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solutions is used to determine the initial feasible sol-
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The algorithm developed in this paper is tested to
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A COMPUTERIZED APPROACH TO FINDING
THE MINIMUM SAMPLE SIZE FOR SINGLE
SAMPLE ATTRIBUTE SAMPLING PLANS

INTRODUCTION

Background

A problem frequently faced by the guality control
professional is the determination of acceptance sampling
plans that provide desired levels of protection for both
producer and consumer. The sampling plan must provide a
probability of at least l1l-a of accepting a lot if the lot
proportion defective is at the acceptable quality level
( AQL ). The plan must also provide a probability of
acceptance of no more than B if the lot proportion def-
ective is at the rejectable or unacceptable quality level
( LTPD ). Typically, o is referred to as the "producer's
risk" and B as the "consumer's risk".

Much has been written concerning the determination
of a single sampling plan given P1s Pys @ and B. Various
methods have been developed to aid the quality professio-
nal in sampling plan determination. Principally, the met-
hods have employed graphs, formulas, tables, or some com-
binations of these methods. The tables, however, are

restricted to the more popular a and B values.

The Problem

Let n denote the sample size and ¢ the acceptance

number for a single sampling plan. The probability of



acceptance, i.e. the probability of getting c or fewer
defectives in the sample, considered as a functiocn of the
fraction defective, p, in the inspected 1ot ( or process )
is called the operating characteristic of the plan and

is denoted by P(p). We shall consider operating charact-
eristic computed from the binomial distribution.

Since n and c¢ have to be integers it is usually not
possible to find a plan satisfying the requirement exactly.
Hald (1967) restates the problem such that the follow-
ing are satisfied: p(pl)z l-o, P(pz)i B, c is as small
as possible, pl< Py and 1-o > B. These modified reguire-
ments lead to a unique value of c and a range of values
for n. Since there is a choice of values for n, given c,
the problem now becomes one of selecting n based on some
criterion which is significant to the user. If, for
example, it is essential that the consumer's risk deviate
as little a2s possible from B with not too much concern
about &, then n is readily determined. Likewise, if for
some reascn minimum deviation from a is of primary inte-
rest, ancther n would be selected. In fact, Hald proves
that the smallest n which satisfies these two reqguire-
ments (i.e., minimum deviation from either o or B) is the
n which minimizes the deviation from B. Conversely, when
a minimum deviation from o is of prime ccncern, n is a
maximum. It follows that if the size of n is critical,
the choice is obwvious. If, however, there is no preference

for either of these two characteristics, n may be deter-



mined so that some linear combination involving the two
risks a and B is minimized. In particular, Hald discusses
two such combinations: the weighted sum P(pl)/a + P(pz)/B,
and P(pz)/P(pl) - B/a. The n which minimizes the latter
can be considered as a weighted average of the minimum n
and maximum n previously discussed. Other combinations

may be of interest and n could be determined accordingly.

Objective

One of the chief problems in starting a sampling
inspection procedure is to decide what size of sample is
needed. The question can be solved in various ways, the
most common being:

(1) by applying one of the standard sampling inspection
tables such as the Dodge and Romig Tables, the Military
Standard MIL-STD-105D, or the Philips S$SS Tables;

(2) by choosing numerical values for a suitable set of
parameters (AOQL, Producer's or Consumer's Risk Point,
etc.) and constructing a corresponding sampling plan; or
(3) on the basis of an economic theory which takes into
consideration various costs.

All three methods have been applied with success.
However, although methods (1) and (2) may be convenient,
one can never feel certain that they will lead to what
must be considered an optimum sample size (Hamaker,1958).

The main purpose of this paper is to reconsider the

fundamental problem of finding an optimum (minimum)



sample size in the light of recent papers on the subject.
A computer program will be written and tested, that will
accurately determine the minimum sample size without
resorting to an exhaustive search. The program will be
used to highlight accuracy problems existing with pre-
vious minimum sample size methods, in particular, Jaech's
method (1980) which is based on the methodology of Mr.
Larry Joe Stephens (1978) involving Borges' (1970) normal

approximation to the binomial.

Approach

Cost of inspection is directly proportional to the
sample size and is not dependent on the acceptance num-
ber. Since the stated problem leads to a unique value of
¢ and a range of values for n, minimizing c does not
guarantee that the sample size obtained is a minimum.
The computer program presented by Mr. William A. Hailey
(1980) provides accurate minimum sample size single
sampling plans that meet prescribed protection levels
for both producer and consumer. The routine is a mod-
ification of the search procedure developed by Guenther
(1969). It, however, involves an exhaustive search proc-
edure. Even with today's high speed computers, one is
justified in asking for better procedures than this.

In order to avoid an exhaustive search the Fibonacci
search technique will be used in the program. The search

will be conducted over an interval CO for the variable ¢



that is known to contain the optimal solution (cmin'nmin)°
For each point evaluated within this interval a Fibonacci
search will also be needed to determine the value of

noin’ the least value of n such that the chosen value of
the consumer's risk B is not exceeded. The experimental
point is considered to be feasible when both the a and B
values are not exceeded. Thus, an initial interval N0
known to contain N oin for each point in the interval C0

is also needed. Since N oin is an increasing function of

c, an initial feasible solution is all that is needed

to provide the intervals NO and CO. Jaech's (1980) algo-
rithm will be used to help determine that initial fea-
sible solution. Once the intervals are established, the
least sample size for the problem can easily be deter-
mined. The optimal solution is that value of D oin

corresponding to c_. .
min



BACKGROUND

Concepts And Terminology

The fundamental tool for analysis of a sampling plan
is the operating characteristic curve. Two types of curves
are recognized:

Type A. Sampling from an individual (or isolated) lot,
showing probability that the lot will be accepted plotted
against lot proportion defective.

Type B. Sampling from a process (such as the producer's
process which produces the lot), showing proportions of
lots which will be accepted plotted against process prop-
ortion defective.

The probability distributions utilized in plotting these
types of OC curves are inherently different. They also
depend upon the measure in which guality is expressed.
They include:

Attributes. A dichotomous (two class) classification of
units into defectives and nondefectives.

Counting. An enumeration of occurrences of a given char-
acteristic per given number of units counted.

Variables. The measurement of some characteristic along
a continuous scale.

The distinction is made between defect (an imperfection
great enough to be counted) and defective( a unit cont-
aining one or more defects, which cuuld be rejected for

any one of them).



The probability distributions appropriate for the
derivation of operating characteristic curves of the two
types are shown in Table I (Schilling,1982).

Table I. Probability Distributions For Operating
Characteristic Curves

Characteristic Type A Type B

Attribute Hypergeometric Binomial
Count Poisson Poisson

Measurement Applicable cont-

inuous distribution
of measurement
involved

Choosing Quality Levels

The choice of quality levels with which to construct
a sampling plan must be made considering the seriousness
of the defects to which it is applied, the operating
characteristics of the resulting sampling plan, economic
consequences in terms of sample size, the ability of the
producer to meet the levels, and the needs of the con-
sumer which must be met. The construction of any sampling

plan involves a trade-off of these items.

Specifying A Plan

Discriminating use of sampling procedures demands

knowledge and specification of the characteristics of the



plans to be employed. A primary consideration is the
protection afforded to both the producer and consumer.
Since two points may be used to characterize the OC curve,
it is customary to specify:

py = producer quality level

p, = consumer guality level

a = producer risk
B = consumer risk.

For single-sampling attributes plans, l-a and B can
be determined directly from the distribution function of
the probability distribution involved. Fig. 2-1 shows the
relation of these guantities to the OC curve. Also shown
are the regions of acceptance, indifference, and rejection

defined by these points. Quality levels of py or better
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Fig. 2-1 Relation of Pys Py l-a and B to the OC curve.



are expected to be accepted most of the time (> 1-a) by
the plan depicted. Quality levels of p, Or worse are
expected to be rejected most of the time (< 1-B) while
intermediate levels will experience decreasing probability
of acceptance as levels move from pl to p2. Occasionally,
only one set of parameters (pl,a) or (p2,8) is specified.
A single-sampling attributes plan may be specified by any

two of the following: (pl,a), (p2,8), n, c.

Single Sampling By Attributes

The single-sampling plan is basic to all acceptance
sampling. The simplest form of such a plan is single
sampling by attributes which relates to dichotomous sit-
uations, i.e., those in which inspection results can be
classified into only two classes of outcomes. This inc-
ludes go no-go gauging procedures as well as other class-
ifications, such as measurements in or out of specificati-
ons. Applicable to all sampling situations, the attributes
single-sampling plan has become the benchmark against
which other sampling plans are judged. It is employed in
inspection by counting the number of defects found in the
sample (Poisson distribution) or evaluating the proportion
defective from processes or large lots {(binomial distrib-
ution) or from individual lots (hypergeometric distributi-
on). Single sampling is undoubtedly the most used of any

sampling procedure.
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Implementation of an attribute single-sampling plan
involves taking a random sample of size n from a lot of
size N. The sample may be intended to represent the lot
itself (Type A sampling) or the process used to produce
the lot (Type B sampling). The number of defectives (or
defects) d found is compared to an acceptance number c. If
the number found is less than or equal to ¢, the lot is
accepted. If the number found is greater than ¢, the lot
is rejected.

Sampling plans are frequently used in consort to
produce levels of protection not attainable by any of the
component plans individuaily. Such combinations of plans
are called sampling schemes or sampling systems. Sampling
plans are the basic elements of sampling schemes, while
sampling systems may be considered to involve a grouping
of one or more sampling schemes (Schilling,1982).

Attribute sampling schemes include the tables of AOQL
plans prepared by Dodge and Romig (1959), which resulted
in a stated AOQL with minimum total inspection when used
as directed with 100 percent inspection. Many schemes,
however, are included in the AQL systems. AQL refers to the
acceptable gquality level, i.e., what has been called the
producer's quality level for a single plan. These systems
are intended to be applied to a stream of lots. Such plans
specify an upper limit on quality, the AQL, not to be ex-

ceeded by the producer without penalty of an excessive num-
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ber of rejected lots. That is, for levels of guality less
than the AQL, rejections will be relatively infrequent,
say less than 1 in 10, while for levels of quality in
excess of the AQL, rejections will be more frequent, say
more than 1 in 10. This is achieved by switching back and
forth between the plans included in the system. Tighter
plans are used when quality levels are shown to be poor,
while looser plans involving small sample sizes are uti-
lized when quality is shown to be good. Over a continuing
supply, schemes can be devised to incorporate the best
properties of the plans included as elements. Frequently,
schemes are selected within a system in relation to the lot
size involved.

MIL-STD-105D(1963) combines several individual samp-
ling plans in schemes constructed to employ economic, psy-
chological and operational means to motivate the producer
to sustain acceptable quality levels. The procedure for
switching between plans is essential to the system; it is
so designated as to exert pressure on the producer to take
corrective action when quality falls below prescribed lev-
els and to provide rewards, in terms of reduced sample size,
for quality improvement. The standard ties together sets
of three attribute sampling plans, each at a different
level of severity, into a unified procedure for lot accept-
ance through the use of its switching rules. These action

rules determine the level of severity to be employed dep-
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ending on the level of quality previously submitted. Thus,
inspection of a succession of lots is intended to move
among the specified set of tightened, normal and reduced
sampling plans as quality levels degenerate or improve.
Switching between tightened and normal plans is made man-
datory by the standard, while the use of reduced plans is
optional. The MIL-STD-105D, as such, does not allow for
application of individual plans without use of the swit-
ching rules, since such an approach can lead to a serious
loss of protection from that achieved when the system is
properly applied. Quality levels are specified in terms of
acceptable quality level (AQL) for the producer, while
consumer protection is afforded by the switching rules

which lead to tightened plans when quality is poor.

Most Economical Sampling Schemes

In discussions on the application of schemes, parti-
cularly those involving the choice of a producer's or
consumer's risk, mention is often made of the general
considerations that govern the various choices to be made-
for example, the consumer's risk should be very low if the
acceptance of unsatisfactory batches could cause much dam-
age. Attempts have been made to give these considerations
quantitative expression by dealing with the various costs
involved.

"Decision costs" depend on what is done with rejected
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effective articles- whether, for example, they are scrapped
or sent back to the producer- and on the damage that can
result from the utilization of accepted defective articles.
Generally, the larger the sample the smaller is the deci-
sion cost. Further, we need to know the sampling cost.
Since the sample is defined by the scheme, the total
sampling cost per batch can be calculated. These two, the
decision and sampling costs are in principle, calculated
for a range of schemes involving samples of different size,
and the schemes for which the sum of the two costs is a
minimum is the most economical scheme (Tippet,1958).

