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Intermodal freight transportation uses at least two different transportation modes 

(e.g., truck, rail, ship, air) to move freight loads that are in the same transportation 

unit (e.g., a shipping container) from origin to destination without handling the goods 

themselves.  The increasing shift to intermodal transportation and the growth of 

freight transportation demand have resulted in a higher demand for intermodal freight 

transportation that has been projected to grow even faster in the next few decades.   

Satisfying this emerging demand will require enhancing the capacity of current 

intermodal facilities or even the construction of new intermodal facilities.  This 

research addresses the intermodal logistics network design problem which is one of 

the key strategic planning decisions related to intermodal transportation.  To obtain 

the maximum performance of the intermodal logistics network, two relevant 

decisions corresponding to the route and mode selection for freight loads were 

integrated with the facility location problem within the integrated intermodal logistics 

network design (IILND) problem. 

 

To address the IILND problem, two mathematical formulations were developed.  One 

considered making decisions about arcs of the network while the other considered 



 

making decisions about routes for origin-destination flows in the network.  The arc-

based formulation modeled the effect of consolidating freight loads at intermodal 

terminals on the transportation cost by a stepwise function that relates the per 

container transportation cost to the amount of flow between two nodes.  A heuristic 

approach that combines a genetic algorithm and the shortest path algorithm was 

developed to efficiently obtain high quality solutions for the arc-based formulation. 

 

Unlike the arc-based formulation, the route-based formulation modeled the effect of 

consolidating different loads at intermodal terminals on the transportation cost and 

time using constant discount and delay factors, respectively.  Moreover, a composite 

variable formulation was used for the route-based formulation to incorporate route 

feasibility constraints within the definition of the composites and avoid explicitly 

adding them to the model.  These modifications reduced the number of variables and 

constraints significantly when compared to the arc-based formulation.  Two solution 

approaches were developed to find optimal solutions for the route-based formulation, 

namely a decomposition-based search algorithm and an accelerated Bender’s 

decomposition method.  Several sets of computational experiments were completed to 

evaluate the performance of the proposed mathematical formulations and solutions 

approaches.  Finally, several general insights about the effects of design parameters 

on solution characteristics were obtained from the computational experiments and 

directions for future research were identified. 

 

  



 

 

 

 

 

 

 

 

 

 

©Copyright by Mohammad Ghane-Ezabadi  

November 21, 2016 

All Rights Reserved



 

Integrated Intermodal Logistics Network Design 

 

 

by 

Mohammad Ghane-Ezabadi 

 

 

 

A DISSERTATION 

 

 

submitted to 

 

Oregon State University 

 

 

in partial fulfillment of 

the requirements for the  

degree of 

 

 

Doctor of Philosophy 

 

 

 

 

 

Presented November 21, 2016 

Commencement June 2017 



 

Doctor of Philosophy dissertation of Mohammad Ghane-Ezabadi presented on 

November 21, 2016 

 

APPROVED: 

 

 

 

Major Professor, representing Industrial Engineering 

 

 

 

Head of the School of Mechanical, Industrial and Manufacturing Engineering  

 

 

 

 

Dean of the Graduate School 

 

 

 

I understand that my dissertation will become part of the permanent collection of 

Oregon State University libraries.  My signature below authorizes release of my 

dissertation to any reader upon request. 

 

 

 

Mohammad Ghane-Ezabadi, Author 



 

ACKNOWLEDGEMENTS 

 

I would like to express my special appreciation and sincere gratitude to my advisor 

Dr. Hector A. Vergara; for encouraging my research and his kind help and thoughtful 

guidance.  His technical and editorial advice was essential to the completion of this 

dissertation and has taught me innumerable lessons and insights on the workings of 

academic research in general. His advice on both research as well as on my career 

have been priceless.  

 

I would also like to thank my committee members, Dr. Logen Logendran, Dr. Xiaoli 

Fern, Dr. Salvador Hernandez and Dr. Roger Graham for serving as my committee 

members even at hardship.   I also want to thank you for your brilliant comments and 

suggestions. 

 

 I want to express my gratitude to all of my teachers during these 22 years of school 

specially Dr. Mohammad Modarres Yazdi and Dr.  Kourosh Eshghi who taught me 

how to think systematically.  

 

A special thanks to my family. Words cannot express how grateful I am to my mother 

and father for all of the sacrifices that they’ve made on my behalf. Their prayer for 

me was what sustained me thus far. I would also like to thank my sister and brother 

for their love and support. At the end I would like to express appreciation to my 

beloved wife Zahra who spent sleepless nights with me and was always my support in 

the moments when there was no one to answer my queries. 

 

  



 

CONTRIBUTION OF AUTHORS 

  



 

 

TABLE OF CONTENTS 

           Page 

1 Introduction ............................................................................................................................. 1 

1.1 Background ...................................................................................................................... 1 

1.2 Problem Definition ........................................................................................................... 2 

1.3 Research Objectives ......................................................................................................... 3 

1.4 Research Questions .......................................................................................................... 3 

1.5 Research Tasks ................................................................................................................. 3 

1.6 Research Outcomes .......................................................................................................... 4 

1.7 Research Contributions .................................................................................................... 5 

2 Integrated Intermodal Network Design with Nonlinear Inter-hub Movement Costs ............. 7 

2.1 Abstract ............................................................................................................................ 7 

2.2 Introduction ...................................................................................................................... 7 

2.3 Literature Review ........................................................................................................... 10 

2.4 Methodology .................................................................................................................. 14 

2.4.1 Problem Definition.................................................................................................. 14 

2.4.2 Mathematical Model Formulation .......................................................................... 14 

2.4.3 Solution Approach .................................................................................................. 17 

2.5 Computational Experiments ........................................................................................... 21 

2.5.1 Randomly Generated Dataset ................................................................................. 22 

2.5.1.1 Experimental Design for Randomly Generated Dataset .................................. 22 

2.5.1.2 Computational Results for Randomly Generated Dataset ............................... 24 

2.5.2 Civil Aeronautics Board (CAB) Dataset................................................................. 28 

2.5.2.1 Experimental Design for the CAB Dataset...................................................... 28 



 TABLE OF CONTENTS (Continued) 

Page  

 

 

2.5.2.2 Computational Results for the CAB Dataset....................................................... 30 

2.6 Conclusions and Future Work ........................................................................................ 31 

2.7 References ...................................................................................................................... 32 

2.8 Appendix A .................................................................................................................... 37 

3 Decomposition Approach for Integrated Intermodal Logistics Network Design ................. 40 

3.1 Abstract .......................................................................................................................... 40 

3.2 Introduction .................................................................................................................... 40 

3.3 Literature Review ........................................................................................................... 44 

3.4 Methodology .................................................................................................................. 48 

3.4.1 Problem Definition.................................................................................................. 48 

3.4.2 Mathematical Formulation ...................................................................................... 49 

3.4.2.1 Notation ........................................................................................................... 50 

3.4.2.2 Composite Variable Definition and Generation Method ................................. 51 

3.4.2.3 Mathematical Formulation .............................................................................. 53 

3.4.3 Solution Approach .................................................................................................. 54 

3.4.3.1 Two-Stage Optimization Approach ................................................................. 56 

3.4.3.2 Search Algorithm ............................................................................................. 57 

3.5 Computational Experiments ........................................................................................... 58 

3.5.1 Experimental Design ............................................................................................... 58 

3.5.2 Computational Results ............................................................................................ 61 

3.5.2.1 Set A Computational Results ........................................................................... 61 

3.5.2.2 Set B Computational Results ........................................................................... 69 

3.6 Conclusions and Future Work ........................................................................................ 73 

3.7 References ...................................................................................................................... 74 



 TABLE OF CONTENTS (Continued) 

Page  

 

 

4 Bender’s Decomposition Algorithm for Integrated Intermodal Logistics Network Design. 77 

4.1 Abstract .......................................................................................................................... 77 

4.2 Introduction .................................................................................................................... 77 

4.3 Literature Review ........................................................................................................... 80 

4.4 Methodology .................................................................................................................. 83 

4.4.1 Problem Definition.................................................................................................. 83 

4.4.2 Mathematical Formulation ...................................................................................... 84 

4.4.3 Bender’s Decomposition Solution Approach ......................................................... 87 

4.4.3.1 Sub-problem .................................................................................................... 88 

4.4.3.2 Bender’s Cuts .................................................................................................. 90 

4.4.3.3 Master Problem................................................................................................ 90 

4.4.3.4 Preprocessing Heuristic ................................................................................... 92 

4.5 Computational Experiments ........................................................................................... 94 

4.5.1 Experimental Design ............................................................................................... 94 

4.5.2 Computational Results ............................................................................................ 96 

4.5.2.1 Set A Computational Results ........................................................................... 96 

4.5.2.2 Set B Computational Results ......................................................................... 104 

4.6 Conclusions and Future Work ...................................................................................... 108 

4.7 References .................................................................................................................... 110 

4.8 Appendix B .................................................................................................................. 114 

5 Conclusions and Future Work ............................................................................................ 115 

     

  



 

 

LIST OF FIGURES  

 

Figure                                                                                                                                         Page 

Figure  2.1. Stepwise function for transportation cost per container for mode t. .......................... 15 

Figure  2.2. Flowchart of the heuristic solution approach. ............................................................ 18 

Figure  2.3. (a) A network with three nodes and two transportation modes; (b) Same network with 

dummy nodes. ............................................................................................................. 20 

Figure  2.4. Pseudo-code of the heuristic solution algorithm. ....................................................... 21 

Figure  2.5. Transportation cost per container stepwise function for all transportation modes. .... 23 

Figure  2.6. Average solution time for the heuristic method for different number of nodes in 

complete networks with load demand for 20% of all possible O-D pairs. ................. 28 

Figure  3.1. This research considers a hybrid network topology that combines point to point, 

connected hubs and static routes topologies (adapted from Woxenius (2007)). ........ 43 

Figure  3.2. Set of feasible routes i to transport load l (origin = 1, destination = 9) when hubs at 

nodes 2 and 6 are open. ............................................................................................... 52 

Figure  3.3. Flowchart of the decomposition solution approach. ................................................... 54 

Figure  3.4. Feasible routes for a load between nodes 1 and 9 in a 10 node network for two 

different hub combinations. ........................................................................................ 55 

Figure  3.5. Pseudo code of the search algorithm. ......................................................................... 58 

Figure  3.6. Summary of observed trends in the results for both sets of instances. ....................... 71 

Figure  4.1: The pseudo-code of Bender’s decomposition approach ............................................. 92 

Figure  4.2: The pseudo-code of preprocessing heuristic .............................................................. 93 

 

 

 

 

 



 

 

LIST OF TABLES 

 

Table                                 Page 

Table  2.1. Parameters and values used in computational experiments with Sets A and B. .......... 23 

Table  2.2. Average percentage cost difference from optimal solution and average percentage of 

optimal hubs in heuristic solution for Set A 10 node networks. .................................. 24 

Table  2.3. Average solution times for heuristic and exact approaches for Set A 10 node networks.

 ...................................................................................................................................... 26 

Table  2.4: Total cost and the number of open hubs for five Set B instances of complete networks 

with 25 and 50 nodes. ................................................................................................... 26 

Table  2.5: Parameters and values used in computational experiments of CAB dataset. .............. 30 

Table  2.6: Total cost and number of open hubs for CAB dataset when hub installation costs are 

equal for all nodes (Scenario I) .................................................................................... 30 

Table  2.7: Total cost and number of open hubs for CAB dataset when fixed hub installation costs 

are proportional to the total amount of demand flow of each node (Scenario II). ....... 31 

Table  3.1. Summary of previous research on intermodal logistics network design. .................... 47 

Table  3.2. Computational experiment parameters and their values. ............................................. 60 

Table  3.3. Optimal solution costs for Network Instance 1 (Set A). .............................................. 62 

Table  3.4. Set A average solution times (in seconds) with CPLEX and search algorithm. .......... 65 

Table  3.5. Set A average solution times (in seconds) with exhaustive enumeration and search 

algorithm (part a). ......................................................................................................... 66 

Table  3.5. Set A average solution times (in seconds) with exhaustive enumeration and search 

algorithm (part b).......................................................................................................... 67 

Table  3.6: Average percentage of hub combinations explored by search algorithm. ................... 69 

Table  3.7. Optimal solution costs for Network Instance 1 (Set B). .............................................. 70 

Table  3.8. Set B average solution times (in seconds). .................................................................. 72 

Table  4.1: Computational experiment parameters and their values. ............................................. 96 

Table  4.2: Optimal solution costs for Network Instance 1 (Set A). .............................................. 98 



LIST OF TABLES (Continued) 

Table                                                                                                                                           Page 

 

 

 

Table  4.3: Set A average solution times (in seconds) for accelerated Bender’s decomposition 

(ABD) algorithm. ....................................................................................................... 101 

Table  4.4: Average percentage of discarded potential terminal location using preprocessing 

heuristic in Set A instances. ....................................................................................... 103 

Table  4.5: Average percentage of discarded freight loads using preprocessing heuristic in Set A 

instances. .................................................................................................................... 104 

Table  4.6: Optimal solution costs for Network Instance 1 (Set B). ............................................ 106 

Table  4.7: Set B average solution times (in seconds) for ABD algorithm. ................................ 107 

Table  4.8: Summary of observed trends in the results for both Set A and Set B instances. ....... 108 

 

 



 

 

INTEGRATED INTERMODAL LOGISTICS NETWORK DESIGN 

1 Introduction  

1.1 Background  

Intermodal freight transportation refers to the use of at least two different modes of 

transportation to move freight loads in the same transportation unit (e.g., a shipping container) 

from origin to destination (Macharis & Bontekoning, 2004). Different transportation modes are 

truck (full truckload), rail, barge, airplane and pipeline.  Intermodal freight transportation is an 

alternative to trucking especially for long haul shipments since it can reduce transportation costs, 

negative environmental effects, and congestion problems (Limbourg & Jourquin, 2009). 

Moreover, with marketplace globalization, using more than one transportation mode is 

sometimes unavoidable for moving international freight loads.  

 

An important strategic planning decision related to intermodal freight transportation is the design 

of an intermodal logistics network. An intermodal logistics network is formed by the collection 

of physical locations used for the transfer of freight loads from one transportation mode to 

another and the connections between these physical locations based on the transportation modes 

that are available at each one of these locations. A very common network topology that is used in 

intermodal freight transportation is a hub-based network. In hub-based networks, freight loads 

first move from their origin to a hub. At the hub, all needed transfers are handled and freight 

loads are sorted and consolidated to be transported to another hub or to their destination (Alumur 

& Kara, 2008). In general, an intermodal logistics network consists of n nodes that are the 

origins and/or destinations of freight loads as well as the locations of existing and potential 

terminals. Nodes are linked by the existing arcs of single-mode transportation networks 

connecting pairs of nodes in the intermodal logistics network. Some nodes are physically located 

at the intersection of at least two single-mode transportation networks allowing the transfer of 

freight loads between different modes. A node can serve the network as a hub if a terminal is 

installed at its location. A fixed cost is associated with the installation of a terminal and needs to 

be considered when designing the network. From the operational perspective, freight loads are 

picked up from their origins and moved to a hub where they are sorted and consolidated (without 
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splitting the load and maintaining the same transportation unit) before being transferred to their 

destinations or to another hub if needed. The movement between two nodes can be completed 

using one of the existing modes of transportation that links those two nodes. As a result, 

transportation time and cost are different for different links according to the transportation mode 

that is used (i.e., shipping a load by air takes less time and is more expensive than shipping it by 

truck). Moreover, even for loads shipped on the same transportation mode, the transportation 

cost per load depends on the amount of loads that are shipped (i.e., the transportation cost per 

load decreases as more loads are transported between two nodes, due to economies of scale).  

 

In practice, the design of an intermodal logistics network includes many decisions that are made 

at different levels of decision making. At the strategic level, hub locations are established by 

determining the number of hubs that are needed and their locations. At the tactical level, 

decisions are made with respect to resource levels at hubs such as workforce levels, and number 

and type of cranes and other material handling and storage equipment that are required based on 

expected freight traffic flow through the hubs. Finally, at the operational level, decisions are 

made with respect to the selection of regular routes and transportation modes (i.e. selecting the 

transportation mode for each of the transportation legs of a route) for shipments associated with 

the expected demand in the intermodal logistics network. These decisions are not independent; 

for example changing the number of hubs and their locations can affect the optimal routes for 

shipments which may affect the total installation and transportation cost. As a result, these 

decisions should be made together (i.e., in an integrated way) in order to optimize the intermodal 

logistics network performance. In this context, intermodal logistics network design performance 

optimization can be defined in one of two ways: minimization of total network cost (i.e., total 

installation and transportation cost) or maximization of the level of customer satisfaction.  

1.2 Problem Definition  

The focus of this dissertation research is on the development of mathematical models and 

efficient solution approaches to solve the Integrated Intermodal Logistics Network Design 

(IILND) problem. The IILND problem can be defined as the integrated problem of selecting hub 

locations, assigning routes to freight loads, and selecting the transportation mode for each 
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shipment of a freight load such that the total transportation cost and the fixed cost of installation 

of hub facilities in the network are minimized subject to operational constraints such as 

satisfying all customer demands, opening an adequate number of hubs, and selecting feasible 

routes for each freight load.  

1.3 Research Objectives  

The objective of this dissertation is to integrate the strategic decision of finding hub locations in 

an intermodal logistics network with other relevant operational decisions by applying operation 

research techniques to find high quality solutions in reasonable computational times.  

1.4 Research Questions  

This dissertation addresses the following questions:  

 How to integrate different planning decisions related to intermodal logistics network 

design in a single mathematical formulation?  

 How to incorporate realistic assumptions of intermodal freight transportation operation in 

a mathematical formulation for integrated intermodal logistics network design?  

 How to find high quality solutions for real-size instances of the integrated intermodal 

logistics network design problem in reasonable computational times?  

1.5 Research Tasks  

The following research tasks were completed as part of this dissertation:  

1. A literature review of relevant research in intermodal transportation, intermodal logistics 

network design, large-scale optimization, and various solution approaches that have been 

used to solve similar integrated planning problems in hub location and network design.  

2. Development of a basic arc-based mathematical formulation for integrated intermodal 

logistics network design that models transportation economies of scale due to 

consolidation utilizing a stepwise function that relates the per load transportation cost to 

the amount of flow between two nodes.  
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3. Development of a genetic algorithm-based solution approach that combines a genetic 

algorithm and the shortest path algorithm to find high quality solutions for the arc-based 

mathematical formulation of the IILND problem developed in Task 2.  

4. Development of a route-based mathematical programming formulation for the IILND 

problem in which feasible routes between origin and destination for a freight load are 

modeled as decision variables. This alternative mathematical formulation has fewer 

constraints and decision variables compared to the arc-based mathematical formulation 

developed in Task 2.  

5. Development of a decomposition-based search algorithm to solve non-trivial instances of 

the route-based formulation of the IILND problem developed in Task 4 to optimality in 

reasonable computational times.  

6. Development of an accelerated Bender’s decomposition approach to solve large instances 

of the route-based formulation of the IILND problem developed in Task 4 to optimality 

in reasonable computational times.  

1.6 Research Outcomes  

The most important research outcomes associated with this dissertation are listed below:  

 An arc-based mathematical programming formulation to design intermodal logistics 

networks that integrates hub location, route and transportation mode selection problems. 

This formulation considers realistic aspects such as nonlinear transportation costs, 

availability of more than two transportation modes, and allowing alternative dispatching 

methods for intermodal freight shipments (i.e., point to point as well as using as many 

hubs as needed) to reduce transportation costs.  

 A heuristic solution approach based on a genetic algorithm to obtain high quality 

solutions for large instances of the arc-based mathematical model developed in this 

research in reasonable computational times.  

 An alternative route-based mathematical programming formulation to improve 

tractability for large size instances, and to incorporate other realistic aspects of 

intermodal transportation such as enforcing service level requirements for the shipments 

in the network by limiting transportation time between nodes in the network.  
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 A decomposition-based search algorithm to obtain exact solutions to non-trivial size 

instances of the route-based mathematical formulation of the IILND problem in 

reasonable computational times.  

 An accelerated Bender’s decomposition algorithm to obtain exact solutions to large 

instances of the route-based mathematical formulation of the IILND problem in 

reasonable computational times. 

1.7 Research Contributions 

To address the IILND problem as defined in Section 1.2., two mathematical formulations were 

developed: an arc-based formulation and a route-based formulation.  In the arc-based 

formulation, a single decision variable is defined for each of the transportation legs in the 

network.  Also, the consolidation effect on transportation cost due to economies of scale is 

modeled using a stepwise cost function that relates the unit transportation cost per container on 

each arc to the amount of flow on that arc.  While this assumption made the arc-based 

mathematical formulation more realistic, it increases the complexity of te resulting mathematical 

model in a way that using metaheuristics was necessary for finding high quality solutions.  

Therefore, a genetic algorithm-based solution approach was developed to find high quality 

intermodal network designs. 

 

To overcome the tractability issues observed with the arc-based formulation for realistic size 

instances of the IILND problem, an alternative route-based formulation was developed in which 

the economies of scale was modeled using a constant discount factor.  The alternative 

formulation also facilitates incorporating additional realistic elements of the problem to the 

mathematical model.  The route-based formulation was developed by means of composite 

variables.  The defined composite variable denotes a complete feasible route for a load from 

origin to destination as opposed to having one decision variable for each load movement between 

a pair of nodes.  Moreover, composite variables allow enforcing some of the operational 

constraints implicitly at the same time feasible routes are being generated instead of adding those 

constraints to the mathematical model.  A decomposition-based search algorithm was developed 

to obtain exact solutions for small to medium size problems in reasonable computational times.  
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As the decomposition-based search algorithm has limited applicability since it cannot be applied 

for solving large size instances of the IILND problem, an alternative way to solve the larger 

instances of the IILND problem was explored by implementing a Bender’s decomposition 

approach to solve the route-based mathematical formulation.  Moreover, a pre-processing 

heuristic was developed that reduces the size of problem instances and provides a better upper 

bound for the problem.  Using this new solution approach, it is shown that large instances of the 

IILND problem (with 250 cities and about 12,500 origin-destination pairs) can be solved in 

reasonable computational times.   

 

The rest of this dissertation is organized as follows.  In Chapter 2, the arc-based formulation and 

genetic algorithm-based solution approach are presented.  The alternative route-based 

formulation and decomposition-based solution approach are presented in Chapter 3.  Chapter 4 

presents the accelerated Bender’s decomposition approach to solve the route-based formulation.  

Finally, Chapter 5 presents general conclusions about the research completed in this dissertation 

and future research directions. 
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2 Integrated Intermodal Network Design with Nonlinear Inter-hub 

Movement Costs
1
 

2.1 Abstract 

A critical strategic decision in intermodal transportation planning is the design of its logistics 

network.  In this research, load route and transportation mode selection problems are integrated 

with the hub location problem in a single mathematical formulation to find the optimal design of 

intermodal transportation networks.  Economies of scale are modeled utilizing a stepwise 

function that relates the per container transportation cost to the amount of flow between two 

nodes.  A heuristic method combining a genetic algorithm and the shortest path algorithm was 

developed to efficiently solve this integrated planning problem.  Computational experiments 

were completed to evaluate the performance of the proposed heuristic by comparing the 

solutions obtained with this method to exact solutions obtained for different problem instances.  

At the end, conclusions are presented and future research directions are discussed. 

 

Keywords: intermodal; hub network design; integrated planning; integer programming; heuristic; 

genetic algorithm 

2.2 Introduction 

Long-haul freight transportation over road, which has been the predominant mode for freight 

transportation for many decades, produces significant environmental and congestion issues 

(Crainic and Kim, 2007).  Moreover, with marketplace globalization, a large number of 

international freight movements cannot be handled only by road transportation and multiple 

transportation modes are needed to connect shippers and customers.  In this context, intermodal 

freight transportation is a valid alternative to road transportation over long distances which can 

be used to reduce transportation costs, congestion, and negative environmental effects.  In 

general, intermodal freight transportation is defined as using at least two different transportation 

modes to move freight that is in the same transportation unit (e.g., a shipping container) 

                                                 

1
 This work has been submitted for publication to Transportation Research Part B: Methodological 
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throughout their route from origin to destination without actually handling the goods when 

changing modes or making transfers ( Crainic and Kim, 2007). 

 

One of the key strategic planning decisions in intermodal freight transportation is the design of 

its logistics network.  Different network topologies including point to point, corridor, hub and 

spoke, connected hubs, static routes and dynamic routes have been used to handle intermodal 

transportation service (Woxenius, 2007).  In this research, a hybrid network topology that 

combines the connected hubs with the point to point and static routes is implemented for 

intermodal transportation.  Therefore, loads can be shipped directly from their origin to 

destination or they can be moved from their origins to a hub or terminal.  At the hub, all needed 

transfers are handled and loads are consolidated to be transported to another hub or to their 

destinations.  In this configuration, the larger flows between hubs reduce total transportation 

costs due to economies of scale resulting from the consolidation of loads.  By considering this 

hybrid network topology, this research is not addressing the traditional hub-and-spoke network 

design problem anymore.   

