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Traditionally, networking protocol designs have placed much emphasis on point-

to-point reliability and efficiency. With the recent rise of mobile and multimedia

applications, other considerations such as power consumption and/or Quality of

Service (QoS) are becoming increasingly important factors in designing network

protocols. As such, we present a new flexible framework for designing robust

network protocols under varying network conditions that attempts to integrates

various given objectives while satisfying some pre-specified levels of Quality of

Service. The proposed framework abstracts a network protocol as a queuing policy,

and relies on the optimization methods of convex relaxation and the theory of

mixing time for finding the fast queuing policies that drive the distribution of

packets in a queue to a given target stationary distribution. It is argued that

a target stationary distribution can be used to characterize various performance

metrics of network flow. Thus, finding a fast queuing policy that produces a

given target stationary distribution is vital in achieving some given objectives.

In addition, we show how to augment the basic proposed framework in order to



obtain a queuing policy that produces ε-approximation to the target distribution

with even faster convergence time. This fast adaptation is especially useful for

networking applications in fast-changing network conditions. Both theory and

simulation results are presented to verify our framework.
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Fast Queuing Policies via Convex Relaxation

Chapter 1 – Introduction

Traditionally, networking protocol designs have placed much emphasis on point-

to-point reliability and efficiency. With the recent rise of mobile and multimedia

applications made possible by various wireless network architectures, other con-

siderations such as power consumption and/or Quality of Service (QoS), e.g., the

requirements on minimum bandwidth, maximum jitter, delay, or loss, are becom-

ing increasingly important factors in designing network protocols. Indeed, many

current proprietary network protocols are often optimized for certain objectives,

based on various requirements of particular devices and/or applications. For ex-

ample, a real-time video conference application might employ a real-time video

streaming protocol which is designed with emphasis on packet delay. On the other

hand, a network protocol with small power consumption is preferable for smart

phones. That said, the situation is made more complex by the fact that a protocol

optimized for i-Phones might result in much power consumption on a Samsung

Galaxy due to the fundamental differences in operating systems as well as hard-

ware architecture. In addition, to be efficient, today network protocols must cope

with the fast-changing and non-stationary characteristics of wireless channels as

well as fluctuating traffic amount induced by the diversity of modern applications.

Therefore, in this paper, we present a framework for customized designs of robust

network protocols that achieve various objectives and requirements imposed by

the heterogeneity of applications and hardware architectures under fast-changing,
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non-stationary environments.

The proposed framework relies on three components: (1) the abstraction of a

network protocol as a queuing policy in order to allow for generalization of pro-

tocol designs as well as tractable analysis using queuing theory; (2) the optimiza-

tion formulation, specifically the convex relaxation, that provides the flexibility in

specifying various objectives and constraints induced by different applications and

hardware architectures; (3) the theory of mixing time that helps design the proto-

cols to promptly achieve the given objective to minimize the effect of the abrupt

changes in the environments. Regarding the first component, the abstraction of a

network protocol as a queuing policy is commonly used in many network simula-

tors [1] and has been the corner stone for the highly successful queuing theory. In

fact, since the development of packet-switched networks in early 1960s, queuing

theory [2] has been a critical part in the performance analysis for many transmis-

sion protocols. The performance of current wireless transmission protocols such

as the IEEE 802.11 protocols can be formally analyzed using queuing theory. As

for the second component, recent advances in convex optimization methods and

computing power have made solving complex problems in real time using numeri-

cal methods and algorithms an attractive approach [3]. Optimization is a powerful

framework for finding optimal solutions to a variety of complex problems with

multiple constraints using algorithms which often cannot be obtained via analyt-

ical methods. Also, it is often relatively easy for a network protocol designer to

cast his/her problem in the canonical form of the convex optimization problem.

The optimization package can then uses variety of algorithms to find the solutions

numerically. Finally, regarding the third component, traditional adaptive proto-
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cols attempt to change their behaviors based on the updated information from the

surrounding. In contrast, the proposed framework assumes that in some situa-

tions, it might not be possible to gather the updated information accurately and

timely so that a protocol can use it to respond appropriately. Instead, the pro-

posed approach uses the theory of mixing time to provide the insight about how

to design robust protocols by quickly achieving the given objective based on the

current information before the environments change.

Network Protocol as Queuing Policy. A primary objective of a network

protocol is to regulate the transmission rate of data between two endpoints of a

communication link. For example, TCP adapts its sending rates to the current

traffic conditions by linearly increasing the rate when no packet loss is observed

and multiplicatively decreasing the rate when a loss occurs. Packets in transit

between two endpoints on the Internet can be thought to be in a queue. Thus,

a network protocol can be viewed as a queuing policy that controls the rates of

incoming packets at the sender and outgoing packets at the receiver. In many

other settings, queues are implemented explicitly in communicating devices, and

the network protocols make use of them directly. Notably, in a number of ran-

domized medium access control (MAC) protocols used in wireless environments,

the queue fullness, i.e., the number of packets in the queue is used as an indication

of the current traffic conditions. This information is then used to determine the

probability of accessing the wireless channel which is proportional to the sending

rate. Thus, understanding the dynamics of packets in queues over time as a result

of employing certain queuing policy/network protocol, enables the system engi-

neers to characterize and to predict various properties of the data flow such as
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bandwidth, packet loss and delay.

Stationary Distribution. Central to our approach is the notion of the sta-

tionary distribution of packets in the queue associated with each queuing policy.

The stationary distribution is important in characterizing various properties of

a protocol. As will be discussed shortly, stationary distribution can be used to

characterize the traditional QoS metrics such as loss and delay. It is an important

parameters to be optimized for many objectives including the average consumption

power of the protocol. Therefore, finding a queuing policy that produces a desired

stationary distribution in the fastest time is one of the main goals of the paper.

Contribution: We consider a general class of queuing polices/network pro-

tocols with the ability to adjust the sending and receiving rates probabilistically.

The probabilistic framework arises naturally from the unavoidable uncertainties

in when and how fast packets arrive due to the fluctuations in network traffic.

Furthermore, in some scenarios the ability to send packets out (de-queue) success-

fully at any time is probabilistic. For example, in a Wi-Fi network, a wireless node

might not be able to successfully send out a packet (de-queue) at a certain time slot

due to possible collision with other node’s transmission. Also, its random back-off

mechanism after a collision can in fact be viewed as a dequeuing operation with a

certain probability. Our contributions include an convex optimization framework

for providing Quality of Service (QoS) using a fast queuing policy that achieves

a given stationary distribution. Indeed, a given stationary distribution allows for

a more general and precise control of various QoS requirements. In addition, we

show how an even faster queuing policy can be achieved when the queuing policy

only needs to produce a stationary distribution that is ε-close to the given target
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stationary distribution. The fast adaptive queuing policies are especially useful

for applications in fast-changing network conditions. Our framework is developed

based on the theory of fast mixing Markov chain and convex optimization. Finally,

we show how the proposed framework can be applied to optimize for a wide range

of objectives beyond the standard QoS requirement, such as power consumption.

