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Wave energy holds great promise to be part of the alternative energy port-

folio that will provide independence from fossil fuels. As wave energy converter

(WEC) technologies mature, designing effective control strategies to extract max-

imum energy, extend device life, coordinate WEC operation within an array, or

mitigate negative impacts of a WEC becomes an increasingly important area of

research. However, developing tractable models for the real-time computation

of WEC control signals is challenging. This thesis is concerned with develop-

ing a model reduction approach for control design that is suitable for application

to high fidelity computational fluid-structure interaction. There are many ap-

proaches to model reduction; in the last two decades, much attention has been

focused on the proper orthogonal decomposition and other singular value decom-



position (SVD) type methods. In the control literature, the balanced truncation

is an established approach to model reduction. Balanced POD is a computational

approach related to the proper orthogonal decomposition in order to compute bal-

anced truncation of a control system. The work presented in this thesis is the

investigation into the applicability of a recently developed model reduction tech-

nique, Balanced POD, applied to a WEC fluid-structure interaction problem. We

first model a one-dimensional fluid-structure interaction model arising in WEC

dynamics heuristically, then design two control strategies for the tracking control

of the WEC. Finally, we address the problem of estimating the type of informa-

tion that can be available to the WEC controller and developing estimates of wave

heights and forces that are suitable for control design. The work presented here

paves the way for further research regarding the suitability of model reduction

techniques applied to WEC problem. The simulation results clearly demonstrate

that the reduced order models can successfully capture the fundamental nature of

WEC dynamics and can be readily used for control design.
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NOMENCLATURE

m ≡ density of the mass in cable-mass system

ρ ≡ density of the cable in cable-mass system

τ ≡ tension in the cable

γ ≡ damping coefficient

k1 ≡ linear spring stiffness constant for cable-mass system

k3 ≡ nonlinear spring stiffness constant for cable-mass system

m0 ≡ wave maker mass

k0 ≡ stiffness constant for wave maker

β2 ≡ tension in ocean waves

kl,1 ≡ linear stiffness constant of WEC

kl,3 ≡ nonlinear stiffness constant of WEC

l ≡ wave tank length

γl ≡ damping coefficient



Chapter 1: Introduction

Harnessing energy from the ocean presents an attractive potential addition to the

patchwork of clean energy sources that could provide alternatives to fossil fuels.

Recent estimates from the US Department of Energy place marine energy and in

river turbines as potentially providing 25% of the US energy needs. Wave energy

conversion, one of the three major types of kinetic ocean energy technology, is

where wind energy was 30 years ago. That is, the best type of device is yet

unknown, and much research is yet to be done to bring the industry to maturity.

A critical piece of this research involves controlling wave energy converters (WECs).

There are several objectives that have been considered in control design: maximum

energy extraction, energy extraction while maximizing WEC life, minimizing stress

due to extreme events [1, 2].

A challenge for controlling WECs is developing tractable models that can be

used for real-time computation of WEC control signals. The fluid-structure inter-

actions of the WEC in the ocean and the forces on the WEC are far too complex

to use a high fidelity model in this context. Therefore, reduced order models are

required. This work is concerned with developing a model reduction approach for

control design that is suitable for application to the high fidelity computational

fluid-structure interaction.

There are many approaches to model reduction; in the last two decades, much
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attention has been focused on the proper orthogonal decomposition and other

singular value decomposition (SVD) type methods [3, 4]. One strength of SVD

type methods is that they can be applied to data from a computational model or

experiments, and little knowledge of the simulation code is required. A challenge

to SVD methods is that the model is based on a specific data set, and how well

it does in representing behavior outside that dataset is largely unknown. This

attribute provides an added challenge when using such models for control design;

since controls change the behavior of the system, at times in fundamental ways,

can the model derived from an SVD type reduction method capture these changes?

In the control literature, the balanced truncation is an established approach to

model reduction [5]. The balanced truncation method is based on system concepts

that lead to a reduced order model that captures fundamental aspects of the control

system. A challenge to this method is that it requires matrix computations that

can be unwieldy, and intractable, especially for large matrix systems that would be

encountered in the context of the fluid-structure interaction WEC control problem.

The work in this thesis is a hybridization of the two approaches, with a com-

putational approach related to the proper orthogonal decomposition applied to

compute balanced truncations of a control system. Balanced POD, as a recently

developed model reduction method, has been applied to a number of applications

to date [6–8]. However none of the problems have had the system characteristics

of a WEC fluid-structure interaction problem. This work is the first in a planned

series of work that investigates the suitability of the balanced proper orthogonal

decomposition, or Balanced POD, as a model reduction technique for the fluid-
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structure interaction models arising in WEC dynamics.

The applicability of Balanced POD algorithm to parabolic systems has been

verified and its convergence behavior has been studied in previous works [9]. How-

ever, this technique may not show great promise for highly oscillatory systems.

Moreover, feasibility of the Balanced POD application to hyperbolic systems, such

as those arising in WEC dynamics, is yet to be shown. Therefore, this work first

strives to investigate the suitability of the algorithm when applied to a hyperbolic

system in order to get a sense that it properly works for WEC fluid-structure

interaction problem.

As a first step to apply these methods to this new domain, we take a simplified

approach towards the modeling of a WEC interacting with ocean waves. In order

to capture the fundamental nature of the WEC problem, a simple one-dimensional

fluid-structure interaction problem in a wave tank is considered and synthesized.

Specifically, we consider a point absorber buoy that is a WEC which has a float

on the surface of the water and is held in place by its connections to the seabed

and moves in relation to a spar. Figure 1.1 shows such a point absorber buoy.

In this work, we use a simplified model for a point absorber buoy: a mass that

is supported by a spring that is attached to the ocean bottom. The mass represents

the motion of the float and the spring represents the buoyancy forces of the waves

on the WEC. On either side of the mass, we use a wave equation to simply model

the ocean hydrodynamics as illustrated in Figure 1.2.

The mathematical equations for the model considered here are similar to those

used for a cable-mass problem, researched extensively by Burns and King [10].
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Figure 1.1: A point absorber WEC

Their research can help us to understand the properties of this model. Particularly,

the motion of the WEC has the same dynamics as the motion of the mass in the

previous literature. Appropriate choices of boundary conditions to be employed to

the WEC problem in a wave tank will be discussed later.

It should be noted that we will use “reduce-then-design”approach to obtain

a low-order controller for the WEC problem. This approach involves reducing

the PDE model using a model reduction technique first and then applying a con-

trol strategy to it. Figure 1.3 shows the diagram describing the “reduce-then-

design”approach.

Once the reduced order model is obtained, optimal control designs will be

applied with the goal of comparing the reduced order control with the control for
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Figure 1.2: A simplified point absorber buoy model

the high fidelity model of this idealized model. In the first step, we will use the

standard LQR tracking controller with a periodic desired WEC position to test

the basic control design. Then, the control method will be extended to testing

an approach to state estimation that can be utilized with the information limits

inherent in ocean operations using LQG control.

Figure 1.3: “Reduce then Design”diagram
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1.1 Contributions

Major contributions of this thesis involve the following items:

1. Verifying the applicability of balanced POD model reduction technique to

hyperbolic systems especially when applied to WEC problem;

2. Developing a simplified approach to study the high fidelity fluid-structure

interaction problem arising in WEC dynamics;

3. Comparing multiple sensor locations to use in control calculations and de-

veloping LQR and LQG tracking systems for two different system configura-

tions;

4. Constructing the desired tracking function for the WEC to follow by wave

height estimation using buoy data.

Note that the work done in this thesis is the first in a planned series of work

that attempts to investigate the application of model reduction techniques to wave

energy research area. A heuristic 1D PDE model for a wave energy converter in a

wave tank that is studied in this thesis could serve as a test bed for further research,

which can be later extended to multiple spatial dimensions in a real ocean.



7

Chapter 2: Literature Review

2.1 Wave Energy Overview

The decrease in the natural resources resulting from increasing demand of en-

ergy necessitates the utilization of renewable energy sources. The potential for

extracting energy from ocean waves as a sustainable energy source is considerable.

According to [11], it is estimated that wave energy has potential contribution of

2,000 TWh/year in the world electricity market. However, wave energy converter

technology is still far from being competitive compared to other renewable energy

sources [12].

