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ISPS IN SYSTEM DESIGN

I. INTRODUCTION

The evolution of VLSI into the world of digital system

design has provided hardware engineers with a reason to

develop a new approach for designing digital hardware. In

the early days, the designer was able to keep track of the

overall structure and behavior of *a hardware design by

using logic diagrams, boolean equations and the designer's

own memory. As systems complexity increased in the VLSI

era, it became more difficult for a designer to keep track

of a design, resolve design problems, or even communicate

the design with others. The need to describe the design in

a higher order language was apparent. Hardware Description

Languages (HDLs) evolved as a solution.

An HDL is similar to any other high level programming

language, and provides a means of [32],[39],[42],

*precise yet concise description of design,

*convenient documentations to generate user's manuals,

*input of the design description into a computer for

simulation and design verification at various levels of

detail,

*software generation at the preprototype level, thus

bridging the hardware/software development time gap,

*efficient incorporation of design changes and
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corresponding changes in documentation,

*designer/user (teacher/student) communication interface

at the desired level of complexity.

A number of such HDLs have been developed, e.g. CDL,

AHPL, ZUES, ISPS, etc., to describe digital systems and

hardware algorithms.

A digital system can be described in the following six

levels of complexity [42],[46],[47]. Different HDLs

reflect different levels of abstractions of computer

hardware.

1.Algorithmic level, which specifies only the algorithm

used by the hardware for the problem solution.

2.Processor memory switch (PMS) level, which describes

the system in terms of processing units, memory

components, peripherals, and switching networks.

3.Programming level, where the instructions and their

interpretation rules are specified.

4.Register transfer level, where the registers are system

elements, and the data transfer between these registers

are specifed according to some rule.

5.Switching circuit level, where the system structure

consists of an interconnection of gates and flip-flops,

and the behavior is given by a set of boolean

equations.

6.Circuit level, where the gates and flip-flops are

replaced by the circuit elements such as transistors,
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diodes,etc.

HDLs provide a means of attaining computer assistance in

hardware design [32]. Thus the use of an HDL-based design

approach is an efficient method for dealing with the

increasing complexity of VLSI design projects. An HDL

design approach is realized by implementing a HDL on a host

computer, which then becomes an HDL-based design system.

ISPS, Instruction Set Processor Specification, is

designed to describe precisely the programming level of a

digital system [2,3,5,9],[43]. The behavior of the

processor is determined by the nature and sequence of its

operations. This sequence is given by a set of bits in

primary memory, a program, and a set of interpretation

rules. Thus if we specify the nature of the operations and

the rules of interpretations, the actual behavior of the

processor depends on the initial conditions and the

particular program.

ISPS supports a wide range of applications in the area

of automatic design of both hardware and software [7].

These applications may be categorized in four major areas,

namely

*evaluation and certification of instruction set

processors

*design automation

*software generation

*functional fault simulation



The purpose of this dissertation is to demonstrate the

advantages of using ISPS in hardware and software design,

with emphasis on design verification, performance

evaluation and functional fault simulation.

To achieve this goal, the dissertation presents an

overview of ISPS and its applications, then uses the

notation to aid the design process of a new 16-bit machine.

The project was undertaken with a secondary purpose in

mind. This is to introduce and install a HDL at OSU to

serve as a useful starting point in design automation.

Chapter II is devoted entirely to the review of a

selected number of HDLs. This chapter provides information

to help the reader familiarize himself with existing HDLs,

their differences and similarites.

Chapter III presents an introduction of the ISPS

notation, illustrated by examples on the PDP-8 computer

system.

Chapter IV surveys the applications of ISPS in a

design environment.

Chapter V presents the main features of a proposed

architecture of a 16-bit processor. The complete hardware

description of the design using ISPS is presented in

Appendix A.

Chapter VI demostrates the utility of ISPS in design.

The chapter introduces the use of the ISPS simulator in

design verification and performance evaluation, by test
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programs, of the proposed architecture AF85. It concludes

with demonstrating how to utilize the simulator for

functional fault simulation. Complete listings of

simulation runs are presented in Appendix B.

Finally, chapter VII gives a summary of the work

presented in the paper.
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II. FEATURE DESCRIPTION OF A NUMBER OF HDL's

2.0 Introduction:

Seven hardware description languaes are chosen for a

feature study based on the following criteria

[4],[32],[42],[46]

* environment in which each was created.

* end use environment.

* extent of use.

* spectrum of language features.

* currency.

The seven languages studied are:

1.Computer Design Language, CDL [15,16].

2.Interactive Design Language, IDL [28,29,30].

3.ZUES Hardware Description Language [18],[25].

4.A Hardware Programming Language, AHPL [20,21,22].

5.CONLAN, a CONsensus LANguage [36,37,38].

6.Very High Speed Integrated Circuits,VHSIC,hardware

Description Language, VHDL [27],[28],[41].

7.Instruction Set Processor Specification, ISPS

[2,3,4,5,7,9],[43].

Table 1 relates the chosen languages to the criteria

listed.
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In the following sections, a brief description of each

language is presented. A set of language features is then

defined, to provide a basis of comparison among the

languages described. Finally, the seven languages are

compared, according to these features, and the results of

the comparison are summarized in Table 2.
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2.1 CDLComputer Description Language [15,16):

CDL was first reported by Y. Chu in 1965 in the

University of Maryland. Since then it has been used in

teaching digital logic design. CDL describes the

structural and functional parts of a digital system.

Structural parts, such as memory, registers, clocks and

switches, are declared explicitly at the beginning of the

description. The functional behavior of the elements is

described by the commonly used operators and user defined

functions. Whenever there is a data transfer, a data path

is declared implicitly. The organization of a CDL

description includes a list of declaration statements,

followed by a list of execution statements.

CDL allows synchronous timing mode only. Both

parallel and sequential operations are allowed. CDL uses

nonprocedural order of execution mechanism. That is, each

CDL statement is associated with a label which describes

the conditions under which execution is performed. All

variables in a CDL description are global. The system

description can be only at one level, i.e. there are no

subroutine facilities, thus making CDL unsuitable for

describing hardware in a modular fashion.

A translator and a simulator have been developed for

CDL, both are implemented in FORTRAN. The translator

performs a syntax check on the system description and then
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translates it into logic equations. The simulator executes

the output of the translator by means of a set of

simulation commands.

It is not possible to include special hardware

components like integrated circuits in a CDL description.

However, the FORTRAN implementation gives CDL simplicity of

structure and portability which have contributed to its

popularity.

2.2 IDL-Interactive Design Language [28,29,301:

IDL is a hardware design language developed in early

1974 by L. Maissel and D. Ostapko at IBM. The language

supports both structural and behavioral descriptions. The

order in which IDL statements are listed is unimportant.

Data entry may be in graphical flow chart or text form.

IDL also allows blocks of logic to be represented as truth

tables.

IDL is a nonprocedural language. It only allows

synchronous timing mode. Sequence control is achieved

through the use of labels. Every IDL statement, that is

not a declaration, must be associated with a label. There

is no restriction on how many labels may be active at any

given time. If two or more labels are simultanously

active, simulation treats them as parallel processes. The

general action statement in IDL is IF-THEN-ELSE. Input

conditions can be quite complex, and many complex functions
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such as rational operators are built in. Output statements

can also be more complicated than just assigning values to

outputs, for example, they can imply complicated control

actions such as register transfers and memory accesses.

IDL is used for both design and description, as it

generates two level logic from high level description.

Multilevel logic can also be generated. Design

verification under IDL is achieved by simulation.

IDL is mostly implemented in APL, although some CPU

routines are implemented in IBM 370 assembly language.

IDL is used mostly in an industrial environment and it

has found very limited use outside IBM.

2.3 ZUES-A Hardware Description Language (18],[25]:

ZUES is a general hardware description language

developed in early 1980 at GTE Laboratories. ZUES supports

both functional and structural descriptions. The

functional description is usually linked to the structural

description by giving each structural element a functional

meaning. Hierarchical abilities are provided through the

so called COMPONENT- TYPE within a description.

ZUES can generate hardware, conditionally, through the

use of a simple metalanguage. However all feedback loops

must lead through registers. This restriction is claimed

to prevent poor design approaches and to simplify

simulation.
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ZUES is a nonprocedural language. Conditional

statements such as IF statements and replication statements

such as FOR statements are used to specify hardware.

ZUES is so close to the hardware level and offers good

features to describe layout information that it is possible

to write an efficient silicon compiler that produces

reasonably efficient chips in terms of area, time and

power.

Time in ZUES is assumed to proceed in discrete steps

called clock cycles. Clock cycles are assumed to be long

enough to allow signals sufficient time to ripple through

the combinational logic.

2.4 AHPL-A Hardware Programming Language [20,21,227:

AHPL is a hardware description language based on the

APL notation. The language was designed by Hill and

Peterson in late 1960's at the University of Arizona. The

language has been used, since then, to teach digital system

design. AHPL is a procedural, single-block language which

supports both structural and functional descriptions. AHPL

statements are normally executed in the order listed,

unless a branch command changes the sequence.

AHPL makes use of only those APL operators which can

be interpreted as hardware primitives. A few more have

been added to AHPL representing unique hardware

capabilities such as parallel control sequences,
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asynchronous transfers and conditional transfers. AHPL

operators are selected from APL operators based on the set

of hardware primitives to be used in a design, hence, the

set of AHPL operators may differ from design to design.

Declarations are very rare in AHPL descriptions.

AHPL descriptions may be synchronous or asynchronous.

A compiler and a simulator have been developed for AHPL,

both are implemented in FORTRAN.

2.5 CONLAN-A Consensus Language [36,37,38):

CONLAN is a consensus hardware description language.

The CONLAN project began in 1973 by establishing the CONLAN

group, consisting of R. Piloty, M. Barbacci, D.

Borrione, D. Dietmeyer, F. Hill and P. Skelly. The

groups' main objective was to consolidate existing HDL's

into a standard language.

The CONLAN approach utilizes a family of related

languages rather than a single consensus language. These

languages are linked by a common syntax and semantics.

Each new language definition is based upon an existing one,

and can be derived when the need arises.

The CONLAN group prepared the root language called

Base ConLan, BCL.The language provides the basic object

types and operations to describe the behavioral and

structural parts of a digital system in both space and

time.
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2.6 VHDLHardware Description Language [27],[28],[41):

VHDL is a new language developed to support the

Department of Defense Very High Speed Integrated Circuit

(VHSIC) program. The VHDL project began in 1983 by a team

from Intermetrics, IBM and Texas Instruments.

VHDL provides a standard textual means of describing

hardware components at levels ranging from the logic gate

level to the digital system level.

The language organization provides a hierarchical

design capability that allows the designer to describe,

evaluate and utilize design alternatives. The key element

within VHDL is the design entity. Each design entity has

an interface and a body. The interface description

represents the intended external interface of the hardware

being designed. As design progresses, the interface

description will be refined to match the real hardware

exactly. Within the design body, the designer may describe

one or more design alternatives, variants, for the desired

hardware. Within each variant, several design aspects may

be described in terms of function, RT level or pure

structure.

A simulation model may be created, in the simplest

case, by selecting a design entity and choosing the desired

design alternative from that design entity. If structural

description is chosen, a model tree may be created by
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looking at the structure contained within the chosen design

entity and at each lower level design entity that is part

of the structure. This process continues until all the

design entities in lower level structures, for which

functional or RT level descriptions exist, have been

chosen.

