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A Rule Based Approach To

Program Development

Chapter 1

Introduction

The Software Life Cycle can be viewed as a collection of phases through which

projects passISta834 These phases are: problem definition, requirement analysis,

system design specification, detailed design specification, coding, testing, system

integration, and maintenance. A number of software life cycle tools have been

proposed to assist in automating one or more of the phases in the Software Life

Cycle. For example, a language-directed editor is a programming environment tool

which helps a programmer write syntactically correct source code during the coding

phase.

These tools are typically part of a system called a programming environment.

Programming Environments are usually programming language dependent. For

example Pascal in PECAN [Rei85] and MENTOR [DVHK80], and Lisp in In-

terlisp [TM81].

Programming environment tools increase programmer productivity, decrease de-

velopment time, reduce maintenance costs, and minimize errors. During the past

few years there has been a growing number of programming environments built

around various programming languages. One issue raised in favor of these pro-

gramming languages and their environments has been their suitability for generat-

ing reusable software components [Deu83,Weg831, and therefore acknowledging the
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importance of reusability for curtailing the high cost of software development.

Programming language features such as support for object oriented program-

ming, parameterized programming techniques, generic packages, extensible lan-

guages, and program development based on transformation techniques offer the ca-

pability of developing reusable software components. These programming language

features have gained widespread acceptance, but the drawbacks are: implementa-

tion difficulties [Hoa81], lack of desired performance [Deu83] due to the complexity

of the language and its support environment, and lack of support to facilitate the

reuse of already existing software components.

Program transformation is an approach which is closely related to the work re-

ported here. A program is transformed by a tool which replaces a section of a source

program with a new section of program text that performs a different function. A

typical transformation has three parts: 1) a pattern which when matched against

the program determines where to apply the transformation, 2) a set of conditions

which further restricts where the transformation can be applied, and 3) an action

procedure which creates the new program section [RW83].

1.1 Programming Language Approach

Much attention has been given to language constructs that facilitate the reuse of

code. Part of this effort includes the introduction of generic packages, parameterized

programs or modules, and object oriented programming. Ada, and Smalltalk-80 are

examples of languages that provide features to support reusability.

Parameterized Programming

The basic idea of parameterized programming is to construct new program mod-

ules from old ones by instantiating one or more parameters [Gog83]. Then correct

instantiation of the formal parameters of a module is equivalent to placing that
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module into an environment in which it is guaranteed to function properly. A

parameterized program unit captures the algorithmic logic of a program module

independently from the data types. This permits the reuse of a sorting algorithm,

for example, with integer, real, or string data types. A parameterized unit can be

instantiated as three different units; one for each of the three different data types,

without rewriting the logic of sorting. For an instantiation of parameterized mod-

ule to work correctly parameterized programming requires specifying the interface

properties that must be satisfied.

Generic packages in Ada supports parameterized programming. However Ada's

generic package lacks the capability of specifying interface properties that must be

satisfied [Gog83]. This short commings is a potential problem if correctness of an

instance of a parameterized module depends on certain requirements being satisfied

by the environment in which the module is used.

Reusability and Classes

In Smalltalk-80 the fundamental unit of organization is the class , which consists

of generalized data object and methods (named procedures) that have access to

the data. Every object described in a program is an instance of some class. It is

suggested [Deu83] that Smalltalk-80 supports reuse because: 1) it encourages use

of abstraction by: a) restricting the ability to refer to the implementation detail by

the implementor, and b) by providing abstract and concrete data types arranged in

a hierarchy which can be used for specialization or extension; 2) reuse of collection

of abstract classes and their associated algorithms as a framework into which a

particular application can insert their own specialized code by constructing concrete

subclasses that work together; and 3) support for system reusability across variant

hardware because Smalltalk-80 is based on an ideal virtual machine and retargetting

the Smalltalk-80 system boils down to recognizing the VM on the tdrget host.
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The main drawback of Smalltalk-80 is lack of efficient implementation due to

the late-binding philosophy of the Smalltalk-80 language [Deu83]. Also the drastic

departure from conventional programming techniques ( and notation), lack of sup-

port for reuse of existing software, and cost of adaptation although not proven are

issues that one should consider.

1.2 Program Transformation Approach

Program transformation is a method of program construction by successive appli-

cations of transformation rules. Usually this process starts with a (formal) specifi-

cation, that is, a formal statement of a problem or its solution, and ends with an

executable program. Nearly all transformational systems are interactive; even the

"fully automatic" ones require an initial user input and rely interactively on the

user to resolve unexpected events [PS83].

Although many simple transformations are basically macros which specify how

to implement particular high level constructs, it is worth noting that other transfor-

mations can be much less restricted in the way they operate. Such transformations

are not intended to be applied only when explicitly requested by the user. Rather,

they are intended to be used whenever they become applicable for any reason.

PDS [Chen] is an integrated programming support environment that has three

major components: a software database, a user interface, and a collection of tools

that can be called via the user interface to manipulate the software modules stored

in the software database. PDS adapts EL1 as its base language. EL1 is an extensi-

ble language. EL1 is extended to provide notations for various high level constructs.

Abstract programs are developed in EL1 for further refinement. The refinment to a

concrete program that actually be executed is done using two mechanisms:definition

and transformation. Definition is simply providing a binding (or value) for a proce-

dure, type, data objects, etc. Transformation is replacing some high-level construct
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by a (more) concrete construct that realizes the intended function.

One problem with existing transformational environments is that they are very

much programming language dependent. This limits the portability of components

represented as transformations, and limits the way transformations are stated by

requiring that every intermediate state of a program being transformed fit into

the syntax of the programming language. As a result, automatic translation of

an algorithm written in one language into the same algorithm written in another

language can not be done.

1.3 Objective Of This Work

This thesis describes a rule-based meta-tool which uses the transformational ap-

proach. A meta-tool is a tool used to generate other tools. This particular rule-

based meta-tool removes the programming language dependency existing in current

transformational systems, provides a greater degree of portability , and can be ap-

plied to a wide spectrum of transformations.

The advantage of this approach are 1) existing software can be reused , thus

reducing the cost of program development, and 2) eliminating the complexity, time,

and effort of creating new programming languages or programming environments

to support the notion of reusability. Furthermore, since the functionality of the

tools generated by the instantiation of the meta-tool are defined through rules,

adaptation to changes is mostly a matter of redefining rulesthis in turn reduces

the cost and time of software maintenance.

Thesis

In summary, we claim that rule-based meta-tools for transforming source code offer

an important alternative to building software life cycle productivity tools for the

following reasons:
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1. A meta-tool provides a general framework, or shell, for quickly constructing

a tool from existing parts, thus, instances of the meta-tool can be obtained

with a minimum of programmer effort,

2. A rule-based system enhances productivity by simplifying the job of a tool

designer, and provides flexibility in the resulting tool by allowing changes in

the rules, on the fly, as the tool is being used,

3. The transformational approach is intrinsically more powerful than language-

dependent abstraction mechanism because transformations work across lan-

guages, restructure source code prior to binding (compiling), and lend them-

selves to global operations on complete systems of software.

Note however, compiler optimizers working on a common intermediate language

although are part of the transformational folklore are not the focus of this work
and therefore not discussed.

In the pages that follow, we give a proof by example of each of these significant

points listed above. First, the value of a meta-tool shell is shown by implementing

three tools: 1) a Generalizer/Refiner tool for manipulating reusable components, 2)

a Modula-2-to-C converter for transforming algorithms (reusable design), and 3) an

understandability tool for browsing source code. Second, the value of a rule-based

approach is shown by the ease of writing rules to generate Modula-2 source pro-

grams from a parse tree, automatic generalization of Modula-2 source code through

dynamically created rules, and restructuring of source code by application of rules.

Finally, the transformational approach is validated by the wide diversity of ap-

plications (from language conversion to language directed editing), and by noting

that the transformational approach is more powerful than the language abstraction

approach.
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A Guide To The Thesis

This thesis is presented as three papers. The first paper: Yashar: A Rule Based

Meta-Tool For Program Development provides the foundation for the remaining

work. It defines the syntax and semantics of rules, the internal data structure

representing the input to an instance of the tool and provides some examples of its

applications. The second paper: Arash:A Re-Structuring Tool For Building Software

Systems From Reusable Components explains an instance of the meta-tool through

which program fragments are abstracted and later refined for creation of concrete

instances. The third paper:Artimis:A Module Indexing and Source Program Reading

And Understanding Environment is a third instance of the meta-tool that explains

the readability and understandability portions of Artimis.
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Abstract:

Yashar is a generalized meta-tool which can be tailored to a wide

variety of application-specific tools by hand-crafting a small num-

ber of user interface and support routines and writing a small set

of rules which define transformations on input. The rule-based ap-

proach to constructing programmer's tools is a new approach which

appears to have great value for extending a given tool without a

large amount of additional effort; is useful in writing program re-

structuring tools such as translators and reusablility transformers;

and is useful in writing a variety of tools that directly operate on

the source code of a program, such as editors and document gen-

erators. In this paper we describe Yashar's rule processor and rule

syntax and then give an example of a tool that automatically trans-

lates Modula-2 source programs into equivalent C source programs.

Keywords: Programming environment, program transformation,

source code mutation, language-directed tools, rapid prototyping,

source language to source language translation.
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2.1 Introduction

A software tool is a generally useful program for helping with day-to-day program-

ming tasks [KM81]. For example, a syntax-directed editor helps a programmer

write syntactically correct source code. The main purpose of a tool is to increase

programmer productivity, decrease development time, reduce maintenance costs,

and minimize errors.

Two distinct approaches have been taken in building tools: 1) tool box system,

and 2) integrated approach. In a tool box system the collection of tools, their

application and the output produced by the tools must be directly managed by the

programmer [Ost81]. For example, the MAKE utility [Fe179] is useful for managing

the compile-link cycle.

The integrated approach attempts to directly automate program development by

embedding tools in a high level language. The Inter lisp programming environment

can be considered an example of the integrated approach [TM81]. Interpreters,

syntax directed editors, consistency checkers, correctness verifiers, and compilers

are other examples.

A tool produced by Yashar takes advantage of both approaches, but Yashar is

oriented more toward the integrated approach than the tool box approach. Like

Inter lisp [TM81], in which tools operate on a common representation of data (lists),

Yashar tools operate on a common tree-structured representation of data. However,

unlike Inter lisp, a tool based on Yashar is not bound to one specific language.

Yashar is called a meta-tool because it can be tailored into a specific tool through

modification of its operationa subject to be described more fully in this paper.

Each time Yashar is specialized to perform a certain tool function, we say the

resulting tool is an instance of the meta-tool. It is our intention to show how a

meta-tool such as Yashar can benefit both tool developers and software developers,

alike.



14

The notion of specifying rules rather than writing a program each time a new

programming tool is needed is the main significance of Yashar. While we have

not succeeded in completely eliminating the need to write programs to build a

tool, we have taken the first step toward a generalized meta-tool with Yashar. A

designer might think of Yashar as a tool shell consisting of user interface, rules,

and a rule processor for carrying out the transformations specified in the rules. We

use the terms shell and meta-tool somewhat loosely, here, and often use the terms

interchangeably to describe Yashar.

One might question the validity of calling an instance of Yashar a rule-based

system. Rules can be viewed as a formalism for defining knowledge independent of

the method of computation. The rules in Yashar are declarative in the sense that

there is no sequencing implied by the order in which the rules appear. Each rule

defines a transformation to be performed without specifying the order of perfor-

mance. On the other hand, Yashar rules differ from the declarative rules used in

logic programming [CM84] where a rule states a proposition corresponding to a log-

ical implication [Co185]. Yashar rules include imperative commands which operate

directly on inputs, much like the operations in Lisp which operate directly on input

lists. Yashar rules are interpreted by a generalized rule processor which transforms

tree-structured inputs into useful outputs. The usefulness of this approach is the

central theme of this paper.

2.1.1 Objectives of Yashar

The primary goal of Yashar is to study the practicality of a rule-based meta-tool as

a basis for building specialized programming tools such as:

A tool for building reusable software components,

An adaptive language based prettyprinter,
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A structured document generator, and

A language-to-language translator.

Yashar has been used to build a 1) a Modula-2 to C translator which con-

verts algorithms written in Modula-2 to their C equivalent, 2) a re-structuring

tool called Arash [BL86a] for building software systems from reusable components,

therefore promoting reuse of existing software systems, 3) an adaptive prettyprinter

for Modula-2, and 4) portions of a program reading, understanding and indexing

tool called Artimis [BL86b].

2.2 Related Work

The notion of unparsing in structured editors is the basis of Yashar. The syntax

of Yashar's rules are adapted from [Fri83] which in turn has been borrowed from

ALOE of GANDALF INH811. However the function of Yashar extends beyond

a prettyprinter because semantically its extensions enable the rules to be more

powerful. For example, any arbitrary computations can be defined through Yashar's

escape mechanism. Yashar is more of a tree processor similar to MENTOL tree

processing virtual machine in MENTOR [DVHK80]. However we could not verify

if MENTOL's instruction set provides notions similar to Yashar's, such as escape

mechanisms, and the ability to communicate control data [DVHK80,DKLM84].

2.3 Overall System Architecture

There are two classes of users of Yashar; 1) designers, who build application-specific

instances of Yashar, and 2) programmers who use instances of Yashar during their

daily programming. Designers must write routines to perform the following func-

tions shown in Figure 2.1:
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User Interface Routines

Document Parser

In addition, a designer must write a series of rules which are stored in a rule repos-

itory, see Figure 2.1. There are two kinds of rules stored in the rule repository: 1)

designer-defined rules, and 2) run-time defined rules. All designer-defined rules are

written by the designer and installed in the rule repository by hand. All run-time

defined rules are generated automatically by User Interface Routines, which are

written by the designer. These rules are destined to be used by the Rule Processor,

which takes rules one at a time from the Rule Repository and uses them to trans-

form the tree representation of the input. Figure 2.1 shows the parts of Yashar

which must be installed manually by the tool designer.
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Once a tool has been created, a programmer uses the tool as follows. Input text

is read from a User Input Text file and converted by the Document Parser into a tree

structure, and if appropriate, into Data Dictionary information. The programmer

controls this process through an interface specified by the User Interface Routines.

Recall that these routines are specific to a tool. A collection of User Interface

Routines for a Modula-2 to C translator tool, for example, will differ from the User

Interface Routines for a tool that restructures reusable modules.

As an example consider a tool for restructuring algorithms written in Modula-2

so that they can be reused in a C program. The Modula-2 to C translator which

Programmer
Requests

N\

Rule Repository

Rules la
recognize
Module-2
Source

Code
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produce C
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C source )
@ input
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Figure 2.2: A Modula-2 to C Translator Tool

was built using Yashar is shown in Figure 2.2. The components of Figure 2.2 are

application-specific versions of the components shown in Figure 2.1. In Figure 2.2 a

designer has written User Interface Routines to perform the Modula-2 to C Transla-
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for User Interface functions; written a Document Parser called the Modula-2 Parser

to parse Modula-2 source code and store it as an internal tree; and finally, supplied

designer-defined rules for re-writing Modula-2 statements as equivalent C state-

ments.

