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Meny formulas for mechanial quadrature of differential
equations and continuous functions have been developed but

very little has been done toward irrational functions where
the integrand becomes infinite or vanishes.

The object of this thesis is to develop formulas for
mechanical quadrature of irrational functions of the follow-
ing three types: Type A, The function f(x) = 1B(x) where
©(x) has a pole of the first order, Type B, The function
f(x) = MGZX& where 6(x) has a zero of the first order.

Type C.» The function f(x) = +6(x) where 6(x) has two poles
of the first order,

Although the Newton-Cotes formulas can be applied to
these types of functions after making a transformation, the
present formulas are more convenient because they are
developed for these particular cases where the infinite
ordinate or vertical tangent lie at either or both ends of
the interval.
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FORMULAS FOR MECHANICAL CQUADRATURE
OF IRRATIONAL FUNCTIONS
CHAPTER 1
INTRODUCTION

The problem of mechanical quadrature or numerical
integration has become one of great interest today in many
fields of science on account of its practical and time
saving value, Often 1t is desirable to find the integral
of a function by numerical integration because eilther, the
general formula can not be found; or, if found, it 1is very
difficult to apply. The first attempt to answer the prob-
lem of numerical integration was made by Sir Isaac Newton,
He followed through the developments and applications of the
subject to a degree of detail which has been difficult to
surpass, Therefore, his work has been the baslis for many
of the later developments.

The formulas for mechanical quadrature are usually
developed by either of the following methods: (1) the
method of differences, or (2) the method of ordinates,(4)
Although these methods are equal in importance, they differ
greatly in appearance, The latter has an advantage In that
the calculation of a difference table is not required,

There are many formulas and methods which have con-

tributed to this specialized field of mathematics, Among
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those who have directed their interest toward the numerical
golution of differential equations are Runge, Heun, Kutta,(z)
Nystrom, Moulton, and J, C., Adams, Sti1ll others have
directed their attention to quadrature formulas for continu-
ous functions by one of the above mentioned methods, Some
of the outstending accomplishments in this branch of numerical
integration are due to Newton, Cotes, Euler, Gregory and
Steffensen.<1) Up to the present time, howéver, very little
has been done toward the numerical integration of irrational
functions where the integrand becomes infinite as in the
case of 1/A/ x or vanishes as inyx at x = 0, It is the

purpose of this thesis to develop mechanical quadrature

forrmilas for such functions,



CHAPTER II
DEVELOPMENT OF FORMULAS

Section I, Formulas of Newton-Cotes,

Before taking up the method of development of the
formulas of this thesis, let us consider the basis for
the Newton-Cotes formulas,

Let F(s) denote a given continuous function of s in

the interval (a, b), which may be expressed in this manner,

b
§ F(S)d51
a

Although Newton-Cotes formulas can be applied to any
closed interval (a, b), it is convenient to make a change
of variable so that the relationship between the original
variable s and the new variable x 1s given by the expres-
sion:

(1) s =(b=a2a)x + a,

By direct substitution of the original limits (a, b)
in (1) we have the new limits (0, 1), It also follows from
(1) that ds = (b - a)dx, and F(s) = F&b - a)x + %]which we
shall call f(x) for convenience,

Therefore, we have

(2) (b 1
S\ F(s)ds = (b = a)J‘oF[(b ~a)x +af{dx = (b - a)

a
=1
.f $(x)ax.
0



We will now derive the formula foisif(x)dx since
‘S‘:F(s)ds can be found by (2). 4

A change of variable does not affect the continuity of
a function, Therefore, since f(x) is continuous, let us
assume that it can be approximately represented by a poly-
nomial in x of degree n, expressed'as Pn(x), By the rules
of integration, the desired integral of the function f(x)
with respect to x in the interval (0, 1) is approximately
equal to the integral of the approximating polynomial with

respect to x in the interval, Hence we have

1 1
(3)5 f(x)dx = SOPn(x)h + Remainder,
0

where the right hand part of the equation may be approxi-

mately represented in this manner
-5
(4) OPn(x)dx + Remainder = A Y + A, Yy + - - - ApY, o

In (4), Yi 1s the ordinate corresponding to x; in the inter-
val (0, 1) (Y3 = f(x4), where 1 = 1, 2 - - - n), and where
Ay 1s the undetermined coefficient of Yj. Also the interval
(0O, 1) is subdivided into n equal segments of length h,
whence # = 1/n,

From (3) and (4), we have by direct substitution
1
(5) of(X)dX % ALY A}XI Ll e ol + ALY, .

