1
B - BT AT + I)-1C

with the definitions

P = 2(AT + I)
-1

P
c
(A + I)

-1

L = L
c

(A.7)

K = Kc + LcT (A + I)
-1B

equation (A.6) immediately reduce to equations (2.2.11) to

(2.2.13).

The general case, where H(z) has a simple pole at z = -1,

can be treated by an expansion of H(z) which separates out

this pole. Thus

H(z) = H1(z) + H2(z) (A.8)

where



H
1
(z)

z - 1

M = M
z + 1

2M

Z + 1
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, M: a constant matrix

(A.9)

and where H
2
(z) has no pole at z = -1.

Application of definition (2.2.1) then shows that M is

real and nonnegative definite symmetric and that H(z) is

discrete positive real if and only if both H1(z) and H2(z)

are positive real. These two matrices will each have some

minimal realization (A1, B1, Cl, D1) and (A2, B2, C2, D2)

in terms of which a minimal realization for H(z) is given

by:

H(z) = Di + D2
r

-1

A 0 B1

0 A2_ B2
A.10)

By hypothesis, H2(z) is discrete positive real, and hence,

from the previous arguments, there exist matrices

P
2
=P

2
>0, L

2
and W

2
which satisfy equations (2.2.11) to

(2.2.13) for the matrices A2, B2, C
2
and D

2.
Since the

matrix M in equation (A.9) is nonnegative definite

symmetric, there exists a nonsingular T such that

M = T-1 ( E x x)(TT ) = y.y.
1 1i=1 i=1

(A.11)

where r is the rank of M and the x
i

are linearly

independent real vectors. Therefore,



Al = -I
r

B1 = (Y1 Y2 Yr]
T

C
1
= -2[y

1
y
2

y
r

]
T

D E y.y.
1 i

1=1
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(A.12)

for which the matrices P
1
= 2I

r'
L
1

=0, W
1
= 0 are readily

seen to satisfy equations (2.2.11) to (2.2.13).

It is now easily checked that the matrices

21
r

0
P =

0 P
2-

0
L =

[L
2
]

(A.13)

W = W
2

satisfies equations (2.2.11) to (2.2.13) for the square

transfer matrix H(z) of equation (2.2.3).

Sufficiency: It suffices to show that equations (2.2.11)

to (2.2.13) implies equation (2.2.4) of definition 2.2.1.

From equation (2.2.11), it is readily verified that

(z*I - A )P(zI - A) + (z*I - AT )PA + ATP(zI - A)

= (1z(2 - 1)P + LL
T

(A.14)

After some manipulation, the use of equations (2.2.12) and

(2.2.13), there results
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D + D
T

+ C(zI - A)
-1

B + B
T
(z*I - A )

-1
C

= (1z1
2

- 1)BT (z*I - A
T

)

-1P(zI - A) 18

+ {KT + BT(z *I A)
-1W{( + LT (zI - A) -1B) (A.15)

The right-hand side is clearly nonnegative definite

1z1>1 while the left-hand side is precisely H(z)

in

H
T

(z*), This completes the proof of the equivalency between

propositions 4. and 2. of theorem 2.3.1.

Now we show the equivalency propositions 3. and 4., and

propositions 3. and 5.

Since the matrix of (2.2.10) must be at least positive

semidefinite, it can be factored as:

FQ
s

LsT
= NNT

= -L 1 [LT

K

LL
T

LK

KTLT KTK (A.16)

where L is an nxq - dimensional matrix and KT is an m x q

- dimensional matrix, and q is arbitrary.

Replacing Q by LLT, S by KTLT, and RT by KTK in equations

(2.2.7) to (2.2.9), we obtain equations (2.2.11) to
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(2.2.13). Thus, proposition 3. is equivalent to

proposition 4.

We replace the term x(k) T
Qx(k) in equation (2.2.14) by an

equivalent term obtained from equations (2.2.1) and

(2.2.7).

Thus,

x(k)
T
Qx(k) = -x(k) ATPAx(k) + x(k)TPx(k)

= -[x(k+1) T
- u(k)

T
B
T
]P[x(k+1) - Bu(k)]

+ x(k) T
Px(k)

= -x(k+1) TPx(k+1) + x(k+1)TPBu(k)

+ u(k) T
BTPx(k+1) - u(k)

T
B
T
PBu(k) + x(k)TPx(k)

(A.17)

Adding 2u(k)
T
S
T
x(k) + u(k)TRu(k) to the both sides of

equation (A.17), and using equations (2.2.8), (2.2.9), and

(2.2.2),

x(k)
T
Qx(k) + 2u(k) T

S
T
x(k) + u(k) T

Ru(k)

= -x(k+1)TPx(k+1) + x(k)TPx(k) + 2y(k) u(k) (A.18)

Thus,

k
1

1 k 1 k
E yikPu(k) = - Elx(k+1) Px(k+1) E

1x(k) TPx(k)
k=0 2 k=0 2 k=0
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k
+

1

- r, lx(kF Qx(k) + 2u(k) STx(k)
2 k=0

+ u(k)TRu(k)]

(A.19)

Using equation (2.2.14) (A.19) becomes

E
1

1

y(kF u(k) = -x(k1 + 1) Px(k
1
+ 1) -

1

-x(0) Px(0)
k=0 2 2

kl
+

1

- E [x(k)1'Qx(k) + 2u(k)T S
T
x(k)

2 k=0
+ u(k)TRu(k)]

(A.20)

Thus, proposition 5. is equivalent to proposition 31



143

APPENDIX B

DYNAMICAL MODEL OF NATURAL SYSTEMS

Let q = [q1 q
n

] be local coordinates and q a

tangent vector (i.e. velocity vector) in this coordinate

system.