 

Since intermodal networks consist of the individual networks of the transportation modes that are 

integrated, decisions made during the intermodal network design process not only affect the 

operational performance of intermodal transportation.  They also affect the performance of each 

of the single-mode transportation networks that are involved.  Furthermore, several strategic, 

tactical and operational decisions and constraints need to be considered when designing an 

intermodal network.  For example, hub locations are determined in the strategic phase and affect 

the selection of resource levels at terminals, and transportation modes to be used which are 

established at the tactical level.  Similarly, the previous decisions affect the selection of specific 

routes for loads which are determined during the operational phase.  These decisions are not 

independent and should be handled together to optimize the intermodal transportation system 

performance.  However, in most previous research studies, these decisions have been made 

separately in a multi-stage approach in which decisions made at one level are used as input for 

the next level.  In this research, hub locations, load routing and transportation mode selection for 
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each load are all considered in a single integrated mathematical model to find the optimal design 

for an intermodal network.   

 

Also in practice, the per container transportation cost depends on the degree of consolidation at 

terminals due to economies of scale (i.e., transportation cost per container will decrease more as 

more containers are consolidated at terminals).  However, most previous research considers a 

constant discount factor for all inter-hub transportation movements regardless of the amount of 

containers (i.e., flow) that is shipped between two nodes (Alumur and Kara, 2008).  While we 

are able to obtain valuable insights by using a constant discount factor, there is a need for a more 

accurate cost function to make the mathematical formulation more applicable in real world 

instances.  The mathematical model presented in this research considers a stepwise cost function 

that determines the per container transportation cost as a function of the amount of containers 

that are shipped between different pairs of nodes.  Using this stepwise cost function, we can 

model real world cost functions accurately.  However, considering this stepwise cost function 

makes the Integrated Intermodal Logistics Network Design (IILND) problem significantly harder 

to solve.  This is because with this stepwise cost function, the route and mode selection problems 

become NP-hard problems regardless of the hub locations (Chekuri et al., 2006).  Note that the 

hub location problem is also an NP-hard problem even when the economies of scale are modeled 

using a constant discount factor.  In order to solve the IILND problem efficiently, a heuristic 

method combining a genetic algorithm (GA) and the shortest path algorithm (SPA) was 

developed.  

 

A particular contribution of this research is that the transportation mode of each shipment leg can 

be explicitly determined with this new mathematical model in comparison to previous models 

that only determine the inter-hub shipment transportation mode and assume that all other 

shipments are handled by truck. 

 

Also, previous research studies restrict the number of hubs that each load can visit in its 

movement from origin to destination (i.e., usually to two hubs).  This assumption may be valid in 

small logistics networks, however in larger networks especially for long-haul or international 
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transportation, a load may pass through several hubs in order to be consolidated with other loads 

or be transferred to a different transportation mode to reduce transportation costs.  As such, this 

assumption is relaxed in the current study and loads are allowed to visit as many hubs as needed 

between origin and destination to reduce the total network cost. 

 

The mathematical model presented in this research relaxes some restrictive assumptions 

considered in previous models in the literature and can be applied to design more realistic 

intermodal networks.  Moreover, the solution approach developed and implemented in this 

research can provide high quality solutions in reasonable computational times for small and 

medium size instances. 

 

The rest of this chapter is organized as follows. In Section 2.3, a review of previous studies in 

intermodal planning and network design is presented.  The formal definition of the problem, 

mathematical formulation and the solution approach are presented in Section 2.4.  The results of 

the computational experiments completed in this research are presented in Section 2.5.  Finally, 

conclusions and future research directions are presented in Section 2.6. 

2.3 Literature Review 

As intermodal freight transportation grows within the transportation industry, a growing number 

of research studies have been completed in this area.  Macharis and Bontekoning (2004) 

categorized these studies according to two criteria: “type of operator” and “time horizon of the 

operations problem.”  Several research studies have been completed in each of these categories.  

From the type of operator perspective, some relevant examples of drayage operator problems 

have been recently studied by Caris and Janssens (2009), Jordan Srour and van de Velde (2013), 

Sterzik and Kopfer (2013), Nossack and Pesch (2013), and Braekers et al. (2014).  Challenges 

faced by terminal operators have been addressed lately by Petering and Murty (2009), Petering 

(2011), and Chen et al. (2013).  Chang (2008), Giannikas and McFarlane (2013), Kengpol et al. 

(2014), and Tiwari et al., (2014) have studied problems related to third-party logistics (3PL) 

operators in recent years. Finally, more closely related to the current research, Ishfaq and Sox 

(2011), Ishfaq and Sox (2012), Sörensen et al., (2012), Sörensen and Vanovermeire (2013), 
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Zhang et al. (2013), Lin et al. (2014) and Ghane-Ezabadi and Vergara (2016) have recently 

developed models and solution approaches for network operator planning problems. 

 

From the time horizon perspective, research studies have been classified into strategic, tactical 

and operational planning problems.  The design of the intermodal logistics network is one of the 

most important strategic planning problems that affect the performance of the intermodal 

transportation system.  In this area, hub-and-spoke networks have been studied the most as they 

are the fundamental network configuration for intermodal freight transportation.  Several studies 

related to the design of hub networks can be found in the literature in many applications related 

to transportation and telecommunications.  Alumur and Kara (2008), Campbell and O’Kelly 

(2012) and Farahani et al. (2013) provide recent comprehensive reviews of various research 

studies in this area.  However, as a particular application area, intermodal freight transportation 

has its own characteristics and constraints that should be explicitly considered when designing a 

logistics network using a hub-based configuration. In particular, most of the hub location 

literature assumes that no direct shipment between spokes is allowed and that the flow of cargo is 

limited to visit at most two hubs.  These are not realistic assumptions in practice in the context of 

intermodal freight transportation.  Also, most existing work in this area only considers the hub 

location or hub network design aspect of this problem and ignores the integration of the hub 

location-allocation decisions with tactical decisions such as mode selection and resource 

allocation.   

 

In the literature, operations research techniques have been consistently used for designing 

intermodal logistics networks.  However, given the complexity and scale of this planning 

problem, many researchers have mostly relied on heuristic and metaheuristic approaches to 

obtain near optimal solutions for large problem instances.  Mathematical models for intermodal 

hub network design applications were initially presented by Arnold et al. (2001), Arnold et al. 

(2004), and Racunica and Wynter (2005).  Smilowitz and Daganzo (2007) proposed an approach 

for the design and operation of integrated intermodal transportation networks for express 

package delivery.  Rahimi et al. (2008) developed a mixed integer programming model to find 

the optimal number and location of inland ports for an intermodal transportation network in 



12 

 

 

 

California that minimizes total transportation and facility costs.  Limbourg and Jourquin (2009) 

developed an iterative procedure to estimate the potential locations for terminals assuming that 

each node can be allocated to only one hub in the network.  Then, the authors used a mixed 

integer programming model to determine the optimal locations among those potential locations. 

Later, Ishfaq and Sox (2011) considered the assumptions that each load has service time 

requirements and can be shipped through at most two hubs.  In this study, the transportation 

times between two hubs were multiplied by a constant factor to capture the transitioning time at 

terminals.  In a related study, Ishfaq and Sox (2012) modeled the hub operations as a G/G/1 

queuing system to estimate the transitioning time at terminals more accurately.  In this study, 

although each terminal can serve different modes of transportation, each load can use only one 

mode when transported from origin to destination.  In both of these last two research studies, a 

tabu search (TS) metaheuristic was implemented to find near optimal location-allocations of 

hubs that minimize the total transportation and fixed hub facilities costs. 

 

Sörensen et al. (2012) developed a couple of two-stage metaheuristic methods for the mixed 

integer programming model first developed by Arnold et al. (2004) which allows direct 

transportation between nodes as well as visiting at most two hubs.  The objective of this model 

was to determine the location-allocation of hubs such that the total transportation cost is 

minimized.  Lin et al. (2014) improved the mathematical model of Sörensen et al. (2012) by 

reducing constraints and variables in the formulation without any extra assumptions.  The 

authors then developed two heuristics to find near optimal hub locations.  Sörensen and 

Vanovermeire (2013) modified the model of Sörensen et al. (2012) to a bi-objective mixed 

integer programming model.  The authors developed a problem-specific greedy randomized 

adaptive search procedure (GRASP) to approximate the optimal Pareto set. 

 

In another study, Alumur et al. (2012) proposed single allocation hub network design models 

including delivery due date constraints and allowing multiple transportation modes. They used 

valid inequalities and a heuristic based on Lagrangian decomposition and variable reduction to 

solve the proposed formulations. Alumur et al. (2012b) also solved a hierarchical hub median 

problem where shipment of all cargo is restricted to pre-specified time windows by developing a 
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mixed integer programming formulation that is solved with the help of variable fixing rules and 

valid inequalities.  In their model, they minimize the total transportation costs and installation 

costs per unit of time. 

 

 

Competition and collaboration considerations have also been incorporated in intermodal hub 

network design.  Meng and Wang (2011) proposed a joint U-shaped transportation cost function 

in their network design formulation when considering different stakeholders and investment 

budget limitations. In this same area, Vasconcelos et al. (2011) studied the effect on total cost of 

adding a hub to an existing network operated under decentralized management by looking at the 

percentage of loads moving through the new hub.    

 

Finally, while most of the previous studies only consider transportation and fixed facility costs, a 

few recent studies have included other types of costs in the modeling of intermodal logistics 

networks.  For example, Zhang et al. (2013) considered environmental costs in the objective 

function of their mathematical model by estimating the cost of CO2 emissions related to each 

shipment in the intermodal logistics network.  The authors used a genetic algorithm to find near-

optimal network configurations and multi-commodity flow assignments in the network. CO2 

emissions have also been recently considered in the design of intermodal hub networks by Zhang 

et al. (2015) and Bouchery and Fransoo (2015). 

 

The reader is referred to comprehensive reviews of research studies in intermodal transportation 

planning including strategic network design by Macharis and Bontekoning (2004), Caris et al. 

(2013), and SteadieSeifi et al. (2014).  Like most of the previous studies on strategic network 

design, the current research attempts to minimize the total transportation and fixed facility costs, 

however the modeling approach of this research integrates the load route and transportation 

mode selection problems within the hub location problem and relaxes some restrictive 

assumptions made in previous studies. 



14 

 

 

 

2.4 Methodology 

2.4.1 Problem Definition  

In a hub-based network configuration for intermodal freight transportation there are N nodes 

representing origins and destinations of loads, and potential locations for hubs.  Fixed costs 

associated with the installation of hubs at these nodes are considered.  Containers in a load can 

be shipped between two nodes using one of the available transportation modes that connect the 

two nodes.  Each transportation mode has a corresponding transportation cost per mile and per 

container.  However, this transportation cost depends on the amount of containers that are 

transported on a particular mode between two nodes.  As flow between hub nodes increases and 

consolidation occurs with modes that are able to handle more than one container in a single trip, 

the transportation cost per container decreases due to economies of scale resulting from the 

larger flows.  Consequently, the per container transportation cost of moving freight between two 

hubs is less than the per container cost of transportation between a hub and a non-hub node or 

between two non-hub nodes.  However, the transportation time between origin and destination 

also increases as more hubs are involved in a trip due to delays at the hubs for coordination and 

load handling. 

 

The Integrated Intermodal Logistics Network Design (IILND) problem can be defined as 

determining the locations for hubs, the assignment of routes to load shipments, and the selection 

of the transportation mode for each load shipment such that total hub installation and 

transportation costs are minimized subject to constraints.  In particular, our proposed 

mathematical formulation for the IILND problem presented in Section 2.4.2 attempts to 

minimize the total hub installation and transportation costs while satisfying constraints for 

network balance and maximum number of open hubs. 

2.4.2 Mathematical Model Formulation 

To model the effect of consolidation and economies of scale on the transportation cost for inter-

hub movements, a stepwise function that relates the per container transportation cost to the 

amount of flow between two nodes was utilized in this research, as shown in Figure 2.1.  The 
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number of steps in this cost function can be arbitrarily determined based on a particular 

transportation mode.  As a result, the stepwise function can realistically model the transportation 

cost between two nodes with relatively high precision.  This approach is different than other 

methods that have been previously used in the literature to model transportation costs when 

consolidation occurs, such as those presented by Croxton et al. (2007, 2003). 
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Figure ‎2.1. Stepwise function for transportation cost per container for mode t. 

The following notation is used for the proposed mathematical programming formulation of the 

IILND problem: 

Indices and Parameters 

𝑖, 𝑗, 𝑘 = 1, 2, … , 𝑁 indices for denoting nodes, 

𝐹𝑖 fixed cost of installing a hub at node i, 

𝑡 = 1, 2, … , 𝑇 index for denoting modes of transportation, 

𝑝, 𝑞 = 1, 2, … , 𝐿 indices for denoting load shipments, 

𝑟 = 1, 2, … , 𝑅  
index for denoting steps in the transportation cost per container stepwise 

function, 

𝑑𝑝 demand (i.e., number of containers) for load shipment p, 

𝑆𝑖𝑗𝑟
𝑡   lower bound flow value of step r in the transportation cost per container 

stepwise function between nodes i and j via mode t, 
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𝐶𝑖𝑗𝑟
𝑡  

value of step r in the transportation cost per container stepwise function 

between nodes i and j via mode t, 

𝐻  maximum number of hubs to be opened, 

M a very large integer number, 

Originp origin node for load shipment p. 

 

Decision Variables 

   𝑌𝑖 = 

 
1 if hub i is open, 

 
0 otherwise, 

𝑋𝑖𝑗
𝑝,𝑡

 = 

 
1 if load shipment p is moved from node i to node j via mode t, 

 
0 otherwise, 

𝑍𝑖𝑗𝑟
𝑝,𝑡 = 

 
1 

if number of containers for load shipment p moving from node i to node j via 

mode t is on the r
th

 step of the transportation cost per container stepwise function, 

 
0 otherwise. 

 

Mathematical Formulation  

The mathematical formulation for the IILND problem using binary decision variables follows: 

Minimize ∑ 𝐹𝑖𝑌𝑖

𝑖

+  ∑ ∑ ∑ ∑ ∑ 𝐶𝑖𝑗𝑟
𝑡 𝑑𝑝𝑍𝑖𝑗𝑟

𝑝,𝑡

𝑟𝑗𝑖𝑡𝑝

 (2.1) 

Subject to: 

∑ ∑ 𝑋𝑘𝑖
𝑝,𝑡 − 

𝑘𝑡

∑ ∑ 𝑋𝑖𝑗
𝑝,𝑡 =  {

−1        if i is origin of 𝑝 
1 if i is destination of 𝑝

0                      otherwise𝑗𝑡

 ∀𝑝 ∈ 𝐿, ∀𝑖 ∈ 𝑁 (2.2) 

∑ ∑ 𝑋𝑖𝑗
𝑝,𝑡𝑑𝑝  ≤  𝑀𝑌𝑖

𝑗𝑡

 ∀𝑝 ∈ 𝐿, ∀𝑖 ∈ 𝑁 − {𝑂𝑟𝑖𝑔𝑖𝑛𝑝} (2.3) 

∑ 𝑌𝑖

𝑖

≤ 𝐻  (2.4) 
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𝑆𝑖𝑗𝑟
𝑡 −  ∑ 𝑋𝑖𝑗

𝑞,𝑡𝑑𝑞

𝑞

< 𝑀(1 −  𝑍𝑖𝑗𝑟
𝑝,𝑡) ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇, ∀𝑝 ∈ 𝐿 (2.5) 

∑ 𝑋𝑖𝑗
𝑞,𝑡𝑑𝑞

𝑞

−  𝑆𝑖𝑗𝑟
𝑡  ≤  𝑀 (1 − 𝑍𝑖𝑗(𝑟−1)

𝑝,𝑡 ) ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑡 ∈ 𝑇, ∀𝑝 ∈ 𝐿, 𝑟 = 2, … , 𝑅 (2.6) 

∑ 𝑍𝑖𝑗𝑟
𝑝,𝑡

𝑟

= 𝑋𝑖𝑗
𝑝,𝑡

 ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑡 ∈ 𝑇, ∀𝑝 ∈ 𝐿 (2.7) 

𝑌𝑖 = {0,1} ∀𝑖 ∈ 𝑁 (2.8) 

𝑋𝑖𝑗
𝑝,𝑡  = {0,1} ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑡 ∈ 𝑇, ∀𝑝 ∈ 𝐿 (2.9) 

𝑍𝑖𝑗𝑟
𝑝,𝑡 = {0,1}  ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇, ∀𝑝 ∈ 𝐿 (2.10) 

 

Objective function (2.1) minimizes the total cost consisting of the fixed hub installation cost and 

the transportation cost for all flows in the network.  Constraint (2.2) enforces flow balance at the 

nodes in the network.  Constraint (2.3) requires that hubs should be used only if they are selected 

to be opened.  The total number of hubs that can be opened is limited by constraint (2.4).  The 

transportation cost per container stepwise function is linearized using constraints (2.5) – (2.7).  

And finally, constraints (2.8) – (2.10) are the variable type constraints.  Note that the value of M 

could be replaced by the summation of all flows in the network (∑ 𝑑𝑝𝑝 ) to provide a specific 

bound for constraints (2.3), (2.5) and (2.6). 

2.4.3 Solution Approach 

As different decisions (i.e., hub location, route and mode selection) are integrated into a single 

mathematical model, the tractability of the IILND problem presented in Section 2.4.2 is affected 

by the size of the instances solved.  As a result, only small problem instances can be solved to 

optimality in reasonable times with this formulation using a commercial solver.  To overcome 

this challenge, a heuristic approach that takes advantage of both Genetic Algorithms (GA) and 

the Shortest Path Algorithm (SPA) was developed in this research.  The proposed heuristic 

method is the iterative procedure illustrated in Figure 2.2, where K is the number of iterations 

performed by the solution approach.  The method starts by finding the optimal location for a 

single hub in the logistics network and evaluating the resulting total network cost during the first 
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iteration.  The method then moves to the next iteration by increasing the number of hubs to open 

until opening one more hub increases the total network cost of the solution obtained.  During 

each iteration, the SPA is used to find optimal load routes and transportation modes for all 

freight loads for a given hub location solution.  The resulting total network cost is used to 

evaluate the fitness of that particular hub location solution. Meanwhile, the GA leads the search 

for optimal hub locations through the feasible solution space.  Therefore, the proposed solution 

approach starts each iteration with a set of initial hub location solutions, then evaluates them 

using the SPA, and moves to a new set of hub location solutions by applying GA operations until 

reaching a stopping criterion. 

Hub locations for 

initial population 

determined randomly

Shortest Path Algorithm 

determines the route and modes 

of transportation for each load 

based on current hub locations

Total Cost (K) calculated 

according to hub locations, 

routes and modes of 

transportation.

GA builds next generation by 

improving hub locations 

according to Total Cost (K)

Has stopping criteria 

been met?

No Yes

Start

Set K = 1 and

Total Cost (0) = ∞ 

End

Is 

Total Cost (K) < 

Total Cost (K-1)?

Set K = K + 1 

No

Yes

 

Figure ‎2.2. Flowchart of the heuristic solution approach. 

 

In the proposed GA, chromosomes represent the allocation of hubs to nodes in the network (i.e., 

each gene corresponds to the index of a node where a hub is located).  Since in the K
th

 iteration 
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of the algorithm, the number of open hubs is equal to K, each chromosome in the population has 

K genes.  For example, if N is equal to 20 and K is equal to 3, a chromosome associated with the 

solution in which hubs are allocated to nodes 4, 12 and 16 is represented by (4,12,16).  The 

initial population for the GA is randomly generated at the beginning of each iteration of the 

solution approach (i.e., when the number of hubs is increased by one). 

 

To evaluate the hub solutions in each generation of the GA, the total cost for each solution has to 

be computed.  Note that hub locations are fixed for each solution, so the fixed cost of installation 

is known.  However, the transportation cost is not known until the load routes and transportation 

modes are determined for all loads.  The SPA is used to select the route and transportation modes 

that minimize the transportation cost for a given load.  The SPA can only be applied to networks 

that have at most one link (i.e., arc) with a fixed cost between two nodes.  However, in 

intermodal transportation networks, there can be multiple arcs between two nodes each 

representing a different mode of transportation. Also, the transportation costs vary as a function 

of the amount of containers (i.e., flow) that are shipped on an arc.  To overcome these 

challenges, dummy nodes are defined at locations where multiple transportation modes are 

available.  Each single-mode transportation network is modeled by a set of n dummy nodes and 

the cost of transitioning loads from a node to its corresponding dummy nodes (i.e., nodes in the 

same location for different transportation modes) is zero.  Figure 2.3(a) shows a network with 

three nodes and two transportation modes.  The equivalent network with dummy nodes which is 

solvable by the SPA is shown in Figure 2.3(b).  The corresponding transportation costs per 

container are shown on the arcs. 
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Figure ‎2.3. (a) A network with three nodes and two transportation modes; (b) Same 

network with dummy nodes. 

 

At this stage of the proposed solution approach, an iterative procedure is implemented to 

overcome the non-linear transportation cost between nodes in the network.  After the SPA is 

initially used to determine the load routes and transportation modes for all shipments, the 

transportation costs per container are recalculated based on the amount of flow between each pair 

of nodes according to the stepwise transportation cost per container function.  Then, the SPA is 

applied again to the network with the new transportation costs.  This iterative process continues 

until no changes in cost are observed.  Note that a constant discount factor could be considered 

for inter-hub shipments in the initial step to generate solutions that incorporate the consolidation 

of flow.  After all load route and transportation mode selection decisions are finalized, the total 

cost is calculated and used as the fitness value of each hub solution in the current GA population. 

 

A combination of elitism and rank selection is utilized to determine the solutions that are used as 

input for crossover and mutation operations of the GA.  The offspring that result from the 

application of these GA operations form the population for the next generation of the GA.   

The entire process combining the GA with the SPA is repeated until a predetermined number of 

generations (i.e., the stopping criterion) are produced.  Specific details about the implementation 

of the GA are presented in Appendix A.  The pseudo-code that is used in each iteration of the 

developed heuristic solution method is presented in Figure 2.4. 
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Generate the initial population randomly

While (predetermined numbers of generations are produced) {

    For each solution in current generation {

   Set Cij
t ← Cij1

t for all pairs of non-hub nodes

Set Cij
t ← discount factor × Cij1

t for all pairs of hub nodes

 While (no transportation unit cost changes) {

      Run the shortest path algorithm to select the mode and route for each shipment

      Recalculate the costs according to the amount of flows between each pair of nodes

 }

 Calculate the total cost for each solution in the population as their fitness value

}

Choose the elite solutions and move them to the next generation

Do until the next generation has a complete population {

Select the two parents according to the rank selection

Do the crossover and mutation operations to generate two children

Add these two children to the next generation

}

}

Return the hub locations, route and modes of transportation for each shipment.

 

Figure ‎2.4. Pseudo-code of the heuristic solution algorithm. 

After the GA stops at the end of each iteration, the total cost of the best solution in that iteration 

is compared to the total cost of the best solution in the previous iteration.  If the total cost 

decreases compared to the previous iteration; the solution method moves to the next iteration by 

adding one more hub to the number of open hubs and continues to explore an additional 

reduction in total cost.  Otherwise, the solution method stops. 

2.5 Computational Experiments 

Both, randomly generated instances and the Civil Aeronautics Board (CAB) dataset were used to 

evaluate the performance of the proposed mathematical model and solution approach.  The 

following sub-sections present the experimental design and computational results for both 

datasets. 
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2.5.1 Randomly Generated Dataset  

2.5.1.1 Experimental Design for Randomly Generated Dataset 

Two sets of computational experiments (Set A and Set B) were completed on randomly 

generated datasets.  Set A experiments were used to test the performance of the proposed 

heuristic when compared to exact solutions obtained for small network instances. Set B 

experiments were developed to obtain insights about the solutions obtained with the heuristic 

method for medium size instances.  For all computational experiments, random instances of 

complete networks (i.e., networks where all pairs of nodes are connected to each other by an arc) 

were generated in which nodes were uniformly distributed in a 1.0 × 0.5 rectangular area.  For 

each problem configuration in Set A, 10 random instances were generated, while five random 

instances were created for Set B.  In all cases, L loads were randomly generated and their 

demand (i.e., number of containers) was assigned based on a random value uniformly distributed 

between 50 and 150 units.  In Set A, the size of L was set to be equivalent to 5%, 10%, 15%, 

20% and 25% of all possible O-D pairs in the complete network.  In Set B, the size of L was set 

to be equivalent to 20% of all possible O-D pairs.  In addition, limitations were established for 

the number of transportation modes considered in each problem instance.  Half of the generated 

problem instances had only two transportation modes, while the other half considered three 

modes. 

