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FORMIJLAS FOR !V1ECHPNICAL QUADRATURE 
OF IRRATIONAL FOiTCTIONS 

CHAPTER I 

INTRODUCTION 

The problem of mechanical quadrature or nwnerical 

Integration has become one of great interest today in many 

fields of science on account of Its practical and time 

saving value1 Often it is desirable to find the integral 

of a ftriction by nwiierical integration because eIther, the 

general formula can not be found; or, if found, it is very 

difficult to apply, The first attempt to answer the prob- 

(3) 
lem of numerical integration was made by Sir Isaac Newton1 

He followed through the developments and applications of the 

subject to a degree of detail which has been difficult to 

surpass, Therefore, his work has been the basis for many 

of the later developments1 

The formulas for mechanical quadrature are usually 

developed by eIther of the following methods: (1) the 
(4) 

method of differences, or (2) the method of ordinates1 

Although these methods are equal in importance, they differ 

greatly In appearance1 The latter has an advantage in that 

the calculation of a difference table is not required, 

There aro many formulas and methods which have con- 

tributed to this specialized field of mathematics, Ariong 
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those who have directed their interest toward the numerical 
(2) 

solution of differential equations are Runge, Heun, Kutta, 

Nystrori, Moulton, and J, C1 Adams, Still others have 

directed their attention to quadrature formulas for continu- 

o's functions by one of the above mentIoned methods, Some 

of the outstanding accomplishments in this branch of numerical 

integration are due to Newton, Cotes, Euler, Gregory and 
(1) 

Steffensen1 Up to the present time, however, very little 

has been done toward the numerical integration of irrational 

functions where the integrand becomes infinite as in the 

case of i// x or vanishes as in /x at x = O It is the 

purpose of this thesis to develop mechanical quadrature 

forrriulas for such functions, 
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CHAPTER II 

DEVELOPMENT OF FORMUIS 

Section L Formulas of Newton-Cotes T 

Before taking up the ruietIod 3f development of the 

formulas of this thesis, let us consider the basis for 

the Newton-Cotes formulas 

Let F(s) denote a given continuous function of s in 

the interval (a, b), which may he expressed In this manner, 

(b 
\ 

F(s)ds, 
tía 

Although Newton-Cotes formulas can be applied to any 

closed interval (a, b), it is convenient to make a change 

of variable so that the relationship between the original 

variable s and the new variable x is given by the expres- 

sion 

(1) s(b-a)x+a, 

By direct substitution of the original limits (a, h) 

in (1) we have the new limits (O, i), It also follows from 

(1) that ds = (b - a)clx, and F(s) = FÒ - a)x + a] which we 

shall call 1(x) for conveniences 

Therefore, we have 

(2)('b ('i 
-.7 

\ 
F(s)ds (b - a) F[(b - a)x + aJ d.x (b - a) 

Ja JO 

I 

f()dx. 
JO 
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N 
We will now derive the forimila for' f(x)dx since 

Ch Jo 
\ F(s)ds can be found by (2), 
Ja 

A change of variable does not affect the continuity of 

a function, Therefore, since f(x) is continuous, let us 

assume that it can be approximately represented by a poly- 

nomial in z of cicgroe n, expressed as P(x) By the rules 

of integration, the desired integral or the function f(x) 

with respect to z in the interval (0, 1) is approximately 

equal to the integral of the approximating polynomial with 

respect to x in the interval, Hence we have 

(i Ci 
(3) \ 

f(x)clx 
= 

P(x)dx + Remainder, 
Jo o 

where the right hand part of the equation may he approxi- 

mately represented in this manner 

('i 
. V (4) t P(x)dx + Remainder + A1Y1 + - - 

- 

In (4), Y. is the ordinate corresponding to x in the inter- 

val (O, 1) (y1 = f.(xj), where i 1, 2 - - - n), and where 

A1 is the undetermined coefficient of Y1 Also the interval 

(0, 1) is subdivided into n equal segments of length h, 

whence f i/n, 

From (3) and (4), we have by direct substitution 

('i 

(5) \ f(x)dx = A0Y + AY1 + A Y + ------ + 
Jo 

By letting f(x) in the above equation take on the 

following values i, x,x2, - - - - x', a set of n siimiltaneous 
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equations in A are now obtained by direct integration1 