It seems that the attempts that are being made to put
acceptance sampling on an economic basis are important.
Control of gquality by inspection is important and inspect-
ion often adds substantially to manufacturing costs; oper-
ating efficiency requires that the economically optimum

degree of sampling should be adopted.

Review Of Literature

The literature on the subject of acceptance sampling
is extensive, scattered, and somewhat confusing (Tippet,
1958) . The contributions Professor Harold F. Dodge have
been chronicled and are represented in the Dodge Memorial
Issue of the Journal of Quality Technology (July, 1977).
Professor Dodge, as a member of that small band of guality

control pioneers at the Bell Telephone Laboratories of the
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Western Electric Company, is considered by some to be the
father of acceptance sampling as a statistical science.
His paper, published in four parts (Dodge,1969,1970) out-
lines how the LTPD, the AOQL, the AQL and the CSP systems
of plans and some other plans came into being over four
decades, reviews the growth of concepts during that period
and discusses a number of factors that influenced the dev-
elopment of the sampling inspection plans and tables that
are in common use today.

Procedures are also available for determining so-
called two-point single sampling plans for specified
values of Pysr Pyr O and R. Five such procedures that
relate to the derivation of plans are indicated in Table II
(Schilling, 1982).

Factors for constructing of single sampling plans
are available in the literature which are based on the
Poisson distribution and which provide excellent approx-
imations to the binomial sampling situation as well.

These include the original approach of Peach and Littauer
(1946) together with the work of Grubbs (1949) and Camer-
on (1952) and the tabulations by the U.S. Army, Chemical
Corps Engineering Agency (1953). These so-called unity
values can be easily used to construct and evaluate plans
on the basis of the operating ratio (R=p2/pl). The theory
of construction of unity values is explained by Duncan

(1974).
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Table II. Procedures For Determining
Single Sampling Plans

Type Plan Method Use

Type B Table of Poisson Table for derivation of
(defectives) unity values plan given operating ratio
(defects) R for tabulated values of

a,B, and c. Poisson approx.
to binomial for defectives.
May be used as exact for

defects.
Type B Binomial Nomograph for derivation
(defectives) nomograph of plan given «,R, pl, p2.

Uses binomial distribution
directly. Hence exact for

defectives.
Type A f-Binomial Uses binomial nomograph
(defectives) nomograph to derive Type A plans

given o,R, pl, p2 through
f-binomial approx. to
hypergeometric distrib.
Given lot size gives
approximate plan for

defectives.
Type B Thorndyke Procedure for use of
(defects) chart Thorndyke chart for
(defectives) Poisson distribution to

derive plan given o,B, pl,
p2. Exact for defects.
Approximate for defectives
through Poisson approx.

to binomial.

Type A Hypergeometric Iterative procedure for

(defectives) tables derivation of exact
hypergeometric plan given
N, o, B, pl, p2 using
Lieberman-Owen tables of
hypergeometric distri-
butions.
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The Larson (1966) nomograph can also be used to de-
rive single sampling attributes plans. The nomograph can
also be used to evaluate the operating characteristic
curve of a plan. The Larson nomograph is based on the
binomial distribution and so will allow direct evaluation
of Type B plans for fraction defective. It allows deriv-
ation and evaluation of plans for values of probability
of acceptance not shown in the Cameron tables. It provides
a reasonable and conservative approximation (Sschilling,
1982) for the derivation of plans when the hypergeometric
distribution should apply and the binomial approximation
to the hypergeometric distribution is appropriate. A graph-
ical trial-and-error approach using Larson's nomograph
(which is designed for solution of cases in which both
Py and Py, OF alternately, l—-pl and l—p2, are smaller than
0.5) has been outlined by Ladany (1977) for the derivation
of single-stage attribute sampling plans in which either
the Acceptance Quality Level or the Lot Tolerance Fraction
Defective is larger than 0.5.

Although somewhat more complicated than Larson's bi-
nomial nomograph, the Thorndyke (1926) chart, as given in
Dodge and Romig (1959), may be used to derive a single-
sampling attributes plan. Burges (1948) describes the
procedure.

The operation of the MIL-STD-105D has been described

in detail by Hahn and Schilling (1975). The background of
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MIL-STD-105D and its development of the 105 series is
given in a paper by Pabst (1973). It explains some of the
intricacies of the system and its development. The theory
behind its structure is well presented in a paper by Hill
(1973). An extensive and informative investigation of the
properties of MIL-STD-105D is presented in a paper by
Stephens and Larson (1967). Scheme properties are also in-
vestigated by Schilling and Sheesley (1978) and measures
of performance tabulated. A set of plans indexed by limit-
ing quality and compatible with MIL-STD-105D (same lot
size classes and sample sizes) has been proposed by Duncan,
Mundel, Godfrey and Partridge (1980). The proposed table,
which simplifies the selection of a limiting quality plan,
can be used independently or in conjunction with MIL-STD-
105D and associated standards.

Hald and Kousgaard (1967) have constructed tables to
provide simple and comprehensive means for computing the
binomial operating characteristic of single sampling plans
or, egquivalently, to find confidence limits for p in the
binomial distribution. Accurate approximation formulas
are available for ¢ > 50. An advantage of the table as
compared to other tables of the binomial distribution is
that for ¢ < 50 interpolation is only required with
respect to n for determining p.

Among the basic concepts in the theory of sampling

inspection the producer's and consumer's risks are the
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most widely used for characterizing systems of sampling
plans. A comprehensive theory based on these concepts for
the case of single sampling by attributes is presented in

a paper by Hald (1967). The requirements defining a system
of sampling plans are usually of such a nature that no
explicit solution exists for the sample size and acceptance
number. Hald supplements the exact (implicit) solutions

by asymptotic solutions which give a better insight into
the basic properties of the system.

Most single sampling plans assume that the lot size
is large compared with sample size, and the calculated
operating characteristic curves are strictly valid only
under these conditions. In his article Hamaker (1959)
describes a simple method for finding the sample size
and acceptance number number appropriate to a lot of
finite size, so that the resulting operating character-
istic curve closely approximates to that for a given
plan with an infinite lot.

A paper by Hald (1967) gives a survey of solutions
to the problem of determining a single sampling plan.
Solutions corresponding to Poisson, binomial, and hyper-
geometric operating characteristics are given, and the
accuracy of the approximations is given by numerical
investigations.

The administration of acceptance sampling plans

has been greatly simplified by the computer. Data bases
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can provide an excellent source for gquality history,
while individual computer programs can be used to set up
and evaluate sampling plans and even to sentence ind-
ividual lots.

A number of computer programs useful in acceptance
sampling, have been published in the literature. Among
these include GRASP (Schilling, Sheesley and Nelson,

1978) that will evaluate an arbitrary single, double, or
multiple sampling plan using hypergeometric, binomial,
Poisson, or normal probabilities. An option is also
included that will permit the calculation of the fraction
defective values associated with arbitrary specified values
of probability of acceptance. A program by Snyder and
Storer (1972) is based on Hald's (1967) paper and considers
only the Poisson distribution. Hailey's program (1980),
however, provides sampling plans based on either binomial
or Poisson distribution and involves the use of an exhaus-
tive search procedure developed by Guenther (1969).

In the following two sections summaries of two
approximate methods developed recently for determining
sample sizes and acceptance numbers for single sample

attribute sampling plans are presented.



Summary Of Stephens' Paper

In his paper, Stephens (1978) uses the normal app-
roximation to the binomial distribution developed by

Borges (1970) with error term of order 1/n to find the

20

sample size and acceptance number in a single sample ac-

ceptance sampling plan when two points on the operating
characteristic (OC) curve are specified.

Borges' approximation can be described in the fol-

lowing way:

K
B(k;n,p) = % cC,.p'.(1-p)°7t (1)
i=0
g, = () V8 (nr1/3) /2
(k+1/6)/ (n+1/3) _
r ’ (s(1-s)) 13 as (2)
p
X 2
o(x) = (1/(2m /%) .78 /2 a4t (3)
Then,
B(k;n:p) = ¢(Yk+l/2) (4)

Let (pl,l-a) and (p2,8) be the two points specified on
the OC curve. It is desired to find the sample size, n,
and the acceptance number, c, such that,

B(c;n,pl) = l-a (5)
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Suprose ¢(ul) = l-a and ¢(u2) = B

Since ¢(yc+l/2) ~ 1-q :¢(ul) at pq and

¢(yc+l/2) = B = ¢(u2) at p,, it follows that
TR (plql)_l/G.(n+l/3)l/2.
(c+2/3) /(n+1/3) _
s (s (1-s)) "1/ 3. as (7)
Py
by = (pyay) M me1/3) 12,
(c+2/3)/(n+1/3) _
! (s(1-s)) /3. as (8)
Py
S ~1/3
Let g(s) = / (t(1-t)) dt.

0
Stephens' table (see Appendix B-2) was formed using a
generalized Gauss quadrature subroutine and contains
values of g(s) for s, 0(0.001)1. Then expressions (7)

and (8) may be written as

vy = (yap 13 2 (g ((cr2/3) /(n41/3)) - (b))}

. (9)

R

(2,a,) Y (m+1/3) /2 {g((c+2/3)/ (n41/3)) =g (p,) )

H2 292
....(10).
From expressions (9) and (10) the following may be

obtained:

1/2
by pgay) 8w, (b, 8=t/ 2 (g (py) =g ()} (11)
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or, upon solving for n,

,1/6 1/6

n = Ly (a0, (0,9, 0t (g(p,y) -g(p))) }2-1/3 (12)
The variable n may be found from equation (12) and
then ¢ may be found from expression (9) or (10). Stephens,
however, gives no guidance on how to round the resulting
acceptance number to an integer and, in fact, avoids
dealing with this issue by generally treating only those

examples in which the calculated acceptance number is

close to an integer.

Summary of Jaech's Paper

Jaech (1980) indicatés in his paper how Stephens'
approach may be extended to provide integral solutions
using an iterative calculation procedure. The problem is
as formulated by Hald (1967) and may be stated as follows:
Determine (n,c) so that P(pl) > (1-a), P(pz)_f B,
and ¢ is as small as possible, where P, < P, and
(1-a) > B.

In obtaining an integral solution by extending
Stephens' methodology, the first step is to round up the
calculated acceptance number ¢ to the next integer, cq-
A decision is then made either:

a. to control the value for o close to its design value

and choose the sample size such that the actual value
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for B is smaller than the design value; or

b. to control the value for B close to its design value
and to choose the sample size such that the actual value
for o is smaller than the design value.

Hald (1967) proves that the sample size under choice b
will always be smaller than that under choice a.

The following simplifying notation is introduced:

n, = initial sample size using Stephen's equation
(12)
Sy = (c+2/3)/(n0+1/3)
n, = ith iteration sample size.
The sample sizes nl, n2, n3,... will be defined to be

integers. The iterative procedure to be given will stop
either when Ny and Ny, are the same value or when they
flip-flop back and forth between two integers upon
successive iterations, in which case the larger integer
becomes the sample size. The iterative procedure is as
follows:

1. Calculate n, as the smallest integer larger than

or equal to

(C0+2/3)so—l/3.

2. Calculate g(sl) from the equation

g(sy) = u; {p;(1-p))} 1/6 +g(p;) (13)

(nl+1/3)1/2

using i=1 under choice a, control of producer's
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risk, and i = 2 under choice b, control of con-
sumer's risk. In (13), g(pi) is read from Steph-
ens' table (see Appendix B-2), while “i is defined
by ¢(ul) = 1-a and ¢(u2) = B, where ¢(x) is the
cumulative normal ( expression (3) ).

3. Find s from Stephens' table, given g(sl) from
step 2.

4. Calculate n, as the smallest integer larger than
or eqgual to

(c0+2/3)/sl—1/3.
5. Calculate g(sz) using equation (13) with ny repl-

aced by n,

6. Find s., from Stephens' table

2
7. Calculate n,; as the smallest integer larger than
or eqgual to
(co+2/3)/52—1/3.
The iterative procedure indicated in these steps is con-
tinued until 'convergence' to a final sample size is
obtained.

