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A COMPUTERIZED APPROACH TO FINDING
THE MINIMUM SAMPLE SIZE FOR SINGLE
SAMPLE ATTRIBUTE SAMPLING PLANS

INTRODUCTION

Background

A problem frequently faced by the quality control

professional is the determination of acceptance sampling

plans that provide desired levels of protection for both

producer and consumer. The sampling plan must provide a

probability of at least 1-a of accepting a lot if the lot

proportion defective is at the acceptable quality level

( AQL ). The plan must also provide a probability of

acceptance of no more than S if the lot proportion def-

ective is at the rejectable or unacceptable quality level

( LTPD ). Typically, a is referred to as the "producer's

risk" and S as the "consumer's risk".

Much has been written concerning the determination

of a single sampling plan given pl, p2, a and S. Various

methods have been developed to aid the quality professio-

nal in sampling plan determination. Principally, the met-

hods have employed graphs, formulas, tables, or some com-

binations of these methods. The tables, however, are

restricted to the more popular a and 0 values.

The Problem

Let n denote the sample size and c the acceptance

number for a single sampling plan. The probability of
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acceptance, i.e. the probability of getting c or fewer

defectives in the sample, considered as a function of the

fraction defective, p, in the inspected lot ( or process )

is called the operating characteristic of the plan and

is denoted by P(p). We shall consider operating charact-

eristic computed from the binomial distribution.

Since n and c have to be integers it is usually not

possible to find a plan satisfying the requirement exactly.

Hald(1967) restates the problem such that the follow-

ing are satisfied: P(p1)> 1-a, P(p2)< c is as small

as possible, p1< p2 and 1-a > S. These modified require-

ments lead to a unique value of c and a range of values

for n. Since there is a choice of values for n, given c,

the problem now becomes one of selecting n based on some

criterion which is significant to the user. If, for

example, it is essential that the consumer's risk deviate

as little as possible from S with not too much concern

about a, then n is readily determined. Likewise, if for

some reason minimum deviation from a is of primary inte-

rest, another n would be selected. In fact, Hald proves

that the smallest n which satisfies these two require-

ments (i.e., minimum deviation from either a or (3) is the

n which minimizes the deviation from (3. Conversely, when

a minimum deviation from a is of prime concern, n is a

maximum. It follows that if the size of n is critical,

the choice is obvious. If, however, there is no preference

for either of these two characteristics, n may be deter-
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mined so that some linear combination involving the two

risks a and 8 is minimized. In particular, Hald discusses

two such combinations: the weighted sum P(p1) /a + P(p2)/8,

and P(p2)/P(p1) (3/a. The n which minimizes the latter

can be considered as a weighted average of the minimum n

and maximum n previously discussed. Other combinations

may be of interest and n could be determined accordingly.

Objective

One of the chief problems in starting a sampling

inspection procedure is to decide what size of sample is

needed. The question can be solved in various ways, the

most common being:

(1) by applying one of the standard sampling inspection

tables such as the Dodge and Romig Tables, the Military

Standard MIL-STD-105D, or the Philips SSS Tables;

(2) by choosing numerical values for a suitable set of

parameters (AOQL, Producer's or Consumer's Risk Point,

etc.) and constructing a corresponding sampling plan; or

(3) on the basis of an economic theory which takes into

consideration various costs.

All three methods have been applied with success.

However, although methods (1) and (2) may be convenient,

one can never feel certain that they will lead to what

must be considered an optimum sample size (Hamaker,1958).

The main purpose of this paper is to reconsider the

fundamental problem of finding an optimum (minimum)
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sample size in the light of recent papers on the subject.

A computer program will be written and tested, that will

accurately determine the minimum sample size without

resorting to an exhaustive search. The program will be

used to highlight accuracy problems existing with pre-

vious minimum sample size methods, in particular, Jaech's

method (1980) which is based on the methodology of Mr.

Larry Joe Stephens (1978) involving Borges' (1970) normal

approximation to the binomial.

Approach

Cost of inspection is directly proportional to the

sample size and is not dependent on the acceptance num-

ber. Since the stated problem leads to a unique value of

c and a range of values for n, minimizing c does not

guarantee that the sample size obtained is a minimum.

The computer program presented by Mr. William A. Bailey

(1980) provides accurate minimum sample size single

sampling plans that meet prescribed protection levels

for both producer and consumer. The routine is a mod-

ification of the search procedure developed by Guenther

(1969). It, however, involves an exhaustive search proc-

edure. Even with today's high speed computers, one is

justified in asking for better procedures than this.

In order to avoid an exhaustive search the Fibonacci

search technique will be used in the program. The search

will be conducted over an interval C
0
for the variable c
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that is known to contain the optimal solution (c ,n ).min min

For each point evaluated within this interval a Fibonacci

search will also be needed to determine the value of

nmin
, the least value of n such that the chosen value of

the consumer's risk 8 is not exceeded. The experimental

point is considered to be feasible when both the a and 8

values are not exceeded. Thus, an initial interval N0

known to contain n for each point in the interval C0
0

isalsoneeded.Sincenmin is an increasing function of

c, an initial feasible solution is all that is needed

to provide the intervals N0 and Co. Jaech's (1980) algo-

rithm will be used to help determine that initial fea-

sible solution. Once the intervals are established, the

least sample size for the problem can easily be deter-

mined. The optimal solution is that value of nmin

corresponding to cmin.
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BACKGROUND

Concepts And Terminology

The fundamental tool for analysis of a sampling plan

is the operating characteristic curve. Two types of curves

are recognized:

Type A. Sampling from an individual (or isolated) lot,

showing probability that the lot will be accepted plotted

against lot proportion defective.

Type B. Sampling from a process (such as the producer's

process which produces the lot), showing proportions of

lots which will be accepted plotted against process prop-

ortion defective.

The probability distributions utilized in plotting these

types of OC curves are inherently different. They also

depend upon the measure in which auality is expressed.

They include:

Attributes. A dichotomous (two class) classification of

units into defectives and nondefectives.

Counting. An enumeration of occurrences of a given char-

acteristic per given number of units counted.

Variables. The measurement of some characteristic along

a continuous scale.

The distinction is made between defect (an imperfection

great enough to be counted) and defective( a unit cont-

aining one or more defects, which cuuld be rejected for

any one of them).
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The probability distributions appropriate for the

derivation of operating characteristic curves of the two

types are shown in Table I (Schilling,1982).

Table I. Probability Distributions For Operating
Characteristic Curves

Characteristic Type A Type B

Attribute Hypergeometric Binomial

Count Poisson Poisson

Measurement Applicable cont-
inuous distribution
of measurement
involved

Choosing Quality Levels

The choice of quality levels with which to construct

a sampling plan must be made considering the seriousness

of the defects to which it is applied, the operating

characteristics of the resulting sampling plan, economic

consequences in terms of sample size, the ability of the

producer to meet the levels, and the needs of the con-

sumer which must be met. The construction of any sampling

plan involves a trade-off of these items.

Specifying A Plan

Discriminating use of sampling procedures demands

knowledge and specification of the characteristics of the
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plans to be employed. A primary consideration is the

protection afforded to both the producer and consumer.

Since two points may be used to characterize the OC curve,

it is customary to specify:

producer quality level

consumer quality level

producer risk

8 = consumer risk.

For single-sampling attributes plans, 1-a and 8 can

be determined directly from the distribution function of

the probability distribution involved. Fig. 2-1 shows the

relation of these quantities to the OC curve. Also shown

are the regions of acceptance, indifference, and rejection

defined by these points. Quality levels of pl or better

pl =

p2 =

a =

P
a

1.0Q

1-a

8

a

a lip
pl p2

041

ACCEPT- INDIFF- REJECTION
ANCE ERENCE

Fig. 2-1 Relation of pl, p2, 1-a and 8 to the OC curve.
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are expected to be accepted most of the time (> 1-a) by

the plan depicted. Quality levels of p2 or worse are

expected to be rejected most of the time (< 1-a) while

intermediate levels will experience decreasing probability

of acceptance as levels move from pl to p2. Occasionally,

only one set of parameters (pi,a) or (p2,a) is specified.

A single-sampling attributes plan may be specified by any

two of the following: (p1,0), (p2,13), n, c.

Single Sampling By Attributes

The single-sampling plan is basic to all acceptance

sampling. The simplest form of such a plan is single

sampling by attributes which relates to dichotomous sit-

uations, i.e., those in which inspection results can be

classified into only two classes of outcomes. This inc-

ludes go no-go gauging procedures as well as other class-

ifications, such as measurements in or out of specificati-

ons. Applicable to all sampling situations, the attributes

single-sampling plan has become the benchmark against

which other sampling plans are judged. It is employed in

inspection by counting the number of defects found in the

sample (Poisson distribution) or evaluating the proportion

defective from processes or large lots (binomial distrib-

ution) or from individual lots (hypergeometric distributi-

on). Single sampling is undoubtedly the most used of any

sampling procedure.
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Implementation of an attribute single-sampling plan

involves taking a random sample of size n from a lot of

size N. The sample may be intended to represent the lot

itself (Type A sampling) or the process used to produce

the lot (Type B sampling). The number of defectives (or

defects) d found is compared to an acceptance number c. If

the number found is less than or equal to c, the lot is

accepted. If the number found is greater than c, the lot

is rejected.

Sampling plans are frequently used in consort to

produce levels of protection not attainable by any of the

component plans individually. Such combinations of plans

are called sampling schemes or sampling systems. Sampling

plans are the basic elements of sampling schemes, while

sampling systems may be considered to involve a grouping

of one or more sampling schemes (Schilling,1982).

Attribute sampling schemes include the tables of AOQL

plans prepared by Dodge and Romig (1959), which resulted

in a stated AOQL with minimum total inspection when used

as directed with 100 percent inspection. Many schemes,

however, are included in the AQL systems. AQL refers to the

acceptable quality level, i.e., what has been called the

producer's quality level for a single plan. These systems

are intended to be applied to a stream of lots. Such plans

specify an upper limit on quality, the AQL, not to be ex-

ceeded by the producer without penalty of an excessive num-
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ber of rejected lots. That is, for levels of quality less

than the AQL, rejections will be relatively infrequent,

say less than 1 in 10, while for levels of quality in

excess of the AQL, rejections will be more frequent, say

more than 1 in 10. This is achieved by switching back and

forth between the plans included in the system. Tighter

plans are used when quality levels are shown to be poor,

while looser plans involving small sample sizes are uti-

lized when quality is shown to be good. Over a continuing

supply, schemes can be devised to incorporate the best

properties of the plans included as elements. Frequently,

schemes are selected within a system in relation to the lot

size involved.

MIL-STD-105D(1963) combines several individual samp-

ling plans in schemes constructed to employ economic, psy-

chological and operational means to motivate the producer

to sustain acceptable quality levels. The procedure for

switching between plans is essential to the system; it is

so designated as to exert pressure on the producer to take

corrective action when quality falls below prescribed lev-

els and to provide rewards, in terms of reduced sample size,

for quality improvement. The standard ties together sets

of three attribute sampling plans, each at a different

level of severity, into a unified procedure for lot accept-

ance through the use of its switching rules. These action

rules determine the level of severity to be employed dep-
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ending on the level of quality previously submitted. Thus,

inspection of a succession of lots is intended to move

among the specified set of tightened, normal and reduced

sampling plans as quality levels degenerate or improve.

Switching between tightened and normal plans is made man-

datory by the standard, while the use of reduced plans is

optional. The MIL-STD-105D, as such, does not allow for

application of individual plans without use of the swit-

ching rules, since such an approach can lead to a serious

loss of protection from that achieved when the system is

properly applied. Quality levels are specified in terms of

acceptable quality level (AQL) for the producer, while

consumer protection is afforded by the switching rules

which lead to tightened plans when quality is poor.

Most Economical Sampling Schemes

In discussions on the application of schemes, parti-

cularly those involving the choice of a producer's or

consumer's risk, mention is often made of the general

considerations that govern the various choices to be made-

for example, the consumer's risk should be very low if the

acceptance of unsatisfactory batches could cause much dam-

age. Attempts have been made to give these considerations

quantitative expression by dealing with the various costs

involved.

"Decision costs" depend on what is done with rejected



13

effective articles- whether, for example, they are scrapped

or sent back to the producer- and on the damage that can

result from the utilization of accepted defective articles.

Generally, the larger the sample the smaller is the deci-

sion cost. Further, we need to know the sampling cost.