Outline. The thesis is organized as follows. In Section 2.1, we discuss the

approach to QoS via stationary distribution. In Section 2.2, we provide some

background on the Markov Chain and queuing theories as they are necessary for the

development of our proposed framework. In Section 3.1, we present a novel convex

optimization framework with multiple formulations for finding fastest mixing time

queuing policies. In Section 3.3, we describe the application of the above framework

for the tridiagonal queuing cases. In Section 3.4 and Chapter 4, we show an

application of our framework to finding a queuing policy that optimizes for a given

objective for a flow while ensuring the mean and variance of queuing delay are

within given bounds. Finally, we provide a few concluding remarks in Chapter 6.
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Chapter 2 – Preliminaries

In this chapter we present the main definitions and some results which will be

useful in our analysis later.

2.1 Queuing Policy, Stationary Distribution, and QoS

A network protocol is abstracted as a queuing policy which is governed by a tridi-

agonal transition probability matrix as shown in Fig. 2.1. The dimension N of

the matrix represents the maximum length of the queue. The diagonal, left-of-

diagonal, right-of-diagonal entries in the tridiagonal transition probability matrix

represents the probabilities of the number of packets in the queue stays the same,

decreases by one, or increases by one.

We first use a simple example of a discrete-time version of the classicalM/M/1/k

queuing model to illustrate the relationship between the stationary distribution in-

duced by a queuing policy and QoS. Assume that at the beginning of each time

step, exactly one packet arrives at the queue with probability p = 0.4. Otherwise,

with probability 1− p = 0.6, no packet arrives during that entire time step. Fur-

thermore, a queuing policy is used such that at the beginning of each time step,

exactly one packet is dequeued with probability q = 0.6. Otherwise, with probabil-

ity 1− q = 0.4, no packet is dequeued during that entire time step. Furthermore,

for simplicity let k = 2 be the maximum queue size, and a newly arrived packet is
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qi
pi

feedback

Queuing Policy: Enqueue and dequeue probabili!es (rates)

Figure 2.1: Queuing policy can be viewed as a tridiagonal transition probability
matrix

dropped if the queue is full. The dynamic of the number of packets in the queue

over time can be shown to be governed by the following transition probability

matrix:

P =


0.84 0.16 0

0.36 0.48 0.16

0 0.36 0.64

 ,

where Pij denotes the probability that the queue will have j packets in the next time

step, given that it currently has i packets with i, j ∈ {0, 1, 2}. For each aperiodic

and irreducible P , there exists a unique corresponding stationary distribution π

such that πTP = πT . In this particular case,

π =


0.61

0.27

0.12

 .

The stationary distribution π characterizes the long term or stationary proba-
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bility of the queue occupancy. In this case, out of all the observed time slots, 61%

of time the queue is empty, 27% of the time the queue has exactly one packet, and

12% of the time the queue has two packets. Knowing exactly this distribution,

the average queuing delay can be precisely calculated. One can also immediately

bound the probability of dropped packets to no more than 0.12. In fact, any sta-

tistical measure, e.g., moments of any order can be theoretically calculated for the

given stationary distribution.

Transition Probability is induced by Queuing Policy. Suppose the QoS

requirements are given in terms of maximum average packet latency and minimum

packet drop rate, then one can find a stationary distribution π that satisfies such

requirements (in Section 3.4.2, we show a general procedure to obtain the station-

ary distribution π subject to any constraints). However, there are many transition

probability matrices P that have the same stationary distribution π. It is impor-

tant to note that each transition probability P is a result of applying a certain

queuing policy. For the example above, the associated queuing policy is to send

packets with probability of 0.6. One can easily implement another policy that

sends packets with a different probability which results in a different transition

probability. Moreover, we need not restrict ourselves to the class of policies that

sends and receives packets with some fixed probabilities. Rather, one can design

a policy that sends and receives packets with different probabilities based on the

number of packets presently in the queue.

Constraints on Queuing Policy. Intuitively, for a high priority flow π =

[1, 0, 0]T seems to be the best stationary distribution since the queue is always

empty. However, this implies that a packet is always dequeued at every time



9

slot. This policy might not be possible or optimal due to several reasons. For

example, let us consider a wireless network consisting of multiple nodes. First,

if an application does not require much throughput, then sending packets all the

time consumes more power than necessary. Second, if every node in the wireless

network implements the same greedy queuing policy, then collisions will happen

all the time, resulting in low overall throughput. Thus, the transition probability

matrix (hence the queuing policy) must be selected from a pre-specified class of

transition probability matrices that gives rise to reasonable queuing policies for the

given settings. This constraint is an input to our convex optimization framework

to be described shortly.

Fastest Queuing Policy. We noted above that there are many transition

probability matrices P (equivalently many queuing policies) that have the same

given stationary distribution π, and all satisfy the pre-specified QoS requirements.

So which transition probability matrix should one choose? The theory of Markov

chain shows that if we apply the same queuing policy over many time steps, the

distribution of packets in the queue will converge to a unique stationary distribu-

tion corresponding to a stochastic, aperiodic and irreducible matrix P , regardless

of the initial distribution of packets in the queue. Mathematically, let ν be any

initial distribution of packets in the queue, then

lim
n→∞

νTP n = πT , (2.1)

where n is the number of time steps.

If the network traffic is stationary, then π can be obtained approximately using
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the same queuing policy after some sufficiently large number of time steps. Ideally,

we want the queuing policy that drives the distribution of packets in the queue to

the desired stationary distribution in the fastest time,i.e., smallest n for any initial

distribution. This is especially useful when the network conditions change and

thus fast adapting queuing policy is preferable. Another important point about

this fast adapting principle is that if for some reasons, the network traffic becomes

bursty for a short while that temporarily fill up the queue, a fast queuing policy

will quickly drive the queue to the desirable average number of packets, i.e., the

target stationary distribution.

2.2 Mixing Time and Spectral Gap

In order to quantify ”fast” queuing policy, i.e., how fast a queuing policy drive an

initial distribution to a given target stationary distribution, it is necessary to define

a similarity measure between two distributions. One common similarity measure

is the total variance distance defined below:

Definition 1 (Total variation distance) For any two probability distributions

ν and π on a finite state space Ω, we define the total variation distance as:

‖ν − π‖TV =
1

2

∑
i∈Ω

|ν(i)− π(i)| .