The primary use of VHDL is in the design of VHSIC

class of components. The designer will use the VHDL design

system to specify designs, to create new design entities

and to utilize existing design entities.



16

2.7 ISPS-Instruction Set Processor Specification

[2,3,4,5,7,9],[43]:

ISPS is the second implementation of the ISP notation

first introduced in Bell and Newell in 1971 [12]. ISPS was

developed as a computer language by M. Barbacci at

Carnegie-Mellon University in 1977. Although ISPS may be

viewed as a high level programming language, its notation

was developed to describe computers and other digital

systems. ISPS is a register transfer language designed to

support a wide range of applications rather than a wide

range of levels.

The main purpose of the language is the description of

the behavior of an instruction set processor, its data

types and operations. Primitive data types include,

registers, memories and transfer paths. Primitive

operations include logic (single and multibit), arithmetic

(several representations), and control (sequential,

parallel, conditional).

ISPS is a block structured, procedural language

capable of describing both synchronous and asynchronous

designs. A compiler and a simulator have been developed

for the language. Both are implemented in BLISS-10, thus

limiting the portability of the software.
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2.8 Features of Comparison:

The previous sections show that different languages

address different features. Some languages provide more

suitable constructs than others for the specification of

the different features. By analyzing these languages, four

main features that appeared to be useful as a basis cf

comparison were identified [32],[46]. These features are:

1.Levels of description.

2.Type of description.

3.Sequencing mechanism.

4.Timing modes.

Table 2 summarizes these features for the languages

reviewed.

1.Level of description:

Tools for describing digital hardware at the circuit

level and the switching circuit level, have existed for

years. HDL's raised the level of abstraction to the

register transfer level, and the trend is to expand the

capability of HDL's to multi and mixed levels of

description. There are five discrete levels at which a HDL

can be used [39],[42],[46]. These are,

a.PMS level or system level: The top level of

description, evaluates the gross properties. of the computer

system. Its elements are processors, memories, switches,

peripheral units,etc. and the parameters are costs,
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information flow rates, power,etc.

b.Programming level: The basic components are the

interpretation cycle, the machine instructions and

operations. The behavior of the processor is determined by

the nature and sequence of its operations. This sequence

is given by a set of bits in primary memory, a program, and

a set of interpretation rules. Thus, if we specify the

nature of the operations and the rules of interpretation,

the actual behavior of the processor depends only on the

initial conditions and the particular program.

c.Register transfer level or functional level: Data

flow and control operate in discrete steps. A combination

of switching circuits is used to form registers, register

transfers and other data operations. The elements

(registers) are combined (transformed) according to some

rule and then stored (transferred) into another register.

The rules of transformation can be almost anything, from

simple transfers to complex logical and arithmetic

expressions.

d.Switching circuit level: The system structure is

given by a collection of gates and flip-flops, and the

behavior by a set of boolean equations. Timing is carried

out at a finer degree than at the preceding level, a time

unit being usually on the order of a gate delay.

e.Circuit level: Gates are described as some

interconnection of diodes, transistors, resistors,etc.
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according to electrical circuit laws. Most of the discrete

properties of the previous two levels are lost, and timing

is carried out at a finer degree, where transient behavior

is an important consideration.

2.Type of Description:

Three discrete levels of detail can be used to

describe a digital system, structural, functional and

behavioral [32],[46],[47].

Structural description represents a system in terms of

the actual hardware components and their interconnections.

A functional description suppresses low level structural

details, so that a designer deals with registers and logic

networks rather than individual flip-flops and logic gates.

The action of a system is described as an algorithm

,involving these higher level components. A behavioral

description offers an even higher level of abstraction.

This type of description is concerned with the order in

which operations take place, but not necessarily with the

values of the data that is being manipulated by the digital

system. This type of description is very close to

conventional programs in most programming languages.
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3.Sequencing Mechanism:

A hardware description language can be classified as a

procedural or a nonprocedural language [42). In a

procedural language, statements are executed in the order

in which they are written, unless a specific control

transfer statement is used. In a nonprocedural language,

all statements are considered capable of being active in

any order. Some sort of control expression is associated

with each statement, to indicate under what condition the

statement is to be executed.

4.Timing Modes:

This feature refers to the ability of a HDL to

describe a system as synchronous, asynchronous or a mixture

of both [46).

Among all the languages reviewed. ISPS was the only

language that had a supporting software package which can

be installed on the DEC-20 computer system. The software

package was provided by M. Barbacci, Department of

Computer Science, Carnegie-Mellon University. In addition

to that, ISPS had the greatest share of publications

related to the language and its applications.
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Table 2

Comparison of Language Features

Feature Supported ;IDL :CDL :AHPL ZUES :CONLAN11/HDL ;ISPS
1 I I

I I 1 1 1 : 1
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* *
:

*
1

*
:

*
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,

:

*
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:

*
1

* ,

I : I

*

Switching Circuit : * : * :

* *
:

* I

1

*
II

*

Circuit I

I I :

*
: I

II

I

i 1

I

I

IType of Descrip. I

1 : :

1

1 ; :

I Functional 1

*
: * 1

* * I

I

*
I

*
I
I

*

I Behavioral I *
1 : 1
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1

* *

: Structural 1 * 1 * :

* * i * : *
1

:

1

,

1 : :

I I

I

:Sequencing Meehan. 1

1 1 :

:

1 Procedural I

* *
I

1

*
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1

1

*
, Nonprocedural I 1 I 1 I I 1

:

I

I

I

1

I

r
I I

1 :
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,

1 i j
1 : :

: Synchronous : * : * 1
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1

*
:

*
:

*
1

1 Asynchronous a

I : 1 * : '
I

*
1

* ,

1

*
1

: Mixed Mode I

I

1

1 I I 1 1
*

1 I
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III. INTRODUCTION OF ISPS

3.0 Introduction:

This chapter presents an overview of the ISPS

notation. The information presented in this chapter is

essentially a summary of "An ISPS Primer for the

Instruction Set Processor Notation" by M. Barbacci [11].

The examples given are meant to cover enough of the

language to provide a "reading" capability. Thus, while

this overview, in itself, might not be sufficient to allow

writing ISPS descriptions, it should be detailed enough to

permit the reading and study of complex descriptions.

3.1 Instruction Set Processor Description:

ISPS is a computer hardware description language,

based on the notation of ISP, first introduced by Bell and

Newell in 1971. To describe the ISP of a computer, or any

machine, we need to define the operations, instructions,

data types, and interpretation rules used in the machine.

These will be introduced, gradually, as the primary memory

state, processor state, and the interpretation cycle are

described. Primary memory is not, strictly speaking, part

of the instruction set processor, but it plays such an

important role in its operation, that it is usually
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included in the description. Data types, such as integers,

floating point numbers, characters etc., are, in general,

abstractions of the contents of the machine registers and

memories. One data type that requires explicit treatment

is the instruction, which will be discussed later in

greater detail.

The ISPS description of the PDP-8 will be used as a

source of examples. In the presentation of the PDP-8

registers and data types, the following conventions will be

used:

1.Names in uppercase correspond to physical

components of the PDP-8, PROGRAM COUNTER,

INTERRUPT LINES, etc.

2.Names in lowercase do not have a corresponding

physical component, instruction mnemonics,

instruction fields, etc.

3.1.1 Memory State:

The description of the PDP-8 begins by specifying the

primary memory used to store data and instructions.

M\Memory[0:4095]<0:11>,

The primary memory is declared as an array of 4096

words, each 12 bits wide. The memory has a name M and an

alias Memory. These aliases are a special kind of

comments, and are useful for indicating the meaning or
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usage of a register's name. ISPS identifiers, as in most

programming languages, consist of letters and digits,

beginning with a letter. The character "." is also allowed

to increase readability.

The expression [0:4095] describes the structure of the

array. It declares the size, 4096 words, and the names of

the words,0,1,...,4094,4095. In a similar manner, the

expression <0:11> describes the structure of each word. It

declares the size, 12 bits, and the names of the

bits,0,1,...,10, 11.

In the PDP -6, memory is divided into 128-word pages.

Page zero is used for holding global variables and can be

accessed directly by each instruction. Locations 8 to 15

of page zero have the special feature, auto indexing, such

that when accessed indirectly the contents of the location

is incremented by 1. These memory regions can be described

as part of M as follows:

P.0 \Page.Zero[0:127]<0:11> :=M[0:121]<0:11>,

A.I\Auto.Index[0:7]<0:11> :=P.0[8:15]<0:11>,

Note that A.I[0] corresponds to P.0[8], A.I[1] corresponds

to P.0[9] and so on.

3.1.2 Processor State:

The processor state is defined by a collection of

registers used to store data, instructions, condition
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codes, etc. during the instruction interpretation cycle.

The PDP-8 has a 1-bit register L, which contains the

overflow or carry generated by arithmetic operations, and a

12-bit register AC, which contains the results of

arithmetic and logic operations. The concatenation of L

and AC constitutes an extended accumulator LAC. The

structure of LAC is described below,

LAC<0:12>,

L\Link<> :=LAC<O>,

AC\Accumulator<0:11> :=LAC<1:12>,

The expression <> indicates a single unnamed bit. The

Program Counter is used to store the address of the current

instruction being executed,

PC\Program.Counter<0:11>,

In the PDP-8, I\O devices are allowed to interrupt the

central processor by setting the INTERRUPT.REQUEST flag.

The processor can honor these requests or not depending on

the setting of the INTERRUPT.ENABLE bit. These are

described as follows:

INTERRUPT.ENABLE<>,

INTERRUPT.REQUESTO,

There are 12 console switches which can be read by the

processor. These are treated as a 12-bit register,
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SWITCHES<0:11>,

3.1.3 Instruction Format:

In PDP-8, instructions are 12-bits long, each contains

an operation code and an operand address. This structrue

is described as follows:

i\instruction<0:11>,

op\operation.code<0:2>:=1<0:2>,

ib\indirect.bit<>::i<3>,

pb\page.0.bit<>::i<4>,

pa\page.address<0:6>:=1<5:11>,

op, ib, pb, and pa are abstractions that allow us to treat

selected fields of the PDP-8 instruction as individual

entities.

3.1.4 Partioning the Description:

In ISPS, a description may be divided into sections of

the form:

**section.name**

<declaration>,

<declaration>,

**section.name**

<declaration>,

<declaration>,
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Each section begins with a header, an identifier

enclosed between ** and **. A section consists of a list

of declarations separated by commas. Section names are not

reserved key words in the language. The register and

memory declarations presented earlier can be grouped in the

following sections.