Since the sample is defined by the scheme, the total

sampling cost per batch can be calculated. These two, the

decision and sampling costs are in principle, calculated

for a range of schemes involving samples of different size,

and the schemes for which the sum of the two costs is a

minimum is the most economical scheme (Tippet,1958).

It seems that the attempts that are being made to put

acceptance sampling on an economic basis are important.

Control of quality by inspection is important and inspect-

ion often adds substantially to manufacturing costs; oper-

ating efficiency requires that the economically optimum

degree of sampling should be adopted.

Review Of Literature

The literature on the subject of acceptance sampling

is extensive, scattered, and somewhat confusing (Tippet,

1958). The contributions Professor Harold F. Dodge have

been chronicled and are represented in the Dodge Memorial

Issue of the Journal of Quality Technology (July, 1977).

Professor Dodge, as a member of that small band of quality

control pioneers at the Bell Telephone Laboratories of the



14

Western Electric Company, is considered by some to be the

father of acceptance sampling as a statistical science.

His paper, published in four parts (Dodge,1969,1970) out-

lines how the LTPD, the AOQL, the AQL and the CSP systems

of plans and some other plans came into being over four

decades, reviews the growth of concepts during that period

and discusses a number of factors that influenced the dev-

elopment of the sampling inspection plans and tables that

are in common use today.

Procedures are also available for determining so-

called two-point single sampling plans for specified

values of pl, p2, a and 8. Five such procedures that

relate to the derivation of plans are indicated in Table II

(Schilling, 1982).

Factors for constructing of single sampling plans

are available in the literature which are based on the

Poisson distribution and which provide excellent approx-

imations to the binomial sampling situation as well.

These include the original approach of Peach and Littauer

(1946) together with the work of Grubbs (1949) and Camer-

on (1952) and the tabulations by the U.S. Army, Chemical

Corps Engineering Agency (1953). These so-called unity

values can be easily used to construct and evaluate plans

on the basis of the operating ratio (R=p2/pi). The theory

of construction of unity values is explained by Duncan

(1974).
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Table II. Procedures For Determining
Single Sampling Plans

Type Plan

Type B
(defectives)
(defects)

Method

Table of Poisson
unity values

Type B Binomial
(defectives) nomograph

Type A f-Binomial
(defectives) nomograph

Type B
(defects)
(defectives)

Thorndyke
chart

Type A Hypergeometric
(defectives) tables

Use

Table for derivation of
plan given operating ratio
R for tabulated values of
a,(3, and c. Poisson approx.
to binomial for defectives.
May be used as exact for
defects.

Nomograph for derivation
of plan given a,(3, pl, p2.
Uses binomial distribution
directly. Hence exact for
defectives.

Uses binomial nomograph
to derive Type A plans
given a,(3, pl, p2 through
f-binomial approx. to
hypergeometric distrib.
Given lot size gives
approximate plan for
defectives.

Procedure for use of
Thorndyke chart for
Poisson distribution to
derive plan given (1,, pl,
p2. Exact for defects.
Approximate for defectives
through Poisson approx.
to binomial.

Iterative procedure for
derivation of exact
hypergeometric plan given
N, a, (3, pl, p2 using
Lieberman-Owen tables of
hypergeometric distri-
butions.
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The Larson (1966) nomograph can also be used to de-

rive single sampling attributes plans. The nomograph can

also be used to evaluate the operating characteristic

curve of a plan. The Larson nomograph is based on the

binomial distribution and so will allow direct evaluation

of Type B plans for fraction defective. It allows deriv-

ation and evaluation of plans for values of probability

of acceptance not shown in the Cameron tables. It provides

a reasonable and conservative approximation (Schilling,

1982) for the derivation of plans when the hypergeometric

distribution should apply and the binomial approximation

to the hypergeometric distribution is appropriate. A graph-

ical trial-and-error approach using Larson's nomograph

(which is designed for solution of cases in which both

pi and p2, or alternately, 1-p1 and 1-p2, are smaller than

0.5) has been outlined by Ladany (1977) for the derivation

of single-stage attribute sampling plans in which either

the Acceptance Quality Level or the Lot Tolerance Fraction

Defective is larger than 0.5.

Although somewhat more complicated than Larson's bi-

nomial nomograph, the Thorndyke (1926) chart, as given in

Dodge and Romig (1959), may be used to derive a single-

sampling attributes plan. Burges (1948) describes the

procedure.

The operation of the MIL-STD-105D has been described

in detail by Hahn and Schilling (1975). The background of
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MIL-STD-105D and its development of the 105 series is

given in a paper by Pabst (1973). It explains some of the

intricacies of the system and its development. The theory

behind its structure is well presented in a paper by Hill

(1973). An extensive and informative investigation of the

properties of MIL-STD-105D is presented in a paper by

Stephens and Larson (1967). Scheme properties are also in-

vestigated by Schilling and Sheesley (1978) and measures

of performance tabulated. A set of plans indexed by limit-

ing quality and compatible with MIL-STD-105D (same lot

size classes and sample sizes) has been proposed by Duncan,

Mundel, Godfrey and Partridge (1980). The proposed table,

which simplifies the selection of a limiting quality plan,

can be used independently or in conjunction with MIL-STD-

105D and associated standards.

Hald and Kousgaard (1967) have constructed tables to

provide simple and comprehensive means for computing the

binomial operating characteristic of single sampling plans

or, equivalently, to find confidence limits for p in the

binomial distribution. Accurate approximation formulas

are available for c > 50. An advantage of the table as

compared to other tables of the binomial distribution is

that for c < 50 interpolation is only required with

respect to n for determining p.

Among the basic concepts in the theory of sampling

inspection the producer's and consumer's risks are the
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most widely used for characterizing systems of sampling

plans. A comprehensive theory based on these concepts for

the case of single sampling by attributes is presented in

a paper by Hald (1967). The requirements defining a system

of sampling plans are usually of such a nature that no

explicit solution exists for the sample size and acceptance

number. Hald supplements the exact (implicit) solutions

by asymptotic solutions which give a better insight into

the basic properties of the system.

Most single sampling plans assume that the lot size

is large compared with sample size, and the calculated

operating characteristic curves are strictly valid only

under these conditions. In his article Hamaker (1959)

describes a simple method for finding the sample size

and acceptance number number appropriate to a lot of

finite size, so that the resulting operating character-

istic curve closely approximates to that for a given

plan with an infinite lot.

A paper by Hald (1967) gives a survey of solutions

to the problem of determining a single sampling plan.

Solutions corresponding to Poisson, binomial, and hyper-

geometric operating characteristics are given, and the

accuracy of the approximations is given by numerical

investigations.

The administration of acceptance sampling plans

has been greatly simplified by the computer. Data bases
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can provide an excellent source for quality history,

while individual computer programs can be used to set up

and evaluate sampling plans and even to sentence ind-

ividual lots.

A number of computer programs useful in acceptance

sampling, have been published in the literature. Among

these include GRASP (Schilling, Sheesley and Nelson,

1978) that will evaluate an arbitrary single, double, or

multiple sampling plan using hypergeometric, binomial,

Poisson, or normal probabilities. An option is also

included that will permit the calculation of the fraction

defective values associated with arbitrary specified values

of probability of acceptance. A program by Snyder and

Storer (1972) is based on Hald's (1967) paper and considers

only the Poisson distribution. Hailey's program (1980),

however, provides sampling plans based on either binomial

or Poisson distribution and involves the use of an exhaus-

tive search procedure developed by Guenther (1969).

In the following two sections summaries of two

approximate methods developed recently for determining

sample sizes and acceptance numbers for single sample

attribute sampling plans are presented.
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Summary Of Stephens' Paper

In his paper, Stephens (1978) uses the normal app-

roximation to the binomial distribution developed by

Borges (1970) with error term of order 1/n to find the

sample size and acceptance number in a single sample ac-

ceptance sampling plan when two points on the operating

characteristic (OC) curve are specified.

Borges' approximation can be described in the fol-

lowing way:

Then,

k
B (k;n,p) = Y_. nC. .(1-p)n-i (1)

i=0 1

Yk
= (pq)

-1/6
.(n+1/3)

1/2
.

(k+1/6)/(n+1/3)
f (s(1-s))

-1/3
.ds

P

x 2

cp(x) = f (1/(27)
1/2

).e
-t /2

.dt
CO

B (k;n,p) = (i)(Yk+1/2)

(2)

(3)

(4)

Let (p1,1-a) and (p2,8) be the two points specified on

the OC curve. It is desired to find the sample size, n,

and the acceptance number, c, such that,

B (c;n,p1) = 1 -a (5)
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B(c;n,p2)

Suppose q5(1,11) = 1-a and (u2) = 8

Since cb(v
c+1/2) 1-a =c1)(1_11) at pi_ and-

"Yc+1/2) 4)(u2) at p2, it follows that

1 '

flq1)-1/6.(n+1/3)1/2.

(c+2/3)/(n+1/3)
f (s(1-s))-1/3.ds (7)

pa.

(p2g2)-1/6.(14.1/3)1/2.

(c+2/3)/(n+1/3)
I (s(1-s))

-1/3
.ds (8)

P 2

Let g(s) = (t(1-t))
-1/3

dt.
0

Stephens' table (see Appendix B-2) was formed using a

generalized Gauss quadrature subroutine and contains

values of g(s) for s, 0(0.001)1. Then expressions (7)

and (8) may be written as

1-11 (Plql)
-1/6 1/2

(n+1/3) Ig((c+2/3)/(n+1/3))-g(p
1
)1

....(9)

-1/6 1/2
2 (P2q2) (n+1/3) {g((c+2/3)/(n+1/3))-g(p

2
)1

....(10).

From expressions (9) and (10) the following may be

obtained:

1-11(Plql)

1/6
-1-12(P2q2)

1/6
=(n+1/3)

1/2
{g(P2)-g(P1)/



or, upon solving for n,

n = f(u
1
(p

1
q
1

)

1/6
-u

2
(p

2
q
2

)

1/6
).:(g(p2)-g(p1))1

2
-1/3
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(12)

The variable n may be found from equation (12) and

then c may be found from expression (9) or (10). Stephens,

however, gives no guidance on how to round the resulting

acceptance number to an integer and, in fact, avoids

dealing with this issue by generally treating only those

examples in which the calculated acceptance number is

close to an integer.

Summary of Jaech's Paper

Jaech (1980) indicates in his paper how Stephens'

approach may be extended to provide integral solutions

using an iterative calculation procedure. The problem is

as formulated by Hald (1967) and may be stated as follows:

Determine (n,c) so that P(pl) > (1-a) , P(p2) 8,

and c is as small as possible, where pl < p2 and

(1-a) > 8.

In obtaining an integral solution by extending

Stephens' methodology, the first step is to round up the

calculated acceptance number c to the next integer, c0.

A decision is then made either:

a. to control the value for a close to its design value

and choose the sample size such that the actual value
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for 6 is smaller than the design value; or

b. to control the value for 6 close to its design value

and to choose the sample size such that the actual value

for a is smaller than the design value.

Hald (1967) proves that the sample size under choice b

will always be smaller than that under choice a.

The following simplifying notation is introduced:

no = initial sample size using Stephen's equation

(12)

so = (c+2/3)/(n0+1/3)

n. = ith iteration sample size.

The sample sizes nl, n2, n3,... will be defined to be

integers. The iterative procedure to be given will stop

either when n
k

and nk+1
are the same value or when they

flip-flop back and forth between two integers upon

successive iterations, in which case the larger integer

becomes the sample size. The iterative procedure is as

follows:

1. Calculate n
1
as the smallest integer larger than

or equal to

(c
0
+2/3)s

0
-1/3.

2. Calculate g(si) from the equation

g(si) = Pi{ pi(1-pi)} 1/6 +g (Pi)

(n1 +1/3)
1/2

(13)

using i=1 under choice a, control of producer's
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risk, and i = 2 under choice b, control of con-

sumer's risk. In (13), g(pi) is read from Steph-

ens' table (see Appendix B-2), while pi is defined

by (1)(111) = 1-a and cp(p2) = f;, where cp(x) is the

cumulative normal ( expression (3) ).

3. Find si from Stephens' table, given g(s1) from

step 2.

4. Calculate n
2
as the smallest integer larger than

or equal to

(c +2/3)/s
1
-1/3.

5. Calculate g(s2) using equation (13) with nl repl-

aced by n2

6. Find s
2

from Stephens' table

7. Calculate n
3
as the smallest integer larger than

or equal to

(c
0
+2/3)/s

2
-1/3.