The input to Figure 2.2 is a Modula-2 source program file and the output is an

equivalent C source program file.

It is important to notice that Modula-2 has constructs that are not supported

in C. Therefore a library of support routines is needed to implement such con-

structs. For example, the Modula-2 TRANSFER construct has no counterpart in

C and so there must be a library support routine which is functionally equivalent

to TRANSFER.

2.4 User Interface Routines

User Interface Routines written by a designer are generally responsible for:

Communicating with the user of the tool,

Activating the rule processor,

Capturing the results of the operation, and

Generating new rules automatically

For example, the Modula-2 to C Translator User Interface takes care of requests

to translate, selects the Modula-2 source code to be translated, and activates the

Modula-2 Parser, and the rule processor respectively. Also it provides a multiple

window editor through which the translated module is displayed and can be further

edited or saved.

In Figure 2.3 by selecting the Modula-2 To C menu item, the Modula-2 To C User

Interface Routine (MCUIR) displays a dialog for selection of the Modula-2 source
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program for translation, see Figure 2.4. Once a Modula-2 source file is selected,

MCUIR activates the Modula-2 Parser to build the internal tree representation

of the selected module along with its data dictionary. Afterwards, if the parsing

was successful, the rule processor is activated and the tree representation of the

module along with its data dictionary is made available to the rule processor. The

rule processor loads the designer-defined re-writing rules for translating Modula-2

source programs to C and performs the task of translation. Once the translation is

done, the result is returned to the MCUIR. MCUIR in return displays the Modula-2

source and its translation in two separate windows for further inspection or possible

modification. Figure 2.5 and 2.6 are examples of two Modula-2 programs and their

Program Reader

Generalizer
Refiner

Figure 2.3: Modula-2 to C Translator User Interface

C equivalents produced by this instance of Yashar. Figure 2.5 shows a case in

which there is no need for designer-defined function and translation is completely

done by the rule processor without any external help. However, Figure 2.6 shows

a case in which a designer-defined function is called to resolve the scope problem

stemming from non-local variables referenced in nested procedures. Notice that the

function for resolving the scope problem was installed in the Function Table, refer

to section 2.6, by the MCUIR before activating the rule processor.
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T I OMOD.mod
T I I MOD.mod
Ti 3MOD.mod
Ti 4MOD.mod
TI 5M0D.mod
T I 6M0D.mod

Figure 2.4: MCUIR Module Selection Dialog

Figure 2.7 is an example of a dialog box and the rule generated by the User Inter-

face Routines of another instance of Yashar, Generalizer/Refiner. In this instance

of Yashar, the format of restructuring of Modula-2 constructs are decided at will

during the execution time. In Figure 2.7, the user selects to replace the conditional

part of Modula-2 IF statements by meta identifiers; for the Generalizer/Refiner in-

stance of Yashar, a meta identifier is a string of cardinal numbers prefixed by ##.

The following is the rule generated and loaded to the rule repository automatically

by the User Interface Routines of Generalizer/Refiner for the selection in Figure 2.7.

16:IF ©01%06 THEN ...END

Afterwards, anytime the rule processor encounters a Modula-2 IF statment, it

will activate a user-defined function from the Function Table, in this case function

number 6, to create the appropriate meta identifier and to replace the conditional

part of the IF statement with the created meta identifier. An IF statement after

such a transformation would look like:

IF ##1 THEN ...END
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J

I k k;

ED Pot I 0.rood
IMPLEMENTATION MODULE PAT 10,

VAR i,j,k,1:INTEGER;
BEGIN

FOR 1:=. 23 TO 45 DO
k;

I :r kk; I
END

END PAT 10.

Figure 2.5: A Simple Modula-2 program and its C equivalent

2.5 Document Parser

Yashar uses the notion of a hierarchical software document as its input data model

[KS831. A hierarchical software document is a tree representing the objects that are

to be processed by a tool. For example, source programs can be easily converted to a

tree representation before being manipulated by Yashar's rule processor. Figure 2.8

shows a Modula-2 source code program after it is converted into a tree structure by

the Document Parser.

A special purpose Document Parser must be hand-crafted for every language

processed by Yashar. To facilitate this work, there is a set of built-in Yashar support

routines that provide primitive operations for creating and manipulating a tree, see

Appendix B. This reduces the designer's task to deciding the most logical order of

creating tree nodes and saving the attributes of each node in the data dictionary. For

a complete definition of the tree representation for Modula-2 refer to Appendix C.
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int A1,81;
cher XI,YI,Z1;

int R12,
Second()
(

int 1123;
1l23.R12 BI,

)
first()
(

int 512;
RI 2 = R12 Al;

)

mein()
(

Al r A1 B1

)

IMPLEMENTATION MODULE T0M23;
VAR A,8 . INTEGER;

X,Y,Z , CHAR;

PROCEDURE first°,
VAR R,S : INTEGER,

PROCEDURE Second();
VAR 1:INTEGER;
BEGIN
i :. R 8;

END Second;
BEGIN
R :.: R A;

END first;
BEGIN

A := A 8;
END TOM23.

.0.

-,:it.;

Figure 2.6: A Nested Modula-2 program and its C equivalent

2.6 Yashar's Rule Processor

All transformational operations are carried out by interpreting either designer-

defined rules or run-time defined rules. The run-time defined rules are installed

in the Rule Repository on the fly by User Interface Routines. A run-time defined

support function may modify an existing designer-defined rule, or write an entirely

new rule.

The rule processor consists of 1) a Function Table, 2) a Rule Repository, and 3)

a Scratch Pad Area. The Function Table holds the address of designer-defined func-

tions. The purpose of the designer-defined functions is to extend the functionality

of rules. Designer-defined functions must be written to support special cases that

cannot be accomplished by rules alone. For example, in the Modula-2 to C trans-

lator a designer-defined routine is needed to resolve the scope problem stemming

from non-local variables referenced in nested procedures that are de-nested in C.

Figure 2.6 is a case in which for resolving the scope of identifiers when de-nesting

the procedures a designer-defined routine was activated by the rule processor in

the course of performing the instructions of the rules for translation of Modula-2
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Reusability Tools
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Cancel )

Figure 2.7: Interface to generate rules automatically

programs.

The Rule Repository is the storage element where designer-defined and run-time

defined rules are stored and accessed by the rule processor.

When processing the tree-structured input, designer-defined rules define the

default sequence of activities of the rule processor. For example, in an adaptive

prettyprinter, designer-defined rules govern the traversal of the tree and tell how to

produce the formatted output text.

Run-time defined rules modify or augment existing designer-defined rules. A rule

can be modified more than once and the most recent modification is the one which

is used by the rule processor. Furthermore, a modification to a designer-defined

rule can be reversed. This feature provides the capability of processing the tree

representation of input data in a variety of ways depending upon the programmer's

expectations. For example, a tool created using Yashar for program reading allows

the programmer to hide or unhide portions of the program source at will. The

hiding and unhiding is easily achieved through modification of some of the rules of

this tool responsible for producing the textual representation of I fit subtrees, (see
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Figure 2.8: Internal representation of an object in Yashar

example, page 29).

The Scratch Pad Area is a set of Registers used to communicate among designer-

defined functions, between designer-defined functions and the rule processor, and

among the rules themselves. These registers can be accessed either from within

rules or from designer-defined functions by calling Yashar built-in routines. In re-

structuring applications there are often cases in which traversing a subtree either

should be delayed or repeated more than once. This could easily be done by storing

the address of such a subtree in a register and using that register later to retrieve

the desired information. For example, in translating FOR-loops from Modula-2

to C there is a need to have access to the indexing identifier of the FOR-loop in

three different circumstances: 1) for initializing the indexing identifier; 2) for gen-

erating the terminating condition; and 3) for updating the indexing identifier(i.e.:

incrementing or decrementing it). The indexing identifier is accessed by storing
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Figure 2.9: Yashar's Rule Processor Execution Environment

the address of the subtree in one of the registers and referencing it in appropriate

locations. Consider the following FOR-loop in Modula-2, and its unparsing rule

14. This rule is a designer-defined rule as part of prettyprinting rules written for

unparsing tree representation of Modula-2 source programs.

FOR i := 1 TO 10 DO ... END

14 : FOR @01 := @02 TO @03 DO ... END

@01, @02 ,and @03 represent the indexing identifier (1), initializing expression
(1), and terminating expression (10) subtrees respectively. The rule for translating
the above Modula-2 FOR-loop to C, and its translation would be as follows:

14 : for( OM$R03 = (001)$ 001 = 002; OXR03 <= 003; OXR03 + +){...}

f or(i = 1;i <= 10;i + +){...}
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The above rule for translating Modula-2 FOR-loop to its C equivalent is also a

hand written, therefore designer-defined rule. In the rule definition given above, the

address of the subtree referring to the indexing variable is saved in register number

3 (©M$R03=(©01)$), and later is traversed, creating the terminating condition

(©XR03 <= ©03), and updating the index variable (XR03++).
As another example of a designer-defined (hand written) rule for translating

Modula-2 FOR-loop into its semantically equivalent C construct using while state-
ment, and the translation of the above FOR-loop example would be as follows:

14 : OM$R03 = (001)$ 001 = 002; Onwhi/e( XR03 <= 003) {... OXR03 +

i = 1;

<= 10){...1 + +}

Notice the node label for Modula-2 FOR-loop subtrees is 14. The rules for

restructuring the FOR-loop subtrees must also use the same label number. For

processing tree nodes, the rule processor always searches the rule repository for

a rule definition with the same label number as the tree node. If there does not

exist a rule definition for the node under process, the rule processor discontinues

processing the tree and the cause is communicated with the user through the User

Interface Routines of the instance of Yashar. For a more detailed explanation of

the rule instructions see Appendix A.

Tree Traversal

The rule processor traverses the tree and processes each node in the tree according

to navigational and operational directives that are specified in each rule. When a

node is visited, the repository is searched for a rule with a corresponding label. Then

the rule is applied to the tree node and the next node to be visited is determined

by the rule. The minimum sequencing instruction for each rule is 0* which causes

the tree to be traversed in depth first order.
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For example, the following rule directs the rule processor to ignore the second

child of the tree node with label 39 and recursively process its first, third and fourth

children respectively.

39 : 001©/02003

The rule processor reads this rule and does the following:

Process the first child of node labeled 39 (©01)

Do not process the second child of node labeled 39 (C4IO2)

Process the third child of node labeled 39 (@03)

The above sequence of activities applies to all nodes with label 39. For a complete

list of the instruction set of Yashar's rule processor and their meaning refer to

Appendix A.

Rule Syntax

Each rule is a mixture of text, active and passive instructions. To distinguish

between instructions and the text that is passed along, instructions are prefixed by

an @ symbol. The components of a, rule are:

a label, always

one or more active instructions, always

text, optionally

one or more formatting instructions, optionally

The label designates the type of node to be operated on by the rule processor. The

rule is applied to all nodes of the type specified by the label.
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Active instructions are responsible for: 1) sequencing the processing order of tree

nodes, and 2) providing a mechanism for communicating data and control values

among the rules, built-in Yashar functions, and designer-defined functions.

Formatting instructions and text do not have any effect on tree nodes, and serve

only to format the output. For example the following rule:

label Formattinglnst. f ormattinglnet.
e.."-% 0-- -
02 : BEGIN On0+ QM$R03 = (Q01)$001 0- END.....-..,--.. ....-,-..,

text textactiv anat.

directs the rule processor to transform every tree node with label 02 as follows:

Emit a BEGIN (BEGIN)

Emit a newline symbol (On)

Increment the indentation level by one increment unit (0+). An increment

unit is assumed to be four character positions, the default value can only be

altered prior to activation of the rule processor.

Save the address of the first child of the current node in register R03

(0M$R03.(001)$)

Process the first child of the current node (001). To make the rule processor

operate on a specific child of a node, a child's sequence number is used. Thus

©01 designates the first child of every tree node labeled 02.

Decrement the indentation level by one increment unit (0-)

Emit an END

The terse notation of the rules is not very human readable, instead, they are de-

signed for machine processing, much like assembly language. Eventually there will

be a higher level notation, and special interfaces for entering new rules.
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It is important to note the difference between rules in Yashar and print spec-

ifications that are used in syntax directed editors such as PECAN Ellei851. Like

definitions in a syntax directed editor, Yashar rules can specify syntactic structure,

but in addition Yashar rules specify semantic and deep structure of the information

stored in the tree. For example, consider the case in a language directed editor

where it is desired to hide the details of certain sections of code to avoid cluttering

the focus of attention. The following rule defines the processing of a while loop to

show only the predicate and number of statements of its body rather than showing

all the statments of its body.

added for hiding detail.

38 : WH/L.E0C+0010D/;On/OCD00+0n0An/ < whilebody > / ®02 ®n® END

This rule suppresses the details of the following while-loop:

Before After

Detailed While loop While loop abstraction without details of its body

WHILE a <= b DO

a := a +1;

IF b <> 0

THEN ...

END

WHILE a <= b DO

END

<whilebody> 10

The following is an explanation of the rule:

Emit a WHILE (WHILE)

Activate conditional filling (IOC+)

Process the first child of the current node (001)

Emit a semicolon (;) and newline (©n) after processing of each child of second

child of current node (©D/;©n/). Note that in (©D/;©n/) the slashes (/) are

used to enclose the delimiter pattern.
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Turn off conditional filling (OC-)

Emit a DO (DO)

Increment the indentation level by one increment unit (0+)

Emit a newline symbol (On)

Abstract the second child of current node and return <whilebody> and num-

ber of statements (children) of second child of current node

(OAni<whilebody>/002)

Emit a newline symbol (On)

Decrement the indentation level by one increment unit (0-)

Emit an END (END)

Formatting Instructions

Formatting instructions are for prettyprinting the textual representation of the in-

put tree. These instructions do not effect the state of the nodes of a tree. For

example On, 0+, and @- cause the rule processor to emit the control sequence to

generate a new line, increment indentation level, and decrement the indentation

level respectively.

Formating Inst. Formating Inst.

02 : BEGIN On0+ 01 0-- END

Therefore the above rule causes the rule processor to do the following:

Emit BEGIN (BEGIN)

Emit a newline symbol (On)

Increment the indentation level by one increment unit (0+)
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Process the child number one (@01)

Decrement the indentation level by one increment unit (©-)

Emit an END (END)

Escape and Break Point Instruction

The % symbol designates an escape instruction. If a navigation instruction has an

% appended to it, the rule processor will execute the function referenced by the next

two digits instead of processing the node referenced by the navigation instructions.
The two digit number following % is an index into the Function Table which selects

the designer-defined function to be executed. For example the following directs the

rule processor to skip the second child of every node whose label is equal to 34 and

to pass control and context of the rule processor to the activation of 5th function

in the Function Table.

34 : oO1 ©02%05

The (02Jn designates a designer-defined function call instruction. The rule processor

executes the nth function in the function table. In contrast to (%n), when using

©Jn the context information is not passed to the called function.

Yashar's rule processor supports the insertion (definition, 'OP) , activation (OZ),

and removal of break points (©V) to temporarily interrupt the processing of a rule.