** Memory.State **

M\Memory[0:4095]<0:11>,

P.O\Page.zero[0:127]<0:11> :=M[0:127]<0:11>,

A.I\Auto.Index[0:7]<0:11> :=P.0[8:15]<0:11>,

** Processor.State **

LAC<0:12>,

L\Link<> :=LAC<O>,

AC\Accumulator<0:11> :=LAC<1:12>,

PC\Program.Counter<0:11>,

RUN<>,

INTERRUPT.ENABLE<>,

INTERRUPT>REQUESTO,

SWITCHES<0:11>,



** Instruction.Format **

i\instruction<0:11>,

op\operation.code<0:2> := i <0:2>,

ib\indirect.bit<>

pb\page.O.bit<>

pa\page.address<0:6>

I0.SELECT<0:5>

:=1<3>,

:=1<10,

:=i<5:11>,

:=1<3:8>,

20

Note that one more field was added,IO.SELECT, and its

declaration is associated with a preassigned portion of

register i. This feature adds flexibility to the ISPS

description. A comment is indicated by "!", and all

characters following it to the end of the line are treated

as commentary.
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3.2 Effective Address:

The effective address computation is an algorithm that

computes addresses of data and instructions. The

description of the algorithm follows,

** Effective.Address **

last.pc<0:11>,

eadd\effective.address<0:11> :=

Begin

Decode pb=>

Begin

0:= eadd ='00000 2 pa, !Page Zero

1:= eadd = 1ast.pc<0:4> pa !Current Page

End Next

If Not ib => Leave eadd Next

If eadd<0:8> Eqv 001 =>

M[eadd] = M[eadd] + 1 Next !Auto Index

eadd = M(eadd]

End,

As was mentioned before, the instruction reserves

9-bits for addressing information. These bits, together

with some other portions of the processor state, are

interpreted by the algorithm to yield the necessary 12-bits

of addressing needed for the 4096 words memory.
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3.2.1 Address Computation:

In the PDP -3, the concept of locality of memory

reference is used to reduce the addressing information by

assuming that data are usually in the same page as the

instructions that reference them. The pa field of an

instruction means address within current page. The pb

field is used to indicate when pa is to be used as an

address within page 0 instead of current page. last.pc

contains the address of the current instruction and is used

to compute the current page number.

The first step of the algorithm,

Decode pb=>

Begin

0:= eadd = '00000 0 pa,

1:= eadd = last.pc<0:4> pa

End Next

indicates a number of alternative actions, to be selected

according to the value of the expression following the

Decode operator. The alternatives appear enclosed between

Begin and End and separated by ",". The expressions "0: :"

and "1:=" are used to label the statements with the

corresponding value of pb. If the alternative statements

are left unnumbered, they will be treated as if they were

labelled "0:=", "1: : ", "2:=", etc.

The effective address, eadd, is built by
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concatenating, e, the page number with the page address,

pa. If pb=0, then page 0 is used in the computation. If

pb=1, then bits 0 through 4 of last.pc, which indicate

current page, are used in the computation. Note that the

5-bits of page number together with the 7-bits of page

address constitute the 12-bits needed for addressing. Note

also, that constants prefixed with the character H I II

represent binary numbers.

3.2.2 Indirect Addresses:

In the PDP-8, indirect addresses are specified by a

bit in the instruction register, ib. The second step of

the algorithm,

If Not ib=> Leave eadd

is separated from the previous step by the Next operator.

Statements preceding Next must be completed before the

statements following it can be executed.

The first step of the algorithm computed a preliminary

eadd. The second step tests the value of ib, if it is 0,

direct addressing, then the preliminary eadd is used as the

real eadd. If ib is equal to 1(indirect addressing) then

the computed eadd is used to access a memory location that

contains the real eadd. In the former case, the expression

Leave eadd, is similar to a RETURN statement in many

programming languages.
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3.2.3 Auto Indexing:

Constants prefixed with the character " " represent

octal numbers. The third step of the algorithm,

If eadd<0:8> Eqv 001 => M[eadd] + 1 Next

eadd = M[eadd]

compares the high order bits of eadd with 001. If they

are equivalent, the memory location is first incremented

and the new value is used as the indirect address. Now

regardless of whether auto indexing took place or not, the

last step of the algorithm uses the preliminary effective

address, which could have been modified by auto indexing,

as the address of a memory location which contains the real

effective address.

3.3 Instruction Interpretation:

The instruction interpretation section describes the

instruction cycle, i.e. the fetching, decoding and

executing of instructions.

** Instruction.Interpretation **

interpret :=

Begin

Repeat Begin

i = M[PCJ; last.pc = PC Next

PC = PC + 1 Next

execute() Next



33

If INTERRUPT.EUABLE And INTERRUPT.REQUEST

Begin

M[0] = PC Next

PC = 1

End

End

End,

The instruction cycle is described by a loop. The

"Repeat" operator precedes a block of statements that are

to be continuously executed. The instruction cycle of the

machine consists of four steps:

1.A new instruction is fetched, i = M[PC].

2.The program counter is incremented, PC = PC + 1.

3.The instruction is executed, execute().

4.Interrupt requests, if allowed are honored. The

cycle is then repeated.

The ";" separator is used to indicate concurrency.

The execute procedure describes the individual

instructions.

execute :=

Begin

Decode op =>

Begin

*0\and := AC = AC And Keadd()],

*1\tad := LAC = LAC + Keadd()],
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42\isz := Begin

M[eadd] = M[eadd()] + 1 Next

If M[eadd] Eqi 0 => PC = PC + 1

End,

End

End,

From above, notice the different uses of eadd in the

statement, M[eadd] = M[eadd()] + 1. Tne effective address

is computed once, eadd(), and is then used to fetch the

memory location, M[eadd()]. The result of the addition

must be stored back in the same memory location. This is

indicated by using the effective address register, eadd, on

the left hand side, M[eadd]. eadd already contained the

correct address and there was no need to compute it.
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3.4 Other Features of ISPS:

Not all the features of ISPS have been presented in

the previous examples. This section provides a list of the

missing operations.

1.Constants:

A constant is a sequence of characters drawn from some

alphabet, determined by the base of the constant. The

alphabets for the predefined bases in ISPS are:

Base Prefix Alphabet

2 0,1,?

8 0,1,2,3,4,5,6,7,?

10 0,1,2,3,4,5,6,7,8,9,?

16 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,?

The character "?" can be used to specify a don't care

digit in the corresponding alphabet.

The length of a constant is measured in bits. Decimal

constants are one bit longer than the smallest number of

bits needed to represent its value (see Table 3).
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Table 3

Representation of Constants in ISPS

Example Length Bit Pattern

"1000 16 0001000000000000

15 5 01111

417 6 001111

0 2 00

'0?101 5 0?101

4?2 6 ???010

2.Arithmetic Representation:

ISPS allows the user to specify arithmetic operations

in four different representations using the following

modifiers:

Modifier Arithmetic Representation

{TO Two's Complement

{0C} One's Complement

{SM} Sign Magnitude

{US} Unsigned Magnitude

The above modifiers can be attached to any arithmetic

or relational operator to override the default, two's

complement. They can also be attached to a procedure



declaration or a section name.

test :=

Begin {0C}

End,

!Default for the body

37

** Section.1 ** {TC} !Default for the section

X Y + {SM} Z !Instance

3.Sign Extension:

All ISPS data operators define results whose length is

determined by both the lengths of the operands and the

specific operator. Some operations,however require that

their operands be of the same length. This is usually done

by "sign-extending" the operands. For Unsigned Magnitude

arithmetic, "sign- extension" is interpreted as zero

extension on the left. In One's and Two's complement

arithmetic, the expansion is done by replication of the

sign bit. In Sign Magnitude arithmetic, the expansion is

done by inserting zeros between the sign bit and the most

significant bit of the operand.
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3.5 Data operators:

3.5.1 Negation and Complement:-, NOT

Negation generates the arithmetic complement of the

operand, the result is one bit longer than the operand.

Not generates the logical complement of the operand, the

result is the same length as the operand.

3.5.2 Concatenation:

The @ operator concatenates the two operands, the

length of the result is the sum of the lengths of the

operands.

3.5.3 Shift and Rotate:SLO, SL1, SLD, SLR, SRO, SR1, SRD,

SRR

These operators shift or rotate the left operand the

number of times indicated by the right operand. The result

has the same length as the left operand. The operators

have the format "Sxy", where "x" is either Left or Right,

"y" is either 0, 1, Duplicate or Rotate. Sx1, shifts the

left operand by inserting l's in the vacant positions. Sx0

inserts 0's. SxD inserts copies of the bit leaving the

position to be vacated. SxR inserts copies of the bit

being shifted out.
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3.5.4 Addition and Subtraction: +

These operators compute the arithmetic sum and

difference of the two operands. The shortest operand is

sign-extended, and the result is one bit longer than the

largest operand.

3.5.5 Multiplication, Division and Remainder: *, /,MOD

These operators compute the arithmetic product,

quotient, and remainder of the two operands. The lengths

of the results are:

Operation Length of Result

MOD

sum of lengths

left operand, dividend

right operand, divisor

3.5.6 Relational Operations: EQL, NEQ, LSS, LEQ, GTR,

GEQ, TST

These operations perform arithmetic comparison between

the two operands. The shortest operand is sign extended,

the result is either one or two bits long.

3.5.7 Conjunction and Equivalence: AND, EQV

These operators produce the logical product and

coincidence of the two operands. The shortest operand is

zero extended, and the result is as long as the largest

operand.



140

3.5.8 Disjunction and Non-equivalence: CR, XOR

These operators produce the logical sum and difference

of the two operands. The shortest operand is zero

extended, and the result is as long as the largest operand.

3.5.9 Logical and Arithmetic Assignment: =, <=

The logical assignment operator, "=", zero extends the

source to match the length of the destination. The

arithmetic assignment operator, "<=", sign extends the

source to match the length of the destination.

3.6 Control Operators:

The LEAVE, TERMINATE, RESTART, and RESUME operators

are used to terminate the execution of an action. The

LEAVE operator is used to force the termination of an

action. This operation must be enclosed inside the action

being terminated. TERMINATE, is essentially equivalent to

LEAVE but is not required to be enclosed within the action.

The RESTART operator is used to abort the current execution

of a procedure and then reinitiates it. The RESUME

operator is similar to the LEAVE operator, if we think of

LEAVE as a "return from", and RESUME as a "return to".
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3.7 Predeclared Procedures:

The following procedures are predeclared in the ISPS

notation.

COUNT.ONE(expression)<..>: when activated, it

returns the number of non zero bits in the

expression. The length of the result is equal to

the decimal value of the length of the expression.

DELAY(expression): when used, does not have side

effects. DELAY ends its activation after a number

of application-defined time units given by

expression.

FIRST.OUE(expression) <.. >: when activated, returns

the number of leading zeros in the value of the

expression. The length of the result follows the

rules defined for COUNT.ONE.

IS.RUNNING(procedure)..>: when used, returns 1 if

procedure is currently active, 0 otherwise.

LAST.ONE(expression)<..>: when activated, returns

the number of trailing zeros in the value of the

expression. The length of the result is identical

to that of COUNT.ONE.

MASK.LEFT(exprl,expr2) <.. >: when activated,

returns a result of the same length as expr1. The

leading expr2 bits are set to 0, the remaining

bits retain the value they had in exprl.
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MASK.RIGHT(exprl,expr2)<..>: when activated,

identical to MASK.LEFT, but it clears the bits on

the right of exprl using expr2 to compute the

number of bits.

NO.OP() : when activated has no side effects, can

be used as a null action.

PARITY(expression)<>: when activated, returns the

odd parity bit of the expression.

STOP(): when used, terminates the activation of

all procedures.

TIME.WAIT(exprl,expr2)<..>: when activated, it

computes expr2 once, then continuously evaluates

exprl until it is non zero or the number of time

units represented by expr2 is exceeded. At the

end, it returns the final value of exprl.