The iterative procedure indicated in these steps is con-

tinued until 'convergence' to a final sample size is

obtained.

Jaech also suggests that an alternative solution

reported by Hald (1967) may be more conveniently applied

to find the required sample size once Stephens' acceptance

number is derived and appropriately rounded. Since both

Stephens' and Hald's methods are based on approximations,

they do not necessarily yield the same results.
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THE METHODOLOGY

Development Of The Algorithm

The problem, as formulated by Hald (1967), in the

following way:

Determine (n,c) so that P(pi) > 1-a, P(p2) < a,

and c is as small as possible, where pl < p2 and

1-a >

leads to a uniquely determined value of c and an interval

for values of n, all satisfying the conditions. Thus,

minimizing c does not imply that n is minimized.

For the binomial case,

P(Pl) = B(c;n,pi) > 1-a (designated as a-constraint

henceforth)

P(p2) = B(c;n,p2) < (designated as (3-constraint

henceforth).

For a given value of c, B(c;n,p) is a decreasing function

of n, and it will be possible to determine the least value

of n (nmin) satisfying the (3-constraint. It will also be

possible to determine the greatest value of n (nmax )

satisfying the a-constraint if B(c;c+1,p1) > 1-a. Thus,

to satisfy both constraints, nmax must be greater than or

equal to nmin. Also it may be stated that nmin (and nmax)

increases as c increases. Consequently, the least feasible

solution (nmin) for the problem is the least n correspond-

ing to cmin, and the problem may be restated in the foll-

owing way:
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minimize n

subject to, B(c;n,pi) > 1-a

B(c;n,p2) <

P1 < p2

1-a > S.

The variation of (nmax -nmin ) with c (see Appendix B-3)

seems to suggest that c is feasible for all values of c

greater than
cmin. This has been found to be very diff-

icult to prove mathematically, using the cumulative bino-

mial distribution. However, in this paper, this will

be shown using the Poisson approximation to the binomial

as follows:

Theorem3.1:Ifc=c.is the least feasible solutionmin

to the stated problem, then any value of c > cmin is also

feasible.

Proof:

B(c;n,p) = P(c;np)

P(c;np) = P(X
2>2np); f = 2(c+1) (1)

2np
1

< x and 2np
2

> x
2

-13'
f = 2(c+1) (2)

2

a 1

(Hald, 1967)

2 /i.e. n = 2 and nmin
f31

2, f 2(c +1)...(3)Xl-max Xa/ P1

Let c = c
1
be a feasible solution. Then,

(nmax)1 (nmin)1

From (3), it follows that



2 2
(X(1/2p1)1-(x1_13/2p2)1 > 0

.or 1/pi - (1/p2)(Xi_Vxo42),_ > 0

Let c
2

= c
1

+ 1.

(4)
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Since x21_13/x is a decreasing function of c (Hald, 1967),

2 2 v2 /21
(X1_8/Xa)2

and it follows from (4) that

21/pi (1/p2)(Xl_/Xe2 > 0

This implies that

(n
max

)

2
(n )

min 2.

Hence, c = c
2 is also feasible and it can easily be inferr-

ed that this proves the theorem.

The Fibonacci search technique (see Beveridge and

Schechter, 1970) may be used to find the optimum value of

an unconstrained objective function of a single variable,

a function that is unimodal and bounded over a fixed

intervalLvItmaYbellsecitodeterminellininfor a given

c as follows:

Let (5 = 1 if the a-constraint is satisfied

= 0 otherwise.

If n
0

is a value of n known to satisfy the a-constraint,

the search interval is as shown in Fig. 3-1.
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1

0

d=1

nmin

Fig. 3-1: 6, as a function of n.

n
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(5 is a step function consistent with that described in

the following section (IIIc), and min
can easily be deter-

mined using the Fibonacci search technique.

In order to determine cmin, the variable y may be

similarly defined:

Let y = 1 if c is feasible (i.e. nmin satisfies the a-

constraint)

= 0 otherwise.

If c
0
is a value of c that is known to be feasible, the

search interval is as shown in Fig. 3-2.

1 y=1

0 cmin c
0

Fig. 3-2: y, as a function of c.
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For each experiment, nmin
is first determined and then

tested for feasibility (a.- constraint). Since nmin in-

creases with c, n=(nmin )

c
may be used as the upper bound

0

for the search intervals for determining nmin for all

c < c0. Thus, given an initial feasible solution (c0,n0),

the optimal solution (cmin,nmin) can be easily determined

using the Fibonacci search technique. Since n and c are

discrete variables, it may be necessary to add fictitious

locations at one end so that the interval length corres-

pond to a Fibonacci

nmin given (co,no)

6

1

0

Fig.

number.

is shown

The interval for determining

in Fig. 3-3.

6=1

c0 +1

3-3:

n n0
min

Search interval

F nN

for n
min'

n
()

n
min

.

Only experiments that fall between c0 +1 and n0 need to

be evaluated since S = 0 for n < c0 and 6 = 1 for n > n0.

The search interval for determining cmin is shown

in Fig. 3-4. In this case, y = 1 for c > c
0
and only

experiments that fall between 0 and c
0
need to be eval-

uated.
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Y

1

0

y=1

c c F
N'min 0

c

Fig.3-4: Search interval for c
min'

c
0 > c

min
.

Jaech's algorithm (see Sect. IIh) will be used to det-

ermine the initial solution. However, due consideration

must be given to the fact that the algorithm does not

guarantee a feasible solution. The value of n
0

so obtained

may not satisfy the 8-constraint, in which case, the next

feasible n, where n is a Fibonacci number greater than n0

is determined (see Fig. 3-5). Also, upon determining

(n
min )

0

it may be found that the a-constraint is notc

satisfied, in which case, the next feasible c, where c

is a Fibonacci number greater than c0 is determined (see

Fig. 3-6).

6=0 for 6

n n
0

,

6=1 for 1

n F
N

.

0

(n )

min n=F
N 6=1

i

c+1 n
0

F
N n

Fig. 3-5: Search interval for nmin,
n0

nm .

0 in.
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Y=0 for
c c

o

y=1 for
c>F ,

N.

Y

1

0

1=1

0
c c

ml
.

n
c=F

N'
c

Fig. 3-6 Search interval for c
min'

c
0

< cmin .

Interval eliminations for the Fibonacci search is consi-

dered in the following section.

Interval Elimination

*
Suppose we seek the location x where y(x) achieves

*
its minimum value y in the unit interval 0 < x < 1.

If

xl < x
2

< x*

Y1

and if

x*

<

<

Y2

x
1

<

<

Y*

x2

Y* > Y1 > Y2

y(x) may be said to be strictly unimodal. Consider two

points xl < x2. The possible outcomes are shown in Fig. 3-7:

Yl > y2, yl < y2, or y1 = y2. When y1 > y2, the minimum

cannot lie to the left of yl and we can conclude that

x* > xl. Similarly, yl < y2 implies that x* < x2. When

the two outcomes are exactly equal ( y1 = y2), the minimum

must lie between the points ( xl < x* < x2).
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X
2

Fig.3-7: Possible outcomes of two experiments.

For the case of the step function 6(d), where

6 = 0, d < d*

6 = 1, d > d*,

the possible outcomes of two experiments d1 and d2 are

shown in Fig. 3-8.

1 6=1

0 d
1 2

FN b"' a
1

d
2

6=1

d* F
N

6=1

Fig. 3-8: Possible outcomes of two experiments
for the step function 6.

Interval eliminations are so chosen that at least one of

the experiments becomes an end point of the next interval

so as to facilitate the use of the Fibonacci search tech-

nique.

The Algorithm

The algorithm to determine the minimum sample size may

now be stated as follows:
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Step 1. Determine (n0, c0) using Jaech's algorithm.

Step 2. Test 8-constraint for (n
0'

c
0
).

If 8-constraint is satisfied, go to Step 4.

Step 3. Determine least N such that the Fibonacci number

F
N
>n

0 satisfies the 8-constraint. Go to Step 5.

Step 4. Determine least N such that FN>no.

Step5.Determinenmin (Fibonacci search)

Step 6. Test a-constraint for (nmin,
c0).

If a-constraintis not satisfied, go to Step 11.

Step 7. Determine least NC such that FNc>co.

Step 8. Determine (nmin,cmin) using Fibonacci search

given initial feasible solution (nmin,c0) from

Step 6 or (n
min ,cFNC ) from Step 17.

Step 9. If cmin 1, the optimal solution is (nmin,cmin)

Step 10. If cmin=1, determine (nmin,0) given (nmin,l)

using Fibonacci search. If (nmin,0) is a feasible

solution, it is also optimal. Otherwise, optimal

solution is as obtained in Step 9.

Step 11. Determine least NC such that FNc>co.

Step 12. Determine nF , c= FNc using Jaech's algorithm.
NC

Step 13. Test 8-constraint for (nF , c=FNC)*NC
If 8-constraint is satisfied, go to Step 15.

Step 14. Determine least N such that FienF satisfies
NC

the 8-constraint. Go to Step 16.

Step 15. Determine least N such that FN>np .

NC
Step16.Determinen,c=F .

min NC
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Step 17. Test a-constraint for (n
min,

)

mill' F
NC

If a- constraint is satisfied, go to Step 8.

Step 18. Set F
NC

=F
NC+1.

go to Step 12.

Gauss's quadrature formula (see Engels, 1980) will

be used to determine the values of the integrals (those

corresponding to Stephens' table and the standard normal

tables) needed to be evaluated when using Jaech's algo-

rithm. The abcissas and weights (David and Rabinowitz,

1958) are listed in Appendix B-1. Inverses of these

integrals can be determined using the Fibonacci search

technique involving 16 experiments (FN=1597). The search

interval for the x-values in Stephens' table (Appendix B-2)

is 0 to 1 and the region of uncertainty is 1/FN = 0.000626.

The search interval for determining the standard deviates

IJ

1
and TA

2
is taken to be 0 to 3.5 and its region of

uncertainty is 3.5/FN= 0.00219.
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EXPERIMENTAL ANALYSIS

The FORTRAN program "Aime" (see Appendix A-1) incor-

porates the algorithm developed in the preceding chapter.

However, since the proof of optimality given in Chapter III

is based on the Poisson approximation, it cannot be stated

with absolute certainty that the program will always pro-

duce accurate solutions. Thus, in order to verify the acc-

uracy of "Aime", an exhaustive search routine is also

needed. A computer program to obtain minimum sample size

in such a manner may be based on the following routine:

1. The user supplies the desired 1-a = P(acceptancelp1)

and 6 = P(acceptancelp2).

2. Set n = 1 and c = 0, where n = sample size and c =

acceptance number (# defectives).

3. Calculate P(acceptancelp2, n, c).

4. If P(acceptancelp2, n, c) < 6, go to step # 5.

Otherwise, increase n by 1 and return to step # 3.

5. Calculate P(acceptancelpi, n, c).

6. If P(acceptancelpi, n, c) > 1-a, the minimum sample

size plan (c , n ) has been found. The plan n =
min min

current value of n and c = current value of c satisfies

the requirements.

7. If P(acceptancelpi, n, c) < 1-a, increase c by 1 and

go to step # 3.

The routine just described may be modified such that nmax

is also determined for a given c. Then, the optimal solut-
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ion is obtained when n
max .--

n
min

. Five examples to illus-

trate the use of such a routine is given in Appendix B-3.

For the experimental analysis twenty-five test prob-

lems (see Table III) were chosen. Some of these were taken

from available literature, viz., those of Stephens'(1978),

Jaech's (1980) and Hald's (1967). Most previous papers on

the problem have provided tables and appropriate solutions

with special regard to the conventional values of a and 6,

viz. a = 0.05 and = .10. It will be noted that most of

the chosen values of a, 6, pl and p2 are not usually the

kind of values that are chosen in practice. Values that

are greater than 0.5 are also included in the set of test

problems. However, they all do satisfy the constraints

p
1

< p
2

and 1-a > 6 (see Sect. IIIa), and will be retained

for illustrative purposes.

Table III also lists the solutions obtained using the

methodologies of Stephens (see Sect. IIg) and Jaech (see

Sect. IIh). These solutions were obtained using a pocket

calculator and the required tables. Stephens gives no guid-

ance on how to round the resulting acceptance number (and

sample size) to an integer. The solutions listed in the

table were obtained by rounding to the nearest integer.

Jaech's method involves the use of Stephens' approach.

However, he suggests rounding the calculated acceptance

number to the next integer. This rounding procedure is also

adopted in the calculation of the sample size. If the



Table III. Solutions To Test Problems.