As defined in Arnold [55], the Lagrangian function for a

natural system is given by the difference between kinetic

energy T and potential energy V:

L(q,q) = T(q,q) - V(q) (B.1)

where
1

T(q,q) = q
T
M(q)i M > 0 (B.2)

2

Thus, using the Lagrangian approach,

d a L aL
Q(t) = ( )

dt ai 3q
(B.3)

where Q is the n-dimensional vector of the generalized

forces, dynamical model can be derived in the form:

M(q)q = -c(q,i) + r(q) + Q(t)

where c(q,i) is the n-dimensional vector:

(B.4)
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c(q,q) = C(q)
-c1.1 q2

ql 1`12

(3.5)

-1 qn

in in

r(q) is the n-dimensional vector:

;V(q)
(3.6)r(q) = -

3i

Choosing the state vector x, xER2n in the form:

(B.7)
x Exl x2n1

where xi = qi and xi+n = qi, i=1,...,n

and the input vector u, uERn:

u = Q (B.8)

the equation (B.4) can be written in the state space

model:

x(t) = A(x,t)x(t)

where

A(x,t)

B(x,t) =[-

0_ _

-
A
1
(x,t)

0
- - -

B (x,t)_

+ B(x,t)u(t)

4_ _ _In _]
A
2
(x,t)

+ W(x,t) (B.9)

(B.10)

(3.11)



W(x,t) =
0 7

w (x
_

t)
J'

In this equation, Al,
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(B.12)

A
2

and B
1
are the nxn matrices, W

1

is the n-dimensional vector, and I
n

represents the n x n

identity matrix.

As a particular case of (B.9), using the notation:

L
T
(x
n+i

) =

xn+2 n

0
T

I.

xn+2 n-2 I

x2n
I 1

the matrices B
1,

A1, A2, and W
1
can be defined by:

(B.13)

M -1(xi) (B.14)B
1

=
-1

2

Al = 0 (B.15)

A
2
= -B

1
(x

i
)C(x )L(x

n+i
) (B.16)

Wi = B (xi)r(xi) (B.17)
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APPENDIX C

COMPUTER SIMULATION PROGRAM

C-1 Simulation model equations

The following equations were implemented in the simulation

model:

Plant: M
1 p + M2 K

r
+ wl

sl

M
3

it;

P
+ M

P s
= M + w2

l
(C.1)

MS +M =K +w3
5 p 6 x sl

where M1 = mR + mL

1
2 1

M2
-

C2mR(r
P

-) 2mLrp]

1
2

Mz = -1;R 1[(m 1
2

m
2

3 2 ) jr 3(mR(aR jr bR
2

)

+ m
s
(a

2 + b 2
)))

X 2.

2 2
+ mR

(r
p

-
1

--) + ms(D - --) + mLr2 + mTD
2 2

1

+ -m
c c
(a

2 2
+ bc)

2

2r [m 1

) mLrplR 2

M5 = mR + ms + me + mT + mL

M6 M5g
(C.2)

In equations (C.2), ms=1.26kg, mR=0.37kg, mc=1.97kg,

mT=0.4kg, mr, = payload, as=0.0125m, aR=0.0075m, ac=0.02m,



b
s
=0.019m, b

R
=0.011m, b

c
=0.03m,

D=0.17m, and g=9.8m/sec 2
.
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2,

1
=0.23m,

2
=0.25m,

Reference model:

r (k+1) = r
P
(k) + 0.01r

P
(k)

(k+1) = tp

P
(k) + 0.0111)

P
(k)

z (k+1) = z
P
(k) + 0.01z

P
(k)

r (k+1) = -188.01r (k) - 0.98r (k) + 188.01ur(k)

(k+1) = -188.01* (k) - 0.9814) (k) + 188.01u,(k)

(k=1) = =188.01z p(k) - O. 98zp (k) + 188.01u
z
(k)

(C.3)

Linear model following control (LMFC) law:

Kr(k) = [rm(k+1) + 33.3rM(k) + 0.17rm(k) - 33.3rp(k)

- 0.17i'p(k) - ESTY11p (k) + ESTV1d *] /ESTU1

= [4)m(k+1) + 33.4m(k) + 0.174)m(k)

ESTY
2
4
p
(k) + ESTV

2
d*]/ESTU

2

M (k)

Kz(k)

where

= [zm(k+1) + 33.3zM(k) + 0.17zm(k)

0.17z (k) + ESTV
3
d*]/ESTU

3

ESTU
1
= 100M1

ESTU2 = 100M3

ESTU
3

= 100M
5

33.34) (k)

- 33.3z (k)

(C.4)

kl
ESTY1 =

p
[2m

R
(r
p

- --) + 2mlirp]/200M1
2
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ESTY
2
= -2r

p
[m

R
(r
p
- -

2.-1

) + mLrp ]/100M
3

+ 1.17
2

(C.5)

Adaptation diagonal gain matrix F(k):

daig F(k) = [fi(k)], i=1 ...10

At each time step, the elements of adaptation gain matrix

are computed by

fl(k+1) = [fl(k) (fl(k)Kr(k)}2/(& + sum)]/Al(k)

f2(k+1) = [f2(k) - (f2(k)M1j(k))2/(s + sum)] /X1(k)

f3(k+1) = [f3(k) - (f3(k)Kz(k))
2
/(6 + sum)]/Xl(k)

f8(k+1) = [f8(k) (f
P

(k)11) (k))2/(6 + sum)] /X1(k)

f10(1".1) (f10(k) (f10(k)d"
2

/(6
+ sum)] /X1(k)

f4 f5 f6 f7 f9
(C.6)

where 6 = 0.5

sum = f
1
(k)K

r
(k)2 + f

2
(k)M

1p

(k)2 + f (k)K
z
(k)