By letting f(x) in the above equation take on the

following values 1, x,x2, - - - - x, a set of n simultaneous



equations in A are now obtained by direct integration,

1
(G)Jodx=1=Ao+A1+Az+Aa+ -------- + Ape
1
Ode =1/2 = hA, + 2hA_ + BhAg + - - - - - + nhA_,
1 -
x%dx = 1/3 = h%A, + 2°h*A; + 3°h%As + - - +n®h%Ap,
0
1
05 xPax = —— = nBA, + 2PB%A- 4 000N, 4+ -~4n"HPA,
0 n+1

Before solving these simultaneous equations for the
A's we will eliminate the factor h from each equation, and
at the same time substitute for it, its value 1/n, We then

obtain
L T VB e R 8 T e B B i b B + A,
n—
= Ay + 28, +BAg + - - = - - - - - - - - nA,
§i= Ay + 2% = 3%, 4 - - - - - - - - - n®a_,
n & A, + PR v bl e T A + naA i
n+1 *

In order that the A's in these n simultaneous equations
may be unliquely determined, the determinant of the coeffi-
cients of the A's must not equal zero, Let us next study

this determinant,



1 1 1 l = === === 1

0 1 2 R A e g "

0 Vet o S o”
(8) D= 0 18 28 I IR e nd

0 g on e a8 |

We will evaluate D by the first column, Since all of

the elements are O except the first, we have

1 2 5 -~ === n
1% 2* P - ks n®
197 =1 2| 1® 23 ¢ SRR ns
i o 3 - - - - ]

This cofactor, D, 1s a well known determinant of Vander-
monde type and can be expressed in this manner,
l8) D= (n-1)p=~ - 5= T e
Because D, # 0, and therefore by (9) D # O, the A's can be
determined,

It will be convenient to write (6) in the following

manner,
(11) 1 - A + Al + Az 4 = - e e e e e e - - + A.n'

1 = Y . R R
i XA, + X4, + szz i - ¢+ X A,
4 2t - FUNNS R et :
- o X, 2A, + x, %A, 4+ xzfAz + 6 it gl I
k.= n n L - | n
o TR s G Siank

where x, 6 = 0, it el et N Gk e el Y i B = Ly



Let us assume that

R - Flte L M oy - R e Bl (x = x.).
B, (x) = if;: = (x = x;)(x = 57)- = - - -(x - %), or
= x" + a,°x%72 4 8,0%x 2 4+ = - - - - - +a°,
P, (x) ‘(:E:)) o RE B g C R P B M © iy 0 SR
1
=32 4+, 48 lx T- - - - - - - - A e
P, (x) =(%)_y = (x = x ) (x = x,)(x = %) - = (x=%p_y)
n
or
S e S e

We will now multiply the left hand members of (6) by

the coefficients of Po(x) in reverse order, This gives us

3 :
0 0 - = 0 2
(12) a,” + 8, 2+t 8- * 3 n+1 °?

on the left hand side, while on the right we get
AP (x,) + AP (%Xy) 4 ===+ ApP (xy)
which reduces to AoPc(xo), since Po(xl) = 0, Po(xl) =0, -,

By setting x = X, in the equation for Po(x), we have

Pix ) = (x, = xpllx, ~ %

z) 0 n)'

Therefore from (12), we obtain

o 0 1 1
+ a R i e s
A, = ®n Bl ‘s D+l

(F, ~Ep A = x ) =i = ARk )