One can use the break point facility to step through a class of tree nodes (for a

more detailed explanation of these instructions see A.2).

Arithmetic and Relational Instructions

Arithmetic operations use Scratch Pad Registers and constant values. The binary

arithmetic operators -I-, -, *, /, and relational operators == , >= , < , <= , != are

supported.
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@M$R03 = (R02 + R07)$

This rule assigns the sum of the values stored in register two and seven to regis-

ter three. The precedence and order of evaluation is the same as for the C lan-
guage [KR78].

Miscellaneous Instructions

The instructions to manipulate the rule repositories, access the data dictionary

information, etc. belong to this category. For example:

30 : @m16$/F001%12THENG + @DI; On/0* / @n / @n@ END$...

will cause the rule processor to first modify the rule definition of the tree nodes

labeled 16 to what is enclosed between two $ delimiters, and then continue with

the remainder of the rule definition for tree nodes with label 30. To restore the

original definition of rule for nodes labeled 16, some rule must contain ...@r16.

Alternatively, a built-in Yashar support routine can be called from within designer-

defined functions to change the definition of the rule for nodes labeled 16 back to

its original form.

Rules vs. Statements

It is important to differentiate the notion of rules from programming statements.

In a programming language the sequence of statements are important, whereas in

Yashar there is no sequencing implied by the ordering of the set of rules. Each rule

defines a transformation independent of all other rules.

There is, however, a processing sequence established by the rules in much the

same way as a logic program written in Prolog establishes a sequence. This sequence
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depends on the shape of the tree and the operations given in the rules. In this sense,

Yashar rules are analogous to Horn clauses in logic programming.

2.7 Creation of An Instance of Yashar

An instance of Yashar is created by a designer who must tailor Yashar to a specific

application. Since Yashar is written in C, and the designer must provide a small

number of C support routines, the steps in Figure 2.10 involve the C complier and

linker. This is a one time only process which we call instantiation of a tool.

Deselner

(
User defined
Functions

Pre-Comp i led
Yashar
Support Routines ./

C source code \Yashar Objects

C Compiler

Objects

C source code

Application
Interface
Routines

Linker

Objects

Application
Objects

Application
Specific

Executable Version of
Instance Yashar
of Usher

Figure 2.10: Building of a Tool

First, the tool designer must write User Interface Routines. This usually involves

writing C functions to handle windows, dialogs, and menus. For example, the

Modula-2 to C Translator User Interface takes care of selecting the Modula-2 source

code to be translated, activation of the Modula-2 Parser, and requests to translate.

Next, the designer must write designer-defined rules which are used by the Rule

Processor. For example, the rules in Modula-2 to C translator define the sequence

of operations that re-write a Modula-2 program into a C equivalen I
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Finally, designer-defined routines must be written for each special cases that

can not be handled by the instructions of the rule processor. In the Modula-2

to C translator, a designer-defined routine is needed to resolve the scope problem

stemming from non-local variables referenced in nested procedures that are de-

nested in C.

Finally, the Document Parser must be written if one does not already exist for

a given language. This could be done through automatic parser generators such as

YACC [Joh75] or similar tools.

2.8 Conclusions

Yashar began as an experiment in building tools for program transformation [BGW76,Che83]

and to study reusability of existing programs in block structured languages. The

initial approach was based on the idea of unparsing in structured program edi-

tors [TR80,DVHK80]. The syntax of Yashar's rules were adapted from [Fri83] which

in turn were borrowed from ALOE of GANDALF [NH81]. We have extended [Fri83]

and the concept of a rule-based meta-tool so that a broader range of tools can be

quickly created. The instruction set of Yashar's rule processor is powerful enough

to manipulate structured data, making Yashar useful in program development en-

vironments. The terse notation of Yashar's instruction set facilitates automatic

generation of rules by interface programs. The capability of modifying rules during

execution is valuable in adjusting the actions of tools generated by Yashar there-

fore adding to their versatility. Furthermore, escaping the ordinary sequence of

processing of tree nodes through escape and break point instructions makes the

rule processor more functional. The relative simplicity of modifying the rules, with

almost no overhead, makes tool building with Yashar an attractive alternative to

traditional methods of 100% coding. Modification and maintenance of tools built

using Yashar usually require changing the definition of some of the rules. In ad-
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dition, Yashar offers a high degree of flexibility in building transformational and

re-structuring tools. For example, one major advantage of using Yashar in build-

ing source language to source language translators is the ease of accommodation of

dialectical variances for both source and target languages.

One of the drawbacks of Yashar is that the current syntax and notation of rules

are not very readable for humans. As mentioned earlier the reasons for that were:

1) to allow automatic generation of rules; 2) ease of interpretation; and 3) to avoid

parsing effort. Manual creation of the User Interface Routines and the writing of

designer-defined routines may seem to be a drawback. However, this is nominal

and well worth the effort considering that an entire family of tools are obtained as

a result.
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Abstract:

Arash is a rule-based tool which can be applied to a family of pro-

gramming languages, e.g. Pascal, Modula-2, and C. In this paper

we describe how to use Arash to restructure Modula-2 source code

modules taken from a programmer's database of reusable compo-

nents in order to construct new software systems, quickly and cor-

rectly. Arash incorporates a collection of Generalizers which trans-

form source code modules into abstracted modules. Conversely,

a collection of Refiners produce a concrete instance from an ab-

stracted source module. Both Generalizers and Refiners operate

on source code components called fragments to restructure exist-

ing programs, documentation, and associated text.

Keywords: Programming environment, program transformation,

source code mutation, syntax directed tools, code fragments, code

selection, customizing, general software, generic systems, program

generation, tailoring, reuse of software.
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3.1 Introduction

Reusability is defined as anyway in which previously written software can be used

for a new purpose or to avoid writing new software [Kern]. This definition covers

reuse of software at both object code and source code level. The potential benefits

of reusing existing software are: 1) reduction in the cost and development time to

produce a new program or system of programs, and 2) an increase in the ease of

maintenance and enhancement of existing software systems [Che83].

Arash is a tool that operates directly on source code. Reuse of source code in

contrast to object code has the advantage of 1) adapting the interface as well as

implementation part of a module to a new interface specification, 2) providing an

opportunity to tune, optimize, and eliminate unnecessary code, and 3) providing

readable code so that a programmer's knowledge of the reusable module is increased.

This allows the possibility of:

1. Source code reuse/replication by reuse of part or all of existing source code

or its data structure,

2. Detailed algorithm reuse by reuse of source code from existing programs as

an example of how to do a new program,

3. Large-scale structural reuse by selecting and adapting program structure,

4. Maintainability/enhanceability by increasing the effectiveness of programmers

by enabling them to study programs with the aid of understandability tools,

5. Portability by facilitating the reuse of software across a wide range of hosts,

and

6. Optimization by enabling tuning of generated source code.
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The basic idea in Arash is to construct new program modules from old ones by

applying two automatic transformations: Generalization and Refinement. General-

izers transform a source code module to an abstracted form. Refiners operate on

the abstracted form of a module to produce a concrete instance. Figure 3.1 shows

a Modula-2 source program (sortl.mod) for sorting an array of integers, its ab-

stracted form produced automatically by a series of Generalizers (sortl.GLS), and

a concrete instance to sort an array of strings (sortl.NEW) generated by a series of

Refiners. Notice in the abstracted version the actual abstracted program fragments

are replaced by special identifiers called meta identifiers (e.g. ##1, ##2,...).

$ File Edit Reusability Tools

BEGIN
FOR 1 := 1 TO MAX 1 DO

FOR I := i 1 TO MAX DO
IF ..2 THEN

-.3;
--4;

CIMIEMINEM Sort I .NEW 1.1.111111111.1.

sort I .mo
FOP ) 1 I TO MAX DO

IF ( ) KU] )
THEN

N = Kith
:= KEIL

Klil := N
END

END

END,

END PATIO.

N TableTyp

BEGIN
FOR 1 = 1 TO MAX 1 DO

FOR j = i 1 TO MAX DO

IF (StrEmp(KIII,Ki)l) = 0 ) THEN
StrEpy(N,KI1D,
SVCRy(KI) 1,KIID,
str-Cpy(KIII,N)

END

END

01 Cr
76

le>

Figure 3.1: Sort Before and After Generalization and Refinement

Although other source languages might be used with Arash, Modula-2 [Wir83] is

used as the source language. In Modula-2 , a module has two parts: 1) a definition

part which defines the constants, types, variables, and procedures of the module

which can be accessed by other modules and, 2) an implementation part that en-

capsulates the actual implementation detail of the module. In addition, Arash

supports the concept of an extended moduleone that has attributes. The addi-

tional attributes needed for reusability are .GLS which contains a reusable module

with meta identifiers replacing source code fragments, .DRI which contains a list of
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meta identifiers and the actual code fragments they replaced, .MLS which contains

the rules that are used for the process of generalization, and .NEW which contains

the newly generated concrete module.

Two other components of this tool are a Programmer's Data Base (Grab Bag)

used to search for reusable source programs, and a set of Browsers to aid in reading

and understanding the existing source programs. The Programmer's Data Base and

Browser facilities are the subject of another paper and will not be discussed in this

paper [BL86b].

Related Work

A related project in reusability through program transformation is PDS [Che83].

PDS is an integrated programming support environment that has three major com-

ponents: a software database, a user interface, and a collection of tools that can be

called via the user interface to manipulate the software modules stored in the soft-

ware database. PDS uses an extended version of EL1 programming language. EL1

is an extensible language and supports programmerdefined data types, generic

routines, and programmer control over type conversion [Weg74]. The abstracted

programs are built in ELI. and the transformation is done by defining transforma-

tional rules containing a syntactic pattern part , optionally augmented by a semantic

predicate and a replacement. Both Arash and PDS use transformation based ap-

proach for creation of reusable components. Arash differs from PDS in that: 1)

Arash operates on a family of languages; 2) Arash operates on structured data,

tree representation of input; 3) Arash operates on existing software for creation

of abstract components and their latter refinement to concrete versions. transfor-

mation in Arash are written in a special purpose language based on Arash uses a

multiple window, menu based environment with graphical support to interact with

user. Effort is underway to create similar user environment for PDS [Che83].
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Reusability Life Cycle and Arash

When reusable components are used to build a new software system, the traditional

software life cycle is altered. Table 3.1 shows the difference between traditional soft-

ware life cycle and reusability life cycle. The additional phases in the reusability

life cycle indicate how a designer uses existing components rather than implement

everything from the beginning. Problem definition is the phase during which the

Traditional Life Cycle Reusable Life Cycle Arash Support

Problem Definition Problem Definition None

Requirement Analysis Requirement Analysis None

System Design Specification Find and reuse similar None

System Design Specification

Detailed Design Specification Find and reuse similar None

Detailed Design

Implementation Find and reuse existing None

routines from object code library

Find and reuse (modified) source Generalizers,Refiners

code from previous systems Grabb ag , Browser

Produce Glue Code None

Testing Testing None

System Integration System Integration None

Maintenance Reuse of original product Generalizers, Refiners

Table 3.1: Reusability Life Cycle Stages vs. Traditional Life Cycle

problem to be solved is formalized as a set of needs; requirement analysis is the

process of studying user needs to arrive at a definition of system software require-

ments; system design specification is the period of time during which the designs for

architecture, software components, interfaces, and data are created, documented,

and verified to satisfy requirement; detailed design specification is the period of time

during which the design of system or a system component is do( II rnented; typical
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contents include system or component algorithms, control logic, data structures,

data set-use information, input/output formats, and interface description; imple-

mentation is the period of time during which a software product is created from

design documentation and debugged; testing is the period of time during which

the components of a software product are evaluated and integrated to determine

whether or not requirements have been satisfied; system integration is the period of

time during which a software product is integrated into its operational environment

and tested in this environment to ensure that it performs as required; maintenance

is the period of time during which a software product is employed in its operational

environment, monitored for satisfactory performance, and modified as necessary to

correct problems or to respond to changing requirements. A component is a ba-

sic part of a system or program; an interface is a shared boundary to interact or

communicate with another system component [Sta83a]. Glue code is the minimal

extra code that may be needed to bring the reused modules together. Arash is only

applicable for reusing and maintenance of existing source programs. Maintenance

may be considered as reusing the original product [Fre83]. In maintenance, problem

specification is usually better defined and the reusable module does not have to be

found [Fre83].

3.2 Arash System Architecture

The overall structure of Arash is shown in Figure 3.2. A programmer interacts with

Arash through requests which are processed by the Arash User Interface Routines

(AUIR). These routines provide a user interface (windows, icons, menus, and a

mouse), exercise control over the activation of Generalizers and Refiners, and com-

municate with the Rule Processor. Figure 3.3 shows what the user interface looks

like when running Arash.

A Modula-2 source program is read from a text file by the Modula-2 Parser,
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Figure 3.2: Arash System Structure

shown in Figure 3.2. Symbol table information is stored in the Data Dictionary,

and the transformed source program file is stored in the tree representation of

Modula-2 data structure. This internal data structure is processed by the Rule

Processor.

When a user requests that the tree representation of a Modula-2 program be

generalized, a collection of AUIR's are activated which traverse the tree and pro-

duce .MLS, .DRI, and .GLS files. The Rule Processor takes a rule from the Rule

Repository, processes it, calls the appropriate AUIR, and outputs the result to the

.MLS, .DRI, and .GLS attribute files.

Similarly, when the user requests that the .GLS file of some program be refined,

the Refiner uses rules from the Rule Repository to carry out a refinement. The Rule

Processor returns the result of generalization and refinement (.GLS, .MLS, .DRI,
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Figure 3.3: Arash User Interface Options

and .NEW) to AUIR which in turn displays each file in a text editing window so it

may be inspected and saved by the user. These files are described below:

Attribute File

The .DRI attribute file contains the rules used by the rule processor to transform

a source program into an abstraction. This file is created by Generalizers and used

for refining a module to a concrete form. The rules in a .DRI file are copied into

the rule repository by AUIR prior to refining an abstracted module to a concrete

one.

The .MLS attribute file is generated by the rule processor during the generaliza-

tion of a source program. It contains a list of meta identifiers and the actual source

code that each meta identifier replaced. For example, see Figure 3.4. The .MLS

file is used by the Refiner to replace meta identifiers with actual source code. The

contents of a .MLS file may be modified either by a rule, or by manual editing of

the file prior to Refinement.

For each source program module which is abstracted by the Generalizers a .GLS

attribute file is created which contains a textual representation of the abstracted
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a File Edit Reusability Tools

BEGIN
FOR 1 := 1 TO MAX - 1

FOR J := 1 1 TO MAX
IF "2 THEN

.4.4;
--5

END

END

END

END PAT 10.

" I
INTEGER
"2
(KM > KIJD
--3
N := KII1
-.4
KIJI := Kill
-.5

:= N

136:001 = 002X01
66:0,104
16:IF 001X06 THEN0.0 /0n/ene-END

Figure 3.4: Attribute Files Generated by Generalizers

module. It serves as visual feedback to the user to verify the operation of the

Generalizers and has no other significance.