+ f
8

(k)11) (k)2+ f
10

(k)d*2

and X
1
(k) is computed such that trace[F(k)]=trace[F(0)].

f f fA priori adaptation error vector e =
0 [e10, e20, e30, e40,

f Te50, e ]
50' 60

e10 [rp(k+1) - rm(k+1)] [rp(k) - rM(k)]

- [r
P
(k) - r

M
(k)]/100

e20 = [ (ic.+1) -Ipil(k+1)] - pp (k) (k)]

- (k)
m
(k)]/100
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en = [zp(k+1) - zm(k+1)] - lzp(k) zM(k)]

- [z (k) - zM(k)] /100

e40 [rp(k+1) - rm(k+1)] + 33.3[rp(k) - rm(k)]

+ 0.17[r (k) - rM(k)]

e:0 = [*p(k+1) - li)m(k+1)] + 33.3(*p(k) - 1Pm(k)]

+ 0.17[* (k) - *m(k)]

e60 [zp(k+1) - im(k+1)] + 33.3[zp(k) - zM(k)]

+ 0.17[z (k) - zM(k)] (C.7)

A posteriori adaptation error vector:

of = e f
/[1 + sum]

Parameter adaptation law:

E
S
TU

1
(k+1)

ESTU
2
(k+1)

ESTU
3
(k+1)

ESTY
1
(k+1)

ESTY
2
(k+1)

ESTV
1
(k+1)

ESTV
2
(k+1)

ESTV
3
(k+1)

= ESTU
1
(k) + f

1
(k)K

r
(k)e

f
(k+1)

= ESTU
2
(k) + f

2 *
(k)M (k)e

f
(k+1)

= ESTU
3
(k) + f

3 z
(k)K (k)ef(k+1)

6

= ESTY
1
(k) + f

8
(k)q)

p
(k)ef(k+1)

= ESTY
2
(k) + f

8
(k)Ip

p
(k)e

5
(k+1)

= ESTV
1
(k) + f

10
(k)de

4
(k+1)

= ESTV2(k) + f10(k)de6(k+1)

= ESTV
3
(k) + f

10 6
(k)de

*f
(k+1)

(C.8)

(C.9)
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C-2 FORTRAN program

PROGRAM ROBOT
DOUBLE PRECISION DSEED
DIMENSION E(10),X(10),Y(10),X00(10),Y00(10),X0(10),Y0(10),XE(10)
DIMENSION ESTA(10,10),ESTB(10,10),ESTY(10,10),ESTU(10,10)
DIMENSION CDIR(10),DY(10),ESTV(10),F(10),G(10)
DIMENSION REGY(10),REGX(10),U(10),UM(10),U0(10),W(10)
COMMON N,EE,COT,COA,COM,COK,M
COMMON CR(10,10),SC(10)
DSEED=100000.D0
NR=3
N=6
M=3
T=0.
EE=0.00001
ITMAX=50

43 WRITE(3,700)
READ(3,701) NSTOCH
IF(NSTOCH.EQ.0) GO TO 810

WRITE(3,811)
READ(3,812) SR

810 WRITE(3,35)
READ(3,36) PLOAD
WRITE(3,351)
READ(3,361) DT
WRITE(3,352)
READ(3,362) Z
DO 31 I=1,M

WRITE(3,27) I

READ(3,28) G(I)
31 CONTINUE

DO 311 I=1,N
WRITE(3,27) I
READ(3,28) F(I)

311 CONTINUE
WRITE(3,277)
READ(3,288) FV
WRITE( 3,278)
READ(3,289) SC(1),SC(2),SC(3),SC(4),SC(5),SC(6)
WRITE(3,34)
READ(3,23) TMAX
WRITE(3,41)
READ(3,42) CHANGE
IF(CHANGE.EQ.1.) GO TO 43

DATA OF SEIKO ROBOT(MASS,RADIUS,LENGTH)

COLM=1.97
ARMM=0.37
SLEM=1.26
ACTM=0.4
CIR=2./100.
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AIR=0.75/100.
SIR=1.25/100.
COR=3./100.
AOR=1.1/100.
SOR=1.9/100.
SLEN=25./100.
ALEN=23./100.
ACD=17./100.

-CALCULATION OF CONSTANT TERMS AND TOTAL MASS
INCLUDING MOMENT OF INERTIA.

COA=PLOAD+ARMM
COT=ARMM*ALEN
CYL1=(SLEM*SLEN**2+3.*SLEM*(SIR**2+SOR**2))/12.
++SLEM*(ACD-SLEN/2)**2
CYL2=(ARMM*ALEN**2+3.*ARMM*(AIR**2+AOR**2))/12.
++ARMM*(ALEN**2)/4.
CYL3=COLM*(CIR**2+COR**2)/2.
CACT=ACTM*ACD**2
COK=CYL1+CYL2+CYL3+CACT
COM=COLM+SLEM+ACTM

DEFINE THE INITIAL AND FINAL POINTS
OF ROBOT MANIPULATOR.

DO 24 I=1,N
XO(I)=0.
YO(I)=0.
XE(I)=0.

24 CONTINUE
X0(1)=0.1
YO(1)=0.1
XE(2)=0.15
XE(3)=0.04

TRANSFORMATION OF RECTANGULAR COORD. TO CYLINDERICAL COORD.