Depending on this value, the caller can decide

whether exprl yielded a non zero value, or the

time out limit given by expr2 was exceeded before

exprl became non zero.

UNDEFINED()<..>: when activated, returns a carrier

of undetermined length, and whose value is

unknown. The activation of UNDEFINED is

terminated after some undetermined amount of time.

UNPREDICTABLE(): when activated, it is not

guaranteed to terminate, or upon terminaion,

control will not return to activation site.
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WAIT(expression)<..>: when activated, it

continuously evaluates the expression. Its action

is terminated when the value of the expression is

not equal to 0. The result of WAIT is the last

value of the expression.



IV. APPLICATIONS OF ISPS

4.0 Introduction:

1414

The goal of designing ISPS was to develop a computer

description language that would be appropriate for diverse

applications. This chapter presents an overview of the

applications of ISPS in a design environment [7]. These

include Evaluation and Certification of Instruction Set

Processor, Design Automation, Software Generation, and

Functional Fault Simulation. The information described is

meant to introduce several ideas of how to utilize the

language in research at OSU. Some of these ideas are

examined in detail and applied to the design of a new

16-bit architecture in a later chapter.

4.1 Evaluation and Certification of Instruction Set

Processor:

A new approach was developed to select a computer

architecture for certain applications [10],[44]. This

approach departed from the traditional measure, used from

typical computer performance studies, namely the execution

speed of a test program [17]. A new set of alternative

measures were defined. These include, S, the number of

bytes representing a test program as a space measure. The
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execution time measures include X, the amount of

information transferred between primary memory and the

processor, and R, the amount of information transferred

inside the processor during the execution of a test

program.

The architecture evaluation is based on the

computation of the S, M, and R measures for a collection of

test programs [107,113). Using the simulator facility of

ISPS, one could also verify the correctness of the machine

descriptions by running the manufacturer's machine

diagnostics on the simulated machine.

4.2 Design Automation:

ISPS has been used extensively at Carnegie-Mellon

University (CMU) in design automation. The CMU Register

Transfer Computer Aided Design (RT-CAB) system

[7],[35],[45] is shown in Figure 1. The system accepts the

ISPS description of a target machine as one of its inputs

and the description of physical components as the other.

The specification of the target machine is first translated

into a graph representation of behavior. By using a set of

graph transformation algorithms, this initial graph may be

transformed into alternative graphs, all of which represent

the same behavior.

Given two graphs and a set of user goals, the design

system can automatically accept or reject an alternative
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design. In the design style selector phase, a design style

is selected according to a set of rules that guide the

interconnections of the abstract components used in the

behavioral graph representation.
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Once a design style is selected, a design style

allocator is used to generate a layout of the registers,

functional units, data paths and their interconnections.

The module binding phase uses the information gathered in

the previous phase as well as information stored in the

module data base, to select the physical components and the

order in which they are bound to the abstract components

specified in the layout. The output of the module binding

phase is then evaluated, and the result is reported back to

the previous stages.

Once a design is selected as the best of the

alternatives considered, the module binding phase generates

the necessary information needed by the physical design

system. This is the place where a traditional design

automation system starts, i.e. with logic diagrams in

which components and interconnections are completely

specified.

4.3 Software Generation:

A current research topic is the automatic

compiler-writing systems, called the Production Quality

Compiler Compiler (PQCC) [7]. These systems produce

compilers that are competative with hand generated

compilers in every respect. To achieve this goal, the PQCC

system must operate from descriptions of both the source

language and the target computer. For more information on
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this topic consult P. Leverett, Department of Computer

Science, CMU.

4.4 Functional Fault Simulation:

The ISPS simulator allows the specification of a

variety of data and control faults at the functional level

[6,1],[34]. The faults which can be simulated include hard

and transient, occurring deterministically or

probabilistically, stuck-at and shorted, data, control and

operation types.

Each fault injected at the ISP level can provide the

coverage of multiple faults at lower levels. For instance,

consider the effect of the following fault:"the sign bit of

R2 is always 0". At the ISP level, the fault is clearly

defined and its effect, force all data from R2 to be

positive, can be easily traced. By running a test program

with diagnostic capability, the identification of the

faulty function can be used to narrow down the

identification of the physical fault. Given the ever

decreasing costs of hardware, this type of diagnostic

ability might be enough to allow the replacement of the

faulty board.



V. ISPS MODEL OF A 16-BIT MACHINE

5.0 Introduction:

AF85 is a 16-bit machine designed with TTL parts.

From the user's point of view, the machine supports the

basic arithmetic-logic instructions, subroutine facilities,

data manipulation instructions, such as SHIFT, and a

powerful branching structure. The machine also provides

the user with the ability to use a number of different

addressing modes.

The following sections are essentially Fl summary of

the AF85 system description presented in reference [1].

5.1 Main Features of AF85:

AFS5 is a 16-bit machine with a 16-bit PC, 16-bit SP

and five 16-bit general purpose registers. All data,

control and address transfer in AF85 is accomplished via

16-bit single bus system, which results in a word

addressable memory M[0:32767]. A relatively horizontal

microprogrammed control unit is implemented for AF85.
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5.2 System Description:

5.2.1 Processor State: The central processor of AF85

contains the control logic and data paths for instruction

fetching and execution. Processor instruction act upon

operands located either in memory or in one of the five

general purpose registers. These operands are 16-bit

words.

The general registers are 16-bits in length, and are

referred to as RO through R5. R4 is used as the PC and R5

as the SP.

Data manipulation instructions fall into two

categories: arithmetic instructions, which interpret their

operands as 2's complement integers, and logic

instructions, which interpret their operands as bit

vectors. A set of condition code flags (CC) is implemented

by the processor, and is updated according to the sign and

presence of carry/overflow from the result of any data

manipulation instruction. The condition codes are

contained in a processor status word (PSW).
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5.2.2 Instruction Set & Addressing Modes: AF ,'5 suppDrts

three types of instructions, namely the 0- operand,

1-operand and 2-operand instructions. The instruction

formats are:

op-code not used

op-code OP1 not used

op-code OP1 0P2

0-operand

1-operand

2-operand

where each operand field has the following format:

MODE REG

Mode is a 2-bit field to specify the addressing mode, REG

is a 3-bit field to specify the register indentification

number.
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Addressing Modes: There are four addressing modes which are

coded in two bits,

00 immediate OP <- M[PC7

01 register OP <- [REG]

10 memory OP <- M[M[PC] + [REG]]

11 indirect OP <- M[M[PC]]

Instruction Set:

OPCode Instruction

0 ADD OP2 <- OP1 + 0P2 S.CC.

1 SUB OP2 <- OP1 - OP2 S.CC.

2 CMP OP2 - OP1 S.CC.

3 AND OP2 <- OP1 AND OP2 S.CC.

4 OR OP2 <- OP1 OR OP2

5 XOR OP2 <- OP1 XOR OP2

8 SHL if OP1>0, shift OP2 left

OP1 times, S.CC.

7 SHR if OP1>0, shift OP2 right

OP1 times, S.CC.

6 MOV OP2 <- OP1

17 RET PC <- M[SP], SP <- SP + 1

35 CALL SP <- SP - 1, M[SP] <- PC,

PC <- OP1
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33 PUSH SP <- SP - 1, M[SP] <- OP1

34 POP OP1 <- V[SP], SP <- SP + 1

18 STKADD [TOS-1] <- [TOS] + [TOS-1],

SP <- SP-1 S.CC.

19 STKSUB [TOS-1] <- [TOS] - [TOS-1),

SP <- SP-1 S.CC.

20 STKOR [TOS-1] <- [TOS] CR [TOS-1],

SP <- SP-1

21 STKAND [TOS-1] <- [TOS] AND [TOS-1],

SP <- SP-1

22 STKXOR [TOS-1] <- [TOS] XOR [TOS -1],

SP <- SP-1

23 STKCMP [TOS) - [TOS -1], S.CC.

24 HLT

32 CLR OP1 <- 0

48 BR PC <- OP1

49 BEQ Z=1, PC <- OP1

50 BMI N=1, PC <- OP1

51 BCS C=1, PC <- OP1

52 BUS V=1, PC <- OP1

53 BLT (N .XOR. V)=1, PC <- OP1

54 BLE Z .OR. (N .XOR. V)=1, PC <- OP1

55 BLO (C Z)=1, PC <- OP1

16 NOP NO OPERATION

56 BNE Z=0, PC <- OP1

57 BP N=0, PC <- OP1
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58 BNC C=0, PC <- OP1

59 BNV V=0, PC <- OP1



5.2.3 Data Flow: All registers, ALU, and memory E:re

connected via

56

a single bi-directional bus. The following

briefly describes the various components on the data flow

diagram given in Figure 2, and the different ways these

components are connected.
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1.Five general purpose registc,rs (CPR) with their

input directly connected to the bus, while the output is

connected via a tri state buffer. GPR's are user

addressable. The PC and SP are counters capable of

counting up and down, the PC count down is not selected.

3.ALU, ACC, BUF, TEMP and PSW: one input of the ALU is

directly tied to the bus, while the other is connected to

the ACC, which in turn is tied to the bus. The output of

the ALU is connected directly to BUF, which serves as a

storage for the ALU result. BUF is tied to the bus via a

tri-state buffer. Temp is a register used for storing

intermediate values resulting from ALU operations. Temp is

not a user addressable register. PSW is loaded with the

different condition codes. Its output is directly

connected to the condition code multiplexer of the

controller.

4.Instruction register (IR): the IR is loaded from the

bus, at the end of the fetch cycle, with the specific

instruction to be executed. The output of IR is connected

to the decoding PROM of the controller.

5.Main memory: when accessing main memory, two special

registers are used; the memory address register (MAR) and

the memory data register (MDR). The MAR is loaded from the

bus, its ouput is connected directly to the memory. On the

other hand, any data output from memory is loaded directly

into MDR. MDR also accepts data from the bus, so to
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organize the operation, the input of MDR from thu bus is

fed into a tri-state buffer which has high impedence when

MDR is currently accepting data from memory, otherwise it

is enabled. A similar argument goes for MDR outputs, which

are directly connected to the data input lines of memory,

while tri-state buffered to the bus.

5.2.4 Controller: AF85 uses a microprogrammed control

scheme, which provides flexibility in the implementation of

the instruction set [19]. It also facilitates the addition

of new instructions for future use. The control unit of

AF85 is shown in Figure 3.
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The contents of the micro-address register determine

the current control unit state and are used to access the

next micro-instruction word from the control store. Pulses

from the control generator cause the loading of the

micro-word and the micro-address registers with the next

micro-word and micro-address respectively.

Most of the fields of the micro-word supply signals

for conditioning and clocking the data paths. These fields

require decoding circuits to identify the corresponding

control signals.

The sequencing of microinstructions is implemented by

adding a next address field in the micro-word, with the

appropriate control. Now according to the multiplexer

select, the next address of the microcode is selected from

either the decoding PROM or from the control word.

5.2.5 Memory Organization: The main memory of AF85 is

divided into three sections, start up routine, which is

contained in a ROM, stack and user program and data

storage.