 

Regarding cost parameters, the fixed cost of installing a hub at a node (amortized for the length 

of the planning horizon) was considered to be a random variable that is uniformly distributed 

between 100 and 150.  Also, the transportation cost between nodes i and j was dependent on the 

transportation mode selected to connect two nodes.  Values for the first step of the transportation 

cost per container stepwise function were calculated using equations (2.11), (2.12) and (2.13), 

according to the number of available transportation modes connecting nodes i and j.    Based on 

our notation, a higher numbered transportation mode was assumed to provide a less expensive 

transportation cost per container for long haul shipments, while it was more expensive for short 

haul transportation.  In equations (2.11) - (2.13), Random(0,1) refers to a uniformly distributed 
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random variable between 0 and 1.  Three steps were considered for the transportation cost per 

container stepwise function for each transportation mode as shown in Figure 2.5. 

 

Mode (t) Maximum transportation cost per container between nodes i and j (𝑪𝒊𝒋𝟏
𝒕 )  

1 𝐶𝑖𝑗1
1 =  𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑖, 𝑗) / 2 +  𝑅𝑎𝑛𝑑𝑜𝑚(0, 1)  (2.11) 

2 𝐶𝑖𝑗1
2 =  𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑖, 𝑗) / 3 +  𝑅𝑎𝑛𝑑𝑜𝑚(0, 1)  +  0.05  (2.12) 

3 𝐶𝑖𝑗1
3 =  𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑖, 𝑗) / 4 +  𝑅𝑎𝑛𝑑𝑜𝑚(0, 1)  +  0.10   (2.13) 
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Figure ‎2.5. Transportation cost per container stepwise function for all transportation modes. 

 

All of the parameters and their respective values used to randomly generate problem instances 

for both sets A and B are shown in Table 2.1. 

 

Table ‎2.1. Parameters and values used in computational experiments with Sets A and B. 

Parameter Set A Set B 

Number of Nodes 10 25, 50 

Number of loads 
5%, 10%, 15%, 20% and 25% 

of all possible O-D pairs 
20% of all possible O-D pairs 

Number of Modes 2, 3 2, 3 
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For the GA used in the proposed solution method, the stopping criterion was set at 50 

generations, each containing 40 chromosomes (i.e., hub solutions). 

2.5.1.2 Computational Results for Randomly Generated Dataset 

The proposed mathematical model and solution approach for the IILND problem were 

implemented in MATLAB. All computational experiments were run on a 2.83 GHz Quad Core 

computer with 8 GB of RAM. 

2.5.1.2.1 Set A Computational Results 

Each instance in Set A was solved using the heuristic solution approach presented in Section 

2.4.3, and the results were compared to optimal solutions obtained using CPLEX 12.2 to assess 

the performance of the proposed solution approach.  The percentage differences between the 

average optimal solution value obtained with CPLEX and the average heuristic solution value for 

each problem instance were calculated and are presented in Table 2.2.  At the same time, a 

comparison of the selected hub nodes in both solutions was completed and the average 

percentage of hubs in the heuristic solution that are present in the optimal solution for each 

problem instance are also shown in Table 2.2.   

 

Table ‎2.2. Average percentage cost difference from optimal solution and average percentage of 

optimal hubs in heuristic solution for Set A 10 node networks. 

# of 

Loads 

# of Modes = 2 # of Modes = 3 

Avg. % Cost Diff. Avg. % Opt. Hubs Avg. % Cost Diff. Avg. % Opt. Hubs 

5 0.00 100 0.00 100 

9 0.50 100 0.54 100 

14 1.00 85 0.60 80 

18 3.62 75 1.57 80 

23 3.47 70 2.88 50 
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As shown in Table 2.2, the heuristic approach consistently obtained solutions that were very 

close to the optimal solution.  Actually, the heuristic approach obtained the optimal solution for 

all instances with five loads.  However, the average percentage cost difference increased with the 

size of the problem (i.e., as the number of loads increased), but never exceeded 4% with respect 

to the optimal solution obtained with CPLEX.  Note that increasing the number of modes in the 

network won’t increase the total network cost, but it can decrease it since it increases the 

alternatives for route and mode selection.  It is observed in Table 2.3, that exploring these extra 

alternatives requires more time, so the solution time increases with the number of transportation 

modes in the network.  However, increasing the number of modes in the network doesn’t reduce 

the quality of heuristic solutions.  Therefore, no trend is observed in Table 2.2 regarding the 

relationship between the number of modes in the network and the average percentage cost 

difference.  

Also, according to Table 2.2, a relationship between instance size and average percentage of 

optimal hubs found by the heuristic method was observed.  For example, in average 70% of the 

hubs selected in the optimal solution were found by the heuristic method in instances with 23   

loads and two modes.  This means that even when the average percentage cost difference was 

about 3.5%, most of the hubs selected by the heuristic were part of the optimal set.  Note that the 

selection of hubs by the heuristic method was the same as the optimal hub selection obtained 

with CPLEX in small instances with fewer loads.  However, as instance size increased, the 

percentage of optimal hubs found by the heuristic approach decreased.   

 

In terms of computational performance, the average solution times for the heuristic and the exact 

approaches are reported in Table 2.3.  In the instances with fewer loads, the average solution 

time using CPLEX (i.e. the exact approach) is competitive when compared to the heuristic 

approach.  However, as the size of the instances increased, the average solution time for the 

exact approach increased very fast while the increase in solution time for the heuristic method 

was not as significant.  In larger instances with 23 loads and three modes, the heuristic approach 

was able to find a high quality solution in less than two minutes, while it took about 2.3 hours to 

find the optimal solution using CPLEX.  Note that in the exact approach, in addition to the 

solution time, there is a setup time in which the model is setup to be solved by CPLEX.  The 
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setup time depends on the number of constraints and decision variables in the mathematical 

formulation presented in Section 2.4.2.  For networks with 10 nodes, five loads and two 

transportation modes there were 6,096 constraints, and the average setup time was 14 seconds.  

While networks with 10 nodes, 23 loads and three transportation modes had 41,838 constraints 

and an average setup time of 1,476 seconds. 

 

 

 

 

 

Table ‎2.3. Average solution times for heuristic and exact approaches for Set A 10 node 

networks. 

# of 

Loads 

# of Modes = 2 # of Modes = 3 

Heuristic 

(secs.) 

Exact 

(secs.) 

Heuristic 

(secs.) 

Exact 

(secs.) 

5 10 1 17 2 

9 19 7 30 9 

14 30 49 44 156 

18 41 620 64 1,010 

23 67 5,024 87 8,500 

 

2.5.1.2.2 Set B Computational Results 

While the instances in Set B were not solved to optimality using CPLEX, solutions were 

obtained by applying the proposed heuristic method.  Table 2.4 shows the total network costs 

and the number of open hubs for all instances in Set B. 

 

Table ‎2.4: Total cost and the number of open hubs for five Set B instances of complete 

networks with 25 and 50 nodes. 

Instance Measure 
N = 25, P = 120 N = 50, P = 490 

T = 2 T = 3 T = 2 T = 3 

1 
Cost 4,503.9 3,991.6 13,277.9 12,973.0 

# of Hubs 4 4 5 5 
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2 
Cost 4,792.4 4,390.4 13,987.8 13,023.4 

# of Hubs 5 4 5 4 

3 
Cost 4,900.1 4,394.4 14,230.4 13,430.0 

# of Hubs 5 3 5 5 

4 
Cost 4,797.9 4,136.2 14,180.6 12,696.2 

# of Hubs 5 4 5 5 

5 
Cost 4,862.4 4,367.8 14,183.2 12,755.6 

# of Hubs 5 3 5 5 

 

 

According to Table 2.4, as the number of transportation modes increases from T = 2 to T = 3 the 

total network cost reduces. A reason for this is that the networks with three modes consist of the 

exact same modes as the networks with two modes plus an additional set of dummy nodes 

associated with transportation mode 3 which provides less expensive long-haul transportation. In 

this way, the solution space of the route selection problem grows as the number of modes 

increases.  This results in finding better solutions with lower transportation costs.  On the other 

hand, the number of open hubs decreases when a third transportation mode is considered since a 

new hub is opened only if the amount of savings that result from the additional consolidation of 

loads is greater than the fixed cost of opening an additional hub.  However, when a third 

transportation mode that provides less expensive long-haul service is considered, the total 

transportation cost decreases and there is a reduced chance that opening a new hub is 

economically feasible.  Also, as the network size increased from 25 to 50 nodes, a greater than or 

equal number of hubs were required, although the increase was not really significant.   

 

Regarding the computational performance of the proposed heuristic method for these larger 

problem instances, Figure 2.6 shows the average solution times obtained for Set A (i.e., 10 node 

networks) and Set B (i.e., 25 and 50 node networks) instances with load demand for 20% of all 

possible O-D pairs.  According to Figure 2.6, average solution times increased with the size of 

the instances (i.e., number of nodes and number of transportation modes).  The proposed 

heuristic method was able to obtain solutions in a few minutes for 10 node networks with up to 

three transportation modes.  However, it required more than 53 hours for networks with 50 nodes 

and three transportation modes.  The average solution times for networks with three 
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transportation modes were larger than the solution times for networks with two modes, especially 

for 50 node networks.  Given that the number of dummy nodes and arcs in the network increases 

with the number of modes in the network, it takes longer for the SPA to find the optimal routes 

for loads in these instances. 

 

  

 

Figure ‎2.6. Average solution time for the heuristic method for different number of nodes in 

complete networks with load demand for 20% of all possible O-D pairs. 

 

2.5.2 Civil Aeronautics Board (CAB) Dataset 

2.5.2.1 Experimental Design for the CAB Dataset 

The Civil Aeronautics Board (CAB) dataset is one of the most commonly used datasets for 

testing hub location formulations and solution methods.  Even though the CAB dataset is not 

designed for intermodal transportation networks, it was modified for evaluating the performance 

of the developed mathematical formulation and solution approach in a realistic instance.  The 

CAB dataset consists of the 25 largest cities in the United States in which all possible origin-
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destination pairs have a positive demand.  In our experimentation, the container transportation 

cost between nodes i and j was determined based on the transportation mode selected to connect 

two nodes and the distance between these nodes.  Values for the first step of the transportation 

cost per container stepwise function were calculated using equations (2.14), (2.15) and (2.16), 

according to the number of available transportation modes connecting nodes i and j.  The CAB 

dataset was solved considering both two and three transportation modes to evaluate the effect of 

integrating more transportation modes on the performance of the resulting intermodal logistics 

networks. 

 

Mode (t) Maximum transportation cost per container between nodes i and j (𝑪𝒊𝒋𝟏
𝒕 )  

1 𝐶𝑖𝑗1
1 =  𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑖, 𝑗) / 25,000 (2.14) 

2 𝐶𝑖𝑗1
2 =  𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑖, 𝑗) / 40,000  (2.15) 

3 𝐶𝑖𝑗1
3 =  𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑖, 𝑗) / 50,000    (2.16) 

 

Similar to the randomly generated dataset, three steps were considered for the transportation cost 

per container stepwise function for each transportation mode as shown in Figure 2.5.  In addition, 

regarding the fixed cost of installing a hub at a node, two different scenarios where considered.  

In the first scenario, all nodes had the same fixed hub installation cost.  The CAB dataset was 

solved considering fixed costs are 5,000, 10,000, 25,000 and 50,000.  In the second scenario, the 

fixed hub installation cost was not equal for all nodes and was proportional to the total amount of 

demand flow of each node.  In this scenario, the fixed hub installation cost was calculated using 

equation (2.17).  

 

 𝐹𝑖 =  
𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑚𝑎𝑛𝑑 𝑓𝑙𝑜𝑤 𝑜𝑓 𝑛𝑜𝑑𝑒 𝑖

𝜃
 (2.17) 

 

Where θ represents a proportionality constant.  The CAB dataset was solved considering four 

different values of θ.  All of the parameters and their respective values used to generate problem 

instances using the CAB dataset are shown in Table 2.5. 
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Table ‎2.5: Parameters and values used in computational experiments of CAB dataset. 

Parameter Scenario I Scenario II 

Number of Nodes 25 25 

Number of loads 100% of all possible O-D pairs 100% of all possible O-D pairs 

Number of Modes 2, 3 2, 3 

Fixed Cost 5,000, 10,000, 25,000 and 50,000 - 

θ - 10, 20, 50 and 100 

 

2.5.2.2 Computational Results for the CAB Dataset 

Solutions for the CAB dataset were obtained by applying the proposed heuristic method.  Table 

2.6 shows the total network costs and the number of open hubs for different values of fixed hub 

installation cost and different number of transportation modes in the network. 

 

Table ‎2.6: Total cost and number of open hubs for CAB dataset when hub installation costs 

are equal for all nodes (Scenario I) 

N P Fi 

T = 2 T = 3 

Total 

Cost 

% Fixed 

Cost 

# of 

Hubs 

Total 

Cost 

% Fixed 

Cost 

# of 

Hubs 

25 600 5,000 135,344 7.39 2 110,275 9.07 2 

25 600 10,000 145,344 13.76 2 120,275 16.63 2 

25 600 25,000 162,949 15.34 1 135,359 18.47 1 

25 600 50,000 187,949 26.60 1 160,359 31.18 1 

 

 

When the hub installation cost is large, the amount of savings that results from opening a new 

hub does not compensate the fixed cost of opening an additional hub.  Therefore, according to 

Table 2.6, the number of open hubs depends on the fixed hub installation cost at each node.  
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Moreover, increasing the fixed installation cost from 5,000 to 50,000 increases the percentage of 

fixed cost in the total network cost from about 7% to 26% when there are two transportation 

modes in the network.  

Even though integrating more transportation modes can increase planning costs as more 

stakeholders are involved that may have conflicting interests, it was shown to reduce the 

transportation cost.  Planning costs of integrating more transportation modes into a single 

intermodal transportation logistics network are not considered in this research and are a potential 

area for future research. 

 

Similar to Scenario I, in Scenario II, the number of open hubs increases by decreasing the fixed 

hub installation cost, while the transportation cost decreases by increasing the number of 

transportation modes integrated in the intermodal network (Table 2.7). 

 

Table ‎2.7: Total cost and number of open hubs for CAB dataset when fixed hub installation 

costs are proportional to the total amount of demand flow of each node (Scenario II). 

    T = 2 T = 3 

N P 𝜽 Fixed Cost 
Total 

Cost 

% 

Fixed 

Cost 

# of 

Hubs 

Total 

Cost 

% 

Fixed 

Cost 

# of 

Hubs 

25 600 10 (19,665-289,546) 179,239 25.77 2 152,631 30.27 2 

25 600 20 (9,832-144,773) 126,591 31.67 3 102,074 39.28 3 

25 600 50 (3,933-57,909) 118,301 61.31 5 94,329 68.33 5 

25 600 100 (1,966-28,954) 117,512 27.42 5 93,903 38.12 5 

 

2.6 Conclusions and Future Work 

Designing the intermodal logistics network is one of the critical strategic decisions in intermodal 

transportation planning.  While integrating tactical and operational decisions such as 

transportation mode and load route selection, and explicitly considering more realistic 

assumptions when modeling this problem increase the potential applicability of the resulting 

logistics network design, the complexity of the integrated mathematical model is significantly 

affected.  Consequently, obtaining high quality solutions in reasonable times is very valuable in 
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this context.  In this research, a heuristic approach combining a genetic algorithm and the 

shortest path algorithm was developed to solve this integrated planning problem.  

 

According to the experimental results, solutions obtained with the proposed heuristic approach 

are very close to the optimal solution for small problem instances with 10 nodes.  However, the 

percentage cost difference between optimal and heuristic solutions increases with the size of the 

problem.  More importantly, the average percentage of optimal hubs found by the heuristic 

solution approach is large even as instance sizes grow.  In fact, the heuristic solution approach 

was able to obtain all optimal hubs for several small instances.  In these cases, the difference 

between the total cost obtained using the heuristic method and the optimal solution was due to 

the selection of non-optimal routes and transportation modes by the heuristic method.  

Consequently, improving the load route and transportation mode selection portion of the 

heuristic approach is a potential area for future research. 

 

Also, additional criteria such as transportation time can be incorporated into the mathematical 

model formulation.  For example, in real world problems, each load has a time window 

constraint that is imposed to satisfy service level requirements.  Each shipment would take a 

different amount of time to move between a given node pair depending on the mode of 

transportation that is selected.  Load consolidation at terminals also takes some time depending 

on the resource levels at terminals and coordination capabilities of the network operators.  

Including congestion at terminals would be an interesting extension to the proposed formulation.  

Finally, by considering transportation time in the mathematical formulation of this problem, 

some other related operational and tactical decisions that influence the intermodal logistics 

network design problem could be integrated.  For example, the determination of resource levels 

at terminals.  The integration of these decisions would improve the practical applicability of the 

designed logistic networks and is another area for future research. 
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The parameters used in the implemented GA presented in Section 3 were selected based on 

suggested values for appropriate GA convergence as described by Mitchell (1998).  The 

parameter values were fine-tuned through preliminary testing.  The selected parameter values 

are: 

𝑃𝑒 = 0.1 Elitism parameter 

𝑃𝑐 = 0.6 Probability of crossover 

𝑃𝑚 = 0.2  Probability of mutation 

 

Selection: A combination of elitism and rank selection was utilized in the selection phase of the 

GA.  In each generation, the chromosomes were sorted according to their fitness value and the 

top Pe percent were chosen to be moved directly to the next generation.  The elitism procedure 

protects the best chromosomes against possible destruction by crossover or mutation operators 

(Mitchell, 1998).   To form the remaining chromosomes for the next generation, an appropriate 

number of parents was selected among the current chromosomes to be the input for the crossover 

and mutation operators.  The expected value for each chromosome to be selected as a parent was 

determined according to its rank using the following equation (2.18) given by Mitchell (1998). 

 

Expected value of chromosome 𝑖 = 0.9 + 0.2 
(Population − Rank𝑖)

(Population − 1)
 (2.18) 

 

In order to produce two children, two parents were selected from the current generation 

according to their expected value and the crossover and mutation operations were applied to 

them. The purpose of using rank selection was to prevent a very quick convergence of the GA 

Mitchell (1998).  

 

Crossover: After two parents were selected, the crossover operation was applied to them with 

probability Pc.  A random single crossover point was selected on both parents' strings and all of 

the genes after that single point were swapped between the two parents.  The genes of each child 

were checked and if any repeated gene was detected, the repeated gene was swapped with 

another gene of the other child so that the length of chromosome did not change. 
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Mutation: In order to maintain the genetic diversity from the current generation to the next one, 

the mutation operation was applied to the children produced in crossover.  The mutation 

operation changed the value of a gene with probability Pm.  The new value of the mutated gene 

was checked with existing genes in the chromosome and if any repeated gene was detected, the 

repeated gene was mutated again so that the length of chromosome did not change. 
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3 Decomposition Approach for Integrated Intermodal Logistics Network 

Design
2
 

3.1 Abstract 

The integrated intermodal logistics network design problem consists of determining terminal 

locations and selecting regular routes and transportation modes for loads.  This problem was 

formulated using a path-based formulation and a decomposition-based search algorithm has been 

proposed for its solution.  Computational results show that this approach is able to obtain optimal 

solutions for non-trivial problem instances of up to 150 nodes in reasonable computational times.  

Previous studies have only been able to obtain approximate solutions for network problems of 

this size.  A few general insights about the effects of design parameters on solution 

characteristics were also obtained. 

 

Keywords: intermodal transportation; logistics; hub network; network design; decomposition  

3.2 Introduction 

In the current environment of marketplace globalization, there is a greater chance that suppliers 

would need to reach customers that are physically very distant apart.  In this context, suppliers 

would require using long-haul transportation services more often to send their products to those 

distant customers.  Most of the long-haul transportation demand in the United States and other 

parts of the world is handled using road transportation (i.e., trucking).  However, despite the 

economical aspect of using this transportation mode and the resulting service level provided to 

customers, road transportation also produces significant environmental and road congestion 

problems (Crainic and Kim, 2007).  To overcome these challenges, policy makers have started to 

promote the use of intermodal freight transportation as an alternative to road transportation.  For 

example, the European Commission has started the Marco Polo program in Europe to incentivize 

the shift of a significant portion of freight demand from road to other transportation modes 

(European Commission, 2014). 

                                                 

2
 This work has been published in Transportation Research Part E: Logistics and Transportation Review 

(DOI:10.1016/j.tre.2016.02.009) 
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Intermodal freight transportation consists on the use of at least two different transportation 

modes to move freight loads that are in the same transportation unit (e.g., a shipping container) 

from origin to destination without handling the goods themselves (Macharis and Bontekoning, 

2004).  In recent years, the demand for intermodal freight transportation has continuously 

increased and this trend is expected to remain the same in the future.  In this context, the 

installation of additional intermodal infrastructure will be necessary to fulfill potential future 

demand.  The way in which the intermodal transportation infrastructure is used to handle freight 

significantly affects transportation costs and service times.  As a result, one of the most 

important decisions in intermodal freight transportation planning is the design of its logistics 

network.  An intermodal logistics network is formed by the collection of hubs (i.e., physical 

locations) which are used for the transfer of freight loads from one transportation mode to 

another; and, the connections between hubs based on the transportation modes that are available 

at each node.  

 

The intermodal logistics network design problem is a strategic planning problem that determines 

the number of hubs needed, their locations, and the allocation of non-hub nodes to hubs.  

However, this problem is not independent of other decisions that are made at different levels of 

decision making which affect hub locations and are also affected by them at the same time.  For 

example, resource levels at hubs, terminal layout, and type and number of material handling and 

storage equipment are determined at the tactical level, while the selection of routes and mode of 

transportation for shipments are determined at the operational level.  However, all of these 

tactical and operational decisions greatly depend on the configuration of the hub network.  These 

decisions should be handled together as much as possible to minimize the total cost of the 

intermodal logistics network or to maximize the level of customer satisfaction.  In the current 

research, the hub location problem has been integrated with the route and mode selection 

problems to find an optimal intermodal logistics network design by developing a path-based 

formulation which is then solved using a decomposition-based approach. 
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Network operators at large logistics companies such as Class I railroads and large full truckload 

carriers providing intermodal service are the potential decision makers who would be affected by 

the current research.  Network operators make the strategic decisions of determining the network 

topology and designing the logistics network for intermodal transportation (Macharis and 

Bontekoning, 2004).   

 

Various network topologies have been implemented for intermodal transportation including point 

to point, corridor, hub and spoke, connected hubs, static routes, and dynamic routes (Woxenius, 

2007).  This research considers a hybrid network topology that combines the point to point, 

connected hubs and static routes topologies as alternatives for intermodal freight transportation 

service (Figure 3.1).  Therefore, the problem studied in this research is not a traditional hub-and-

spoke network design problem, but one in which any pair of nodes can be connected with a 

direct link and there is no restriction that loads must visit one or at most two hubs in a route.  In 

this way, all hubs are directly connected with each other and freight might visit multiple hubs in 

its route from origin to destination.  Nodes in a network may represent physical locations where 

single mode terminals exist or where intermodal hubs can be potentially installed, as well as 

customer locations.  In this way, network planners can address problems at different levels of 

aggregation from regional networks, to national and even international networks. 
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(a) Point to Point

(b) Connected Hubs

(c) Static Routes

O

D

O

H

H

D

O
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Figure ‎3.1. This research considers a hybrid network topology that combines point to point, 

connected hubs and static routes topologies (adapted from Woxenius (2007)). 

 

In practice, intermodal logistics networks usually have many nodes and origin-destination (O-D) 

pairs with freight demand.  Therefore, previous mathematical formulations for intermodal 

logistics network design have many decision variables and constraints that make those 

formulations intractable for large size networks, even when no other decisions are integrated.  To 

overcome this challenge and be able to integrate tactical decisions in the network design 

problem, a composite variable formulation was developed in which the complete route for a load 

from origin to destination was considered as a single composite variable used in a mixed integer 

linear programming (MILP) formulation of this problem.  Moreover, composite variables allow 

enforcing some of the operational constraints implicitly at the same time feasible routes are being 

generated instead of adding those constraints to the MILP model.  The combination of this 

formulation and the solution approach developed in this research allows us to obtain exact 

solutions for non-trivial instances (up to 150 nodes) in reasonable computation times.  Therefore, 

the developed model and proposed solution approach provide a contribution in terms of being 
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able to obtain exact solutions for larger problem instances than those that have been 

approximately solved in the existing literature. 

 

The rest of this chapter is organized as follows.  A review of previous studies in intermodal 

logistics network design is presented in Section 3.3.  In Section 3.4, we define the problem under 

study and introduce the mathematical formulation and solution approach developed in this 

research.  Computational test results are presented in Section 3.5.  Finally, concluding remarks 

and future research directions are presented in Section 3.6. 

 

3.3 Literature Review 

Research on intermodal transportation planning has increased significantly in the last decade 

(SteadieSeifi et al., 2014).  One of the important research problems studied in this area has been 

the optimal design of the logistics network for intermodal transportation.  Hub and spoke 

networks have been studied the most in previous research related to intermodal transportation 

(SteadieSeifi et al., 2014).  Although a wide variety of research studies have been conducted in 

the design of hub-based networks for other transportation systems (e.g., air transportation, less-

than-truckload trucking, express package shipping, etc.), intermodal freight transportation has its 

own characteristics and restrictions that should be explicitly considered when designing its 

logistics network.  Comprehensive reviews of research studies in the design of hub-based 

networks for different applications can be found in Alumur and Kara (2008), Campbell and 

O’Kelly (2012), and Farahani et al. (2013). 