CALL TRANS(X,X0)
CALL TRANS(Y,Y0)

INITIALIZE THE UNKNOWN PARAMETERS OF ROBOT
CONTROL SYSTEM AND DEFINE THE REGULATOR
DYNAMICS.

FC0A=ARMM+1.
A1=(2.*FC0A*X(1)-COT)*X(5)/(2.*FC0A)
H=C0K+FC0A*X(1)**2-COT*X(1)
A2=(COT-2.*FC0A*X(1))*X(4)/H
B1=1./FC0A
B2=1./H
B3=1./(FC0A+COM)
DO 110 I=1,N

U(I)=0.
ESTV(I)=0.
W(I)=0.
DO 110 J=1,N

CR(I,J)=0.
ESTA(I,J)=0.
ESTB(I,J)=0.
ESTY(I,J)=0.
ESTU(I,J)=0.

110 CONTINUE
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NN=N/2
DO 111 I=1,NN

CR(1,I)=-1.
11=1+3
CR(I,II)=-DT
CR(II,I)=1./(3.*DT)
CR(II,II)=1./6.
ESTA(I,I)=-1.
ESTA(I,II)=-DT

111 CONTINUE
ESTA(4,4)=-1.
ESTA(4,5)=-A1 *DT
ESTA(5,5)=-1.-A2*DT
ESTA(6,6)=-1.
ESTB(4,1)=DT*B1
ESTB(5,2)=DT*B2
ESTB(6,3)=DT*B3
ESTV(6)=DT*9.8
KN=N/2+1
DO 112 I=KN,N
DO 112 J=1,N

ESTY(I,J)=CR(I,J)-ESTA(I,J)
112 CONTINUE

DO 113 J=1,NN
I=J+NN
ESTU(I,J)=ESTB(I,J)

113 CONTINUE

PRINT THE FOLLOWING INPUT VALUES:
PAYLOAD
SAMPLING TIME INTERVAL
EIGENVALUE OF REF. MODEL
SELECTION OF ADAPTATION MECHANISM
INITIAL POINTS OF REF. MODEL AND ROBOT
GAINS OF ADAPTATION MECHANISM
COMPUTE THE TRACE OF INITIAL ADAP. GAIN MATRIX, DTR

IF(NSTOCH.EQ.0) GO TO 705
WRITE(3,702)
GO TO 706

705 WRITE(3,703)
706 WRITE(3,37) PLOAD

WRITE(3,371) DT
WRITE(3,372) Z
DO 26 I=1,N

WRITE(3,25) I,X(I),Y(I)
26 CONTINUE

DTR=0.
DO 45 I=1,M

WRITE(3,29) I,G(I)
DTR=DTR+G(I)**2

45 CONTINUE
DO 455 I=1,N

WRITE(3,29) I,F(I)
DTR=DTR+F(I)**2

455 CONTINUE
WRITE(3,299) FV
IF(DTR.EQ.0.) DTR=1
DTR=SQRT(DTR)
WRITE(3,32)

THE FOLLOWING ITERATION IS IMPLEMENTED TO
CONTROL THE ROBOT MANIPULATOR.



40 DO 30 KK=1,N
E(KK)=X(KK)-Y(KK)

30 CONTINUE
CALL INPT(UM,T,X0,XE,CDIR
CALL ERROR(CDIR,EPS,ELONG
WRITE(3,33) T,Y(1),Y(2),Y
.1F(T.GE.TMAX) GO TO 50
T=T+DT
DO 114 I=1,N

X00(I)=X(I)
114 CONTINUE

CALL SOLVM(X,UM,T,Z,DT)
CALL REGL(REGX,X,X00)
DO 115 I=1,N

Y00(I) =Y(I)
UO(I)=U(I)

115 CONTINUE
IF(NSTOCH.EQ.0) GO TO 707

CALL RANDOM(DSEED,NR,W,SR)
707 CALL CTR(U,ESTU,ESTY,ESTV,Y00,X,X00)

PDT=DT/5.
PT=T-DT

900 PT=PT+PDT
CALL SOLVP(Y,U,W,PT,K,ITMAX,PDT)
IF(K.EQ.ITMAX) GO TO 777

IF(PT.LT.T) GO TO 900
CALL REGL(REGY,Y,Y00)
CALL ADAPT(ESTY,ESTU,ESTV,REGX,REGY,U0,Y00,F,G,FV,DTR)