Start up Routine: It is assumed that when we switch

on, the PC and MAR are cleared instantaneously to start a

fetch cycle of the first instruction in the start up

routine. The steps of the start up routine are as follows:

CLR RO

CLR R1
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CLR R2

CLR R3

CLR R4

CLR TEMP

MOV 41000,SP

MOV 10000,PC

From above, CLR steps are done to assure a starting

value of zero in all registers. The SP is loaded with a

value which is equal to the top of the stack (TOS) plus

one. At the end of the routine, the PC is loaded with the

starting address of the user program and data storage.

The stack implemented in AF85 is a user stack which

occupies part of the main memory. The user program and

data storage is a defined space in memory which is user

addressable.

5.3 Instruction Interpretation Cycle:

The instruction interpretation process of AF85 is

shown in Figure 4. The process follows the common

fetch-execute cycle.
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Instruction Interpretation Cycle of AF85

Figure 4



VI. SIMULATION of AF85

6.0 Introduction:

614

The design process begins by stating the problem, then

demonstrating the solution by drawing a block diagram

depicting the subsystems and the control/data paths. Once

this stage is completed, the designer uses ISPS to describe

the design. This description is then translated into a

data base, which serves as a source for various other

operations. Among these are system simulation at the

description level, architecture evaluation and fault

simulation

In this chapter, the ISPS simulator is used to refine

the design of AF85 at the description level. Then it is

used to evaluate the performance of the architecture via

test programs. The performance measures derived are then

compared with those of the PDP-8 and PDP-11 computer

systems. Finally, the utility of the ISPS simulator in

functional fault simulation is demonstrated by several

examples.



65

6.1 The ISPS Simulator:

The process of using the ISPS simulator is shown in

Figure 5,[7]. It starts by writing the ISPS description of

AF85, a listing of the description is given in Appendix A.

The ISPS parse tree is processed by a program GDBRTM. The

GDBRTM program translates GDB files into code for an

artificial machine called Register Transfer Machine (RTM).

This code appears as a macro-10 file which must be linked

with the simulator files. The reading of the GDB file, the

generation of the RTM code file and using the macro-10 to

assemble the RTM file are all done automatically.
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The user starts the process by compiling the ISPS

description [6]. Then runs the GDBRTM program, and

specifies the name of the GDB file. The output of this

stage will have the same file name with extension REL.

After the *.REL file has been generated, the RTM file is

deleted automatically. Finally, the *.REL file is linked

with the simulator files. The following example describes

these steps.

.RUN ISPS

ISPS TRANSLATOR

*AF85

.RUN GDBRTM

GDB TO RTM TRANSLATOR

GDB FILE:AF85

.RUN LINK

*AF85

*ESPSIM

*/SSAVE AF85

*/GO

Under normal operation, if no errors are detected, the

above example describes the entire process. Errors that.

were not detected by the compiler will be detected by the

GDBRTM translator. If these errors are serious, the whole
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operation will be aborted.

For more detailed information on the ISPS simulator,

refer to the user's manual.

6.2 Simulation at the Description Level:

The advantage of simulating a digital system at the

description level is two-fold, design verification and

testing design alternatives [42]. It is much easier to

change a line of code than it is to modify a breadboard

circuit and its associated drawings and documentation.

6.2.1 Design Verification:

The original simulation of AF85 revealed an error in

the branching structure. The branch instructions did not

follow the defined FETCH-EXECUTE cycle properly. The error

was corrected by rewriting the branch procedure of the

system description, then simulating the system one more

time. This process continues [42], Figure 6, until the

desired system behavior is achieved.
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6.2.2 Design Alternatives:

The original design of AF85 used a decoding scheme of

the instruction, to be executed, in which 10-bits of the

Instruction Register (IR) were decoded at the same time by

the same decoder [1]. This structure was simulated using

the ISPS description outlined in Figure 7.



IR\INSTRUCTION.REGISTER<15:0>,
OPCOD\OPERATION.CODE<5:0>:=IR<15:10>,
S\SOURCE.FIELD<4:0> :=IR<9:5>,

SRCMOD<1:0> ::s<4:3>,
SRCREG<2:0> :=S<2:0>,

D\DESTINATION.FIELD<4:0> :=IR<4:0>,
DESMOD<1:0> :=D<4:8>,
DESREG<2:0> :=D<2:0>,

OPADM\OPCODE.ADDRESS.MOD<9:0> :=IR<15:8> t DESMODO:0>,

EXECUTE():=
BEGIN
DECODE OPADM=>

BEGIN
0:=...
1:=...

END
END,

The 10-bits Decoding Scheme I

Figure 7

71
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A second alternative decoding scheme divides the

10-bits of the IR into two subfields, namely the

OPCOD<5:0>:=IR<15:10> and addressing mode

ADRMOD<3:0>:=SRCMOD<1:0> @ DESMOD<1:0>. Using this

decoding scheme, the system was simulated using the ISPS

description outlined in Figure 8.



IR \INSTRUCTION. REGISTER<15:0 >,
OPCOD\OPERATION.CODE<5:0>:=IR<15:10>,
S\SOURCE.FIELD<4:0> :=IR<9:5>,

SRCMOD<1:0> :=S<4:3>,
SRCREG <2:O> :=S<2:0>,

D\DESTINATION.FIELD<4:0> :=IR<4:0>,
DESMOD<1:0> :=D<4:3>,
DESREG<2:0> :=D<2:0>,

ADRM\ADDRESSING.MODE<3:0> :=SRCMOD<1:0> @ DESMODO:0>,

EXECUTE():_
BEGIN
DECODE OPCOD=>

BEGIN
0\ADD:=ADD(),
1:=...

END
END,

ADD():=
BEGIN
GOPS\GET.OPERANDS(),

END,

GOPS():=
BEGIN
DECODE ADRM=>

BEGIN
0\IMMEDIATE:=BEGIN ... END,

END
END,

The 10-bits Decoding Scheme II

Figure 8

73
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A third alternative decoding scheme defines a new

field, Type of Operation (TOP) in IR, TOP<1:0>:=IR<15:14>.

It also separates the ADRMOD field into SRCMOD and DESMOD

[44). Thus to simulate this decoding scheme, the ISPS

description outlined in Figure 9 is used.



IR\INSTRUCTION.REGISTER<15:0>,
TOP\TYPE.OF.OPERATION<1:0>:=IR<15:14>,
OPCOD\OPERATION.CODE<5:0> :=IR<15:10>,
S\SOURCE.FIELD<4:0> :=IR<9:5>,

SRCMOD<1:0> :=S<4:3>,
SRCREG<2:0> :=S<2:0>,

D\DESTINATION.FIELD<4:0> :=IR<4:0>,
DESMOD<1:0> :=D<4:3>,
DESREG<2:0> :=D<2:0>,

EXECUTEO:=
BEGIN
DECODE TOP=>

BEGIN
0\TWO.OPERAND :=TWO(),
1\ZERO.OPERAND:=ZER0(),
2\ONE.OPERAND :=ONE(),
3\BRANCH :=BRANCH(),

END
END,

TWO():=
BEGIN
DECODE OPCOD=>

BEGIN
0\ADD:=ADD(),

END
END,

ZEROO:=BEGIN ... END,
ONE():=BEGIN ... END,
BRANCH():=BEGIN ... END,

ADD():=BEGIN
OP1() NEXT
OP2() NEXT

END,

The 10bits Decoding Scheme III

Figure 9

75



OP1():=
BEGIN
DECODE SPCMOD=>

BEGIN
0\IMMEDIATE:=BEGIN ... END,

END
END,

OP2():=
BEGIN
DECODE DESMOD=>

BEGIN
0\IMMEDIATE:=BEGIN ... END

END
END,

Figure 9 Continued

76
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From above, it is clear that a number of design

alternatives may be tested and verified quickly and easily

using the ISPS simulator [6].

From the simulation runs, the third decoding scheme

was chosen over the two other schemes. The structure

proved to be faster, more efficient and easier to debug.
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6.3 Performance Evaluation:

Traditionally, computer performance is evaluated by

measuring the execution speed of a test program [44]. As a

computer architecture does not specify the instruction

execution times, the following alternative measures are

defined [17]:

*S=number of bytes used to represent a test program.

*M=number of bytes transferred between primary memory

and the processor during the execution of a test

program.

*R=number of bytes transferred among internal registers

of the processor during the execution of the test

program.

The S measure indicates how well an architecture is

suited for an application. A relatively small S measure is

a good feature of an architecture.

The M and R measures characterize the bandwidth of the

data paths between the processor and main memory and

between the internal registers of the processor,

respectively. A high M measure implies a large volume of

information that has to be transferred, thus implying a

slow instruction rate or a costly implementation.

Similarly, a high R measure implies a slow instruction rate

and a costy implemetation.

To evaluate the performance of AF85, two test programs
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were used [13],[17], [44]. The first program, character

search, exercises the ability of a computer system to move

through character strings sequentially. The second

program, fibonacci number, tests the ability of the machine

to support recursive routines.

Using the ISPS simulator, the two test programs were

run on AF85, and the S, M, R measures were collected [10].

The simulator, while executing RTM codes, keeps count of

all activities. These may be classified into three classes

[6,7]:

*Counting the bits read from each register or memory

location declared in the ISPS description.

*Counting the bits written into each register or memory

location declared in the ISPS description.

*Counting the number of times each declared procedure or

labeled statement in the ISPS description has been

executed.

The S, M and R measures were collected using the

appropriate counters [67.

To support the performance evaluation of AF85, the two

test programs were run on the PDP-8 and PDP-11 descriptions

provided by the ISPS software package. The S, M and R

measures were collected. Table 4 lists the measures for

the three different systems, for the two test programs.

Appendix B gives a listing of the two test programs

running on AF85, PDP-8 and PDP-11.
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;
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;
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SYSTEM

AF85
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PDP-11

:
1

i

I1111111
;

I
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6.4 Functional Fault Simulation:

The ISPS simulator allows the specification of a

variety of data and control faults at the functional level

[6]. To completely specify a fault, it is necessary to

indicate the specific type of fault to be inserted, where

the fault is to occur in the simulation, when the fault is

to take effect, and what other actions should be performed

upon completion of each fault.

The fault insertion commands fall into three

categories, which reflects the three

functional faults. These three groups

control faults, and operational faults

major types of

are data faults,

Each of these

types of faults may be continuous or transient and may

occur deterministically or probabilistically.

6.4.1 Data Faults:

Data faults are simulated by creating error conditions

in registers, variables and memory locations. Two major

types of data faults may be simulated, namely stuck-at

fault and shorted fault.

To simulate a stuck-at-1 data fault in memory location

2010 of AF85, the following command is used,

DFAULT *100000 OR M[*2010]

To simulate the same fault with probability 25% and to

print the value of PC each time the fault occurs, the
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following command is used,

DFAULT *100000 OR M[*2010]; PROB=25, DO VALUE PC$

To simulate a transient fault at memory location 2010,

which takes effect after the fifth invokation of I.CYCLE

and remains stuck for three invocations of the entity TOP,

the following command is used,

DFAULT *100000 OR K*2010]; WHEN I.CYCLE=5, FOR TOP=3

The continuous stuck-at-1 data fault in K 2010], may

be detected by running the diagnostic program shown in

Appendix C.