Similarly, we get

1 T A ala ol s 2y e et

Al o an + an_l = §- + + =13
P, (x,)

a4+ al S 4 =-==-- + —-

An = 8h-1 * 3 n+l
Pn(xn)

The exact value of the A's can now be found by sub-
stituting in the values - P 0, x, = % Sl e . 1,
and the values of the a's,

These values of the A's are then substituted in the
integral formula (5), which gives the desired formula for
the numerical integration of the function,

By this procedure the following Newton-Cotes formulas

are developed:

2h
s f(x)ax
0

h .
'S'(Yo + 4Y1 + Yz)v

4h 4h
f(x)ax = 55 (7Y, + 32Y; + 12Y) + 32Y5 + 7Y,).
o 24

6h 6h i
go f(x)ax gza (41Yo + 216Y, + 27Yi + 272Y5 + 27Y,

+ 216Y, + 41Y,),

Section II, Derivation of new formulas,
In this section, formulas for mechanical quadrature

of irrational functions, where the integrand becomes infinite



1
0 i

as (a) in the case of 1A/ x at x = 0, and (b) in the case

-1 ] /

of 1/4/1-x% at x = x 1, and where the integrand vanishes as

o Y]
in y/ x at x = 0, are developed for the interval O nh,

The Newton-Cotes formulas will fail for these three
irrational functions unless a transformation is made, because
in case (a) there is an infinite ordinate, in (b) there are
two infinite ordinates and in (c) one vertical tangent,

To bring out the difficulties encountered when using

a Newton-Cotes formula for one of these irrational functions,
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1 l_dx

we will apply it to case (a), .
o VX
Expressing x as x w(x), where {/(x) is a holomophic
1
1
it SR
ovx ¢ (x)

formation x = s®, then dx = 2sds, We get.f

function, we have g » Let us now make the trans-

2 2sds
oV/s?¢ (%)

1 23s ‘
=.§ ————;), which 1is continuous within the closed interval

dVly(S
because of the definition of { (x), which becomes (J/(s®).by
the transformation,

Still greater difficulties, however, arise in the cal-
culations because x4 must be determined from sy before Y
in the formulas, Section I, 5 can bhe found,

It is due to the inconvenience of the Newton-Cotes
formulas, for these three mentioned types of functions that
the writer of this thesis has derived the following formulas,

Only the first formula in each type will be completely

derived due to similarity in development of the rest,

Type A, f(x) = +0(x) where ©(x) has a pole of the first
order,

1, Four-point formula,

Let f(x) represent a function in x where lim.vr; f(x)> C
in the interval O to h, (In case the 1nfinitexggdinate should
not be at an end of the interval, it would be necessary to
make a change of variable, Section I, 1, before completing

the derivation),
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We now assume that i/ x f£(x) may be approximately rep-
resented within the Interval by a polynomial in x of degree
3, thus
VX £(x) = Psz(x) + Remainder,
Then it follows by Section I, (3) and (4) that

h p_(x)ax
g Pg(z)ax + Remainder

o V=x

= Ao, t+ Ay, 4+ A;<P2" + K393 >

' h
(1) § f(x)ax
0

where @(x) = VFE'f(x) end Ay the undetermined coefficients,
Replacing ¢(x) by 1, x, x®, x® respectively, in (1)

we obtain by direct integration the following four simul-

taneous equations which must be satisfied by the A's,

h
dx el
(2)jo$— 2\/_h—AO+AI+A2*+A3,

h e
S xdx %h\/h=o+m1+2m2-+3m,,,

0 V&
X _hz '\/Tl
o VX o

0 + h%A, + 4h2’Ag* + 9h*A,,

and

h i
f 224z = ,27113\/ h = 0 + h%, + 8h® + 27h®,.