Internal Structure of Arash

To understand how Arash works, one must understand three central structures:

The Internal Tree and Data Dictionary containing Modula-2 source program

data. All inputs to Arash are first converted to a tree structure by the Modula-

2 Parser as shown in Figure 3.2. Figure 3.5 shows a Modula-2 source code

program as it is converted into a tree structure by the Modula-2 Parser.

The Rule Repository , Rule Processor, and Syntactic and Semantic structure

of Rules. The Rule Repository is the storage element where rules are stored

and accessed by the rule processor. This storage element is divided into two

logical parts. The first part contains rules to recognize Modula-2 source pro-

grams and the second part stores Generalization and Refinement Rules.

The interaction among Rules, Rule Processor, and the Internal Tree/Data

Dictionary. Rules to reconstruct Modula-2 source programs from the tree
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representation of Modula-2 source programs are copied into the rule repos-

itory by the rule processor prior to processing the tree representation. See

Appendix E for a list of these rules. Generalization of Modula-2 source pro-

grams and the refinement of the abstracted modules to concrete ones are done

by a set of rules that are either generated by Generalizers, or supplied by the

user through creation or modification of .DRI or .MLS files. Appendix D lists

functions which produce generalization and refinement rules, automatically.

Rost MOO

CE11113 MCC 0013 100113
Data Dictionary

PATS 2A (43)

2 V (43)4.1
IMOD COO 3 INTEGER (43)

4 0 (42)

(n) node typo
- w. tett*ME:1113 131:10

1:31:111

CUD 14312 X01 14214 10I

1.110.d /.1.11D4W1 ADL

Nolo sostemotr Dasnbor
labol:1144o Typo
DOP: Data Diotiosarg **farmed*

Po later
ADA.: Applioatioa/Data Latkapo

DOI.. 0 so Data Oistiottary Itoforoees
AOL 0 ao Ape, toatioa/Data Lintapo

17: Wnlessordation
37: list of vartsbri dootsrations
42: Dnepr
43: Id
44:;
45::
CD: assiernall statsfrant
70: brisk

71:Del/ration part
79: list of staterneats
G4: body of modulo
M: first aortal.

IMPLEPII3ITATION11001/LE PAT t 2A;

VAR V INTEGER;
BEGIN

V fs 0;

END PAT 2A.

Figure 3.5: Internal representation of an object in Arash

The Rule Processor

The Rule Processor is a transformational unit which converts Modula-2 source

code stored in the tree representation into either Generalized or Refined output,
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See Figure 3.6. The rule processor consists of 1) a Function Table, 2) a Rule

Repository, and 3) a Scratch Pad Area.

Tree
Representation
of Input

Function 1 calls
Table

Data Dictionary information

Pre-compiled
Usher
thiction cells reed /write

Pre-Compiler Yesher data
Support Routines

Yashar
Rule
Processor

Generalizer and
Refiner
Functions

Control flow

110-01. Data now

*Te
6enors1 Registers

Scratch Pad Area

Rules from Rule
Repository

Output

Figure 3.6: Arash's Rule Processor Execution Environment

The Function Table holds the address of designer-defined functions. Designer-

defined functions are to extend the functionality of rules. Designer-defined functions

perform tasks that are not possible or very difficult to support by the semantics

of the instructions of the rule processor. In Arash the designer-defined functions

perform the extra semantic checking needed for proper transformation of different

constructs, for a list of these functions please refer to D and D.2.

The Rule Repository is the storage element where designer-defined and run-time

defined rules are stored and accessed by the rule processor. For example the rules

to produce the abstract modules are created at runtime by the Generalizers, which

in turn used by the rule processor to produce the abstracted module from the tree

representation. These rules are also captured in .DRI attribute file. Similarly the

Refiners use the rules associated with each meta identifier in .MLS file for refining
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the abstracted module.

The Scratch Pad Area is a set of Registers used by functions that carry out gener-

alization and refinement to communicate among themselves and the rule processor.

These registers can be accessed either from within rules or in designer-defined func-

tions by calling Yashar built-in routines.

Rule Processing

The rule processor traverses the tree and processes each node in the tree according

to navigational and operational directives specified in each rule. When a labeled

node is visited, the repository is searched for a rule with a corresponding label. Then

the rule is applied to all tree nodes with the specific label. Furthermore the next

node to be visited is determined by the rule. The minimum sequencing instruction

for each rule is 0* which causes the tree to be traversed in depth first order.

The order of placement of rules in the Rule Repository does not have any signifi-

cance on the order of their execution. In other words there is no sequencing involved

in the formation of a set of rules to perform a series of transformationthis differenti-

ates the notion of the rules in Arash from ordinary programming statements. Rules

can be viewed as a formalism for defining knowledge independent of the method of

computation. The rules in Arash are declarative in the sense that there is no se-

quencing implied in the order in which the rules appear. On the other hand, Arash

rules differ from the declarative rules used in logic programming [CM84] where

a rule states a proposition corresponding to a logical implication [Co185]. Arash

rules include imperative commands which operate directly on inputs, much like the

operations in Lisp which operate directly on input lists.

Rule Processor Instruction Set

The instruction set of the rule processor is divided into the following:
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Tree Navigation

Formating

Escape and Breaking

Register Manipulation

Miscellaneous

Rule Syntax

Each rule is a mixture of text, active and passive instructions. To distinguish

between instructions and the text that is passed along, instructions are prefixed by

an Q symbol.

The components of a rule are:

a label, always

one or more active instructions, always

text, optionally

one or more formatting instructions, optionally

The label designates the type of node to be operated on by the rule processor. The

rule is applied to all nodes of the type specified by the label. Active instructions are

responsible for, 1) sequencing the processing order of tree nodes, and 2) providing a

mechanism for communicating data and control values among the rules and support

functions. Formatting instructions and text do not have any effect on tree nodes,

and serve only to format the output. For example the following rule:

label text formatting Inst.
......., ........,
66 : 001 ...--,-.-.....-

a subtree ref errence active /net.
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directs the rule processor to perform the following on any subtree labeled 66 which

is a subtree for assignment statement:

Process first child, or at this case simply emit the identifier name (©01)

Emit the character sequence := (:.)

Emit the return result of activation of fourth function in the Function Table

as the left hand of the assignment (©02%04)

Emit a newline symbol (en)

Notice the above scheme could be used to ensure type compatibility of assignment

statements for numeric values. For example the refining function (04) in this case

inspects the type information of the variable on the lefthand side of the assignment

and creates necessary type casting structure for enforcing type compatibility. For

detail explanation of the rule processor and the definition of the rules see [BL86c].

3.3 Generalizers and Refiners

Generalizers transform a Modula-2 source code component into a parameterized

form called an abstract module. Refiners operate on the abstracted module to pro-

duce a concrete instance. Generalizer-Refiner pairs are inverse transformation op-

erators.

A program fragment is a piece of source code representing the stereo-typical

action sequence in programs [SE83]. Program fragments are meant to be modified

or tuned to the particular task at hand [SE83]. For example a WHILE loop in a

sort routine can be considered a loop fragment.

An abstract module is one in which certain program fragments are abstracted

into a generic version by substituting a special identifier, called a meta identifier in

the place of the program fragment. A meta identifier is a string of cardinal numbers



55

prefixed by # #. A concrete module is one in which meta identifiers are replaced by

user defined or refiner generated text.

Generalizer Operation

A Generalizer transforms a set of program fragments A E P into a set of meta
identifiers, qi E Q, where:

P Modula-2 source code module

pi Modula-2 fragment

Q Abstracted module

qi Modula-2 meta identifier

The transformation G(P) = Q carried out by Arash Generalizers re-writes program

P into meta-program Q through a series of generalizing functions:

G(P) = 91 92 gs 9k (P)

The generalization functions G(P) = gi 92 93 gk(P) are collections of rules

which are automatically generated by the Arash User Interface Routines. The

generated rules and the tree representation of source program P are passed to the

rule processor where the instructions present in each rule perform the generalization.

G(P) produces three kinds of output: 1) .GLS attribute file with the abstracted

Modula-2 reusable module containing meta identifiers in place of fragments, 2)

.MLS attribute file containing a list of meta identifiers and the actual code that

they replaced , and 3) .DRI attribute file containing the rules that were used to

generalize P. Figure 3.4 is an example of these attribute files for the sort routine

shown in Figure 3.1.
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For example the rule in Figure 3.8 for generalizing the conditional part of IF

fragments directs the rule processor to do the following anytime it encounters a tree

node with label 16 while traversing the tree.

16:IF ©O1 %06 THEN©-F©D/Mn/©*©n©-END

Emit an IF (IF)

Instead of processing the conditional part (©01) call function number 6 in

the Function Table (%06) and pass the context to it. Function number 6 in

the Function Table is Mt/fG0 which is responsible for generating the meta

identifier for the conditional part of any IF statement in the Modula-2 source

program, and then saving the actual replaced code along with it's meta iden-

tifier in the .MLS file. See Appendix D for a list of functions which can be

referenced through the Function Table.

Emit a THEN (THEN)

Increment the indentation level by one increment unit (©+)

Set the delimiter string to ;On (©D/;©n/)

Process all the children of the node (©*)

Decrement the indentation level by one increment unit (©-)

Emit an END (END)

A user selects program fragments for generalization from a dialog, for example

in Figure 3.7, a user has selected all TYPE, ASSIGNMENT, and IF fragments to be

generalized. In Figure 3.8 the user further limits the generalization of IF primes to

their conditional parts. Appendix F lists all menus used for generalization. Next,

the user's selections are translated to a set of rules which define the functions

G(P) = 91 92 93 gic (P).
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File Edit Reusability Tools

Please Select Fragments For Generalization

Declarations:

CONST 0 TYPE I:I VAR

Statements:

0 Assignment...
Procedure Cell Args.

0 IF ...
CASE

RETURN

( OK )

PROCEDURE Declaration

WHILE ...

REPEAT ...

FOR

LOOP

0 WITH ...

Cancel )

Figure 3.7: Dialog For Selection of Fragments

Refiner Operation

A refiner transforms a set of meta identifiers qi E Q into a set of program fragments

E P where:

P Modula-2 source code module

pi Modula-2 fragment

Q Abstracted module

Modula-2 meta fragment

The transformation R(Q) = P re-writes an abstracted module Q into a concrete

program P through a series of Refining functions:

R(Q) = ri r2 r3 rk(Q)

The re, are refining rules that must be applied to a generalized module to cre-

ate a concrete one. At the beginning of the refining session, AUIR 1) copies the

rules in .DRI attribute into the Rule repository; these rules were generated \ the

Generalizers during the generalization; 2) the tree representation of the ge r , ied
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E File Edit Reusability Tools

Select the required component for
generalization

IF

ta conditional
THEN

stmt. sequence
ELSE

stmt. sequence

( Ok

ELSIF

conditional
THEN

stmt. sequence

( Cancel,

Figure 3.8: Dialog For Generalization of IF

module and its data dictionary information are prepared; and 3) the rule processor

is activated. The rule which were loaded from .DRI will cause the rule processor to

activate the appropriate refiner. Once a refiner is activated, it checks the .MLS file

to find a match for the meta identifier representing an abstracted fragment in the

tree representation of the generalized module. If there is a match the refinement is

carried out, otherwise no action is taken and the actual code fragment is produced

as if it has not been abstracted. The refined version of the module is captured in

the window of .NEW attribute file for further inspection , editing or saving.

The meta identifiers in a .MLS file provide the Refiners with: 1) a check to see if a

refinement should be done on the meta identifier that replaced the original fragment,

and 2) a check to see if any rules should be modified in the Rule Repository before

the refinement corresponding to a certain meta identifier. Manual deletion of any

of the meta identifiers in the .MLS file has the effect of disabling the refinement

process for that specific meta identifier. For example, the following will cause the

original rule for nodes labeled 15 to be redefined prior to execution of the Refiner

which operates on meta identifier ##1.
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meta identifier

##i : 15 : @./01@02%10©./02
Redefinition of rule for nodes labeled 15

Consider the sortl.mod routine in Figure 3.1 which has been generalized and then

refined into a routine to sort an array of character strings. The comparison and

assignment operations are different for integers and strings, so the following rule in

the .DRI file converts integer operations into string operations, see Figure 3.9.

86:©?( J02 == 1)??50:(StrCmp(001,002) = 0 )(4m66$StrCpy(©01,©02)@r66$?

Nodes labeled 86 are type declaration for array elements. Nodes labeled 50 are

the conditional part of IF statements, and nodes labeled 66 represent assignment

statements. When the rule processor encounters a node with label 86 it activates

function number 2 (J02) which returns a 1 to specify an integer type and 0 to specify

a character string type. If the evaluation of (J02 == 1) is true, meaning that on

integer sort is desired, then no rule is modified, otherwise the rule definition for

nodes with label 50 is modified to:

(StrCmp(C401,@02) = 0 )(4m66$StrCpy(C401,©02)@r66$

The modification of the the definition of the rule for tree nodes with label 50 causes

the generation of the proper comparison construct for character strings and also

modifies the definition of the assignment rule label 66 to generate the correct con-

structs for character strings. Figure 3.10 shows the sort routine generated by the

refinement rule above. See [BL86c] for more details on the semantics of the rules.

3.4 Conclusion

Arash was built as an experimental tool to study reusability of software systems.

Major goals of this effort were: 1) to use existing software components available
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r f File Edit Reusability Tools

86:02(0J02.r1)7750:(StrOmp(001,002) = 0)0m66$StrCpy(001,002)0r6. Ing

Figure 3.9: Rules For Re-Structuring Sort Fragment

in existing libraries of source codes, 2) to avoid creation of new programming

languages and notations radically different from the majority of current software

systems [Weg83,LM83] , namely existing block structured languages, which would

discourage application of Arash, and 3) to follow the philosophy in which the cre-

ation of new software must occur automatically using notation which can be easily

generated by computers.

Arash meets all of the goals: 1) it operates on a block structured language, 2)

no new programming language is created, and 3) the rule based expressions for

restructuring are easily generated and processed by computer.

Access to data dictionary information, flexibility of modifying rules interactively,

and two escape mechanisms for semantic processing provide all the necessary tools

for deriving a family of concrete programs from a single abstract program.

Often it is desirable to produce a tool without concern for its efficiency. This

could be done from proper abstracted programs by defining and applying the correct

refinements. This approach of deriving a tool quickly is often of value because it

provides the opportunity to evaluate the specification of the tool by observing the

behavior of its prototype.
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* File Edit Reusability Tools

TebleType = ARRAY I1..10) OF CHAR;

VAR
: INTEGER;

K : ARRAY [ I _MAX) OF TebleType;
N: TebleType;

BEGIN
FOR i 1 TO MAX 1 DO

FOR J := I 1 TO MAX DO
IF (StrCrnp(OLKUI) = 0 ) THEN

StrCpyiN,Kiip;
StrCpy(Kij1,KI11);
StrCpy(K11],N)

.811111EMMMMMEMIIIIMENiN

Figure 3.10: Re-Structured New Sort Fragment

Arash could also be used for tailoring an abstracted module for different tar-

gets, defining rules can be defined in a manner in which the differences among the

targets are taken into account. Instrumentation and insertion of debugging codes is

another application of Arash. Extra debugging codes can be generated by a refin-

ing process at will. The code can be eliminated later by reproducing the program

without the rule definition that carried out generation of the extra debugging and

instrumentation code. The fact that rules are capable of activating designer-defined

routines provides the computational power of any typical programming language to

the rule processor. This provides the basis for generating complicated transformers

that would otherwise be impossible.