 

From the previous literature, operations research techniques have been commonly used to design 

intermodal logistics networks.  In most cases, the design problem has been modeled using a 

mathematical program, and either heuristic or metaheuristic approaches have been developed to 

obtain solutions for large size instances.  The intermodal hub network design problem was 

initially modeled using mathematical programming by Arnold et al. (2001) and Arnold et al. 

(2004).  Another early mathematical model was developed by Racunica and Wynter (2005).  

Later, Rahimi et al. (2008) used a location-allocation formulation to find the optimal number and 
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location of inland ports in an intermodal logistics network in the state of California.  The authors 

considered the minimization of total facility and transportation costs as the objective function of 

their proposed MILP model.  In another study, Limbourg and Jourquin (2009) modeled the hub 

location problem for intermodal transportation as a p-hub median problem.  In this mathematical 

model, each node can be allocated to only one hub.  Then, the authors developed an iterative 

procedure which relaxes this constraint and tries to find the optimal hub locations among a set of 

potential hub locations.   

 

Ishfaq and Sox (2011) developed a mathematical model based on the multiple-allocation p-hub 

median problem.  In their proposed model, each load can only visit up to two hubs in its 

movement from origin to destination.  Also, economies of scale due to transshipments at hubs 

are accounted for by multiplying the inter-hub transportation cost by a constant discount factor.  

The authors implemented a tabu search (TS) algorithm to find near optimal hub locations which 

were compared to lower bounds obtained using a Lagrangian relaxation approach.  Later, Ishfaq 

and Sox (2012) extended their original hub location problem formulation to enforce limitations 

on terminal resource levels by modeling the hub operations as a G/G/1 queuing system and 

estimate transitioning time for loads more accurately.  The authors developed a mixed integer 

nonlinear mathematical model and implemented a TS approach to find near optimal hub 

locations and the allocation of spokes to hubs that minimizes the total network costs including 

the fixed cost of opening hubs, the cost of adapting them to different transportation modes, and 

transportation and service costs. 

 

Using a different approach, Sörensen et al. (2012) developed a couple of two-stage solution 

approaches for the mathematical model previously developed by Arnold et al. (2001).  The 

authors considered a MILP model which allows point to point transportation as well as using at 

most two hubs for transporting each freight load.  Near optimal hub location-allocations were 

determined such that the total transportation cost was minimized.  In each solution approach, the 

first stage deals with the construction of an initial solution, and the second stage improves the 

initial solution based on a local search.  More recently, Sörensen and Vanovermeire (2013) 

extended the original formulation of Sörensen et al. (2012) to consider a bi-objective 



46 

 

 

 

mathematical model in which all the assumptions previously considered remain the same.  The 

first objective function minimizes the total transportation cost while the second objective 

function minimizes the total hub installation cost.  The authors approximated the optimal Pareto 

set by applying a problem-specific greedy randomized adaptive search (GRASP) procedure. 

 

At the same time, Alumur et al. (2012a) and Alumur et al. (2012b) proposed mathematical 

formulations for hub network design problems considering delivery due date constraints and 

multiple transportation modes.  Alumur et al. (2012a) focused on single allocation hub network 

design problems, while Alumur et al. (2012b) studied the hierarchical hub median problem.  In 

the latter, a MILP model was developed which was solved by taking advantage of variable fixing 

rules and valid inequalities. 

 

Finally, in contrast to most previous research studies that consider the minimization of total 

transportation and installation costs as the criteria for intermodal logistics networks design 

optimization, a few recent studies consider the minimization of environmental effects associated 

with intermodal freight transportation.  For example, Zhang et al. (2013) developed a 

mathematical model that minimizes the cost of CO2 emissions associated with each shipment in 

the network.  The authors implemented a GA to find a near optimal solution for the configuration 

of a terminal network for intermodal transportation in a real application in the Netherlands.  

Also, Qu et al. (2016) developed a nonlinear integer programming model for intermodal network 

design that considers the cost of greenhouse gas emissions.  The authors linearized the proposed 

model and solved it for a real case study with eleven locations in the United Kingdom.  Finally, 

the authors showed that the developed model can be easily modified into a bi-objective 

mathematical model.  

 

Comprehensive reviews of research studies in strategic intermodal transportation planning can be 

found in Macharis and Bontekoning (2004), Caris et al. (2013), and SteadieSeifi et al. (2014).  A 

summary of the previous literature presented in this review is presented in Table 3.1. 
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Table ‎3.1. Summary of previous research on intermodal logistics network design. 

Reference Objective 
Modeling 

Approach 

Solution 

Approach 

Consolidation 

Effect on 

Transportation 

Cost 
Rahimi et al. 

(2008) 

Total Cost 

Minimization 

Single Facility 

Location 

Exact 

(6 nodes) 
N/A 

Limbourg & 

Jourquin (2009) 

Transportation 

Cost 

Minimization 

Multiple 

Allocation p-Hub 

Median 

Exact (Hub 

Location Only) 

Metaheuristic 

(Complete Model) 

Constant Discount 

Factor 

Ishfaq & Sox 

(2011) 

Total Cost 

Minimization 

Single Allocation 

p-Hub Median 
Tabu Search 

Constant Discount 

Factor 

Ishfaq & Sox 

(2012) 

Total Cost 

Minimization 

Nonlinear Mixed 

Integer 

Programming 

Tabu Search 
Constant Discount 

Factor 

Sörensen et al. 

(2012) 

Total Cost 

Minimization 

Mixed Integer 

Programming 
Metaheuristic N/A 

Sörensen et al. 

(2013) 

Total Cost 

Minimization 

Bi-objective 

Mixed Integer 

Programming 

GRASP N/A 

Zhang et al. 

(2013) 

CO2 Emissions 

Cost 

Minimization 

Mixed Integer 

Programming 
GA N/A 

Qu et al. (2014) 

Greenhouse Gas 

Emissions Cost 

Minimization 

Nonlinear Integer 

Programming 

Exact 

(11 Nodes) 
N/A 

Current Research 
Total Cost 

Minimization 

Integer 

Programming 

using CVs 

Decomposition 

Approach 

Constant Discount 

Factor 

 

 

Like most previous studies, this research attempts to minimize the total transportation and fixed 

facility installation costs.  However, the modeling approach integrates the load route and 

transportation mode selection problems within the hub location problem using a composite 

variable (CV) formulation.  Also, from a network topology perspective, while most of the 

existing literature focuses on designing intermodal logistics networks that are based on the hub 

and spoke model, this research considers a hybrid network topology that combines point to point, 

connected hubs and static routes topologies.  Moreover, while all previous studies have focused 

on heuristic solution methods, the composite variable formulation and the decomposition 

algorithm that are presented in this research can be used to obtain optimal solutions for non-

trivial instances (with up to 150 nodes). 
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3.4 Methodology 

3.4.1 Problem Definition 

The Integrated Intermodal Logistics Network Design (IILND) problem can be defined as 

determining in an integrated manner the location of hubs, routes for loads, and their 

transportation mode in an intermodal freight transportation network.  The objective is to 

minimize the total network cost which includes the fixed cost of hub installation and the variable 

transportation cost.  Network operators at large motor carriers and Class I railroads providing 

intermodal freight transportation service would benefit from being able to address these 

problems concurrently and avoid sub-optimality of solutions obtained using a multi-stage 

approach.  

 

An intermodal logistics network consists of N nodes.  Nodes can be the origin or destination of 

loads or serve as hubs.  Note that although intermodal shipments can visit one or more hubs from 

origin to destination, point to point movements (i.e., without visiting any hub) can also be 

selected to form the hybrid network configuration that we consider in this research.  The size of 

an instance will be determined by the level of aggregation considered when planning the 

intermodal logistics network going from regional to national or even international networks.   

Most of the time, loads are picked up at their origin node by trucks and moved to predetermined 

hub nodes before reaching their final destination.  At the hub nodes, loads are sorted and 

consolidated based on their destination, and any necessary transition to a different transportation 

mode is completed.  When a transportation mode decision is made, the split of loads follows an 

All-Or-Nothing assignment policy where the complete shipment is transported using the same 

mode. 

 

The purpose of consolidating different loads at the hub nodes is to reduce the transportation cost 

by taking advantage of economies of scale.  In other words, by consolidating different loads at 

the hub nodes, fewer resources are needed to transport loads between hubs and the transportation 

cost per load decreases.  On the other hand, consolidating loads and transferring them to different 

transportation modes takes time which increases the total transportation time for a particular load 
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between origin and destination.  Consequently, as more hub nodes are visited by a load, the total 

transportation time increases.  Thus, loads with small transportation time windows should not be 

routed through multiple hub nodes even if the total transportation cost is reduced.  Note that all 

containers of a given load should have the same maximum allowed transportation time.  For this 

reason, containers carrying freight with the same origin and destination, but different maximum 

allowed transportation times should be considered as different loads.  Also note that although a 

time restriction for load delivery would be more important at the operational planning level, we 

still incorporated one in the integrated problem to be able to provide a service guarantee to 

customers based on the design of the network.  From a modeling perspective, similar to some of 

the previous studies, the consolidation effect on transportation costs and times for inter-hub 

movements is modeled using constant discount and delay factors, respectively.   

 

In this research, only a subset P of the N nodes is allowed to serve as potential hub nodes.  

Among these potential hub nodes, V locations are selected for installation of hub facilities.  

There is a fixed cost associated with the installation of a hub facility which differs from one node 

to another.  Also, demand in this network consists of L different loads; each load is characterized 

by its origin location, destination location, quantity of containers, and maximum allowed 

transportation time.  The total time it takes to move a load from its origin to its destination 

including the transit time and the time it spends at hub nodes should be less than the maximum 

allowed transportation time for that particular load.   

3.4.2 Mathematical Formulation 

The IILND problem is modeled using a composite variable formulation in which a complete 

feasible route from origin to destination is considered as a single variable.  These routes can 

connect origin to destination directly using a single transportation mode or visit as many hubs as 

needed with as many transitions between different modes as necessary.  However in all of the 

completed experiments presented below in Section 4, the number of hub nodes that each load can 

visit is always restricted to be at most two.  This is a reasonable limitation for small and medium 

size networks and even, in some cases, large intermodal logistics networks.  The following 
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subsections present the notation, composite variable definition and generation method, and the 

proposed mathematical programming formulation of the IILND problem. 

3.4.2.1 Notation 

Sets and Parameters 

𝑁  set of nodes n, 

𝑃  set of potential hub nodes n, P ⊂ N, 

𝑀 set of transportation modes m, 

𝐿 set of loads l, 

𝑉  number of hubs in a feasible hub combination, 

H 
set of hub combinations h, each hub combination consists of V nodes 

corresponding to hub locations,  

𝑅𝑙,ℎ set of composite variables (i.e. feasible routes) i to transport load l when 

hubs in hub combination h are open, 

𝑇𝑊𝑙 maximum allowed transportation time for load l, 

𝐹ℎ fixed cost of hub installation for hub combination h, 

𝑑𝑙 demand quantity (in number of containers) for load l, 

Cl,i
h

 
per load transportation cost of moving load l on route i when hubs in hub 

combination h are open,  

tl,i
h   

time to transport load l on route i when hubs in hub combination h are 

open, 

  

Decision Variables 

𝑟𝑙,𝑖
ℎ  = 

 

1 if feasible route i is selected to transport load l using hub combination h 

 
0 otherwise, 

   𝑌ℎ = 

 
1 if hubs in hub combination h are open 

 

0 otherwise. 
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3.4.2.2 Composite Variable Definition and Generation Method 

A single composite variable, denoted 𝑟𝑙,𝑖
ℎ , is defined as a feasible route i used to transport load l 

from origin to destination when hubs in hub combination h are open.  The feasibility of a route is 

determined by the number of hubs visited and the limitation on the transportation time from 

origin to destination for a given load.  In the former case, a feasible route can directly connect 

origin to destination for a load or visit as many hubs as the number of hubs that are open in a hub 

combination.  In the latter case, the total transportation time for a route cannot exceed the 

maximum allowed transportation time for the corresponding load.  

With this composite variable definition, the sets of feasible routes to transport each load for a 

given hub combination need to be generated to formulate a mathematical model for IILND.  

Similarly, values need to be calculated for parameters such as the fixed cost of a given hub 

combination, Fh, and the transportation cost and the transportation time for a feasible route, Cl,i
h

 

and  tl,i
h , respectively. 

 

To generate the set of feasible routes i to transport load l when hubs in hub combination h are 

open, Rl,h, all time feasible routes from origin to destination need to be enumerated.  Note that if 

two routes visit the same sequence of nodes but use different transportation modes in at least one 

of their transportation legs, they are considered to be two different composite variables.  For 

example, Figure 3.2 shows all feasible routes to transport a load from node 1 to node 9 when 

hubs are open at nodes 2 and 6. As shown in Figure 3.2, the second and third composite variables 

visit the same nodes but use different transportation modes to move the freight between node 1 

and node 6.  Therefore, selecting a composite variable for a particular load in the optimal 

solution means selecting the optimal route and optimal transportation mode for that load. 

 

As composite variables for a given load and given hub combination are generated using 

exhaustive enumeration, the transportation time for a route can be compared to the maximum 

allowed transportation time of the corresponding load. In that way, routes that violate the 

maximum allowed transportation time constraint can be discarded.  As a result, the maximum 
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allowed transportation time constraint does not need to be included in the mathematical 

formulation of IILND problem. 

 

1

2

3

4

5

6

7

8

9

10

Set of feasible routes i to transport load l (origin = 1, destination = 9) when hubs at nodes 2 and 6 are open:

(i = 1): 1 – (Mode 1) → 9

(i = 2): 1 – (Mode 1) → 6 – (Mode 1) → 9

(i = 3): 1 – (Mode 3) → 6 – (Mode 1) → 9

(i = 4): 1 – (Mode 1) → 2 – (Mode 1) → 6 – (Mode 1) → 9

(i = 5): 1 – (Mode 1) → 2 – (Mode 2) → 6 – (Mode 1) → 9

(i = 6): 1 – (Mode 1) → 2 – (Mode 3) → 6 – (Mode 1) → 9

(i = 7): 1 – (Mode 2) → 2 – (Mode 1) → 6 – (Mode 1) → 9

(i = 8): 1 – (Mode 2) → 2 – (Mode 2) → 6 – (Mode 1) → 9

(i = 9): 1 – (Mode 2) → 2 – (Mode 3) → 6 – (Mode 1) → 9

Mode 1

Mode 2

Mode 3

Hub Node

Node

 

Figure ‎3.2. Set of feasible routes i to transport load l (origin = 1, destination = 9) when hubs 

at nodes 2 and 6 are open. 

 

In the determination of the transportation time and cost for a route, two additional parameters are 

required for modeling the influence of the operations completed at hub nodes.  First, inter-hub 

transportation times should be multiplied by a constant delay factor β that is greater than one to 

account for delays that occur at the hubs (i.e., an operation delay factor β = 1.25 represents an 

additional 25% time in the movement of a load between two hubs).  Similarly, all inter-hub 

transportation costs should be multiplied by a constant discount factor α that is less than one to 

account for economies of scale (i.e., a discount factor α = 0.75 represents a reduction of 25% in 

the transportation cost between two hubs).  These two parameters could be estimated from past 

data or they could be set based on expert opinion. 
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3.4.2.3 Mathematical Formulation 

Using the notation and the composite variable definition presented above, the mathematical 

programming formulation for the IILND problem follows: 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝐹ℎ𝑌ℎ

𝐻

ℎ

+ ∑ ∑ ∑ 𝐶𝑙,𝑖
ℎ . 𝑑𝑙. 𝑟𝑙,𝑖

ℎ

𝑅𝑙,ℎ

𝑖

𝐿

𝑙

𝐻

ℎ

 (3.1) 

 

Subject to: 

∑ ∑ 𝑟𝑙,𝑖
ℎ

𝑅𝑙,ℎ

𝑖

𝐿

𝑙

 ≤  |𝐿|𝑌ℎ ∀ℎ ∈ 𝐻 (3.2) 

∑ ∑ 𝑟𝑙,𝑖
ℎ = 1

𝑅𝑙,ℎ

𝑖

𝐻

ℎ

 ∀𝑙 ∈ 𝐿 (3.3) 

∑ 𝑌ℎ = 1

𝐻

ℎ

  (3.4) 

𝑌ℎ = {0,1} ∀ℎ ∈ 𝐻 (3.5) 

𝑟𝑙,𝑖
ℎ  = {0,1} ∀𝑙 ∈ 𝐿, ∀𝑖 ∈ 𝑅𝑙,ℎ, ∀ℎ ∈ 𝐻 (3.6) 

 

 

The objective function (3.1) minimizes total network cost consisting of the fixed cost of hub 

installation and the transportation costs.  The objective function (3.1) does not include operation 

costs related to handling of freight at hubs.  Constraint (3.2) enforces that hub terminals can be 

used only if they are open, however no real capacity constraint for hubs was considered in the 

model and only and upper bound was set equal to the total number of loads L.  Constraint (3.3) 

requires that all demand should be satisfied.  Constraint (3.4) enforces that only one hub 

combination can be selected.  And, finally, constraints (3.5) and (3.6) are the variable type 

constraints. 
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3.4.3 Solution Approach 

The mathematical programming formulation presented in Section 3.4.2.3 has two sets of decision 

variables, one for determining the hub locations (𝑌ℎ) which is a strategic decision, and one for 

selecting the optimal routes and transportation mode for each load (𝑟𝑙,𝑖
ℎ ) which are tactical 

decisions.  The general idea behind the proposed solution approach is to use a decomposition 

approach with a master problem and a sub-problem as illustrated in Figure 3.3.  The master 

problem searches through the feasible region of all hub combinations using exhaustive 

enumeration, and uses the sub-problem to find optimal load routes and transportation modes to 

evaluate hub locations. 

 

Figure ‎3.3. Flowchart of the decomposition solution approach. 

Start

Calculate transportation cost 

and time associated with each 

composite variable

Generate All feasible 

composite variables for every 

freight load

Select an unexplored hub 

combination (Y)

Develop and solve the sub-

problem associated with Y

Have all hub 

combinations been 

explored?

Select the best hub 

combination

Finish

Yes

No

Sub-Problem

Master Problem

Y

Z(Y) If sub problem is feasible 

Z(Y) = optimal solution 

otherwise Z(Y) = ∞ 
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Note that the two sets of decision variables included in the mathematical model for IILND are 

not independent and are linked by constraint (3.2) (i.e., the feasible routes vary for each hub 

combination).  For example, consider the 10-node network illustrated in Figure 3.3 and that two 

hub locations are required.  In this case, there are (
10
2

) = 45 hub combinations, and each one of 

them represents a solution to the hub location problem.  Two different 2-hub combinations are 

shown in Figure 3.4 to show how the two sets of decision variables (𝑌ℎ and 𝑟𝑙,𝑖
ℎ ) are related to 

each other.  Note that hub combination 1 is associated with the solution in which hubs are open 

at nodes 2 and 6, while hub combination 2 is associated with the solution in which hubs are open 

at nodes 6 and 7.  The feasible routes to transport a load from node 1 to node 9 vary if hub 

combination 1 is selected instead of hub combination 2.  The sets of feasible routes are included 

in Figure 3.4, however only one of the feasible routes is illustrated for each case. 

 

Hub Node

Node

Hub Combination 1 = {2, 6}

Hub Combination 2 = {6, 7}

1

2

3

4

5

6

7

8

9

10

Mode 1

Mode 2

Mode 3

1

2

3

4

5

6

7

8

9

10

Set of feasible routes i:

(i = 1): 1 – (Mode 1) → 9

(i = 2): 1 – (Mode 1) → 6 – (Mode 1) → 9

(i = 3): 1 – (Mode 3) → 6 – (Mode 1) → 9

(i = 4): 1 – (Mode 1) → 2 – (Mode 1) → 6 – (Mode 1) → 9

(i = 5): 1 – (Mode 1) → 2 – (Mode 2) → 6 – (Mode 1) → 9

(i = 6): 1 – (Mode 1) → 2 – (Mode 3) → 6 – (Mode 1) → 9

(i = 7): 1 – (Mode 2) → 2 – (Mode 1) → 6 – (Mode 1) → 9

(i = 8): 1 – (Mode 2) → 2 – (Mode 2) → 6 – (Mode 1) → 9

(i = 9): 1 – (Mode 2) → 2 – (Mode 3) → 6 – (Mode 1) → 9

Set of feasible routes i:

(i = 1): 1 – (Mode 1) → 9

(i = 2): 1 – (Mode 1) → 6 – (Mode 1) → 9

(i = 3): 1 – (Mode 3) → 6 – (Mode 1) → 9

(i = 4): 1 – (Mode 1) → 6 – (Mode 1) → 7 – (Mode 1) → 9

(i = 5): 1 – (Mode 1) → 6 – (Mode 2) → 7 – (Mode 1) → 9

(i = 6): 1 – (Mode 1) → 6 – (Mode 3) → 7 – (Mode 1) → 9

(i = 7): 1 – (Mode 3) → 6 – (Mode 1) → 7 – (Mode 1) → 9

(i = 8): 1 – (Mode 3) → 6 – (Mode 2) → 7 – (Mode 1) → 9

(i = 9): 1 – (Mode 3) → 6 – (Mode 3) → 7 – (Mode 1) → 9
 

Figure ‎3.4. Feasible routes for a load between nodes 1 and 9 in a 10 node network for two 

different hub combinations. 
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3.4.3.1 Two-Stage Optimization Approach 

The special structure of the proposed mathematical model allows the implementation of a two-

stage optimization approach in which for each hub combination, the selection of the optimal load 

routes and transportation modes are determined.  The resulting optimal transportation cost is then 

used to evaluate the corresponding hub combination.  A decomposition approach is used because 

all of the constraints in the mathematical formulation of IILND presented in Section 3.4.2.3 

contain only one of the two decision variables with the exception of constraint (3.2).  

Considering a hub combination h, the selection of the optimal load route and transportation mode 

for each load can be determined by solving the following sub-problem: 

 

Sub-Problem  

𝑆𝑃(𝑟|𝒀̂) =  𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝐶𝑙,𝑖
ℎ . 𝑑𝑙. 𝑟𝑙,𝑖

ℎ

𝑅𝑙,ℎ

𝑖

𝐿

𝑙

 (3.7) 

Subject to: 

∑ 𝑟𝑙,𝑖
ℎ = 1

𝑅𝑙,ℎ

𝑖

 ∀𝑙 ∈ 𝐿 (3.8) 

𝑟𝑙,𝑖
ℎ  = {0,1} ∀𝑙 ∈ 𝐿, ∀𝑖 ∈ 𝑅𝑙,ℎ (3.9) 

  

 

The sub-problem 𝑆𝑃(𝑟|𝒀̂) can further be separated into multiple sub-problems 𝑆𝑃𝑙(𝑟|𝒀̂), one for 

each load l ϵ L for the given hub combination.  The optimal solution for 𝑆𝑃𝑙(𝑟|𝒀̂) can be easily 

found just after all composite variables have been generated by choosing the feasible route that 

has the minimum transportation cost. 

 

Now, let 𝒀̂ be a vector of all possible hub combinations 𝑌ℎ, and 𝑍𝑙(𝒀̂) be the optimal 

transportation cost for the sub-problem presented above.  Suppose that 𝑍𝑙(𝒀̂) = ∞ if the sub-

problem associated with Y is infeasible. The following master problem (MP) can be used to find 

an optimal hub combination. 
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Master Problem 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝐹ℎ𝑌ℎ

𝐻

ℎ

+ ∑ 𝑍𝑙(𝒀̂)

𝐿

𝑙

 (3.10) 

Subject to: 

∑ 𝑌ℎ = 1

𝐻

ℎ

  (3.11) 

𝑌ℎ = {0,1} ∀ℎ ∈ 𝐻 (3.12) 

 

To solve the master problem, all possible hub combinations need to be enumerated. There are 

(
|𝑃|
𝑉

) hub combinations and enumerating all of them could be time consuming.  To avoid 

exhaustive enumeration and obtaining the optimal solution faster, a search algorithm is 

developed. 

3.4.3.2  Search Algorithm 

A search algorithm was developed that utilizes an upper bound on the optimal solution of the MP 

to discard a portion of hub combinations from exploration.  The upper bound is obtained by 

evaluating the total network costs including the fixed hub installation costs and the transportation 

costs associated with a given hub combination.  Hub combinations with fixed installation costs 

greater than the current upper bound can be discarded from exploration.   