We now use the similarity measure to define an important notion called mixing

time below:



11

Definition 2 (Mixing time) For a discrete, aperiodic and irreducible Markov

chain with transition probability P and stationary distribution π, given an ε > 0,

the mixing time tmix(ε) is defined as

tmix(ε) = inf
{
n : ‖νTP n − πT‖TV ≤ ε for all probability distributions ν

}
.

Essentially, the mixing time of a discrete time Markov chain is the minimum num-

ber of time step n until the total variance distance between the n-step distribution

ad the stationary distribution is less than ε. We will use the mixing time to char-

acterize the convergence rate of a queuing policy. One of the successful techniques

for bounding the mixing time of a stochastic matrix is via its spectral characteri-

zation, i.e., its eigenvalues.

Eigenvalues and Eigenvectors. A non-zero vector vi is called a right (left)

eigenvector of a square matrix P if there is a scalar λi such that: Pvi = λivi or

(vTi P = λvTi ). The scalar λi is said to be an eigenvalue of P . If P is a stochastic

matrix, then |λi| ≤ 1,∀i. Denote the set of eigenvalues in non-increasing order:

1 = λ1(P ) ≥ λ2(P ) ≥ · · · ≥ λ|Ω|(P ) ≥ −1

Definition 3 (Second largest eigenvalue modulus) The second largest eigen-

value modulus (SLEM) of a matrix P is defined as:

µ(P ) = max
i=2,...,|Ω|

|λi(P )| = max{λ2(P ),−λ|Ω|(P )} (2.2)
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In this paper, we also make use the reversibility property of Markov chain

defined as follows:

Definition 4 (Reversible Markov Chain) [4] A discrete Markov chain with a

transition probability P is said to be reversible if there exist a probability π satisfies

the following detailed balance equations:

Pijπ(i) = Pjiπ(j) (2.3)

Proposition 1 For any discrete-time Markov chain with tridiagonal stochastic

transition matrix, the chain is reversible.

Proof: See Appendix.

We now show an important bound that relates the mixing time of the Markov

chain to the SLEM of a reversible matrix P .

Theorem 1 (Bound on mixing time) [4]. Let P be the transition matrix of

a reversible, irreducible and aperiodic Markov chain with state space Ω, and let

πmin := minx∈Ω π(x). Then

tmix(ε) ≤
1

1− µ(P )
log
( 1

επmin

)
. (2.4)
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Proof: See Appendix.

Suppose at time step t we have d(t) = ‖νTP t−πT‖TV ≤ ε then from the definition

of mixing time: tmix(ε) ≥ t. From the theorem (1), we have:

t ≤ 1

1− µ(P )
log
( 1

επmin

)
Hence

d(t) ≤ ε ≤ π−1
mine

−(1−µ(P ))t

Therefore, d(t) converges to 0 asymptotically as e−(1−µ(P ))t. Here, we consider the

quantity 1− µ(P ) as mixing rate.

Since the mixing time is a function of ε and the mixing times of two matrices

might be smaller or larger than the other at different ε, we are more interested in

the mixing rate. Thus, finding the matrix P with minimum µ(P ) would result in

the fastest convergence time which will be the topic in the next section.
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Chapter 3 – Robust Queuing Policies/Network Protocols via

Convex Relaxation Optimization

In this chapter, we present a number of convex relaxation optimization formula-

tions for finding tridiagonal transition probability matrix with fast mixing rate

and achieve a given target stationary distribution. Based on this, we present an

augmented framework for finding fast queuing policies that are optimized any ob-

jectives that is convex in stationary distribution.

3.1 Fast Mixing Tridiagonal Matrix for a Given Stationary Distri-

bution

We assume that a stationary distribution is given. The goal is to find a tridiagonal

transition probability matrix with fastest mixing rate. It was shown in [5] that

µ(P ) = ||D1/2
π PD−1/2

π −
√
π(
√
π)T ||2, (3.1)

where π denotes the stationary distribution of P , Dπ denotes the square diagonal

matrix whose diagonal entries are taken from each elements of π, and ||.|| denote

l2-induced matrix norm. In (3.1), P must be reversible. Furthermore, µ(P ) is a

convex function in P .

Our first convex optimization is: given the some requirements, i.e., a desired



15

stationary distribution of Markov Chain, design the fastest chain with transition

matrix (P ) that drives the chain from any state to the desired stationary distribu-

tion. It was first formulated broadly in [5] as:

Problem 1 - FMMC.

Minimize ||D1/2
π∗ PD

−1/2
π∗ −

√
π∗(
√
π∗)T ||2

Subject to :


P1 = 1

Dπ∗P = P TDπ∗

other convex constraints on P.

(3.2)

The objective function is SLEM. The first constraint ensures P is a stochastic

matrix. The second constraint is for reversibility. The third constraint is imposed

by limitations of certain settings of the chain. The solution of the problem (if

exists) is a transition matrix Popt which has the smallest SLEM, resulting fastest

convergence time to the given target distribution π∗. However, these constraints,

especially the third constraint, can be restricted that given a stationary distribution

π∗, there might not be a P that simultaneously satisfies all the constraints and

produces the desired stationary distribution. For example, consider a queuing

policy, if one restricts the queuing policy to always send packets at some constant

rate (q) regardless of how many packets in the queue, then there is less flexibility in

producing the desired π∗. In addition, in many settings, finding a queuing policy

that produces a stationary distribution that is within some small ε of the target

stationary distribution, but has faster convergence rate might be preferable. This

is especially useful when network conditions change quickly. On the other hand,

a slow adapting chain is optimal for the past rather than the present network
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conditions. Based on this, we propose the following optimization problem (P2):

Problem 2.

Minimize ||D1/2
π PD

−1/2
π −

√
π(
√
π)T ||2

Subject to :



P1 = 1

DπP = P TDπ

Other constraints on P.

||π∗ − π||2 ≤ ε

(3.3)

The optimization variables in (P2) are both P and π. Unfortunately, (P2) is

non-convex. Therefore, we propose the following convex problem (P3) to find the

approximate solution for (P2).

Problem 3 - EFMMC.

Minimize ||D1/2
π∗ PD

−1/2
π∗ −

√
π∗(
√
π∗)T ||2

Subject to :



P1 = 1

||π∗TP − π∗T ||2 ≤ δ

P is reversible.

Other convex constraints on P.