GO TO 40
777 WRITE(3,477)
50 STOP

,ETRAS,UM,Y)
(3),E(1),E(2),E(3),EPS,ELONG,ETRAS

34 FORMAT(
23 FORMAT(
25 FORMAT(
27 FORMAT(
28 FORMAT(
29 FORMAT(

277 FORMAT(
288 FORMAT(
299 FORMAT(
278 FORMAT(
289 FORMAT(
32 FORMAT(

*,6X,'E(
33 FORMAT(
35 FORMAT(

351 FORMAT(
352 FORMAT(
36 FORMAT(

361 FORMAT(
362 FORMAT(
371 FORMAT(
372 FORMAT(
37 FORMAT(
41 FORMAT(
42 FORMAT(

477 FORMAT(
700 FORMAT(
701 FORMAT(

' FINAL TIME= ')
F10.3)
/,' INITIAL VALUES OF X(I),Y(I), I=',I2,';',2F10.4)
' G(I) OR F(I) ; I=',I2,' :')
F12.7)
/,' G(I) OR F(I) I=',I2,' ;',F12.7)
' FV ;')
F12.7)
/,' FV ;',F12.7)
' SCALING FACTOR OF FUNCTIONS: SC(N)=',/)
6F10.4)
////,3X,'T',7X,'Y(1)',6X,'Y(2)',6X,'Y(3)',6X,'E(1)'
2)',6X,'E(3)',6X,'EPS',6X,'ELONG',6X,'ETRAS')
1X,F5.2,2X,9G10.3)
' PAYLOAD=')
' TIME INTERVAL DT=')
' EIGENVALUE OF REF.MODEL ON D.T., Z=')
F5.2)
F8.4)
F10.4)
/,' TIME INTERVAL =',F8.4,/)
/,' EIGENVALUE OF REF. MODEL ON D.T., Z=',F10.4)
/,' PAYLOAD=',F5.2,/)
' CHANGE INPUT ? YES=1.,N0=0. ')

F5.2)
/,' NO CONVERGENCE')

' DO YOU WANT RANDOM NOISE? Y=1,N=0')
12)

153
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702 FORMAT(/,' THIS SYSTEM HAS A PROCESS RANDOM NOISE')
703 FORMAT(/,' THIS SYSTEM HAS NO PROCESS RANDOM NOISE')
811 FORMAT(' SCALING FACTOR OF STOCH. NOISE VECTOR=')
812 FORMAT(F12.5)

END

SUBROUTINE INPT(X,T,X0,XE,CDIR)
DIMENSION X(10),X0(10),XE(10),CDIR(10),XT(10)
COMMON N,EE,COT,COA,COM,COK,M

GENERATE TRAJECTORY INPUT USING TRPERZOIDAL VELOCITY LAW IN
CYLINDERICAL COORDINATE.

A0=2.30827316
V0=0.46165463
D=SQRTUXE(1)-X0(1))**2+(XE(2)-X0(2))**2+(XE(3)-X0(3))**2)
DO 10 I=1,M

CDIR(I)=(XE(I)-X0(I))/D
10 CONTINUE

T1 =V0 /A0

T2=D/V0
T3=T1+T2
IF(T.LE.T3) S=D-(A0/2.)*(D/VO+VO/A0 -T)**2
IF(T.LE.T2) S=VO*T-(V0**2)/(2.*A0)
IF(T.LE.T1) S=(A0/2.)*T**2
DO 20 I=1,M

XT(I)=X0(I)+CDIR(I)*S
20 CONTINUE

X(1)=SQRT(XT(1)**2+XT(2)**2)
IF(XT(1).EQ.0.) XT(1)=0.1**10
X(2)=ATAN(XT(2)/XT(1))
X(3)=XT(3)
RETURN
END

SUBROUTINE ADAPT(ESTY,ESTU,ESTV,REGX,REGY,U,Y,F,G,FV,DTR)
DIMENSION ERRA(10),ERRB(10),ESTY(10,10),ESTU(10,10)
DIMENSION REGY(10),REGX(10),U(10),Y(10)
DIMENSION F(10),G(10),TF(10),TG(10)
DIMENSION ESTV(10)
COMMON N,EE,COT,COA,COM,COK,M
COMMON CR(10,10),SC(10)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
YUH,J. AND HOLLEY,W.E. MECH.ENGR., OREGON STATE UNIV 8/1/85
ADJUST THE UNKNOWN PARAMETERS OF ROBOT CONTROL SYSTEM
USING PARAMETER ADAPTATION ALGORITHM
INPUT

U= CONTROL SIGNAL FOR ROBOT SYSTEM
Y= OUTPUT OF ROBOT SYSTEM

OUTPUT
ESTY= ADJUSTABLE CONTROLLER CORRESPONDING TO Y
ESTU= ADJUSTABLE CONTROLLER CORRESPONDING TO U
ESTV= ADJUSTABLE CONTROLLER CORRESPONDING TO NOISE

PARAMETER
F= ADAPTATION GAIN CORRESPONDING TO Y
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G= ADAPTATION GAIN CORRESPONDING TO U
FV= ADAPTATION GAIN CORRESPONDING TO NOISE

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
D=1
SUM=0.
TRACE=0.
DELTA=0.5
DO 10 I=1,M

SUM=SUM+G(I)*U(I)**2
10 CONTINUE

DO 20 I=1,N
SUM=SUM+F(I)*Y(I)**2

20 CONTINUE
DO 30 I=1,N

ERRA(I)=REGY(I)-REGX(I)
ERRB(I)=ERRA(I)/(1.+SUM+FV*D**2)

30 CONTINUE
ESTU(4,1)=ESTU(4,1)+G(1)*U(1)*ERRB(4)
ESTU(5,2)=ESTU(5,2)+G(2)*U(2)*ERRB(5)
ESTU(6,3)=ESTU(6,3)+G(3)*U(3)*ERRB(6)
ESTY(4,5)=ESTY(4,5)+F(5)*Y(5)*ERRB(4)
ESTY(5,5)=ESTY(5,5)+F(5)*Y(5)*ERRB(5)
ESTV(4)=ESTV(4)+FV*D*ERRB(4)
ESTV(5)=ESTV(5)+FV*D*ERRB(5)
ESTV(6)=ESTV(6)+FV*D*ERRB(6)
ALPHA=DELTA+SUM
DO 40 I=1,M