(6jdz1=A0+Ai+A+A3+ -------- 

1x c = 1/2 = 
+ 

+ 3I + ----- + 

= 1/3 = h2A1 + 2hA + 3h2A3 + - - +n2h2Ant 
Jo 2. 

xndJ = hA + 2hA + 3hA3 + -- 
Jo n+1 z, 

Before solving these simultaneous equations Cor the 

A's we will eliminate the factor h from each equation, and 

at the same time substitute for it, its value 1/n, We then 

obtain 

(7) 1A0+A1+A+ ------------- 

A1 + 2A + 3A3 + 

A1 + 22A - 32A3 + --------- n2A 
3 n 

A1 + 2A + - - + flnA 

In order that the A's in these n simultaneous equations 

may be uniquely determined, the determinant of the coeffi- 
dents of the A's must not equal zero, Let us next study 

this determinante 



(8) D 

1 1 1 1-1 
o i 2 3-n 
o 12 22 32_ 
O i 2 33 ------- n3 
O 

in 3r nfl 

We will evaluate D by the first column, Since all of 

the elements are O except the first, we have 

1 2 3-------n 
12. 22 32 

(9) D = i i 2 33 ----- n3 

This cofactor,D, is a well known determinant of Vander- 

monde type and can be expressed in this manner, 

(10) D, (n - 1); ----- 2 14, 

Because D, 0, and therefore by (9) D 0, the A's can he 

determined, 

It will he convenient to write (6) in the following 

manner, 

(11) 1A0+A+A+ ------------ 
= x0A0 + xA1 + xA + -------- - 

1 x2A + x2A + x2A + ------ 

_L XnÌA + x1A1 + X riA + ------ -j. 

wherex00x,x --------- 



Let us assume that 

P(x) = ( - x0)(.x - x,jx - ---- (Lx - xc). 

P,(x) = (x - x1)(x -x) ----- (x -x), or 
X 

= + a10x1 + azoXl2 + ------ + a° 
P(X) 

P1(x) 
, 

(x - x0)(x -X) - - - -(x -x), or 
X 'i' 

+ a1x' + a 1n aa'. 

= P(x) = (x - )(x - - - - 
o 

or 

n flfl-i n 
x +a + ----------- -i-a. 

We will now multiply the left hand members of (6) by 

the coefficients of P0(x) in reverse order, This gives us 

---------------------- (12) an° fa° n-1 2 n- 3 

on the left hand side, while on the right we get 

A0P0(x0) + A1P0(c1) + - - -+ AnP(Xn) 

which reduces to A P,(x ), since P (x1) = O, P () O.- -, 
o o o o 

By setting x in the equation for P0(z), we have 

P0(x) = (x - x1)(x0 - x1) ----------- (x0 - 

Therefore from (i2t, we obtain 

A0 
a° a1 + - - - - + 

2 fl+] 
. 

(x x1)(x0 -x) - - -(x0-x) 
O 



Similarly, we get 

i :i. 
i Aafl +a_1+ 

P1(x1) 

i 

a'1+a1 ,+ ----- Afl 
n 

P (xc) 