(3.4)

Unlike (P2), P is the only optimization variable in (P3). It is not difficult to

see that (P3) is convex. One issue to consider is how to pick δ in the constraint

||π∗TP −π∗T ||2 ≤ δ, so that the solution to (P3) indeed satisfies all the constraints

in (P2). Specifically, we want to determine the bound on the value of δ to guarantee



17

that the constraint ||π∗−π||2 ≤ ε in problem (P2) is satisfied. We have the following

proposition.

Proposition 2 For any irreducible aperiodic reversible P , we have:

||π∗ − π||2 ≤
π

1/2
max

π
1/2
min

||π∗TP − π∗T ||2
1− λ2

. (3.5)

Proof: See Appendix.

From Proposition 2, it is straightforward to see that if we pick δ ≥ ε
√

πmin
πmax

(1−

λ2), then ||π∗− π||2 ≤ ε. On the other hand, we cannot possibly know πmin, πmax,

and λ2 without knowing P first. However, one often can find some upper and

lower bounds on these quantities by looking the structure of the class of the tran-

sition matrix. For example, one can bound λ2 via the conductance obtained by

examining the corresponding graph G(V,E) [4]. Up to this point, the framework is

applicable for a general class of reversible matrix. As mention before that tridiag-

onal Markov chain is reversible, we now lift the reversibility constraint by limiting

the transition probabilities P to the class of tridiagonal matrix. Specifically, we

have the following results on the upper and lower bounds of the quantities above

for a class of tridiagonal transition probability matrices.

Proposition 3 Let P be a tridiagonal matrix with α ≤ Pij ≤ β; (0 < α < β) for
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all (i, j) in the off-diagonal line, we have


πmin ≥ α|Ω|−1

πmax ≤ β

λ2 ≤ 1− 2α|Ω|

Proof: See Appendix.

Using Proposition 3, the following corollary is obtained for selecting the right δ

based on ε.

Corollary 2 For the class of tridiagonal matrices defined in Proposition 3, pick

δ = ε2α(5|Ω|−1)/2

β1/2 will guarantee that

||π∗ − π||2 ≤ ε (3.6)

We are ready to show the main result on bounding the optimal objective value of

problem (P2) with that of problem (P3). We have the following proposition:

Proposition 4 Let the µ2 and µ3 be the optimal objective values of problems (P2)

and (P3), respectively. Let ∆ = ε√
π∗min

. π∗min and π∗max denote the maximum and

minimum entries in π∗, respectively. Then,

|µ2 − µ3| ≤ C, (3.7)
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where

C =
∆(2

√
π∗min −∆)

(
√
π∗min −∆)2

+ (
√
π∗max + 2∆)

∆2

π∗min
3/2

+ |Ω|∆(2
√
π∗max + 3∆) (3.8)

Proof: See Appendix.

Proposition 4 provides a bound on using solution to (P3) as an approximate

solution for (P2). Therefore, we can use (P3) framework to obtain a solution

matrix P whose stationary distribution is ε-close to stationary π, and has faster

mixing time than that of (P1) framework.

Note that our framework is applicable to a variety of Markov environments

whose dynamics can be modeled as a tridiagonal matrices. For a queuing system,

the corresponding transition probability matrix is tridiagonal since the number

of packets in the queue can only increase, decrease, or remain the same in the

next time step. Similarly, the Birth-and-Death process has a tridiagonal transition

matrix since the state can only decrease and increase by at most one in each step.

In the next section, we will apply these two frameworks for a general tridiagonal

Markov Chain case (Birth-and-Death process) and further extend these frameworks

for queuing policies problem.
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3.2 Algorithmic Solution to Proposed Framework

The proposed FMMC and EFMMC formulations are convex optimization problems

in which there are various well-known methods to find the solutions. Since the

differentiation of the objective function (the SLEM) is difficult to compute, here

we introduce an algorithmic approach using projected subgradient method for

maximum eigenvalue of a symmetric matrix.

Note that in the frameworks we want to optimize for the SLEM of a reversible

matrix P , not the maximum eigenvalue of a symmetric matrix. However, we can

easily convert the matrix P to matrix A = D
1/2
π PD

−1/2
π −

√
π(
√
π)T where A is

symmetric and λmax(A) = µ(P ) [4, Section 12.1].

Definition 5 (Subgradient of the SLEM) A subgradient of λmax at a symmet-

ric matrix P is a symmetric matrix G that satisfies the inequality

λmax(P̃ ) ≥ λmax(P ) + Tr G(P̃ − P ) = µ(P ) +
∑
i,j

Gij(P̃ij − Pij) (3.9)

for any symmetric matrix P̃ .

Proposition 5 (Subgradient via eigenvector) Suppose P is a symmetric ma-

trix and y is a unit eigenvector associated with λmax(P ). Then the matrix G = yyT

is a subgradient of λmax(P ).

Proof: See Appendix.
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Now we give the following algorithm to optimize the SLEM of symmetric matrix

P subject to constraints with subgradient method and projection at each step.

Projected subgradient method:

1: Given a feasible matrix P and begin the first step k := 1

2: Phase 1: Find eigenvector v of matrix P and compute subgradient Gk. Then

let

P̃ := P − αkGk/||Gk||

where the stepsize αk satisfies the diminishing stepsize rule:

αk ≥ 0, αk → 0,
∑
k

αk =∞

3: Phase 2: Project P̃ into the feasible set by solving the following problem:

minimize ||P − P̃ || subject to constraints on P (3.10)

4: Phase 1 and phase 2 is repeated at each step k until the optimal solution is

found (or we reach the stopping condition).

In (3.10), the constraints for matrix P is different for each problem as follows.

For FMMC framework in (3.2):

Constraints on P:


P1 = 1

Dπ∗P = P TDπ∗

other convex constraints on P.
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For EFMMC framework in (3.4):

Constraints on P:



P1 = 1

||π∗TP − π∗T ||2 ≤ δ

P is reversible.

Other convex constraints on P.

In fact, the subgradient method is not different from the original gradient method

for differentiable function, meaning we start from a feasible point, move based on

the subgradient that is computed at this point and repeat the process until we

get to the optimal solution. However, it is should noted that unlike the gradient

method, the subgradient does not guarantee the descent of the function during the

whole process. Since then the convergence of the algorithm to the optimal point

depends heavily on the choice of stepsize [6].