TG(I)=G(I)
G(I)=G(I)-(U(I)**2)*(G(I)**2)/ALPHA
TRACE=TRACE+G(I)**2

40 CONTINUE
DO 50 I=1,N

TF(I)=F(I)
F(I)=F(I)-(Y(I)**2)*(F(I)**2)/ALPHA
TRACE=TRACE+F(I)**2

50 CONTINUE
IF(TRACE.EQ.0.) GO TO 61

TRACE=SQRT(TRACE)
DO 70 I=1,M

G(I)=G(I)*DTR/TRACE
70 CONTINUE

DO 80 I=1,N
F(I)=F(I)*DTR/TRACE

80 CONTINUE
GO TO 60

61 DO 81 I=1,M
G(I)=TG(I)

81 CONTINUE
DO 82 I=1,N

F(I)=TF(I)
82 CONTINUE
60 RETURN

END

SUBROUTINE SOLVM(X,UM,T,Z,DT)
DIMENSION X(10),UM(10),P(10)
COMMON N,EE,COT,COA,COM,COK,M

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
YUH,J. AND HOLLEY,W.E. MECH.ENGR., OREGON STATE UNIV 3/1/86
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GENERATE THE OUTPUT OF DISCRETE-TIME REFERENCE MODEL
INPUT

UM= REFERENCE INPUT COMPUTED BY DESIRED TRAJECTORY
Z= EIGENVALUE OF REFERENCE MODEL

OUTPUT
X= OUTPUT OF REFERENCE MODEL

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
A1=2.*(1.-Z)/DT
A0=(Z**2+DT*A1-1)/(DT**2)
DO 10 I=1,M

II=I+M
P(I)=X(I)+DT*X(II)
P(II)=-DT*A0*X(I)+(1.-DT*A1)*X(II)+DT*A0 *UM(I)

10 CONTINUE
DO 20 I=1,N

X(I)=P(I)
20 CONTINUE

RETURN
END

SUBROUTINE SOLVP(X,UM,W,T,K,ITMAX,DT)
DIMENSION X(10),DELX(10),XX(10)
DIMENSION VEL(10),VV(10),TA(10),PT(10)
DIMENSION P(10),D(10,10),X0(10),Q(10),AJ(10,10)
DIMENSION PP(10,10),DELP(10),UM(10)
DIMENSION Z(10),R(10,10),QQ(10,10),DELPP(10)
DIMENSION W(10)
COMMON N,EE,COT,COA,COM,COK,M
COMMON CR(10,10),SC(10)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
YUH,J. AND HOLLEY,W.E. MECH.ENGR., OREGON STATE UNIV 9/1/84
INPUT....

UM= CONTROL SIGNAL TO ROBOT SYSTEM
W= RANDOM PROCESS NOISE

OUTPUT
X= OUTPUT OF ROBOT SYSTEM

SUBROUTINES REQD.- FUNCA,ORTHO,INVERS
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

TOL=0.00001
K=0
IF(T.GT.DT) GO TO 600
DO 10 I=1,N

VEL(I)=EE
X0(I)=X(I)
X(I)=X(I)+VEL(I)*DT

10 CONTINUE
CALL FUNCA(P,X,VEL,UM,W,T)

DO 20 I=1,N
XX(I)=X(I)
VV(I)=VEL(I)

20 CONTINUE
DO 40 I=1,N

XX(/)=X(I)+EE
VV(I)=(XX(I)-X0(I))/DT
CALL FUNCA(PT,XX,VV,UM,W,T)

DO 30 J=1,N
PP(J,I)=PT(J)

30 CONTINUE
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XX(I)=X(I)
VV(I)=VEL(I)

40 CONTINUE
DO 50 I=1,N

DO 50 L=1,N
AJ(I,L)=(PP(I,L)-P(I))/EE

50 CONTINUE
CALL INVERS(AJ,N)

800 DO 60 L=1,N
DELX(L)=0.
DO 60 ME=1,N

DELX(L)=DELX(L)-AJ(L,ME)*P(ME)
60 CONTINUE
102 DO 70 I=1,N

X(I)=X(I)+DELX(I)
VEL(I)=(X(I)-X0(I))/DT

70 CONTINUE
CALL FUNCA(Q,X,VEL,UM,W,T)
IF(K.EQ.0) GO TO 700
DO 80 I=1,N

IF(ABS(DELX(I)).GT.TOL) GO TO 700
80 CONTINUE

GO TO 900
600 DO 90 I=1,N

X0(I)=X(I)
X(I)=X(I)+VEL(I)*DT

90 CONTINUE
CALL FUNCA(P,X,VEL,UM,W,T)

GO TO 800
700 IF(K.EQ.ITMAX) GO TO 900

DO 100 I=1,N
DELP(I)=Q(I)-P(I)

100 CONTINUE
DO 103 I=1,N

IF(DELP(I).NE.0.) GO TO 101
103 CONTINUE

DO 104 I=1,N
DELX(I)=-Q(I)

104 CONTINUE
GO TO 102

101 K=K+1
MM=K
DO 112 I=1,N

DELPP(I)=DELP(I)
112 CONTINUE

CALL ORTHO(DELP,N,N,MM,QQ,R)
DO 222 I=1,N

Z(I)=W(I,MM)
222 CONTINUE

TT=R(MM,MM)
E0=0.1**20
E1=0.1**15
E2=0.1**10
E3=0.1**5
ALPHA=1.
IF(ABS(TT).LE.E3) ALPHA=10.**5
IF(ABS(TT).LE.E2) ALPHA=10.**10
IF(ABS(TT).LE.E1) ALPHA=10.**15
IF(ABS(TT).LE.E0) GO TO 999
TT=ALPHA*TT
DO 120 I=1,N

TA(I)=0.
DO 121 J=1,N
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TA(I)=TA(I)+AJ(I,J)*DELPP(J)
121 CONTINUE

TA(I)=TA(I)-DELX(I)
120 CONTINUE

DO 140 I=1,N
DO 130 J=1,N

D(I,J)=ALPHA*TA(I)*Z(J)/TT
AJ(I,J)=AJ(I,J)-D(I,J)

130 CONTINUE
140 CONTINUE
999 DO 141 I=1,N

P(I)=Q(I)
141 CONTINUE

GO TO 800
900 RETURN,

END

SUBROUTINE INVERS(A,N)
DIMENSION INDEX(10,2),A(10,10),B(10,10),C(10,10)
DO 10 I=1,N

DO 10 J=1,N
B(I,J)=A(I,J)

10 CONTINUE
DO 20 I=1,N

INDEX(I,1)=0
20 CONTINUE

II=0
30 AMAX=-1.