Test Prob.
No.

Problem Parameters

P1 P 2

Stephen's
Solution

c n

Jaech's
Solution
(using
tables)
c,n

Initial
Solution
of prog.
Aime
c,n

Optimal
Solution
of prog.
Aime
c,n

1 .1403 .0947 .015 .210 0,11 1,18 1,18 0,10
2 .0582 .0965 .040 .340 1,10 2,15 2,15 1,10
3 .1400 .1041 .010 .140 0,16 1,22 1,27 1,26
4 .0529 .0935 .025 .240 1,15 2,19 2,21 2,21
5 .0439 .0913 .040 .250 2,20 3,24 3,26 2,20
6 .0471 .0908 .070 .310 3,20 3,25 4,25 4,25

7 .0760 .0980 .040 .200 2,25 3,35 3,32 3,32
8 .0250 .0980 .100 .270 9,50 9,47 9,51 9,50
9 .0490 .0810 .040 .160 4,51 5,53 5,58 4,50

10 ,2000 .6000 .200 .450 0,1 0,2 0,1 0,1

11 .6000 .2000 .500 .750 0,1 0,2 0,2 1,3

12 .3000 .4000 .450 .800 0,1 1,3 1,2 1,2

13 .0500 .1000 .100 .200 15,104 16,110 16,109 16,109
14 .0500 .0500 .100 .400 4,19 4,21 4,21 5,24
15 .0500 .0500 .100 .500 3,12 3,14 3,13 3,13
16 .0500 .0500 .100 .900 1,2 2,5 1,3 1,3
17 .5000 .0100 .500 .900 2,5 2,6 2,5 2,5

18 .3000 .1000 .400 .495 37,89 38,91 38,91 40,95
19 .0300 .0850 .040 .140 6,76 7,84 7,84 7,84

20 .0100 .0010 .010 .100 4,146 5,159 5,160 5,159
21 .0483 .0870 .075 .600 1,5 2,8 2,8 2,8

22 .0961 .0916 .020 .380 0,5 1,9 1,9 1,9

23 .0500 .0500 .100 .490 3,12 3,12 3,14 3,14

24 .0050 .0100 .010 .060 7,265 8,286 8,285 8,286
25 .0900 .0500 .100 .200 15,111 15,112 15,112 16,118
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rounding procedure adopted for both methods were the same,

the acceptance numbers obtained would have also been the

same. Since this is not the case, one can expect the accep-

tance number obtained by Jaech's method to be greater than

or equal to that obtained by Stephens' method. In fact, for

the 25 test problems, Jaech's method produced higher accep-

tance numbers for 16 of them (64%).

Jaech's iterative procedure will stop when nk and nk4.1

are the same value or when they flip-flop back and forth

between two integers upon successive iterations, in which

case the larger integer becomes the sample size. Computa-

tional experience in determining the solutions using tables

has uncovered one more possibility, i.e., nk and nk+3
might

also be the same. This possibility was also added to the

set of stopping rules when the FORTRAN program "Aime" was

written.

The output of "Aime" lists the initial solutions that

are obtained using Jaech's method as well as the optimal

solutions. These are listed in the last two columns of

Table III, respectively. One would expect the initial solu-

tions of "Aime" to be the same as those obtained using

Jaech's method and the necessary tables. However, the init-

ial solutions of "Aime" are dependent on the number of ab-

cissas and weights of the Gaussian quadrature subroutine as

well as on the number of experiments in the Fibonacci search

subroutine for determining the inverses of the integrals

(see Sect. IIIc). Thus, even though the initial solutions
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of "Aime" were obtained using Jaech's algorithm, they dif-

fer slightly from the values obtained using a pocket cal-

culator and the required tables. These discrepancies may

be reduced by increasing the number of abcissas and weights

in the Gaussian quadrature subroutine and/or by increasing

the number of experiments in the Fibonacci search subrout-

ine. This would, however, give rise to considerable incre-

ases in computational times.

Table IV lists the number of exact solutions, the

number of feasible solutions and the number of feasible c

values (i.e. c > cmin
) for the methodologies of Stephens

and Jaech (using tables) as well as for the initial solut-

ions of program "Aime". Exhaustive searches confirm that

the optimal solutions (see Table III) obtained by program

"Aime" are all accurate. As can be seen, the number of

Table IV. Number of Feasible and Exact Solutions

Stephens' Jaech's Initial
Method Method Solution

(Using of Prog.
tables) "Aime"

No. of Feasible Solutions: 7/25(28%) 15/25(60%) 18/25(72%)

No. of Feasible c Values: 8/25(32%) 20/25(80%) 21/25(84%)
(c > cmin

No. of Exact Solutions: 4/25(16%) 5/25(20%) 13/25(52%)

exact solutions obtained using approximate methods are few

in number- only four (16%) using Stephens method and five
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(20%) using Jaech's method. Program "Aime" did considerably

better in producing initial solutions that are exact (13/25

or 52%). The program also produced a greater number of fea-

sible solutions (72%) compared to Jaech's method (60%) and

consequently, increases in the number of abcissas and wei-

ghts of the Gaussian quadrature subroutine and/or in the

number of experiments for the Fibonacci search subroutine

are not warranted. It may be noted that the acceptance

numbers of the initial solutions of program "Aime" do not

differ significantly from those obtained using tables (see

Table III). The same values are obtained for all but two

test problems (nos. 6 and 16). Thus, the discrepancies are

mostly in the values of the sample sizes obtained.

In order to compare a solution obtained using one of

the approximate methods with the corresponding optimal sol-

ution of program "Aime", the decrease in sample size, An,

needed to make the approximate solution optimal may be com-

puted. The numerical value of An is positive only if the

approximate solution is feasible. Also, in order to high-

light the inaccuracies in using the approximate methods,

the absolute value of An, viz. lAnI, may also be computed.

Appendices B-4 and B-5 list the values of An obtained when

comparing the solutions of Stephens and Jaech, respectively,

with the optimal solutions of program "Aime ". The values of

An have also been computed for the initial solutions of

"Aime" and are listed in Appendix B-6. Values of the average
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reduction in sample size An, the average absolute differ-

ence between sample size lAnl, the average percentage

reduction in sample size An/n, and the absolute value of

the average percentage difference between sample size

IGn/n1 have also been computed. Corresponding variances

are also listed in the appendices. A similar analysis of

the acceptance numbers can be carried out by determining

the reduction in acceptance number, Ac, in a similar fash-

ion. The values of Ac obtained for the three sets of

approximate solutions are listed in Appendix B-7.

A two-tailed test of hypothesis is conducted to deter-

mine whether the average reduction in sample size is sig-

nificantly different from zero. The null hypothesis, there-

fore is H0: do = 0, and the alternate hypothesis is H1:

6n 0, where 5n is the average reduction in sample size of

the population. A level of significance a = 0.05 is chosen.

Similar tests are also conducted for the other means that

are considered in this chapter, viz., 16ni, 6n/n, 16n/nH

and do (the corresponding population means).

For Stephens' method, the average reduction in sample

size obtained is An = -3.92 (lAn1 = 4.08). The value is

negative because the number of feasible solutions obtained

were few in number (7/25). The two-tailed test of hypothesis

(see Table V) indicates that the mean sample size reduction

of the population, Sn, is significantly different from zero

(level of significance a = .05). Two-tailed tests of hypo-

theses of the various means for Stephens' method are summ-



arized in Table V. The tests indicate that all the means

considered are significantly different from zero. It must

Table V. Two-Tailed Tests of Hypotheses (a =.05 Level of

Siginificance)- "Aime vs. Stephens' Method

H
0

H
1

--

6n=0 (SnO

ISn1=0 16n10

Sn/n=0 (Sn/n0

IcSn/n1=0 16n/nI0

Ac=0 AcC)

Test
Statistic

T

+ to/2,n -1
+ t .025,n-1

-3.94025 -2.064

3.948 2.064

-3.158 -2.064

3.2969 2.064

-4.884 -2.064
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Reject

H
0
?

Yes

Yes

Yes

Yes

Yes

Considering only positive reductions: (n = 7)

6n=0 STIO 1.5490 2.447 No

do /n =0 (Sn/n0 1.2355 2.447 No

be noted that the average decrease in acceptance number Ac

is also negative (Ac = -.72). From the results one can say

that the discrepancies between the solutions of Stephens

and "Aime" (exact solutions) are not readily explainable by

chance, within the chosen significance level a = .05. If

only positive reductions are considered, then An = .286

(n = 7) and the two-tailed test indicates that the null

hypothesis should not be rejected, i.e. the sample result

is compatible with the null hypothesis value ón = O. This

is also true in the case of the population percentage red-
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uction in sample size (5n/n, i.e. the null hypothesis H0:

on/n = 0 is found to be tenable.

In the case of Jaech's method (using tables), the

average reduction in sample size was found to be An = .52

(lAn1 = 2.2). The two-tailed test of hypothesis (a = .05)

indicates that the reduction is not significant. Table VI

summarizes the two-tailed tests of hypotheses concerning

the various means obtained by comparing Jaech's solutions

with the exact solutions. A test also shows that the perc-

Table VI. Two-Tailed Tests of Hypotheses (a = .05 Level of
Significance)- "Aime vs. Jaech's Method (Using
Tables)

HO H1
Test + t Rejecta/2,n-1Statistic
T

+ t H.025,n-1
H0?

6/-1=0 6110 .8584 2.064 No

Idn1=0 IdnI0 5.234 2.064 Yes

do /n =0 (5n/n0 1.2049 2.064 No

ISn/n1=0 IcSn/1110 4.589 2.064 Yes

6c=0 (ScO -.2721 -2.064 No

Considering only positive reductions: (n=17)

(5n=0 (SnO 3.2731 2.120 Yes

do /n =0 (Sn/n0 3.4762 2.120 Yes

entage reduction in sample size is also not significant.

However, solutions obtained by using Jaech's method are

significantly different from those of "Aime" (exact solu-
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tions) because the null hypothesis for the mean of the

absolute value of the difference in sample size (H0:16n1=0)

and the absolute value of the mean percentage difference

in sample size (H0:1,5n/n1=0) are both untenable. If one

were to consider only positive reductions, that would elim-

inate 8 of the 25 test problems having negative reductions

from consideration. In this case the mean reductions Sn

and 6n/n of the population are found to be significantly

different from zero. However, unlike in the case of Step-

hens method, the average reduction in acceptance number

(Ac = -.04) was found to be insignificant.

Table VII summarizes the two-tailed tests of hypothe-

ses concerning means for the initial solutions of program

"Aime".

Table VII. Two-Tailed Tests of Hypotheses (a = .05 Level
of Significance)- Optimal Solutions of "Aime"
vs. Initial Solutions of "Aime"

H0: H
1

: Test + ta/2,n-1 Reject
Statistic T + t H

.025,n-1 0'

6n=0 61.10 .9369 2.064 No

16n1=0 161110 3.3425 2.064 Yes

do /n =0 Sn /n0 5659 2.064 No

1611/n1=0 ISn/nI0 2.6923 2.064 Yes

Ac=0 Ac() -.2959 -2.064 No

Considering only positive reductions: (n = 20)

Sn=0 Sn=/0 2.4117 2.093 Yes

Sn/n=0 Sn/n0 2.1204 2.093 Yes
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Since the solutions and values of the means obtained

are close to the values obtained by using Jaech's method

(using tables), one might expect similar results for the

statistical tests. Comparing Tables VI and VII this is

found to be true. The average reduction in sample size

obtained in this case is An = .6 ( lAn1 = 1.8). This sample

result is compatible with the null hypothesis value of Sn =

0. Again, the reduction is significant when considering

only positive reductions in sample sizes (20 test problems).

The null hypotheses are also rejected when considering the

mean value of the absolute difference in sample size of

the population, 16n1, and the mean value of the absolute

percentage reduction in sample size of the population. The

average reduction in acceptance number, Ac, is identical to

that obtained for Jaech's method (Ac = -.04) and it is also

insignificant.
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SUMMARY- CONCLUSIONS- RECOMMENDATIONS

Summary

Several methods have previously been suggested for

determination of the sample size and acceptance number for

attribute sampling plans. If two points (such as (AQL,a)

and (LTPD,f3)) are specified for the OC curve, the sampling

plan must provide a probability of at least 1-a of accepting

a lot if the lot proportion defective is at the acceptable

quality level (AQL). The plan must also provide a probabi-

lity of acceptance of no more than 8 if the lot proportion

defective is at the rejectable quality level (RQL).