3.3 Application to Birth-and-Death Process

Birth-and-Death process [7] is a well-known Markov Chain using to model some

population in which the size in one step can only increase and decrease by at most

1. Other speaking, there is at most one birth or one death in a time slot.

The transition probabilities can be specified by {pi, ri, qi}ni=0 where:

• pi + ri + qi = 1 for each i

• pi is the probability of moving from state i to state i+ 1

• ri is the probability of remain in the state i
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• qi is the probability of moving from state i to state i− 1

• q0 = pn = 0 since there is no birth when the population reach its maximum

value and no death when the population is zero

Suppose the maximum number of population is Ω, the transition probability matrix

is formulated as follows.

P =



r0 p0

q1 r1 p1

. . . . . . . . .

q|Ω|−1 r|Ω|−1 p|Ω|−1

q|Ω| r|Ω|


(3.11)

To present the factors which can affect the birth rate and the death rate, we

further require that: ri, pi, qi ∈ (α, β), ∀i. (α, β) ⊂ (0, 1) are pre-specified that

models certain limitations.

Simulation 1 Specifically, we set (α, β) = (0.05, 0.95), the maximum size |Ω| =

20, and δ = 0.1. The purpose is to design a birth-and-death chain which converges

to a target stationary distribution π∗ (shown in Fig. 3.1) in a fastest mixing time.

First, in case (a), we consider a limited class of birth-and-death process where

there is no remaining probability. These processes can be modeled as a tridiagonal

matrix with the following requirement: ri = 0 for i = 2, . . . , |Ω| − 1.

Given π∗, we solve problem (P1) to find the fastest policy that converges to

π∗. Now in case (b), we enlarge the class of birth-and-death process by lifting the
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restriction on ri = 0. Then, we solve problem (P1). Intuitively, the chain found in

case (b) should likely to have faster convergence time than that of case (a) since it

is found from a larger class of chains. Indeed, this is the case. Fig. 3.2 shows the

total variation distance between the target stationary distribution and the current

distribution as a function of time steps. As seen, the curve for case (a) decreases

slower than that of case (b). At the time step n = 300, the total variation distance

for case (b) is almost zero while that of (a) is still around 0.08.

We now consider case (c). In this case, the class of birth-and-death process

is the same at that of case (b). However, we solve problem (P3) in which, we

intentionally find a chain that might not produce exactly the target stationary

distribution π∗, but close enough, i.e., ||π−π∗||2 ≤ ε. Intuitively, this chain should

produce even faster adaptation than those of cases (a) and (b). In fact, this is the

case. Fig. 3.2 shows the curve for case (c) which drops down quickly compared

with the other two. At time n = 50, the total variation distance is 0.1284 for case

(c) while they are more than 0.7 for the other two cases. The curve for case (c)

however does not converge, i.e., decreases to zero, but stays around 0.12. This is

intuitive since the solution to problem (P3) is not designed to obtain a chain that

converges to the target stationary distribution. Fig. 3.1 shows that there are not

much difference in the distribution π obtained by solving problem (P3) and the

target distribution π∗. Thus, the problem requirements would not be violated by

using the chain obtained from problem (P3).

We now study the trade-off between the accuracy of obtaining the target distri-

bution and the convergence time. Fig. 3.3 shows the mixing times from problems

(P3) and (P1) which decrease significantly when the allowable deviation (ε) from
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Figure 3.2: Comparison of the convergence times in 3 cases

the stationary distribution increases. For the class of chains in the simulation,

setting ε = 0.02687 seems to be the best as it reduces the mixing time significantly

while keeping π close to π∗.
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3.4 Finding Fast Queuing Policies Optimized For A Given Objec-

tive Function

3.4.1 Finding feasible queuing policy

Depending on specific settings, the tridiagonal transition probability matrix will

not produce a valid queuing policy, more precisely, produce a feasible way for con-

trolling the enqueue and dequeue rates. Let us consider the following scenario

in which the arrival and departure rates at the queue can be controlled to some

extent by a queuing policy. Let us assume that as a result of a queuing policy, the

probabilities of a packet arriving at the queue and departing from the queue when

the queue length is i, are ai and si, respectively. We assume that packets can only

arrive and depart at the beginning of each discrete time slot. We note that the

ability to control the arrival rate seems impossible for physical queues in the Inter-

net routers, however, it is frequently implemented in high level network protocols
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Figure 3.4: Discrete queue model

such as TCP in which virtual queues are typically used to provide feedback to the

sender for the purpose of rate control. Using this queuing model as shown in Fig.

3.4, let us denote:

• |Ω|: Maximum queue length

• s = (s0, . . . , s|Ω|) where s0 = 0: Departing probability vector

• a = (a0, . . . , a|Ω|) where a|Ω| = 0: Arrival probability vector.

Then it is not difficult to see that the dynamics of the number of packets in

a queue over time is governed by a discrete Markov chain with the transition

probability matrix below:

Q =



1− a0 a0

s1(1− a1) 1− s1 − a1 + 2s1a1 (1− s1)a1

. . .
. . .

. . .

s|Ω| 1− s|Ω|


(3.12)

Note that for each non-zero entry of each row, the left, middle, and right entries

denote the probabilities that the number of packets in the queue decreases by 1,

stays the same, or increases by 1, respectively.

Now, let us compare the above matrix Q to the matrix P which is the solution

obtained from the problem (P1) or (P3) above. In general, P is a tridiagonal

matrix with the entries: ri, qi, pi.
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P =



r0 p0

q1 r1 p1

. . . . . . . . .

q|Ω| r|Ω|


(3.13)

The main challenge is how to find the corresponding si and ai, i.e., enqueue

and dequeue rates for given ri, qi, pi. It turns out that si and ai might be negative

or complex numbers which cannot be used in a feasible queuing policy. However,

we can determine the conditions on qi and pi for which there exist real and non-

negative solutions for si and ai, leading to a feasible queuing policy. We proceed

to derive the conditions as follows.

From (3.12) and (3.13), we need to solve these following equations:

 si(1− ai) = qi → ai = 1− qi/si

(1− si)ai = pi → ai = pi/(1− si)

⇐⇒ 1− qi/si = pi/1− si for i = 1, . . . , |Ω| − 1
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⇐⇒ (1− si)si = (1− si)qi + sipi for i = 1, . . . , |Ω| − 1

⇐⇒ s2
i − si(1 + qi − pi) + qi = 0 for i = 1, . . . , |Ω| − 1 (3.14)

Let us denote s′i and s′′i as two roots of (3.14), we have:

 s′i + s′′i = qi

s′is
′′
i = 1 + qi − pi

Since qi, pi ∈ (0, 1) for i = 1, . . . ,Ω− 1, if (s′i, s
′′
i ) are real, least one of s′i or s′′i will

be in the range of (0, 1) which satisfies the requirements for departing probability

vector s and arrival probability vector a.