The devices that convert the wave energy into electricity are called Wave En-

ergy Converters. In the last decades, there has been extensive research into the

development of WECs that can be found in several surveys [13–17]. The earliest

recorded interest in utilizing ocean waves for on-shore use is a patent for a wave-

energy-conversion device filed by a French inventor in 1799. Since then, there has

been a plethora of ideas on how best to convert wave energy. In contrast to the

modern wind industry, there is yet no single dominant technological paradigm for

ocean-wave-energy conversion. However, past and current designs can be classified

within three main categories, namely, oscillating water column (OWC), overtop-

ping, and oscillating body (for more details, see [12]). For example, Figure 2.1
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Figure 2.1: The L10 Point Absorber wave energy converter (WEC). (a) shows the
operation of the L10 point absorber WEC. (b) shows the L10 deployed
at Yaquina Head, Oregon, in September 2008

shows a point absorber WEC which is an example of oscillating body devices

that was developed and tested by Columbia Power Technologies, in collaboration

with Oregon State University and with funding support from the U.S. Navy and

Columbia Power Technologies. This point absorber is called the L10, for “linear

10 kW”.

Commercializing this energy source requires systems and control tools to un-

derstand the resource and how to efficiently maximize the energy extracted from

waves. Control systems can be used for a variety of reasons in the context of wave

energy, such as maximizing the energy extraction from waves, minimizing exces-

sive wear or damage to devices from unusually large waves or storm events, and
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coordinating arrays of wave energy converters (WECs).

Many areas in wave energy control are ripe for further research. For example,

developing control strategies that balance energy conversion with damage miti-

gation to maximize the overall revenue can be significant. Optimal control ap-

proaches with appropriate objective functions have the potential to address this

challenge [18]. Moreover, as large waves and devices exhibit significant nonlinear

behavior, robust and fast nonlinear control and modeling approaches are needed.

Adaptive control approaches, such as maximum power point tracking [19,20], may

be a practical and effective approach to dealing with nonlinearities and changing

operating conditions. As more sophisticated models of the fluid-structure interac-

tions are coupled to device models to more accurately predict forces, reduced-order

model and control designs are important, that will be the main focus of this thesis.

2.2 Model Reduction Techniques

Distributed parameter systems are systems whose state spaces are infinite dimen-

sional. Therefore, they are often called as infinite dimensional systems [21]. Prob-

lems that are governed by partial differential equations (PDEs) or delay differential

equations are the examples of such systems. A PDE system that is introduced in an

infinite dimensional space necessitates the application of a numerical approxima-

tion scheme to give the corresponding finite dimensional system for computational

purposes. In many cases, when a PDE system is discretized using a numerical

approximation method, the number of the resulting system states will be still
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very large. In the case that a large approximating system is used in control de-

sign, a large-scale controller will result. The real-time control of such systems

such as fluid-structure interactions becomes impractical. Since we are interested

in design of controllers that can be readily used for real time purposes, large-

scale models or controllers should be reduced at some point using model reduction

techniques [6], [22–24].

In a model reduction technique, a large, high fidelity model is replaced by a

smaller, more computationally tractable model that can closely approximate the

original dynamics. In other words, model reduction involves reducing a given dy-

namic finite element model to one with fewer degrees of freedom while maintaining

the dynamic characteristics of the system. For example in [25], Lee and Tran em-

ploy two reduced order methods for feedback control of Kuramoto-Sivashinsky

equation. Rowley develops a model reduction for fluid flows in [6]. In general, the

model reduction technique should have the following properties:

• Applicability to large class of dynamical systems

• Computationally tractable

• Minimizing a reduction error between the full-order and the reduced-order

model

A model reduction technique for models of high complexity is needed to:

• Conduct simulations in a short period of time with limited memory storage

capacity (need for computational speed)
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• Allow for model based control design

• Perform on-line optimization of processes

• Improve numerical accuracy of the model (large-scale systems are likely to

be ill-conditioned)

• Allow for the implementation of the model on a chip

Some of the motivating examples requiring the reduction techniques are high

frequency VLSI circuits [26], biomedical models [27], aerodynamic aircraft mod-

els [28], international space station, diffusion and convection [29], computational

fluid dynamics models and fluid-structure interactions and so on. In all these cases,

any realistic model will require many state variables to be described accurately.

The resulting complexity necessitates the use of a simplification method to per-

form a simulation in an acceptable amount of time or for the design of a low order

controller.

There are many approaches to model reduction; recently there has been much

attention on the singular value decomposition (SVD) type methods, a number of

which can be found in [3, 30]. One strength of SVD type methods is that they

can be applied to data from a computational model or experiments, and little

knowledge of the simulation code is required. A challenge to SVD methods is

that the model is based on a specific data set, and how well it does in representing

behavior outside that dataset is largely unknown. This attribute provides an added

challenge when using such models for control design; since controls change the
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behavior of the system, at times in fundamental ways, can the model derived

from an SVD type reduction method capture these changes? Therefore, a more

sophisticated reduction method might be needed for control applications that can

capture the general behavior of the system.

2.2.1 Proper Orthogonal Decomposition

Proper orthogonal decomposition (POD), a method used by many researchers in

the past 20 years (Lumey [31], Sirovich [32], Aubry et al [33], Holmes et al [34] and

others) is considered to be a powerful reduction method that tries to project the

high dimensional model into a low dimensional approximate model. More specif-

ically, POD aims at defining the basis functions ϕi to use for Galerkin projection

that best capture the important modes for the model dynamics. The POD tech-

nique is applied to a set of data called snapshots that are normally obtained from

system measurements or numerical solutions at different time steps. POD tech-

nique has been widely used in different areas: from modeling fluid flows [35–37]

and structural vibrations [38] to image processing and pattern recognition [39].

In the POD algorithm [40], it is assumed that we have a set of data taken form

a partial differential equation, x(s, t), representing the function values at location

s and time t. Then, as discussed in the previous section, a low-order corresponding

system is obtained as

xr(s, t) =
n∑
i=1

qi(t)ϕi(s) (2.1)
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where qi(t) represent the coefficients and ϕi(s) are fixed orthonormal basis func-

tions for the lower dimensional subspace, i.e.

〈ϕ, ϕ〉 = ‖ϕ‖2 = 1. (2.2)

The aim of the POD is to find modes ϕi(s) that are able to minimize the error

between the original data x and the projected data xr. The coefficients can be

computed using orthonormality

qi(t) = 〈x(s, t), ϕi(s)〉 =

∫
x(s, t)Tϕi(s)ds. (2.3)

It can be shown that the POD modes can be computed by solving the eigenvalue

problem

Rϕ(s) = λϕ(s) (2.4)

in which R is a nonnegative symmetric operator

Rϕ(s) =

∫
T (x, x′)ϕ(s)ds′ (2.5)

T (x, x′) = x(s, t)x(s, t)T (2.6)
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where overbar denotes the time average. Lastly, the optimal projection is given by

Pr =
r∑
i=1

ϕi(s)ϕi(s)
T . (2.7)

One of the main properties of POD is that it establishes a projection on the

subspace such that the projection will contain the most information for a given

number of modes. There are many extensions to this approach such as methods

for computing modes from incomplete data [41], traveling POD modes [42], scal-

ing POD modes for self-similar solutions [43–45], and shift modes [46] for better

capturing transient behavior.

2.2.2 Balanced Truncation

One major problem with the concept of POD is that POD determines the modes

based on the most energetic features, while low-energy features might be important

to the systems dynamics. Balanced truncation is an alternative method which is

not merely based on energetic significance. Balanced truncation was first intro-

duced by Moore [23]. Balancing provides a system realization of (Ab, Bb, Cb) for a

PDE system

ẋ(t) = Ax(t) +Bu(t) (2.8)

y(t) = Cx(t), (2.9)
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in which the controllability and observability gramians are equal and diagonal in

the new coordinates.

The underling idea is to consider both the inputs and the outputs of the sys-

tem when trying to construct the reduced order model by truncating the states

that are least controllable and least observable. Let G(s) = C (SI − A)−1B and

Gr(s) = Cr (SIr − Ar)−1Br be the transfer functions of the original and the re-

duced systems. Then the balanced truncation error holds in the bound

‖G−Gr‖∞ 6 2
∑
k>r

σk (2.10)

where σk is the Hankel singular value ordered from the greatest to least and H∞

norm is the largest singular value of the function along the imaginary axis.