The methodologies of Stephens (1978) and Jaech (1980)

use the Borges normal approximation to the binomial dist-

ribution. Though the procedures to find the acceptance num-

ber and sample size are quite straightforward, one can never

feel certain that they will lead to what must be considered

an optimum (minimum) sample size.

A computer program to obtain minimum sample size single

sampling plans based on the binomial distribution was pre-

sented here. It was shown how the Fibonacci search technique

could be used to determine the optimal solution. Jaech's

algorithm was utilized to help determine the initial feas-

ible solution needed to establish the search intervals for

n and c. A proof of optimality was furnished that utilized

the Poisson approximation to the binomial distribution.
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The proposed method was tested to determine its

accuracy by obtaining optimal solutions through exhaustive

searches. The inaccuracies of both Stephens' and Jaech's

methods were also highlighted.

Conclusions

The performance of the algorithm developed for deter-

mining minimum sample size single sampling plans for the

binomial distribution was found to be very good. The solu-

tions that were obtained for the test problems were con-

firmed to be accurate without exception, through exhaustive

searches. Encouraging as it might be, it cannot be stated

with complete confidence that the algorithm would always

provide optimal solutions because the basis of the proof of

optimality provided is the Poisson approximation to the

binomial distribution. A proof using the binomial distri-

bution was found to be exceedingly difficult to obtain.

As expected, the methodologies of Jaech and Stephens

often yield inaccurate solutions. Jaech's method, however,

did provide a fair number of feasible solutions, which were

needed to establish the search intervals. In the FORTRAN

program, if the initial solution obtained is infeasible,

the next feasible Fibonacci number greater than the accept-

ance number or sample size (depending on which is infeasi-

ble) obtained is determined.

The use of Jaech's method in the program required a
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Gaussian quadrature subroutine with 96 abcissas and weights

and a Fibonacci search subroutine utilizing 16 experiments.

Thus, considerable amounts of time for computation was

needed to furnish the initial feasible solution. The effi-

ciency of the algorithm could be improved considerably if

a quick method, such as the Poisson solution, was used to

determine the initial solution.

Tests of significance (a =.5) in comparing approximate

solutions with exact solutions indicate that the mean red-

uctions in sample sizes obtained by using exact solutions

instead of approximate solutions were significant (though

negative) only in the case of Stephens' method. However,

when considering just positive reductions, only Stephens'

method had mean reductions that were insignificant. The

tests also revealed that Jaech's method (using tables) and

the initial solutions of program "Aime" did not have mean

values of reductions in acceptance numbers that were signi-

ficantly different from zero. However, all three sets of

approximate solutions had mean values of the absolute diff-

erence in sample sizes, when compared with exact solutions,

that were significantly different from zero.

Recommendations

For further research on this topic it is obvious that a

proof of optimality based on the binomial distribution is

needed and must be the prime consideration. Without such a
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proof it cannot be stated with complete confidence that the

solutions obtained using the algorithm that was developed

in this paper are exact.

Once such a proof is obtained, along with its limit-

ations, if any, this method might prove to be quite attrac-

tive if a quick and easy method was used to determine the

initial feasible solution. Its attractiveness may be re-

vealed in comparisons of computational times with other

known methods, particularly the exhaustive search technique-

the only method known to guarantee exact solutions.
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C PROGRAM NAME: AIME

C AUTHOR: LANCELOT SYLVESTER

C *** VARIABLE LIST ***

C ALPHA=PRODUCERIS RISK

C BETA=CONSUMER'S RISK

r P1=AOL

C R2=LTPD

C F=FIBONACCI NUMBERS

C BP1=G(P1)

C GP2=G(P2)

C NO=INITIAL SAMPLE SIZE, USING STEPHEN'S EQUATION

C GE=G(NO)

C GINVI= &(INVERSE)

C A=ABCISSAS

C B=WEIGHTS

C NINI=N,INITIAL

C CINI=C,INITIAL

C NMIN=N(MINIMUM)

C CMIN=C(MINIMUM)

C NIN=UPPER BOUND OF SEARCH INTERVAL FOR NMIN

C CIN=UPPER BOUND OF SEARCH INTERVAL FOR CMIN

C DELTA=1 IF NINI IS FEASIBLE

=0 OTHERWISE

C GAMMA=1 IF CINI IS FEASIBLE

C =0 OTHERWISE

C TAU=1 IF ALPHA-CONSTRAINT IS ALSO SATISFIED

C =0 OTHERWISE

C SOL1.SOL2= INITIAL SOLUTION (NINI AND CINI)
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Appendix A-1.
A FORTRAN program "Aime"

PROGRAM AIME(INPUT,OUTPUT,SORS,SORS2,TAPE1=SORS,TAPE2=SORS2)
INTEGER IDENT,NINI,CINI,CMIN,NMIN,DELT,DELTA,GAMMA,

1TAU,N,NC,SOL1,SOL2,CIN,NIN
REAL ALPHA,BETA,ZALPHA,ZBETAJ(0:16),P1,P2,

1GP1,6P2,NO,GE,GINV1
DOUBLE PRECISION A(96),B(96)
DATA F/17*1.0/
HC=0

GENERATE FIBONACCI NUMBERS

DO 10 I=2.16
F(I)=F(I-1)+F(I-2)

10 CONTINUE

C OUTPUT TABULAR HEADINGS

wRITE(2,50)
WRITE(2.60)
WRITE(2,70)

WRITE(2,75)

C ABCISSAS AND WEIGHTS

DO 20 1=1,48
READ(1,*)A(I),B(I)

J=96-I+1

A(J)=-A(I)
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C
B(J)=B(I)

20 CONTINUE
C READ PROBLEM PARAMETERS

25 READ(1, *)ALPHA,BETA,P1,P2

IF(ALPHA.EQ.0) 60 TO 90
C DETERMINE INITIAL VALUES(JAECH'S ALGORITHM)
C DETERMINE ZALF'HA AND ZBETA

GAMMA=1

IDENT =1

IF(ALPHA.LE.0.5) THEN
CALL CATA(1.-ALPHA,F,ZALPHA,IDENT,A,B)

ELSE
CALL CATA(ALPHA,F,ZALPHA,IDENT,A,B)
ZALPHA=-ZALPHA

END IF
IF(BETA.LE.0.5)THEN
CALL CATA(1.-BETA,F,ZBETA,IDENT,A,B)
ZBETA=-ZBETA
ELSE

CALL CATA(BETA,F,ZBETA,IDENT,A,B)
END IF

C DETERMINE GP1 AND GP2
IDENT=0

CALL CAT1(P1,GP1,IDENT,A,B)
CALL CAT1(P2,6P2,IDENT,A,E)

C CALCULATE INITIAL SAMPLE SIZE NO, USING STEPHEN'S EQUATION
NO=((ZALPHA*(((1.-P1)*P1)**(1./6.))-ZBETA*(((1.-P2)*P2)

1**(1./6.)))/(6P2-6P1))**2
C CALCULATE INITIAL ACCEPTANCE NO.(CINI)

GE=6P2+(ZBETA4t(P2*(1.-P2))**(1./6.)))/SORT(NO)
CALL CATA(GE.F,GINVI.IDENT,A,B)
CINI=NINT(GINV1*N0-1.16.)

CIN=CINI

C DETERMINE NMIN(JAECH'S METHOD): SET NINI=NMIN
CALL ANEWN(NINI,CIN,GINV1,F,ZBETA,IDENT,A,B,P2,6P2)
SOL1=NINI

SOL2=CINI

C WE NOW HAVE THE INITIAL VALUES OBTAINED BY JAECH'S METHOD
C

C FIBONACCI SEARCH FOR OPTIMAL N AND C

C

C TEST BETA CONSTRAINT
30 CALL CONSTI(CIN,NINI,BETA,P2,DELTA)

IF(DELTA.EQ.1)THEN

C BETA CONSTRAINT IS SATISFIED:DETERMINE LEAST N SUCH THAT F(N)>=NINI
CALL FIBN(NINI,F,N)

NIN=F(N)

ELSE
C DET. LEAST N SUCH THAT F(N)>NINI

40 CALL FIBN(NINI+1,F,N)

NIN=F(N)

C
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C

C TEST BETA CONSTRAINT
CALL CONST1(CIN.NIN,BETA,P2,DELT)
IF(DELT.EO.0)THEN

NINI=NIN
GO TO 40
END IF

END IF

C SEARCH FOR NMIN

CALL AMINN(CIN,NINI,N1N,DELTA.NMIN,F,BETA,P2,N)
NINI=NMIN

C TEST ALPHA CONSTRAINT

CALL CONST2(CIN,NINI,ALPHA,P1,TAU)
IF(TAU.E0.1)THEN
IF(GAMMA.E0.1)THEN
ALPhA CONSTRAINT IS SATISFIED:DET. LEAST NC SUCH THAT F(NC),=CINI

CALL FIBN(CINI,F,NC)
CIN=F(NC)

END IF

ELSE

C DET. LEAST NC SUCH THAT F(NC)>CINI

GAMMA=0

IF(NC.GT.0)THEN
CINI=CIN

END IF
CALL FIBN(CINI41,F,NC)

C
C

CIN=F(NC)
CALL ANEWN(NINI,CIN,GINV1,F,ZBETA,IDENT,A,B,P2,GP2)

GO TO 30

END IF

C GIVEN INITIAL FEASIBLE SOLUTION,DETERMINE EXACT SOLUTION

DELTA=1
CALL AMINC(CINI,CIN,CMIN,GAMMA,ALPHA,P1,NIN,NINI,DELTA,
1tiMIN,F,BETA,P2,N,NC)

C OUTPUT RESULTS
WRITE(2,85)
WRITE(2,80)ALPHA,BETA,P1,P2,SOL2,SOL1,CMIN,NMIN
GO TO 25

50 FORMAT(33(" "),"JAECH'S METHOD",15(" "),"PROGRAM AIME")

60 FORMAT(3(" "WPROBLEM PARAMETERS",11(" "). "(INITIAL VALUES)",
1 12(° "),"(EXACT SOLUTION)")

70 FORMAT(3(" "),7("*")," ",10("*"),23(" "),"MINIMUM",22(" "),

1 "MINIMUM")

75 FORMAT(" ALPHA"," BETA", " P1"," P2 "." ACCEPTANCE NO.",

5 " SAMPLE SIZE "." ACCEPTANCE NO. SAMPLE SIZE")

dO FORMAT(F6.5,3F6.4,8(" "),I2,12(" "),I3,11(" "),I2,13(" "),I3)

85 FORMAT(" ")
90 END

C



C

C

C SUBROUTINE CAT1

. C GAUSSIAN OUADRATURE SUBROUTINE

C *** VARIABLE LIST ***
C X=UPPER LIMIT OF INTEGRAL
C Y=VALUE OF INTEGRAL
C A=ABCISSAS

C B=WEIGH1S

C

SUBROUTINE CAT1(X,Y,IDENT,A,B)
DOUBLE PRECISION A(96),11(96)
REAL X,Y
INTEGER IDENT

IF(IDENT.E0.1)THEN

Y=0.5

DO 100 1=1,96
Y=Y+B(I)*X*(1./(2.*SGRT(2.*3.1415927)))*EXP(-((A(I)*X+X)**2118.)

100 CONTINUE

ELSE
Y =O.

DO 110 1=1,96
Y=Y+B(I)*(X/2.)*(MA(I)*X+X)/2.)*(1.-((A(I)*X410/2.)))**(-1./3.))