Hence, in order to guarantee the existence of feasible solution of (3.14), we

need:

∆ = (1 + qi − pi)2 − 4qi ≥ 0 for i = 1, . . . , |Ω| − 1 (3.15)

It appears that we can add these constraints directly to the two convex formu-

lations above. However, these constraints are not convex, thus making it hard to

solve in general. Therefore, our approach is to relax (3.15) by making it a convex

constraint as follows.

(1 + qi − pi)2 − 4qi ≥ 0 ⇐⇒ 1 + qi − pi > 2
√
qi since qi > 0

⇐⇒ (1−√qi)2 > pi (3.16)

Consider function f = (1−
√
x)2 for x ∈ (0, 1), we can find an approximate lower

bound function f(.) in the form of tangent y = ax + b where a = f ′(x0) and
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f ′(x) = (
√
x− 1)/

√
x (See (Fig. 3.5)).

Hence, (3.16) is equivalent to the following convex constraints:

a(x0)qi + b(x0) > pi for i = 1, . . . , |Ω| − 1 (3.17)

Now, we can incorporate these constraints in (3.17) to the (P1) and (P3) prob-

lems and let us denote as FMMC framework and EFMMC framework respectively,

then we still guarantee convex formulations to find feasible queuing policies.

3.4.2 Procedure for Optimizing a Given Objective via Queuing Pol-

icy

In this section, we provide an example of applying our proposed framework to

find fast queuing policy that optimizes a given objective while still satisfying other

standard QoS requirements. Our approach consists of two steps. In the first step,

we find a stationary distribution π∗ that optimizes a given objective subject to

all the given constraints. Efficiently, the objective and the constraints can be

formulated from the real-world conditions. In the second step, we substitute π∗

into either the FMMC or EFMMC framework with the convex constraints in (3.17)

to find the fastest queuing policy. We give a specific example below.

Step 1. Let X be discrete random variable representing the number of packets

in the queue (X ∈ [0, . . . , L]).

Suppose a video application requires that the queuing delay average and second
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moment must be bounded within a range. For example,

 E[X] < Y 1

E[X2] < Y 2

Then E[X] and E[X2] can be computed from the stationary distribution π:


E[X] =

L∑
x=0

π(x)x

E[X2] =
L∑
x=0

π(x)x2

Furthermore, suppose that there is a cost function c(x) where x denotes the number

of packets in the queue. c(x) could be any function that might represent energy,

resources that depends on the queue occupancy. Now, suppose we want to minimize

the total expected cost:

T =
x=L∑
x=0

c(x)π(x).

Then the optimization problem can be formulated as follows.

Minimize
x=L∑
x=0

c(x)π(x)

Subject to :



L∑
x=0

π(x)x < Y 1

L∑
x=0

π(x)x2 < Y 2

L∑
x=0

π(x) = 1

πmin < π(x) ∀x = 0, 1, . . . , L

(3.18)
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Step 2. The solution of (3.18), i.e., P gives us the target stationary distribution

π∗ satisfying the QoS requirements and the given objective. Now, we apply the

FMMC and EFMMC formulations to find tridiagonal matrices with fast mixing

rates. Next, using P and the method shown in Section 3.4.1, we can find the

matrix Q, i.e., the dequeuing and dequeuing rates as a function of the number of

packets in the queue. This will result in a queuing policy that achieves the target

distribution quickly, yet satisfy the QoS requirements.
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Chapter 4 – Performance Evaluation of Queuing Policies

In this section, we present the performance evaluations of our approach using

the example above with specific parameters. We assume the maximum physical

queue length L = 9 or total number of states is |Ω| = 10. To demonstrate the

flexibility of our approach, the cost function c(x) is shown in Fig. 4.1 where Case

1: {Y 1 = 15;Y 2 = 50; πmin = 0.01} and Case 2: {Y 1 = 5;Y 2 = 19; πmin = 0.01};

Note that the cost function can be chosen arbitrarily depend on the factors

we consider. Here, we only consider two very simple cases. In case 1, the cost

can be viewed as the utility of the queue, so the cost is high when the queue is

not in full and achieves the lowest value when the queue has no available slot left.

Differently, the cost in the case 2 is most-affordable only when the queue is about

half-occupied and slightly higher for the other states, which implies that we have

to pay off to avoid the heavy traffic in the queue and also try to avoid the idle

mode in the queue.

Using the approximation method for obtaining a feasible queuing policy in

Section 3.4, we choose the tangent at x0 = 0.2; we set δ = 0.001 in the EFMMC

framework. To show the robustness of the framework, we also consider one typical

queuing policy in the feasible solution set of the FMMC framework and denote in

the figures as ’Feasible’ .

Fig. 4.2 shows the shape of the target stationary distribution π∗ and π as the

results of steps 1 and 2 in Section 3.4.2, respectively. As seen, π∗ and π are very
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Figure 4.1: Cost function c(x)
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Figure 4.2: Target and resulted distribution

close indicating a very good approximation of our approach.

In addition, Fig. 4.3 shows that the EFMMC framework has a faster conver-

gence rate than that of FMMC as expected while the Feasible queuing policy has

the slowest convergence of all. Importantly, a faster convergence rate is especially

useful in non-stationary settings.

To illustrate this point, Fig. 4.4 shows the total variance distance between the

current distributions produced by the FMMC and EFMMC frameworks and the
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Figure 4.3: Comparison of the convergence times in two cases

Feasible queuing policy, and the target stationary distribution in a non-stationary

environment. The non-stationary environment is simulated based on the bursty

traffic Poisson patterns with λ = 30. Specifically, in addition to the regular traffic,

there are bursts of 5 packets arriving at the queue. On average, the time duration

between these bursts are 30 time slots. As shown in Fig. 4.4, all three curves have

spikes when the bursts of packets arrive. This prevents the current distributions

in both frameworks from approaching the target stationary distribution (i.e, the

curves approaching zero). On the other hand, the queuing policy based on EFMMC

framework is better than that of FMMC since it produces as close as possible to

the target distribution quickly.

Similarly, Fig. 4.5 shows the current cost of the systems by applying the Fea-

sible queuing policies and also that of FMMC and EFMMC frameworks under the

same non-stationary environment in the two cases. It can be seen the cost induced

by EFMMC policy are the lowest of all and also it approaches the optimum cost

in the fastest time. Hence, EFMMC policy is the most efficient policies in both
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Figure 4.4: Convergence of the system during environmental change
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cases.
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Chapter 5 – Related Work

In this section, we discuss a number of related work on network protocols and queu-

ing policies with an emphasis on protocols that aim to achieve QoS for multimedia

flows.