In order to determine to what degree the states are controllable and observable,

the controllability and observability gramians are defined based on controllability

and observability operators. In the original coordinates, these two matrices might

not be equal. So balanced truncation first attempts to find a balancing trans-

formation that can transform these two matrices into a new coordinate in which

the controllability and observability gramians are equal and diagonal. Dullerud

and Paganini [47], or Datta [48] introduce algorithms for computing balancing

transformations. Once the transformed coordinates are computed, the truncation

procedure only retains those states that are the most controllable and observable

based on the eigenvalues of the product of the controllability and observability

gramians, also known as the Hankel singular values.
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A challenge to this method is that it requires matrix computations that can

be unwieldy, and intractable, especially for large matrix systems that would be

encountered in the context of the fluid-structure interaction WEC control problem.

Lall et al [49] presents the snapshot-based approach to solve this problem. In

addition, an algorithm for computing the balancing transformation directly from

snapshots can be found in [50].

2.2.3 Balanced POD

Balanced POD is a recently developed model reduction technique that has received

much attention among engineers. Balanced POD is an algorithm that attempts to

approximate the well-known balanced truncation reduced order model described

in the previous section. Because an approximation to a PDE system can be very

large, computing a balanced truncation might become quite complicated. This

challenge is addressed in Balanced POD technique. Since this method will serve

as our main methodology in this work, we will thoroughly discuss the algorithm

in the next chapter.
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Chapter 3: Balanced Proper Orthogonal Decomposition: An

Example Problem

In this chapter, we provide detailed explanation of balanced POD algorithm as our

methodology along with an example problem. We then turn our attention to de-

veloping a reduced order model for a conventional cable-mass system via balanced

POD method, which further helps us to model and control a point absorber WEC.

3.1 Balanced POD

3.1.1 Balanced POD Overview

Rowley developed Balanced POD for large-scale systems of ordinary differential

equations in [6] that is similar to the method of snapshots in POD technique. The

algorithm has been widely applied to create accurate reduced order models of many

spatially discretized PDE systems. Rowley’s Balanced POD method is extended

for reduced order model reduction of infinite dimensional systems in [51]. Balanced

POD is considered at the PDE level in [52], [9], [7], [8]. Also, the convergence of

the algorithm is proven in [9].

Described in [23], balanced truncation provides a reduced order model of the
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form

ȧ(t) = Ara(t) +Bru(t) a(0) = a0 (3.1)

yr(t) = Cra(t) (3.2)

for the infinite dimensional linear system

ẋ(t) = Ax(t) +Bu(t) x(0) = x0 (3.3)

y(t) = Cx(t) (3.4)

where (A,B,C) are operators acting on the Hilbert space X with inner product

(., .) and corresponding norm ‖.‖ = (., .)1/2. The linear operator A : D(A) ⊂

X → X is assumed to generate an exponentially stable C0-semigroup eAt, and

the operators B : U → X and C : X → Y are assumed to be bounded. These

operators can be rewritten in the form

Bu =
m∑
j=1

bjuj Cx = [(c1, x), ..., (cp, x)]T (3.5)

in which the input to the system is an m dimensional vector u = [u1, ..., um]T ∈ U .

This form of representation allows for a computationally simple gramians. We first

define the following functions

wj(t) = eAtbj j = 1, 2, ...,m (3.6)
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where wj(t) can intuitively be found by simulating the forward differential equation

ẇj(t) = Awj(t) wj(0) = bj. (3.7)

This definition helps to rewrite the controllability operator and its adjoint operator

as

Bu =

∫ ∞
0

eAtBu(t)dt =

∫ ∞
0

m∑
j=1

wj(t)uj(t)dt (3.8)

[B∗x](t) = [(w1(t), x), ..., (wm, x)]T . (3.9)

Then, the controllability gramian is defined as

Wcx = BB∗x =

∫ ∞
0

m∑
j=1

wj(t)(wj(t), x)dt. (3.10)

In order to proceed with the observability gramian, the same procedure as for B

is used. Therefore, let us define

zj(t) = eA
∗tcj for j = 1, 2, ..., p. (3.11)

Just like before, zj(t) is the solution to the following forward differential equation

żj(t) = A∗zj(t) zj(0) = cj (3.12)
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which helps to redefine the observability operator and its joint operator

[Cx](t) = [(z1(t), x), ..., (zp, x)]T (3.13)

C∗y =

∫ ∞
0

eA
∗tC∗y(t)dt =

∫ ∞
0

p∑
j=1

zj(t)yj(t)dt. (3.14)

Therefore, the observability gramian can be rewritten as

Wox = C∗C =

∫ ∞
0

p∑
j=1

zj(t)(zj(t), x)dt. (3.15)

The forward differential equations defined above (3.7), (3.12) are used to obtain

approximations xn(t) and zn(t) of the solutions x(t) and z(t). These equations

should be simulated in time until the approximate solutions are nearly zero. The

Hankel operator defined before is then given by

[Hu](t) = [CB](t) =

∫ ∞
0

CeA(t+s)Bu(s)dt =

∫ ∞
0

m∑
j=1

(zj(t), wj(t))dt. (3.16)

In order to compute the gramians, we can use the quadrature approach to approx-

imate the time integrals

wcx =

∫ ∞
0

m∑
j=1

wj(t)(wj(t), x)dt ≈ w̃n1
c x =

m∑
i=1

n1∑
j=1

α2
jwi(tj)(wi(tj), x) (3.17)

wox =

∫ ∞
0

m∑
j=1

zj(t)(zj(t), x)dt ≈ w̃n2
o x =

p∑
i=1

n2∑
k=1

β2
kzi(tk)(zi(tk), x) (3.18)

in which {tj, tk} and {α2
j , β

2
k} are quadrature points and weights, respectively.
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These so-called empirical gramians can be arranged into vector forms of dimensions

mn1 and pn2.

w̃ = [α1w1(t1), ..., αn1w1(tn1), ..., α1wm(t1), ..., αn1wm(tn1)]
T (3.19)

z̃ = [β1z1(t1), ..., βn2z1(tn2), ..., β1zp(t1), ..., βn2zp(tn2)]
T . (3.20)

It can be shown that the product of the gramians can be represented by matrix Γ

using the empirical grammians [53]

Γij = (z̃i, w̃j). (3.21)

We know that the eigenvalues of the product of the gramians are used to construct

the reduced order model. Therefore, the singular value decomposition of Γ gives

us the approximate singular values

Γ = UΣV ∗ =

[
U1 U2

]Σ1 0

0 0


V ∗1
V ∗2

 = U1Σ1V
∗
1 , (3.22)

where Σ1 is diagonal and is defined in Rs×s in which s = rank(Γ). Using the above

SVD, we approximate the Balanced POD modes and the adjoint ones by

[ϕ1, ..., ϕs]
T = Σ

−1/2
1 V ∗1 w̃ (3.23)

[ψ1, ..., ψs]
T = Σ

−1/2
1 U∗1 z̃. (3.24)
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In order to get the reduced order system, we have to pick r < s = rank(Γ) so that

we only need the first r balanced POD modes to be computed

[ϕ1, ..., ϕr]
T = Σ−1/2r V ∗r w̃ (3.25)

[ψ1, ..., ψr]
T = Σ−1/2r U∗r z̃ (3.26)

in which Σr, Ur and Vr are truncated matrices of Σ1, U1 and V1. Finally, we form

the matrices in the reduced order model using truncated balanced POD modes

Ar = [(Aϕj, ψi)] ∈ Rr×r Br = [(bj, ψi)] ∈ Rr×m (3.27)

Cr = [(ϕj, ci)] ∈ Rp×r a0 = [(x0, ψ1), ..., (x0, ψr)]
T ∈ Rr. (3.28)

The Balanced POD algorithm can be summarized in three steps as:

1. Obtain approximations wn(t) and zn(t) of the solutions w(t) and z(t) of the

forward and adjoint differential equations (3.7), (3.12).

2. Use the approximate simulation data {zNi (t)} and {wNj (t)} to compute Bal-

anced POD singular values {σk} and modes {ϕk, ψk}.

3. Choose r and form the approximate balanced reduced order model using

(3.27)
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3.1.2 Example of Balanced POD applied to a PDE system

In order to assess the performance of the Balanced POD algorithm described above

when applied to a model problem, we consider a very simple 1D heat equation with

Dirichlet boundary condition on the left and Neumann boundary control on the

right

wt(t, x) = µwxx(t, x) (3.29)

w(t, 0) = 0, wx(t, 1) = u(t) (3.30)

with point observation defined as

y(t) = w(t, x0) (3.31)

where 0 < x0 ≤ 1.