110 CONTINUE
END IF

END

C

C

C SUBROUTINE CATA

C DETERMINES ZALPHA,ZBETA, OR GINV1

C *** VARIABLE LIST ***

C SL=DISTANCE OF END POINT TO THE NEAREST POINT THAT IS EVALUATED

C E(1),E(2)=END POINTS

C PO1N1(1),POINT(2)=POINTS EVALUATED

C BL=CURRENT(INTERVAL LENGTH-SL)

C G=TRUE VALUE OF INTEGRAL
C VAL(1)=VALUE OF INTEGRAL FOR POINT(1)

C VAL(2)=VALUE OF INTEGRAL FOR POINT(2)
DIF1=ABSOLUTE VALUE OF (G-VAL(1))

C DIF2=ABSOLUTE VALUE OF (G-VAL(2))

C A=ABCISSAS

B=WEIGHTS

C WHEN IDENT=1 DETERMINE ZALPHA OR ZBETA

C =0 DETERMINE GINO

SUBROUTINE CATA(G,F,G1NV,IDENT,A,B)

INTEGER IDENT,K

REAL (GINV,BL(14),SL(14),E(2),DIF1,111F2,F(0:16),VAL(2),POINT(2)
DOUBLE PRECISION A(96),B(96)
BL(1)=1.0

E(1)=0.0

E(2)=1.0
K=1

C
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C

SL(K)=(F(14-K)/F(16-K))*BL(K)
POINT(1)=E(1)+SL(K)
POINT(2)=E(2)-SL(K)

IF( IDENT.EQ.1)THEN

CALL CAT1(POINT(1)*3.5,VAL(1),IDENT,A,B)
CALL CAT1(POINT(2)*3.5,VAL(2),IDENT,A,B)
ELSE

CALL CAT1(POINT(1),VAL(1),IDENT,A,B)
CALL CAT1(POINT(2).VAL(2),IDENT,A.11)

END IF

200 DIF1=APS(G-VAL(1))
DIF2=ABS(0-VAL(2))

IF(DIF1.LT.DIF2)THEN
E(2)=POINT(2)

POINT(2)=POINT(1)
VAL(2)=VAL(1)

K=K+1

BL(K)=BL(K-1)-SL(K-1)
SL(K)=(F(14-K)/F(116-0)*BL(K)
POINT(1)=E(1)+SL(K)

IF(IDENT.E0.1)TNEN
CALL CAT1(POINT(1)+3.5.VAL(1),IDENT,A,6r
ELSE

CALL CAT1(POINT(1),VAL(1),IDENT.A.B)

END IF

IF(K.E0.14) GO TO 210

GO TO 200
ELSE IF(DIF1.GT.DIF2)THEN

E(1)=POINT(1)

POINT(1)=POINT(2)
VAL(1)=VAL(2)

K=K+1

BL(K)=BL(K-1)-SL(K-1)

SL(K)=(F(14-K)/F(16-K))*BL(K)
POINT(2)=E(2)-SL(K)

IF(IDENT.E0.1)THEN
CALL CAT1(POINT(2)*3.5,VAL(2),IDENT.A.B)

ELSE
CALL CAT1(POINT(2),VAL(2),IDENT,A.B)

END IF
IF(K.E0.14)G0 TO 210
GO TO 200
ELSE

IF(K.LT.12)TNEN
E0)=POINT(1)
E(2)=POINT(2)

K=K+3

BL(K)=E(2)-E(1)

SL(K)=(F(14-K)/F(16-K))*BL(K)

C
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C

POINT(1)=E(1)+SL(K)
POINT(2)=E(2)-SL(K)
IF(IDENT.E0.1)THEN
CALL CAT1(POINT(1)*3.5,VAL(1),IDENT,A,B)
CALL CAT1(POINT(2)*3.5,VAL(2),IDENT,A,B)

ELSE
CALL CAT1(POINT(1),VAL(1),IDENT,A,B)
CALL CAT1(POINT(2),VAL(2),IDENT,A,B)

END IF

IF(K.E0.14) GO TO 210
GO TO 200

ELSE

POINT(1)=(POINT(2)-POINT(1))/2.
END IF
END IF

210 IF(IDENT.E0.1)THEN
GINV=3.5*POINT(1)

ELSE
GINV=POINT(1)

END IF

END

C

C

C SUBROUTINE ANEWN
C JAECH'S ITERATIVE PROCEDURE FOR DETERMINING NMIN
C *** VARIABLE LIST ***
C NINII=NINI

C GIN=GINV1, OR INVERSE OF 6E2 SUBSEQUENTLY
C DN(4)=CURRENT VALUE OF SAMPLE SIZE
C DN(3),DN(2),DN(1)=THE 3 PREVIOUS VALUES OBTAINED

SUBROUTINE ANEWN(NINII,CIN,GIN,F,ZBETA,IDENT,A,B,P2,GP2)
REAL GIN,GE2,ZBETA,F(0:16),DNJ,RCIN,P2,GP2
INTEGEr NINII,CIN,DN(4),IDENT,J
DOUBLE PRECISION A(96).B(96)

J=4

DN(1)=0

DN(2)=0
DN(3)=0
DN(4)=0

NINII=0
RCIN=C1N+(2./3.)

300 DN(J)=NINT((RCIN/GIN)+1./6.)
IF(DN(J).EG.DN(J-1))NINII=DN(J)

IF(DN(J).EQ.DN(J-2))NINII=MAX(DN(J),DN(J-1),DN(J-2))
IF(DN(J).ELDN(J-3))NINII=MAX(DN(J),DN(J-1),DN(-2),DN(J-3))
IF(NINII.E0.0)THEN
DNJ=REAL(DN(J))

GE2=(ZBETAWP2*(1.-P2))**(1./6.)))/SORT(DNJ+1./3.)+GP2
DO 310 1=1,3
DN(I)=DN(I+1)

310 CONTINUE

C
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C

CALL CATA(GE2,F,6IN,IDENT,A,B)
60 TO 300

END IF
END

C

C

C SUBROUTINE CONST1
C TEST BETA-CONSTRAINT
C IF CONSTRAINT IS SATISFIED DELTAA=1

C ELSE, bELTAA =0

C CINN=ACCEPTANCE NO.
C NINN=CORRESPONDIN6 SAMPLE SIZE
C

SUBROUTINE CONST1(CINN,NINN.BETA,P2,DELTAA)
INTEGER CINN.NINN.DELTAA
DOUBLE PRECISION T2.62
REAL BETA,P2
62=(1.-P2)**NINN
12=62

IF(CINN.E0.0)60 TO 410
DO 400 I=1,CINN
62=(62/I)*(NINN-I+1)*(P2/(1.-P2))
T2=T2+62.

400 CONTINUE

4,0 IF(T2.LE.BETA)THEN
DELTAA=1

ELSE

DELTAA=0
END IF
END

C

C

C SUBROUTINE CONST2
C TEST ALPHA-CONSTRAINT

C IF CONSTRAINT IS SATISFIED TAUU=1
C ELSE,TAUU=0

C CINT=ACCEPTANCE NO.

C NTT=CORRESPONDING SAMPLE SIZE
C

SUBROUTINE CONST2(CINT,NTT,ALPHA,P1,TAUU)
INTEGER CINT,NTT,TAUU
REAL ALPHA,P1

DOUBLE PRECISION T1,61
61=(1.-P1)**NTT
T1=61

INCINT.E0.0)60 TO 430
DO 420 I=1,CINT
G1=(61/I)*(NTT-I+1)*(P1/(1.41))
T1=T1+61

420 CONTINUE
C
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C

430 IF(T1.GE.(1.-ALPHA))THEN
TAUU=1

ELSE
TAUU=0
END IF

END

C

C

C SUBROUTINE FIBN

C DETERMINE LEAST ULIM SUCH THAT F(ULIM)>=NUMB

SUBROUTINE FIBN(NUMB,F,ULIM)
INTEGER NUMB,ULIM
REAL F(0:16)

I=1

500 IF(NUMB.LE.F(I))THEN
ULIN=I

ELSE
I=I+1

GO TO 500
ENV IF

END

C

C SUBROUTIN AMINN

C DETERMINES NMIN(FIBONACCI SEARCH)

C FOR A GIVEN vALUE OF C
C *** VARIABLE LIST ***

C CINN=ACCEPTANCE NO.

C NINI=N,INIT1AL

C NIN=UPPER BOUND OF INTERVAL(=F(N))

C NMINN=NMIN
C END(1),END(2)=END POINTS

C 0(1),0(2)=POINTS WITHIN INTERVAL

C R(1)=1 IF 0(1) SATISFIES BETA CONSTRAINT

C =0 OTHERWISE
R(2)=1 IF 0(2) SATISFIES BETA CONSTRAINT

=0 OTHERWISE

C
SUBROUTINE AMINN(CINN,NINI,NIN,DELTA,NMINN,F,BETA,P2,N)
INTEGER CINN.NINI.NIN,DELTA,NMINN,N,0(2),END(2),R(2)
REAL BETA.P2,F(0:16)

END(1)=0
FND(2)=NIN
J=1

IF(NIN.E0.1)THEN
NMINN=1

GO TO 640

ELSE IF(N1N.E0.2.AND.NINI.EG.1)THEN

NMINN=2
GO TO 640

END IF

C
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61

C
600 0(1)=END(1)+F(N-J-1)

CALL CONST1(CINN,Q(1),BETA,P2,R(1))

O(2)=END(2)-F(N-J-11
IF(G(1).EG.G(2))THEN

IF(R(1).EQ.1)THEN
NMINN=0(1)

ELSE
NMINN=END(2)

END IF

GO TO 640

END IF

625 IF(DELTA.EQ.1)THEN
IF(0(1).GE.NINI)THEN
R(1)=1

R(2)=1

GO TO 630

ELSE IF(D(2).GE.NINI)THEN
R(2)=1

IF(0(1).LE.CINN)THEN
R(1)=0

ELSE
CALL CONST1(CINN,Q(1),BETA,P2,R(1))

END IF
GO TO 630

ELSE
IF(0(2).LE.CINN)THEN
R(1)=0

R(2)=0

ELSE IF(0(1).LE.CINN)THEN
R(1)=0
CALL CONST1(CINN,0(2),BETA,P2,R(2))

ELSE
CALL CONST1(CINNA(1),BETA,P2,R(1))
CALL CONST1(CINN,0(2),BETA,P2,13(2))

END IF
60 TO 630

END IF
ELSE
IF(0(1).GE.NINI)THEN

CALL CONST1(CINN,13(1),BETA,F2,R(1))

CALL CONST1(CINN,0(2),BETA,P2,R(2))
ELSE IF(0(2).GE.NINI)THEN
CALL CONST1(CINN,0(2),BETA,P2,R(2))
R(1)=0

ELSE
R(1)=0

R(2)=0
END IF

END IF

630 IFM(1).M.0).AND.(R(2).EQ.0))THEN
EN D(1) =4(1)

C
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C
0(1)=0(2)

J=J+1

0(2)=END(2)-F(N-J-1)
IF(0(1).E0A(2))THEN
IF(R(1).E0.1)THEN
NNINN=0(1)
ELSE

NNINN=END(2)

END IF
GO TO 640

ELSE

GO TO 625
END IF

ELSE IR(R(1).E0.1).AND.(R(2).0.1))THEN
END(2)=0(2)
0(2)=0(1)

J=J+1

0(1)=END(1)+F(N-J-1)
IF(0(1).E0.0(2))THEN

IF(R(2).E0.1)THEN

NMINN=0(1)

ELSE

NMINN=END(2)

END IF

GO TO 640
ELSE
GO TO 625

END IF

ELSE
END(1)=0(1)

END(2)=0(2)

J=J+3

IN(N-J-1).E.0)(30 TO 600
NMINN=0(2)

END IF

640 END

C

C

C SUBROUTINE At INC

C DETERMINES CHIN ( AND NMIN ) GIVEN INITIAL FEASIBLE SOLUTION

C *** VARIABLE LIST ***
C CEND(1),CEND(2)=END POINTS OF SEARCH INTERVAL

C OS(1),OS(2)=POINTS WITHIN INTERVAL
OSV(1)=MINIMUN N FOR OS(1)

C OSV(2)=NINIMUM N FOR 08(2)

C RS(1)=1 IF 0S(1) IS FEASIBLE

C =0 OTHERWISE

C RS(2)=1 IF GS(2) IS FEASIBLE

=0 OTHERWISE

C CENDV(1)=MINIMUM N FOR END(1)

C CENDV(2)=MINIMUM N FOR END(2)

C
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C

C CENDF(1)=1 IF CENDV(1) IS FEASIBLE
=0 OTHERWISE

C CENDF(2)=1 IF CENDV(2) IS FEASIBLE
=0 OTHERWISE

C

SUBROUTINE AMINC(CINI,CIN,CMIN,GAMNA.ALPHAP.NIN,NINI,

1DELTA,NNIN,F.BETA.P2,N,NC)
INTEGER CINI,CIN.CMIN,GAMMA,NIN,NIN1,DELTA,NMIN,
1N.NC,OS(2).0SV(2),RS(2),CEND(2).CENDF(2).CENDV(2)

REAL F(0:16)
L=1

CEND(1)=0
CEND(2)=CIN
CENDV(2)=NINI
IF(CIN.LT.2)G0 TO 750

OS(1)=CEND(1)+F(NC-L-1)
OS(2)=CEND(2)-F(NC-L-1)