Jaech also suggests that an alternative solution
reported by Hald (1967) may be more conveniently applied
to find the required sample size once Stephens' acceptance
number is derived and appropriately rounded. Since both

Stephens' and Hald's methods are based on approximations,

they do not necessarily yield the same results.
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THE METHODOLOGY

Development Of The Algorithm

The problem, as formulated by Hald (1967), in the

following way:

Determine (n,c) so that P(pl) > 1l-o, P(p2) < B,

and ¢ is as small as possible, where Py < Psy and

l-a > B,
leads to a uniquely determined value of ¢ and an interval
for values of n, all satisfying the conditions. Thus,
minimizing ¢ does not imply that n is minimized.

For the binomial case,

P(pl) = B(c;n,pl) > l-a (designated as a-constraint
henceforth)

P(p2) = B(c;n,pz) < B (designated as B-constraint
henceforth).

For a given value of c¢, B(c;n,p) is a decreasing function
of n, and it will be possible to determine the least value
of n (nmin) satisfying the B-constraint. It will also be

possible to determine the greatest value of n (nmax)

satisfying the a-constraint if B(c;c+l,pl) > 1l-a. Thus,

to satisfy both constraints, n must be greater than or

max

equal to noin Also it may be stated that Doin (and nmax)

increases as ¢ increases. Consequently, the least feasible
solution (nmin) for the problem is the least n correspond-
ing to Chin’ and the problem may be restated in the foll-

owing way:
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minimize n

subject to, B(c;n,pl) > l-a

A
™w

B(c;n,pz)
Pp < P
l-ao > R.

The variation of (n -n ) with ¢ (see Appendix B-3)

max ~min
seems to suggest that ¢ is feasible for all values of ¢
greater than Chin® This has been found to be very diff-
icult to prove mathematically, using the cumulative bino-
mial distribution. However, in this paper, this will
be shown using the Poisson approximation to the binomial
as follows:

Theorem 3.1: If c = cmin is the least feasible solution

to the stated problem, then any value of ¢ > Chin is also

feasible.
Proof:
B(c;n,p) = P(c;inp)
P(c;np) = P(x%>2np); £ = 2(c+l) ..... AU (1)
2npl < X2 and 2np., > Xz_ ; £ = 2(c+l) ..., (2)
o 2 1-8
(Hald, 1967)
i.e. n = x2/2p and n_. = X2 /2p,; £ = 2(c+l) ... (3)
max o 1 min 1-8 2
Let ¢ = ¢, be a feasible solution. Then,
(nmax)l z (nmin)l

From (3), it follows that
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2 2

or /by = (/b)) (x /XD 20 ... (4)

Let c2 = cl + 1.

Since Xi_B/xi is a decreasing function of ¢ (Hald, 1%67),

2 2
(X_g/Xa) 5 < G g/X3)
and it follows from (4) that
2 2
1/py - (1/92)(X1-6/Xa)2 >0

This implies that

(

nmax)2 i (nmin)Z.
Hence, ¢ = c, is also feasible and it can easily be inferr-
ed that this proves the theoren.

The Fibonacci search technique (see Beveridge and
Schechter, 1970) may be used to find the optimum value of
an unconstrained objective function of a single variable,

a function that is unimodal and bounded over a fixed
interval LO. It may be used to determine n_. for a given

min

¢ as follows:

Let § = 1 if the B-constraint is satisfied
= 0 otherwise.
If n, is a value of n known to satisfy the B-constraint,

the search interval is as shown in Fig. 3-1.
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Fig. 3-1: §, as a function of n.

§ is a step function consistent with that described in
the following section (IIIc), and Do can easily be deter-
mined using the Fibonacci search technique.

In order to determine Crin’ the variable y may be

in
similarly defined:

Let vy = 1 if ¢ is feasible (i.e. N g satisfies the a-

constraint)

0 otherwise.

If <y is a value of ¢ that is known to be feasible, the

search interval is as shown in Fig. 3-2.

Y
1 y=1
-1
i

0 4
Cmin C0 ¢

Fig. 3~2: y, as a function of c.
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For each experiment, n .o is first determined and then

tested for feasibility (a~constraint). Since n s, in-

creases with ¢, n=( ) _ may be used as the upper bound

Dmin’c
0

for the search intervals for determining Noin for all

c < cye- Thus, given an initial feasible solution (co,no),

the optimal solution (c_. ., ) can be easily determined

n .
min’ min
using the Fibonacci search technique. Since n and ¢ are
discrete variables, it may be necessary to add fictitious
locations at one end so that the interval length corres-

pond to a Fibonacci number. The interval for determining

n i, 9iven (co,no) is shown in Fig. 3-3.
8
=1

1 ;
[
i
{

0 1

C0+l Dmin 2 FN n

Fig. 3-3: Search interval for N osin’ nOinmin'
Only experiments that fall between c0+l and n, need to
be evaluated since 6 = 0 for n < = and § = 1 for n > ng-

The search interval for determining Cnin is shown
in Fig. 3-4. In this case, Y = 1 for c > <y and only

experiments that fall between 0 and Sy need to be eval-

uated.
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Y
1 y=1
0 ]
“min o FN' ¢
Fig.3-4: Search interval for c_ . , c. > c . .
min 0 — "min

Jaech's algorithm (see Sect. ITh) will be used to det-
ermine the initial solution. However, due consideration
must be given to the fact that the algorithm does not
guarantee a feasible solution. The value of ny so obtained

may not satisfy the B-constraint, in which case, the next

feasible n, where n is a Fibonacci number greater than ng,

is determined (see Fig. 3-5). Also, upon determining

(n

L) it may be found that the a-constraint is not
min’c,
satisfied, in which case, the next feasible c, where c

is a Fibonacci number greater than Sy is determined (see

Fig. 3-6).
§=0 for )
n<n
-0’ (n_. ) _ _
§=1 for 1 min’n=Fyg §=1
i
niFN. X
0 1
c+1 no FN n

Fig. 3-5: Search interval for ns

in’ Do <n

min.
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vy=0 for Y
cscg
1 y=1
vy=1 for X
c>F !
— N' 0 —
€o “min C=Fy ¢

Fig. 3-6 Search interval for c_. , c. < Cc_._.
min 0 min

Interval eliminations for the Fibonacci search i1s consi-~-

dered in the following section.

Interval Elimination

*
Suppose we seek the location X where y(x) achieves

*
its minimum value y in the unit interval 0 < x < 1.

1f
*
xl<x2<x
Y1 < Yo < y*
and if

y(x) may be said to be strictly unimodal. Consider two
points Xy < X, The possible outcomes are shown in Fig. 3-7:
Yy > y2, yl < y2, or yl = y2. When Yq 2 y2, the minimum
cannot lie to the left of Y, and we can conclude that

x* > Xy - Similarly, Yy < Y, implies that x* < X, When

the two outcomes are exactly equal ( Yy, = y2), the minimum

must lie between the points ( Xq < xX* < x2).
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O

X} -
Ml — ~- -
—

o

%

Fig.3-7: Possible outcomes of two experiments.

For the case of the step function ¢§(d), where
§ = 0, d < d*
§ =1, d > d*,

the possible outcomes of two experiments dl and d2 are

shown in Fig. 3-8.

' <l ‘ * ‘ * st
F Gw'dl d2 d FN 0 dld d2 F

Fig. 3-8: Possible outcomes of two experiments
for the step function 6.

Interval eliminations are so chosen that at least one of
the experiments becomes an end point of the next interval

so as to facilitate the use of the Fibonacci search tech-

nique.

The Algorithm

The algorithm to determine the minimum sample size may

now be stated as follows:
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Determine (nO, cO) using Jaech's algorithm.

Test B-constraint for (nO, CO).

If B-constraint is satisfied, go to Step 4.
Determine least N such that the Fibonacci number
FN>nO satisfies the B-constraint. Go to Step 5.

Determine least N such that FNZPO'

Determine noin (Fibonacci search)

Test a-constraint for (nmin’ cO).

If a-constraintis not satisfied, go to Step 11.

Determine least NC such that FNCZCO'

Determine (n_. ,c n) using Fibonacci search

min’ "mi

given initial feasible solution (nmin,co) from

Step 6 or (nmin’CFNC) from Step 17.
If Cmin# 1, the optimal solution is (nmin’cmin)
If c¢c_. =1, determine (n_. ,0) given (n_._,1)

min min min

using Fibonacci search. If (n 0) is a feasible

min’
solution, it is also optimal. Otherwise, optimal

solution is as obtained in Step 9.

Determine least NC such that FNC>CO'

Determine n , C=F using Jaech's algorithm.
FNC NC
Test B-constraint for (nFNC, c=FNC).

If B-constraint is satisfied, go to Step 15.

Determine least N such that F.,.>n satisfies
N FNC

the B-constraint. Go to Step 16.

Determine least N such that FLin

N—-F

NC

Determine n_._, c=F

min NC*®
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Step 17. Test o-constraint for (n_. , c )
min FNC
If o- constraint is satisfied, go to Step 8.

Step 18. Set F 1+ 90 to Step 12.

NCTENC+
Gauss's gquadrature formula (see Engels, 1980) will
be used to determine the values of the integrals (those
corresponding to Stephens' table and the standard normal
tables) needed to be evaluated when using Jaech's algo-
rithm. The abcissas and weights (David and Rabinowitz,
1958) are listed in Appendix B-1l. Inverses of these
integrals can be determined using the Fibonacci search
technique involving 16 experiments (FN=1597). The search
interval for the x-values in Stephens' table (Appendix B-2)
is 0 to 1 and the region of uncertainty is l/FN = 0.000626.
The search interval for determining the standard deviates
My and o is taken to be 0 to 3.5 and its region of
uncertainty is 3.5/FN= 0.00219.
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EXPERIMENTAL ANALYSIS

The FORTRAN program "Aime" (see Appendix A-1l) incor-
porates the algorithm developed in the preceding chapter.
However, since the proof of optimality given in Chapter III
is based on the Poisson approximation, it cannot be stated
with absolute certainty that the program will always pro-
duce accurate solutions. Thus, in order to verify the acc-
uracy of "Aime", an exhaustive search routine is also
needed. A computer program to obtain minimum sample size
in such a manner may be based on the following routine:

1. The user supplies the desired 1l-o = P(acceptancelpl)
and B = P(acceptance|p,).

2. Set n =1 and ¢ = 0, where n = sample size and c =
acceptance number (# defectives).

3. Calculate P(acceptancelpz, n, c).

4. If P(acceptance|p2, n, c) < B, go to step # 5.
Otherwise, increase n by 1 and return to step # 3.

5. Calculate P(acceptancelpl, n, c).

6. If P(acceptancelpl, n, c) > l-a, the minimum sample
size plan (cmin’ nmin) has been found. The plan n =
current value of n and ¢ = current value of c satisfies
the requirements.

7. If P(acceptance|pl, n, c) < l-a, increase ¢ by 1 and
go to step # 3.

The routine just described may be modified such that n

max

is also determined for a given c. Then, the optimal solut-
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ion is obtained when n Five examples to illus-

max Z Mhin
trate the use of such a routine is given in Appendix B-3.

For the experimental analysis twenty-five test prob-
lems (see Table I1III1) were chosen. Some of these were taken
from available literature, viz., those of Stephens'(1978),
Jaech's (1980) and Hald's (1967). Most previous papers On
the problem have provided tables and appropriate solutions
with special regard to the conventional values of a and B,
viz. o = 0.05 and B = .10. It will be noted that most of
the chosen values of a, B, Py and p, are not usually the
kind of values that are chosen in practice. Values that
are greater than 0.5 are also included in the set of test
problems. However, they all do satisfy the constraints
P < P, and l-a > B (see Sect. IIIa), and will be retained
for illustrative purposes.

Table III also lists the solutions obtained using the
methodologies of Stephens (see Sect. IIg) and Jaech (see
Sect. ITIh). These solutions were obtained using a pocket
calculator and the required tables. Stephens gives no guid-
ance on how to round the resulting acceptance number (and
sample size) to an integer. The solutions listed in the
table were obtained by rounding to the nearest integer.

Jaech's method involves the use of Stephens' approach.
However, he suggests rounding the calculated acceptance

number to the next integer. This rounding procedure is also

adopted in the calculation of the sample size. If the



Table III. Solutions To Test Problems.