Network protocols. There exists a vast literature on network protocol de-

signs. Typically, network protocols are designed based on a few principles, and

are optimized for specific situations. Wireless network protocols such as Wi-Fi

protocols are completely different from the network protocols running on a wired

network such as TCP in terms of operations as well as objectives. There are also

protocols tailored for multimedia transmission applications [8] where emphasis is

on achieving QoS and protocols for sensing applications with a focus on minimiz-

ing power consumption [9]. All of these protocols are typically designed to achieve

some certain objectives. For example, TCP attempts to improve the bandwidth

efficiency through congestion control and avoidance mechanisms. While many pro-

tocols are designed to respond quickly to changes in network conditions, they are

often designed in heuristic ways. This thesis provides a flexible framework for de-

signing network protocols that achieves a wide class of objectives, and formalizes

the notion of a fast response protocol via the notion of mixing time.

Network protocols for multimedia traffic. Another aspect of network

protocols/queuing policies design aims at satisfying a given of QoS as specified

by certain multimedia applications such as audio/video interactive and streaming
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applications. The underlying principle for providing QoS under a limited resource

setting is to treat packets differently based on their priorities. For example, packets

of flows of different priorities are classified and marked at the ingress routers in the

proposed DiffServ architecture [10]. The markings are then used by the intermedi-

ate routers to determine their forwarding/queuing policies. For example, packets

with Expedited Forwarding (EF) marking are intended for flows/applications with

low-loss, low-latency such as video conference traffic. The intermediate routers

then implement certain queuing policies that ensure the EF packets have higher

forwarding priority than other best effort packets. In a way, this is an attempt to

provide scalable end-to-end QoS by enforcing differentiated service of flows on a

per-hop behavior basis.

The same principle is also applied in local wireless area networks (WLAN).

Specifically, using the MAC protocol 802.11e in the Enhanced Distributed Channel

Access (EDCA) mode [11], packets are classified into different types: Background

(AC BK), Best Effort (AC BE), Video (AC VI), Voice (AC VO). The minimum

and maximum contention window (CWmin, CWmax) and Arbitration Inter-Frame

Space (AIFS) are primary parameters to control the priorities for different packet

types. A flow using small contention windows and AIFS will have higher chance

to access the wireless medium. For example, CWmax for best-effort packets is set

to 1023 while it is set to 32 for video packets.

Another approach to provisioning flows of different priorities is to employ mul-

tiple physical or virtual queues at a router. Each queue consists of packets of the

same type. A queuing policy is used at each transmission opportunity, to decide

which of the queues whose a packet should be transmitted. A simple fair queuing
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policy will transmit packets from each non-empty queue in a round robin fashion

[12]. On the other hand, a priority or weighted queuing policy give preference for

transmitting packets from higher priority queues [13].

Queuing policies. There is also a number of queuing policies related to our

work, but are designed for different objectives. For example, queue can be im-

plemented to give priority to small service requests in order to reduce the mean

queue length [14]. In these types of policies, the optimal one is known as Shortest-

Remaining-Processing-Time [15, 16], which shows a dramatic improvement in term

of the mean response time [17], [18]. Besides, in cases where the coming traffic

is unpredicted, they proposed the Foreground-Background technique [19], [20].

However, unlike our work, all the above techniques do not not analyze the con-

vergence rate of the queuing policies which as discussed, can play a critical role in

non-stationary environments.
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Chapter 6 – Conclusion

In this paper, we introduce a novel approach of applying a convex optimization

framework into networking applications for finding fast mixing policy that drives

the system from any initial distribution to a target distribution subject to any con-

straints. We then show how to extend the proposed technique to find a policy that

produces ε-approximation to the given distribution with even faster convergence

time. Importantly, these two frameworks is used to design fast feasible queuing

policies that provides statistical guarantees on QoS requirements as well as op-

timize arbitrary given objective. The former is useful in settings whose network

conditions change slowly, while the later is appropriate for fast-changing network

conditions. The analysis and simulation results verify the benefits of the proposed

approach.

6.1 Future Work

The proposed framework can be applied into multiple networking and communi-

cation applications. One potential future work is to customize the framework for

applying to the communication channel systems that can be modeled as a Markov

Chain that is feasible for both FMMC and EFMMC frameworks. In a way, for

each signal transmission, due to the feedback of bit rate error at receiver, the

power can be adjusted at the sender in order to achieve better performance on
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the next transmission. The power will induce a corresponding cost function that

also depends on the environment conditions. Hence, the framework can be used to

optimize the cost function to find the target stationary distribution that implies

the optimal state of the systems and also the fast policy that drives the system to

this target state.
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APPENDICES



43

Appendix A – Proofs of Propositions and Theorems

A.1 Proof of Proposition 1

Proposition 1 The proof can be found in [4, Proposition 2.8].

Proof: Obviously, any tridiagonal stochastic transition matrix corresponds to a

Birth-and-Death process so we need to prove that a Birth-and-Death process is

reversible.

A birth-and-death chain has state space Ω = {0, 1, 2, . . . , n}. In one step the

state can increase or decrease by at most 1. The current state can be thought of

as the size of some population; in a single step of the chain there can be at most

one birth or death. The transition probabilities can be specified by {pk, rk, qk}ni=0,

where pk + rk + qk = 1 for each k and

• pk is the probability of moving from k to state k + 1 when 0 ≤ k < n,

• rk is the probability of moving from k to k − 1 when 0 < k ≤ n,

• qi is the probability of moving from state i to state i− 1,

• q0 = pn = 0.

A function w on Ω satisfies the detailed balance equations (2.3) if and only if

pk−1wk−1 = qkwk
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for 1 ≤ k ≤ n. For our birth-and-death chain, a solution is given by w0 = 1 and

wk =
k∏
i=1

pi−1

qi

for 1 ≤ k ≤ n. Normalizing so that the sum is unity yields

πk =
wk∑n
j=0wj

for 0 ≤ k ≤ n. One can check that π is a probability on Ω and satisfies the

detailed balance equations (2.3) so π is also a stationary distribution and the

chain is reversible.

A.2 Proof of Theorem 1

Theorem 1 The proof can be found in [4, Theorem 12.3].