0y x
After the elimination of a factor h, h®, and h®%, re-

spectively, from the last three equations above and the

common factor KT% from all four equations, it is found
3

that the determinant of the coefficients of the A's is not

equal to zero by Section I, (8) and (9), Hence, there is
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one solution which uniquely determines the A's, These A's
can be found by solving the 4 simultaneous equations in (2) -
the method used by the writer - or by the method given in
Section I, (11) through (13).
Ag = 22 A, = 360
A = =108 A, = 356

It follows by the substitution of the above values of

the A's in (1) that
h e
striax =7 . (356 + 360 - 108 + 220s)
Vyo 315 CPU ®1 Q?. o3/

which is the desired four-point formula of degree 3 for the
interval O to h,

We also have by the above method formulas where the
intervals are O0-»2h and 0—~3h. See Appendix, Section IT,
Type A, 1.

2, FPive-point Formulas.

The five-point formulas for the intervals O to nh,
where n = 1, 2, .3, 4 are listed in the Appendix, Section
II, Type A, 2.

3, Six-point Formulas,

The six-point formulas for the intervals O to nh, where
n=1, 2, 3, 4, 5 are listed in the Appendix, Section II,

4, Seven=point Formula,

The seven-point formula for the interval O to 6h is

given in the Appendix, Section II, Type A, 4,



13

5, Bight-point Formulsa,

The eight-point formula for the interval O to 7h 1s

given in the Appendix, Section II, Type A, 5.

Type B, f(x) = B(x) where 6(x) has a zero of the first
order,

1, Four-point formula,

Let f(x) represent a function in x where
1im £(x)/A/ x + C in the interval O to h, where the interval
i:othe result of a change of variable, The vanishing ordi-
nate of the function then lies at one end of the interval, O,

We now assume that f(x)/A/ x may be approximately repre-
sented within this interval by a polynomial in x of degree
3, thus

£(x)/A/ x = Pg(x) + Remainder,

and by the rules of integration

(1) h h
j. f(x)ax S v X Ps(x)dx + Remainder
0 0

Ajgg + A101 + AJg) + Asgs
where ¢(x) is equal to f(x)/A/ X

Replacing ¢(x) by 1, xr, x%, x® respectively, we obtain
by direct integration the following four simultaneous equa-
tions which must be satisfied by the A's,

v
A -
(2)4 \/xcb::EES@--:AO+A1+A=£+A=5
OA
Ph
n/;ax:% = 0 + bA, + 2hA; + 3hAs
Jo
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)

h bty

3 x%y/xdx = -2-1-&753 = 0 + h®A, + 4h®A- + 9h%A,
0
e n*/ h

.s. Xa\/XdX = ?——*—\é/—-— =0 + haAl + 8haA; 4+ 27haA3v
0

From the last three equations above the factor h, h=®,

and h®, respectively, are removed and a common factor

gg%% from all four equations, The determinant of the coef-

ficients of the A's 1is not equal to zero since it is of the

Vandermonde type, Section I, (9)s Hence the A's are uniquely

determined by either method mentioned in the development of

previous formula,

Az = 13, Ai = =66, A, = 282, Ao = 86, These values

substituted in equation (1), gives
2,

h
—- 2hy h .
f(x)dx = 86 + 282 - 66 + 13
j O »( ) 945 ( @o @1 Qz ¢5)’

which is the desired four-point formula for the interval
0 to h,

In a2 similar manner the complete list of formulas for
this type are developed, See Appendix, Sectlion II, Type B,
1, for the four-point formulas for the interval O to nh,
where n = 1, 2, 3,

2, Five-point Formulas,

The five-point formulas for the intervals O to nh where

n=1, 2, 3, 4 are listed in the Appendix, Section II, Type B,
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3, Six-point Formulas,

The six-point formulas for the interval O to nh where
n=1, 2, 3, 4, 5 are listed in the Appendix, Section II,
Type B, 3.

4, Seven=-point Formula,

The seven-point formule for the interval O to 6h is

listed in the Appendix, Section II, Type B, 4.