Test Prob. Problem Parameters Stephen's Jaech's Initial Optimal
No. o B P, P, Solution Solution Solution Solution
(using of prog. of prog.
tables) Aime Aime
c,n c.n c.n c.n
1 .1403 .0947 .015 .210 0,11 1,18 1,18 0,10
2 .0582 .0965 .040 . 340 1,10 2,15 2,15 1,10
3 .1400 .1041 .010 .140 0,16 1,22 1,27 1,26
4 .0529 .0935 .025 .240 1,15 2,19 2,21 2,21
5 . 0439 .0913 . 040 .250 2,20 3,24 3,26 2,20
6 .0471 .0908 .070 .310 3,20 3,25 4,25 4,25
7 .0760 .0980 .040 .200 2,25 3,35 3,32 3,32
8 .0250 .0980 .100 .270 9,50 9,47 9,51 9,50
9 .0490 .0810 . 040 .160 4,51 5,53 5,58 4,50
10 ,2000 . 6000 .200 .450 0,1 0,2 0,1 0,1
11 .6000 .2000 .500 .750 0,1 0,2 0,2 1,3
12 .3000 .4000 .450 .800 0,1 1,3 1,2 1,2
13 .0500 .1000 .100 .200 15,104 16,110 16,109 16,109
14 .0500 .0500 .100 .400 4,19 4,21 4,21 5,24
15 .0500 .0500 .100 .500 3,12 3,14 3,13 3,13
16 .0500 .0500 .100 .900 1,2 2,5 1,3 1,3
17 .5000 .0100 .500 .900 2,5 2,6 2,5 2,5
18 .3000 .1000 .400 .495 37,89 38,91 38,91 40,95
19 .0300 .0850 .040 .140 6,76 7,84 7,84 7,84
20 .0100 .0010 .010 .100 4,146 5,159 5,160 5,159
21 .0483 . 0870 .075 .600 1,5 2,8 2,8 2,8
22 .0961 .0916 .020 .380 0,5 1,9 1,9 1,9
23 .0500 .0500 .100 .490 3,12 3,12 3,14 3,14
24 .0050 .0100 .010 .060 7,265 8,286 8,285 8,286
25 .0900 .0500 .100 .200 15,111 15,112 15,112 16,118

LE
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rounding procedure adopted for both methods were the same,
the acceptance numbers obtained would have also been the
same. Since this is not the case, one can expect the accep-
tance number obtained by Jaech's method to be greater than
or equal to that obtained by Stephens' method. In fact, for
the 25 test problems, Jaech's method produced higher accep-
tance numbers for 16 of them (64%).

Jaech's iterative procedure will stop when ny and ny.q
are the same value or when they flip-flop back and forth
between two integers upon successive iterations, in which
case the larger integer becomes the sample size. Computa-
tional experience in determining the solutions using tables
has uncovered one more possibility, i.e., n, and Ny 43 might
also be the same. This possibility was also added to the
set of stopping rules when the FORTRAN program "Aime" was
written.

The output of "Aime" lists the initial solutions that
are obtained using Jaech's method as well as the optimal
solutions. These are listed in the last two columns of
Table III, respectively. One would expect the initial solu-
tions of "Aime" to be the same as those obtained using
Jaech's method and the necessary tables. However, the init-
ial solutions of "Aime" are dependent on the number of ab-
cissas and weights of the Gaussian guadrature subroutine as
well as on the number of experiments in the Fibonacci search
subroutine for determining the inverses of the integrals

(see Sect. IIIc). Thus, even though the initial solutions
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of "Aime" were obtained using Jaech's algorithm, they dif-
fer slightly from the values obtained using a pocket cal-~
culator and the required tables. These discrepancies may

be reduced by increasing the number of abcissas and weights
in the Gaussian quadrature subroutine and/or by increasing
the number of experiments in the Fibonacci search subrout-
ine. This would, however, give rise to considerable incre-
ases in computational times.

Table IV lists the number of exact solutions, the
number of feasible solutions and the number of feasible ¢
values (i.e. ¢ > cmin) for the methodologies of Stephens
and Jaech (using tables) as well as for the initial solut-
ions of program "Aime". Exhaustive searches confirm that

the optimal solutions (see Table III) obtained by program

"Aime" are all accurate. As can be seen, the number of

Table IV. Number of Feasible and Exact Solutions
Stephens' Jaech's Initial
Method Method Solution
(Using of Prog.
tables) "Aime"
No. of Feasible Solutions: 7/25(28%) 15/25(60%) 18/25(72%)
No. of Feasible c Values: 8/25(32%) 20/25(80%) 21/25(84%)
(c > c_._)
~ “min
No. of Exact Solutions: 4/25(16%) 5/25(20%) 13/25(52%)

exact solutions obtained using approximate methods are few

in number- only four (16%) using Stephens method and five
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(20%) using Jaech's method. Program "Aime" did considerably
better in producing initial solutions that are exact (13/25
or 52%). The program also produced a greater number of fea-
sible solutions (72%) compared to Jaech's method (60%) and
consequently, increases in the number of abcissas and wei-
ghts of the Gaussian quadrature subroutine and/or in the
number of experiments for the Fibonacci search subroutine
are not warranted. It may be noted that the acceptance
numbers of the initial solutions of program "Aime" do not
differ significantly from those obtained using tables (see
Table III). The same Values are obtained for all but two
test problems (nos. 6 and 16). Thus, the discrepancies are
mostly in the values of the sample sizes obtained.

In order to compare a solution obtained using one of
the approximate methods with the corresponding optimal sol-
ution of program "Aime", the decrease in sample size, An,
needed to make the approximate solution optimal may be com-
puted. The numerical value of An is positive only if the
approximate solution is feasible. Also, in order to high-
light the inaccuracies in using the approximate methods,
the absolute value of An, viz. |An|, may also be computed.
Appendices B-4 and B-5 list the values of An obtained when
comparing the solutions of Stephens and Jaech, respectively,
with the optimal solutions of program "Aime". The values of
An have also been computed for the initial solutions of

"Aime" and are listed in Appendix B-6. Values of the average
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reduction in sample size An, the average absolute differ-
ence between sample size |An|, the average percentage
reduction in sample size An/n, and the absolute value of
the average percentage difference between sample size
|2n/n| have also been computed. Corresponding variances
are also listed in the appendices. A similar analysis of
the acceptance numbers can be carried out by determining
the reduction in acceptance number, Ac, in a similar fash-
ion. The values of Ac obtained for the three sets of
approximate solutions are listed in Appendix B-7.

A two-tailed test of hypothesis is conducted to deter-
mine whether the average reduction in sample size is sig-
nificantly different from zero. The null hypothesis, there-
fore is Hy: én = 0, and the alternate hypothesis is Hy:
dn # 0, where 8n is the average reduction in sample size of
the population. A level of significance a = 0.05 is chosen.
Similar tests are also conducted for the other means that
are considered in this chapter, viz., |8n|, én/n, |8n/n|,
and én (the corresponding population means).

For Stephens' method, the average reduction in sample
size obtained is An = -3.92 (|An| = 4.08). The value is
negative because the number of feasible solutions obtained
were few in number (7/25). The two-tailed test of hypothesis
(see Table V) indicates that the mean sample size reduction
of the population, &n, is significantly different from zero
(level of significance a = .05). Two-tailed tests of hypo-

theses of the various means for Stephens' method are summ-
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arized in Table V. The tests indicate that all the means

considered are significantly different from zero. It must

Table V. Two-Tailed Tests of Hypotheses (a =.05 Level of

Siginificance)- "Aime vs. Stephens' Method

%o ! Statistic E ta/z’n'l Reject
T - ~.025,n-1 HO?

dn=0 Sn#0 -3.94025 -2.064 Yes

|Sn|=0 | §n|#0 3.948 2.064 Yes

S§n/n=0 dn/n#0 -3.158 -2.064 Yes

|én/n|=0 | $n/n|#0 3.2969 2.064 Yes

Ac=0 Ac#0 -4.884 -2.064 Yes

Considering only positive reductions: (n = 7)

Sn=0 Sn#0 1.5490 2.447 No

Sn/n=0 Sn/n#0 1.2355 2.447 No

pbe noted that the average decrease in acceptance number Ac
is also negative (Ac = -.72). From the results one can say
that the discrepancies between the solutions of Stephens
and "Aime" (exact solutions) are not readily explainable by
chance, within the chosen significance level o = .05. If
only positive reductions are considered, then An = .286

(n = 7) and the two-tailed test indicates that the null
hypothesis should not be rejected, i.e. the sample result
is compatible with the null hypothesis value én = 0. This

is also true in the case of the population percentage red-
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uction in sample size 6én/n, i.e. the null hypothesis HO:
dn/n = 0 is found to be tenable.

In the case of Jaech's method (using tables), the
average reduction in sample size was found to be An = .52
(|An] = 2.2). The two-tailed test of hypothesis (a = .05)
indicates that the reduction is not significant. Table VI
summarizes the two-tailed tests of hypotheses concerning
the various means obtained by comparing Jaech's solutions

with the exact solutions. A test also shows that the perc-

Table VI. Two-Tailed Tests of Hypotheses (a = .05 Level of

Significance)- "Aime vs. Jaech's Method (Using

Tables)
HO Hl Test + t Reject
v - ; . - a/2,n-1

Statistic ot H o
T — .025,n-1 0°

Sn=0 Sn#0 .8584 2.064 No
|8n|=0 | 8n|#0 5.234 2.064 Yes
dn/n=0 dn/n#0 1.2049 2.064 No
|8n/n|=0 | 8n/n|#0 4.589 2.064 Yes
8c=0 Sc#0 -.2721 -2.064 No
Considering only positive reductions: (n=17)
Sn=0 Sn#0 3.2731 2.120 Yes
én/n=0 Sdn/n#0 3.4762 2.120 Yes

entage reduction in sample size is also not significant.

However, solutions obtained by using Jaech's method are

significantly different from those of "Aime" (exact solu-
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tions) because the null hypothesis for the mean of the

absolute value of the difference in sample size (Hozldn]=0)

and the absolute value of the mean percentage difference

in sample size (Hozldn/n]=0) are both untenable. If one

were to consider only positive reductions,

that would elim-

inate 8 of the 25 test problems having negative reductions

from consideration.

In this case the mean reductions é&n

and én/n of the population are found to be significantly

different from zero. However, unlike in the case of Step-

hens method, the average reduction in acceptance number

(Ac = -.04)

was found to be insignificant.

Table VII summarizes the two~tailed tests of hypothe-

ses concerning means for the initial solutions of program

"Aime".

Table VII.

én=0
|5n]=0
dn/n=0
|6n/n|=0

Ac=0

Considering

Sn=0

én/n=0

Two-Tailed Tests of Hypotheses (o
of Significance)- Optimal Solutions of "Aime"

.05 Level

vs. Initial Solutions of "Aime"
ek Staiiziic T f to‘/z'n'l Re;ezt

— ~.025,n-1 0

Sn#0 .9369 2.064 No

| 8n|#0 3.3425 2.064 Yes

Sn/n#0 .5659 2.064 No

|én/n|#0 2.6923 2.064 Yes

Ac#0 -.2959 -2.064 No

only positive reductions: (n = 20)

dn=/0 2.4117 2.093 Yes

Sn/n#0 2.1204 2.093 Yes




45

Since the solutions and values of the means obtained
are close to the values obtained by using Jaech's method
(using tables), one might expect similar results for the
statistical tests. Comparing Tables VI and VII this is
found to be true. The average reduction in sample size
obtained in this case is An = .6 ( |An| = 1.8). This sample
result is compatible with the null hypothesis value of 8n =
0. Again, the reduction is significant when considering
only positive reductions in sample sizes (20 test problems).
The null hypotheses are also rejected when considering the
mean value of the absolute difference in sample size of
the population, |6n|, and the mean value of the absolute
percentage reduction in sample size of the population. The
average reduction in acceptance number, Ac, is identical to
that obtained for Jaech's method (Ac = -.04) and it is also

insignificant.
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SUMMARY~-~ CONCLUSIONS- RECOMMENDATIONS

Summarz

Several methods have previously been suggested for
determination of the sample size and acceptance number for
attribute sampling plans. If two points (such as (AQL,a)
and (LTPD,B)) are specified for the OC curve, the sampling
plan must provide a probability of at least 1l-a of accepting
a lot if the lot proportion defective is at the acceptable
quality level (AQL). The plan must also provide a probabi-
lity of acceptance of no more than B if the lot proportion
defective is at the rejectable quality level (RQL).