Moreover, for hub combinations that are not previously discarded, the optimal solution of each 

sub-problem can be added to the total network cost as the sub-problems are solved.  In this way, 

a hub combination can be discarded whenever its total network cost exceeds the upper bound 

before all sub-problems have been solved.  Also, in order to evaluate the solutions of the MP 

even faster, loads can be ordered according to their demand and their O-D distance, so the sub-

problem associated with a load with the largest product of demand times O-D distance is solved 

first.  Note that this sub-problem is expected to have a large objective function value.  As a 

result, the likelihood of eliminating non-optimal hub combinations after solving fewer sub-

problems is higher.   
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The upper bound can be updated whenever a better solution is found for the MP.  The pseudo 

code of this search algorithm is presented in Figure 3.5.  

 

 

Figure ‎3.5. Pseudo code of the search algorithm. 

 

Preliminary computational experiments showed that for non-trivial size networks (i.e., a network 

with 150 nodes and 4,500 loads), the optimal solution can be obtained in reasonable 

computational times.  A detailed discussion on computational experiments is presented in 

Section 3.5. 

3.5 Computational Experiments 

3.5.1 Experimental Design 

Two sets of experiments were completed to evaluate the performance of the proposed 

mathematical model and solution approach.  The performance metrics analyzed were selected to 

analyze the configuration of the solutions obtained and the computational time required to obtain 

solutions.  In the first set of experiments (Set A), three complete networks (i.e., networks were 

all pairs of nodes are connected to each other) of sizes 10, 20 and 30 nodes were randomly 

Sort set of loads according to Demand(l)×Distance(origin(l),destination(l)) 

UB = ∞  

for hub combination h ϵ set of all hub combinations 

 total cost (h) = the fixed installation cost associated with h 

  if total cost (h) > UB 

   Discard h 

  for load l ϵ set of sorted loads 

   formulate SPl(r|Y) 

   Zl(Y) = optimal transportation cost (SPl(r|Y)) 

   total cost (h) = total cost (h) + Zl(Y) 

   if total cost (h) > UB 

    Discard h 

 if total cost (h) < UB 

  UB = total cost (h) 

  Optimal hub combination = h 

Return optimal hub combination 
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generated.  All nodes were considered as part of the set of potential hubs P (i.e., the set of all 

potential hub nodes P is equal to the set of all nodes N).  In the second set of experiments (Set 

B), four complete networks of size 50, 75, 100 and 150 were randomly generated.  Unlike Set A, 

the set of potential hub locations was considered to consist only of 10%, 15% and 20% of all 

nodes for the networks generated in Set B.  Nodes in each network were uniformly distributed in 

a 1 x 0.5 rectangular area for both sets of experiments. 

 

Regarding cost information, the fixed cost of hub installation at a node was generated using a 

uniformly distributed random variable between 4,000 and 5,500.  On the other hand, 

transportation cost per load and the time it takes to move loads between nodes i and j depend on 

the transportation mode and the distance between i and j according to equations (3.13) to (3.18) 

below.  The distance between origin and destination has a significant role in per load 

transportation cost and transportation time, but transportation costs are not completely 

proportional to O-D distance as there are other cost sources other than fuel prices such as the 

time value tied to goods in transit, maintenance costs, and environmental costs including local 

and global air pollution, congestion, noise pollution, and traffic accidents (Janic, 2007).  As a 

result, the triangular inequality does not hold in real world problems.  In the completed 

experiments, random values between 0 and 1 have been added to equations (3.13) to (3.18) to 

model the situation that the triangle inequality does not hold in any of the instances.  In these 

equations, Random(0,1) is a uniformly distributed random variable between 0 and 1.  Note that in 

all experiments it is assumed that the utilization of all transportation modes is high, so a higher 

numbered transportation mode represents a mode that is more time consuming but provides a 

less expensive per load transportation cost over long distances. 

 

Mode (m) Transportation cost per load between nodes i and j using mode m (𝑪𝒊𝒋
𝒎)  

1 𝐶𝑖𝑗
1 =  𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑖, 𝑗) / 2 +  𝑅𝑎𝑛𝑑𝑜𝑚(0, 1)  (3.13) 

2 𝐶𝑖𝑗
2 =  𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑖, 𝑗) / 3 +  𝑅𝑎𝑛𝑑𝑜𝑚(0, 1)  (3.14) 

3 𝐶𝑖𝑗
3 =  𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑖, 𝑗) / 4 +  𝑅𝑎𝑛𝑑𝑜𝑚(0, 1)   (3.15) 
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Mode (m) Time to move a load between nodes i and j using mode m (𝒕𝒊𝒋
𝒎)  

1 𝑡𝑖𝑗
1 =  𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑖, 𝑗)   +  𝑅𝑎𝑛𝑑𝑜𝑚(0, 1)  (3.16) 

2 𝑡𝑖𝑗
2 =  𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑖, 𝑗) × 1.5 +  𝑅𝑎𝑛𝑑𝑜𝑚(0, 1)   (3.17) 

3 𝑡𝑖𝑗
3 =  𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑖, 𝑗) × 2 +  𝑅𝑎𝑛𝑑𝑜𝑚(0, 1)  (3.18) 

 

For each network, L different loads were randomly generated.  Demand for each load was a 

uniformly distributed random value between 50 and 150.  In Set A experiments, the value of L 

was set to be equivalent to 5%, 10%, 20% and 50% of all possible O-D pairs in the complete 

network.  While in Set B experiments, the value of L is equal to 20% of all possible O-D pairs in 

the complete network.  Five different sets of loads were generated for each value of L.   

 

The maximum allowed transportation time for a load was a random uniformly distributed value 

between 2 and 6 time units, while the operation delay factor (β) was set to 1.2.  Different values 

for discount factor (α), number of modes (T), number of hubs (V), and number of potential hub 

locations were considered in solving all instances.  The values used for the discount factor (α) 

and the delay factor (β) were set equal to values previously used in Ishfaq and Sox (2011).  The 

list of all parameters and their values used in our computational experiments are shown in Table 

3.2.   

 

Table ‎3.2. Computational experiment parameters and their values. 

Parameter Set A Set B 

Number of Nodes (N) 10, 20, 30 50, 75, 100, 150 

Number of Loads (L) 5%, 10%, 20% and 50% of 

all possible O-D pairs 

20% of all possible O-D 

pairs 

Number of Hubs (V) 2, 3, 4 2, 4 

Number of Modes (T) 2, 3 2, 3 

Discount Factor (α) 0.5, 0.9 0.5 

Number of Potential Hub 

Locations 
100% of all nodes 

10%, 15% and 20% of all 

nodes 

 

 



61 

 

 

 

In all of the completed experiments it was assumed that each load can visit up to two hubs and 

the drayage operation can only be handled by trucks.  Note that these two restrictions are not 

imposed by the mathematical formulation or the solution approach, but they were assumed as 

they are common limitations in most real world instances. 

3.5.2 Computational Results 

The solution approach presented in Section 3.4.3 was implemented in MATLAB, and all 

computational experiments were run on a 2.83 GHz Quad Core computer with 8 GB of RAM.  

All instances in both Set A and Set B experiments were solved to optimality using both an 

exhaustive enumeration approach and the proposed search algorithm described in Section 

3.4.3.2. 

3.5.2.1 Set A Computational Results 

In addition to applying exhaustive enumeration and the proposed search algorithm, smaller 

instances of Set A were solved using CPLEX 12.2 to assess the performance of the search 

algorithm.  Solutions obtained with the proposed search algorithm were optimal in all cases 

when compared to the solutions obtained with exhaustive enumeration and CPLEX.   

 

We first present trends observed in optimal solution costs for different experimental treatment 

combinations, and then compare the computational performance of the search algorithm with 

respect to the other two methods.  Table 3.3 shows the optimal solution costs for different 

experimental treatment combinations for one instance (i.e., Network Instance 1).  The trends 

observed in Table 3.3 are representative of all instances that were tested.   
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Table ‎3.3. Optimal solution costs for Network Instance 1 (Set A). 

# of 

Nodes 
# of Loads Criteria 

# of Modes = 2 # of Modes = 3 

Discount Factor = 0.5 Discount Factor = 0.9 Discount Factor = 0.5 Discount Factor = 0.9 

V = 2 V = 3 V = 4 V = 2 V = 3 V = 4 V = 2 V = 3 V = 4 V = 2 V = 3 V = 4 

10 

5 (5%) 
Total Cost 8,520 12,812 17,198 8,530 12,847 17,233 8,521 12,812 17,199 8,531 12,847 17,234 

% Fixed Cost 98 99 99 98 98 99 98 99 99 98 98 99 

9 (10%) 
Total Cost 8,767 13,066 17,452 8,781 13,090 17,458 8,767 13,066 17,446 8,781 13,090 17,446 

% Fixed Cost 95 97 98 95 97 98 95 97 98 95 97 98 

18 (20%) 
Total Cost 9,395 13,699 18,030 9,425 13,732 18,095 9,395 13,685 18,005 9,423 13,712 18,065 

% Fixed Cost 89 92 94 88 92 94 89 92 95 88 92 94 

45 (50%) 
Total Cost 11,284 15,432 19,677 11,448 15,652 19,994 11,284 15,409 19,647 11,430 15,606 19,941 

% Fixed Cost 74 82 87 73 81 85 74 82 87 73 81 85 

20 

19 (5%) 
Total Cost 9,476 13,773 18,135 9,515 13,806 18,183 9,476 13,773 18,135 9,489 13,806 18,183 

% Fixed Cost 88 93 95 88 93 95 88 93 95 88 93 95 

38 (10%) 
Total Cost 11,214 15,436 19,667 11,234 15,495 19,813 11,214 15,412 19,643 11,234 15,483 19,733 

% Fixed Cost 76 84 87 75 83 87 76 84 88 75 83 87 

76 (20%) 
Total Cost 13,647 17,731 21,862 13,682 17,843 22,024 13,647 17,690 21,789 13,682 17,735 21,907 

% Fixed Cost 61 72 79 62 72 78 61 73 79 62 73 79 

190 (50%) 
Total Cost 20,263 23,912 27,722 20,387 24,316 28,430 20,199 23,836 27,632 20,387 24,182 28,192 

% Fixed Cost 44 54 63 42 53 61 45 54 63 42 53 62 

30 

44 (5%) 
Total Cost 11,101 15,095 19,251 11,126 15,136 19,314 11,101 15,095 19,251 11,117 15,136 19,305 

% Fixed Cost 75 83 88 75 83 86 75 83 88 74 83 86 

87 (10%) 
Total Cost 14,089 18,164 22,220 14,126 18,281 22,425 14,089 18,150 22,206 14,110 18,255 22,400 

% Fixed Cost 58 68 75 58 68 76 58 68 75 58 68 74 

174 (20%) 
Total Cost 20,003 23,753 27,615 20,134 23,937 27,884 19,987 23,753 27,615 20,058 23,932 27,881 

% Fixed Cost 41 53 61 41 52 61 43 53 61 43 52 61 

435 (50%) 
Total Cost 35,159 38,376 41,580 35,390 38,657 42,272 35,152 38,308 41,506 35,383 38,657 42,193 

% Fixed Cost 27 36 44 26 36 43 27 36 44 26 36 43 
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Note that in Table 3.3, the number of hubs to locate was predetermined and the optimal solution 

cost was obtained.  Solutions for different number of open hubs should be obtained and 

compared if the optimal number of hubs to open is of the interest.  According to Table 3.3, the 

optimal number of open hubs depends on the number of loads for a fixed network size.  For a 

small number of loads, opening more hubs increased the fixed cost of hub installation, but only 

slightly reduced the transportation cost.  So, the optimal number of open hubs was relatively 

small.  On the other hand, if the number of loads was relatively large, opening more hubs 

reduced the transportation cost significantly as compared to the additional fixed cost of building 

more hubs. 

 

Also, according to Table 3.3, the solution cost when three transportation modes were considered 

was always less than or equal to the solution cost when two transportation modes were 

considered showing the benefit of having more flexibility for transporting loads in alternative 

modes from origin to destination. 

Regarding the effect of the discount factor α, it was observed that the solution cost always 

increased when the discount factor was changed from 0.5 to 0.9 (i.e., from a 50% discount to a 

10% discount).   

 

The delay factor β was not changed in any of the experiments, but it is expected that by 

increasing β, the delays that occur at hubs would increase which means that the total 

transportation time would increase.  This might result in some routes being infeasible with 

respect to the maximum allowed transportation time constraint.  As a result, increasing β will not 

improve the optimal solution, but it can worsen it.  On the other hand, decreasing the delay factor 

β could improve the value of the objective function. 

 

Regarding the computational performance of the proposed search algorithm, average solution 

times over multiple instances for the same experimental treatment combination were computed 

and are presented in Table 3.4 and Table 3.5.  Table 3.4 shows the average solution times for 

small Set A instances solved with CPLEX and the search algorithm.  Note that for some 

experimental treatment combinations, the optimal solution was not obtained using CPLEX due to 
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the large number of decision variables and constraints and the limited amount of CPU memory.  

These experimental treatment combinations are marked with an X in Table 3.4.   
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Table ‎3.4. Set A average solution times (in seconds) with CPLEX and search algorithm. 

#
 o

f 
N

o
d

es
 

#
 o

f 
L

o
a
d

s 

A
p

p
ro

a
ch

 # of Modes = 2 # of Modes = 3 

Discount factor = 0.5 Discount factor = 0.9 Discount factor = 0.5 Discount factor = 0.9 

# of Hubs # of Hubs # of Hubs # of Hubs 

2 3 4 2 3 4 2 3 4 2 3 4 

10 

5 
CPLEX 2.227 33.560 345.659 2.231 33.392 345.609 2.968 59.678 758.789 2.855 56.059 761.144 

SA 0.006 0.003 0.003 0.000 0.000 0.006 0.003 0.006 0.006 0.000 0.006 0.003 

9 
CPLEX 4.232 84.280 1,357.037 4.243 83.094 1,370.157 5.339 140.483 2,741.078* 5.339 142.070 2,792.047* 

SA 0.000 0.000 0.006 0.003 0.003 0.006 0.000 0.006 0.006 0.006 0.003 0.006 

18 
CPLEX 15.171 583.311 X 15.261 587.937 X 21.606 1,472.003 X 21.614 1,473.671 X 

SA 0.003 0.003 0.009 0.003 0.016 0.019 0.003 0.009 0.016 0.009 0.012 0.022 

45 
CPLEX 92.052 X X 90.933 X X 139.508 X X X X X 

SA 0.016 0.044 0.081 0.016 0.037 0.087 0.019 0.050 0.090 0.016 0.047 0.106 

* Average of 4 instances 
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Table ‎3.5. Set A average solution times (in seconds) with exhaustive enumeration and search algorithm (part a). 
#

 o
f 

N
o

d
es

 

#
 o

f 
L

o
a
d

s 

A
p

p
ro

a
ch

 # of Modes = 2 # of Modes = 3 

Discount factor = 0.5 Discount factor = 0.9 Discount factor = 0.5 Discount factor = 0.9 

# of Hubs # of Hubs # of Hubs # of Hubs 

2 3 4 2 3 4 2 3 4 2 3 4 

10 

5 

Enum. 0.009 0.016 0.050 0.006 0.019 0.050 0.005 0.028 0.059 0.006 0.034 0.059 

SA 0.006 0.003 0.003 0.000 0.000 0.006 0.003 0.006 0.006 0.000 0.006 0.003 

%Diff. -33 -80 -94 -100 -100 -88 -38 -78 -89 -100 -82 -95 

9 

Enum. 0.009 0.019 0.059 0.009 0.025 0.059 0.009 0.028 0.078 0.003 0.031 0.081 

SA 0.000 0.000 0.006 0.003 0.003 0.006 0.000 0.006 0.006 0.006 0.003 0.006 

%Diff. -100 -100 -89 -65 -88 -89 -100 -78 -92 100 -90 -92 

18 

Enum. 0.005 0.037 0.075 0.006 0.037 0.081 0.009 0.041 0.097 0.015 0.037 0.103 

SA 0.003 0.003 0.009 0.003 0.016 0.019 0.003 0.009 0.016 0.009 0.012 0.022 

%Diff. -38 -92 -88 -50 -58 -77 -67 -77 -84 -38 -67 -79 

45 

Enum. 0.028 0.069 0.131 0.022 0.069 0.140 0.025 0.072 0.165 0.019 0.069 0.172 

SA 0.016 0.044 0.081 0.016 0.037 0.087 0.019 0.050 0.090 0.016 0.047 0.106 

%Diff. -44 -36 -38 -29 -45 -38 -25 -30 -45 -17 -32 -38 

20 

19 

Enum. 0.037 0.362 1.953 0.050 0.353 1.978 0.053 0.396 2.331 0.044 0.409 2.362 

SA 0.022 0.100 0.303 0.022 0.094 0.346 0.022 0.103 0.365 0.022 0.112 0.424 

%Diff. -42 -72 -85 -56 -73 -82 -59 -74 -84 -50 -73 -82 

38 

Enum. 0.087 0.555 3.011 0.078 0.558 2.973 0.090 0.624 3.479 0.087 0.615 3.516 

SA 0.053 0.328 1.285 0.053 0.328 1.379 0.062 0.362 1.541 0.056 0.381 1.650 

%Diff. -39 -41 -57 -32 -41 -54 -31 -42 -56 -36 -38 -53 

76 

Enum. 0.156 0.967 5.095 0.153 0.983 4.933 0.150 1.083 5.625 0.140 1.070 5.616 

SA 0.119 0.755 3.551 0.119 0.761 3.629 0.122 0.827 4.128 0.125 0.836 4.193 

%Diff. -24 -22 -30 -22 -23 -26 -19 -24 -27 -11 -22 -25 

190 

Enum. 0.337 2.237 10.99 0.328 2.209 11.21 0.346 2.493 12.73 0.346 2.505 12.78 

SA 0.300 1.909 9.285 0.293 1.925 9.354 0.303 2.031 10.49 0.303 2.090 10.61 

%Diff. -11 -15 -16 -10 -13 -17 -13 -19 -18 -13 -17 -17 
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Table ‎3.6. Set A average solution times (in seconds) with exhaustive enumeration and search algorithm (part b). 

#
 o

f 
N

o
d

es
 

#
 o

f 
L

o
a
d

s 

A
p

p
ro

a
ch

 # of Modes = 2 # of Modes = 3 

Discount factor = 0.5 Discount factor = 0.9 Discount factor = 0.5 Discount factor = 0.9 

# of Hubs # of Hubs # of Hubs # of Hubs 

2 3 4 2 3 4 2 3 4 2 3 4 

30 

44 

Enum. 0.209 2.321 19.32 0.218 2.331 19.15 0.225 2.590 22.31 0.222 2.590 22.27 

SA 0.156 1.289 7.438 0.150 1.342 8.071 0.150 1.445 8.880 0.153 1.498 9.550 

%Diff. -25 -44 -62 -31 -42 -58 -33 -44 -60 -31 -42 -57 

87 

Enum. 0.378 4.062 32.62 0.384 4.044 32.59 0.393 4.418 36.58 0.387 4.434 36.70 

SA 0.306 3.026 22.57 0.306 3.058 23.12 0.312 3.320 26.38 0.312 3.366 26.74 

%Diff. -19 -25 -31 -20 -24 -29 -21 -25 -28 -19 -24 -27 

174 

Enum. 0.724 7.482 58.87 0.711 7.385 58.31 0.721 7.912 66.09 0.721 7.984 66.29 

SA 0.612 6.187 47.47 0.608 6.234 47.97 0.627 6.686 54.19 0.627 6.699 54.41 

%Diff. -16 -17 -19 -14 -16 -18 -13 -15 -18 -13 -16 -18 

435 

Enum. 1.778 18.04 139.6 1.741 18.00 139.3 1.747 19.04 155.2 1.763 19.23 154.3 

SA 1.504 15.58 120.8 1.507 15.79 120.4 1.560 16.66 134.2 1.560 16.81 134.5 

%Diff. -15 -14 -13 -13 -12 -14 -11 -13 -14 -12 -13 -13 
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According to Table 3.4, the average solution times for the search algorithm are significantly 

faster than the solution times observed with CPLEX.  For example, the average solution time 

reduces from about 46 minutes with CPLEX to about 0.006 seconds with the search algorithm 

for instances with 10 nodes, 9 loads, and 4 open hubs.  As the number of loads, open hubs, and 

transportation modes in the network increase, the number of decision variables and constraints in 

the mathematical formulation increase which results in longer CPLEX solution times. 

 

Alternatively, Table 3.5 shows the average solution times observed for Set A instances using 

exhaustive enumeration and the search algorithm.  Here, the exhaustive enumeration approach is 

used as a benchmark against the proposed search algorithm.  According to Table 3.5, the average 

solution time for the search algorithm increased as the network size increased and the number of 

loads increased.  The average solution time was also significantly affected by the number of open 

hubs.  The minimum average solution time was a few milliseconds and the maximum average 

solution time for the largest instances solved was about two minutes.  Moreover, as the number 

of transportation modes increased, the average solution time also increased due to the additional 

feasible routes for loads that needed to be enumerated.  Only the value of the discount factor α 

did not seem to affect the average solution time.  The search algorithm consistently outperformed 

the exhaustive enumeration approach showing faster solution times.  In small instances, the total 

transportation costs are relatively small in comparison to the total fixed hub installation costs.  

As a result, many hub combinations are not evaluated as their fixed hub installation costs were 

larger than the corresponding upper bound in the search algorithm.  Therefore, in small 

instances, the solution time for the search algorithm was much smaller than the solution time for 

the exhaustive enumeration approach with up to close to 100% reduction in solution time for 

some small instances.  However, as instances got larger, the share of the total fixed hub 

installation costs in the total network costs decreased and fewer hub combinations were 

discarded in the search algorithm.  Therefore, the solution time of the search algorithm remained 

close to the solution time of the exhaustive enumeration approach.  In large instances, the search 

algorithm explored all hub combinations to solve the master problem, but it did not solve all sub-

problems for each hub combination.  As a result, even in large instances, the search algorithm 
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found the optimal solution sooner than the exhaustive enumeration approach.  The minimum 

amount of reduction in solution time was about 11% for larger instances. 

 

Finally, Table 3.6 shows the average percentage of hub combinations that the search algorithm 

explored in Set A experiments.  As mentioned above, when the number of loads in the network is 

small and the transportation cost has a small share of the total network costs, only a small portion 

of hub combinations were explored.  However, when the number of loads in the network 

increased, the search algorithm had to explore most of the hub combinations to find the optimal 

solution of the master problem. 

 

Table ‎3.7: Average percentage of hub combinations explored by search algorithm. 

# of 

Nodes 
# of Loads 

# of Modes = 2 # of Modes = 3 

Discount factor = 

0.5 

Discount factor = 

0.9 

Discount factor = 

0.5 

Discount factor = 

0.9 

# of Hubs # of Hubs # of Hubs # of Hubs 

2 3 4 2 3 4 2 3 4 2 3 4 

10 

5 (5%) 19 10 6 19 11 7 19 10 6 19 10 7 

9 (10%) 25 14 10 26 15 11 25 14 10 26 15 11 

18 (20%) 53 34 24 56 39 29 53 33 23 55 37 28 

45 (50%) 99 89 81 100 93 87 97 89 80 99 91 85 

20 

19 (5%) 62 39 22 64 41 25 62 39 22 64 40 25 

38 (10%) 98 87 69 98 89 73 98 87 68 98 88 71 

76 (20%) 100 100 100 100 100 100 100 100 100 100 100 100 

190 (50%) 100 100 100 100 100 100 100 100 100 100 100 100 

30 

44 (5%) 100 92 68 100 93 72 100 92 68 100 93 71 

87 (10%) 100 100 100 100 100 100 100 100 100 100 100 100 

174 (20%) 100 100 100 100 100 100 100 100 100 100 100 100 

435 (50%) 100 100 100 100 100 100 100 100 100 100 100 100 

 

3.5.2.2 Set B Computational Results 

Table 3.7 shows the optimal solution costs for Network Instance 1 for all experimental treatment 

combinations in Set B.  It is observed that in addition to the number of transportation modes and 

the number of hubs, the number of potential hub locations also had an effect on the optimal 
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solution cost.  As the number of potential hub locations increased, the optimal solution cost 

decreased or stayed at the same level.  Table 3.7 also shows the percentage of total network costs 

that is associated with the fixed costs of hub installation.  The percentage of fixed cost in the 

total network cost increases with the number of hubs, but decreases as the number of nodes and 

associated flow in the network increase. 

  

Table ‎3.8. Optimal solution costs for Network Instance 1 (Set B). 