Type C» f(x) = Ve (x) where ©(x) has two poles of the
first order,

Let us represent f(x) by a function in x where

f(x) ='§%%%; in the interval (-1, 1), In case the infinite

ordinates do not lie at the ends of the interval, a change
of variable must be made,

1, Three=-point formula,

Let us assume that f(x) may be approximately represented

by a polynomial of degree 2 in x,

;ﬂ%ﬁ%f o P‘(x) + Remainder,

We will now take the integral between (-1, 1), which gives

1 1 .
J._iiiléi 4 Jﬁ P, (x)dx + Remainder
-1y/1-x% oo

(1)
the ¢'s are the values of @(x) at the middle and ends of the

A_19(-1) + A,9(0) + A1¢(1), where

interval, and the A's the undetermined coefficlents,

Replacing ¢(x) by 1, x*, x° respectively we obtain by
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direct integration the following three simultaneous equations

which must be satisfied by the A's,

]

1
[ ST TITNOTRN

1
X _ax=0=-A_3 +0 + A,
-1 V1-x*

3 2
x* T :
d&Xx = == A . 4+ 0 4+ A
fil V1=-x* 2 y >

That the determinant of the coefficients of the A's is
not equal to zero, can be easily shown by expanding the
determinant by the element in the firét row and second column,
Therefore, the A's can be uniquely determined by the method
of elimination which gives us

A, = % v ='% s Ay % .

By substituting these values of the A's in (1) we get

19;(3‘—)—dx=’£[(-1)+2(o)+ (1)]
-1 y/1-x*% e ¥ ? ¢ g

The development of the five-point and nine-ppint formu-

las is similar to the above steps, These formulas are listed

in the Appendix, Type C, 2 and 3,
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CHAPTER III
COMPARISON OF RESULTS OBTAINED BY FORMULA AND
BY INTEGRATION FOR CERTAIN EXAMPLES

To illustrate the value of these formulas, let us apply
them to examples of each type considered in Chapter II,
Section II.

In all of the examples except the last we will apply
the Newton-Cotes five-point formula for that part of the
interval which is closed because we know that it is accurate
to the seventh decimal place for these examples, and the new
formulas for the ends of the interval where the infinite or

vertical tangents occur.

Type A.

1

ax

Example I. To find(ﬂ = » Where there is an infinite
- ‘\71-:&

ordinate at each end of the interval.

1, By direct integration, we get

b g 1
= arc sin x] =T = 3.1415926
1 y1-x* -1
1
2. By formula, where f(x) ='V1'32 %
o(x) = V&-xa = 1, and the interval is divided
V1i-x Vi+x

in this manner we get, by using the formulas
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Sec, 1II i 1l 1
Type A

indicated in each subdivision of the interval above,

the following result:

X4 @'s Multipliers
ad 7071068 250
9 .7254763 416
.8 7453560 24
i d 7669649 224
«& 7905694 31 o/2
X V4 o . 9272945
£ix) 945 g
. 1.2500000 7
o 1,1547005 32
.4 1.0910894 12
3 1.0482848 32
2 1.0206207 ” 4
X — = ,442146432
£(x) 90 x 2
.2 1.0206207 i/
5 | 1.0050378 32
0. i 12
-.1 1.0050378 32
-2 1.0206207 i 4
X 36 = ,40271068

Total = 3.1415925

The first two intervals are multiplied by 2 because
the function is symmetrical, The result found by these two

methods differs by .0000001.



Example II,

.

1 3

dx
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Find the value of the elliptic integral

0 V(1-x2) (1-k®x2)

, where k® =

0 |-

1, From Die elliptischen Funktionen von Jacobi,

Milne~-Thompson, we have

K = 1.8540747

1

2. By formula, where f(x) ='V(1-x2)(1-k2xz) s

o(x) =

and the interval is sub-

V(14x) (1-k2x*)

divided so that from 0 - .4, we will use Newton-

Cotes formula, 2, Section I, and from .4 = 1., we

will use formula 4, Type A, Section II in reverse

order, since the infinite ordinate 1s at the upper

limit,
31 £(x)
0 1.
ad 1.0075518
e 1.0309826
S 1.0726983
.4 1.13756393
¢(x)
.4 .8811343
«D .8728718
«8 .8730378
.l .8826775
7353 . 9038769
<9 9405128
1. 1'

Multipliers

iy
32
12
32
,7 .
X 55 = +417340582

4,764
36,936
-11,610
79,440
-23,8956
93,096

46,494 o/

EV-® = 1.436737284
* 225,225

Total 1.854077866
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The results found by these two methods differ by
.00000316.