The methodologies of Stephens (1978) and Jaech (1980)
use the Borges normal approximation to the binomial dist-
ribution. Though the procedures to find the acceptance num-
ber and sample size are cquite straightforward, one can never
feel certain that they will lead to what must be considered
an optimum (minimum) sample size.

A computer program to obtain minimum sample size single
sampling plans based on the binomial distribution was pre-
sented here. It was shown how the Fibonacci search technique
could be used to determine the optimal solution. Jaech's
algorithm was utilized to help determine the initial feas-
ible solution needed to establish the search intervals for
n and c. A proof of optimality was furnished that utilized

the Poisson approximation to the binomial distribution.



47

The proposed method was tested to determine its
accuracy by obtaining optimal solutions through exhaustive
searches. The inaccuracies of both Stephens' and Jaech's

methods were also highlighted.

Conclusions

The performance of the algorithm developed for deter-
mining minimum sample size single sampling plans for the
binomial distribution was found to be very good. The solu-
tions that were obtained for the test problems were ¢on-
firmed to be accurate without exception, through exhaustive
searches. Encouraging as it might be, it cannot be stated
with complete confidence that the algorithm would always
provide optimal solutions because the basis of the proof of
optimality provided is the Poisson approximation to the
binomial distribution. A proof using the binomial distri-
bution was found to be exceedingly difficult to obtain.

As expected, the methodologies of Jaech and Stephens
often yield inaccurate solutions. Jaech's method, however,
did provide a fair number of feasible solutions, which were
needed to establish the search intervals. In the FORTRAN
program, if the initial solution obtained is infeasible,
the next feasible Fibonacci number greater than the accept-
ance number or sample size (depending on which is infeasi-
ble) obtained is determined.

The use of Jaech's method in the program required a
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Gaussian quadrature subroutine with 96 abcissas and weights
and a Fibonacci search subroutine utilizing 16 experiments.
Thus, considerable amounts of time for computation was
needed to furnish the initial feasible solution. The effi-
ciency of the algorithm could be improved considerably if

a quick method, such as the Poisson solution, was used to
determine the initial solution.

Tests of significance (a =.5) in comparing approximate
solutions with exact solutions indicate that the mean red-
uctions in sample sizes obtained by using exact solutions
instead of approximate solutions were significant (though
negative) only in the case of Stephens' method. However,
when considering just positive reductions, only Stephens'
method had mean reductions that were insignificant. The
tests also revealed that Jaech's method (using tables) and
the initial solutions of program "Aime" did not have mean
values of reductions in acceptance numbers that were signi-
ficantly different from zero. However, all three sets of
approximate solutions had mean values of the absolute diff-
erence in sample sizes, when compared with exact solutions,

that were significantly different from zero.

Recommendations

For further research on this topic it is obvious that a
proof of optimality based on the binomial distribution is

needed and must be the prime consideration. Without such a
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proof it cannot be stated with complete confidence that the
solutions obtained using the algorithm that was developed
in this paper are exact.

Once such a proof is obtained, along with its limit-
ations, if any, this method might prove to be quite attrac-
tive if a quick and easy method was used to determine the
initial feasible solution. Its attractiveness may be re-
vealed in comparisons of computational times with other
known methods, particularly the exhaustive search technique-

the only method known to guarantee exact solutions.
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FROGRAM NAME: AINE Appendix A-1.
ITHOR: LANCELOT SYLVESTER
AUTHOR: LANCELOT SYLVESTE A FORTRAN program "Aime"

VARIABLE LIST =###

4LFHA=FRODUCER'S RISK

BETA=CONSUMER®S RISK

Fi=aAf9L

F2=L7PD

F=p IBONACCI MUMBERS

GPi=G(Ft)

GF2=6(F2)

NO=INITIAL SAMFLE SIZE, USING STEPHEN’S EQGUATION

GE=G (WD}

BINYI=G{INVERSE)

4=fBLISSAS

E=UEIGHTS

NINI=N,INITIAL

CINI=C,IRITIAL

HEIN=KIHININUN)

CHIN=C(MINIKUN}

NIN=UFFER BOUND OF SEARCH INTERVAL FOR NHIN

CIN=UFFER BOUND OF SEARCH INTERVAL FOR CHIM

BELTA=Y IF NI®I IS FEASIELE

6 OTHERWISE '

! IF CInl IS FEASIELE

0 DTHERWISE

Tabi=1 1F ALFHA-CONSTRaINT IS ALSD SATISFLED
=0 DTHERWISE

S0L1,50L2=INITIAL SOLUTIOR (NINI AND CINDID

GARNE

FROGRAN AIME{INFUT,O0UTPUT,SORS,SORS2, TAFE 1=80RS,TAFER=50RED)
INTEBER IDENT,NINI,CINI,CMIN,NMIN,DELT,DELTA,GANKA,
1TaL, N, NC,50LT,50L2,CIK,NIN
REAL ALFHA,BETA,ZALFHA,ZBETA.F(0:16),F1,F2,
16F1,6F2,R0,6E,GINVY
LOUELE PRECISION A(%6),B(96)
DaTA F/17%1.0/
KC=0
GENERATE FIBONACCI NUMBERS
B 10 I=2,1¢é
FOI)=F{I-1)+F(1-2)
CONTINUE
QUTPUT TABULAR HEADBINGE
WRITE(2,50)
WRITE(Z2,60)
WRITE(2,70)
WRITE(Z,73)
ABCISSAS ARD WEIGHTS
B0 2¢ 1=1,48
KEAD(1,#)A(D) ,B(I)
J=94-141
RUII=-ALD)
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F(J)=B(1)
20 CONTINUE
READ PROELEK PARANETERS
25 READ(1,%)ALPHA,BETA,F1,F2
IF(ALPHA.EB.0) 6D TO 90
DETERKINE INITIAL VALUES(JAECH®S ALGORITHM)
DETERMINE ZALFHA AND ZBETA
GAMMAS1
IDENT =1
IF(ALFHA.LE.0.5) THEN
CALL CATA(1.-ALPHA,F, ZALFHA ,IDENT,A,B)
ELSE
CALL CATA(ALPHA,F,ZALPHA, IDENT,A,B)
ZALPHA=-ZALFHA
END IF
IF(BETALLE.0.5) THEN
CALL CATA(1.-BETA,F,ZBETA, IDENT,4, B)
ZBETA=-ZKETA
ELSE
CALL CATA(BETA,F,ZBETA, IDENT,A,B)
END IF
DETERKINE GP1 AND GP2
IDENT=0
CALL CAT1(P1,6F1, IDENT, 4, B)
CALL CAT1(P2,6P2,IDENT,A,E)
CALCULATE INITIAL SAMFLE SIZE NU, USING STEFHEN’S EGUATION
NO=((ZALFHA*( ((1.-P1)#F1)8%(1,/6.,))-ZEETA®(((1.-F2)3P2)
1#5(1./6.)))/(6P2-6P1) ) %%2
CALCULATE INITIAL ACCEPTANCE NO.(CINI)
GE=GP2+(ZBETAs ((P2#(1.-P2))#%(1./6.))) /SERT(NO)
CALL CATA(GE,F,GINV1,IDENT,A,B)
CINI=NINT(GINVI#NO-1./6.)
CIN=CINI
DETERMINE NKIN(JAECHS HETHOD): SET NINI=NKIN
CALL AMEWN(NINI,CIN,GINV1,F,ZBETA,IDENT,A,B,P2,6P2)
SOL1=KINI
S0L2=CINI
WE NOW HAVE THE INITIAL VALUES ORTAIMED BY JAECH®S METHOD

FIBONACCI SEARCH FOR OFTIMAL N AKD C

TEST BETA CONSTRAINT
30 CALL CONSTI(CIN,NINI,BETA,F2,DELTA)

IF(DELTA.EQ.1) THEN

FETA CONSTRAINT IS SATISFIED:DETERMINE LEAST N SUCH THAT F(N)D=NINI

CALL FIBNC(NINI,F,N) '

NIN=F (N)

ELSE

DET. LEAST N SUCH THAT F(N)>NINI
40 CALL FIBN(NINI+1,F,N)

NIN=F(N)
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TEST BETA CONSTRAIRT
CALL CONST1(CIN,NIN,BETA,F2,DELT)
IF(DELT.EQ.O)THEN
NINI=NIN
60 T0 40
END IF
END IF
SEARCH FOR NMIN
CALL AMINN(CIN NINI,NLN,DELTA, NMIN,F,BETA,F2,N)
NINI=NMIN
TEST ALPHA CONSTRAINT
CaLL CONST2(CIN,NINI,ALFHA,P1,TAU)
IF(TAU.EQ. 1) THEN
IF(GAMMA.EQ. 1) THEN
ALPHA CONSTRAIKT IS SATISFIED:DET. LEAST NC SUCH THAT F(RC):=CINI
CALL FIBNCCINI,F,ND)
CIN=F(NC)
END IF
ELSE
DET. LEAST NC SUCH THAT F(ND)XCINI
GAtiKA=(
IF(HC.GT.0)THEN
CINI=CIN
END IF
CALL FIBN(CINI+1,F,NC)

CIN=F(ND)
CALL ANEWN(NINI,CIN,GINV1,F,ZKETA, IDENT,A,B,P2,6F2)
60 TO 30
END IF
GIVEN IRITIAL FEASIBLE SOLUTION,DETERMINE EXACT SOLUTION
DELTA=!
CALL AMINC(CINI,CIN,CMIN,GAMMA,ALPHA,P1,NINNINI,DELTA,
INMIN,F,BETA,F2,N,ND)
QUTPUT RESULTS
WRITE(2,85)
WRITE(2,80)ALPHA,EETA,F1,P2,50L2,50L1 ,CNIN,NNIN
60 16 2%
50 FORMAT(33(" "),"JAECK’S METHOD",13¢(" "), "FROGRAM AIME")
60 FORMAT(3(* "),“FROBLEM FARAMETERS",11(" *),"(INITIAL VALUES)",
1 12(" *),"(EXACT SOLUTION)™)
70 FORMAT(I(" ™), 7("%) % ", 10( %), 23(" "), "MHINIMUN",22(" "),
1 "MINIMUN™)
75 FORMAT(" ALPHA"," BETA", " PI1"," F2 *,* ACCEFTANCE NO.",
5 " GSAMPLE SIZE"," ACCEPTANCE NO. SAMFLE SIZE™)
60 FORMAT(F6.5,3F6.4,8(" "),12,12(" "),I13,11(" "),I2,13(" "),I13)
85 FORMAT(" ")
90 END
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100

110

L2 22

SUBROUTINE CATH

GAUSSIAN GUADRATURE SUBROUTINE
VARIABLE LIST ##%

X=UPPER LIMIT OF INTEGRAL
Y=VALUE OF INTEGRAL

f=ABCIGSSAS

B=WEIGH1S

SUBROUTINE CAT1(X,Y,IDENT,A,B)

DOUBLE FRECISION A(96),B(96)

REAL X,Y

INTEGER IDENT

IF(IDENT.EQ.1)THEN

Y=0.5

BO 100 I=1,96

Y=Y4+B(I)#X# (1., /(2.480RT( 2, %¥3.1415927)) JEXP (= (CA(I) aX+X)#%2)/8.)
CONTINUE

ELSE

1=0.

b0 110 I=1,%96

YaY+B(D#(X/2.0# ((UALDI#X+X) /20051 - (AT IHX+XI /2000 )%2(-1./3.))
CONTINUE

END IF

END

SUBROUTINE CATA

DETERKINES ZALFH&,ZBETA, OR GINVI

VARIAKLE LIST #%3

SL=DISTANCE OF END PGINT TO THE NEAREST FOINT THAT IS EVALUATED

E(1),E(2)=ERD FOINTS

FOINT(1),FPOINT(2)=FOINTS EVALUATED

BL=CURRENT(INTERVAL LENGTH-SL!