The exact value of the A's can now be found by sub- 

stituting in the values X0 = O, x1 , - - - -, x 1, 

and the values of the a's1 

These values of the A's are then substituted in the 

integral formula (5), which gives the desired formula for 

the numerical integration of the function1 

By this procedure the following Newton-Cotes formulas 

are developed: 

r2h 

jf(x)dx 
= + 4Y1 + 

o 

('4h 4h 
f()cIx = (7Y + 32Y1 + 12Y' + 32Y + 7y4), 

o 

('6h 6h 

S 

f(x)dx = - (41Y0 + 216Y1 + 2'7Y + 272Y3 + 27Y4 
840 

+ 216Y5 + 4iY)1 

Section IL, Derivation of new formulas, 

In this section, formulas for mechanical quadrature 

of irrational functions, where the integrand becomes infinite 



as (a) in the case of i/1/ at x = O, and (b) in the case 

of i/i/i.x2 at .x = 1, and where the integrand vanishes as 

in v' at O, are developed for the interval O nh, 

The Newton-Cotes formulas will fail for tIese three 

irrational functions unless a transformation is made, because 

in case (a) there is an infinite ordinate, in (b) there are 

two infinite ordinates and in (c) one vertical tangent, 

To bring out the difficulties encountered when using 

a Newton-Cotes formula for one of these irrational functions, 



io 
fi i cix 

we will apply it to case (a), 
j 
T 

o v 

Expressing x as x 9)(x), where .i(x) is a holomophic 

Ci 
function, we have dx, Let us now make the trans- 

)o\/xq)(x) 

formation x 52 then dx = 2sds, We get 
2sds 

¡1 
Jo/szÇ's2.j 

¡ 2ds 
= t / 2 which is continuous within the closed interval 

J 0V 1? 
(s 

because of the definition ofI4(x), which becomes ÇJ(s2)by 

the transformation, 

Still greater difficulties, however, arise n the cal- 

culations because x1 must be determined from before Yj 

in the formulas, Section I, 5 can be found, 

It is due to the inconvenience of the Newton-Cotes 

formulas, for these three mentioned types of functions that 

the writer of this thesis has derived the following formulas, 

Only the first formula in each type will he completely 

derived due to similarity in development of the rest, 

Type A1 f(x) v'e(x) where 8(x) has a pole of the first 

order, 

i, Four-point formula, 

Let f(x) represent a function in x where lin / x f(x) C 
X 

in the interval O to h, (In case the infinite ordinate should 

not be at an end of the interval, it would he necessary to 

make a change of variable, Section I, i, before completing 

the derivation), 
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We now assume that Ti f(x) may he approximately rep- 
resented within the interval by a polynomial in x of degree 

3, thus 

\/ f(x) P3(x) + Remainder1 

Then it follows by Section I, (3) and (4) that 

"h 
(1) f(x)dx + Remainder 

Ap0 + Ap1 + Ap + A3q3 

where (x) = -/T f(x) and A1 the undetermined coefficients, 

Replacing cp(x) by 1, x, z2, x respectively, in (1) 

we obtain by direct integration the following four siniul- 

taneous equations which must he satisfied by the A'S, 

Ihcìx - 
2V h A0 + A, + A + A3 

Jovx 
('h - - .h /h O + hA1 + 2hA + 3hA3, 

(h xdz = h2 = O + hA1 4h2A + 9hA3, 
jOV'x 5 g 

and 

('h 

jo x 
= ..h = O + h 3A1 + 8h 3A + 2 7h .&3 1 

After the elimination of a factor h, h2, and h3, re- 

spectively, from the last three equations above and the 

common factor from all four equations, it is found 
315 

that the determinant of the coefficients of the A's is not 

equal to zero by Section I, (8) and (9) , Hence, there is 
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one solution which uniquely determines the A's, These A!S 

can be found by solving the 4 simultaneous equations in (2) - 

the method used by the writer - or by the method given in 

Section I, (li) through (1.3). 

A322 A360 
= -108 A0 356 

It follows by the substitution of the above values of 

the A's in (1) that 

Ch 
I f(x)dx (356p0 + 360Pa - 1O8 + 22cp3), 

Jo 

which is the desired four-point formula of degree 3 for the 

interval O to h, 

We also have by the above method formulas where the 

intervals are 0-2h and 0-*3h. See Appendix, Section II, 

Type A, 1. 