Type B.

1
Example I. To find V/1-x2® dx, where there is a
‘ J-1

vertical tangent at each end of the interval,

. By integration, we obtain

X 1 < §
3 Vit o 5 arc sin x =x
-1

Vﬁ-x dx

1,57079633

2. By formula, where f(x) = 1/1-x2, ¢(x) = /14x

and the interval is divided in this manner

Sec. II|Sec. I |[Sec. I | Sec. I @C., 11
Type B 7 2 2 2 ype B

-1 A -2 o 2 iC L.

we get, by using the indicated formulas in each
subdivision of the interval the following result.



O 3@

.6

05'

4
3
2

O
s o 0
LR )

1
1
1
1
1

1

o(x)

«41421356
.37840488
. 54164079
. 30384048
.26491106

f(x)

.80000000
.86602540
.91651514
. 956393920
. 97979590

f(x)

. 97979590
.99498744

©99498744
97979590

21

Multipliers Product
70
864
552
1568
411 2 '
2 284 = posgaga0sen
7
32
12
32
T 4
X 30 = ,363088014
X2
7
32
12
32
i o4
x — = ,397313088
90
Total 1,57078593

The first two intervels are multiplied by 2 because

the function is symmetrical,

The results of the two methods differ by .0000104.

Type Co

1
Example I, Find :
.1‘\/(1‘7(4

dax

) (1-k?x®)

1
when k® = 3

1, By Milne-Thompson's table, we get

dax

f‘l V(1-x%) (1-k*x*)

2K = 3.7081494
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2, By formula 3, Type C, Section II where

1
o(x) = ;QI:;;;Q) s we obtain this result,

X o(x) Multipliers
-1, 1.4142135 69
- .75 1.1795356 176
ey 1.0690449 -126
- ,25 1.0160010 336
0. 1.0000000 -280
.25 1.0160010 336
- 1.0690449 -126
.75 1.,1795356 176
1 B8 1.4142135 69 .
630

Total = 3.70863184
These results differ by .00048244
By the comparison of the results from the two methods
we see that the results are very similar,
The amount of work required in using these formulas
may be greatly simplified by using a calculating machine
and by tabulating the results in a manner similar to that

above ,



APPENDIX

TABLE OF FORMULAS
Section I

Newton-Cotes Formulas
1, Three~point Formula

2h h
3 f(x)ax = 3 (Yo + 4Y, + Yi)'

2, Five-point Formula
M 4h 4h
) f(x)ax = g5 (7Y, + 32Y, + 12Y° + 32Y; + 7Y,).
0 ]

3, Seven-point Formula

6h 6h
J 4 f(x)ax = S (41Y  + 216Y; + 27Yz + 272Y; + 27Y,

+ 216Y, + 417_).
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Section II

Derived Formulas

Type A, £(x) = 1/B(x), where 6(x) has a pole of the first

order.,

1, Four-point

S’h
f(x)ax
0

2h
j f(x)dax
0

3h
j f(x)ax
0

2, Filve-point

h
j‘ f(x)dx
0

2h
g f(x)dax
J O

3h
,( f(x)ax

4h
‘( f(x)dx
0

Formulas,

%T” (3569, + 360p, - 108¢> + 22¢s),

“__g (244Q° + 3609, + 18¢é + 8pg)

=g V?25 (34, + 45¢, + 1897 + 8gs) .

Formuilas,

= “945 (1025¢° + 1252¢5 - 582¢ + 238¢3

- 43¢g) s

=2 V%%E (355¢, + 5849y = 392 + 5695

5 11?4)'

= VBh (1959, + 3069, + 54q; + 849 - 9pq).