A limitation inherent to the class of languages Arash supports is the difficulty of

mapping algorithms that use drastically different data structures, such as sorting a

list of numbers stored in an array versus a linked list. This problem arises from the

algorithmic differences between indexing through elements of an array and visiting

elements of a linked list. Currently, Arash is not capable of restructuring an array

dependent algorithm into an equivalent linked list dependent algorithm.

Another drawback is that current syntax and notation of rules are not very
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readable for human. Reasons for this were to provide the ability of generating the

rules automatically, to make their interpretation easier, and to avoid parsing effort

which would otherwise be needed to reduce the overhead of experimenting with the

definition of the rules and their modification.

Manual creation of the User Interface Routines and the writing of designer-

defined routines may seem to be a drawback. However, this is nominal and well

worth the effort considering that an entire family of tools are obtained as a result.
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Abstract:

Artimis is part of an environment for software reuse consisting of

two logically independent portions, 1) the indexing and retrieval

facility called, Grab Bag, for storage and subsequent retrieval of

reusable modules, and 2) a set of tools called Browsers, which aid

reading and understanding of source programs. Grab Bag creates

a highly simple and friendly interface for retrieval of viable can-

didates for reuse. Browser's tool set, The Module Interconnection

Graph Builder, Procedure Call Graph Builder, and Module Ab-

stractor create different levels of abstraction to help a programmer

understand a source program.

Keywords: Programming environment, program transformation,

source code mutation, code fragments, code selection, program un-

derstanding, program reading, program maintenance.
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4.1 Introduction

The reuse of existing software is seen as a measure of curtailing the high cost

of software. The benefits of reusing existing software are: 1) reduction in the

cost and development time to produce a new program or system of programs, and

2) an increase in the ease of maintenance and enhancement of existing software

systems [Che83]. To reuse existing software one should know what existing software

is available and how it can be used in relation to the task at hand.

Artimis is part of an environment for reusing software [Bir86] which provides

a programmers database called Grab Bag [San86] and a set of understandability

and abstraction tools collectively referred to as Browsers. GrabBage provides a

convenient way of locating a module and related documents called attributes. A

module is an independent unit of code. Module attributes are known resources of

a module such as a documentation file and an interface definition file.

Although other source languages might be used with Artimis, Modula-2 [Wir83]

is used as the source language. In Modula-2 , a module has two parts: 1) a definition

part which defines the visibility of constants, types, variables, and procedures of the

module which can be accessed by other modules and, 2) an implementation part

that encapsulates the actual implementation detail of the module.

Reusability

In [Ker83] reusability is defined as anyway in which previously written software can

be used for a new purpose or to avoid writing new software. This definition covers

representation of software at both object code and source code level. However,

reuse of source code in contrast to object code has the advantage of 1) adapting the

interface as well as implementation part of a module to a new interface specification,

2) providing an opportunity to tune, optimize, and eliminate unnecessary code, and

3) providing readable code so that a programmer's knowledge of the reusable module
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is increased.

This allows the possibility of:

1. Source code reuse/replication by reuse of part or all of existing source code

or its data structure,

2. Detailed algorithm reuse by reuse of source code from existing programs as

an example of how to do a new program,

3. Large-scale structural reuse by selecting and adapting program design,

4. Maintainability/enhanceability by increasing the effectiveness ofprogrammers

by enabling them to study programs with the aid of understandability tools,

5. Portability by facilitating the reuse of software across a wide range of hosts,

and

6. Optimization by enabling tuning of generated source code.

Reusability Life Cycle Vs. Traditional Life Cycle

When reusable components are used to build a new software system, the traditional

software life cycle is altered. Table 4.1 shows the difference between traditional

software life cycle and reusability life cycle. The additional phases in the reusability

life cycle indicate how a designer uses existing components rather than implement

everything from the beginning.

Maintenance may be considered as reusing the original product [Fre83]. In main-

tenance, problem specification is usually better defined and the product does not

have to be located [Fre83]. Problem definition is the phase during which the prob-

lem to be solved is formalized as a set of needs; requirement analysis is the process

of studying user needs to arrive at a definition of system software requirements;
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Traditional Life Cycle Reusable Life Cycle Artimis Support

Problem Definition Problem Definition None

Requirement Analysis Requirement Analysis None

System Design Specification Find and reuse similar None

System Design Specification

Detailed Design Specification Find and reuse similar GrabBag,Browsers

Detailed Design

Implementation Find and reuse existing None

routines from object code library

Find and reuse (modified) source GrabBag,Browsers

code from previous systems None

Produce Glue Code None

Testing Testing Some help by Browsers

System Integration System Integration Some help by Browsers

Maintenance Reuse of original product Grab Bag, Browsers,

None

Table 4.1: Reusability Life Cycle Stages vs. Traditional Life Cycle

system design specification is the period of time during which the designs for ar-

chitecture, software components, interfaces, and data are created, documented, and

verified to satisfy requirement; detailed design specification is the period of time

during which the design of system or a system component is documented; typical

contents include system or component algorithms, control logic, data structures,

data set-use information, input/output formats, and interface description; imple-

mentation is the period of time during which a software product is created from

design documentation and debugged; testing is the period of time during which

the components of a software product are evaluated and integrated to determine

whether or not requirements have been satisfied; system integration is the period of

time during which a software product is integrated into its operational environment
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and tested in this environment to ensure that it performs as required; maintenance

is the period of time during which a software product is employed in its operational

environment, monitored for satisfactory performance, and modified as necessary to

correct problems or to respond to changing requirements

A component is a basic part of a system or program; an interface is a shared

boundary to interact or communicate with another system component ISta83a].

Glue code is the minimal extra code that may be needed to bring the reused modules

together.

4.2 Artimis System Components

Artimis has two logically separate components: 1) Grab Bag, for adding, deleting

and searching for a module and its different attributes, and 2) Browsers, to aid

the programmer in reading, inspecting, and understanding the code retrieved from

Grab Bag (or any other source of program modules).

4.2.1 GrabBag

In order to reuse existing software there must be a convenient way of locating

the viable candidates for reuse. Grab Bag is an indexing and retrieval system for

finding available modules and their attributes in a Programmers Data Base, (PDB).

PDB contains a set of option lists that allows the searcher to successively refine

the description of the code he is looking for. Option lists are sets of categories.

Categories are text prompts entered by the PDB builder and are used to lead the

searcher to a desired module through a search path. A search path is a series of

individual categories that lead to a module. Since there are many different ways

to describe a module, there could be several different search paths to each module

and it's attributes. Figure 4.1 shows a typical hierarchy of components of a PDB

and possible search paths to individual module attributes. In Figure 4.1 there are
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( Root

Option List

Search Path --s.

Module CD
Figure 4.1: GrabBag Internal Data Model

two levels of option lists. The Root is a pseudo starting point of a PDB. The first

option list, A, has three categories: B, C, D. Option lists B, C, and D point to some

attribute files.

Grab Bag Operations

GrabBag supports:

Creation of new PDBs,

Searching for a module and its attributes,

Adding new Categories,

Addition and deletion of search paths among the categories, and between

categories and attribute files,
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Addition and deletion of attribute files and references to them.

The following section is a walk through and explanation of: 1) searching through

a PDB to locate a category, leading to a module and its attributes, 2) adding an

attribute to a module stored under an existing category, and 3) establishing a

search path to a module attribute. We assume that the PDB is already selected

and opened.

Searching

Once the PDB is opened Grab Bag creates two windows: 1) for the display of

search paths being selected in the course of searching, and 2) for display of available

categories and attribute files for selection. At the beginning the title in the second

window is the name of the currently opened PDB, UTILITIES DATA BASE, see

Figure 4.2.

' * Grab Beg

Figure 4.2: A Category and its Subcategories in a PDB

Selection of a subcategory is made by pointing to the title of the subcategory

and clicking the mouse twice. In Figure 4.3 subcategory SEARCH ROUTINES is

selected. Each time a selection is made the title of the currently selected category is
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' 6 GrebBeg

Figure 4.3: Search Path and Category Windows after a selection

updated and moved to the Search Path window. One can continue navigation along

selected paths to narrow down choices until the desired element is found. Notice if

one decides to reverse a selection and backtrack to some earlier category it is only

necessary to select the category name from the Search Path window. Selection of a

category from the Search Path window will always make the category the current

category. This process can be repeated as long as categories exist. Reusable modules

and their attribute files are stored at the end of each Search Path. Once a Search

Path is exhausted, attribute file names are displayed in the leftside window as the

members of the latest category. In addition, a selection dialog showing available

operations is displayed as shown in Figure 4.4. The Search Path leading to attributes

for Binary Search and the dialog box containing the available operations is shown in

Figure 4.4. Selecting Edit will create an edit window and display the contents of the

selected attribute file (List Binary S.Document) for editing or any other operations

that are supported by the editor. Selection of Copy to will make a duplicate copy of

the file; Delete deletes the selected attribute file from the category that it belongs

to; and selecting Cancel removes the dialog so the search can be resumed.
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GrabBag

Search Path

UTILITES DATA BASE

SEARCH ROUTINES

LISTS

BYNARY SEARCH

List Binary S.help

List Binary S.Boeument

List Binary S.Pos

List Binary S.Interface

List Binary S.Iepleaent

List Binary S.Errors

List Binary S.Updates
ot

511

End of Search Path. Choose the action desired

Edit ( Copy to ( Add ) Delete ( Cancel

Figure 4.4: Attribute File Selection for Category

Adding New Categories

To add a new category to an option list, one first locates the desired option list

(the is the same as searching for a category). Once the desired

category is located, Add Category must be selected from the Grab Bag menu shown

in Figure 4.5. When Add Category is selected a dialog showing the category and

number of subcategories already under it is displayed see Figure 4.6. The new

category title is entered in the New Subcategory field. Selection of Add and Quit

will add the new category as a new subcategory and quits. If there is more than one

subcategory to be added, select Keep Adding which does the operation of adding

and keeps the dialog box for further addition. Notice that the current number of

subcategories under a category is also displayed. Selection of Quit terminates the

process of adding new subcategories and returns to the category and Search Path

windows.

Adding A Module Attribute

Adding a module attribute follows the same procedure for narrowing down the

category by selection of categories and subcategories. Once the desires category
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brabBag

NOW Data Dale...
Open_
Close...
Quit...

UTILITES DATA BASE MN
I/O ROUTINES
SERRCH ROUTINES

SORT ROUTINES

Add category...
Clete to tegory_
Split Category List
_talk To

DiollAtt filltibute,
Looy to file
ROA tit tribtt
!triettLitttrIPItto-

Figure 4.5: Menu item for Add Category

is located the selection of Add Attribute from the menu will display the name of

the attribute files that can be added, see Figure 4.7, and 4.8. Selection of any of

these file attributes will add them to the list of available attributes of the selected

module.

Module Attribute Deletion

To delete a module, locate the subcategory which contains the module attribute to

be deleted, then select Delete Attribute from the menu, see Figure 4.9. A dialog box

will appear as shown in Figure 4.10 which tells the number of references made to

the attribute file. The number of references to the specific attribute file is always

shown in order to give some clue to how many active references are to that specific

attribute file. One can choose to delete only the reference to the attribute file from

the most recent category, or choose to delete all the references to the attribute file.

In either case, the actual attribute file may be removed from the PDB by selecting

the Delete Attribute File,too option
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brebBag

Search Path

Category :

UTILITES DATA BASE

(UTILITES DRIB BASE

Number of Subcategories :

NEW Subcategory : MATH FUNCTIONS

C)
New Subcategory will REFERENCE : another SUBCATEGORIES

0 ATTRIBUTES

Add and Quit ) Keep Adding )

Figure 4.6: Dialog Box for Adding a New category

Linking Search Paths Among Categories and Module Attribute Files

To establish a link between a category and another category or a module attribute,

the title of the From category must be selected from the Search Path window. Then

the Link From... item must be selected from the menu to mark the category as the

origin of the link, see Figures 4.11 and 4.12. Next, the module attribute or the

category to which the link should point must be selected. Choosing the Link To

from the menu specifies the destination of the link. The dialog shown in Figure 4.13

will be displayed showing what is linked to what, confirming the action. If the user

decides to establish the link the Ok button should be pushed, otherwise the Cancel

button should be selected.



[ Cancel )

78

Grab Bay

MIME SEQUENTIAL SEARCH MIME

New Data Base_
Oppn...
Close...
Quit...

Add category...
hetet*, t ategory.
Split Calegoiy List
_Link To

Diony fittribute
E T ptatIjIli,
Rdd Nttrottute,.

Array Sequen S.help

Array Sequen S.Docueent

Array Sequen S.Pas

Array Sequen S.Interface

Array Sequen S.Isplement

Array Sequen S.Errors

Array Sequen S.Updates

Figure 4.7: Menu Item Add Attribute Selection

brabliag
Search Path

UTILITES DATA BASE

SEARCH ROUTINES
ARRAYS

SEQUENTIAL SEARCH

Array Sequen S.help

Array Sequen S.Document

Array Sequen S.Pos

ter face

pleeent

rote

dotes

Array Sequen ...
GrabBag.help
List Binary S.N...
Utilities DB.net

Open I GrabBagSa.-

Eject

( Drive )

Figure 4.8: Selection Attribute File For Addition
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brabBag

Neu. Data Hasp...
Open...
Close...
Quit...

Add category...
Delete L ategury.
Split Category List

Link To

allow Attribute
Limo to
Add Attribute,

Array Sequen S.help

Array Sequen S.Document

Array Sequen S.Pas

Array Sequen S. Interface

Array Sequen S.Implement

Arrow Sequen S.Errors

Array Sequen S.Updates

Figure 4.9: Attribute Deletion Menu Item

GrabBag

Search Path SEQUENTIAL SEARCH

Attribute : Array Sequen S.Errors

Number of references : 1

C) Delete ONLY reference from SEQUENTIAL SEARCH

0 Delete RLL references

Delete attribute FILE, too Cancel )

Figure 4.10: Selection Dialog For Deleting an Attribute
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brat:Mom

Nell, BMA WASP...

Open...
Close...
Quit...

Rdd category...
Oe lett, Category...
Split Category List
link From

Oisuay

tildti ID flip.
figlitUribyke
I) r tele P.it WM! te

SEQUENTIAL SEARCH
Array Sequen S.help

Array Sequen S.Document

Array Sequen S.Pas

Array Sequen S.Interface

Array Sequen S. Implement

Array Sequen S.Errors

Array Sequen S.Updates

Figure 4.11: Selection of Category as the origin of the Link

CirabBag

EN. SEQUENTIAL SEARCH MEI

Nem Data lids p...

Open...
Close...
Quit...

Add category...