# of 

Nodes 

# of 

Loads 

# of Potential 

Hub 

Locations 

Approach 

Discount factor = 0.5 

# of Modes = 2 # of Modes = 3 

V = 2 V = 4 V = 2 V = 4 

50 
490 

(20%) 

10% N 
Total Cost 40,638 47,699 40,543 47,423 

% Fixed Cost 22 37 22 37 

15% N 
Total Cost 40,440 46,748 40,440 46,678 

% Fixed Cost 21 37 21 37 

20% N 
Total Cost 40,284 46,535 40,284 46,535 

% Fixed Cost 22 38 22 38 

75 
1110 

(20%) 

10% N 
Total Cost 80,796 84,245 80,796 84,242 

% Fixed Cost 12 22 12 22 

15% N 
Total Cost 80,796 83,862 80,766 83,618 

% Fixed Cost 12 22 11 22 

20% N 
Total Cost 80,796 83,862 80,766 83,618 

% Fixed Cost 12 22 11 22 

100 
1980 

(20%) 

10% N 
Total Cost 134,198 135,568 133,665 134,743 

% Fixed Cost 6 13 6 13 

15% N 
Total Cost 134,198 134,768 133,665 134,266 

% Fixed Cost 6 13 6 13 

20% N 
Total Cost 134,198 133,988 133,287 132,584 

% Fixed Cost 6 13 6 13 

150 
4470 

(20%) 

10% N 
Total Cost 289,540 274,918 287,821 272,209 

% Fixed Cost 3 7 3 7 

15% N 
Total Cost 289,540 274,918 287,821 272,209 

% Fixed Cost 3 7 3 7 

20% N 
Total Cost 288,453 273,222 287,405 270,263 

% Fixed Cost 3 7 3 7 
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Table 3.8 shows the average solution times over five instances of each experimental treatment 

combination in Set B.  In addition to the network size, number of open hubs, and number of 

existing transportation modes, the average solution time was also affected by the size of the set 

of potential hub locations, P.  The fastest average solution time was less than one second, while 

the longest average solution time corresponding to the largest problem instances solved was less 

than 25 minutes.  Similar to Set A, the search algorithm consistently outperformed the exhaustive 

enumeration approach showing faster solution times.  However, as the percentage of fixed costs 

in total network cost was relatively small in Set B instances, the search algorithm could not 

discard any feasible hub combinations and the efficiency of the search algorithm resulted from 

discarding some of the sub-problems.  As a result, the average reduction in solution times was 

relatively small in larger Set B instances.  

 

A summary of all the trends observed in the results for both Set A and Set B instances are 

presented in Figure 3.6. 
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Figure  3.6. Summary of observed trends in the results for both sets of instances. 

 

 

  



72 

 

 

 

Table ‎3.9. Set B average solution times (in seconds). 

# of 

Nodes 

# of 

Loads 

# of Potential 

Hub Locations 
Approach 

Discount factor = 0.5 

# of Modes = 2 # of Modes = 3 

V = 2 V = 4 V = 2 V = 4 

50 
490 

(20%) 

10% N 

Enum. 0.027 0.049 0.034 0.047 

SA 0.025 0.047 0.031 0.044 

%Diff. -8 -5 -8 -8 

15% N 

Enum. 0.115 0.391 0.122 0.422 

SA 0.112 0.362 0.115 0.402 

%Diff. -3 -7 -5 -5 

20% N 

Enum. 0.187 1.122 0.190 1.246 

SA 0.184 1.080 0.187 1.204 

%Diff. -2 -4 -2 -3 

75 
1110 

(20%) 

10% N 

Enum. 0.264 0.829 0.280 0.984 

SA 0.253 0.802 0.265 0.899 

%Diff. -4 -3 -5 -9 

15% N 

Enum. 0.527 3.934 0.566 4.397 

SA 0.496 3.819 0.534 4.221 

%Diff. -6 -3 -6 -4 

20% N 

Enum. 0.982 15.978 1.049 17.925 

SA 0.942 15.522 0.980 17.422 

%Diff. -4 -3 -7 -3 

100 
1980 

(20%) 

10% N 

Enum. 0.740 4.487 0.801 4.984 

SA 0.718 4.331 0.764 4.774 

%Diff. -3 -3 -5 -4 

15% N 

Enum. 1.718 27.894 1.847 31.224 

SA 1.682 27.678 1.760 30.561 

%Diff. -2 -1 -5 -2 

20% N 

Enum. 3.064 99.921 3.211 108.683 

SA 3.014 97.526 3.120 108.081 

%Diff. -2 -2 -3 -1 

150 
4470 

(20%) 

10% N 

Enum. 3.895 66.251 4.226 76.255 

SA 3.747 61.424 3.912 69.642 

%Diff. -4 -7 -7 -9 

15% N 

Enum. 9.750 416.365 9.985 483.021 

SA 8.955 400.102 9.429 456.044 

%Diff. -8 -4 -6 -6 

20% N 

Enum. 16.398 1,319.213 17.973 1,495.364 

SA 15.485 1,248.298 16.315 1,402.901 

%Diff. -6 -5 -9 -6 
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3.6 Conclusions and Future Work 

Strategically designing intermodal logistics networks to optimize some specific criteria becomes 

even more relevant given the expected growth of intermodal transportation demand.  While 

integrating relevant tactical and operational decisions such as transportation mode and load route 

selection improves the applicability of logistics networks designed using mathematical 

programming approaches, it also adds more complexity to the modeling of this problem and 

affects its tractability.  To overcome this challenge, a composite variable formulation was 

developed and solved to optimality by implementing a decomposition algorithm.  According to 

the results obtained in our computational experiments, the optimal solution costs depends on the 

network size (i.e., number of nodes and loads, and the number of transportation modes), number 

of hubs to be opened, and the value of the discount factor that is applied to the inter-hub 

transportation cost. 

 

Also, computational times required to obtain an optimal solution increased with the size of the 

instance being solved.  According to computational experiment results, the proposed solution 

approach was able to find optimal logistics network designs for networks that consist of 150 

nodes and about 4,500 loads in less than 20 seconds when locating two hubs.  While it required 

about 25 minutes when locating four hubs.  Long computational times could be reduced with a 

parallel computing implementation of the proposed solution method.  Alternatively, a more 

efficient solution approach such as column generation could be applied to solve the master 

problem for larger-size problem instances.  Both of these two approaches are potential future 

research directions.  

 

Also, similar to most previous research studies, a constant discount factor was considered to 

model the effect of economies of scale on the transportation cost.  In order to improve the 

applicability of this model to design networks that can be implemented in practice with minimal 

reconfiguration, a more realistic cost function could be considered in the future.  Similarly, some 

other tactical and operational decisions such as resource levels at terminals or equipment 

allocation could be integrated into the model to improve the applicability of the designed 

intermodal logistics networks.  The research challenge is that realistic assumptions and more 
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decisions should be integrated in the model in a way such that the tractability of mathematical 

model would not be affected significantly. 
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4 Bender’s Decomposition Algorithm for Integrated Intermodal Logistics 

Network Design
3
 

4.1 Abstract 

The integrated intermodal logistics network design problem is a planning problem that integrates 

the strategic decision of determining intermodal terminal locations with the tactical decisions of 

selecting regular routes and modes of transportation for loads in a freight transportation system.  

This problem has been previously formulated using a composite variable formulation and 

solutions have been found using a decomposition-based search algorithm.  In this study, a 

Bender’s decomposition algorithm is implemented to obtain optimal solutions for this problem.  

To improve the performance of the implemented Bender’s decomposition algorithm, a 

preprocessing heuristic is developed that reduces the size of instances and generates better upper 

bounds for the problem.  Computational results show that the developed solution approach is 

able to obtain exact solutions for large instances of up to 250 nodes and 12,450 loads in 

reasonable computational times.  The effects of design parameters on solution characteristics are 

also analyzed using the results of the computational experiments and a few general insights are 

provided. 

 

Keywords: intermodal transportation; logistics; network design; Bender’s decomposition; 

optimization 

4.2 Introduction 

Intermodal transportation uses at least two different transportation modes (e.g., truck, rail, ship, 

air) to move freight loads that are in the same transportation unit (e.g., a shipping container) from 

origin to destination (Macharis and Bontekoning, 2004).  In general, intermodal transportation 

service is provided by several carriers that handle load transfers at intermodal terminals.  For 

example, a freight load can be moved by truck from a shipper’s facility to either a shipping port 

directly or to a rail yard first where it will be consolidated with other loads on a train that will 

                                                 

3
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then move them to a shipping port.  At the shipping port, freight loads that are still in the same 

container will be transferred to a freight ship to be moved to a different port that might be on a 

different continent.  Finally, these freight loads will be delivered to their destinations using 

trucks or other transportation mode as part of another intermodal network (Crainic and Kim, 

2007).   Planning an intermodal transportation network that requires cooperation of several 

stakeholders (i.e., carriers, operators, terminals, policy makers, etc.) is not an easy task.  

However, due to the benefits of intermodal transportation associated with less environmental and 

social costs when compared to long-haul trucking (i.e., less road congestion, environmental 

pollution, infrastructure damage, road accidents, etc.) (Arnold et al., 2004 ), policy makers have 

started to promote the use of intermodal freight transportation as a valid alternative for freight 

transportation.  For example, the European Commission attempted to shift a significant portion 

of freight demand from road to other sustainable transportation modes in Europe thorough the 

Marco Polo program (“Transport - Marco Polo - European Commission,” 2014) 

 

The increasing shift to intermodal transportation and the growth of freight transportation demand 

have resulted in a higher demand for intermodal freight transportation that has been projected to 

grow even faster in the next few decades.  According to the Freight Analysis Framework 4 

(FAF4, 2016) , the demand for intermodal freight transportation in the U.S. will increase 

approximately 80% from 2016 to 2045.  Satisfying this emerging demand will require enhancing 

the capacity of current intermodal facilities or even the construction of new intermodal facilities.  

The strategic location of these new intermodal facilities not also affects the performance of the 

intermodal transportation logistics network (i.e., in terms of both transportation cost and service 

time), but is also very critical for the performance of every single mode logistics network that is 

part of the intermodal transportation network.   

 

As intermodal logistics networks become more relevant, more researchers have addressed the 

Intermodal Logistics Network Design (ILND) problem.  The ILND problem is a strategic 

planning problem that determines the number and location of intermodal terminals as well as the 

allocation of customers to terminals.  Several mathematical formulations and solution approaches 

have been developed to address this problem (as discussed later in Section 4.3).  However, 
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despite their valuable insights, most of these approaches have been metaheuristic approaches that 

are not able to guarantee solution optimality.  At the same time, the few studies that have 

attempted to find optimal solutions for the ILND problem consider very restrictive assumptions 

that limit their applicability and are not able to handle real size instances of the ILND problem.  

Therefore, there is still a need for developing solution approaches to find exact solutions for real 

size instances of the ILND problem in reasonable computational times. 

 

This study is an extension of the work presented in Chapter 3.  Here, a Bender’s decomposition 

approach is implemented to solve the composite variable formulation that was previously 

developed in Chapter 3.  Moreover, a pre-processing heuristic was developed in this study that 

reduces the size of problem and is used to accelerate the Bender’s decomposition method.  Using 

this new solution approach, we are able to solve large instances of the ILND problem (with 250 

cities and about 12,500 origin-destination pairs) in reasonable computational times.  The 

Bender’s decomposition approach was implemented in this research because of its high 

performance in similar problems.  A brief discussion about the application of Bender’s 

decomposition to similar problems in the literature can be found in Section 4.3. 

 

Similar to Chapter 3, this research is intended to help decision makers of network operators for 

large logistics companies providing intermodal freight transportation service including Class I 

railroads and large full truckload carriers.  Network operators are responsible for making the 

strategic decisions of determining and designing the intermodal logistics network topology 

(Macharis and Bontekoning, 2004). 

 

The rest of this chapter is organized as follows. A review of previous studies in intermodal 

logistics network design and a review of the use of Bender’s decomposition in similar problems 

are presented in Section 4.3. In Section 4.4, we define the problem under study, re-introduce the 

mathematical formulation presented in Chapter 3, and describe the solution approach developed 

in this research.  Computational test results are presented in Section 4.5.  Finally, concluding 

remarks and future research directions are presented in Section 4.6. 
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4.3 Literature Review 

As intermodal transportation demand continues to increase, the body of research in this field also 

continues to increase significantly (SteadieSeifi et al. (2014)).  An important strategic planning 

problem studied in this field is the design of the intermodal transportation network which 

includes locating intermodal facilities.  To address this problem, many researchers have assumed 

that the intermodal transportation network is similar to a hub-and-spoke network and used 

different approaches to find the best location of terminals and the allocation of costumers to 

these terminals.  However in practice, intermodal transportation networks have characteristics 

that make them different from conventional hub-and-spoke networks.  For example, many hub-

and-spoke networks prevent direct transportation between spokes while it is common in 

intermodal transportation networks that some of the freight loads be transported directly from 

origin to destination without visiting any intermodal terminal.  The reader can find 

comprehensive reviews of research studies addressing the design of hub-based networks for 

different applications in Alumur and Kara (2008), Campbell and O’Kelly (2012) and Farahani et 

al. (2013).  Similarly, Macharis and Bontekoning (2004), Caris et al. (2013) and SteadieSeifi et 

al. (2014) provide comprehensive reviews of research studies in intermodal transportation 

planning. 

 

Intermodal transportation logistics networks have been traditionally modeled using mathematical 

programming.  Arnold et al. (2001), Arnold et al. (2004) and Racunica and Wynter (2005) were 

early attempts of using mathematical programming formulations to solve the ILND problem.  

Later, Smilowitz and Daganzo (2007) used mathematical programming and developed a solution 

approach for designing an intermodal transportation network for express package delivery.  

Rahimi et al. (2008) used a location-allocation formulation to find the optimal number and 

location of inland intermodal ports in an application in California to minimize total facility and 

transportation costs. Limbourg and Jourquin (2009) modeled the intermodal logistics network as 

a p-hub median problem.  The authors assumed that each customer can be allocated to only one 

hub, and then they proposed an iterative procedure to find the optimal location of intermodal 

hubs among several potential locations.   
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Ishfaq and Sox (2011) and Ishfaq and Sox (2012) modeled the ILND problem as a multiple-

allocation p-hub median problem. Both assumed that each freight load has a service time 

requirement and can visit up to two intermodal terminals in its route from origin to destination.  

Tabu Search was used in both to find near optimal solutions.  Ishfaq and Sox (2012), in 

particular, incorporated limitations on resource levels at terminals by modeling terminal 

operations as a G/G/1 queuing system.  This allowed them to estimate delay times at terminals 

more accurately in comparison to using a constant delay factor. In both studies, the objective was 

to minimize the total network costs including the fixed cost of opening hubs, the cost of adapting 

them to different transportation modes, and transportation and service costs. 

 

In another study, Alumur et al. (2012) modeled the intermodal logistics network as a single 

allocation hub network design problem. They developed a Lagrangian decomposition-based 

heuristic with valid inequalities and variable reduction to obtain near optimal solutions for a case 

of a network with 81 nodes and 16 potential hub locations.  About at the same time, Sörensen et 

al. (2012) and Sörensen and Vanovermeire (2013) focused on developing efficient solution 

approaches for the mathematical formulation developed by Arnold et al. (2001) and a bi-

objective version of this formulation, respectively.  In the mathematical formulation presented in 

Arnold et al. (2001) freight loads can be sent point-to-point as well as visit at most two 

intermodal terminals throughout their route from origin to destination.  Sörensen et al. (2012) 

were able to find near optimal solutions for instance problems with 100 nodes using a two-stage 

approach, while Sörensen and Vanovermeire (2013) applied a greedy randomized adaptive 

search (GRASP) procedure to estimate optimal Pareto sets. 

 

More recently, environmental and sustainability aspects have also been incorporated in addition 

to economic objectives (i.e., minimization of transportation and terminal installation costs) in the 

design of intermodal logistics networks.  Single and multi-objective mathematical formulations 

have been developed to account for costs associated with emissions in intermodal transportation 

networks.  For example, Zhang et al. (2013) proposed a mathematical formulation that minimizes 

the cost of CO2 emissions associated with each shipment in an intermodal network.  Near 

optimal solutions were obtained for a real application in the Netherlands by implementing a 
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genetic algorithm.  In another study, Assadipour et al. (2015) developed a non-linear mixed 

integer program (MIP) for a rail-truck intermodal transportation network of hazardous materials.  

Qu et al. (2016) developed a nonlinear integer mathematical formulation to find optimal hub 

locations for a real case study in the United Kingdom with eleven locations.  The authors 

linearized the proposed mathematical formulation that considered greenhouse gas emission costs 

and showed how the proposed model can be modified into a bi-objective formulation.  

Baykasoğlu and Subulan (2016) developed an MIP model for a multi-objective intermodal 

transportation load planning problem.  The authors proposed a few multiple objective 

optimization approaches to handle conflicting objectives simultaneously under crisp and fuzzy 

decision making environments.  The authors then tested their solution approach with a real-life 

case study in Turkey. 

 

Although the research studies presented above have all been able to find valuable insights, they 

have not been able to find optimal solutions for non-trivial instances of the integrated ILND 

problem.  To the best of our knowledge, Chapter 3 is the first attempt to solve the integrated 

ILND problem exactly.  The authors developed a composite variable formulation that models the 

consolidation effects on transportation cost and time using constant discount and delay factors, 

respectively.  The authors developed a decomposition-based search algorithm that is able to 

obtain optimal solutions for problem instances of up to 150 nodes and 4,500 loads in reasonable 

computational times.  However, there is a need for developing more efficient solution 

approaches that can solve larger instances of the integrated ILND problem to be more applicable 

in real world instances.  The current study tries to close this gap by proposing an accelerated 

Bender’s decomposition approach that is able to solve large instances (up to 250 nodes and 

12,450 loads) of the composite variable formulation proposed in Chapter 3. 

 

Bender’s decomposition has been selected because of its proven performance in similar 

problems.  For example, Binato et al. (2001) implemented a Bender’s decomposition approach to 

find an optimal power transmission network design for a case in Brazil.  Üster et al. (2007) 

implemented a Bender’s decomposition algorithm to solve the multi-product closed-loop supply 

chain network design problem.  The authors developed an efficient dual solution approach that 
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enables them to add strong Bender’s cuts in addition to the classical single Bender’s cut 

approach.  They concluded that the quality of the Bender’s cut has a significant effect on the 

performance of the Bender’s decomposition approach.  In another study, Kewcharoenwong and 

Üster (2014) implemented Bender’s decomposition to solve a fixed-charge relay network design 

problem applied to long-distance translucent optical telecommunication networks.  The authors 

developed several accelerating techniques including strengthened and disaggregated Bender’s 

cuts and an upper bound heuristic to both obtain and tighten optimality Bender’s cuts and 

improve the performance of the Bender’s decomposition algorithm.  More recently, Makui and 

Ghavamifar (2016) implemented Bender’s decomposition to solve a supply chain network design 

problem under risk, disruption and uncertainty.  

4.4 Methodology 

4.4.1 Problem Definition 

The location of intermodal terminals significantly affects and is affected by the routing of freight 

loads.  Therefore, in order to optimize the performance of an intermodal logistics network, the 

intermodal terminal location problem should be integrated with the problem of finding regular 

routes and transportation modes for the freight loads.  The objective of the integrated LND 

problem is to find the optimal intermodal network design that minimizes the total network costs 

including the fixed cost of opening intermodal terminals and the transportation cost of the freight 

loads.  Several assumptions were considered to formulate this problem. 

 

First, an intermodal logistics network is assumed to be formed by N nodes representing origins or 

destinations of freight loads as well as existing and additional candidate locations for intermodal 

terminals.  A known subset P of these N nodes forms the set of potential terminal locations from 

which V locations need to be selected as intermodal terminals.  Note that there is a fixed cost 

associated with opening an intermodal terminal which differs depending on the location of a 

node.  The level of geographical aggregation for nodes could be modified to model regional, 

national, and even international intermodal logistics networks.  Consequently, the selected level 

of geographical aggregation will determine the size of the instance.  
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We also assumed that there are L different freight loads (i.e., shipments formed by containers) 

that should be served.  Each freight load has an origin node, a destination node, number of 

containers, and a maximum allowed transportation time.  Containers in a freight load cannot be 

split in their movement from origin to destination, and thus an “all-or-nothing” policy applies 

when route and transportation mode decisions are made for a particular freight load.  The 

network topology is assumed to be hybrid combining the point-to-point, connected hubs, and 

static routes topologies described by Woxenius (2007).  Therefore, freight loads can be shipped 

directly from their origin to their destination or they can be relayed at one or more intermodal 

terminals.  Consequently, our network design problem is different than the traditional hub-and-

spoke network design problem. 

 

Regardless of the number of transfers (if any) in route, the total transportation time for each 

freight load has to satisfy the specified maximum allowed transportation time for the load.  At 

intermodal terminals, different freight loads are consolidated (if appropriate) and then transferred 

to a different transportation mode.  The freight loads are then sent to another intermodal terminal 

or directly to their destinations.  The consolidation of freight loads reduces the unit transportation 

cost per container for movements between intermodal terminals due to economies of scale (i.e., 

by sharing equipment and reducing the number of trips).  However, the consolidation of freight 

loads also increases their transportation time since the consolidation process itself requires time 

at the terminals which is usually affected by the freight loads experiencing delays due to the high 

utilization of the handling equipment at the terminal.  Similar to most research studies in this 

field, constant discount and delay factors are used to account for the consolidation effects on 

transportation unit cost per load and transportation time, respectively (Ishfaq and Sox, 2012, 

2011; Limbourg and Jourquin, 2009).  The two constant factors can be estimated from past data 

or using expert opinion. 

4.4.2 Mathematical Formulation 

In this study we used the same composite variable formulation developed in Chapter 3.  A 

composite variable formulation allows us to implicitly capture difficult constraints in the variable 
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definition and avoid explicitly including them as complicating constraints in the mathematical 

formulation.  In this research, a complete feasible route from origin to destination is considered 

as a single composite variable.  Before formulating the mathematical model, all routes that can 

be used to send load l from its origin to its destination are generated.  The transportation cost and 

total transportation time for each route are calculated using the constant discount and delay 

factors.  Then, the total transportation time for each route is checked against the maximum 

allowed transportation time for that load.  In this way, all infeasible routes are excluded from the 

mathematical formulation, and the transportation time constraint does not need to be included in 

the mathematical formulation.  The reader is referred to Chapter 3 for more details and examples 

on how the composite variables are generated for the formulation presented below.  

 

3.2.1 Notation 

 

Sets and Parameters 

𝑁  set of nodes n, 

𝑃  set of potential terminal locations, P ⊂ N, 

𝑀 set of transportation modes m, 

𝐿 set of loads l, 

𝑉  number of terminals in a feasible terminal combination, 

H 
set of terminal combinations h, each terminal combination consists of V nodes 

corresponding to terminal locations,  

𝑅𝑙,ℎ set of composite variables (i.e. feasible routes) i to transport load l when terminals in 

terminal combination h are open, 

𝑇𝑊𝑙 maximum allowed transportation time for load l, 

𝐹ℎ fixed cost of opening terminals for terminal combination h, 

𝑑𝑙 demand quantity (in number of containers) for load l, 

Cl,i
h

 
per load transportation cost of moving load l on route i when terminals in terminal 

combination h are open,  

tl,i
h   time to transport load l on route i when terminals in terminal combination h are open, 
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Decision Variables 

𝑟𝑙,𝑖
ℎ  = 

 

1 if feasible route i is selected to transport load l using terminal combination h 

 
0 otherwise, 

   𝑌ℎ = 

 
1 if terminals in terminal combination h are open 

 

0 otherwise. 

 

3.2.2 Mathematical Formulation 

The mathematical programming formulation for the integrated ILND problem follows: 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝐹ℎ𝑌ℎ

𝐻

ℎ

+ ∑ ∑ ∑ 𝐶𝑙,𝑖
ℎ . 𝑑𝑙. 𝑟𝑙,𝑖

ℎ

𝑅𝑙,ℎ

𝑖

𝐿

𝑙

𝐻

ℎ

 (4.1) 

 

Subject to: 

∑ ∑ 𝑟𝑙,𝑖
ℎ

𝑅𝑙,ℎ

𝑖

𝐿

𝑙

 ≤  |𝐿|𝑌ℎ ∀ℎ ∈ 𝐻 (4.2) 

∑ ∑ 𝑟𝑙,𝑖
ℎ = 1

𝑅𝑙,ℎ

𝑖

𝐻

ℎ

 ∀𝑙 ∈ 𝐿 (4.3) 

∑ 𝑌ℎ = 1

𝐻

ℎ

  (4.4) 

𝑌ℎ = {0,1} ∀ℎ ∈ 𝐻 (4.5) 

𝑟𝑙,𝑖
ℎ  = {0,1} ∀𝑙 ∈ 𝐿, ∀𝑖 ∈ 𝑅𝑙,ℎ, ∀ℎ ∈ 𝐻 (4.6) 

 

In the above mathematical formulation, the objective function (4.1) minimizes the total logistics 

network costs.  Total logistics network costs consist of the fixed cost of opening intermodal 

terminals and the transportation costs, but neglect operation costs related to handling of freight at 

terminals.  Constraint (4.2) enforces that terminals cannot be used if they are not open.  Note that 
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no capacity restrictions were considered for open terminals.  Constraint (4.3) enforces that all 

demand should be satisfied by selecting exactly one composite for a particular load. Constraint 

(4.4) ensures that only one terminal combination be selected.  And finally, Constraints (4.5) and 

(4.6) are the variable type constraints. 