=g vgzs (250, + 4169, + 24q- + 2240s

+ 31¢4).
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3, Six-point Formulas,

h vE
f(x)ax = V-2 (10932¢. + 15487, = 98320~
L TR St otk

+ 6,048¢5- - 2}.88(;)4 + 543¢5) '

f(x)ax = ——— (38079, + 69149, - 1409¢7
10395 i

+ 1,596(p3. - 611(;)4 + 98"8)'

3h
V3h 36 o
5 £(x)ax e (20829, + 388lgy = Z6¢; + L554¢s

- 414, + 63g,):

10395

4h T ,
S f(x)ax = 2VER _ (2694¢, + 48569, 29697 + 30249,
0

5h
£(x)ax = V22 __ (9729 + 16859, + 40¢- + 840ps
2079 o iy Pz X
C

+ 460¢, + 161¢7)-
4, Seven-point Formula,

6n S
p(x)ax = 2B (46,4049 + 93,096, - 23,895¢:
225,225 o

0

+ 36,936, + 4,764¢3).



iv

5. Elght-point Formula

7h s
Plx)dy o 550

. 28,378,350

+ 1,571,254,44090 - 2,483,221,615@3
+ 2 ,560,485 ’ 160(p¢ e 1 ,354,874,786(pg
+ 422,439,416¢€ - 55,542,195¢7 ),

Type B, f(x) = ye(x) where g§(x) has a zero of first order,

1, Four~-point Formulas,

h
f(x)ax = 2w/h (869, + 282¢, = 6697 + 13¢s).

Jo 945
f 2h .

2hV§
J o

* 3h z1
2hy/3h
f(x)ax 35 (2¢b + 994 + 18¢é + 6¢s)»

J

2, Five-point Formulsas,

o=

f(x)ax =
10,395

(1,715, + 6,9129, - 2,514q,
0
+ 994¢s - 177¢‘)1

oh —
2hy/2h
£(x)ax (4900, + 4,464¢, + 2,082
J 10,395 %o A T T TR

ot 112¢a + 6@‘)'!

3h
hy3h
f(x)ax = 1155 (105(9-c + 702¢, + 1,026¢£ + 504¢s

- 27‘?4);



f(x)ax = 75555

4h 8h/4h
g s L (709, + 864g, + 552¢_

o

3y Six~point Formulas,

h h/ h
P(x)dx = - _  (103,436¢. + 489,475g.
f ( 675,675 CHpsyanty, S .

0
- 243,800¢7 + 145,00005

- 51,700¢, + 8,039,)

on
4m/2h
f(x)ax = 4m/2h 15,6114 + 146,650
g 675,675 ABRAP 1S

+ 64,525¢; = 500@s

- 1,375¢‘ + 314(P5')'

3h km%h
o e 8

0
- 180,900@{ + 117,450¢3
- 14,8509, + 1,917(pa

4h 8h/2h

g f(x)dx = 373:333 (5,422@o + 51,800¢,
0

+ 44,6009, + 93,200¢5

+ 31,0750, = 872¢4)»



vi

(2’056¢o + 11,725¢,

Sh n/
gO f(x)dx = i

27,027
+ 21,4002 + 12,400¢s

+ 34,100¢¢ + 8,429@8)1

4, Seven=-point Formula,

6h
f (i o 1T R

798¢ + 10,7280, + 40050~
0 225,225 (7989, b, Pz

+ 25,760Q3 + 4,2300
+ 25’992¢5 + 5’562¢8).
Type C, £(x) = y0O(x), where 6(x) has two poles of the first

order,

1, Three-point Formula,

1
f-l f}%? =7 fo(-1) + 20(0) + o(1)],

2s Five-pcint Formla

1
f : ﬁ.ﬁsd.x =3 [(,,(-1) + 2¢(-.5) + 2¢(.5) + q,(l)]
- -X

33y Nine-point Formula,

(x)ax _ =« . 5 i s
J:i ﬁ%_x, o [69¢( 1) + 1769(-.75) = 126¢(-.5)
+ 336¢(=-125) - 2809(0) + 336¢(.25)

- 126¢(.5) + 1769(.75) + 69¢(1)].
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