Delete Category...
Split Category List

Array Sequen S.help

Array Sequen S.Document

Array Sequen S.Pos

Array Sequen S. Interface

Array Sequen S. Implement

Array Sequen S.Errors

array Sequen S.Updates

link To k
=Rag fittrIbute.
Logy to Ole..,
Add Attribute
Delete Attribute.

Figure 4.12: Setting the Link Origin
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brabBag

Search Path

UTILITES DATA BASE

SEARCH ROUTINES

ARRAYS

SEQUENTIAL SEARCH

Array Sequen S.help

Rrroy Sequen S.Docueent

Array Sequen S.Pos

Array Sequen S.Interface

Array Sequen S.Implement

Array Sequen S.Errore

Rrraq Sequen S Updates

Set Link From: WRITES DATA ARSE

.-To : Array Sequen S.Updates

HOk )

Figure 4.13: Dialog For Link Conformation
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4.2.2 Browsers

Program Understanding

Browsers are tools to aid in reading and understanding program modules, a module,

or parts of a module. Browsers assist the programmer in the process of mental

transformation of a system of modules, a module, or parts of a module into an ab-

straction that summarizes the possible outcomes of the entity under consideration,

irrespective of its' internal control structure and data operations.

Recent research in text comprehension [Bar32,SA77,Gra81,BBT79] has shown

that schemas can facilitate the processing and storage of information by providing

background knowledge or context.

Schemas are generic knowledge structures that guide the comprehender's

interpretations, inference, expectations, and attention when passages are

comprehended [Gra81]

There is some empirical evidence [Shn76,Ade81,MRRH81] that programmers

use schemas in the comprehension of computer programs. Information about the

problem, what it is , the subgoals necessary to resolve the final goal, the method

employed to solve the subgoals, how it is done , the level of expertise of the problem

solver, etc. can be derived from program text [SE83,SEB82]. Program fragments

and data structures can be thought of as schemas and knowledge structures. A pro-

gram fragment is a piece of source code representing the stereotypic action sequence

in programs. Program fragments are different from subroutines. Program fragments

are open pieces of source code that are meant to be modified or tuned to the par-

ticular task at hand whereas subroutines are purposedly closed entities [SE83]. For

example a while loop in a sort routine can be considered as a Loop fragment.

For a program to be reused one should know what it is and how it works. In

fact understanding a source program is the basis for: 1) modifying and validating
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programs written by others, 2) selecting and adapting program design, 3) verify-

ing the correctness of programs, and 4) becoming more effective through study of

programs written by others [LMW79].

Abstraction in Reading and Understanding a Module

The object of reading a program or program part is to recognize directly what

it does all in one thought, or to mentally transform it into an abstraction that

summarizes the possible outcomes of the program under construction irrespective

of its internal control structure and data operations. Thus one can regard program

reading as primarily a search for suitable abstraction [LMW79]

In [LMW79] it is shown that a program fragment is an ideal component for

abstraction. A compound program of any size can be read and understood by

reading and understanding its hierarchy of fragments and their abstraction. Artimis

uses the idea of stepwise abstraction in producing an abstracted version of a module

or parts of a module. The process of stepwise abstraction starts at the most detailed

level, and replaces each fragment by its equivalent abstraction. Stepwise abstraction

is the inverse of stepwise refinement.

4.2.3 Program Understanding Paradigm

The exact approach and steps taken in reading and understanding a program source

depends on the level of expertise of the programmer, clarity and readability of the

source code, and availability of documentation. The most common steps typically

taken to understand a program are:

1. Build a picture of the system structure, exposing the hierarchy of intercon-

necting modules,
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2. Examine the interface information to understand the nature and type of in-

formation exchanged among the components communicating with each other

(e.g. procedures, functions, modules),

3. Start from the main program and trace the execution of the program,

4. Abstract and highlight the program fragments that are crucial to the operation

of the program,

5. Comment the highlights and make notes on their operation for later use,

6. Repeat this process until the mystery is solved.

The following is the tool set which implements the steps outlined above in the

Browsers of Artimis.

Module Interconnection Graph Builder

The Module Interconnection Graph Builder provides a graphical display of the

hierarchical structure of a program containing one or more modules. The graphi-

cal display shows, 1) the overall program structure and placement of modules, 2)

accessibility of the resources of each module from other modules, and 3) the in-

terconnectivity (or disconnectivity) of modules. Figure 4.14 displays the Module

Interconnection Graph of a set of modules.

The Module interconnection graph is the first order of fragmentation in program

understanding. It provides a global view of the modules (fragments) that the pro-

gram is build around. For example, Figure 4.14 (MODULES window) shows that

module MOD1 has direct access to the resources (variables, procedure definitions,

constants, etc.) of MOD2, and MOD3, and possibly has indirect access to the re-

sources of MOD4, and MOD5. In turn MOD2 uses some of the resources defined in

MOD4, and MOD5. These information can be used to trace the data and control

flow of the module.
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The module interconnection graph is also useful in formulating the dependency

preserving sequence for correct compilation of the modules(MAKE). For example,

in Figure 4.14 MOD4, and MODS should be compiled prior to MOD2 in order to

preserve the correct compilation sequence.

* File Edit Browser

Figure 4.14: A Sample Module Interconnection and Procedure Call Graph

Procedure Call Graph Builder

The Procedure Call Graph Builder shows the subprogram invocations found within

a single module. The procedure call graph is the second order of fragmentation in

abstraction of a module for readability and understanding purposes. The procedure

call graph reveals the textual nested organization of a module [CWW80] that can

be used to derive information related to the visibility and scope of entities within

a module. It provides an abstract view of the control and data flow among the

subprograms. For example Figure 4.14 (PROCEDURES window) shows call graph

of MOD3 in which procedure HEYYOU and MAC are called from within procedure

FF. And FF is called from within body of MOD3.
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Module Abstractor

The Module Abstractor automatically creates an abstraction of code fragments.

This tool provides a mechanism for abstracting source code by hiding redundant

and unnecessary portions of the code. The programmer can select one or many

source fragments for abstraction. The selected source is hidden from view and

replaced by either a note provided by the programmer or a default note provided

by the abstractor. The abstracted portions of the code can be reversed.

Figure 4.15, and 4.16 display a sample program before, and after abstraction

of two fragments of the code. In the example the body of FOR loop fragment is

selected for abstraction.

The selected fragment is replaced by either a default place holder or by a prompt

that is supplied by the user. For example Figure 4.15 shows the body of the WHILE

loop is selected for abstraction. After the selection the body of the WHILE is hidden

and replaced by statement(s) as shown in Figure 4.16.

File I. dit Browser

I MI
FROM G4MOD IMPORT ;

BEGIN
FOR Ohm nor, lowertound TO Upper DO

sum eli) scan;
firstcall / timeremain 27;

Waning getfiratlindexl total;
nsgionai Inatria - danenalon,
closing ..enclingljohnaintlexl - total

END,

WHILE - y z) DO
hallo thte that;
W. buy / finish;
z luckurnan

Em)

Figure 4.15: A Sample Module Before Abstraction

In Artimis, the Module Abstractor can also be used to create internal documen-

tation. Internal documentation is the explanation of the algorithmic behavior of
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r * File hdii Browser

BEGIN
FOR johnsinclem lowerbound TO Upper DO

sun eh) sun;
firatcell / timerernein 27;

opening e 9etfirstlindex) total;
regional matrix - dimension;
closing . endingljohnsindexl - total

END;

si?VILE ix y 000
statement(s)

EIO

ND G 1 HOD

Figure 4.16: A Sample Module After Abstraction

the fragments of the code in the module. When abstracting fragments, the user

can enter any annotation regarding the fragment to be abstracted. These annota-

tions replace the actual code. This provides the capability of generating internal

documentation by enabling one to produce documentation consisting of a mixture

of source and annotation, annotation only, or source only.

4.3 Conclusion

It is easier to reuse program fragments than to reinvent them, provided that the

time needed for program understanding is less than the time needed for program

writing, and provided that the access time for the needed program fragment is

sufficiently small. If these two conditions are met then the total programming and

debugging time is reduced.

The GrabBag and Browser tools in Artimis provide simple, yet efficient facilities

in meeting the above conditions. GrabBag's user interface provides a simple and

natural method of searching and locating viable candidates for reuse. The ease of

backtracking to previous search selections, and the ability to view all the available
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categories in one glance creates a highly friendly, and easy environment for locating

desired modules. The user interface of Grab Bag also makes learning and using it

so simple that one does not need to know much about it in order to use it.

The program understanding paradigm was used as a guideline in building tools

that are applied to source modules in a non-intrusive manner. The Module intercon-

nection graph and procedure call graph provide a road map and global view of the

architecture of a module. The Module Abstractor further hides the non-essentials

of the source program and helps to further narrow attention to portions that are es-

sential in understanding the source. Annotating fragments while abstracting them

is a natural way to retain the knowledge related to program fragments for further

reuse.
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Appendix A

Rule Processor Instruction Set

In the following sections the instruction set of the rule processor and their semantics

are explained. Instructions are preceded by an @ to distinguish them from ordi-

nary textual information. The mandatory portions of the commands are enclosed

between { and }. The optional portions are enclosed between [ and ] . Also a

...a means a string of characters enclosed by two identical symbols. The symbol

a can be any character. The string must not contain the symbol a. The notation

of the instructions are adapted from [Fri83]. The meta symbols < and > enclose

non-terminals such as arithmetic expressions.

Rule Context

To traverse the tree according to the rules stored in the rule repository, the rule

processor maintains a, context for each node. A context consists of:

Node Priority: used in generation of parenthesized expression. There exists a

classical problem of regenerating expressions from expression trees when the

priority of their operators is altered by using parenthesis [Bro72,CH73,Bro77].

We have adopted the solution in [Fri83] in which expression sub-trees are as-

signed priorities and associativity values. These values provide the capability

to decide where to emit parenthesis in regeneration of expressions. Yashar's
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solution is a generalization that assigns priorities to a node type rather than

the expression node so that the rule processor will emit the proper parenthe-

ses. In this new method there is no need to specify the associativity relation

of a node.

Delimiter String Pointer: used to replicate common strings of symbols shared

by children of a node. Such delimiters are assigned to a delimiter string buffer

area and emitted when they are needed.

Pointer to Rule Definition: refers to the rule definition of a node. The rule for

each node to be processed is prefetched prior to its execution and its address

is passed to the rule processor.

A.1 Tree Navigational Instructions

an Process the nth child of the current node. If the child does not exist the rule

processor ignores this instruction.

©Xn Process the tree ( subtree) pointed to by the contents of register Rn. This

command is used in conjunction with the GM, move command, see A.3. The

execute instruction takes the register n as the current root node, register

n+1 as the current arithmetic priority, and register n+2 as pointer to current

delimiter string.

O.RT{A} Remove the subtree pointed by A where A is either a register number

which points to the subtree. If the pointer is null, no action take places. Not

implemented yet.

10.CT{Ai, A2} Make a copy of the subtree pointed by Al and set A2 to the address

of created subtree. Al andA2 must be registers only. Not implemented yet.
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Q.PT{ill, A2,[SIK]n} Paste subtree pointed by A2, to subtree pointed by Al as

nth sibling (S) or child (K). Not implemented yet.

In Do not process the children number n of the current node. Continues with

the next children if there is any.

©Aa...aann Instead of processing child number nn of this node take whatever

enclosed between a's as the result of processing and continue with the next

instruction.

OARna ...aann Set register n to number of children of children number nn of

current node. Instead of processing it return whatever is enclosed between

a's as the result of processing this node.

©Ana ...aann Instead of processing children number nn of current node take

whatever is between the delimiters and append to it number of children of child

number nn as the result of processing and continue with the next instruction.

©AnRna ...aann Do as above but also save the number of children of children

number nn of current node in register number n.

©Da ...a Emit whatever is enclosed between delimiters after processing of each

child of the current node that comes afterwards.

a*D After processing of each child of current node emit the same information that

is defined by the most currently set D instruction prior to this.

a* a...a Emit whatever is enclosed between delimiters after processing of each

child of the current node. Note this is only local to this node.
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A.2 Escape and Break point Instructions

The rule processor supports the insertion (definition) , activation, and removal of

break points to temporarily interrupt the processing of a rule. One can use the

break point facility to step through a class of tree nodes, for example. Definition,

activation and removal of break points are done as follows:

Definition: of a break point for a node type is done by using OP and providing

the node type and function number in the Function Table to be activated at

the time of breaking. For example:

define break separator separator
........ ,...... ,.....,

05 : OP / 20
-......-,

node type

03 CO NSTOD ...,...,
function to breakin

defines a break point for all nodes of type 20 and designates the function

number 3 in the Function Table as the function to be executed when a break

happens.

Removal: of a break point for a node type is done by using @V and the specifi-

cation of the node type. For example the following:

remove break
,......,

84 : BEG INOn0 + 001... END OV / 20 /
node type

removes the break definition for node type 20.

Activation: of break points is done by using @Z. to alert the rule processor to

check for a possible break point definition for the current node type. The

sole purpose of @Z is to not hinder the efficiency of the rule processor when

checking for break points after execution of each rule. However, by adding

OZ to all rule definitions, checking for a break point after every rule can be

achieved. For example ,
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16:IF 001 THEN ...END CZ

38:WHILE 001 OD/An/ ...END Z

50(01 > 002)0Z

will cause the rule processor to check for a possible break point definition for

node types 16, 38, and 50 after processing them. Notice that by putting OZ

at the beginning one can cause the rule processor to check for possible break

points at the beginning of a rule. Practically, OZ can be placed anywhere

within a rule and it's execution is immediate.

On%m Causes the rule processor to by pass processing of child number n and

execute function referenced at location m of the Function Table. The rule

processor passes the context to the function too.

©Jn Calls nth function in Function Table. No context information is passed to the

function.

©Panam Defines a break point for node type n and designates the mth function

in the Function Table to be the breaking function.

(Walla Removes the break point definition for node type n.

OZ Defines the check points for existence of a break point. Meaning that any time

a @Z is encountered the rule processor checks to see if a break point is defined

for the rule and if so executes the breaking function as it is defined in @P for

the rule.

A.3 Arithmetic and Conditional Instructions
true part

@?(<exp>) [n : newre]? Conditionally modifies a command de-
false

newrule]? newrule]?..._..--,
false part

pending on whether the condition being test is true or false. The <exp> is
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evaluated and if the result is true the true part is used otherwise the false part.

OM$Rn =(<exp>)$ Set the contents of register n to the result of the expression.

Expressions can contain any combination of arithmetic operations ( eg. +, - ,

etc.) and relational operators (eg. ==, <=, etc.) in case of conditional instructions.

If the expression is a register assignment, the next two consecutive registers are used

to store the current value of arithmetic priority, and the pointer to current active

string delimiter. For example

05 : CONSTODI;On/On© + ©M$R02 = (001)$ * //; ©n®

In the above the sequence operation related to assignment is as follows:

Store the pointer to subtree 001 in register 02

Store the current arithmetic priority in register 03

Store the pointer to current delimiter string which happens to be ;On in

register 04

A.4 Formatting Instructions

0+ Increment current indentation level by a predefined indentation value. The

execution of this command is immediate.

0- Decrement current indentation level. This is the reverse of @+.