2, Five-point Formulas. 

The five-point formulas for the intervals O to nh, 

where n 1, 2, ,3, 4 are listed in the Appendix, Section 

II, Type A, 2. 

3, Six-point Formulas. 

The six-point formulas for the intervals O to nh, where 

n = 1, 2, 3, 4, 5 are listed in the Appendix, Section II, 

Type A, 3. 

4, Seven-point Formula. 

The seven-point formula for the interval O Lo 6h is 

given in the Appendix, Section II, Type A, 4. 
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5, Eight-point Formula, 

The eight-point formula for the interval O to 7h is 

given in the Appendix, Section II, Type A, 5, 

Type B, f(x) = VG(x) where 9(x) has a zero of the first 

order, 

1, Four-point formula, 

Let f(x) represent a function in x where 

hm f(x)/'/i - C in the interval O to h, where the interval 
xC 
is the result of a change of variable, The vanishing ordi- 

nate of the function then lies at one end of the interval, O, 

We now assume that f(x)/ may he approximately repre- 

sented withiñ this interval by a polynomial in x of degree 

3, thus 

= P(x) + Remainder, 

and by the rules of integration 

(1) rh N 
f(x)d.x = \/5 P(x)dx + Remainder 

JO 

= A0p0 + A1p1 + A + Ap 

where p(x) is equal to f(x)//, 

ReplacIng cp(x) by 1, x', x, x3 respectively, we obtain 

by direct integration the following four simultaneous equa- 

tions which must he satisfied by the A's, 

rh_ - 
(2) i/.xdx = 2hJh = A + A + A2 + A3 

3 0 

.10 

j. 
:x\/i-dx = 

2h/ = 
+ bA, -f. 2hA, + 3h&3 
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x2/ix 2h3/E 

2h\/h 

= O + h2A + 4h2A + 9h2A3 

= O + hA1 + 8h3A, + 27h3A3, 

From the last tiwee equations above the factor h, h2, 

and h3, respectively, are removed and a coimnon factor 

2hV from all four equations1 The determinant of the coef- 
945 

ficients of the A's is not equal to zero since it is of the 

Vandermonde type, Section i, (9), Hence the A's are uniquely 

determined by either method mentioned in the development of 

previous formula, 

A = 13, A = -66, A1 = 282, A0 = 86, These values 

substituted in equation (1), gives 

jf(x)dx 
2hV' 860 + - + l3p3), 

which is the desired four-point formula for the interval 

O to h, 

In a similar manner the complete list of formulas for 

this type are developed, See Appendix, Section II, Type B, 

1, for the four-point formulas for the interval O to nh, 

where n = 1, 2, 3, 

2, Five-point Formulas. 

The five-point formulas for the intervals O to nh where 

n = 1, 2, 3, 4 are listed in the Appendix, Section II, Type B, 

2, 
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3, Six-point Formulas. 

The six-point formulas for the interval O to nh where 

n = 1, 2, 3, 4, 5 are listed in the Appendix, Section II, 

Type B, 3, 

4. Seven-point Formula1 

The seven-point formula for the interval O to 6h is 

listed in the Appendix, Section II, Type B, 4, 

Type C, 1(x) 9(x) where e(x) has two poles of the 

first order, 

Let us represent 1(x) by a function in x where 

1(x) = in the interval (-1, 1), In case the infinite 

ordinates do not lie at the ends of the interval, a change 

of variable must be made. 

1, Three-point formula, 

Let us assume that f(x) may be approximately represented 

by a polinomial of degree 2 in x, 

pN) 
+ Remainder, 

We will now take the integral between (-1, 1), which gives 

J 
(x)d 

( P(x)d + Remainder 
J-i. 