G=TRUE VALUE OF INTEGRAL

VAL (1)=VALUE OF INTEGRAL FOR POINT(T)

VAL(2)=VALUE OF INTEGRAL FOR POINT(2)

DIF1=ABSOLUTE VALUE OF (G-VAL(1))

BIF2=ABSOLUTE VALUE OF (G-VAL(2))

A=ABCIGSAS

B=UEIGHTS

WHEN IDENT=1 DETERMINE ZALFHA OR ZBETA
=0 DETERKINE GINV1

SUBROUTINE CATA(G,F,GINV,IDENT,A,E)

INTEGER IDERT,X

REAL &,GINV,BL(14),5L(14),EC2),DIF1,DIF2,F(0216),VAL(2),FOINT(2}
DOUBLE PRECISION A(%6),B(%6)

BL(11=1.0

E(1)=0.0

E(2)=1.0

K=1

56
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SL(K)=(F(14=K)/F(16=K))*BL(K)
POINT(1)=E(1)48L(K)
FOINT(2)=E(2)-5L(K)
IFCIDENT.EQ.1)THEN
CALL CAT1(POINT(1)33.5,VAL (1), IDENT,A,R)
CALL CAT1(FDINT(2)%3.5,VAL(2),IDENT,A,B)
ELSE
CALL CAT1(FOINT(1),VAL(1),IDENT,A,B)
CALL CATI(PBINT(2),VAL(Z,IDENT,A,B)
END IF
DIF1=4RS(G-VAL(1))
DIF2=ABS(G-VAL(2))
IF(DIF1.LT.DIF2) THEN
E(2)=FOINT(2)
POLNT(2)=FOINT(1)
VAL(Z)=VAL(T)
K=K+1
BL(K)=BL (K-1)-5L(K-1)
SLCK)=C(F(14-K) /F(16=K) ) #BL(K)
POINT(1)=E(1)+SL(K)
IF (IDENT.EQ.1)THEN
CALL CAT1(FOINT(1)%3.5,VAL(1),IDENT,A, )
ELSE
CALL CAT1(POINT(1),VAL(1),IDENT,A,B)
END IF
IF(K.EQ.14) GO TD 210
60 10 200
ELSE IF(DIF1.G6T.DIF2)THEN
EC(1)=POINT(1)
POINT(1)=POINT(2)
VAL (1)=VAL(2)
K=K+1
BL(K)=BL(K-1)=SL(K=1)
SLCE)=(F(14-K) /F(16-K) )*BL (K)
POINT{2)=E(2)~SL(K)
IFCIDENT.EQ.1)THEN
CaLL CAT1(FDINT(2)%3,5,VAL(2),IDENT,A,B)
ELSE '
CALL CAT1(FDINT(2),VAL(2),IDENT,A,B)
END IF
IF(K.EQ.14)60 TO 210
60 TO 200
ELSE
IF(K.LT.12) THEN
E{1)=PDINT(1)
E(2)=PBINT(2)
K=K+3
BL(K)=E(2)-E(1)
SL{K)=(F(14-K)/F(16-K)) *BL(K)
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POIRT(1)=E(1)+SL(K)
POINT(2)=E(2)-SL (K)
IFCIDENT.EQ. 1) THEN
Call CATI1(FOINT(1)%3.5,VAL(1),IDENT,A,B)
CALL CAT1(PDINT(2)%3.5,VAL(2),IDENT,A,B)
ELSE
CaLL CATI(POINT(1),VAL(1),1DENT,4,B)
CaLL CATT(PDINT(2),VAL(2),1DENT,A,B)
END IF
IF(K.EQ.14) GO TO 210
60 TO 200
ELSE
POINT(1)=(FOINT(2)-POINT (1)) /2.
END IF
END IF
210 IFCIDENT.EQ.1)THEN
GINV=3.3+POINT(D)
ELSE
GINV=FOINT(1)
ExD IF
END

SUBROUTINE ANEUN
#ECH’S ITERATIVE FROCEDURE FOR DETERMINING NMIN
w#% VARIARLE LIST %%+
NINII=NINI
GIN=GINVI, OR INVERSE OF GE2 SUBSEQUENTLY
BN{4)=CURRENT VALUE OF SAMPLE SIZE
DN(3),DH(2),DN(1)=THE 3 PREVIDUS VALUES OBTAINED

SUBROUTINE ANEWN(WINII,CIN,GIN,F,ZEETA,IDENT,A,B,P2,GP2)
REAL GIN,GE2,ZBETA.F(0z16),DNJ,RCIN,F2,6P2
INTEGEx NINII,CIN,DN(4),IDENT,J
DOUBLE FRECISION A(96),B(96)
J=4
DN(1)=0
IN(2)=0
DK(3)=0
DH(4)=0
NINII=0
RCIN=CIN#(2./3.)
300 DN(J)=KINT((RCIN/BIN)+1./6.)
IF(DNGJ) JEB.DH(JI=1)INIRI I=DN ()
IFCDNCS) JEQ.BNCS-2) )RINIT=MAX (DNCJ) ,DN (D=1, DN(J=2))
IF(DH(J) EG.DN(J-3) INIRII=HAK(IN(JS) , DN(J-1),DN(I=2), DNLJ-3))
IF(NINII.ER. Q) THEN
DNJ=REAL(DN(J))
GE2=(ZBETA®((P2#(1,-P2))%%(1,/6.)) ) /SART(DNJ+1. /3 .) 4GP2
D0 310 I=1,3
DNCI)=DN(I+1)
310 CONTINUE
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CALL CATA(BE2,F,GIN,IDENT,A,B)
60 10 300

END IF

END

SUBRDUTINE CONSTH

TEST BETA-CONSTRAINT

IF CONSTRAINT IS SATISFIEL DELTAA=1
ELSE, DEiTAA=0

CINN=ACCEPTANCE NO.
NINN=CORRESFONDING SAMPLE SIZE

SUEROUTINE CONST1(CINN,NINN,BETA,F2,DELTAR)
INTEGER CINN,NINN,BELTAA
DBOURLE FRECISION 72,62
REAL BETA,F2
B2=(1.~P2)*£NINN
T2=62
IF(CINN.EQ.0)G0 TO 410
b0 400 I=1,CINK
G2=(62/1)#(NINN-I+1)#(P2/(1.-F2))
12=T2+62
400 CONTINUE
41¢ TF{T2.LE.BETA)THEN
DELTAA=1
ELSE
DELTAA=0
ERD IF
ENIY

SUBROUT INE CONST2

TEST ALFHA-CONSTRAINT

IF COMSTRAINT IS SATISFIEL TAUU=1
ELSE, TALU=0

CINT=ACCEFTANCE NG.
NTT=CORRESFONDING SANFLE SIZE

SUBROUTIRE CONST2(CINT,NTT,ALPHA,F1,TAUL)
INTEGER CINT,NTT,TabY
RERL ALFHA,F
DOUBLE FRECISION T1,61
B1=(1.-P1)**NTT
T1=61
IF(CINT.EQ.0)GO TO 430
B0 420 I=1,CINT
G1=(61/D)*(NTT-1+1)&(P1/(1.-F1))
T1=T1+61

420 CONTINUE

59
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IF(T1.6E.(1,-ALFHA)) THEN
TAUU=1

ELSE

TAUU=0

END IF

END

SUBROUTINE FIBN

BETERMIME LEAST ULIM SUCH THAT F(ULIM)>=NUMB
SUBROUTINE FIBN(NUNE,F,ULIM)

IHTEGER HUMB,ULIN

REAL F{0z16)

I=1

} IF(NUKB.LE.F{I))THEN

ULIf=I
ELSE

I=1+1

G0 T0 502
END IF

ERD

SUBROUTIR AMIMK

DETERKIMES NMIN(FIBONACCI SEARCH)

FOR & GIVEN VALUE OF C

VARIABLE LIST *##

CINN=ACCEFTANCE NO.

NINI=N,INITIAL

HIN=UFPER BOUND OF INTERVAL(=F(ND)

NBINH=NHIN

END(1),END(2)=END FOINTS

8(1),0(2)=FOINTS NITHIN INTERVAL

R(1)=1 IF B(1) SATISFIES BETA CONSTRAINT
=) OTHERWISE

R{2)=1 IF B(2) SATISFIES BETA CONSTRAINT
=0 OTHERWISE

SUERDUTINE AMINN(CINN,NINI,NIN,DELTA,NMINN,F,BETA,F2,K)
INTEGER CIMN,MINI,NIN,LDELTA,NRINN,R,0(2),ERD(2),R(2)
REAL BETA,F2,F{0:16)

ERD(1)=0
ERD(2I=RIN

J=1

IF(NINLEQ.1)THER

NHINN=]

60 TO 640

ELSE IF(NIN.EG.2.AND.NINI.EG.1)THEN

NMINN=2

60 TD 640

END IF

60



61

600 Q(1)=ERDC1I+F(N-J-1)
CALL CONST1(CIMN,R(1),BETA,F2,R(1))
@(2)=ENDC2)-F(N=J-1)
IF(Q(1).EQ.B(2))THEN
IF(R(1).EQG.T)THEN
NMINN=G(1)
ELSE
NMINN=EHRD(2)
END IF
60 10 640
END IF
625 IF(DELTA.EG. 1) THEN
IFCG(1).GE.NINI)THEN
R(1)=1
R(2)=1
g0 TO 630
ELSE IF(G(2).GE.NINI) THEN
R(2)=1
IF(R(1).LE.CINN) THEN
R(1)=0
ELSE
CALL CONST1(CINN,Q(1),BETA,PZ,R(1))
END IF
G0 TO 630
ELSE
IF(E(2).LE.CINN)THEN
Re1y=0
R(2)=0
ELSE IF(Q(1).LE.CINN)THEN
R(1)=0
CaLL CONST1(CINN,0(2),BETA,P2,R(2))
ELSE
CaLL CONST1(CINN,Q(1),BETA,P2,R(1))
CaLL CONST1(CINN,Q(2),FETA,P2,R(2))
END IF
GO TO &30
END IF
ELSE
IF(R(1).GE.NINI)THEN
CALL CONST1(CINN,B(1),BETA,F2,R(1))
CALL CONST1(CINK,Q(2),BETA,F2,R(2))
ELSE IF(B(2).BE.NINI}THEN
CaLL CONSTi(CINN,B(2),BETA,F2,R(2D)
R(1)=0
ELSE
R(1}=0
k(2)=0
END IF
END IF
630 IF((R(1).EG.0).AND.(R(2).EQ.0))THEN
END(1)=R(1)



R A

]

o0

ac1)=0(2)
J=J+1
B(2)=ERD(2)-F (N-J-1)
IF(G(1).EQ.0(2))THEN
IF(R(1).EQ.1}THEN
NMINN=8(1)
ELSE
NEINN=END( 2}
END IF
60 T0 440
ELSE
60 TO 623
END IF
ELSE IFC(R(1).ED.1).ANDL(RC2) EQ.T)) THEN
ENDI(2)=0(2)
ge2)=a(1)
J=J41
@(1)=END(1)+F(N-J-1)
IF(B(1).EQ.B(2)) THEN
IF(R(2).EQ. 1) THEN
NNINN=Q(1)
ELSE
NEINN=ERD(2)
END IF
60 10 640
ELSE
GG TO 425
Ewll IF
ELSE
ENDC1) =G (1)
ERD(2)=0(2)
J=J+3
IF{(N-J-1).6E.0)G0 TO 600
NEINN=G(2)
END IF
640 EARD

SUBROUTINE AMINC
DETERMINES CmIN ( AND NMIN ) GIVEN INITIAL FEASIBLE SOLUTION
4% YARIABLE LIST *##
CEND(1),CEND(2)=ERD FOINTS OF SEARCH INTERVAL
BS(1),05(2)=PCINTS WITHIN INTERVAL
@SV (1)=KININUN ¥ FOR 0QS{1)
GSV(2)=MININUN N FOR B8S(2)
RS(1)=1 IF 85(1) IS FEASIBLE
=0 OTHERWISE
k5(2)=1 IF 85(2) IS FEASIELE
=0 OTHERKISE
CENDV(T)=MIRINUM N FOR END(1)
CERDV{Z2)=HINIMUK N FOR END(2)
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CENDF(1)=1 IF CENDV(1) IS FEASIELE
=0 OTHERWISE