To simulate a shorted data fault between bit 0 of R1

and bit 15 of R2, the following command is used,

DFAULT R[*1]<0> OR RN2]<15>
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6.4.2 Control Faults:

Control faults may be simulated by creating error

conditions in the ISPS 'DECODE' and 'IF' statements. For

instance, to simulate the addressing mode of the source

operand decoder of AF85, OP1, in such a way that it always

selects the indirect addressing mode, the following command

is used,

CFAULT 3, EQL; OP1(1)
OP1():=

BEGIN
DECODE SRCMOD :>

BEGIN
0:=...
1: :...
2:=...
3:=...
END

END

!ALWAYS SELECTED



6.4.3 Operation Faults:

Operational faults may be simulated by injecting

failures in arithmetic, logical and functional units of the

system description. For instance, to simulate the failure

of the ADD operation in AF85, the following command is

used,

OFAULT ADD <= NOOP

Operational faults remain in effect until removed by

the command DOFAULT. For more information on functional

fault simulation, refer to the ISPS simulator manual.
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VII. CONCLUSION

This dissertation demonstrated the utility of the ISPS

HDL as a design tool. This goal was achieved by first

presenting the current applications of ISPS in the area of

automatic design of both hardware and software, then by

using the notation to aid the design process of a new

16-bit processor, AF85.

In order to familiarize the reader with existing HDLs,

chapter II presented an overview of a selected number of

HDLs. The chapter concluded by defining a set of language

features that were then used as a basis of comparison among

the selected languages. ISPS was chosen because of the

availability of a supporting software package that can be

installed on the DEC-20 computer system. Moreover, ISPS

had the biggest share of publications.

By evaluating the use of ISPS in the design process of

AF85, the following conclusions were drawn:

1.ISPS proved to be useful in accurately describing the

behavior of AF85 at the instruction level. Therefore,

it is useful as a descriptive tool in teaching hardware

design and computer architecture courses.

2.It is possible to verify the behavior of AF85 by

writing the ISPS description of the system and then

using it as an input to the simulator. The simulation

indicated an error in the branching structure. This
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error was corrected easily by rewriting the description

of the BRANCH procedure. The simulation helped in

revealing the error in a very early stage of design.

3.Three different decoding schemes of the IR were

suggested in the design of AF85. ISPS simplified the

task of examining all of them. By simulating the

description of each alternative decoding scheme, it was

possible to choose the more efficient one. Thus ISPS

is a useful tool in studying design alternatives.

4.By using the ISPS descriptions of AF85, PDP-8 and

PDP-11 systems, it was possible to conduct a

performance evaluation study among the three systems.

The performance of AF85 was acceptable. Hence, ISPS is

useful in comparing and evaluating different

architectures.

5.The ISPS simulator facilitates the insertion of faults

into the simulation of AF85, thus observing the

behavior of the faulted system. This type of study is

helpful in evaluating prospective fault detection,

diagnosis, recovery and repair mechanisms.

Two main disadvantages were noticed when using the

ISPS software package. The first one is related to the

implementation language. The ISPS compiler, translator and

simulator are all written in BLISS, thus limiting the

portability of the software. The second one is related to

the documentation of the compiler's error messages. The
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result of the first compilation of the ISPS description of

AF85 indicated many errors that were not clearly explained,

hence these errors were corrected using trial and error

techniques.

Overall, ISPS is a very useful design tool, supported

by a high level simulator, which is interactive, capable,

mature, widely used and accepted.

ISPS is the basis of several research projects on

design automation. The latest .uses ISPS descriptions as

one of the inputs to a VLSI design automation system, which

transforms architectural descriptions into layouts used for

fabrication [23,24].

ISPS may very well serve as the basis of a register

transfer level design automation system at Oregon State

University (OSU). The language may also be used as a tool

for teaching hardware design and architecture courses.

Finally, the information presented in this

dissertation is meant to serve as a starting point to

utilize the ISPS notation in the design environment of both

hardware and software at OSU.
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APPENDIX A

ISPS Description of AF85
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AF85:=
BEGIN
** Memory.State **
M\Memory[0:32767]<15:0>,

** Processor.State **
ACC\ACCUMULATOR<15:0>
TEMP<15:0>,
MDR<15:0>,
MAR<15:0>,
BUF\BUFFER<15:0>,
PSW\PROCESSOR.STATUS.WORD<3,0>

C\CARRY<>:=PSW<O>,
V\OVERFLOW<>:=PSW<1>,
Z\ZERO<>:=PSW<2>,
N\NEGATIVE<>:=PSW<3>,

R[6:0]<15:0>,
RO<15:0>:=R[0]<15:0>,
R1<15:0>:=R[1]<15:0>,
R2<15:0>:=R[2]<15:0>,
R3<15:0>:=R[3]<15:0>,
12405:0>:=R[4]<15:0>,
PC<15:0>:=R[5]<15:0>,
SP<15:0>:=R[6]<15:0>,

IR\INSTRUCTION.REGISTER<15:0>,
TOP\TYPE.OF.OPERATION0:0>
OPCOD\OPERATION.CODE<5:0>
S\SOURCE.FIELD04:0>
SRCMOD\SOURCE.MODE0:0>
SRCREG\SOURCE.REG<2:0>

D\DESTINATION.FIELD<4:0>
DESMOD\DESTIN.MODE<1:0>
DESREG\DESTIN.REG<2:0>

* * Fetch.Cycle **
I.CYCLE:=

BEGIN
REPEAT BEGIN

IR=M[PC] NEXT
PC=PC+1 NEXT
EXECUTE()
END

END,

** Execute.Cycle
EXECUTE():=

BEGIN
DECODE TOP=>

BEGIN
0\TWO.OPERAND : =TWO(),

1\ZERO.OPERAND:=ZER0(),
2\ONE.OPERAND :=ONE(),
3\BRANCH :=BRANCH(),

* *

:=IR<15:14>,
:=IR<15:10>,
:=IR<9:5>,
:=SO4:3>,
:=S<2:0>,
:=IR04:0>,
:=D<4:3>,
:=D<2:0>,
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END
END,

** Two.Operand.Instructions **
TWO():=

BEGIN
DECODE OPCODE=>

BEGIN
0\ADD :=ADD(),
1\SUB :=SUB(),
2\CMP :=CMP(),
3\CAND :=CAND(),
4\COR :=COR(),
5\CXOR :=CX0R(),
6\MOV :=MOV(),
7\SHR :=SHR(),
8\SHL :=SHL(),
OTHERWISE:=NO.OP
END

END,

** Zero.Operand.Instructions **
ZEROO:=

BEGIN
DECODE OPCODE=>

BEGIN
16\NO.OPERATION:=NO.OP,
17\RET :=RET(),
18\STACK.ADD:=STKADDO,
19\STACK.SUB:=STKSUB(),
20\STACK.OR :=STKOR(),
21\STACK.AND:=STKANDO,
22\STACK.X0R:=STKKOR(),
23\STACK.CMP:=STKCMPO,
24\HLT :=STOP(),
OTHERWISE :=NO.OP
END

END,

** One.Operand.Instructions **
ONE():=

BEGIN
DECODE OPCODE=>

BEGIN
32\CLEAR :=CLR(),
33\PUSH :=PUSH(),
34\POP :=POP(),
35\CALL :=CALL(),
OTHERWISE:=NO.OP
END

END,

** Branch.Instructions **
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BRANCH():=
BEGIN
DECODE OPCOD=>

BEGIN
48 :=BR(),
49 :=BEQ(),
50 :=BMI(),
51 :=BCS(),
52 :=BVS(),
53 :=BLT(),
54 :=BLE(),
55 :=BL0(),
56 :=BNE(),
51 :=BP(),
58 :=BNC(),
59 :=BNV(),
OTHERWISE:=NO.OP
END

END,

!Fetching Source Operand
OP1():=

BEGIN
DECODE SRCMOD=>

BEGIN
0\IMMEDIATE:=BEGIN

MDR=M[PC] NEXT
MAR=PC ; PC=PC+1
END,

1\REGISTER :=ACC=R[SRCREG],
2\MEMORY :=BEGIN

MDR=M[PC] NEXT
PC=PC+1 ; ACC=R[SRCREG] NEXT
BUF=ACC+MDR ; MAR=BUF NEXT
MDR=M[MAR]
END,

3\INDIRECT :=BEGIN
MDR=M[PC] NEXT
PC=PC+1 ; MAR=MDR NEXT
MDR=M[MAR]
END,

END
END,

!Fetching Destination Operand
OP2():=

BEGIN
DECODE DESMOD=>

BEGIN
0\IMMEDIATE:=STOPO,
1\REGISTER :=BEGIN

DECODE SRCMOD=>
BEGIN
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1\REGISTER:=MDR=R[DESREG],
OTHERWISE :=ACC=R[DESREG]
END

END,
2\MEMORY :=BEGIN

DECODE SRCMOD=>
BEGIN
1\REGISTER:=TEMP=ACC,
OTHERWISE :=BEGIN

TEMP=MDR ; MDR=M[PC] NEXT
PC=PC+1 NEXT
ACC=R[DESREG] NEXT
BUF=ACC+MDR ; MAR=BUF NEXT
MDR=M[MAR] ; ACC=TEMP

END
END

END,
3\INDIRECT :=BEGIN

DECODE SRCMOD=>
BEGIN
1\REGISTER:=TEMP=ACC,
OTHERWISE :=BEGIN

TEMP=MDR ; MDR=M[PC] NEXT
PC=PC+1 ; MAR=MDR NEXT
MDR=M[MAR] ; ACC=TEMP

END
END

END
END,

END

!Executing Two Operand Instructions
ADDO:=

BEGIN
OP1() NEXT
OP2() NEXT
C@BUF=ACC+MDR NEXT
V=(MDR<15> EQV ACC<15>) AND (MDR<15> XOR BUF<15>) NEXT
Z=BUF EQL 0 ; N=BUF<15> NEXT
DECODE DESMOD=>

BEGIN
l\REGISTER:=R[DESREG]=BUF,
OTHERWISE :=M[MAR]=BUF
END

END,

SUB():=
BEGIN
OP1() NEXT
OP2() NEXT
COBUF=ACC-MDR NEXT
V=(MDR<15> XOR ACC<15>) AND (MDR<15> EQV BUF<15>) NEXT
Z=BUF EQL 0 ; N=BUF<15> NEXT



DECODE DESMOD=>
BEGIN
1\REGISTER:=R[DESREG]=BUF,
OTHERWISE :=M[MAR]=BUF
END

END,

CANDO::

COR():=

BEGIN
OP1() NEXT
OP2() NEXT
C@BUF=ACC AND MDR NEXT
V=0 ; Z=BUF EQL 0 ; N=BUF<15> NEXT
DECODE DESMOD=>

BEGIN
1\REGISTER:=R[DESREG]=BUF,
OTHERWISE :=M[MAR]=BUF
END

END,

BEGIN
OP1() NEXT
OP2() NEXT
C@BUF=ACC OR MDR NEXT
V=0 ; Z=BUF EQL 0 ; N=BUF<15> NEXT
DECODE DESMOD=>

BEGIN
l\REGISTER:=R[DESREG]=BUF,
OTHERWISE :=M[MAR]=BUF
END

END,

CX0RO:=

MOV():=

BEGIN
OP1() NEXT
OP2() NEXT
C@BUF=ACC XOR MDR NEXT
V=0 ; Z=BUF EQL 0 ; N=BUF<15> NEXT
DECODE DESMOD=>

BEGIN
1\REGISTER:=R[DESREG]=BUF,
OTHERWISE :=M[MAR]=BUF
END

END,

BEGIN
OP1() NEXT
OP2() NEXT
DECODE DESMOD=>

BEGIN
1\REGISTER:=R[DESREG7=MDR,
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OTHERWISE :=M[MAR]=MDR
END

END,

CMP():=
BEGIN
OP1() NEXT
OP2() NEXT
C@BUF=ACC-MDR NEXT
V=(BUF<15> EQV MDR<15>) AND (ACC<15> XOR MDR<15>) NEXT
Z=BUF EQL 0 ; N=BUF<15>
END,