We apply standard finite element method to get an approximation to this sys-

tem. Using the variational form of the problem, we multiply by a test function φ

that is defined in the Hilbert space

V = {φ ∈ H1(0, 1) : φ(0) = 0}. (3.32)

Integrating by parts yields the weak form of the system

∫ 1

0

wt(t, x)φ(x)dx+ µ

∫ 1

0

wx(t, x)φx(x)dx = µu(t)φ(1). (3.33)
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Note that the input operator is defined by

〈Bu, φ〉 = φ(1)u, (3.34)

which indicates that B equals δ1, the Dirac delta function at x = 1. Also, the

output operator is defined by Cφ = φ(x0), i.e., C = δx0. For the spatial dis-

cretization, we use standard piecewise linear finite elements (linear B-splines) with

equally spaced nodes for the total length of 1m. We choose a basis {ei}Ni=1 for the

approximating space. Therefore, the state is approximated as

w(t, x) ≈ wN(t, x) =
N∑
i=1

qi(t)bi(x) (3.35)

where bi(x) denotes the linear splines. Substituting this approximation of the state

into the weak form (3.33) yields the finite dimensional system

M
d

dt
q(t) + Aq(t) = B0u(t) (3.36)

in which

Mij =

∫ 1

0

bi(x)bj(x)dx (3.37)

Aij = µ

∫ 1

0

b′i(x)b′j(x)dx (3.38)

B0 = µ[b1(1), b2(1), ..., bN(1)]T . (3.39)

We now apply the Balanced POD algorithm to this system to get a reduced order
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approximation. Here, we set x0 = 0.5 and choose the number of finite element

nodes large enough so that the error is converged. Table 3.1 shows the Balanced

POD error for various values of r, order of the reduction. Figure 3.1 shows the

approximate Hankel singular values computed which shows the rapid convergence

of the Hankel singular values with mesh refinement.

Table 3.1: Balanced POD error for various r values

system r = 3 r = 4 r = 5

BPOD error 8.8× 10−3 1.7× 10−3 2.6× 10−4
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Figure 3.1: Approximate Hankel Singular Values
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3.2 Reduced Order Model for a Conventional Cable-Mass System

Before we turn our attention into the design of a low order system for a wave

energy converter which will be represented by a 1D PDE model, the conventional

cable-mass system described in (Nayfeh, et. Al., 1992) is addressed in this section.

The purpose of this study is to gain insight into the application of model reduction

techniques for wave equations and also to ensure that Balanced POD algorithm

has the potential to work when applied to a hyperbolic system, especially, wave

problems in multiple space dimensions with nonlinear behavior as observed in

cable-mass model. Balanced POD has almost exclusively been applied to parabolic

problems. To the best of author’s knowledge, Balanced POD has only been applied

once to a second-order vibrations problem [7]. So, this section aims at using

Balanced POD on a wave problem to get a sense that it really does work for these

problems.

The cable-mass system studied in [10], is considered to be a hybrid distributed

parameter system. This model consists of an elastic cable that is fixed at one

end and attached to a mass at the other, with a nonlinear spring supporting the

mass. The motion of the elastic cable is governed by the wave equation subject to

appropriate boundary conditions. Figure 3.2 shows the cable-mass system.

The equations governing the system are

ρ
∂2

∂t2
w(t, s) =

∂

∂s
[τ
∂

∂s
w(t, s) + γ

∂2

∂t∂s
w(t, s)], 0 < s < l, t > 0 (3.40)
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Figure 3.2: Cable-mass system

m
∂2

∂t2
w(t, l) = −[τ

∂

∂s
w(t, s) + γ

∂2

∂t∂s
w(t, s)]− k1w(t, l)− k3[w(t, l)]3 + u(t)

(3.41)

with boundary condition

w(t, 0) = 0 (3.42)

and initial conditions

w(0, s) = w0(s)
∂

∂t
w(0, s) = w1(s) (3.43)

where w(t, s) indicates the displacement of the elastic cable at time t and position

s, w(t, l) represents the position of the mass at time t, m is the mass of the cable, ρ

is the density, τ represents the tension in the cable and γ is a damping coefficient.

k1 and k3 are spring constants with the latter describing the nonlinear effects of

the spring. We also assume that there are two observations available as the sensed
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information, which are the position and the velocity of the mass defined by

y1(t) = w(t, l) y2(t) =
∂

∂t
w(t, l). (3.44)

This cable-mass problem can be intuitively used as a simplified approach to capture

the fundamental nature of the WEC problem in a one-dimensional (in space) fluid-

structure interaction problem in a wave tank. Particularly, the mass in the cable-

mass system models a point absorber buoy that is supported by a spring that is

attached to the ocean bottom. The wave equation similarly represents the incident

ocean waves reaching the WEC. We will discuss more in the next chapter.

3.2.1 Finite Approximations

In order to obtain a finite dimensional system (lumped system) suitable for compu-

tation, we will apply a finite element approximation method to the above system

as can be found in [10]. First of all, we need to establish the variational form (weak

form) of the problem. Multiplying the equations (3.40), (3.41) by a test function

φ(s) and integrating by parts twice yields the weak form

∫ l

0

ρ
∂

∂t
v(t, s)ϕ1(s)ds+

∫ l

0

[τ
∂

∂s
w(t, s) + γ

∂

∂s
v(t, s)]

d

ds
ϕ1(s)ds

+m
∂

∂t
vlϕ1(l) + [k1wl + k3w

3
l ]ϕ1(l) = u(t)ϕ1(l)

(3.45)
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where ϕ(s) is defined in the Hilbert Space V

V = φ ∈ H1(0, 1) : φ(0) = 0. (3.46)

Now, a finite element approximation scheme can be applied to the variational

form to yield a finite dimensional system. Using linear splines to approximate the

position of the cable, the system states are computed as

w(t, s)

w(t, l)

 ≈
wN(t, s)

wN(t, l)

 =
N∑
i=1

ζNi (t)eNi (s) =

∑N
i=1 ζ

N
i (t)bNi (s)

ζNN (t)

 (3.47)

where N denotes the number of splines in the interval [0, l], {bNi (s)}i=Ni=1 is the linear

B-splines. The first order finite dimensional system is obtained by substituting the

approximation into the weak form in (3.45)

d

dt
xN(t) = ANxN(t) + FN(xN(t)) +BNu(t) (3.48)

xN(0) = xN0 (3.49)

yN(t) = CNxN(t) (3.50)

where xN(t) = [ζN(t), d
dt
ζN(t)]

T
, xN0 = [ζN0 , ζ

N
1 ]

T
and

AN =

 0 I

−M−NAN0 −M−NDN
0

 BN =

 0

M−NBN
0

 (3.51)
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FN(xN(t)) =

 0

−M−NFN
0 (wN(t))

 , CN =

01×N−1 1 01×N−1 0

01×N−1 0 01×N−1 1

 (3.52)

in which

[MN ]ij =

∫ l

0

ρbNi (s)bNj (s)ds+mbNi (l)bNj (l), i, j = 1, ..., N (3.53)

[DN
0 ]ij =

∫ l

0

γ
d

ds
bNi (s)

d

ds
bNj (s)ds, i, j = 1, ..., N (3.54)

[AN0 ]ij =

∫ l

0

τ
d

ds
bNi (s)bNj (s)ds+ k1b

N
i (l)bNj (l), i, j = 1, ..., N (3.55)

FN
0 (ζN) = k3[w

N
N ]

3
(3.56)

BN
0 = [bN1 (l), bN2 (l), ..., bNN(l)]

T
. (3.57)

The uncontrolled simulation of the cable-mass system for the mass position and

the midcable position can be found in [24].

3.2.2 Applying Balanced POD

In the previous section, we derived a finite element approximation of the system.

In this section, we apply Balanced POD to the model developed above to see how

it performs.

Recall that the first step to compute the Balanced POD is to solve two linear

ODEs using the system matrices A,B and C. In order to have convergent solutions
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(w(t), z(t)) for the two sets of forward ODEs, we picked initial time value to be

30 seconds so as to allow for stable reduced order systems irrespective of the

order of balanced realization (r). Then, approximate Hankel singular values were

computed using various number of basis functions. Figure 3.3 illustrates these

values for three different numbers of basis function (N = 16, 32, 64). Figure 3.3
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Figure 3.3: Approximate Hankel Singular Values

shows the rapid convergence of the Hankel singular values with mesh refinement.