@C-I- Enable adaptive formation of output text. This signals the rule processor to

attempt to break lines of output text that does not fit on a single line.

@C- Disable adaptive formation of output text. This disables the effect of a previ-

ous @C+. Afterward the rule processor does not make any attempt to adjust

the display of the text if it does not fit in a line.
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©Cm This is a marker which to mark the spots that would be a reasonable place to

emit a proper escape sequence (e.g newline) to break the output lines. When

the adaptive formation of output text is enabled. This marker provides the

knowledge to the rule processor in calculating the most appropriate places

that a line can be broken.

0.F [-F I -]n where F can be any of the following font styles: Bold, Italic, Underline,

Outline, Shadow, and Normal. These font styles can be selected independent

of each other and their effects are accumulative. To reset the font style to the

default one one should select Normal.

0.G [-1-1-]ni r In this instruction The n option can be used to set the font size.

The r option resets the font size to the default value, or the font size prior to

the application of a set operation.

O'n Set the arithmetic priority of current node to n. This is for generating of

parenthesized expression in a correct form when generating program text.

A.5 Miscellaneous Instructions

Rule Repository Manipulation Instructions

0Mna ...a Redefine rule labeled n to the new definition enclosed in between de-

limiters. After the execution of this command the new definition will be in

effect.

0Rn Restore the definition of rule labeled n to its previous one. If there is no

previous definition nothing will be changed.

OF Restor all the rules that are redefined to their original definitions.
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Data Dictionary Access and Pre-Loading of Modified Rules

ad The access to Data Dictionary from within rule is through the use of ad.

However to make that possible prior to activation of rule processor a designer-

defined function is installed in a predefined element of Function Table. Then

afterwards anytime the rule processor encounters ad it will execute the in-

stalled function in the pre-defined location of the Function Table and the con-

tent of Data Dictionary Reference Pointer field of the current node is passed

to it. The return value is expected to be a string of characters. However a null

string can also be returned. The data dictionary access routine must always

be installed as function number 41.

Pre-Loading of Modified Rules For pre-loading modified rules before starting

activation of rule processor, a designer-defined function must be installed as a

pre-defined element of Function Table. Yashar rule processor always attempts

to execute this function before start of processing the rules. If there is no

function installed in that location nothing will happen and processing will

continue. The designer-defined routine to modify or augment the designer-

defined rules prior to activation of rule processor must be installed as function

number 42. Further more this function must use pre-compiled Yashar support

routine Modify Rule, refer to Appendix B.2, to actually modify the rules.



114

A.6 References

[Bro72] P. J. Brown. Re-creation Of Source Code From Reverse Polish Form.

Software-Practice and Experience, 2:275-278, 1972.

[Bro77] P. J. Brown. More On The Re-creation Of Source Code From Reverse

polish Form. Software-Practice and Experience, 7:545-551, 1977.

[CH73] C. C. Charlton and P. G. Hibbard. A note On Recreating Source Code

From The Reverse Polish Form. Software-Practice and Experience, 3:151-

153, 1973.

[Fri83] Peter Fritzson. Adaptive Prettyprinting of Abstract Syntax Applied to ADA

and PASCAL. Technical Report, Department of Computer Science, Linkop-

ing University, Linkoping, Sweden, September 1983.



115

Appendix B

Pre-Compiled Support Routines

The pre-compiled support functions are used by a tool of Yashar to access and

operate on the tree-representation of the input and Scratch Pad Area. The pre-

compiled support functions are accessible through designer-defined functions and

Application Interface Routines.

The designer-defined functions are application-specific routines that are called

by the rule processor to perform certain application-specific tasks. User-defined

support functions are installed in the rule processor's predefined Function Table by

using a pre-compiled Yashar support routine called InstFunc. User-defined support

functions can be viewed as trap routines which extend the instruction set of Yashar's

rule processor. The rule processor executes functions installed in the Function Table

automatically when they are referenced in any rule.

As an example suppose user interaction is required to satisfy one of the rules

being processed by Yashar's rule processor. The designer would have to write a

function which handles the user interaction as a dialogue and passes the user's input

to Yashar's rule processor. Prior to activation of the rule processor this function is

installed in the Function Table by using the pre-compiled Yashar support function

InstFunc. The rule processor automatically executes such functions in the course

of processing the rules.
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Following sections explain the pre-compiled support routines that are avail-

able for User Interface Routines and designer-defined routine to access the tree-

representation of input, the Scratch Pad area and rule repository.

B.1 Tree Manipulation Routines

Tree manipulation routines provide the necessary support for creating and accessing

tree nodes.

NewTreeNode(): creates a tree node and returns a pointer to it.

GetlthSib(treenode, sibNum): returns a pointer the sibNumth sibling of the tree

or subtree passed to it as its argument. treenode is the pointer pointing to

the specified tree or subtree, and sibNum is the desired siblings. If the desired

sibling does not exist the return pointer will be null.

GetlthKid(treenode, kidNum): returns a pointer the kidNumth child of the tree

or subtree passed to it as its argument. treenode is the pointer pointing to the

specified tree or subtree, and kidNum is the desired child. If the desired child

does not exist the return pointer will be null.

AddSib(treenode,newsibs): adds the tree node pointed by newsibs as the last sib-

ling of the tree subtree pointed by treenode.

AddKid(treenode,newkids): adds the tree node pointed by newkids as the last child

of the tree pointed by treenode.

NoOfSibs(treenode): returns an integer value representing the number of the sib-

lings of the tree pointed by treenode.

NoOfKids(treenode): returns an integer value representing the number of the chil-

dren of the tree pointed by treenode.
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CopySubTree(treenode): makes a copy of the tree pointed by treenode and returns

a pointer to the newly created tree.

Set Type(treenode, Type Value): set the type of the node pointed by treenode to the

value of Type Value. Currently the Type Value can only be in the range 0 to

255.

GetType(treenode): returns an integer as the value of type field of the tree pointed

by treenode.

SetDRef(treenode,DDReflnfo): sets the data dictionary reference field of the node

pointed by treenode with the content of DDReflnfo.

GetDRef(treenode): returns the contents of data dictionary reference field of the

node pointed by treenode. The return value is four byte long and can be casted

to a pointer or a long integer in C.

SetALink(treenode,ALinklnfo): sets the application linkage/data field of the node

pointed by treenode with the contents of ALinklnfo.

GetALink(treenode): returns the contents of application linkage/data field of the

node pointed by treenode. The return value is four byte long and can be casted

to a pointer or a long integer in C.

B.2 Repository Manipulation Routines

These routines provide access mechanism to the rule repository, and the ability of

modifying the default size of them. Except ModifyRule and RestoreRule below, all

the rest of functions must be applied only one time and prior to activation of the

rule processor. If they are applied after activation of the rule processor the result

and behavior of the system would be unpredictable if it does not cause crashes. If

they are not applied the predefined values would be used.
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SetRuleMax(MaxNoOfRules): sets the maximum allowed number of rules for the

rule repository to the value of MaxIsloOfRules. MaxIsloOfRules must be a

positive integer value.

SetRepository(RepositorySize): sets the maximum allocation size of the rule repos-

itory to the value of Repository Size. Repository Size must be a positive integer

value.

SetRuleLen(RuleLength): sets the maximum rule length to the value of Rule-

Length. Rule Length must be a positive integer.

SetRuleFName(ApplRules): notifies the rule processor to load the rules that are

stored in the file referenced by ApplRules. The rule processor prior to acti-

vation of Yashar engine will load the rule repository with the rule definitions

provided by ApplRules. The default file that will be searched for loading the

repository is InterpCmd.text.

ModifyRule(RuleLabel,NewRuleStr): modifies the current definition of the rule

referenced by Rule Label to the new definition referenced by NewRuleStr. Rule-

Label must be a value in the range of 0 to 255 and does not exceed the maxi-

mum number of allowed rules in the repository. NewRuleStr is a pointer to a

character string containing the new rule definition.

RestoreRule(RuleLabel): removes the most current modification to the rule refer-

enced by Rule Label. If there has not been any modification the function will

do nothing.

B.3 Register Manipulation and Miscellaneous Routines

These routines provide access mechanism to Scratch Pad areas (registers), and the

ability to change the default setting of other predefined values.
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GetRegister(RegisterNo): returns the current value of the register referenced by

Register No. The return value is four byte long and can be casted to a pointer

or a long integer in C. Register No must be a positive integer within the pre-

defined range of 1 to 40.

PutRegister(RegisterNo,Register Value): sets the value of register referenced by

Register No to the value of Register Value. RegisterValue can be any thing at

the most four bytes long. RegisterNo must be a positive integer within the

predefined range of 1 to 40.

Setlndent( UnitSize): Set the default indentation unit length to UnitSize. UnitSize

must be a positive integer value. The new size will be used by @-.1-- and CO- in

formatting the output text.
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Appendix C

Tree Representation Definition For Modula-2

The format used to describe tree representation of Modula-2 source is as follows:

tree > TREE EXP

where tree is the name of a tree and TREE-EXP is the description of the structure

of the tree. A TREE-EXP can be either of the form (NODE X Y Z) or of the form

X Y Z. A TREE-EXP of the form (node A B C D) means that the tree has the

root "node" and has sons X Y Z. A TREE-EXP of form X Y Z means that the

tree is actually a forest composed of trees rooted from X Y Z, respectively. In a

tree description, a string of upper case letters stands for a tree node with the name

of that string. A string of lower case letters stands for a tree whose structure is

described by other definitions. The notations [ ...] and { ...} have their obvious

meanings as they are used in BNF definitions.

The language syntax assumed by the Modula-2 Parser is the same as the defini-

tion in [Wir83]. The corresponding EBNF grammar rules (marked with ** and the

line numbers refer to the line numbers in the appendix of [Wir83]) of the parsing

trees are given right before the tree definitions.

**1 ident = letter {letterldigit}

ident --> ID
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**2 number = integerlreal

number --> NUMBER

integer = digit{digit}loctalDigit{octalDigit}("B"1"C")1

digit{hexDigit}"H"

real = digit{digit} "."{digit}[ScaleFactor]

ScaleFactor = "E"["+"1"-"]digit{digit}

hexDigit = digitl"A"1"B"1"C"1"D"1"E"1"F"

digit = octalDigit1"8"1"9"

octalDigit = "0"1"1"1"2"1"3"1"4"1"5"1"8"1"7"

**10 string = ""{charactor}"'"1"""{character} """

string --> STRING

**11 Qualident = ident{"."ident}.

qual-ident --> ident

--> (QUALIDENT ident ident)

**12 ConstantDeclaration = ident "=" ConstExpression.

constant-declaration--> (CONSTDCL ident const-expression)

* *13 ConstExpression = SimpleConstExpr[relation SimpleConstExpr].

const-expression --> simple-const-expression

--> (relation simple-const-expression simple-const-expression)

**14 Relation = "=" I "#" I "<>" I "<" I "<=" I ">" I ">=" I IN.
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relation --> LESS

-> NOTEQUAL

--> GREATER

--> EQUAL

-> GREQUAL

- -> LEEQUAL

--> IN

**15 SimpleConstExpr = ("+" I "-"] ConstTerm {AddOperator Consterm}.

simple-const-expression --> (add-operator first-const-term const-term)

first--const-term --> simple-const-expression

-> (add-operator unary-const-term const-term)

unary-const-term --> const-term

-> (unary const-term)

unary --> UNARYPLUS

-> UNARYMINUS

**16 Addoperator = "+" I "-" I OR.

add-operator --> PLUS

--> MINUS

- -> OR

**17 Consterm = ConstFactor {MulOperator ConstFactor }.

const-term --> (mul-operator first-const-factor const-factor)

first-const-factor --> const-term

-> (mul-operator const-factor const -f actor)
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**18 MulOperator = "*" I "/" I DIV I MOD I AND I "dr".

mul-operator --> TIMES

-> DIVIDE

-> DIV

-> MOD

-> AND

-> AMPERAND

* *19 ConstFactor = qualident I number I string I set I

**20 "(" ConstExpression ")" I NOT ConstFactor.

const-factor --> number

--> string

--> qual-ident

-> qual-ident set

--> set

-> expression

-> (NOT const-factor)

**21 Set = [qualident] "{" [element { ". "element }] "I".

set --> (SET element-list)

element-list --> (LIST {element})

**22 element = ConstExpression [".."ConstExpression].

element --> const-expression

-> (RETICENCE const-expression const-expression)

**23 Typedeclaration = ident "=" type.

type-declaration --> (TYPEDCL ident type)
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**24 type = SimpleType I ArrayType I RecordType I SetType I

**25 PointerType I ProcedureType.

type --> simple-type

-> array-type

-> record-type

-> set-type

- -> pointer-type

-> procedure-type

**26 SimpleType = qualident I enumeration I SubrangeType.

simple-type --> enumeration

-> subrange-type

-> (SIMPLETYPE qual-ident)

**27 enumeration = "(" Identlist ")".

enumeration --> (ENUMERATION ident-list)

**28 IdentList = ident { "." Ident}.

ident-list --> (LIST ident {ident})

**29 SubrangeType = "[" ConstExpression ".." ConstExpression"]".

subrange-type --> (SUBRANGE const-expression const-expression)

**30 ArrayType = ARRAY SimpleType{"."SimpleType} OF type.

array-type --> (ARRAY simple-type {simple -type} of-type)

of-type --> (OFTYPE type)
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**31 RecordType = RECORD FieldListSequence END.

record-type --> (RECORD field-list-sequence)

**32 FieldListSequence = Fieldlist {";" Fieldlist}.

field-list-sequence --> (LIST field-list {field - list })

**33 Fieldlist = [IdentList ":" type 1

**34 CASE [ident ":"] qualident OF variant { "I" variant}

* *35 [ ELSE FieldListSequence ] END ].

field-list --> [(VARDCL ident-list)]

--> [(CASEDCL case-clause variant-list else-clause)]

case-clause --> (CASECLAUSE [qual-ident] quanlident)

variant-list --> (LIST variant {variant })

else-clause --> (ELSE field-list-sequence)

**36 Variant = CaseLabellist ":" FieldListSequence.

variant --> (VARIANT case-label-list field-list-sequence)

**37 CaseLabelList = CaseLabels {","CaseLabels}.

case-label-list --> case-labels {case labels })

**38 CaseLabels = ConstExpression[".." ConstExpression].

case-labels --> const-expression

--> (RETICENCE const-expression const-expression)

**39 SetType = SET OF SimpleType.
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set-type --> (SETOF simple-type)

**40 PointerType = POINTER TO type.

pointer-type --> (POINTERTO type)

**41 ProcedureType = PROCEDURE [FormalTypeList].

procedure-type --> (PROCEDURE formal-type-list)

**42 FormalTypeList = "( "[[VAR] FormalType {"."[VAR] FormalType}]")"

**43 [":"qualident]

formal-type-list --> (LIST {var-formal-type} [return-type])

var-formal-type --> formal-type

-> (FVAR formal-type)

return-type --> (RETTYPE qual-ident)

**44 VariableDeclaration = Identlist ":" type.

variable-declaration--> (VARDEL iden-list type)