SHLO:=
BEGIN
OP1() NEXT
OP2() NEXT
C@BUF=MDR SLO ACC NEXT
V=0 ; Z=BUF EQL 0 ; N=BUF<15> NEXT
DECODE DESMOD=>

BEGIN
1\REGISTER:=R[DESREG]=BUF,
OTHERWISE :=M[MAR]=BUF
END

SHR():=

END,

BEGIN
OP1() NEXT
OP2() NEXT
C@BUF=MDR SRO ACC NEXT
V=0 ; Z=BUF EQL 0 ; N=BUF<15> NEXT
DECODE DESMOD=>

BEGIN
1\REGISTER:=R[DESREG]=BUF,
OTHERWISE :=M[MAR]=BUF
END

END,

!Executing Zero Operand Instructions
RET():=

BEGIN
MDR =M[SP] NEXT
SP=SP+1 ; PC=MDR
END,

STKADD():=
BEGIN
MDR=M[SP] ; SP=SP+1 ;

ACC=MDR ; MDR=M[SP] ;

C@BUF=ACC+MDR ;

V=(MDR<15> EQV ACC<15>)
Z=BUF EQL 0 ; N=BUF<15>

AND (MDR<15> XOR BUF<15>)
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m[sp]=BUF
END,

STKSUB():=
BEGIN
MDR=M[SP] ; SP=SP+1 ;

ACC=MDR ; MDR=M[SP] ;

C@BUF=ACC-MDR ;

V=(MDR<15> XOR ACC<15>) AND (MDR<15> EQV BUF<15>) ;

Z=BUF EQL 0 ; N=BUF<15> ;

M[SP]=BUF
END,

STKOR():=
BEGIN
MDR=M[SP] ; SP=SP+1 ;

ACC=MDR ; MDR=M[SP] ;

COBUF=ACC OR MDR ;

V=0 ; Z=BUF EQL 0 ; N=BUF<15> ;

M[SP]=BUF
END,

STKAND():=
BEGIN
MDR=M[SP] ; SP=SP+1 ;

ACC=MDR ; MDR=M[SP] ;

C6BUF=ACC AND MDR ;

V=0 ; Z=BUF EQL 0 ; N=BUF<15> ;

M[SP]=BUF
END,

STKX0RO:=
BEGIN
MDR=M[SP] ; SP=SP+1 ;

ACC=MDR ; MDR=M[SP] ;

C@BUF=ACC XOR MDR ;

V=0 ; Z=BUF EQL 0 ; N=BUF<15> ;

M[SP]=BUF
END,

STKCMP():=
BEGIN
MDR=M[SP] ; SP=SP+1 ;

ACC=MDR ; MDR=M[SP]
C@BUF=MDR-ACC ;

V=(BUF<15> EQV MDR<15>) AND (ACC<15> XOR MDR<15>) ;

Z=BUF EQL 0 ; N=BUF<15> ;

SP=SP-1
END,

!Executing One Operand Instructions
CLR():=

BEGIN



OP1() NEXT
MDR=0 ; ACC=0 ;

DECODE SRCMOD=>
BEGIN
1\REGISTER:=R[SRCREG]=ACC,
OTHERWISE :=M[MAR]=MDR
END

END,

PUSHO:=
BEGIN
OP1() NEXT
SP=SP-1 ;

DECODE SRCMOD=>
BEGIN
1\REGISTER:=M[SP]=ACC,
OTHERWISE :=M[SP]=MDR
END

POP():=

END,

BEGIN
OP1() NEXT
TEMP=M[SP] ; SP=SP+1 ;

DECODE SRCMOD=>
BEGIN
1\REGISTER:=RSRCREG]=TEMP,
OTHERWISE :=M[MAR]=TEMP
END

END,

CALL():=
BEGIN
OP1() NEXT
SP=SP-1 ; M[SP]=PC ;

PC=MDR
END,

!Executing Branch Instructions
BRO.=

BEGIN
OP1() NEXT
PC=MAR
END,

BEQ():=
BEGIN
DECODE Z=>

0:=PC=PC+1,
1:=0P1() NEXT

PC=MAR,
END,
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BMIO:=
BEGIN
DECODE N=>

0:=PC:PC+1,
1:=0P1() NEXT

PC=MAR,

BCS():=

BVS():=

BLT():=

BLE():=

BLOO:=

END,

BEGIN
DECODE C=>

0:=PC=PC+1,
1:=0P1() NEXT

PC=MAR
END

END,

BEGIN
DECODE V=>

0:=PC=PC+1,
1:=0P1() NEXT

PC=MAR,
END,

BEGIN
DECODE (N XOR V)=>

0:=PC=PC+1,
1:=0P1() NEXT

PC=MAR,
END,

BEGIN
DECODE (Z OR (N XOR V))=>

0:=PC=PC+1,
1:=0P1() NEXT

PC=MAR,
END,

BEGIN
DECODE (C OR Z)=>

0:=PC=PC+1,
1:=0P1() NEXT

PC=MAR,
END,

BNEO:=
BEGIN
DECODE Z=>

0:: OP1() NEXT



PC=MAR,
1:=PC=PC+1

END,
!

BP():=
BEGIN
DECODE N=>

0:=0P1() NEXT
PC=MAR,

1:=PC=PC+1,
END,

!

BNC():=
BEGIN
DECODE Cr.>

0:=0P1() NEXT
PC=MAR,

1:=PC=PC+1,
END,

BNV():=
BEGIN
DECODE V=>

0:=0P1() NEXT
PC=MAR,

1:=PC=PC+1,
END,

END
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APPENDIX B

Listings of Simulation Command Files

of

AF85, PDP-8, PDP-11
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!SIMULATION COMMAND FILE FOR AF85
!FIBONACCI NUMBER
ECHO
BTRACE AF85
PC=#2000
S M[#2000]=#100440 !CLR R1
S M[#2001]=#100400 !CLR RO
S M[#2002]=#11 !ADD #1,R1
S M[#2003]=11
S M[#2004]=#10 !ADD #1,R0
S M[12005] =41
S M[#2006]=415413 !MOV @K,R3
S M[#2007]=43000 !K

S M[#2010]=#14015 !MOV #3,R5
S M[112011]=113
S M[#2012]=#14412 !LOOP:MOV RO,R2
S M[#2013]=#450 !ADD R1,R0
S M[#2014]=#14511 !MOV R2,R1
S M[42015]=#15 !ADD #1,R5
S M[ #2016]=#1
S M[#2017]=#4555 !CMP R3,R5
S M[#2020]=#163200 !BP LOOP
S M[112021]=1t177760
S M[#2022]=#14430 !MOV R0, @FIB
S M[#2023]=#3001 !FIB
S M[#2024]=#60000 !STOP
S MI#3000]=131 !K

START I.CYCLE
S R[10:#5]
EXIT



!SIMULATION COMMAND FILE FOR AF85
!CHARACTER SEARCH
ECHO
BTRACE AF85
PC=#5000
S M[#5000]=#15410 !MOV @N,RO
S M(#5001]=#266 !N

S M[#5002]=#15411 !MOV @M,R1
S M[#5003]=#267 !M
S M[#5004]=#2411 !SUB RO,R1
S M[ #5005]=#100400 !CLR RO
S M[#50061=#100500 !CLR R2
S M[#50071=#144113 !LOOP:MOV RO,R3
S M[450101=44450 !CMP R1,R0
S M[#5011] =#145200 !BMI Ti
S M[1150121,41
S M[ #5013]=#141200 !BR CONT
S M[#5014] =#10 !OFFSET
S MC#50151=#4012 !T1:CMP #0,R2
S M[#50161=#0
S M(#50171=#143200 !BEQ T2
S M[115020]=#3
S M[#5021]=#141200 !BR CONT
S M[#5022]=#2
S M[#5023]=11141200 !T2:BR END
S M[#50241-427
S M[#50251=#5022 !CONT:CMP STRING(RO),SUBS(R2)
S M[#5026]=#2000 !STRING
S M[ #5027]=#4000 !SUBS
S M[15030]=#161200 !BNE Ll
S M[#5031]=#12
S M[#5032]=#10 !ADD #1,R0
S M[#5033]=#1
S MC#5034]=#12 !ADD #1,R2
S M[#5035]=41
S MC#5036]=#5412 !CMP @M,R2
S M[#5037]=#267 !M
S M[#5040]=#143200 !BEQ L2
S M[ #5041]=#14
S M[#5042]=#141200 !BR L3
S M[#5043]=#4
S M[#5044]=#13 !Ll:ADD #1,R3
S M[#5045]=11
S M[#5046]=#14550 !MOV R3,R0
S M[#5047]=#100500 !CLR R2
S M[#5050]=#5410 !L3:CMP @N,RO
S M[#5051]=#266 !N

S M[#5052]=#163200 !BP LOOP
S M[#5053]=#177733
S M[#5054]=#100640 !END:CLR R5
S M[#5055]=#60000 !STOP
S MI#5056]=42430 !L2:SUB RO,@M
S M[#5057]4267 !M

S M[ #5060]= #15415 !MOV @M,R5



S M[k5061]=4267
S M[115062]=#15
S M[ #50631=#2000
S lif#5064]=#60000
S M[#266]=#24
S M( #267] = #12
S M[ #2000]=1101
S M[#2001]=4102
S M[#2002]=#103
S M[#2003]=#104
S M[12004],4105
S 14[ #2005]=#106
S MI120061=11107
S 11[112007] =M0
S M(#2010]=#111
S M[ #2011]=4112
S M(#2012]=4113
S M(#2013]=#114
S MI#2014]=1115
S M[112015]=#116
S MI#2016]=1117
S M[112017]=#120
S M[112020] =4121
S M[12021]=1#122
S M(#2022]=#123
S M[#2023]=#124
S M[114000]=#105
S M[ #4001]=#106
S M[114002]=#107
S M[#4003]=#110
S M[#4004]=#111
S M[#4005]=#112
S M[14006]=#113
S M[#4007]=#114
S M[#4010]=#115
S M[114011]=#116
START I.CYCLE
S R[ #O:R5]
EXIT