IF(GAKKA.E0.1)THEN
IF(OS(1).0E.CINI)THEN

RS(1)=1

RS(2)=1

ELSE IF(OS(2).GE.CINI)THEN
RS(2)=1

CALL AMINN(OS(1).NINI,NIN,DELTA,OSV(1),F,BETA.P2,N)
CALL CONST2(09(1),OSV(1).ALPHA.P1,RS(1))

ELSE
CALL AMINNtOS(1),NINI,NIN,DELTA.080(1),F.BETA.P2.N)

CALL CONST2(0S(1).@SV(1).ALPHA.P1.RS(1))

CALL AmINN(OS(2),NINI.NIN,DELTA.OSV(2).F.BETA,F2.N)
CALL CONST2(05(2).0SV(2).ALPHA.P1.RS(2))

END IF

ELSE
IP(OS(2).LE.CINUTHEN
RS(1)=0
RS(2)=0

ELSE IF(OS(1).LE.CINI)THEN
R5(1)=0
CALL AMINP(OS(2).NINI,NIN.DELTA,OSV(2).F,BETA,P2.N)

CALL CONST2(0S(2),OSV(2),ALPHA.P1.RS(2))

ELSE
CALL AMINN(OS(1),NINI.NIN.DELTA.OSV(1),F,BETA,P2,0
CALL CONST2(0S(1),OSV(1).ALPHA.M.RS(1))
CALL AMINN(OS(2).NINI.NIN,DELTA.OSV(2).F.BETA.P2.N)
CALL CONST2(0S(2),OSV(2).ALFHA.M.RS(2))

END IF

END IF

700 IF(OS(1).EG.OS(2))THEN
IF(RS(1).E0.0)THEN

NAIN=CENDV(2)

CMIN=CEND(2)

ELSE IF(CEND(1).NE.°)TNEN
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NMIN=OSV(2)

GO TO 800
END IF
END IF

750 IF(CINI.E0.1)THEN

CALL AMINN(CEND(1),NINI,NIN,DELTA,CEOV(1),F,BETA,P2,N)
CALL CONST2(CEND(1),CENDV(1),ALPHA,P1,CENDF(1))

IF(CENDF(1).ED.1)TNEN

CMIN=0

NMIN=CENDV(1)

ELSE
CMIN=1

NMIN=NINI

END IF

ELSE IF(GAMMA.E0.1)THEN
CMIN=0

NMIN=NINI

ELSE
CMIN=1

NMIN=NINI
END IF

800 END
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Appendix B-1. Abcissas and Weights

The error term
1

f f(x)dx = A.f(xi) E
n
f = (n!) 4

.2
2n+1

.f
(2n)

(t)
-1 i=1 1 3

(2n!) (2n+1)

x, = - .

1
x1.1-1+1 A. = A .

.999689503883230766828 .000796792065552012429

.998364375863181677724 .001853960788946921732

.995981842987209290650 .002910731817934946408

.992543900323762624572 .003964554338444686674

.988054126329623799481 .005014202742927517693

.982517263563014677477 .006058545504235961683

.975939174585136466453 .007096470791153865269

.968326828463264212174 .008126876925698759217

.959688291448742539300 .009148671230783386633

.950032717784437635756 .010160770535008415758

.939370339752755216932 .011162102099838498591

.927712456722308690965 .012151604671088319635

.915071423120898074206 .013128229566961572637

.901460635315852341319 .014090941772314860916

.886894517402420416057 .015038721026994938006

.871388505909296502874 .015970562902562291381

.854959033434601455463 .016885479864245172450

.837623511228187121494 .017782502316045260838

.819400310737931675539 .018660679627411467385

.800308744139140817229 .019519081140145022410

.780369043867433217604 .020356797154333324595

.759602341176647498703 .021172939892191298988
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x. = -x
1 n-i+1

( contd. )

A. .

1 An-1+1

( contd. )

.738030643744400132851 .021966644438744349195

.715676812348967626225 .022737069658329374001

.692564536642171561314 .023483399085926219842

.668718310043916153953 .024204841792364691282

.644163403784967106798 .024900633222483610288

.618925840125468570386 .025570036005349361499

.593032364777572080684 .026212340735672413913

.566510418561397168404 .026826866725591762198

.539388108324357436227 .027412962726029242823

.511694177154667673586 .027970007616848334440

.483457973920596359768 .028497411065085385646

.454709422167743008636 .028994614150555236543

.425478988407300545365 .029461089958167905970

.395797649828908603285 .029896341136328385984

.365696861472313635031 .030299915420827593794

.335208522892625422616 .030671376123669149014

.304364944354496353024 .031010332586313837423

.273198812591049141487 .031316425596861355813

.241743156163840012328 .031589330770727168558

.210031310460567203603 .031828758894411006535

.178096882367618602759 .032034456231992663218

.145973714654896941989 .032206204794030250669

.113695850110665920911 .032343822568575928429

.081297495464425558994 .032447163714064269364
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A. = A .

Xi -xn-i+1 1 n-l1

( contd. ) ( contd. )

. 048812985136049731112 .032516118713868835987

. 016276744849602969579 .032550614492363166242
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Appendix B-2.
Stephens Table

x
g (x)=.1. (t (1-t) )

0

-1/3
at

X 0.000 001 .002 .003 004 .005 .005 .007 .008 009

000 0.0000 .0150 .0238 .0312 .0378 .0439 .0496 .0549 .0601 .0650

010 .0697 .0743 .0787 .0831 .0873 .0914 .0954 .0994 .1033 .1071

.020 .1108 .1145 .1181 .1217 .1252 .1287 .1321 .1355 .1388 .1421

.030 .1454 .1486 .1518 .1550 .1581 .1613 .1643 .1674 .1704 .1734

.040 .1764 .1793 .1823 .1852 .1881 .1909 .1938 .1966 .1994 .2022

.050 .2050 .2077 .2104 .2132 .2159 .2186 .2212 .2239 .2265 .2292

.060 .2318 .2344 .2370 .2395 .2421 .2446 .2472 .2497 .2522 .2547

.070 .2572 .2597 .2622 .2646 .2671 .2695 .2719 .2744 .2768 .2792

.080 .2816 .2839 .2863 .2887 .2910 .2934 .2957 .2981 .3004 .3027

.090 .3050 .3073 .3096 .3119 .3141 .3164 .3187 .3209 .3232 .3254

.100 .3277 .3299 .3321 .3343 .3365 .3387 .3409 .3431 .3453 .3475

.110 .3497 .3518 .3540 .3561 .3583 .3604 .3626 .3647 .3668 .3690

.120 .3711 .3732 .3753 .3774 .3795 .3816 .3837 .3858 .3878 .3899

.130 .3920 .3941 .3961 .3982 .4002 .4023 .4043 .4064 .4084 .4104

.140 .4125 .4145 .4165 .4185 .4205 .4225 .4245 .4265 .4285 .4305

.150 .4325 .4345 .4365 .4385 .4404 .4424 .4444 .4463 .4483 .4502

.160 .4522 .4542 .4561 .4580 .4600 .4619 .4639 .4658 .4677 .4696

.170 .4716 .4735 .4754 .4773 .4792 .4811 .4830 .4849 .4868 .48137

.180 .4906 .4925 .4944 .4963 .4982 .5001 .5019 .5038 .5057 .5075

.190 .5094 .5113 .5131 .5150 .5169 .5187 .5206 .5224 .5243 .5261

.200 .5280 .5298 .5316 .5335 .5353 .5371 .5390 .5408 .5426 .5444

.210 .5463 .5481 .5499 .5517 .5535 .5553 .5571 .5590 .5608 .5626

.220 .5644 .5662 .5680 .5697 .5715 .5733 .5751 .5769 .5787 .5805

.230 .5823 .5840 .5858 .5876 .5894 .5911 .5929 .5947 .5964 .5982

.240 .6000 .6017 .6035 .6053 .6070 .6088 .6105 .6123 .6140 .6158

.250 .6175 .6193 .6210 .6228 .6245 .6262 .6280 .6297 .6315 .6332

.260 .6349 .6367 .6384 .6401 .6418 .6436 .6453 .6470 .6487 .6505

.270 .6522 .6539 .6556 .6573 .6590 .6608 .6625 .6642 .6659 .5676

.280 .6693 .6710 .6727 .6744 .6761 .6778 .6795 .6812 .6829 .6846

.290 .6863 .6880 .6897 .6914 .6931 .6947 .6964 .6981 .6998 .7015

.300 .7032 .7048 .7065 .7082 .7099 .7116 .7132 .7149 .7166 .7183

.310 .7199 .7216 .7233 .7250 .7266 .7283 .7300 .7316 .7333 .7349

.320 .7366 .7383 .7399 .7416 .7433 .7449 .7466 .7482 .7499 .7515

.330 .7532 .7548 .7565 .7582 .7598 .7615 .7631 .7647 .7664 .7680

.340 .7697 .7713 .7730 .7746 .7763 .7779 .7795 .7812 .7828 .7845

.350 .7861 .7877 .7894 .7910 .7927 .7943 .7959 .7976 .7992 .8008

.360 .8025 .8041 .8057 .8073 .8090 .8108 .8122 .8139 .8155 .3171

.370 .8187 .8204 .8220 .8236 .8252 .8269 .8285 .8301 .8317 .8333

.380 .8350 .8366 .8382 .8398 .8414 .8430 .8447 .8463 .8479 .5495

.390 .8511 .8527 .8543 .8560 .8576 .8592 .8608 .8624 .8640 .8656

.400 .8672 .8688 .8704 .8721 .8737 .8753 .8769 .8785 .8801
888977

.410 .8833 .8849 .8865 .8881 .8897 .8913 .8929 .8945 .17

.420 .8993 .9009 .9025 .9041 .9057 .9073 .9089 .9105 .9121 .9137

.430 .9153 .9169 .9185 .9201 .9217 499 .9297

.440 .9313 .9329 .9345 .9361 .9377 .9393
;99240 99426255 :99281

.450 .9472 .9488 .9504 .9520 .9536 .9552 .9568 .9584 .9600 .9616

.460 .9631 .9647 .9663 .9679 .9695 .9711 .9727 .9743 .9759 .9775

.470 .9790 .9806 .9822 .9838 .9854 .9870 .9886 .9902 .9918 .9933

.480 .9949 .9965 .9981 .9997 1.0013 1.0029 1.0045 1.0061 1.0076 1.0092

.490 1.0108 1.0124 1.0140 1.0156 1.0172 1.0188 1.0203 1.0219 1.0235 1.0251
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x
g (x)= f

0

-1/3
(t(1-t)) dt

X 0.000 001 .002 .003 004 003 .006 007 .006 .009

.500 1.0267 1.0283 1.0299 1.0315 1.0330 1.0346 1.0362 1.0378 1.0394 1.0410
.510 1.0428 1.0442 1.0457 1.0473 1.0489 1.0505 1.0521 1.0537 1.0553 1.0569
.520 1.0584 1.0600 1.0616 1.0632 1.0648 1.0664 1.0680 1.0696 1.0712 1.0727
.530 1.0743 1.0759 1.0775 1.0791 1.0907 1.0823 1 .0839 1.0855 1.0870 1.0886
.540 1.0902 1.0918 1.0934 1.0950 1.0966 1.0982 1.0998 1.1014 1.1030 1.1046
.550 1.1061 1.1077 1.1093 1.1109 1.1125 1.1141 1,1157 1.1173 1.1189 1.1205

.560 1.1221 1.1237 1.1253 1.1269 1.1285 1.1301 1.1317 1.1333 1.1349 1.1365

.570 1.1381 1.1397 1.1412 1.1428 1.1444 1.1460 1.1476 1.1492 1.1508 1.1524

.580 1.1540 1.1556 1.1573 1.1589 1.1605 1.1621 1.1637 1.1653 1.1669 1.1685

.590 1.1701 1.1717 1.1733 1.1749 1.1765 1.1781 1,1797 1.1813 1.1829 1.1845

.600

.610
1.1861
1.2023

1.1878
1.2039

1.1894
1.2055

1.1910
1.2071

1.1926
1.2087

1.1942
1.2103 1191.21200 19

1.1974
6

1.1990
1.2152

1.2006
1.2168

.620 1.2184 1.2200 1.2217 1.2233 1.2249 1.2265 1.2282 1.2298 1.2314 1.2330
.630 1.2346 1.2363 1.2379 1.2395 1.2412 1.2428 1.2444 1.2460 1.2477 1.2493