(1) Ap(_1) + A0p(0) + A1p(1), where 

the p's are the values of p(x) at the middle snd ends of the 

interval, and the A's the undetermined coefficients, 

Replacing p(.x) by 1, x', x respectively we obtain by 
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direct integration the following three simultaneous equations 

which must he satisfied by the A's, 

pi 

j-i Vi- 
dx A_1 + A0 + A1 

i'i 
x 

J-1 Vi-x 

ri 
clx = A_1+O + A1 

j1 \/1X 2 

That the determinant of the coefficients cf tho A's is 

not equal to zero, can be easily shown by expanding the 

determinant by the element in the first row and second column, 

Therefore, the A's can be uniquely determined by the method 

of elimination which gives us 

A -' A - A -7t 
-1 0 

By substituting these values of the A's in (1) we get 

(x) 
dx (-1) + 2(0) + 

The development of the five-point and nine-point formu- 

las is similar to the above steps, These formulas are listed 

in the Appendix, Type C, 2 and 3, 
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CHAPTER III 

COMPARISON OF RESULTS OBTAINED BY FORMULA AND 
BY INTEGRATION FOR CERTAIN EXAMPLES 

To illustrate the value of these formulas, let us apply 

them to examples of each type considered in Chapter II, 

Section II. 

In all of the examples except the last we will apply 

the Newton-Cotes five-point formula for that part of the 

interval which is closed because we know that it is accurate 

to the seventh decimal place for these examples, and the new 

formulas for the ends of the interval where the infinite or 

vertical tangents occur, 

Type A. 

cl ____ Example I. To find( , where there is an infinite 
j-i Vi-s 

ordinate at each end of the interval. 

1, By direct integration, we get 

1 

arc sin x 3.1415926 
- - J-1 

1 

2. By formula, where f(x) = 
Vi-x2 

Vi 1 
ç(x) = 

Vi-x2 = Vi+x ' 

and the interval is divided 

in this manner we get, by using the formulas 



Sec. III 

2, 

Sec. II 
Type A Sec. I Sec, I Sec I Type A 

2 j 2 2 

-1 -.g o 

indicated in each subdivision of the interval above, 

the following result: 

cp'S Multipliers 

.1 .7071068 250 

.9 .7254763 416 

.8 .7453560 24 

.7 .7669649 224 

.6 .7905694 31 2/T 

fo 
x = .9272945 

x2 
.6 1.2500000 7 

.5 1.1547005 32 

.4 1.0910894 12 

.3 1.0482848 32 

.2 1.0206207 7 

x .442146432 
x2 

.2 1.0206207 7 

.1 1.0050378 32 
0. 1, 12 
-.1 1.0050378 32 

J. '_d... "06207 7 
4 - - .40271068 

rT, - i - .Z I 'I - 

The fir3t two intervals are multiplied by 2 because 

the function is symmetrical, The result found by these two 

methods differs by .0000001. 
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xample II Find the value of the elliptic integral 

ri Kl ,wherek2- 
,Jo V(1-2)(i-kx2) 2 

1, From Die elliptischen Funktionen von Jacobi, 

Mime-Thompson, we have 

K = 1.8540747 
i 

2. By formula, where f(x) = V(i2)(1-k2x) ' 

p(.x) - and the interval is sub- 

y'(1+)(i-k4x) 

divided so that from O - .4, we will use Newton- 

Cotes formula, 2, Section I, and frein .4- 1., we 

will use formula 4, Type A, Section II in reverse 

order, since the infinite ordinate is at the upper 

limit, 

Xj f(:x) 

o i. 

.1 1.0075518 

.2 1.0309826 

.3 1.0726983 

.4 1.1375393 

Multipliers 

'7 

32 
12 
32 

77 

ç = .417340582 

( (X) 

.4 .8811343 4,764 

.5 .8728716 36,936 

.6 .8730378 -11,610 

.7 .8826775 79,440 

.8 .9038769 -23,895 
.ç_:, .9405128 93,096 

i. 1. 46,494 
X 

27 
i .436737284 

225,225 

Total 1.854077866 
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The results found by these two metbods differ by 

.000003 16. 