CENDF(2)=1 IF CENDU(2) IS FEASIBELE
=0 DTHERWISE

SUBROUTINE AMINC(CIKI,CIN,CMIN,GAMNA ,ALFHA,F1,NIN,NINI,
{DELTA,NHIN,F,BETA,P2,N,NC)
INTEGER CINI,CIN,CKIN,GAMMA,NIN,NIN],DELTA,RMIN,
18, NC,08(2),85V(2),RS(2) ,CEND(2),CENDF(2), CENDV(2)
REAL F(0:16)
L=1
CEND(1)=0
CEND(2)=CIN
CERDV(2)=RINI
IF(CIN.LT.2)60 TO 730
85 (1) =CENDCII+F{NC-L-1)
05¢2)=CEKD(2)-F(RC-L-1)
IF (GAMMA.EQ. 1) THEN
IF(0S(1).GE.CINI)THEN
RkS€1)=1
R5§(2)=1
ELSE IF(R5(2).6E.CINI)THEN
RE(2)=1
CALL AMINM(ES(1),NINI,NIN,DELTA,0SV(1),F,BETA,F2,N)
CALL CONST2(@S5(1),B88V(1),ALFHA,P1,R5(1))
ELSE
ChLL AMINN(QS(1),NINI,NIN,DELTA,GSV(1),F,BETA,F2,N)
CALL CONHST2(RS(1),B5Vv(1),ALPHA,F1,RS(1))
CALL AINH(Q5(2),NINI,NIN,DELTA,RSV(2),F,BETA,F2,N)
CALL CONST2(Q5(2),B5v(2),ALPHA,P1,RS(2))
END IF
ELSE
IF(RS(2). LE.CINI)THEN
RS(1)=0
R5(2)=0
ELSE IF(QS¢1).LE.CINI)THEN
R§(1}=0
CALL AMINN(RS(2) NINI,NIN,DELTA,Q8V(2),F,BETA,F2,N)
CALL CONST2(B8S5(2),B858V(2),ALFHA,P1,RS(2))
ELSE
CALL AMINM(RS(1),NINI,NIN,DELTA,Q3V(1),F,BETA,PZ,N)
C4LL CONST2(D5(1),R58V(1),ALPHA,P1,R8(1))
CALL AKINN(QS(2),NMINI,NIN,DELTA,QSV(2),F,BETA,F2,N)
CALL CONST2(05(2),Q8V(2) ,ALFHA,P1,R5(2))
END IF
ERD IF
700 IF(QS(1).EG.G5(2))THEN
IF(R5(1).EQ.0)THEN
NNIN=CERDV(2)
CHIN=CEND(2)
ELSE IF(CEND(1).Nz.O)THER

3
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NKIN=B5V(2)
GO 10 80O
END IF
END IF
7530 IF(CINI.EG.1)THEN
CALL AMINN(CEND(1),NINI,NIN,DELTA,CENDV(1),F,BETA,P2,N)
CALL CONSTZ(CEND(1),CENBV(1),ALFHA,FI,CENDF(1))
IF(CENDF(1).EQ.1)THEN
CHIN=0
NMINSCENDV(T)
ELSE
CHIN=1
NrInsNINI
END IF
ELSE IF(GAMNA.EB.1)THER
CHIN=0
NMIN=NINI
ELSE
CHIN=1
NMIN=NINI
END IF
800 END
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Appendix B-1. Abcissas and Weights

1 n
J f(x)ydx = Y A.f(x.)
-1 i=1 + 1
X T TXo-i41

.999689503883230766828
.998364375863181677724
.995981842987209290650
-992543900323762624572
.988054126329623799481
.282517263563014677477
.975939174585136466453
.968326828463264212174
.259688291448742539300
.950032717784427635756
.939370339752755216932
.927712456722308690955
.915071423120898074206
.901460635315852341319
.886894517402420416057
.871388505909296502874
.854959033434601455463
.837623511228187121494
.8124003107379316755392
.800308744139140817229
.780369043867433217604

.759602341176647498703

Enf = (n!)4.2

The error term

2n+l.f(2n)(t

(2n!)3(2n+l)

Ay T AN

.000796792065552012429
.001853960788946921732
.002910731817934946408
.003964554338444686674
.005014202742927517693
.006058545504235961683
.007096470791153865269
.008126876925638759217
.009148671230783384633
.010160770535008415758
.011162102029838498591
.012151604671088319635
.013128229566961572637
.014090941772314860916
.015038721026994938006
.015970562902562291321
.016885479864245172450
.017782502316045260838
.018660679627411467385
.019519081140145022410
.020356797154333324595

.021172939892191298988



X, = =X .
i n-i+1

( contd. )

.738030643744400132851
.715676812348967626225
.6925645366421715€1344
.668718310043916153953
.644163403784967106798
.618925840125468570386
.593032364777572080684
.566510418561397168404
.539388108324357436227
.511694177154667673586
.483457973920596359768
.454709422167743008636
.425478988407300545365
.395797649828908603285
.365696861472313635031
.335208522892625422616
.304364944354496353024
.273198812591049141487
.241743156162840012328
.210031310460567203603
.178096882367618602759
.145973714654896941989
.113695850110665920911

.081297495464425558994

Ay T AL

( contd. )

.021966644438744349195

.022737062658322374001

.023483399085926219842

.024204841792364691282

.024900633222483610288

.025570036005349361499

.026212340735672413913

.026826866725591762198

.027412962726029242823

.027970007616848334440

.028497411065085385646

.028994614150555236543

.029461089958167205970

.029896341136328385984

.030299915420827593794

.

030671376123669149014

.031010332586313837423

.031316425596861355813

.031589320770727168558

.031828758894411006535

.032034456231992663218

.032206204794020250669

.032342822568575928429

.032447163714064269364
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X. = =X_ .
i n-i+1

{ contd. )
.048812985136049731112

.016276744849€02%269579

67

Bi = Ppoiel

( contd. )

.032516118713868835987

.032550614492363166242
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Appendix B-2. X -1/3

Stephens Table g(x)=/ (t(1-t)) dt
0
X 0.000 oGt 002 .003 co4 00s .0086 007 008 008

.000 0.0000 0150 .0238 .0312 .0378 0439 .0496 .0549 .0601 .0650
.010 .C697 .0743 0787 .0831 .0873 0914 .0954 .0884 .1033 1071
.020 .1108 1145 .1181 a217 1252 1287 1321 1355 .1388 1421
.030 .1454 .1436 .1518 .1550 .1881 1613 .1643 .1674 1704 1734
.040 1764 1793 .1823 .1852 .1881 1909 .1938 .1966 .1994 2022
.050 .2050 .2077 .2104 2132 2159 .2186 2212 2239 .2265 2292
.060 .2318 2344 .2370 .2395 .2421 2448 .2472 .2497 .2522 2547
.070 2572 2597 2822 .2646 .2671 .2695 2719 2744 .2768 2792
.080 .2816 .2839 .2863 .2887 .2910 2934 .2957 .2981 .3004 3027
.090 .3050 3073 .3096 3118 3141 3164 .3187 .3209 .3232 3254

.100 3277 .3299 .3321 3343 .3365 .3387 .3409 .3431 .3453 3475
110 .3497 3518 .3540 .3561 .3583 .3604 .3626 .3647 .3668 .3690
120 3711 3732 3783 3774 3795 3816 .3837 .3858 .3878 .3899
130 .3920 .3941 .3861 .3982 .4002 .4023 .4043 4064 .4084 4104
180 4125 4145 4165 .4185 .4205 4225 4245 .4265 .4285 .4305
150 .4325 .4345 .4365 .4385 .4404 .4424 4444 .4463 .4483 .4502
.160 4522 .4542 .4561 .4580 4600 4619 .4639 .4658 4677 4896
170 4716 .4735 4754 4773 4792 4811 .4830 .4849 .4868 .4887
.180 .4906 .4925 .4944 .4963 .4982 .5001 .5019 .5038 .5057 .5075
190 .5094 5113 5131 5150 5169 5187 .5206 .5224 .5243 .5261

.200 .5280 .5298 .5316 .5335 .5353 .S371 .5390 .5408 .5426 5444
.210 .5463 .5481 .5499 5517 .5535 .5583 5571 .55890 .5608 .5626
.220 .5644 .5662 .5680 5697 5715 5733 5751 .5769 .5787 .5805
.230 .5823 .5840 .5858 .5876 .5894 8911 .5929 .5947 .5964 .5e82
.240 .6000 6017 .6035 .6053 .6070 .6088 .6105 6123 6140 6158
.250 .6175 .6193 .6210 .6228 .6245 .6262 .6280 .6297 8315 .6332
.260 .8349 .6367 .6384 .6401 .6418 8436 5453 .6470 .6487 .6505
.270 8522 .6539 .6556 .6573 .6590 .6608 .6625 .6642 .6659 .6676
.280 6693 .6710 .6727 .6744 .6761 .6778 .6795 .6812 .682¢9 .6846
.290 .6863 .6880 .6897 6914 .6931 6947 .6964 6981 .6998 7015

.300 .7032 .7048 .7065 .7082 .7099 7116 7132 7149 .7166 .7183
310 7199 7216 .7233 7250 .7266 7283 .73C0 7318 .7333 7348
320 .7366 .7383 7399 7416 .7433 7443 .7468 .7482 7499 7815
.330 .7832 .7548 .7565 .7582 7598 .7615 .7631 .7647 .7664 .7680
340 .7697 7713 7730 7746 .7763 7773 7785 7812 .7828 .7845
.350 .7861 7877 .7894 7810 7927 .7943 .7958 .7976 .7892 .8008
.360 .8025 .8041 .8057 .8073 .80%0 .8106 .8122 .8139 .8155 8171
370 .8187 .8204 .8220 .8226 .8252 .8269 .8285 .8301 .8317 .8333
.380 .8350 .8366 .8382 .8398 .8414 .8430 .8447 .8463 .8479 8495
.390 .8511 .8527 .8543 .8560 .8576 .8592 .8608 .8624 .8640 .B656