!ADD #STRING,R5
!STRING
!STOP
!N
!M
!STRING

!SUBS
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!SIMULATION COMMAND FILE FOR PDP3
!FIBONACCI NUMBER
ECHO
RADIX OCTAL
BTRACE PDP8
S PC=#200
S M[#200]=#7600 !CLA
S M[#201]=#3301 !DCA R1
S M(#202]=#3300 !DCA RO
S M[#203]=#7240 !STA
S M[#204]=#0310 !AND ONE
S M[1205]=#1301 !TAD R1
S M[#206]=#3301 !DCA Ri
S MI#2071=#7240 !STA
S M(#210]=ff0310 !AND ONE
S M(#2111=#1300 !TAD RO
S M[11212]=#3300 !DCA RO
S M[#213]=#7240 !STA
S M[#214]=#0306 !AND K
S M[#215]=#3303 !DCA R3
S M[#216]=#7240 !STA
S M[ #217]=#0305 !AND THREE
S M[#220]=#3304 !DCA RO
S M[#221]=#7240 !LOOP:STA
S M[#222]=#0300 !AND RO
S M(#223]=#3302 !DCA R2
S M(#224]=#7240 !STA
S M[#225]=#0301 !AND R1
S M[ #226]=#1300 !TAD RO
S Mr#2271=#3300 !DCA RO
S M[#230]=#7240 !STA
S M[1231]=#0302 !AND R2
S M[#232]=#3301 !DCA R1
S M[#233]=#7240 !STA
S M[#234]=#0310 !AND ONE
S M[#235]=#1304 !TAD R4
S M[#236]=#3304 !DCA R4
S M[#237]=#7240 !STA
S M[#240]=#0304 !AND R4
S M[#241]=#7041 !CIA
S M[1242]=#1303 !TAD R3
S M[#243]=#7500 !SMA
S M[#244]=#5221 !JMP LOOP
S M(#245]=#7240 !STA
S M[#246]=#0300 !AND RO
S M[#247]=#3307 !DCA FIB
S M[#250]=#7402 !HLT
!M[#300]=R0
!M[#301]=R1
!M[#302]=R2
!M[ #303]=R3
!M[#304]=R4
S M[#305]=#3 !THREE



S M[11306146
!M[113071=FIB
S 141#3101=#1
START INTERPRET
V M(#300:#310]
EXIT

!K

!ONE
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!SIMULATION COMMAND FILE FOR PDPO
!CHARACTER SEARCH
ECHO
RADIX OCTAL
BTRACE PDP8
S PC=#200
S M[11200]=117240 !STA
S M[#2011=#0311 !AND M
S M( #202]= #7041 !CIA
S M[#203]=#1310 !TAD N
S M[#2041=#3312 !DCA N-M
S M[#205]=#7240 !LOOP:STA
S M[#2061=#0316 !AND CTNM
S M[#207]=#3317 !DCA CTK
S M[#210]=#7240 !STA
S M[#2111=#0316 !ADN CTNM
S M[#2121=#7041 !CIA
S M[ #213)= #1312 !TAD N-M
S M[#214]=#7510 !SPA
S M[#215]=#5217 !JMP T1
S M(#216)=#5227 !JMP CONT
S M[#217]=#7240 !Ti:STA
S M[#2201=#0315 !AND CTM

M[N221]:47041 !CIA
S M[11222141323 !TAD ZERO
S M[#223] =#7450 !SNA
S M(#2241=#5226 !JMP T2
S M[#225]=#5227 !JMP CONT
S MI#2261=#5274 !T2:JMP END
S M1#2271-47240 !CONT:STA
S MI#2301=#0713 !AND @R1
S M[#231]=#7041 !CIA
S W#2321=#1714 !TAD @R2
S M[#2331=#7440 !SZA
S M[#2341=#5250 !JMP Ll
S M[#235] =#2313 !ISZ R1
S M[#2361=#2314 !ISZ R2
S M[#237]=#2315 !ISZ CTM
S M[#240]=#2316 !ISZ CTNM
S M[#241]=#7240 !STA
S 14(#2421=#0311 !AND M
S M[#2431=#7041 !CIA
S M[#2441=#1315 !TAD CTM
S M[#245] =#7500 !

S M[#246]=#5277 !JMP L2
S MI#2471=#5266 !JMP L3
S M[#250]=#2317 !L1:ISZ CTK
S MI#2511=#7240 !STA
S M[1252]=#0317 !AN CTK
S M[ #253]= #3316 !DCA CTNM
S M[1254]=#7240 !STA
S M[#2551=#0317 !AND CTK
S MI#2561=#1320 !TAD ADSTRING
S MI#2571=#3313 !DCA R1
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S M[1#2601-47240 !STA
S M[4261]=#0321 !AND ADSUBS
S M[It262]=13314 !DCA R2
S M[#263]=#7240 !STA
S M[ #264]= #0322 !AND ONE
S M( #265]= #3315 !DCA CTM
S M[#266]=#7240 !L3:STA
S M[ #267]=#0316 !AND CTNM
S M[1270]=#7041 !CIA
S M[#271]=#1310 !TAD N
S M[#272]=#7500 !SMA
S M[#2731=#5205 !JMP LOOP
S M(#274]=47600 !END:CLA
S M[ #275]-#3362 !DCA RESULT
S M[ #276]=#7402 !HLT
S M[#277]=#7240 !L2:STA
S M[113001=40311 !AND M
S M[#301]=#7041 !CIA
S M[#302]=11313 !TAD R1
S M[ #303]=#3362 !DCA RESULT
S M[#304]=#7402 !HLT
DATA

S M[#310]=#24 !N

S M[#311]=#12 !M

!ME#312]=N-M
S M[#313]=#324 !R1
S M[#3141=#350 !R2

S M[#315]=#0 !J

S M[#316]=#0 !I

S Mt#317]=#1 !K

S M[ #320]=#324 !ADSTRING
S M[#321]=#350 !ADSUBS
S M[#322] =#0 !ONE
S M[#323]=#0 !ZERO
S M(#324]=#101 !STRING
S Mt#325]=#102
S Mt#326]=#103
S 14[ #327]=#104
S M[13301=1105
S Mt#331]=#106
S M(#332]=#107
S M[ #333]=#110
S M[#334]=#111
S M[ #335]= #112
S MI#336]=#113
S MI#337]=#114
S M[11340)=11115
S M[#341]=#116
S M[ #342]= #117
S M[#343]=#120
S M(#344]=#121
S M[#345]=#122
S M[113461=#123
S M[#347]=#124
S M[#350]=11105 !SUBS
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S M[113511--AlOG
S M[#352]=#107
S M[13531-#110
S M[11354]=#111
S M[Ii3551=1#112
S M[113561=11113
S M[11357)=11114
S MI#360]=#115
S M(#361]=#116
!M[11362]=RESULT
START INTERPRET
S M[#3621
EXIT



!SIMULATION COMMAND FILE FOR PDP11
!FIBANACCI NUMBER
ECHO
RADIX OCTAL
S R( #7]= #1000
S MW[#1000]=#5001
S MW[#1002]=#5000
S MW(#1004]=#5201
S MW(#1006]=#5200
S MW[ #1010]=#16703
S MW#1012]=#26
S MW#1014]=#12704
S MI11016143
S MW[#1020]=#10002
S MW(#10221=#60100
S MW#1024]=#10201
S MW[111026]=#5204
S MW[#1030]=#20304
S MW#1032]=#2372
S MW[111034]=#10067
S MW#1036]=#4
S MW(#1040]=#0
S MW[111042]=#31
START START
S MW#1044]
EXIT

!START CLR R1
!CLR RO
!INC R1
!INC RO
!MOV K,R3
!K

!MOV #3,R4

!LOOP:MOV RO,R2
!ADD R1,R0
!MOV R2,R1
!INC R4
!CMP R3,R4
!BGE LOOP
!MOV RO,FIB

!STOP
!K
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!SIMULATION COMMAND FILE FOR PDP11
!CHARACTER SEARCH
ECHO
RADIX OCTAL
S R(#7]=11000
S M111000]-416700 !START:MOV N,RO
S MW#10021=#112
S MW[ #1004]= #166700 !SUB M,RO
S MW#1006]=1110
S MW[ #1010]=#5001 !CLR R1
S MW[#1012]=#5002 !CLR R2
S MW(#1014]=#10103 !LOOP: MOV R1,R3
S MW[11016]=#20100 !CMP R1,R0
S MW[ #1020]=#3001 !BGT T1
S MW[ #1022]=11405 !BR CONT
S MW[ #1024]=#22702 !Tl:CMP #0,R2
S MW(#1026]=#0
S MIC#1030]=#1401 !BEQ T2
S MW#1032]=#401 !BR CONT
S MWE#1034]=#420 !T2:BR END
S MW[ #1036]= #126162 !CONT:CMPB STRING(R1),SUBS(R2)
S MW[111040],A1122 !STRING
S MW[ #1042]=#1146 !SUBS
S MW[111044]=#1006 !BNE Ll
S MW(#10461=#5201 !INC R1
S MW[#1050]=45202 !INC R2
S MW[11052]=426702 !CMP M,R2
S MW[#I054]=#42 !M

S MW#1056]=#1411 !BEQ L2
S MW[#1060]=#403 !BR L3
S MW#1062]=#5203 !Ll:INC R3
S MIC#1064]=#10301 !MOV R3,R1
S MW(#1066]=#5002 !CLR R2
S MW(#1070]=#20167 !L3:CMP R1,N
S MW#1072]=#22 !N

S MW[#1074]=#3747 !BLE LOOP
S MW(#1076]=#5005 !END:CLR R5
S MW[ #1100]=#0 !STOP
S MW#1102]=#166701 !L2:SUB M,R1
S MW[111104]=#12 !M

S MW#1106)=#62701 !ADD #STRING,R1
S MW[#1110]=#1122 !STRING
S MW#11121=#10105 !MOV R1,R5
S MW[#1114]=#0 !STOP
S MW[11116]=#24 !N

S MW[ #1120] = #12 !M

S MWE#1122]=#41101 !STRING
S MW[ #1124]=#42103
S MW#1126]=#43105
S MW[ #1130]=#44107
S M1111321=145111
S MW(#1134]=#46113
S MW[11136]=#47115
S MWC#1140]=#50117
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S MW[41142)=1151121
S MIg#1144]-#52123
S MIC#11461-#43105
S MW(#1150]=#44107
S MW(111152]=#45111
S MW(11154)=#46113
S MW[11156]=147115
START START
S R[110:#71
EXIT
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APPENDIX C

Simulation Command File

to Detect

DFAULT in AF85



!SIMULATION COMMAND FILE FOR A1785
!DIAGNOSTIC PROGRAM TO DETECT DFAULT
!IN MEMORY
ECHO
S PC=#3000
S M[#3000]=#100400 !CLR R1
S M(#3001]=#14021
S M[#3002]=#10
S M[#3003]=#2000
S M[#3004]=#15052
S M[13005]=#2000
S M[#3006]=#4012
S M[13007]=#10
S M[#3010]=#161200
S M[113011] =1110
S M[#3012]=#11
S M(#3013]=11
S M[#3014]=#4011
S M[#3015]=1100
S Mi#3016]=#143200
S M[#3017]=#2
S M[ #3020]= #141200
S M[#3021]=#177760
S M[#3022]=#60000
S M[#3023]=#11
S M(#30241=#2000
S M[#3025]=#60000
EXIT

!TST:MOV #10,A(R1)

!MOV A(R1),R2

!CMP #10,R2

!ENE FAULT
!OFFSET
!ADD #1,R1

!CMP #100,R1

!BEQ END

!BR TST

!END:STOP
!FAULT:ADD #A,R1

!STOP
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