Type B. 

('1 
Example I. To find 

J 

y1_x2 clx, where there is a 
.1_1 

vertical tangent at each end of the interval. 

1. By integration, we obtain 

(il X i \/1_x2dxVi_x+arcsjnxI 
j-1 J-1 

1.57079633 

2. By formula, where f(x) = Vi-x2, (x) i/i-t-x 

and the interval is divided in this manner 

we get, by using the indicated formulas in each 

subdivision of the interval the following result. 
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p(x) 'ultipliers Product 

1. 1.41421.356 70 
.9 1.37840488 864 
.8 1.34164079 552 
.7 1.30384048 1568 
.6 1.26491106 411 "-V .22364840597 

10,395 x 2 

f(x) 
.6 .80000000 7 
.5 .86602540 32 
.4 .91651514 12 
.3 .95393920 32 
.2 .97979590 7 4 

= .363088014 

f(x) 
.2 .97979590 7 
.1 .99498744 32 

0. 1. 12 
.1 .99498744 32 
.2 .97979590 il 

X = .397313088 
90 

Total 1.57078593 

The first two intervals are multiplied by 2 because 

the function is syl!mletrical, 

The results of the two methods differ by .0000104. 

Type 
1 _____________ , when k2 = 

1 

Example I Find Ç V(1-x)(1-k2x) 

1, By Mime-Thompson's table, we get 

fi 
2K = 3.7081494 

- /(1_ )(1k2x) 
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2, By formula 3, Type C, Section II where 

p1 

-1. 
- .75 
- .5 
- 25 
0. 

.25 

.5 

.75 
i. 

i 

= v(1_kdx2) 

(p(x) 

1.4142135 
1.1795356 
1.0690449 
1. 01600 10 
1.0000000 
1.0160010 
1.0690449 
1.1795356 
1.4142135 

, we obtain this result, 

Multipliers 

69 
176 

-126 
336 
-280 
336 

-126 
176 
69 

Total = 3.70863184 

These results differ by .00048244 

By the comparison of the results from the two methods 

we seo that the results are very similar, 

The amount of work required in using those formulas 

may be greatly simplified by using a calculating machine 

and by tabulating the results in a manner similar to that 

above, 
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APPENDIX 

TABLE OF FORMFJLAS 

Section I 

Newton-Cotes Fon-nulas 

1, Three-point Formula 

(; + 4Y1 + Y). 

2, Five-point Formula 

'4h 
f(x)ftx = (7y0 + 32Y1 + 12Y + 32Y3 + 

3, Seven-point Formula 

r6h 6h 
f(x)d.x = - (41Y + 216Y1 + 27Y + 272Y3 + 27Y4 

840 

+ 216Y5 + 41Y). 
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Section II 

Derived Fornn.ilas 

Type A, 1(x) e(x), where 9(x) has a pole of the first 

order, 

1, Four-point Formulas, 

rh 
\ f(x)dx (356 q0 
Jo 

2h 
f(x)dx (244q,0 

Jo 

+ 36O, - lOBcp + 22p3) 

+ 360cp1 + l8q + 

r3h - 
f(x)dx = 2 V3h (3q, + 45q,1 + + 

Jo 

2, Five-point Formulas, 

v-Ti-. 
f(x)dx 

945 lO2Sq, + l252cp1 - + 238q, 
o 

- 43(p4), 

('2h 
f(x)dx = 2 V'±.. (355q,0 + -39' + 56q,3 

Jo 945 

- 114)I 

/J? (195q + 3O6q,1 + 54q, + 84cp - 
jo 315 

('4h - 
L f(x)d.x 2 1/4h (250 + 4l6p1 + 24cp + 
Jo 

+ 31q,4). 