.400 .8672 .8688 .8704 .8721 .8737 .8753 .8769 .8785 .8801 .8817
.410 .8833 .8849 .8865 .8881 .8897 .8913 .8929 .8945 .8961 .8977
.420 .8993 .9009 .9025 .9041 .9057 .9073 .9089 .9105 9121 9137
.430 9183 9169 9185 9201 .9217 9233 .9249 .9265 .9281 .9297
440 9313 9328 9345 .9361 .9377 .9393 .9409 .9428 9440 9456
.450 9472 .9488 9504 9520 .9536 .8552 .9568 .9584 .8600 9616
460 .9631 9647 .9663 .9679 .9695 9711 9727 9743 9759 9775
.470 9790 .8806 .9822 .9338 9854 .9870 .9886 .9902 .9918 9933
.480 .9949 9965 .9981 9997  1.0013 1.0029 1.0085 1.,0061 1.0076  1.0092
430 1.0108 1.0124 1.0140 1.0156 1.0172 1.0188 1 0203 1.0219 1.0235  1.025%
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b4 -1/3
g(x)= J (t(1-t)) dt
0
X 0.C00 o0 002 .003 Q04 00s 008 007 008 .00%
.500 1.0267 1.0283 1.0299 1.0315 1.0330 1.0346 1.0362 1.0378 1.0394 1.0410
510 1.0428 1.0442 1.0457 1.0473 1.0489 1.0505 1.0521 1.0537 1.0553 1.056%
520 1.0584 1.0600 1.0616 1.0632 1.0648 1.0664 1.0€80 1.0696 1.0712 1.0727
530 1.0743 1.0759 1.07758 1.0731 1.0807 1.0823 1.0839 1.0855 1.0870 1.0886
540 1.0802 1.0918 1.0934 1.0950 1.0966 1.0982 1.0998 1.1014 1.1030 1.1046
850 1.1061 1.1077 1.1093 1.1108 1.1125 1.1141 1.1157 1.1173 1.1189 1.1205
.£60 1.1221 1.1237 1.1283 1.1269 1.1285 1.1301 1.1317 1.1333 1.1349 1.1365
570 1.1381 1.1397 1.1412 1.1428 1.1444 1.1460 1.1476 1.1492 1.1508 1.1524
.580 1.1540 1.1556 1.1573 1.1589 1.1605 1.1621 1.1637 1.1653 1.1669 1.1685
580 1.1701 1717 1.1733 1.1749 1.1765 1.1781 1.1797 1.1813 1.1829 1.1845
600 1.1861 1.1878 1.1894 1.1910 1.1926 1.1942 1.1958 1.1974 1.1980 1.2006
610 1.2023 1.2039 1.2055 1.2071 1.2087 1.2103 1.2120 1.2136 1.2152 1.2168
.620 1.2184 1.2200 1.2217 1.2233 1.2249 1.2265 1.2282 1.2298 1.2314 1.2330
.630 1.2346 1.2363 1.2379 1.2395 1.2412 1.2428 1.2444 1.2460 1.2477 1.2493
840 1.25C9 1.2528 1.2542 1.25538 1.2575 1.2591 1.2607 1.2624 1.2640 1.2656
.650 1.2673 1.2689 1.2705 1.2722 1.2738 1.2755 1.2771 1.2788 1.2804 1.2820
680 1.2837 1.2853 1.2870 1.2886 1.2903 1.2919 1.2936 1.2952 1.2969 1.2985
670 1.3002 1.3018 1.3035 1.3052 1.3068 1.3088 1.3101 1.3118 1.3134 1.3151
680 1.3168 1.3184 1.3201 1.3218 1.3234 1.3251 1.3268 1.3284 1.3301 1.3318
690 1.3334 1.3351 1.3368 1.3385 1.3401 1.3418 1.3435 1.3452 1.3468 1.3485
700 1.3502 1.3519 1.3536 1.3553 1.3570 1.3586 1.3603 1.3620 1.3637 1.3654
710 1.3671 1.3688 1.3705 1.3722 1.3739 1.3756 1.3773 1.3790 1.3807 1.3824
720 1.3841 1.3858 1.3875 1.3892 1.3909 1.3928 1.3943 1.3861 1.3978 1.3995
730 1.4012 1.4029 1.4046 1.40684 1.4081 1.4098 1.4115 1.4133 1.4150 1.4167
740 1.4185 1.4202 1.4219 1.4237 1.4254 1.4271 1.4289 1.4306 1.4324 1.4341
750 1.4359 1.4376 1.4393 1.4411 1.4429 1.4446 1.4464 1.4481 1.4499 1.4516
7680 1.4534 1.4552 1.4569 1.4587 1.4605 1.4622 1.4640 1.4658 1.4676  1.4893
770 1.4711 1.4729 1.4747 1.47865 1.4783 1.4800 1.4818 1.4836 1.4854 1.4872
780 1.4890 1.4908 1.4926 1.4944 1.4962 1.4980 1.4999 1.5017 1.5035 1.5083
790 1.5071 1.5089 1.5108 1.5126 1.5144 1.5162 1.5181 1.5199 1.5217 1.5236
.800 1.5254 1.5273 1.5291 1.8310 1.5328 1.8347 1.5365 1.5384 1.5402 1.5421
810 1.5440 1.5458 1.5477 1.5498 1.5514 1.5533 1.5552 1.6571 1.5850 1.5609
.820 1.5628 1.5648 1.5665 1.5684 1.5703 1.5722 1.5742 1.5761 1.5780 1.5799
.830 1.5818 1.5837 1.5857 1.5876 1.5895 1.5915 1.5934 1.5953 1.5973 1.5992
840 1.6012 1.6031 1.6051 1.6071 1.6080 1.8110 1.6130 1.6149 1.6169 1.6189
850 1.8209 1.6229 1.6249 1.6268 1.6288 1.6309 1.6329 1.6349 1.6369 1.6389
.860 1.6409 1.6430 1.6450 1.8470 1.6491 1.6511 1.6532 1.6552 1.6573 1.8593
870 1.6614 1.6635 1.6655 1.6876 1.6697 1.6718 1.6739 1.6760 1.6781 1.6802
.880 1.6823 1.6844 1.6865 1.8887 1.6908 1.6929 1.6951 1.6972 1.6994 1.7016
890 1.7037 1.7058 1.7081 1.7103 1.7128% 1.7146 1.7169 1.7191 1.7213 1.7235
900 1.7257 1.7280 1.7302 1.732% 1.7347 1.7370 1.7392 1.7415 1.7438 1.7461
910 1.7434 1.7507 1.75830 1.7553 1.7577 1.7600 1.7624 1.7647 1.7671 1.7694
820 1.7718 1.7742 1.7766 1.7790 1.7814 1.7839 1.7863 1.7888 1.7912 1.7837
830 1.7962 1.7987 1.8012 1.8037 1.8062 1.8088 1.8113 1.8139 1.8164 1.8190
940 1.8216 1.8243 1.8269 1.8295 1.8322 1.8349 1.8376 1.8403 1.8430 1.8457
950 1.8485 1.8513 1.8540 1.8569 1.8597 1.86825 1.8653 1.8682 1.8711 1.8740
960 1.8770 1.8800 1.8830 1.8860 1.8891 1.8921 1.8952 1.8984 1.9016 1.9048
970 1.9080 1.9113 1.9146 1.9179 1.9213 1.9247 1.9282 1.9318 1.9353 1.9389
.880 1.9426 1.9463 1.9501 1.9540 1.9580 1.9620 1.9661 1.9703 1.9747 1.9791
- .990 1.9837 1.9884 1.9933 1.998% 2.0038 2.0095 2.0158 2.0222 2.0296 2.0384




Appendix B-3 Five Examples: Exhaustive Search

Problem Acceptance n n_.
Parameters Number, ¢ T?%Eif min Nhax Pmin
n=c+1l is
infeasible
oa=.09€1 0 5 6 -1
=.0916 1 v 26 9 Vv 17
p,=.02 2 54 13 41
- 3 86 16 70
py=-38 4 120 20 100
5 156 23 133
0=.0483 0 0 3 -3
=.0870 1 5 6 -1
pl=.075 2 11 8 v 3
D.=.60 3 18 10 8
2 4 27 12 15
5 35 14 21
6 44 16 28
7 54 18 36
0=.1403 0 v 10 10 Vv 0
=.0947 1 45 18 25
py=.015 2 86 24 62
p.=.210 3 132 31 101
2 - 4 182 37 145
a=.054 0 0 4 -4
=.0996¢ 1 4 8 -4
p,=.090 2 9 10 -1
o= 450 3/ 16 13 v 3
2 ° 4 23 16 7
5 30 19 11
6 38 21 17
7 46 24 22
a=.010 0 1 66 -65
=.001 1 15 89 -74
pl=.Ol 2 44 108 -64
o =10 3 83 126 -43
2 4 129 143 -14
5 180 159 v 21
6 234 175 59
7 292 190 102
8 353 205 148
9 415 220 194

Y: optimal solution noin and corresponding

value of c



Appendix B-4. Analysis of Stephens' Method
Table VIII
Test Prob. *
No. o 8 “cal Bcal Anl
1 .1403 . 0947 1532 .07438 1
2 .0582 .0965 .0582 . 0965 0
3 .1400 .1041 .1485 .0895 -10
4 .0529 . 0935 .0529 .0936 -6
5 .0439 . 0913 .0439 .0913 0
6 .0471 . 0908 .0472 .0908 -5
7 .0760 .0980 .0765 .0982 -7
8 .0250 .0980 .0245 .0979 0
9 .0490 .0810 .0526 .0728 1
10 .2000 .6000 .2000 .5500 0
11 .6000 .2000 .5000 .2500 -2
12 .3000 .4000 .4500 .2000 -1
13 .0500 .1000 .0541 .0935 -5
14 . 0500 . 0500 .0352 .0696 -5
15 .0500 .0500 .0256 .0730 -1
16 .0500 .0500 .0100 .1900 -1
17 .5000 . 0100 ~ .5000 .0086 0
18 .3000 .1000 .3384 .0821 -6
19 .0300 .0850 .0324 .0786 -5
20 .0100 .0010 .0162 .0008 -13
21 . 0483 .0870 .0483 .0871 -3
22 .0961 .0916 .0961 -0917 -4
23 .0500 .0500 .0256 .0832 -2
24 .0050 .0100 .0057 .0090 -21
25 . 0900 .0500 .1100 .0354 -3
Average reduction in sample size An = -3.92
corresponding variance = (4.9743)2
Average % reduction in sample size (An/n)l = -28.8
corresponding variance = (45.598)2
Average % change in sample size lAn/n}l = 29.69
2
corresponding variance = (45.00)
*
a1 and Bcal are the calculated values of a and B.
|An| = 4.08
. . 2
corresponding varience = (4.9743)
Ac = -.72

corresponding varience = (.7371)
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Appendix B-5. Analysis Of Jaech's Method

Table IX ~ _ (Using Tables)
Test Prob, *

No. o B a1 Bcal An2
1 .1403 .0947 .0294 .,0831 8
2 .0582 ,0965 .0203 .0718 5
3 .1400 .1041 .0202 .1659 -4
4 .0529 .0935 .0112 .1308 -2
5 .0439 .0913 .0143 .1150 4
6 .0471 .0908 .0936 .0263 0
7 .0760 .0980 .0500 .0605 3
8 .0250 .0980 .0163 .1465 -3
9 .0490 .0810 .0188 .1288 3

10 .2000 .6000 .3600 .3025 1

11 .6000 .2000 .7500 .0625 -1

12 .3000 .4000 .4253 .1040 1

13 .0500 .1000 .0465 .0915 1

14 .0500 .0500 .0522 .0370 -3

15 .0500 .0500 .0441 .0211 1

16 .0500 .0500 .0086 .0086 2

17 .5000 .0100 .6563 .0013 1

18 .3000 .1000 .3247 .0848 -4

19 .0300 .0850 .0193 .0840 0

20 .0100 .0010 .0056 .0010 0

21 .0483 .0870 .0177 .0498 0

22 .0961 .0916 .0131 .0882 0

23 .0500 .0500 .0256 .0832 -2

24 .0050 .0100 .0026 .0098 0

25 .0900 .0500 .0922 .0467 -6

Average reduction in sample size Zﬁz = 0.52

corresponding variance = (3.029)2

Average % reduction in sample size (An/n)2= 5.34

corresponding variance = (22.16)2
Average % change in sample size [An/nl2 = 15.30

corresponding variance = (16.67)2
*

o and B are the calculated values of o and B.

cal cal
|Bn|= 2.2 ,
corresponding varience = (2.1016)
Ac = -.04
2
corresponding varience = (.7348)



Appendix B-6.

Table X
Test Prob.

No. o
1 .1403
2 .0582
3 .1400
4 .0529
5 .0439
6 .0471
7 .0760
8 .0250
9 .0490

10 .2000

11 .6000

12 .3000

13 .0500

14 .0500

15 .0500

16 .0500

17 .5000

18 .3000

19 .0300

20 .0100

21 .0483

22 .0961

23 .0500

24 .0050

25 .0900

*

Average reduction in sample size ZH3 =

Analysis Of Initial Solution Of
Program Aime (Obtained Using

Jaechfs Method)

8

, 0947
.0965
.1041
.0935
.0913
.0908
.0980
.0980
.0810
.6000
.2000
.4000
.1000
.0500
.0500
.0500
.0100
.1000
.0850
.0010
.0870
.0916
.0500
.0100
.0500

*

o
cal

.0294
.0203
.0298
.0148
.0189
.0275
.0377
.0279
.0281
.2000
.7500
.2025
.0432
.0522
.0342
.0280
.5000
.3247
.0193
.0057
.0177
.0131
.0441
.0026
.0922

L]

Bcal
0831
0719
1660
0898
0802
0746
0931
0851
0808
5500
0625
3600
0991
0370
0461
0280
0086
0848
0840
0009
0498
0882
0339
0101
0467

>
o]
w

OHOOOHORMOOOWOOOOHOOONO K U1 0

.6

. 2
corresponding variance = (3.202)
Average % reduction in sample size (An/n)3= 1.862 ,
corresponding variance = (16.45)
Average % change in sample size ‘An/n}3= 7.813
corresponding variance = (14.51)2
o and B are the calculated values of o and 8.
cal cal
|An] = 1.8
2
corresponding varience = (2.6926)
Ac = -.04
2
corresponding varience = (.6758)
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Appendix B-7. Reductions in Acceptance
Table XI Numbers, Ac
Test Prob. Stephens' Jaech's Initial Solution
No. Method Method Of Prog. "Aime"
Ac : Ac Ac
1 0 1 1
2 0 1 1
3 -1 0 0
4 -1 0 0
5 0 1 1
6 -1 -1 0
7 -1 0 0
8 0 0 0
9 0 1 1
10 0 0 0
11 -1 -1 -1
12 -1 0 0
13 -1 0 0
14 -1 -1 -1
15 0 0 0
16 0 1 0
17 0 0 0
18 -3 -2 -2
19 -1 0 0
20 -1 0 0
21 -1 0 0
22 -1 0 0
23 0 0 0
24 -1 0 0
25 -1 -1 -1
Average
Reduction Ac -.68 -.04 -.04

variance (.69041)°2 (.73485)2 (.67577) 2