DO 40 I=1,N
IF(INDEX(I,1)) 40,50,40

50 DO 60 J=1,N
IF(INDEX(J,1)) 60,70,60

70 TEMP=ABS(A(I,J))
IF(TEMP-AMAX) 60,60,80

80 IROW=I
ICOL=J
AMAX=TEMP

60 CONTINUE
40 CONTINUE

IF(AMAX) 190,220,90
90 INDEX(ICOL,1)=IROW

IF(IROW-ICOL) 110,100,110
110 DO 120 J=1,N

TEMP=A(IROW,J)
A(IROW,J)=A(ICOL,J)
A(ICOL,J)=TEMP

120 CONTINUE
II=II+1
INDEX(II,2)=ICOL

100 PIVOT=A(ICOL,ICOL)
A(ICOL,ICOL)=1.
PIVOT=1./PIVOT
DO 130 J=1,N

A(ICOL,J)=A(ICOL,J)*PIVOT
130 CONTINUE

DO 160 I=1,N
IF(I-ICOL) 140,160,140

140 TEMP=A(I,ICOL)
A(I,ICOL)=0.



159

DO 150 J=1,N
A(I,J)=A(I,J)-A(ICOL,J)*TEMP

150 CONTINUE
160 CONTINUE

GO TO 30
170 ICOL=INDEX(II,2)

IROW=INDEX(ICOL,1)
DO 180 I=1,N

TEMP=A(I,IROW)
A(I,IROW)=A(I,ICOL)
A(I,ICOL)=TEMP

180 CONTINUE
II=II-1

190 IF(II) 170,200,170
200 DO 210 I=1,N

DO 210 J=1,N
C(I,J)=0.
DO 210 K=1,N

C(I,J)=C(I,J)+B(I,K)*A(K,J)
210 CONTINUE
220 RETURN

END

SUBROUTINE ORTHO(B,N,ND,M,Q,R)
DIMENSION B(10),Q(10,10),R(10,10)
IF(M.GT.N) GO TO 100

IF(M.NE.1) GO TO 200
DO 5 I=1,N

DO 4 J=1,N
Q(I,J)=0.

4 CONTINUE
Q(I,I)=1.

5 CONTINUE
200 DO 11 I=1,N

SUM =O.
DO 10 J=1,N

SUM=SUM+Q(J,I)*B(J)
10 CONTINUE

R(I,M)=SUM
11 CONTINUE

IF(M.GE.N) GO TO 700
R0=0.
DO 20 I=M,N

RO=RO+R(I,M)*R(I,M)
20 CONTINUE

RO=SQRT(RO)
IF(R(M,M).LT.0.) R0=-R0

B(M)=R(M,M)+RO
C=SQRT(RO*B(M))
IF(C.LE.0.) GO TO 700

R(M,M)=-R0
B(M)=B(M)/C
IF(M.GE.N) GO TO 500

MPN=M+1
DO 21 I=MPN,N

B(I)=R(I,M)/C
R(I,M)=0.

21 CONTINUE
500 DO 32 I=1,N
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SUM=0.
DO 30 K=M,N

SUM=SUM+Q(I,K)*B(K)
30 CONTINUE

DO 31 J=M,N
Q(I,J)=Q(I,J)-SUM*B(J)

31 CONTINUE
32 CONTINUE

GO TO 700
100 M=N

DO 40 I=1,N
DO 40 J=1,N

IF(J.LE.1) GO TO 40
JJ=J-1
R(I,JJ)=R(I,J)

40 CONTINUE
DO 43 I=1,N

SUM=0.
DO 42 J=1,N

SUM=SUM+Q(J,I)*B(J)
42 CONTINUE

R(I,N)=SUM
43 CONTINUE

NPP=N-1
DO 52 K=1,NPP

KLK=K+1
RO=SQRT(R(K,K)**2+R(KLK,K)**2)
IF(R(K,K).LT.0.) R0=-R0
BK= R(K,K) +R0
BKP=R(KLK,K)
C=RO*BK
IF(C.EQ.0.) GO TO 52

R(K,K)=-R0
R(KLK,K)=0.
DO 50 J=KLK,N

RO=BK*R(K,J)+BKP*R(KLK,J)
R(K,J)=R(K,J)-RO*BK/C
R(KLK,J)=R(KLK,J)-RO*BKP/C

50 CONTINUE
DO 51 I=1,N

RO=Q(I,K)*BK+Q(I,KLK)*BKP
Q(I,K)=Q(I,K)-RO*BK/C
Q(I,KLK)=Q(I,KLK)-RO*BKP/C

51 CONTINUE
52 CONTINUE
700 RETURN

END

SUBROUTINE FUNCA(FPLT,Y,V,U,W,T)
DIMENSION FPLT(10),V(10),Y(10),UM(10)
DIMENSION B(10,10),P0(10),U(10)
DIMENSION W(10)
COMMON N,EE,COT,COA,COM,COK,M
COMMON CR(10,10),SC(10)
H=1./(COK-COT*Y(1)+COA*Y(1)**2)
P0(1)=Y(4)-V(1)
PA1=(Y(1)-COT/(2.*COA))*Y(5)
P0(4)=PA1 *Y(5)-V(4)+W(1)
P0(2)=Y(5)-V(2)
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PA2=H*(COT-2.*COA*Y(1))*Y(4)
P0(5)=PA2*Y(5)-V(5)+W(2)
P0(3)=Y(6)-V(3)
P0(6)=-V(6)-9.8+W(3)
CALL BMATX(B,Y,T)
DO 60 I=1,N