Based on the convergence shown in the plot above, the approximating system

arising from N = 32 basis functions (and 64 states) was chosen as the “high order

system”. To determine the size of reduced order system that would further be used

for the control computations, we computed the error in system approximation for

various values of r. Those are shown for the cable-mass system in Table 3.2 below.
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Table 3.2: Balanced POD error for various r values

system r = 4 r = 6 r = 8

BPOD error 0.4323 0.0787 0.0191

Taking the reduced order model corresponding to order 6 (r = 6), the input-

output response of the cable-mass PDE and the reduced order model are compared

to show the performance of the reduction method using uncontrolled (open-loop)

simulations. In this simulation, the input function is chosen to be u(t) = sin(t).

Figure 3.4 depicts the displacement of the mass (or the WEC) for uncontrolled

simulation under this chosen input. We note that the reduced order model can

approximate quite well the high order system in the open-loop simulation. This

assures us the Balanced POD algorithm has the potential to work for hyperbolic

systems, which later helps us to obtain a reduced order model for a wave energy

converter in fluid-structure interaction.
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Figure 3.4: Uncontrolled simulation for the displacement of the mass; the figure
shows the performance comparison between reduced order model and
PDE model for a sinusoidal input function.
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Chapter 4: Modeling a Wave Energy Converter in a Wave Tank

As discussed in Chapter 1, the focus of this research is to investigate the suitability

of the balanced proper orthogonal decomposition, or Balanced POD, for the fluid-

structure interaction arising in WEC dynamics. In this chapter, we present a

heuristic model for a wave energy converter in a wave tank, where the waves are

generated by a wave maker. We start with a one-dimensional wave equation to

model the waves in a wave tank. Appropriate boundary conditions are taken into

account on both sides of the tank to best describe the wave maker performance and

the motion of the WEC, respectively. The method can be extended to multiple

spatial dimensions; however, we shall restrict our attention to the simple 1D PDE

model to represent the fluid-structure interaction of the WEC in a wave tank. The

following results in this chapter were developed by Singler and can be found in [54].

4.1 Wave Model

To develop a heuristic model of a wave energy converter (WEC) in a wave tank, we

consider the following scenario. First, we only consider the waves traveling in the

tank in one spatial direction. The wave generator is located at ξ = 0, the far wall

of the wave tank is located at ξ = L, and the WEC is located at ξ = l. To develop

the heuristic model, we imagine the wave height modeled by the displacement
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w(t, ξ) on the spatial interval 0 ≤ ξ ≤ l . The waves are generated at the wave

generator via a second order oscillator. The WEC at the right end is also modeled

as a second order oscillator. Therefore, we arrive at a model that is similar to the

second order oscillatory system studied in Chapter 3.

We model the waves by a strongly damped 1D linear wave equation on 0 < ξ < l

wtt(t, ξ) = γwtξξ(t, ξ) + β2wξξ(t, ξ). (4.1)

Other models such as an undamped wave equation or a shallow water equation

may be realistic; however, we begin by investigating model reduction of this sim-

pler model and leave other models to be considered in future work. In the equation

above and in the remainder of the model below all of the coefficients are nonneg-

ative constants.

We model the wave generator at ξ = 0 as an undamped mass-spring system

with external force input f(t)

m0wtt(t, 0) = −k0w(t, 0) + (γwtξ(t, 0) + β2wξ(t, 0)) + f(t), (4.2)

where k0 denotes the spring stiffness constant corresponding to the wave maker.

The term in the parentheses is the force of the wave acting on the mass. We model

the motion of the WEC in a similar way; however, we now include both a linear

and nonlinear spring force to account for the variety of forces acting on the WEC
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(e.g., excitation, radiation, buoyancy) and a control input u(t)

mlwtt(t, l) = −kl,1w(t, l)− kl,2[w(t, l)]3 − (γwtξ(t, l) + β2wξ(t, l)) + u(t) (4.3)

in which kl,1 and kl,2 are the spring stiffness constants with the latter indicating

the nonlinear effects of the spring force. As before, the term in the parentheses is

the force of the wave acting on the WEC. At the wall of the wave tank, we impose

a partially absorbing boundary condition

αLwt(t, L) + (γwtξ(t, L) + β2wξ(t, L)) = 0. (4.4)

In order to properly formulate the model above, we need to consider two separate

wave equations on the spatial intervals 0 ≤ ξ ≤ l and l ≤ ξ ≤ L with a coupling

condition at ξ = l. Instead, we simplify the model and only consider the waves

on the spatial interval 0 ≤ ξ ≤ l. In order to account for the damping that would

occur due to the partially absorbing boundary condition at ξ = L, we simply add

a damping term γlwt(t, l) to the WEC equation of motion as follows

mlwtt(t, l) = −kl,1w(t, l)− kl,2[w(t, l)]3− γlwt(t, l)− (γwtξ(t, l) + β2wξ(t, l)) + u(t).

(4.5)

Therefore, the final model is the 1D wave equation (4.1) on the spatial interval

0 ≤ ξ ≤ l, the wave generator boundary condition (4.2), and the damped WEC

boundary condition (4.5).
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4.2 Energy Function

To ensure that the model developed in the previous section has converging be-

havior, we look at its energy function. The energy function E(t) at time t > 0

associated with a smooth solution w of this WEC-wave system is given by

E(t) =
1

2

∫ l

0

β2[wξ(t, ξ)]
2 + [wt(t, ξ)]

2dξ +
k0
2

[w(t, 0)]2 +
m0

2
[wt(t, 0)]2

+
kl,1
2

[w(t, l)]2 +
kl,2
4

[w(t, l)]4 +
ml

2
[wt(t, l)]

2. (4.6)

Below, we show that if w is a smooth solution and u = f = 0, then E ′(t) ≤ 0.

This result matches physical intuition and also provides us with the correct energy

inner product for the system.

To prove E ′(t) ≤ 0, differentiate E(t) to obtain

E ′(t) =

∫ l

0

[β2wξwtξ + wtwtt]dξ + [m0wtt(t, 0) + k0w(t, 0)]wt(t, 0)

+ [mlwtt(t, l) + kl,1w(t, l) + kl,2w
3(t, l)]wt(t, l). (4.7)

The wave equation (1) and the boundary conditions (2) and (3) give

E ′(t) = β2

∫ l

0

[wξwtξ +wtwtt]dξ + γ

∫ l

0

wtwtξξdξ + [γwtξ(t, 0) + β2wξ(t, 0)]wt(t, 0)

− [γlwt(t, l) + γwtξ(t, l) + β2wξ(t, l)]wt(t, l). (4.8)

Next, use (wtwξ)ξ = wξwtξ + wtwξξ to evaluate the first integral and integrate by



38

parts in the second integral to obtain

E ′(t) = β2[wξwt]
ξ=l
ξ=0 +γ[wtξwt]

ξ=l
ξ=0−γ

∫ l

0

[wtξ]
2dξ+[γwtξ(t, 0)+β2wξ(t, 0)]wt(t, 0)

− [γlwt(t, l) + γwtξ(t, l) + β2wξ(t, l)]wt(t, l). (4.9)

this gives

E ′(t) = −γl[wt(t, l)]2 − γ
∫ l

0

[wtξ]
2dξ (4.10)

and therefore E ′(t) ≤ 0. Note that this result holds even if one of the damping

constants γ or γl equals zero.

4.3 Second Order Abstract Formulation

Following ideas in [10], we rewrite the linearized problem (with kl,2 = 0) as a

second order differential equation

q̈(t) + A1q̇(t) + A0q(t) = B0u(t) +B1f(t) (4.11)

y(t) = C0q(t) (4.12)

holding over an infinite dimensional Hilbert space. Later, we use this formulation

to arrive at a first order formulation of the problem, which we use in the Balanced

POD model reduction algorithm. Below, we set notation, specify the Hilbert space,

and then define the operators (A0, A1, B0, B1, C0).

Let L2(0, l) be the Hilbert space of (Lebesgue measurable) square integrable
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functions defined on 0 ≤ ξ ≤ l with inner product (f, g)L2 =
∫ l
0
f(ξ)g(ξ)dξ. Let

Hm(0, l) denote the Sobolev space of functions f ∈ L2(0, l) such that f is m times

(weakly) differentiable and each derivative is back in L2(0, l). Functions in Hm(0, l)

must be continuous.