** 45 Designator = qualident { ". "ident I "["Explist"]" I "").

designator --> (INDEX first-index exp-list)

--> (CARET first-caret)

-> (PERIOD first-period ident)

first-caret --> qual-ident

--> (CARET first-caret)

first-index --> qual-ident

-> (INDEX first-index exp-list)

first-period --> qual-ident
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--> (PERIOD first-period ident)

** 46 Explist = expression {"," expression}.

exp-list --> expression

- -> (LIST expression expression {expression })

** 47 Expression = SimpleExpression [relation SimpleExpression].

expression --> simple-expression

-> (relation simple-expression simple-expression)

** 48 SimpleExpression = ["+"I"-"] term {addoperator term}.

simple-expression --> (add-operator first-term term)

first-term --> simple-expression

- -> (add-operator unary-term term)

unary-term --> term

-> (unary term)

** 49 term = factor {MulOperator factor}.

term --> (mul-operator first-factor factor)

first-factor --> term

--> (mul-operator factor factor)

** 50 factor = number I string I set I designator[ActualParameters]

** 51 "("expression ")" I NOT factor.

factor --> number

-> string
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--> qual-ident set

--> set

--> designator

--> function-call

--> expression

--> (NOT factor)

string --> STRING

function-call --> (PROCCALL designator actual-parameters)

** 52 ActualParameters = "(" [Explist] ")".

actual-parameters --> (ACTALPARA [exp-list])

** 53 statement = [assignment I ProcedureCall I If Statement I

** 54 CaseStatement I WhileStatement I RepeatStatementI

** 55 LoopStatement I ForStatement I WithStatementl

** 56 EXIT I RETURN[expression] ].

statement --> assignment

-> procedure-call

- -> if-statement

-> case-statement

- -> while-statement

- -> repeat-statement

-> loop-statement

-> for-statement

-> with-statement

- -> exit
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--> return-statement

exit --> (EXIT)

return --> (RETURN [expression])

** 57 assignment = designator ":=" expression.

assignment --> (BECOME ident expression)

** 58 ProcedureCall = designator [ActualParameters].

procedure-call --> (PROCCALL designator [actual-parameters])

** 59 StatementSequence = statement { "; "statement }.

statement-sequence --> (LIST (statement))

** 60 If Statement = IF expression THEN StatementSequence

** 61 {ELSIF expression THEN StatementSequence )

** 62 [ELSE StatementSequence] END.

if-statement --> (IF expression then { elsif} [else])

then --> (THEN statement-sequence)

elsif --> (ELSIF expression statement-sequence)

else --> (ELSE statement-sequence)

** 63 CaseStatement = CASE expression OF case { "I" case)

** 64 [ELSE StatementSequence] END.

case-statement --> (CASE expression case-list [else-part])

case-list --> (LIST case {case })

else-part --> (CASEELSE statement-sequence)
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** 65 case = CaseLabelList ":" StatementSequence.

case --> (CASEL case-label-list statement-sequence)

** 66 WhileStatement = WHILE expression DO StatementSequence END.

while-statement --> (WHILE expression statement-sequence)

** 67 RepeatStatement = REPEAT StatementSequence UNTIL expression.

repeat-statement --> (REPEAT statement-sequence expression)

** 68 ForStatement = FOR ident ":=" expression TO expression

** 69 [BY ConstExpression] DO StatementSequence END.

for-statement --> (FOR ident expression expression [by-part] do-part)

by-part --> (BY const-expression)

do-part --> (DO statement-sequence)

** 70 LoopStatement = LOOP StatementSequence END.

with-statement --> (LOOP statement-sequence)

** 71 WithStatement = WITH designator DO StatementSequence END.

with-statement --> (WITH designator statement-sequence)

** 72 ProcedureDeclaration = ProcedureHeading ";" block ident.

procedure-declaration--> (PROCEDURE procedure-heading block ident)

** 73 ProcedureHeading = PROCEDURE ident[FormalParameters].

procedure-heading --> ident
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-> ident formal-parameters

** 74 block = {declaration} [BEGIN StatementSequence] END.

block --> (BLOCK dcl body)

del --> (DECLARATION {declaration })

body --> (BODY statement-sequence)

** 75 declaration = CONST {ConstDeclaration "; "}

** 76 TYPE {TypeDeclaration "; "}

** 76 VAR {VariableDeclaration "; "} I

** 77 ProcedureDeclaration ";"

** 78 ModuleDeclaration ";" .

declaration --> (CONST {constant- declaration })

(TYPE {type declaration })

(VAR {variable - declaration })

procedure-declaration

--> module-declaration

** 79 FormalParameters = "(" [FPSection { "; "FPSection }] ")"

** 80 [":" qualident] .

formal-parameters --> (FPARAM {FPSECTION} [return-type])

return-type --> (RETTYPE qual-ident)

** 81 FPSection = [VAR] IdentList ":" FormalType.

fp-section --> (FPSECTION [var] { ident} formal-type)

var --> FPVAR
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** 82 FormalType = [ARRAY OF] qualident.

formal-type (ARRAY qual-ident)

qual-ident

** 83 ModuleDeclaration = MODULE ident[priority] ";"{import}

** 84 [export] block ident.

module-declaration (MODULEDEF ident priority {import} export block

ident)

** 85 priority = "[" ConstExpression "]".

priority (PRIORITY const-expression)

** 86 export = EXPORT [QUALIFIED] IdentList";".

export

(EXPORT [qualified] {ident})

qualified QUALIFIED

87 import = [FROM ident] IMPORT identlist";".

import (FROM ident single-import)

single-import

single-import (IMPORT {ident})

** 88 DefinitionModule = DEFINITION MODULE ident ";" {import}

** 89 [export] {definition} END ident"." .

definition-module (DEFINITION ident {import} export {definition} ident)
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** 90 definition = CONST {ConstantDeclaration ";"}I

** 91 TYPE {ident ["="type ]";"} I

** 92 VAR {VariableDeclaration";"} I

** 93 ProcedureHeading";".

definition --> (CONST {constant declaration })

--> (TYPE { ident} type)

--> (VAR {variable - declaration })

-> procedure-heading

** 94 ProgramModule = MODULE ident [priority] ";" {import}

** 95 block ident "." .

program-module --> (MODULE ident priority import block ident)

** 96 CompilationUnit = DefinitionModule I

** 97 [IMPLEMENTATION] ProgramModule.

tree --> (ROOT {compilation - unit })

compilation-unit --> definition-module

-> implementation-module

-> program-module
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Appendix D

Generalizer and Refiner Functions

Reusability functions are divided into two groups: 1) functions for Generalization,

and 2) functions for Refinement. There is a generalization and refinement support

function defined for each language fragment. These functions are installed in the

Function Table by the Arash User Interface Routines when Arash is started. The

reference index to each function is shown in front of each function name.

The context of the rule processor, a pointer to the rule definition, and a pointer

to the tree node that will be generalized or refined are passed to the function when

activated by the Rule Processor. These functions are assumed to return a pointer

to a character string as the result of their activation. If nothing is to be returned,

a null pointer is returned.

A user can alter the semantics of each of the generalization and refinement

functions by installing his own.

D.1 Generalization support Functions

As part of their activities each of these functions produce the meta identifiers for

the constructs that they support.

0 Mt ConsGO: Generalization function for constant fragments.
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1 Mt TypeG(): Generalization function for type fragments.

2 MtVarGO: Generalization function for variable declaration fragments.

3 MtPrcG(): Generalization function for procedure declaration fragments.

4 MtAssG(): Generalization function for assignment statement fragments.

5 MtPCallGO: Generalization function for procedure call fragments.

6 MtIfGO: Generalization function for if fragments.

7 MtCaseGO: Generalization function for case fragments.

8 MtWhileGO: Generalization function for while fragments.

9 MtRepeatGO: Generalization function for repeat call fragments.

10 MtForGO: Generalization function for for fragments.

11 MtLoopG0: Generalization function for loop fragments.

12 MtWithGO: Generalization function for with fragments.

13 MtReturnGO: Generalization function for return fragments.
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D.2 Refinement Support Functions

The refinement support functions operate on the abstracted fragments to create a

concrete instance. If the .MLS file exists for the abstracted module under refinement

its functionality is extended to perform extra steps as explained in Refiner Operation

section.

0 CuConsGO: Refinement function for constant fragments.

1 CuTypeGO: Refinement function for type fragments.

2 CuVarG(): Refinement function for variable declaration fragments.

3 CuPrcGO: Refinement function for procedure declaration fragments.

4 CuAssGO: Refinement function for assignment statement fragments.

5 CuPCallG(): Refinement function for procedure call fragments.

6 CuIfGO: Refinement function for if fragments.

7 CuCaseGO: Refinement function for case fragments.

8 CuWhileGO: Refinement function for while fragments.

9 CuRepeatGO: Refinement function for repeat call fragments.

10 CuFor GO: Refinement function for for fragments.

11 CuLoopG0: Refinement function for loop fragments.

12 CuWithGO: Refinement function for with fragments.

13 CuReturnGO: Refinement function for return fragments.
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Appendix E

Rules To Recognize Modula-2 Source

These rules are needed to reproduce the original Modula-2 source program text

from the Tree Representation in main memory. In some cases, no rule is needed, in

which case the null rule **NA** is used.

0:

1:ARRAY 0D/,/001 OF 002

2:***NA***2

3:BY 001

4:CASE 001 OF 0n0+0D/ 10n/0020n0+0030-0-0nEND

5:CONST 0D/;0n/0n0+0*//;0n0-

6:DEFINITION MODULE 001:0n0*//.0n

7:001 DIV 002

8:DO 0n0+0D/:0n/001

9:0-ELSE0n0+0/;0n/0010-0+

10:0-ELSIF 001 THEN0n0+0D/:0n/0020*/:On/0-0+

11:END

12:EXIT

13:EXPORT 0D/,/001;

14:FOR 001 := 002 TO 003 004 005 0-0nEND
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15:@ +FROM 0010020n0-

16:IF @01 THEN @ + @ * / @n / @n@ -END

17:IMPLEMENTATION MODULE 0010020*//.0n

18:0+IMPORT @D /, / @01; @n @-

19:@O1 IN @02

20:LOOPOn0+0D/;On/0010-0nEND

21: @01 MOD @02

22:MODULE @ *//

23:NOT @01

24:***NA***24

25: @01 OR @02

26:***NA***26

27:PROCEDURE 0010*//

28:QUALIFIED OD/,/001;

29:0n0+RECORD On0+0/;On/0*//0n0- ENDO-

30:REPEAT On0+0D/;On/0010nO-UNTIL @02

31:RETURN 0*//

32:{0/,/001}

33:0D/;On/001

34:***NA***34

35:TYPEOD/;On/On0+001;0n0-

36:***NA***36

37:VAR OD/;On/On0+0*//;0110-

38:WHILE @C + @01 @D /; @n / @C- DO @ + @n @02 @n@ -END

39:WITH @01 DO @n @ + @D /; @n / @02 @- @nEND

40:001

41: " @d"
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42:0d

43:0d

44:;On

45:***NA***45

46:***NA***46

47:001.002

48:001..002

49:0Cm(001 < 002)0Cm

50:(001 > 002)0Cm

51:(001 = 002)0Cm

52:(001 >= 002)0Cm

53:(001 # 002)0Cm

54:(001 <= 002)0Cm

55:0-10(001 + 0Cm0020)

56:0-20(001 / 0Cm0-30020-20)

57:0-20(001 * eCm0024)

58:0-10(001 0Cm0-20020-10)

59:0Cm001 & 0020Cm

60:***NA*60

61:***NA*61

62:***NA*62

63:***NA*63

64:***NA*64

65:***NA*65

66:001 := 002

67:***NA*67

68:001-
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69:***NA*69

70:0010n002

71:0*/0n/

72:(0D/d001)

73:0D/./001

74:ARRAY0D/1001 OF 002

75:0010*//

76:(0/: /001)002;On

77:0D/./001:002

78: [001]:021

79:0010*D

80:001[002]

81:0-00(+0010)

82:0-0C-0010)

83:001 : On0+0D/;On/0020-

84:BEGIN0n0+ 0D/;021/0010*D0-0nEND

85:001

86:001 = 002

87:(0D/./001)

88:0/,/001 : 002

89:SET OF 001

90:POINTER TO 001

91:0D/,/001 : On0+0/;On/0020-

92:(001..002]

93:***NA*93

94:0D//:001

95:0D/./001
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96: @O1 : @02

97:0010*//

98:CASE @01 OF @n @ + @D/ 1011/0020n CO3 0-END

99:001 = CO2

100:VAR 0/J001002

101:PROCEDURE @D /, /( @01) @02

102:VAR @01

103: @D / /: @01

104:0-ELSECnO+CD/;Cn/0010-0+
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Appendix F

Generalizer Selection Dialogs

This section contains dialog boxes used to select language fragments to be Refined.

Reusability Tools

Please Select Fragments For Generalization

Declarations:

CONST TYPE DAR

St elements:

Assignment...

Procedure Call Rrgs.
IF ...

1=1 CASE

RETURN

PROCEDURE Declaration

WHILE ...

REPEAT ...

0 FOR ...

LOOP

0 WITH ...

Cancel

Figure F.1: Selection Dialog for Modula-2 Language Fragments
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r f File Edit Reusability Tools

Please Select the Required Forms of TYPE
for Generalization:

Simple Type

Oualident

Enumeration

SubRange

Set Type

Ok

Array Type

I ndeu

OF type

RECORD TYPE

Field List

Pointer Type

Procedure Type

Formal Type List

Return Type

Cancel

Figure F.2: Selection Dialog for Type Fragments

Reusability Tools

Select the required componentls)
for Generalization

PROCEDURE

Formal Parameters

Formal Parameters Type

Return Type

Cancel

Figure F.3: Selection Dialog for Procedure Declaration Fragment

lk File Edit Reusability Tools

Select the required component for
generalization

luelue :- rualue

Ok ( Cancel

Figure F.4: Selection Dialog for Assignment Fragment
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Reusability Tools

Select the required component for
generalization

IF

conditional
THEN

stmt. sequence
ELSE

stmt. sequence

ELSIF

conditional
THEN

stmt. sequence

Cancel

Figure F.5: Selection Dialog for IF Fragment

Select the required component for
generalization

Figure F 6: Selection Dialog for Procedure Call Fragment

r d File Edit Reusability Tools

Select the required component for
generalization

CASE

expression
OF

Case Label

ELSE

stmt. sequence

stmt. sequence

Ok Cancel

Figure F.7: Selection Dialog for CASE Fragment
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Reusability Tools

Select the required component for
generelizetion

WHILE expression

stmt. sequence

END

Figure F.8: Selection Dialog for WHILE Fragment

Select the required component for
generelizetion

Figure F.9: Selection Dialog for REPEAT Fragment

r a File Edit Reusability Tools

Select the required component for
generalization

FOR

ident expression
TO

expression
BY

ConstExpression
00

stmt. sequence
END

Or Cancel

Figure F.10: Selection Dialog for FOR Fragment
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Select the required component for
generalization

WITH designator DO

stmt. sequence
END

Figure F.11: Selection Dialog for WITH Fragment