4.4.3 Bender’s Decomposition Solution Approach 

There are two sets of decision variables in the mathematical formulation presented in Section 

4.4.2, one that indicates the intermodal terminal locations (i.e., by selecting a single terminal 

combination), and one that indicates the routes for freight loads (i.e., by selecting a composite 

variable for each freight load).  However, the two sets of variables appear together only in 

Constraint (4.2).  As such, if the variables related to the intermodal terminal locations are 

temporarily fixed the remaining mathematical formulation becomes considerably more tractable.  

This structure of the formulation makes it convenient to use the Bender’s decomposition 

approach for solving larger size instances of the integrated ILND problem (Geoffrion, 1972).  

Bender’s decomposition allows solving a smaller size master problem and associated sub-

problems instead of solving the original mathematical formulation.  The master problem is 

usually a mixed integer program (MIP) with an auxiliary continuous variable that facilitates the 

connection between the master problem and the sub-problems through Bender’s cuts.  A sub-

problem is constructed by entering the values (i.e., selected terminal combination) obtained by 

solving the master problem.  Once the dual of the sub-problem has been solved, Bender’s cuts 

are generated and added to the master problem.  These Bender’s cuts could be optimality cuts if 

the sub-problem is feasible or feasibility cuts if the sub-problem is not feasible.  In the integrated 

ILND problem, the optimal routes for each freight load can be obtained independently of other 

routes. Therefore, the sub-problem can be further decomposed into L small sub-problems, each 

corresponding to one of the freight loads.  This will result in a more efficient solution approach 

because at each iteration, smaller sub-problems need to be solved. 

 

In summary, in the Bender’s decomposition approach, the master problem is solved and its 

solution (i.e., the integer variables Y) is used to construct L sub-problems where each sub-

problem corresponds to one freight load.  Solving each of these sub-problems then creates one 
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Bender’s cut.  These cuts are then added to the master problem to complete one iteration of the 

Bender’s decomposition algorithm.  Therefore, the master problem and the sub-problem are 

solved iteratively until the optimal solution has been found or a desirable optimality gap is 

achieved.  Note that while this approach provides a good framework for solving the integrated 

ILND problem, we improved its performance by developing a heuristic approach that reduces the 

size of instances and provides a better upper bound for the Bender’s decomposition approach.  

The developed heuristic is presented in Section 4.4.3.4. 

4.4.3.1 Sub-problem 

Once a terminal combination (i.e., set of intermodal terminal locations) is given (Y), the 

mathematical formulation for the integrated ILND problem reduces to the following sub-problem 

𝑆𝑃(𝒓|𝒀̂) with only r variables: 

 

Integrated ILND Sub-Problem (𝑆𝑃(𝒓|𝒀̂)): 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  ∑ ∑ 𝐶𝑙,𝑖
ℎ̂ . 𝑑𝑙 . 𝑟𝑙,𝑖

ℎ̂

𝑅𝑙,ℎ̂

𝑖

𝐿

𝑙

 (4.7) 

 

Subject to: 

∑ ∑ 𝑟𝑙,𝑖
ℎ̂

𝑅𝑙,ℎ̂

𝑖

𝐿

𝑙

 ≤  |𝐿|𝑌̂ℎ 
 

(4.8) 

∑ 𝑟𝑙,𝑖
ℎ̂ = 1

𝑅𝑙,ℎ̂

𝑖

 ∀𝑙 ∈ 𝐿 (4.9) 

𝑟𝑙,𝑖
ℎ̂  = {0,1} ∀𝑙 ∈ 𝐿, ∀𝑖 ∈ 𝑅𝑙,ℎ̂ (4.10) 

 

The sub-problem 𝑆𝑃(𝒓|𝒀̂) is basically the route and transportation mode selection problem for 

all freight loads taking into account that the terminals are opened at the nodes indicated by 𝑌ℎ̂.  

However, the optimal route for each freight load can be found separately from other freight 
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loads.  As a result, the sub-problem 𝑆𝑃(𝒓|𝒀̂) is decomposable and can be separated into L sub-

problems 𝑆𝑃𝑙(𝒓𝒍|𝒀̂), one for each freight load as follows.   

 

Integrated ILND Sub-Problem for Freight Load l (𝑆𝑃𝑙(𝒓|𝒀̂)): 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  ∑ 𝐶𝑙,𝑖
ℎ̂ . 𝑑𝑙. 𝑟𝑙,𝑖

ℎ̂

𝑅𝑙,ℎ̂

𝑖

 (4.11) 

 

Subject to: 

∑ 𝑟𝑙,𝑖
ℎ̂ = 1

𝑅𝑙,ℎ̂

𝑖

 
 

(4.12) 

𝑟𝑙,𝑖
ℎ̂  = {0,1} ∀𝑖 ∈ 𝑅𝑙,ℎ̂ (4.13) 

 

To generate the Bender’s cuts, the dual of sub-problems 𝑆𝑃𝑙(𝒓𝒍|𝒀̂) need to be formulated and 

solved.  Then, the dual sub-problem 𝑆𝑃𝑙(𝒓𝒍|𝒀̂) can be formulated using the dual variables 𝛼𝑙
ℎ̂ as 

follows: 

 

Integrated ILND Dual Sub-Problem for Freight Load l (𝐷𝑆𝑃𝑙(𝜶𝒍|𝒀̂)): 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒  𝛼𝑙
ℎ̂  

(4.14) 

 

Subject to: 

𝛼𝑙
ℎ̂  ≤  𝐶𝑙,𝑖

ℎ̂  𝑑𝑙  ∀𝑖 ∈ 𝑅𝑙,ℎ̂ (4.15) 

𝛼𝑙
ℎ̂  = 𝑢𝑛𝑟𝑖𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 𝑖𝑛 𝑠𝑖𝑔𝑛 

 
(4.16) 

 



90 

 

 

 

4.4.3.2 Bender’s Cuts 

Bender’s cuts generated with the sub-problems are added to the master problem.  A continuous 

variable Bl, and the values obtained by solving the dual sub-problem (𝐷𝑆𝑃𝑙(𝜶𝒍|𝒀̂) are used to 

generate a single Bender’s cut as follows: 

𝐵𝑙 ≥ 𝛼𝑙
ℎ̂ 𝑌ℎ (4.17) 

Note that we were able to generate a Bender’s cut for each freight load because the original sub-

problem was decomposed into L different sub-problems, each for one freight load.  To generate a 

valid Bender’s cut associated with freight load l, the sub-problem 𝑆𝑃𝑙(𝒓𝒍|𝒀̂) is required to be 

feasible which means that we need to have at least one route from the origin of freight load l to 

its destination that satisfies the maximum allowed transportation time for freight load l.  

Otherwise, we cannot ship freight load l and the sub-problem 𝑆𝑃𝑙(𝒓𝒍|𝒀̂) becomes infeasible.  In 

such case, we have to generate a feasibility cut in the following form: 

0 ≥ 𝛼𝑙
ℎ̂ 𝑌ℎ (4.18) 

The feasibility cuts will result in poor lower bounds (Kewcharoenwong and Üster, 2013).  So, 

one other advantage of separating the sub-problem and generating one Bender’s cut for each of 

the freight loads is that we can add optimality cuts or feasibility cuts based on the feasibility of 

the corresponding sub-problem.  While, if we have only one sub-problem for all of the freight 

loads, we would have to generate a feasibility cut even if only one of the freight loads couldn’t 

be shipped (i.e., has an infeasible sub-problem).  This would reduce the performance of the 

solution approach. 

4.4.3.3 Master Problem 

The master problem is a mixed integer program (MIP) which deals with finding the optimal 

terminal combination (i.e., intermodal terminal locations) as follows: 
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Integrated ILND Master Problem (𝑀𝑃(𝒀|𝜶̂)): 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝐹ℎ𝑌ℎ

𝐻

ℎ

+ ∑ 𝐵𝑙

𝐿

𝑙

 (4.19) 

 

Subject to: 

∑ 𝑌ℎ = 1

𝐻

ℎ

  (4.20) 

(set of Bender’s cuts)  (4.21) 

𝑌ℎ = {0,1} ∀ℎ ∈ 𝐻 (4.22) 

𝐵𝑙 ≥ 0 ∀𝑙 ∈ 𝐿 (4.23) 

 

The continuous variables 𝐵𝑙 were added to the master problem to enable the addition of the 

Bender’s cuts generated from the sub-problems into the master problem.  Moreover, at each 

iteration of the Bender’s decomposition algorithm, L new Bender’s cuts are added to the 

previous set of Bender’s cut.  The pseudo code of the Bender’s decomposition approach is 

presented in Figure 4.1. 
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Figure ‎4.1: The pseudo-code of Bender’s decomposition approach 

 

In preliminary testing, the Bender’s decomposition approach proved to have a good performance, 

however we can increase its performance by applying a preprocessing heuristic algorithm which 

reduces the size of problem instances and enhances the quality of the upper bound.  

4.4.3.4 Preprocessing Heuristic 

A preprocessing heuristic was developed to improve the performance of the Bender’s 

decomposition algorithm by reducing the size of the problem instance and generating a better 

upper bound for the problem.  This heuristic initially assumes that an intermodal terminal is 

opened at all potential terminal locations.  Then, based on this assumption, the optimal route for 

each freight load can be obtained by solving the sub-problem 𝑆𝑃𝑙(𝑟𝑙|𝑌ℎ = 1 ∀ℎ ∈ 𝐻) for each 

freight load.  If at least one freight load is found to be infeasible even with intermodal terminals 

open at all potential locations, we can conclude that this instance of the problem is infeasible 

Initialize UB = ∞, 𝛼̂ = 0 set of Bender’s cuts = ∅ 

Solve 𝑀𝑃(𝒀|𝜶̂) to obtain ZMP and Y 

Set LB = ZMP 

While (UB ≠ LB) { 

    For each freight load l { 

    Solve 𝐷𝑆𝑃𝑙(𝜶𝒍|𝒀̂) to obtain 𝑍𝐷𝑆𝑃𝑙
 and 𝛼𝑙

ℎ̂ 

    } 

    If (𝑍𝑀𝑃 − ∑ 𝐵𝑙𝑙 + ∑ 𝑍𝐷𝑆𝑃𝑙𝑙 < 𝑈𝐵) { 

        𝑈𝐵 =  𝑍𝑀𝑃 − ∑ 𝐵𝑙𝑙 +  ∑ 𝑍𝐷𝑆𝑃𝑙𝑙  

        𝒀̅  =  𝒀̂ 

    } 

    If (UB = LB) { 

        Break 

    } 

    Generate Bender’s cuts (either optimality cut or feasibility cut) and add them to 𝑀𝑃(𝒀|𝜶̂) 

    Solve 𝑀𝑃(𝒀|𝜶̂) to obtain ZMP, Y and Bl 

    Set LB = ZMP 

} 

Solve 𝑆𝑃(𝒓|𝑌̅) to obtain 𝒓̅ 

         Return 𝒀̅ and 𝒓̅ 
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without any further exploration.  Otherwise, we can use the optimal routes for freight loads to 

reduce the instance size by considering the following two situations.  First, if the optimal route 

for a freight load is point-to-point when all potential intermodal terminals are open, then the 

optimal route for this load in the optimal network design (when only terminals at the optimal 

locations are open) would be point-to-point as well.  Therefore, we can eliminate this freight load 

from the set of all loads which reduces the number of freight loads in the problem.  Second, we 

can enumerate the number of times each potential terminal location is used in the optimal routes 

for freight loads when all terminals are open.  We can then eliminate the potential locations that 

are never used or used only a few times from the set of potential intermodal terminal locations.  

Appendix B shows the proof that the preprocessing heuristic doesn’t eliminate the optimal 

solution. 

 

In addition, we also can improve the initial upper bound of the Bender’s decomposition approach 

by using the total network cost obtained when only the first V potential terminal locations that 

are used the most are open.  Our computational experimentation shows that this preprocessing 

heuristic significantly increased the performance of the Bender’s decomposition algorithm.  The 

pseudo code of this heuristic approach is presented in Figure 4.2. 

 

 

Figure ‎4.2: The pseudo-code of preprocessing heuristic 

Set 𝑈𝑝 = 0, ∀ 𝑝 ∈ 𝑃 

For all freight load l { 

    Solve 𝑆𝑃𝑙(𝑟𝑙|𝑌ℎ = 1 ∀ℎ ∈ 𝐻) 

    If (𝑟𝑙 is point-to-point) { 

        Discard freight load l  

    } 

    If (𝑟𝑙 pass through potential terminal location p) { 

        𝑈𝑝 += 1 

    } 

} 

For all potential terminal location p { 

    If (𝑈𝑝 = 0) { 

        Discard potential terminal location p 

    } 

} 
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The preprocessing heuristic is applied prior to the Bender’s decomposition algorithm.  The whole 

procedure is called accelerated Bender’s decomposition.  Preliminary computational experiments 

showed that the accelerated Bender’s decomposition algorithm can solve large instances of up to 

250 nodes and 12,450 freight loads in reasonable times.  A detailed discussion on computational 

experiments is presented in Section 4.5. 

4.5 Computational Experiments 

4.5.1 Experimental Design 

We evaluated the performance of the proposed solution approach using two sets of experiments 

similar to the approach used in Chapter 3.  The first set of experiments (Set A) represents small 

instances with 10, 20 and 30 nodes where all nodes can be considered as a potential intermodal 

terminal location, while the second set of experiments (Set B) represents medium to large 

instances with 50, 75, 100, 150, 200 and 250 nodes in which only a subset of nodes are 

considered to be the set of potential intermodal terminal locations. For both sets of experiments, 

nodes coordinates were generated randomly in a 1 × 0.5 rectangular area.  We used the 

configuration of the solutions obtained and the computational time to obtain optimal solutions as 

the performance metrics of interest in this study.   

 

Regarding freight loads, L different freight loads were selected randomly from all possible O-D 

pairs in the complete network.  Similar to Chapter 3, for each freight load, the maximum allowed 

transportation time and number of containers were selected randomly between 2 and 6 time units 

and 50 and 150 containers respectively.  It was assumed that each freight load can visit up to two 

terminals through its entire route and that all drayage operations can be handled only by trucks.  

Note that while the last two assumptions are not imposed by the proposed solution approach, 

they are common limitations in most real world instances and are considered in many of the 

previous studies including Chapter 3 and Ishfaq and Sox (2011) .  For each value of L, five 

different sets of loads were generated.  The value of L for each of the experiments sets is shown 

in Table 4.1.   
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All network costs were also generated similar to Chapter 3.  Fixed costs associated with opening 

intermodal terminals are generated randomly between 4,000 and 5,500.  Moreover, the per load 

transportation cost as well as the travel time between nodes i and j depend on the distance 

between the two nodes and vary based on the transportation mode.  Note that while the distance 

between origin and destination has a significant role in transportation cost and time, in real world 

instances they are not exactly proportional to the distance (i.e., due to congestion, service 

regulations, etc.).  Therefore, random values between 0 and 1 were added to the transportation 

time and cost to violate the triangular inequality in the experiments.  Equations (4.24) to (4.29) 

show the formulas used to calculate transportation cost and time for each node pair.  In these 

equations, Random (0, 1) is a uniformly distributed random variable between 0 and 1.  It was 

also assumed that a higher numbered transportation mode represents a mode that provides less 

expensive service over long distance, while it is more time consuming. 

 

Mode (m) Transportation cost per load between nodes i and j using mode m (𝑪𝒊𝒋
𝒎)  

1 𝐶𝑖𝑗
1 =  𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑖, 𝑗) / 2 +  𝑅𝑎𝑛𝑑𝑜𝑚(0, 1)  (4.24) 

2 𝐶𝑖𝑗
2 =  𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑖, 𝑗) / 3 +  𝑅𝑎𝑛𝑑𝑜𝑚(0, 1)  (4.25) 

3 𝐶𝑖𝑗
3 =  𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑖, 𝑗) / 4 +  𝑅𝑎𝑛𝑑𝑜𝑚(0, 1)   (4.26) 

Mode (m) Time to move a load between nodes i and j using mode m (𝒕𝒊𝒋
𝒎)  

1 𝑡𝑖𝑗
1 =  𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑖, 𝑗)   +  𝑅𝑎𝑛𝑑𝑜𝑚(0, 1)  (4.27) 

2 𝑡𝑖𝑗
2 =  𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑖, 𝑗) × 1.5 +  𝑅𝑎𝑛𝑑𝑜𝑚(0, 1)   (4.28) 

3 𝑡𝑖𝑗
3 =  𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑖, 𝑗) × 2 +  𝑅𝑎𝑛𝑑𝑜𝑚(0, 1)  (4.29) 

 

Finally, different values for discount factor (α), number of modes (T), number of terminals (V), 

and number of potential terminal locations were considered in solving all instances.  The values 

used for the discount factor (α) and the delay factor (β) were set equal to values previously used 

in Chapter 3 and Ishfaq and Sox (2011).  The list of all parameters and their values used in our 

computational experiments are shown in Table 4.1. 
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Table ‎4.1: Computational experiment parameters and their values. 

Parameter Set A Set B 

Number of Nodes (N) 10, 20, 30 50, 75, 100, 150, 200, 250 

Number of Loads (L) 
5%, 10%, 20% and 50% of 

all possible O-D pairs 
20% of all possible O-D pairs 

Number of Terminals (V) 2, 3, 4 2, 4 

Number of Modes (T) 2, 3 2, 3 

Discount Factor (α) 0.5, 0.9 0.5 

Delay Factor (β) 1.2 1.2 

Number of Potential Terminal 

Locations 
100% of all nodes 

10%, 15% and 20% of all 

nodes 

 

4.5.2 Computational Results 

Both, the Bender’s decomposition algorithm and the preprocessing heuristic were implemented 

in MATLAB.  All computational experiments were run on a 2.83 GHz Quad Core computer with 

8 GB of RAM.  The optimal solution for all instances in both Set A and Set B experiments were 

obtained using the Bender’s decomposition approach.  For each solution set, the trends that were 

observed in optimal solution costs for different parameter combinations will be presented first.  

Then, the performance of the Bender’s decomposition approach and the preprocessing heuristic 

will be discussed and compared to the solution approach presented in Chapter 3. 

4.5.2.1 Set A Computational Results 

Set A experiments represent small instances of the integrated ILND problem.  Table 4.2 shows 

the optimal solution costs for different experimental treatment combinations for one instance 

(i.e., Network Instance 1), and the percentage of the total cost that corresponds to the fixed cost 

of installing intermodal terminals.  The exact same trends were observed in all other instances 

that were tested.   

Similar to Chapter 3, the number of terminals in the intermodal logistics network should be 

determined prior to solving the problem using Bender’s decomposition.  Therefore, if the number 

of terminals is of interest by itself, the problem should be solved several times each time with a 
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different number of terminals.  Then, the optimal solutions associated with different number of 

terminals should be compared to each other to find the optimal number of terminals. 
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Table ‎4.2: Optimal solution costs for Network Instance 1 (Set A). 

# of 

Nodes 
# of Loads Criteria 

# of Modes = 2 # of Modes = 3 

Discount Factor = 0.5 Discount Factor = 0.9 Discount Factor = 0.5 Discount Factor = 0.9 

V = 2 V = 3 V = 4 V = 2 V = 3 V = 4 V = 2 V = 3 V = 4 V = 2 V = 3 V = 4 

10 

5 (5%) 
Total Cost 503 610 722 514 622 736 503 610 722 514 622 736 

% Fixed Cost 46 56 63 41 52 61 46 56 63 41 52 61 

9 (10%) 
Total Cost 781 884 991 781 888 998 781 884 991 781 888 998 

% Fixed Cost 33 41 48 33 41 49 33 41 48 33 41 49 

18 (20%) 
Total Cost 1,390 1,467 1,565 1,390 1,481 1,579 1,390 1,467 1,565 1,390 1,481 1,579 

% Fixed Cost 20 26 33 20 26 32 20 26 33 20 26 32 

45 (50%) 
Total Cost 3,118 3,113 3,172 3,150 3,176 3,241 3,118 3,113 3,172 3,150 3,176 3,241 

% Fixed Cost 8 12 16 8 12 16 8 12 16 8 12 16 

20 

19 (5%) 
Total Cost 1,690 1,754 1,827 1,690 1,757 1,831 1,690 1,754 1,827 1,690 1,757 1,831 

% Fixed Cost 14 22 29 14 21 28 14 22 29 14 21 28 

38 (10%) 
Total Cost 2,736 2,694 2,728 2,750 2,729 2,757 2,736 2,694 2,728 2,750 2,729 2,757 

% Fixed Cost 10 15 20 10 15 20 10 15 20 10 15 20 

76 (20%) 
Total Cost 4,875 4,826 4,798 4,913 4,889 4,846 4,875 4,826 4,798 4,913 4,889 4,846 

% Fixed Cost 6 8 11 5 8 11 6 8 11 5 8 11 

190 (50%) 
Total Cost 12,314 11,663 11,391 12,453 11,908 11,632 12,314 11,663 11,391 12,453 11,908 11,632 

% Fixed Cost 2 3 5 2 3 5 2 3 5 2 3 5 

30 

44 (5%) 
Total Cost 2,984 2,857 2,789 3,029 2,927 2,893 2,984 2,857 2,789 3,029 2,927 2,893 

% Fixed Cost 7 11 17 7 11 16 7 11 17 7 11 16 

87 (10%) 
Total Cost 4,921 4,679 4,654 4,931 4,720 4,675 4,921 4,679 4,654 4,931 4,720 4,675 

% Fixed Cost 4 7 10 4 7 10 4 7 10 4 7 10 

174 (20%) 
Total Cost 10,477 9,931 9,559 10,518 10,093 9,796 10,477 9,931 9,559 10,518 10,093 9,796 

% Fixed Cost 2 4 5 2 4 5 2 4 5 2 4 5 

435 (50%) 
Total Cost 27,040 25,517 24,380 27,185 25,868 24,850 27,040 25,517 24,380 27,185 25,868 24,850 

% Fixed Cost 1 1 2 1 1 2 1 1 2 1 1 2 
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According to Table 4.2, for a fixed network size, the optimal number of terminals depends on the 

number of loads in the network.  When the number of loads is small, opening more terminals 

cannot reduce enough the total transportation cost to compensate for the additional fixed terminal 

installation costs.  As a result, there would be a smaller number of terminals in the optimal 

network design.  For example, for a network with 20 nodes and only 19 loads, the optimal cost of 

the network with two terminals is lower than the one with three or four terminals.  On the other 

hand, when the network serves a larger number of loads, opening an additional terminal will 

increase the savings on transportation costs which will recoup what we pay for opening the 

additional terminal.  For example, for the same network with 20 nodes and 190 loads, the 

optimal cost for the network with four terminals is less than the one obtained with two or three 

terminals. 

 

Regarding the number of transportation modes, having more modes might help to reduce the 

transportation costs since more modes provide additional options when routing the freight loads.  

This is also shown in Table 4.2 where the optimal solution for the network with three 

transportation modes is always less than or equal to the one with two transportation modes.    

 

Regarding the effect of consolidation on the optimal cost, it is expected that a larger discount 

factor would result in larger discounts and produce solutions with less optimal cost.  This trend 

can also be observed in Table 4.2.  On the other hand, it is expected that with a larger delay 

factor, freight loads would experience more delays at terminals which might make some routes 

infeasible with regards to the maximum allowed transportation time constraint.  This will result 

in fewer options for routing freight loads which can increase the transportation cost.  In other 

words, increasing the delay factor cannot improve the optimal solution but might worsen it. 

 

Regarding the fixed cost of opening terminals, it can be seen in Table 4.2 that the percentage of 

the total network cost that corresponds to the fixed cost decreases as problem instances increased 

in size.  The reason for this is that by increasing the number of freight loads in an instance, the 

total transportation cost increases to move the additional loads while the number of terminals 
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remains the same.  This reduces the share of total fixed cost of opening terminals in the total 

network costs.  The exact same trend was observed in Set B instances. 