The WEC-wave system can be placed in the second order form with the follow-

ing variables: the displacement w(t, ξ) function for the wave height on 0 < ξ < l,

and the positions w0(t) and wl(t) two masses at ξ = 0 and ξ = l, respectively.

Let H0 be the real Hilbert space H0 = L2(0, l)× R2 with the inner product of

x = [w,w0, wl] ∈ H0 given by

(x, z)H0
=

∫ l

0

wpdξ +m0w0p0 +mlwlpl. (4.13)

Let V0 ⊂ H0 be the set of elements

x = [w,w0, wl] ∈ H1(0, l)×R2 (4.14)

satisfying the compatibility conditions

w(0) = w0, w(l) = wl. (4.15)

For x = [w,w0, wl] ∈ V0 and z = [p, p0, pl] ∈ V0, and the V0 inner product of x with

z is given by

(x, z)V0 =

∫ l

0

β2wξpξdξ + k0w0p0 + kl,1wlpl. (4.16)
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These inner products were motivated by the energy function considered above.

With this inner product, V0 is a real Hilbert space. We sketch a proof. First, if

(x, x)V0 = 0 then w(ξ) is a constant and w0 = wl = 0. The compatibility conditions

imply w(ξ) = 0 for all ξ, and so x = 0. It is clear that (., .)V0 satisfies the remaining

properties of an inner product.

Next, let {xn} ⊂ V0 be Cauchy sequence. For xn = [wn, w
n
0 , w

n
l ], we have

that [wnξ , w
n
0 , w

n
l ] is a Cauchy sequence in L2(0, l) × R2. Therefore, there exists

[z, w0, wl] ∈ L2(0, l)×R2 such that

wnξ → z in L2(0, l), wn0 → w0, wnl → wl. (4.17)

Define w by w(ξ) = w0 +
∫ ξ
0
z(η)dη. Then w ∈ H1(0, l), wξ = z, and w(0) = w0.

Also, we have w(l) = wl since

w(l) = lim
n→∞

wn0 +

∫ l

0

wnξ (η)dη = lim
n→∞

wnl = wl. (4.18)

Therefore w satisfies both compatibility conditions and xn converges in V0 to x =

[w,w0, wl] ∈ V0. This proves V0 is a Hilbert space.

Next, define the unbounded operator A0 : D(A0) ⊂ H0 → H0 as follows. Let

D(A0) be the set of q = [p, p0, pl] ∈ V0 such that p ∈ H2. For q ∈ D(A0), define

A0q =


−β2pξξ

m−10 [k0p0 − β2pξ(0)]

m−1l [kl,1pl + β2pξ(l)]

 . (4.19)
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The definition of the operator A1 depends on the constant γ. If γ = 0, then

A1 : H0 → H0 is a bounded operator and A1q for q = [p, p0, pl] ∈ H0 is given by

A1q =


0

0

m−1l γlpl

 (4.20)

where, again, q = [p, p0, pl]. Finally, define the bounded operators B0 : R → H0,

B1 : R→ H0 and C0 : V0 → R as follows:

B0u =


0

0

m−1l u

 , B1f =


0

m−10 f

0

 (4.21)

and

C0q = p(ξ) (4.22)

for q = [p, p0, pl] and 0 < ξ < l for observing wave height at a location ξ between

the wave generator and the WEC, or

C0q = p(l) (4.23)

for observing wave height at the WEC. This completely specifies the formulation

of the second order differential equation (4.11).
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4.4 First Order Abstract Formulation

To apply the Balanced POD model reduction algorithm to this system, we rewrite

the second order system (4) in first order form as

ẋ(t) = Ax(t) +Bu(t) +Df(t), (4.24)

y(t) = Cx(t) (4.25)

where (A,B,D,C) are operators acting on the Hilbert space H = V0 × H0 with

inner product ([w, v], [p, q])H = (w, v)V0 + (p, q)H0
. This formulation can be used

along with simulation techniques such as finite elements in order to produce a

reduced order model using Balanced POD.

Define the operator A : D(A) ⊂ H → H, where D(A) = D(A0) × V0 if γ = 0

and D(A) = D(A0)×D(A0) if γ > 0, by

Ax =

 0 I

−A0 −A1

 . (4.26)

Also define the bounded operators B : R→ H, D : R→ H and C : H → R by

Bu = [0, B0u]T , Df = [0, B1f ]T , C[w, v] = C0w. (4.27)

This determines the linear system (4.24).

For the Balanced POD algorithm, we provide alternate expressions for B, D
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and C as follows. Define b, d, c ∈ H by

b = [0, 0, 0, 0, 0,m−1l ], d = [0, 0, 0, 0,m−10 , 0], c = [p, p0, pl, 0, 0, 0], (4.28)

p(ξ) = p0 + l−1(pl − p0)ξ, p0 = wpl, (4.29)

pl =
1

kl,1 + k0w
w =

β2

β2 + k0l
. (4.30)

It can be checked that we have

Bu = bu, Df = df, Cx = (c, x)H (4.31)

for all u, f ∈ R and x ∈ H.

4.5 Weak Formulation

For Balanced POD, we need to simulate the forward differential equation

ẋ = Ax(t), x(0) = b, (4.32)

and the adjoint differential equation

ż = A∗z(t), z(0) = c, (4.33)

where b, c ∈ H are defined in (4.28). It should be noted that the Balanced POD

reduction technique will be applied to the pair of (A, b), assuming that f acts like
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disturbance coupled through d matrix. Once the balanced transformation matrix

is computed, we will use that to reduce the disturbance matrix.

We focus on simulations for the strongly damped case where γ, γl > 0. In this

case we can show the problem is parabolic, and therefore we place the equations in

weak form and use finite elements for the simulations. This is of course only one

simulation technique; many other approximation methods will also yield accurate

results.

Define the Hilbert space V = V0 × V0 with inner product ([w, v], [p, q])V =

(w, v)V0 + (p, q)V0 . Let x = [w, v], take the H inner product of the forward differ-

ential equation (4.32) with χ = [p, q] ∈ V , and integrate by parts to obtain the

parabolic problem

d

dt
(x, χ)H + a(x, χ) = 0 for all χ ∈ V. (4.34)

Here, the bilinear form a : V × V → R is defined by

a(x, χ) = −(v, p)V0 + (v, q)V1 + (w, p)V0 (4.35)

for any x = [w, v] ∈ V and χ = [p, q] ∈ V . The V0 inner products result from

integrating by parts in the terms involving A0, and the bilinear form (., .)V1 is

obtained by integrating by parts in (A1v, q)H0
to obtain

([f, f0, fl], [g, g0, gl])V1 =

∫ l

0

γfξgξdξ + γlflgl, (4.36)
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where v = [f, f0, fl] and q = [g, g0, gl].

Now take χ = [p, 0] ∈ V and χ = [0, q] ∈ V to obtain

d

dt
(w, p)V0 = (v, p)V0 for all p ∈ V0 (4.37)

and

d

dt
(v, p)H0

= −(w, q)V0 − (v, q)V1 for all q ∈ V0. (4.38)

These equations can be used to approximate the solution of the forward differential

equation (4.32) using finite element methods or other Galerkin methods.

Since the problem is parabolic, the weak form of the adjoint differential equation

(4.33) is characterized by

d

dt
(z, χ)H + a(χ, z) = 0 for all χ ∈ V. (4.39)

Note that the arguments of the bilinear form a have been switched compared to

the forward problem (9). Let z = [w, v]. Taking χ = [p, 0] ∈ V and χ = [0, q] ∈ V

gives

d

dt
(w, p)V0 = −(p, v)V0 for all p ∈ V0 (4.40)
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and

d

dt
(v, q)H0

= (q, w)V0 − (q, v)V1 for all q ∈ V0. (4.41)

Again, we can use these equations to approximate the solution of the adjoint

differential equation (8).

We note that the problem involving the inputs Bu and Df and the nonlinear

term can also be placed in a weak formulation in a similar manner. This weak

form can also be used for simulating the nonlinear PDE.

Remark 1: The solution of the adjoint problem will be smoother than the

solution of the forward problem. This is due to the smoothness of the initial data.