A=0.
DO 50 K=1,M

A=A+B(I,K)*U(K)
50 CONTINUE

FPLT(I)=PO(I)+A
60 CONTINUE

FPLT(4)=FPLT(4)/B(4,1)
FPLT(5)=FPLT(5)/B(5,2)
FPLT(6)=FPLT(6)/B(6,3)
DO 100 I=1,N

FPLT(I)=FPLT(I)/SC(I)
100 CONTINUE

RETURN
END

SUBROUTINE TRANS(X,X0)
DIMENSION X(10),X0(10)
X(1)=SQRT(X0(1)**2+X0(2)**2)
X(4)=SQRT(X0(4)**2+X0(5)**2)
IF(X0(1).EQ.0.) X0(1)=0.1**10
IF(X0(4).EQ.0.) X0(4)=0.1**10

X(2)=ATAN(X0(2)/X0(1))
X(5)=ATAN(X0(5)/X0(4))

X(5)=X0(5)
X(6)=X0(6)
RETURN
END

SUBROUTINE BMATX(B,Y,T)
DIMENSION B(10,10),Y(10)
COMMON N,EE,COT,COA,COM,COK,M
H=1./(COK-COT*Y(1)+COA*Y(1)**2)
DO 10 I=1,N

DO 10 J=1,N
B(I,J)=0.

10 CONTINUE
B(4,1)=1./COA
B(5,2)=H
B(6,3)=1./(COM+COA)
RETURN
END

SUBROUTINE CTR(U,ESTU,ESTY,ESTV,Y00,X,X00)
DIMENSION U(10),X00(10),Y00(10),ESTY(10,10),ESTU(10,10)
DIMENSION UM(10),UU(10)
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DIMENSION X(10),ESTV(10)
COMMON N,EE,COT,COA,COM,COK,M
COMMON CR(10,10),SC(10)

GENERATE THE CONTROL SIGNAL, U FOR ROBOT SYSTEM
BASED ON INDEPENDENT TRACKING AND REGULATION ALGORITHM

D=1
KN =1 +N /2

DO 10 I=KN,N
SUM=0.

DO 20 J=1,N
SUM=SUM+(-ESTY(I,J)*Y00(J)+CR(I,J)*X00(J))

20 CONTINUE
UU(I)=SUM+X(I)+ESTV(I)*D

10 CONTINUE
DO 30 I=1,M

II=I+M
U(I)=UU(II)/ESTU(II,I)

30 CONTINUE
RETURN
END

SUBROUTINE REGL(REG,XX,XX00)
DIMENSION REG(10),XX(10),XX00(10)
COMMON N,EE,COT,COA,COM,COK,M
COMMON CR(10,10),SC(10)
DO 10 I=1,N

SUM=0.
DO 20 J=1,N

SUM=SUM+CR(I,J)*XX00(J)
20 CONTINUE

REG(I)=XX(I)+SUM
10 CONTINUE

RETURN
END

SUBROUTINE ERROR(CDIR,EPS,ELONG,ETRAS,UM,X)
DIMENSION CDIR(10),DX(10),UM(10),X(10)
DIMENSION UMIT(10),XIT(10)
COMMON N,EE,COT,COA,COM,COK,M

COMPUTE THE ERROR BETWEEN END POINT OF ROBOT ARM
AND THE DESIRED TRAJECTORY

CALL IVTR(UMIT,UM)
CALL IVTR(XIT,X)
SUM=0.
DO 10 I=1,M

DX(I)=XIT(I)-UMIT(I)
SUM=SUM+DX(I)**2

10 CONTINUE
EPS= SQRT(SUM)
ELONG=0.
DO 20 I=1,M
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ELONG=ELONG+DX(I)*CDIR(I)
20 CONTINUE

DIFF=EPS**2-ELONG**2
IF(DIFF.LE.0.) GO TO 777

ETRAS=SQRT(DIFF)
GO TO 778

777 ETRAS=0.
778 RETURN

END

SUBROUTINE IVTR(XIT,X)
DIMENSION XIT(10),X(10)
XIT(1)=X(1)*COS(X(2))
XIT(2)=X(1)*SIN(X(2))
XIT(3)=X(3)
RETURN
END

SUBROUTINE RANDOM(DSEED,NR,R,SR)
DOUBLE PRECISION DSEED,DC,DM,DD
DIMENSION R(10)

GENERATE THE RANDOM PROCESS NOISE VECTOR

DC=16807.D0
DM=2147483647.D0
DD=2144783648.D0
DO 10 I=1,NR

SUM=0.
DO 20 J=1,3

DSEED=DMOD(DC*DSEED,DM)
SUM=SUM+DSEED/DD

20 CONTINUE
R(I)=(SUM-1.5)*2./SR

10 CONTINUE
RETURN
END