 

To evaluate the performance of the proposed solution approach, the average solution time over 

five instances of the problem with the same experimental treatment combination were computed 

for solving the problem using Bender’s decomposition with and without the preprocessing 

heuristic.  The average solution times were then compared to the average solution time obtained 

by applying the search algorithm presented in Chapter 3.  The average solution times obtained 

when the preprocessing heuristic was applied prior to the Bender's decomposition algorithm 

(denoted ABD) and their percentage difference with respect to the other two approaches (i.e., 

Bender’s decomposition (BD) and SA) are presented in Table 4.3.   
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Table ‎4.3: Set A average solution times (in seconds) for accelerated Bender’s decomposition (ABD) algorithm. 
#

 o
f 

N
o

d
es

 

#
 o

f 
L

o
a
d

s 

A
p

p
ro

a
ch

 

# of Modes = 2 # of Modes = 3 

Discount Factor = 0.5 Discount Factor = 0.9 Discount Factor = 0.5 Discount Factor = 0.9 

# of Terminals # of Terminals # of Terminals # of Terminals 

2 3 4 2 3 4 2 3 4 2 3 4 

10 

5 

ABD 0.006 0.002 0.002 0.001 0.001 0.006 0.002 0.004 0.004 0.000 0.004 0.001 

BD (%Diff.) -56 -90 -96 -89 -96 -92 -79 -84 -94 -100 -82 -99 

SA (%Diff.) -8 -20 -30 0 0 -5 -33 -33 -33 -100 -33 -67 

9 

ABD 0.000 0.001 0.004 0.002 0.002 0.005 0.000 0.005 0.005 0.002 0.003 0.005 

BD (%Diff.) -100 -96 -95 -79 -94 -94 -100 -80 -93 -68 -92 -94 

SA (%Diff.) -100 0 -33 -33 -33 -17 -100 -17 -10 -67 -13 -25 

18 

ABD 0.002 0.003 0.007 0.001 0.011 0.016 0.002 0.008 0.014 0.008 0.011 0.021 

BD (%Diff.) -68 -93 -93 -84 -76 -83 -84 -79 -86 28 -75 -77 

SA (%Diff.) -33 0 -22 -67 -31 -16 -33 -11 -13 -11 -8 -5 

45 

ABD 0.012 0.025 0.047 0.015 0.030 0.080 0.019 0.041 0.084 0.015 0.040 0.010 

BD (%Diff.) -33 -65 -71 -31 -56 -53 -25 -43 -47 -31 -47 -94 

SA (%Diff.) -22 -43 -42 -6 -19 -8 -1 -19 -6 -6 -15 -91 

20 

19 

ABD 0.012 0.025 0.056 0.022 0.053 0.197 0.012 0.041 0.109 0.022 0.106 0.427 

BD (%Diff.) -73 -94 -98 -56 -87 -92 -71 -90 -95 -50 -73 -81 

SA (%Diff.) -43 -75 -81 -1 -44 -43 -43 -61 -70 -1 -5 1 

38 

ABD 0.044 0.228 0.986 0.056 0.387 1.894 0.047 0.315 1.526 0.072 0.462 2.518 

BD (%Diff.) -50 -62 -71 -33 -36 -44 -40 -47 -56 -12 -26 -25 

SA (%Diff.) -18 -31 -23 6 18 37 -25 -13 -1 28 21 53 

76 

ABD 0.081 0.474 2.134 0.103 0.708 3.469 0.097 0.583 2.923 0.119 0.814 4.256 

BD (%Diff.) -43 -54 -62 -23 -33 -38 -34 -45 -48 -21 -23 -25 

SA (%Diff.) -32 -37 -40 -13 -7 -4 -21 -29 -29 -5 -3 1 

190 

ABD 0.215 1.226 5.735 0.256 1.619 7.784 0.243 1.544 7.663 0.300 1.922 9.887 

BD (%Diff.) -38 -49 -53 -25 -32 -37 -29 -36 -37 -9 -19 -19 

SA (%Diff.) -28 -36 -38 -13 -16 -17 -20 -24 -27 -1 -8 -7 

30 

44 

ABD 0.075 0.509 2.780 0.122 0.998 6.664 0.097 0.655 4.153 0.137 1.307 9.672 

BD (%Diff.) -63 -80 -87 -42 -60 -69 -52 -73 -81 -34 -47 -55 

SA (%Diff.) -52 -61 -63 -19 -26 -17 -36 -55 -53 -10 -13 1 

87 

ABD 0.225 2.037 14.727 0.309 3.070 24.739 0.275 2.652 21.188 0.334 3.382 28.345 

BD (%Diff.) -40 -52 -59 -15 -27 -30 -28 -37 -40 -12 -20 -20 

SA (%Diff.) -27 -33 -35 1 0 7 -12 -20 -20 7 0 6 

174 

ABD 0.402 3.435 23.594 0.555 5.310 41.503 0.462 4.249 31.802 0.608 6.290 51.976 

BD (%Diff.) -47 -56 -64 -24 -32 -36 -38 -47 -52 -16 -21 -21 

SA (%Diff.) -34 -44 -50 -9 -15 -13 -26 -36 -41 -3 -6 -4 

435 

ABD 0.983 8.430 56.816 1.401 13.326 101.182 1.214 11.407 86.456 1.532 15.232 121.793 

BD (%Diff.) -45 -56 -63 -21 -31 -34 -31 -41 -43 -15 -21 -21 

SA (%Diff.) -35 -46 -53 -7 -16 -16 -22 -32 -36 -2 -9 -9 
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According to Table 4.3, the average solution time increases with the instance size 

(number of nodes, number of freight loads, and number of transportation modes that 

are integrated to form the intermodal logistics network).  In addition to the instance 

size, the number of terminals in the network also had a significant effect on solution 

time.  However, as expected, the value of the constant discount and delay factors had 

no significant effect on solution time.  The accelerated Bender's decomposition 

approach outperforms both Bender's decomposition and the search algorithm 

presented in Chapter 3.  However, it can be seen that the search algorithm of Chapter 

3 has a better computational performance than the Bender's decomposition approach.  

The preprocessing heuristic applied prior to Bender's decomposition, improved its 

performance by decreasing the instance size and improving the upper bound.  Tables 

4.4 and 4.5 show the average percentage of discarded potential terminal locations and 

freight loads using the preprocessing heuristic, respectively. 
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Table ‎4.4: Average percentage of discarded potential terminal location using 

preprocessing heuristic in Set A instances. 

# of 

Nodes 

# of  

Loads 

# of Modes 

2 

# of Modes 

3 

Discount 

Factor 

0.5 

Discount 

Factor 

0.9 

Discount 

Factor 

0.5 

Discount 

Factor 

0.9 

10 

5 (5%) 60 40 58 40 

9 (10%) 48 30 38 28 

18 (20%) 25 10 13 8 

45 (50%) 18 0 5 0 

20 

19 (5%) 61 44 56 35 

38 (10%) 16 6 14 3 

76 (20%) 10 3 6 3 

190 

(50%) 
4 1 1 0 

30 

44 (5%) 33 18 29 13 

87 (10%) 10 0 5 1 

174 

(20%) 
11 2 7 0 

435 

(50%) 
11 1 4 0 

 

According to Table 4.4, the average number of discarded potential terminal locations 

decreases as the number of freight loads in the network increases.  As mentioned in 

Section 4.4.3.4, the preprocessing heuristic discards a potential terminal location 

when no freight load uses it even in the case when all terminals would be open.  

Therefore, as more freight loads exist there is a higher chance that a potential terminal 

location will be used.  If in addition to discarding the unused locations, the 

preprocessing heuristic also discards potential locations that would be used only a few 

times, fewer potential locations would result in shorter solution times.  However, this 

might reduce the quality of solutions (i.e., the procedure might not get the optimal 

solution). 
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Also regarding instance size reduction by applying the preprocessing heuristic, it can 

be seen in Table 4.5 that about 20% to 30% of freight loads were discarded from 

further exploration because they are were routed point-to-point even when all 

terminals were open.  Similar results were observed for Set B instances.  

 

Table ‎4.5: Average percentage of discarded freight loads using preprocessing 

heuristic in Set A instances. 

# of 

Nodes 

# of  

Loads 

# of Modes 

2 

# of Modes 

3 

Discount 

Factor 

0.5 

Discount 

Factor 

0.9 

Discount 

Factor 

0.5 

Discount 

Factor 

0.9 

10 

5 (5%) 40 25 30 15 

9 (10%) 44 33 36 19 

18 (20%) 35 19 29 11 

45 (50%) 49 36 44 26 

20 

19 (5%) 50 41 45 36 

38 (10%) 31 20 28 18 

76 (20%) 38 28 36 22 

190 

(50%) 
36 26 34 20 

30 

44 (5%) 31 22 31 20 

87 (10%) 29 19 29 16 

174 

(20%) 
31 23 29 19 

435 

(50%) 
31 22 29 17 

 

4.5.2.2 Set B Computational Results 

Table 4.6 shows the optimal solution costs for Network Instance 1 for all 

experimental treatment combinations in Set B and the percentage of the fixed cost in 

the total solution cost.  In addition to the trends discussed in Section 4.5.2.1, it can be 

observed that the optimal solution was affected by the number of potential terminal 

locations that were considered in the integrated ILND problem.  More potential 

terminal locations means more options for locating intermodal terminals.  These 
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additional options can reduce the total solution cost.  In other words, increasing the 

number of potential terminal location cannot worsen the optimal solution but it might 

improve it.  

 

Also, Table 4.7 shows the average solution times over five instances of each 

experimental treatment combination in Set B for the accelerated Bender’s 

decomposition.  Table 4.7 also shows the percentage difference in average solution 

time of the accelerated Bender’s decomposition approach with respect to Bender’s 

decomposition and the search algorithm presented in Chapter 3.  Similar trends to 

those observed for Set A instances were found for Set B instances.  Moreover, the 

solution time was also affected by the number of potential terminal locations.  More 

potential terminal locations result in a bigger solution space which would require 

more time to find optimal solutions.  Note that the search algorithm presented in 

Chapter 3 was tested with instances having up to 150 nodes and 4,470 freight loads, 

therefore the percentage differences shown in Table 4.7 were calculated only for 

those instances.  Similar to Set A instances, the accelerated Bender’s decomposition 

approach outperforms the other two approaches as seen in Table 4.7.  The largest 

problem instances with 250 nodes, 50 potential terminal locations, and 12,450 freight 

loads were solved in about 5 hours in average, which is reasonable for a strategic 

planning problem such as the integrated ILND problem. 

  



106 

 

 

 

Table ‎4.6: Optimal solution costs for Network Instance 1 (Set B). 

# of 

Nodes 

# of 

Loads 

# of Potential 

Terminal 

Locations 

Approach 

Discount Factor = 0.5 

# of Modes = 2 # of Modes = 3 

V = 2 V = 4 V = 2 V = 4 

50 
490 

(20%) 

10% N 
Total Cost 31,629 30,945 31,629 30,945 

% Fixed Cost 0.74 1.53 0.74 1.53 

15% N 
Total Cost 31,091 29,141 31,091 29,141 

% Fixed Cost 0.89 1.81 0.89 1.81 

20% N 
Total Cost 31,091 29,141 31,091 29,141 

% Fixed Cost 0.89 1.81 0.89 1.81 

75 
1110 

(20%) 

10% N 
Total Cost 69,977 65,670 69,977 65,670 

% Fixed Cost 0.39 0.78 0.39 0.78 

15% N 
Total Cost 69,459 64,907 69,459 64,907 

% Fixed Cost 0.34 0.78 0.34 0.78 

20% N 
Total Cost 68,569 63,334 68,569 63,334 

% Fixed Cost 0.37 0.76 0.37 0.76 

100 
1980 

(20%) 

10% N 
Total Cost 126,337 116,840 126,337 116,840 

% Fixed Cost 0.22 0.46 0.22 0.46 

15% N 
Total Cost 126,337 115,605 126,337 115,605 

% Fixed Cost 0.22 0.45 0.22 0.45 

20% N 
Total Cost 125,842 115,605 125,842 115,605 

% Fixed Cost 0.22 0.45 0.22 0.45 

150 
4470 

(20%) 

10% N 
Total Cost 286,296 270,144 286,296 270,144 

% Fixed Cost 0.09 0.20 0.09 0.20 

15% N 
Total Cost 286,296 264,380 286,296 264,380 

% Fixed Cost 0.09 0.19 0.09 0.19 

20% N 
Total Cost 286,296 264,380 286,296 264,380 

% Fixed Cost 0.09 0.19 0.09 0.19 

200 
7960 

(20%) 

10% N 
Total Cost 511,477 473,557 511,477 473,557 

% Fixed Cost 0.05 0.11 0.05 0.11 

15% N 
Total Cost 505,460 466,178 505,460 466,178 

% Fixed Cost 0.05 0.11 0.05 0.11 

20% N 
Total Cost 505,460 461,624 505,460 461,624 

% Fixed Cost 0.05 0.11 0.05 0.11 

250 
12,450 

(20%) 

10% N 
Total Cost 802,942 746,029 802,942 746,029 

% Fixed Cost 0.02 0.05 0.02 0.05 

15% N 
Total Cost 802,942 737,342 802,942 737,326 

% Fixed Cost 0.02 0.05 0.02 0.05 

20% N 
Total Cost 802,942 736,896 802,550 736,099 

% Fixed Cost 0.02 0.05 0.02 0.05 
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Table ‎4.7: Set B average solution times (in seconds) for ABD algorithm. 

# of 

Nodes 

# of 

Loads 

# of Potential 

Terminal 

Locations 

Approach 

Discount Factor = 0.5 

# of Modes = 2 # of Modes = 3 

V = 2 V = 4 V = 2 V = 4 

50 
490 

(20%) 

10% N 

ABD 0.02 0.02 0.02 0.02 

BD (%Diff.) -43 -33 -33 -27 

SA (%Diff.) 0 -60 -19 -43 

15% N 

ABD 0.07 0.21 0.08 0.24 

BD (%Diff.) -46 -52 -37 -43 

SA (%Diff.) -41 -43 -32 -41 

20% N 

ABD 0.12 0.66 0.13 0.75 

BD (%Diff.) -38 -48 -32 -41 

SA (%Diff.) -32 -39 -30 -38 

75 
1110 

(20%) 

10% N 

ABD 0.16 0.44 0.17 0.51 

BD (%Diff.) -44 -53 -37 -46 

SA (%Diff.) -38 -45 -36 -43 

15% N 

ABD 0.33 2.28 0.35 2.60 

BD (%Diff.) -40 -48 -35 -40 

SA (%Diff.) -33 -40 -35 -39 

20% N 

ABD 0.69 10.43 0.74 11.71 

BD (%Diff.) -32 -42 -28 -35 

SA (%Diff.) -26 -33 -24 -33 

100 
1980 

(20%) 

10% N 

ABD 0.48 2.56 0.51 2.86 

BD (%Diff.) -39 -48 -33 -41 

SA (%Diff.) -33 -41 -33 -40 

15% N 

ABD 1.22 18.60 1.31 20.92 

BD (%Diff.) -32 -41 -27 -34 

SA (%Diff.) -27 -33 -25 -32 

20% N 

ABD 2.23 62.75 2.52 79.49 

BD (%Diff.) -31 -44 -23 -29 

SA (%Diff.) -26 -36 -19 -26 

150 
4470 

(20%) 

10% N 

ABD 2.72 40.66 2.87 45.42 

BD (%Diff.) -33 -43 -29 -36 

SA (%Diff.) -27 -34 -27 -35 

15% N 

ABD 7.08 285.19 7.47 318.21 

BD (%Diff.) -28 -38 -23 -31 

SA (%Diff.) -21 -29 -21 -30 

20% N 

ABD 12.41 883.75 13.08 989.68 

BD (%Diff.) -26 -38 -22 -31 

SA (%Diff.) -20 -29 -20 -29 

200 
7960 

(20%) 

10% N 

ABD 9.25 272.93 9.76 305.89 

BD (%Diff.) -29 -39 -25 -32 

SA (%Diff.) - - - -- 

15% N 

ABD 22.75 1,658.16 24.06 1,902.03 

BD (%Diff.) -24 -35 -19 -25 

SA (%Diff.) - - - - 

20% N 

ABD 40.30 5,086.59 42.40 5,806.03 

BD (%Diff.) -25 -40 -21 -32 

SA (%Diff.) - - - - 

250 
12450 

(20%) 

10% N 

ABD 23.53 1,166.19 25.52 1,331.04 

BD (%Diff.) -27 -36 -19 -27 

SA (%Diff.) - - - - 

15% N 

ABD 54.68 6,196.35 58.84 7,102.16 

BD (%Diff.) -26 -42 -21 -33 

SA (%Diff.) - - - - 

20% N 

ABD 87.92 15,757.61 97.82 18,830.26 

BD (%Diff.) -32 -53 -25 -44 

SA (%Diff.) - - -  
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A summary of all of the trends observed in the computational results for both Set A 

and Set B instances is presented in Table 4.8. 

 

Table ‎4.8: Summary of observed trends in the results for both Set A and Set B 

instances. 

Change 
Solution  

Cost 

Solution  

Time 

Increasing number of nodes Increase Increase 

Increasing number of freight loads Increase Increase 

Increasing number of potential terminal locations Decrease Increase 

Increasing number of transportation modes Decrease Increase 

Increasing discount factor Decrease No change 

Increasing delay factor Increase No change 

 

4.6 Conclusions and Future Work 

The expected growth of intermodal transportation demand along with the reduced 

environmental and social costs associated with intermodal transportation make the 

problem of locating new intermodal facilities more important every day.  Recently, 

relevant tactical and operational decisions including route and mode selection for 

freight loads have been integrated with the intermodal terminal location problem in 

order to improve the performance of the intermodal logistics network.  However, 

integrating all of these decisions in a single mathematical formulation adds 

complexity and makes it more difficult to find optimal solutions in an efficient way.  

In this research, a Bender’s decomposition algorithm is implemented to solve the 

integrated ILND problem as formulated Chapter 3.  A preprocessing heuristic was 

also developed that reduces the problem instance size and obtains better upper bounds 

for the problem.  Based on the results obtained in the computational experiments, the 

preprocessing heuristic was able to improve the performance of the Bender’s 

decomposition algorithm significantly. 
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The computational results show that the optimal solution cost significantly depends 

on the number of nodes, freight loads, potential terminal locations, number of 

transportation modes in the network, and the value of discount and delay factors for 

consolidated movements.  Moreover, the computational time of the accelerated 

Bender’s decomposition approach depends on the number of nodes, freight loads, 

potential terminal locations, number of terminal locations to open, and transportation 

modes in the network.  The accelerated Bender’s decomposition approach was able to 

obtain the optimal solution for a large instance of up to 250 nodes and 12,450 freight 

loads in about 5 hours which is reasonable time for the strategic integrated ILND 

problem.  As a potential area of improvement, a parallel computing implementation 

of the formulation and solution method can be implemented to further reduce the 

computational time. 

 

Another future research direction could be the integration of additional related 

decisions such as imposing a resource level limitation at terminals within the 

integrated ILND problem.  This would certainly increase the complexity of the 

formulation of the integrated ILND problem, but will result in a more realistic model.  

Also, a more realistic assumption could be considered especially for modeling the 

effect of consolidation on transportation cost and time for inter-terminal movements 

as opposed to using constant discount and delay factors.  The latter two research 

directions would improve the applicability of the resulting intermodal logistics 

networks obtained for the integrated ILND problem in practice, but on the other hand 

would increase the complexity of the mathematical formulation.  Consequently, 

additional work on developing efficient solution methods to solve this large-scale 

optimization problem is also an area for future research.  
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4.8 Appendix B 

Proposition 1: If the optimal route for a freight load is point-to-point when all 

potential intermodal terminals are open, then the optimal route for this load in the 

optimal network design (when only terminals at the optimal locations are open) 

would be point-to-point as well. 

 

Proof by contradiction:  

Suppose the optimal route for this load in the optimal network design is denoted by 

𝑅𝑙
∗ and 𝑅𝑙

∗ is not point-to-point, this means 𝑅𝑙
∗ passes through at least one open 

terminal.  Since 𝑅𝑙
∗ is the optimal route, the transportation cost of  𝑅𝑙

∗ is less than the 

transportation cost of the point-to-point route.  Since all the terminals that 𝑅𝑙
∗ passes 

through would be open in the solution when all terminals are open, 𝑅𝑙
∗ would be 

available in that scenario.  Therefore, there would be another feasible route available 

with lower transportation cost when all terminals were open which is in contradiction 

with the fact that the optimal route for this load was point-to-point when all terminals 

were open. ∎ 

 

Proposition 2: If a potential location is never used in any of the optimal routes when 

all terminals were open; this potential location would be close in the optimal network. 

 

Proof: 

Suppose potential location k is never used in any of the optimal routes when all 

terminals were open. Therefore, opening a terminal at location k won’t change any 

optimal route which means we won’t get any additional savings on transportation 

cost. On the other hand, opening a terminal at k would increase the fixed installation 

cost by Fk.  As a result, opening a terminal at k would increase the objective function 

which is in contradiction with minimizing the objective function. ∎   
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5 Conclusions and Future Work 

The expected growth of intermodal transportation demand along with the reduced 

environmental and social costs associated with intermodal transportation make the 

problem of locating new intermodal facilities more relevant every day.  This research 

addressed the problem of designing intermodal logistics networks by developing two 

mathematical formulations in which the route and mode selection problems are 

integrated with the problem of finding the best location for new intermodal 

transportation facilities.  The arc-based formulation presented in Section 2.4.2, 

considered a nonlinear cost function that relates the per container transportation cost 

to the amount of flow between two nodes.  Although this is a realistic assumption, 

modeling it this way made the mathematical formulation intractable even for medium 

size instances of the problem.  So, in order to obtain near optimal solutions for this 

arc-based solution, a GA-based heuristic approach that combines a genetic algorithm 

and the shortest path algorithm was developed.  According to the computational 

experiments performed with this formulation and solution approach, the proposed 

GA-based heuristic was able to obtain solutions that were very close to the optimal 

solution for small instances of the problem with 10 nodes.  More importantly, the 

GA-based heuristic was able to find most of the optimal intermodal terminal 

locations.  However, the percentage cost difference between the GA-based heuristic 

solution and optimal solutions increased with the size of the instances.  Still, the 

average percentage of optimal hubs found by the GA-based heuristic was large even 

as instance sizes increased.  The latter shows that the difference between the total cost 

obtained using the GA-based heuristic method and the optimal solution was due to 

the selection of non-optimal routes and transportation modes by the proposed GA-

based heuristic.  Therefore, improving the load route and transportation mode 

selection portion of the GA-based heuristic approach is a potential area for future 

research. 

Although we obtained heuristic solutions that were very close to the optimal solutions 

for small instances of this formulation, we were not able to obtain the optimality gap 

for larger instances.  Therefore, another potential area for future research could be 
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developing and implementing a lower bound approach such as Lagrangian relaxation 

to obtain high quality lower bounds for the arc-based mathematical formulation.  

These lower bounds then can be used to guarantee small optimality gaps for the 

proposed GA-based heuristic solutions. 

 

Since, the arc-based mathematical formulation was shown to be intractable for even 

medium instances of the IILND problem; a route-based formulation was developed.  

This formulation takes advantage of composite variables to capture route feasibility 

constraints within the formulation of the variables instead of explicitly including them 

in the mathematical model.  Moreover, unlike the arc-based formulation, the effects 

of consolidating freight loads at intermodal terminals on transportation cost and time 

were modeled using constant discount and delay factors, respectively.  A 

decomposition-based search algorithm was developed to obtain the optimal solution 

of the proposed route-based formulation with composite variables.  According to the 

computational experiments, the computational time required to obtain optimal 

solutions using the decomposition-based search algorithm increased with the size of 

instances, number of potential intermodal terminal locations, and number of open 

intermodal terminals in the network.  For example, it took about 25 minutes to find 

the optimal solution for an instance with 150 nodes and 4,500 freight loads when 

locating four intermodal terminals.  The decomposition-based search algorithm 

showed good performance for small and medium size instances of the IILND 

problem.  However, in order to obtain optimal designs for real size intermodal 

logistics networks, an accelerated Bender’s decomposition algorithm was developed 

which can solve large instances of up to 250 nodes and 12,450 freight loads in about 

five hours when locating four intermodal terminals.  According to the completed 

computational experiments for both solutions approaches that were developed to find 

the optimal solution of the route-based mathematical formulation, the optimal 

solution costs depends on the network size (i.e., number of nodes and loads, and the 

number of transportation modes), number of hubs to be opened, and the value of the 
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discount and delay factors that are applied to the inter-hub transportation cost and 

time. 

 

The objective function of both mathematical formulations that were presented in this 

research was to minimize the total network costs including the fixed terminal 

installation costs and the total transportation cost associated with the freight loads.  

However, the applicability of this research can be increased by considering other 

costs related to intermodal transportation networks including a cost due to conflicts of 

interest between different stakeholders engaged in the intermodal transportation 

network (i.e., carriers of each of the single mode networks, shippers, terminal 

operators, etc.) or environmental costs associated with the logistics network including 

the greenhouse gas emissions costs.  Incorporating these cost elements to the 

objective function of the IILND problem would be another potential area for future 

research. 

 

Finally, the applicability of the proposed mathematical formulations can also be 

improved by integrating more related decisions to the IILND problem including 

resource levels at intermodal terminals (i.e., workforce levels, number and type of 

cranes and other material handling and storage equipment, etc.) which are required 

based on expected freight traffic flow through the terminals, intermodal terminal 

layout, etc.  Note that integrating more related decision will improve the applicability 

of a mathematical formulation for the IILND problem, but on the other hand, it will 

increase the complexity of the formulation as well.  Therefore, new efficient solution 

approaches are also needed for new integrated mathematical formulations of this 

problem.  Otherwise, the new mathematical formulation might not be useful to solve 

real size instances of the IILND problem. 

 

Furthermore, during this research I had the opportunity to learn many operations 

research and computer science techniques that can be applied to large-scale 

optimization problems.  These type of problems are very interesting to me.  
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Therefore, I want to do more research to apply these and other operations research 

and computer science techniques to other practical problems including different 

problems within the supply chain industry.  Specifically, I would like to apply 

learning algorithms to obtain good solutions for integrated supply chain planning 

problems which would be an interesting field of study for future research.   
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