For the forward problem, we have b ∈ H = V0 ×H0, but b /∈ V = V0 × V0 since b

does not satisfy the compatibility conditions for the second V0 space. Specifically,

the initial data b corresponds to zero initial displacement everywhere, the wave

generator mass (at ξ = 0) having a nonzero initial velocity, and zero initial velocity

elsewhere. For the adjoint problem, the initial data satisfies c ∈ V . Since the initial

data is smooth and satisfies all compatibility conditions, the solution z(t) will be

easier to approximate than the solution x(t) of the forward problem, which has

discontinuous initial velocity.
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Chapter 5: Experiments and Simulation Results

In this chapter, we present the numerical results regarding applying Balanced

POD algorithm to the finite element approximation of the model problem for the

two different wave height sensor locations described in Chapter 4. We then present

simulations of the system behavior for the uncontrolled and controlled cases. In the

controlled case, the tracking control of the reduced order system will be addressed

with the aim of maximizing the power output of the WEC using the two well-known

optimal control strategies, namely Linear Quadratic Regulator (LQR) and Linear

Quadratic Gaussian (LQG) controllers. The last experiment will be dedicated to

determining the underlying ocean wave function in order for the WEC to track.

This experiment gives insight into the tracking function that the WEC is required

to follow.

5.1 Formulating the Finite Element Approximation

First, we apply a finite element method for the spatial discretization in order to

obtain an approximation to the model problem in (4.1), (4.2) and (4.5). Then,

Balanced POD is applied to the approximating system to obtain a reduced order

system of order r. Finally, we form the resulting reduced order system so that an

optimal controller can be designed for the WEC.
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Following the process outlined in Chapter 4, a Galerkin-based finite element

approximation is applied to the WEC wave system developed in (4.1), (4.2) and

(4.5). Taking N as the number of linear B-splines in the interval [0, l] (indicating

the dimension of the approximating space wN ⊆ w), we obtain the first order

system

ẋN = ANxN +BNu+DNf +NN(xN(t)), xN(0) = xN0 (5.1)

with two possible outputs

y1(t) = C1x
N(t) or y2 = C2x

N(t) (5.2)

Here, C2 represents the case where the wave height measurement is made in the

middle of the wave tank, and C1 represents the case where the wave height is

measured at the WEC. The state vector is given by xN(t) = [qN(t), q̇N(t)]
T

and

AN =

 0 I

−M−NKN −M−NLN

 , (5.3)

BN =

 0

M−NBN
0

 DN =

 0

M−NDN
0

 (5.4)

NN(xN(t)) =

 0

−M−NNN
0 (qN(t))

 (5.5)

C1 = [01×N−1 1 01×N ], C2 = [01×(N
2
−1) 1 01×N

2
01×N ] (5.6)
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[MN ]ij =

∫ l

0

bi(ξ)bj(ξ)dξ +m0bi(0)bj(0) +mlbi(l)bj(l), (5.7)

[LN ]ij =

∫ l

0

γb′i(ξ)b
′
j(ξ)dξ + γlbi(l)bj(l) (5.8)

[KN ]ij =

∫ l

0

β2b′i(ξ)b
′
j(ξ)dξ + k0bi(0)bj(0) + k1bi(l)bj(l), (5.9)

BN
0 = [01×2N−1 1], DN

0 = [1 02×2N ] (5.10)

NN
0 (q(t)) = k2q

3
N(t) (5.11)

In order to compute the high order system, the parameters in Table 5.1 are chosen.

Table 5.1: Simulation Parameters

Parameter Value

Wave tank length(l) 5m

WEC mass (ml) 1kg

Wave maker mass (m0) 1.5kg

γ 0.005

γl 0.005

β 1

kl,1 = kl,2 1

k0 1
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5.2 Applying Balanced POD

The Balanced POD algorithm is applied to the finite element approximation of the

model problem to obtain a low order model. It is important not only to choose a

low order system of size r that approximates the high order system well, but it is

important to begin with a refined enough high order system that is “converged”to

the original distributed parameter model. In Fig. 5.1, we show the approximate

Hankel singular values for N = 80, 160, and 320 for each of the systems given by

C1 and C2. Notice, for this problem, the order of the system, is 2N ; there are

N states representing the system displacements, and N representing the system

velocities. Notice the convergence of singular values with mesh refinement.

Based on the convergence shown in the plots above, the approximating system

arising from N = 160 basis functions (and 320 states) was chosen as the “high

order system”. To determine the size of reduced order system that would be used

for the control computations, we computed the error in system approximation for

various values of r. Those are shown for the two systems in Table 5.2 below.

We note that the error is within one order of magnitude for all choices of r.

So for the remainder of the simulations, we use the reduced order models for the

systems corresponding to C1 and C2 of order 20. Also note that r = 20 is the

number of states in the reduced order system, analogous to 320 states in the full

order system.

To compare the input-output response of the nonlinear PDE and the nonlinear

reduced order models, uncontrolled simulations are performed to show the per-
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Table 5.2: Balanced POD error for various r values for two system configurations

system r = 6 r = 20 r = 40

BPOD error for C1 9.749× 10−1 1.35× 10−2 1.107× 10−4

BPOD error for C2 1.9922 1.126× 10−1 3.2× 10−3

formance of the reduction method. In all simulations, the forcing function at the

wave generator was chosen to be f(t) = sin (0.2πt) + η where η was selected to be

a Gaussian noise signal with mean 0, variance 0.1 multiplied by a factor of 1/20.

The noise was selected through a trial and error process to create a wave that

had a slight amount of irregularity to it. The system was started from a resting

position.

Fig. 5.2 illustrates the displacement of the WEC under this forcing function.

Notice that the WEC does not move until t = X when the wave reaches the WEC

at l = 5m.

We note that both reduced order systems compare quite well to the high order

approximation to the nonlinear distributed parameter system. The system in which

the wave height is measured at mid-tank is slightly less accurate, which might be

expected as the error in the balanced POD approximation was larger than for the

system in which the wave height was measured at the WEC.
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Figure 5.1: Approximate Hankel Singular Values for system with wave measure-
ment i) at WEC (top), ii) midway between wave maker and WEC
(bottom)
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Figure 5.2: Uncontrolled response of nonlinear high order system vs. nonlinear
reduced models; The reduced order systems compare quite well to the
high order approximation.
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5.3 Feedback Control for the Reduced Order Model

As discussed earlier, as wave energy converter (WEC) technologies mature, de-

signing effective control strategies to extract maximum energy, extend device life,

coordinate WEC operation within an array, or mitigate negative impacts of ex-

treme forces on a WEC becomes an increasingly important area of research. To

achieve many of these goals, tracking controls are often implemented. In the fol-

lowing computations, we will implement a standard Linear Quadratic Regulator

with tracking and Linear Quadratic Gaussian (LQG) controller, not because they

are meant to be the most effective or desirable of control approaches, but because

they are simply illustrative of the nature of a tracking control that might be applied

to this problem.

5.3.1 LQR Control

In the LQR control problem (found, for example, in [55]), an optimal control

solution is found by minimizing the cost function defined as

J(u) =

∫ ∞
0

(xT (t)Qx+ uTRu)dt (5.12)

where x(t) is the state vector, u is the control input, Q,R are weighting matrices.

There exists an optimal control solution of the form

u(t) = −R−1BTΠx(t) = −Kx(t) (5.13)
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where Π is the solution to the control algebraic Riccati equation

AT + Π + ΠA− ΠBR−1BTΠ +Q = 0. (5.14)

For the LQR tracking control of the WEC, we choose the desired state to have

the same frequency as the forcing function at the wave generator with a relatively

smaller amplitude

wN(t, l) = 0.3 sin(0.2πt). (5.15)

The state weighting matrix in the control objective function is chosen to be zero

for states that do not correspond to the WEC position, and 1 for WEC position.

Therefore, this tracking control should serve to drive the WEC into the periodic

behavior desired.