31 S1-po1nt Formu.las, 
iii 

('h 
I f(x)dx (1O,932p + lS,48'7cp 
j 10,395 

+ 6,O48cp3 - 2IB8C4 + 343p) e 

('2h 
f(x)dx (3,80'7p + 6,9l4cp - l,409q,; 

1 1S395 

+ - + 

C3h _V3h f(x)dx (2p82 + ' 36cp + l,b54cp 
3,465 

- 4144 + 

C4h 
\ f(x)cix (2,694q0 + 4,BS6p 296p + 3,0243 

J0 1q395 

+ 6lq + 56p5)e 

E'5h 
f(x)dx (972cp0 + l,6BSp + 4Op + 

J 

2079 
o 

+ 46O + 

4, Seven-point Formula, 

(16h 
2V6h 

'\ 
f(x)clx (46,494 + 93,096cL1 

j o 
225,225 

+ 7944Op -ul6lOcp4 

+ 36,936 + 4,764p) 



5 Eight-point Forrriala 

7h 
f 

f(x)dx - (B'7,86?,656(p0 - 540'02'7,726p1 
28,378,350 

+ 1,5?l,254,44Ocp, 

+ 236O483l6O(4 - 1,334,B?4,?B6cp 

+ 22'439'416'e - 55,542,195cp.r), 

Type B1 f(x) = /è(x) where 9(x) has a zero of first order, 

1, Four-point Forniulas, 

Çh 
= 2 (869e + 2829 66p + 139) 

Jo 
945 

2h 

I 

2h' 
(449 + 4OBp' + 1869 - 893), 

945 
o 

¡'3h 2hV3h 
= 

(2p0 + 9 + 189 + 693)P 

2 Five-point Formulas, 

¡'h ___ f(x)clx 
- 10395 

(1,7159e + 6,9129 - 2,öl4cp 

jo 

+ 994Ç3 - 17794)1 

r 2h 
2hV2h f(x)dx = (4909e + 4,4649i + 2,0829 

J 
10,395 

- 112pm + 694)1 

'3h 

( 

f(x)dx = 
hV' 

(1059a + 7029 + 1026 + 
50493 

j 
o 

1155 

- 2794)! 



V 

I' 4h 8ht4h 
f(x)dx 10,395 (70 + 864 + 552 

+ 1,568 + 4llq,4)i 

3 Six-point Formulas, 

I f(x)dx = (103,436cp0 + 489'475p1 

J 

675,675 

- 243,80O + 145'°00Ç3 

-Sl7OO(4 + 8:O39p5), 

2h 4h/2h 
i f(x)d-x = (15,611 + 146,65O 
j 

675,675 

+ 64,525w - 
Z. 

- + 314p5)t 

13h =- (18,558 + 146,475 225,225 

+ l8O,9OOp + 117,450 

- 14,8504 + 1,917(p5 

4h 8hJ f(x)dx - 675,675 (5,422p0 + 5l,8OO(p 

) 

+ 44,6OOcp. + 93'200(pa 

+ 3lO75q - 



vi 

(5h 
f(x)dx (2,o36 + 11,725 

o 27,027 

+ 21400Ç + l24OOcp5 

+ 34lOO(4 + 8429Q5)I 

4,, Seven-point Formula, 

C6h 12hvi f(x)dx + lO,728p + 
J 0 225,225 

+ 2376Ocp3 + 

+ + 5,562q). 

Type C, 1(x) v'G(x), where 9(x) has two poles of the first 

order, 

1, Three-point Formula, 

fil 
= 

J 1 i/l-x 
((-i) + 2tp(0) + 

2, Five-poInt Forirrila 

cl (x) dx = {(-l) + 2(-.5) + 2(.5) + 
6 

5, Nine-point Formula 

il 
\ 

p(x)dx L_ [69-1 + l?6p(-.?ö) l26(-.5) 
j-1 

Vi-x2 630 

+ 336p(-25) 28O(0) + 336cp(p25) 

- l26p(.5) + l'76(.75) + 69cp(l)]. 
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