.640

.650
1.2509
1.2673

1.2526
1.2689

1.2542
1.2705

1.2558
1.2722

1.2575
1.2738

1.2591
1.2755

1.2607
1.2771

1.2624
1.2788

1.2640

1

1.2656
1.2820

.660 1.2837 1.2853 1.2870 1.2886 1.2903 1.2919 1.2936 1.2952 1.2969 1.2985

.670 1.3002 1.3018 1.3035 1.3052 1.3068 1.3085 1.3101 1.3118 1.3134 1.3151

.680 1.3168 1.3184 1.3201 1.3218 1.3234 1.3251 1.3268 1.3284 1.3301 1.3318

.690 1.3334 1.3351 1.3368 1.3385 1.3401 1.3418 1.3435 1.3452 1.3468 1.3495

.700 1.3502 1.3519 1.3536 1.3553 1.3570 1.3586 1.3603 1.3620 1.3837 1.3654

.710 1.3671 1.3688 1.3705 1.3722 1.3739 1.3756 1.3773 1.3790 1.3807 1.3824

.720 1.3841 1.3858 1.3875 1.3892 1.3909 1.3925 1.3943 1.3961 1.3978 1.3995

.730 1.4012 1.4029 1.4046 1.4064 1.4081 1.4098 1.4115 1.4133 1.4150 1.4167

.740 1.4185 1.4202 1.4219 1.4237 1.4254 1.4271 1.4289 1.4306 1.4324 1.4341

.750 1.4359 1.4376 1.4393 1.4411 1.4429 1.4446 1.4464 1.4481 1.4499 1.4516

.760 1.4534 1.4552 1.4569 1.4587 1.4605 1.4622 1.4640 1.4656 1.4676 1.4693

.770 1.4711 1.4729 1.4747 1.4765 1.4783 1.4800 1.4818 1.4836 1.4854 1.4872

.780 1.4890 1.4908 1.4926 1.4944 1.4962 1.4980 1.4999 1.5017 1.5035 1.5053

.790 1.5071 1.5089 1.5108 1.5125 1.5144 1.5162 1.5181 1.5199 1.5217 1.5236

.800 1.5254 1.5273 1 .5291 1.5310 1.5328 1.5347 1.5365 1.5384 1.5402 1.5421

.810 1.5440 1.5458 1.5477 1.5496 1.5514 1.5533 1.5552 1.5571 1.5590 1.5609
.820 1.5628 1.5646 1.5665 1.5684 1.5703 1.5722 1.5742 1.5761 1.5780 1.5799
.830 1.5818 1.5837 1.5857 1.5875 1.5895 1.5915 1.5934 1.5953 1.5973 1.5992
.840 1.6012 1.6031 1.6051 1.6071 1.6090 1.6110 1.6130 1.6149 1.6169 1.6189

.850 1.8209 1.6229 1.6249 1.6268 1.6288 1.6309 1.6329 1.6349 1.6369 1.6389

.860 1.6409 1.6430 1.6450 1.6470 1.6491 1.6511 1.6532 1.6552 1.6573 1.6593

.870 1.6614 1.6635 1.6655 1.6676 1.6697 1.6718 1.6739 1.6760 1.6781 1.6802

.880 1.6823 1.6844 1.6865 1.8887 1.6908 1.6929 1.6951 1.6972 1.6994 1.7016

.890 1.7037 1.7059 1.7081 1.7103 1.7125 1.7146 1.7169 1.7191 1.7213 1.7235

.900 1.7257 1.7280 1.7302 1.7325 1.7347 1.7370 1.7392 1.7415 1.7438 1.7461

.910 1.7484 1.7507 1.7530 1.7553 1.7577 1.7600 1.7624 1.7647 1.7671 1.7694

.920 1.7718 1.7742 1.7766 1.7790 1.7814 1.7839 1.7883 1.7888 1.7912 1.7937

.930 1.7962 1.7987 1.8012 1.8037 1.8062 1.8088 1.8113 1.8139 1.8164 1.8190

.940 1.8216 1.8243 1.8269 1.8295 1.8322 1.8349 1.8376 1.8403 1.8430 1.8457

.950 1.8485 1.8513 1.8540 1.8569 1.8597 1.8625 1.8653 1.8682 1.8711 1.8740

.960 1.8770 1.8800 1.8830 1.8860 1.8891 1.8921 1.8952 1.8984 1.9016 1.9048

.970 1.9080 1.9113 1.9146 1.9179 1.9213 1.9247 1.9282 1.9318 1.9353 1.9389

.980 1.9426 1.9463 1.9501 1.9540 1.9580 1.9620 1.9681 1.9703 1.9747 1.9791

.990 1.9837 1.9884 1.9933 1.9985 2.0038 2.0095 2.0156 2.0222 2.0296 2.0384



70

Appendix B-3 Five Examples: Exhaustive Search

Problem Acceptance n
a

n
min n

max-nminParameters Number,c
(-m0,xif
n=c+1 is
infeasible

5

26
54
86

120
156

6

9

13
16
20
23

a=.0961
8=.0916
pi=.02

p2=.38

0

1

2

3

4

5

-1
17
41
70

100
133

a=.0483 0 0 3 -3
8=.0870 1 5 6 -1
p
1
=.075 2 11 8 3

3 18 10 8p2=.60
4 27 12 15
5 35 14 21
6 44 16 28
7 54 18 36

a=.1403 0 10 10 0
t3 =.0947 1 45 18 25
p
1
=.015 2 86 24 62

p
2
=.210 3

4

132
182

31
37

101
145

a=.054 0 0 4 -4
3 =.0996 1 4 8 -4
p
1
=.090 2 9 10 -1

p
2
=.450 3

4

16
23

13
16

3

7
5 30 19 11
6 38 21 17
7 46 24 22

a=.010 0 1 66 -65
8=.001 1 1 89 -74
p
1
=.01 2 44 108 -64

p
2
=.10 3

4

83
129

126
143

-43
-14

5 180 159 21
6 234 175 59
7 292 190 102
8 353 205 148
9 415 220 194

V: optimal solution nmin and corresponding

value of c



Appendix B-4.
Table VIII
Test Prob.

No.

Analysis of Stephens' Method

*

cx a acal

1 .1403 .0947 1532
2 .0582 .0965 .0582
3 .1400 .1041 .1485
4 .0529 .0935 .0529
5 .0439 .0913 .0439
6 .0471 .0908 .0472
7 .0760 .0980 .0765
8 .0250 .0980 .0245
9 .0490 .0810 .0526

10 .2000 .6000 .2000
11 .6000 .2000 .5000
12 .3000 .4000 .4500
13 .0500 .1000 .0541
14 .0500 ,0500 .0352
15 .0500 .0500 .0256
16 .0500 .0500 .0100
17 .5000 .0100 .5000
18 .3000 .1000 .3384
19 .0300 .0850 .0324
20 .0100 .0010 .0162
21 .0483 .0870 .0483
22 .0961 .0916 .0961
23 .0500 .0500 .0256
24 .0050 .0100 .0057
25 .0900 .0500 .1100

*

C3cal Ant

.0748 1

.0965 0

.0895 -10

.0936 -6

.0913 0

.0908 -5

.0982 -7

.0979 0

.0728 1

.5500 0

.2500 -2

.2000 -1

.0935 -5

.0696 -5

.0730 -1

.1900 -1

.0086 0

.0821 -6

.0786 -5

.0008 -13

.0871 -3

.0917 -4

.0832 -2

.0090 -21

.0354 -3

Average reduction in sample size Aril= -3.92

corresponding variance = (4.9743)
2

Average % reduction in sample size (An /n)1 = -28.8

corresponding variance = (45.598)
2

Average % change in sample size lAn/n1 = 29.69
1

2
corresponding variance = (45.00)

a
cal

and f3 cal
are the calculated values of a and 13.

!Aril = 4.08

corresponding varience = (4.9743)
2

Ac = -.72

corresponding varience = (.7371)
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Appendix
Table IX

Test Prob,
No.

B-5.

a

Analysis Of Jaech's Method
(Using Tables)

a
cal 13 cal Ant

1 ,1403 .0947 .0294 ,0831 8

2 .0582 .0965 .0203 .0718 5

3 .1400 .1041 .0202 .1659 -4
4 .0529 .0935 .0112 .1308 -2
5 .0439 .0913 .0143 .1150 4

6 .0471 .0908 .0936 .0263 0

7 .0760 .0980 .0500 .0605 3

8 .0250 .0980 .0163 .1465 -3
9 .0490 .0810 .0188 .1288 3

10 .2000 .6000 .3600 .3025 1

11 .6000 .2000 .7500 .0625 -1
12 .3000 .4000 .4253 .1040 1

13 .0500 .1000 .0465 .0915 1

14 .0500 .0500 .0522 .0370 -3
15 .0500 .0500 .0441 .0211 1

16 .0500 .0500 .0086 .0086 2

17 .5000 .0100 .6563 .0013 1

18 .3000 .1000 .3247 .0848 -4
19 .0300 .0850 .0193 .0840 0

20 .0100 .0010 .0056 .0010 0

21 .0483 .0870 .0177 .0498 0

22 .0961 .0916 .0131 .0882 0

23 .0500 .0500 .0256 .0832 -2
24 .0050 .0100 .0026 .0098 0

25 .0900 .0500 .0922 .0467 -6

Average reduction in sample size An2 = 0.52

corresponding variance = (3.029)
2

Average % reduction in sample size (An/n)2= 5.34

corresponding variance = (22.16)
2

Average % change in sample size lAn/n1
2
= 15.30

corresponding variance = (16.67)
2

a
cal

and 13

cal
are the calculated values of a and S.

lEnl= 2.2
corresponding varience = (2.1016)

2

Ac = -.04

corresponding varience = (.7348)
2



Appendix B-6.
Table X

Analysis Of Initial Solution Of
Program Aime (Obtained Using
Jaech's Method)

Test Prob.
No, a a

*

1 .1403 .0947
2 .0582 .0965
3 .1400 .1041
4 .0529 .0935
5 .0439 .0913
6 .0471 .0908
7 .0760 .0980
8 .0250 .0980
9 .0490 .0810

10 .2000 .6000
11 .6000 .2000
12 .3000 .4000
13 .0500 .1000
14 .0500 .0500
15 .0500 .0500
16 .0500 .0500
17 .5000 .0100
18 .3000 .1000
19 .0300 .0850
20 .0100 .0010
21 .0483 .0870
22 .0961 .0916
23 .0500 .0500
24 .0050 .0100
25 .0900 .0500

*

a
cal kcalal

An
3

.0294 .0831 8

.0203 .0719 5

.0298 .1660 1

.0148 .0898 0

.0189 .0802 6

.0275 .0746 0

.0377 .0931 0

.0279 .0851 1

.0281 .0808 8

.2000 .5500 0

.7500 .0625 -1

.2025 .3600 0

.0432 .0991 0

.0522 .0370 -3

.0342 .0461 0

.0280 .0280 0

.5000 .0086 0

.3247 .0848 -4

.0193 .0840 0

.0057 .0009 1

.0177 .0498 0

.0131 .0882 0

.0441 .0339 0

.0026 .0101 -1

.0922 .0467 -6

Average reduction in sample size An3 = 0.6

corresponding variance = (3.202)
2

Average % reduction in sample size (An/n)3= 1.862

corresponding variance = (16.45)
2

Average % change in sample size lAn/n 13 = 7.813

corresponding variance = (14.51)
2

a
cal

and
cal

are the calculated values of a and B.

corresponding varience

corresponding varience

lAn1 = 1.8

= (2.6926)
2

Ac = -.04

= (.6758)
2

73



74

Appendix B-7. Reductions in Acceptance
Table XI

Test Prob.

Numbers, Ac

Stephens' Jaech's Initial Solution
No. Method Method Of Prog. "Aime"

Ac Ac Ac

1 0 1 1

2 0 1 1

3 -1 0 0

4 -1 0 0

5 0 1 1

6 -1 -1 0

7 -1 0 0

8 0 0 0

9 0 1 1

10 0 0 0

11 -1 -1 -1
12 -1 0 0

13 -1 0 0

14 -1 -1 -1
15 0 0 0

16 0 1 0

17 0 0 0

18 -3 -2 -2
19 -1 0 0

20 -1 0 0

21 -1 0 0

22 -1 0 0

23 0 0 0

24 -1 0 0

25 -1 -1 -1

Average
Reduction Ac -.68 -.04 -.04

variance (.69041)
2

(.73485)
2

(.67577)
2