In Fig. 5.3, we show the behavior of the high order uncontrolled system, the

tracking function, and the reduced order controlled system with the wave mea-

surement taken midtank. Here one can see that the tracking function is trying

to roughly preserve the phase of the oscillations, and drive the WEC toward the

peaks of the uncontrolled behavior. Again, there is nothing physically relevant

about this choice of tracking function; it is merely representative of the types of

controls that can be found in the literature. To compare the performance of the

controlled high order system with the controlled reduced order systems, we refer to

Fig. 5.4. Here, we again see little difference in the performance of the high order

system with the reduced order systems. All systems perform in a qualitatively

acceptable manner. As shown in Figure 5.4, the controlled WEC in C2 system
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Figure 5.3: Performance comparison between controlled and uncontrolled systems
with wave measurement midway between wave maker and WEC

(where the wave height is measured midway) slightly outperforms the controlled

WEC in C1 system (where the wave height is measured at the WEC). This is due

to the fact that C2 system provides an estimation of the ocean state to the WEC

prior to the tracking control problem. In other words, by having a wave buoy op-

erating at a distance to WEC, we can estimate the underlying ocean wave function

in order for the WEC to track using wave height data. We will further present a

method to construct the tracking function from wave height measurements in the

upcoming sections. The amount of control used in both system configurations to

create such tracking performance is depicted in Figure 5.5.
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duced systems

5.3.2 LQG Control

One issue with LQR control is that it requires the full knowledge of all the states

for all times. So there is a problem with implementing a full state feedback control

that seems to be impractical. An alternative to this control method is Linear

Quadratic Gaussian (LQG) compensator.

Given the system measurements y(t), the optimal estimator (LQG) attempts

to find a dynamical system that is able to estimate the states of the system x(t).

The dynamics of the estimator is represented as

ẋc(t) = Acxc(t) + Fy(t) xc(0) = xc0 (5.16)
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Figure 5.5: Control inputs used in LQR problem for both system configurations:
note that the control system does not start until the first wave hits the
WEC.

u(t) = −Kxc(t). (5.17)

By inserting the linear feedback control law into the system, we get the closed-loop

system as  ẋ(t)

ẋc(t)

 =

 A −BK

FC Ac


 x(t)

xc(t)

 (5.18)

in which Ac, F and K are found by solving the control algebraic Riccati equation

and the filter algebraic Riccati equation

AP + PAT − PCTCP +M = 0 (5.19)
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then

K = R−1BTΠ, F = PCT (5.20)

Ac = A−BK − FC. (5.21)

In order to design a LQG controller that is able to track a reference trajectory, an

integral action is added to the feedback control system. The integral action aims at

minimizing the error between the output and the desired state. Figure 5.6 shows

the block diagram of the LQG control system with integral action. For the LQG

Figure 5.6: LQG control with integral action

control of the WEC, we again use the desired state wN(t, l) = 0.3 sin (0.2πt). The

performance of the LQG control is shown in Figure 5.7. In this case, the amount

of control that we are using to create a tracking performance via an estimator is

illustrated in Figure 5.8.
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5.4 Estimating Underlying Ocean Function

In the previous section, two feedback control strategies were implemented in order

for the WEC to track the underlying ocean function so that the WEC remains close

to resonance with the incident irregular wave field. These implementations were

based on the fact that the underlying ocean function that serves as the tracking

function for the control system is known to us. However, the assumption of knowing

what the WEC is going to track seems unrealistic.

In this experiment, we will implement a method for estimating the tracking

function based on sensor measurements that is used for the control system. The

problem of constructing the ocean state based on sensor measurements has been

addressed and can be found in literature [56, 57]. The wave height data provided

by wave buoys at some location away from WEC can be used to estimate the

incoming ocean state to the WEC.

Of the various interesting methods for treating the complex ocean waves is the

spectral analysis. The spectral is based on the Fast Fourier Transform of the sea

surface [56]. This method assumes that the sea state can be reconstructed by a

summation of a large number of sinusoidal functions with various frequencies and

heights. The Fourier Transform applied to a set of recorded wave height data

provides the wave spectrum that is useful for indicating that what frequencies

within the ocean waves have significant energy content.

To do so, we first measure time series wave height data at location midway

between the wave maker and the WEC and then record the data as w(s̄, t), where
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s̄ denotes the mid point.. Figure 5.9 shows the time series profile for 10 minute of

data. Note that we use the wave maker to create the incident waves here.

Figure 5.9: 10 minute record of wave amplitude measured by a wave buoy

Now we can perform Fast Fourier Transform on the data to convert it to the

frequency domain. In the frequency domain, the most dominant frequency should

be the peak of the spectral curve. The wave spectrum of the above time series wave

height data is illustrated in Figure 5.10. As seen in Figure 5.10, the peak wave

frequency and peak wave period are fp = 0.105 and Tp = 9.3091. The spectral

analysis of the ocean wave would help us to find an approximation to the ocean

state, which in turn will give us the tracking function that the WEC is required to

track in order to be in resonant with ocean waves. The approximated ocean state
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Figure 5.10: The spectrum of 10 minute ocean wave height data

can be computed using

ŵ(t, l) =
∞∑
n=1

√
2S(n) sin (2πnft) (5.22)

where f is the fundamental frequency extracted from the wave spectrum and S(n)

denotes the spectrum of the ocean wave defined as

S(n) = ZnZ
∗
n (5.23)

where

Zn =
1

T

∫ T/2

−T/2
ŵ(t, l) sin (2πnft)dt (5.24)

for a period of T .
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This method can be applied to real ocean wave data taken from ocean buoys.

The wave data used here is obtained from a Datawell Directional Waverider buoy

located at the Belmullet Wave Energy Test Site on the western coast of Ireland.

The depth at the buoy location is 50 m and is located about 2 nm from shore.

An accelerometer records data in the heave direction at 1.28 Hz, and is double

integrated to obtain surface displacement. In Figure 5.11, 20 minutes of recorded

wave height data at 1.28 Hz, the recording frequency of the actual buoy data is

shown.

Figure 5.11: 20 minutes of recorded wave height data from an ocean buoy

Performing the FFT on the wave data yields the wave spectrum from which

we can reconstruct the tracking function, as shown in Figure 5.12. According

to this figure, the dominant wave frequency is fp = 0.1313. The sea state can
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Figure 5.12: The spectrum of 20 minute ocean wave height data from the ocean
buoy

be reconstructed in the same way as the previous ocean wave data. In other

words, one can easily estimate the underlying ocean wave function by obtaining

this information in order to design tracking controllers for WECs.
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Chapter 6: Conclusion

The work presented in this thesis has investigated the application of a model

reduction technique to wave energy conversion problem. Due to the complex fluid-

structure interactions of the WEC in the ocean and the forces on the WEC, a high

fidelity model could be replaced by a more tractable and computationally efficient

models. Thus, reduced-order models can be readily used for real-time computation

of WEC control systems. Among various model reduction approaches, Balanced

POD has received much attention in recent years, as previously discussed in Section

3.1. Although Balanced POD has been utilized for model reduction of a variety

of complex systems, the method was tested in the context of Hyperbolic systems

in Chapter 3 to ensure its applicability for the WEC fluid-structure interaction

problem and to provide the overview of the approach.

The suitability of Balanced POD to the WEC dynamics that has been the

underlying purpose of this work, presents a great promise into the replacement of

high-fidelity models with reduced-order ones for real-time control. More specif-

ically, as provided in Chapter 5, a high-dimensional system of order 320 × 320

resulting from the application of a finite dimensional scheme to the WEC dynam-

ics in a wave tank was replaced by a reduced order model of order 20. The results

produced in Section 5.2 clearly show the necessity of using a model reduction

approach for real-time control design.
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Once the reduced-order model was sought, the feedback control of the WEC was

introduced in Section 5.3 with the purpose of keeping the WEC as close as possible

to resonance with the incident irregular ocean waves. In fact, resonance would help

to extract maximum energy off the WEC with the minimal amount of the user

input. As the first attempt to illustrate the nature of a tracking control problem,

we developed LQR tracking control as well as LQG control system in order to

drive the WEC into the desired periodic behavior with the information provided

in two different system configurations, as discussed in Section 5.3. Furthermore, we

proposed a practical method to predict the underlying ocean wave function based

on buoy wave height data. We successfully tested the method on both simulation

data and real ocean buoy data in Section 5.4 to construct the desired tracking

function in order for the WEC to follow.

6.1 Future Work

In this work, we considered a one-dimensional heuristic model for a WEC in a wave

tank as the first attempt in a planned series of work that seeks the applicability

of Balanced POD for WEC problems. We took a fairly simplified approach in this

new domain with the ambition to open up a novel research venue that tries to

address the problem of WEC real-time control.

Future work will involve:

1. Extending the aforementioned method to multiple spatial dimensions.

2. Developing the WEC model in the real ocean and taking the stochastic nature
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of ocean waves into account.

3. Testing various approaches to state estimation that can be utilized with the

information limits inherent in ocean operations.

4. Designing advanced controllers to accomplish more goals besides extracting

the maximum energy.
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