Proof: Let P be reversible with respect to π. By [4, Lemma 12.2], we have:

• The inner product space (RΩ, 〈·, ·〉π) has an orthonormal basis of real-valued

eigenfunctions {fj}|Ω|j=1 corresponding to real eigenvalues {λj}. and also

• The eigenfunction f1 corresponding to the eigenvalue 1 can be taken to be

the constant vector 1, in which case

P t(x, y)

π(y)
= 1 +

|Ω|∑
j=2

fj(x)fj(y)λtj (A.1)
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Using (A.1) and applying the Cauchy-Schwarz inequality yields

|P
t(x, y)

π(y)
− 1| ≤

|Ω|∑
j=2

|fj(x)fj(y)|λt∗ ≤ λt∗[

|Ω|∑
j=2

f 2
j (x)

|Ω|∑
j=2

f 2
j (y)]1/2 (A.2)

where λ∗ = µ(P ).

Let δy be the function

δy =

 1 if y = x

0 if y 6= x

Hence, the function δy can be written via basis decomposition as

δy =

|Ω|∑
j=1

〈δy, fj〉πfj =

|Ω|∑
j=1

fj(y)π(y)fj (A.3)

Using (A.3) and the orthonormality of {fj} shows that

π(x) = 〈δx, δx〉π = 〈
|Ω|∑
j=1

fj(x)π(x)fj,

|Ω|∑
j=1

fj(x)π(x)fj〉π = π(x)2

|Ω|∑
j=1

fj(x)2

Consequently,
∑|Ω|

j=2 fj(x)2 ≤ π(x)−1. This bound and (A.2) imply that

|P
t(x, y)

π(y)
− 1| ≤ λt∗√

π(x)π(y)
≤ λt∗
πmin

=
(1− γ∗)t

πmin
≤ e−γ∗t

πmin

where γ∗ = 1− λ∗ is called the absolute spectral gap.

Applying [4, Lemma 6.13] shows that d(t) ≤ π−1
min exp(−γ∗t) where d(t) =

sup
ν∈Ω
‖νTP t − πT‖TV . The conclusion now follows from the definition of tmix(ε).
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A.3 Proof of Proposition 2

Proposition 2

Proof: We assume P has n eigenvalues {λ1, λ2, . . . , λn} and n left eigenvectors

{v1, v2, . . . , vn} such that: 1 = λ1 ≥ λ2 ≥ · · · ≥ λn ≥ −1.

Let 〈f, g〉 1
π

:=
∑
i∈Ω

f(i)g(i)

π(i)
denote the inner product with respect to π(i). Due

to the reversibility of P , it can be shown that the set of eigenvectors {vi} forms an

orthonormal basis with 〈., .〉 1
π
. The eigenvector corresponds to the largest eigen-

value λ1 = 1 is equal to the stationary distribution: v1 = π. We have:

π∗T − πT =
n∑
i=1

〈π∗ − π, vi〉 1
π
vTi

Since vTi P = λiv
T
i ,

(π∗T − πT )(P − I) =
n∑
i=1

(λi − 1)〈π∗ − π, vi〉 1
π
vTi

Also,

〈π∗ − π, v1〉 1
π

= 〈π∗ − π, π〉 1
π

=
n∑
i=1

(π∗(i)− π(i))

= 0

Then

||π∗T − πT || 1
π

= ||π∗ − π|| 1
π

=

√√√√ n∑
i=2

〈π∗ − π, vi〉21
π
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and

||(π∗T − πT )(P − I)|| 1
π

=

√√√√ n∑
i=2

(λi − 1)2〈π∗ − π, vi〉21
π

Therefore:

||(π∗T − πT )(P − I)|| 1
π
≥ min

i=2,...,n
|1− λi|||(π∗ − π)|| 1

π

→ ||(π∗T − πT )(P − I)|| 1
π
≥ (1− λ2)||(π∗ − π)|| 1

π

→ ||(π∗TP − π∗T )|| 1
π
≥ (1− λ2)||(π∗ − π)|| 1

π

Since for any vector x:

||x||2√
πmin

≥ ||x|| 1
π
≥ ||x||2√

πmax

Then we conclude:

||π∗ − π||2 ≤
π

1/2
max

π
1/2
min

||π∗TP − π∗T ||2
1− λ2

A.4 Proof of Proposition 3

Proposition 3

Proof: Since πTP = πT , for any 1 ≤ k ≤ n we have:

πk =
∑
i

πiPi,k

Since Pi,k = 0 for |k − i| > 1,

πk = πk−1Pk−1,k + πkPk,k + πk+1Pk,k+1



48

where k = 1 or k = n we consider P1,0 = 0 and Pn,n+1 = 0.

Hence for any k,

πk < πk−1 maxPk−1,k + πk maxPk,k + πk + 1 maxPk,k+1

→ πk < (πk−1 + πk + πk+1)β < β since πk−1 + πk + πk+1 < 1 (A.4)

→ πmax < β (A.5)

We see that P has the form:

P =



P1,1 P1,2

P2,1 P2,2 P2,3

. . . . . . . . .

Pn−1,n−2 Pn−1,n−1 Pn−1,n

Pn,n−1 Pn,n


(A.6)

and P 2 has the form:

P 2 =



P 2
1,1 P 2

1,2 P 2
1,3

P 2
2,1 P 2

2,2 P 2
2,3 P 2

2,4

. . . . . . . . . . . .

P 2
n−1,n−3 P 2

n−1,n−2 P 2
n−1,n−1 P 2

n−1,n

P 2
n,n−2 P 2

n,n−1 P 2
n,n


(A.7)

where P 2
i,j are entries of P 2. We see that the non-zero entries of P 2 has enlarged

to one in each row compare to P and these entries has minimum value equal α2.

By induction, P n−1 would have no zero entries and the minimum entry value of
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αn−1. Since πTP n−1 = πT , for any 1 ≤ k ≤ n we have:

πk =
∑
i

πiP
n−1
i,k

where P n−1
i,j denote the entry of row i and column j of matrix P n−1 Hence,

πk ≥
∑
i

πi minP n−1
i,k =

∑
i

πiα
n−1 = αn−1

→ πmin ≥ αn−1 (A.8)

Let Q(S, SC) =
∑

i∈S;j∈SC π(i)Pij for any subset S in state space and Sc is

compliment set of S. By definition of Conductance [4], we have:

Φ∗ = min{ΦS : S ∈ Ω; π(S) ≤ 1/2}

where ΦS = Q(S,Sc)
π(S)

for any subset S of state space and π(S) =
∑

i∈S π(i).

Now, let have a lower bound on Q(S, SC) for any subset S:

Q(S, SC) =
∑

i∈S;j∈SC
π(i)Pij ≥ πmin minPij ≥ αn−1α = αn

Hence, Conductance Φ∗ ≥ πmin.α
1/2

= 2αn

Also, for a reversible Markov chain, let γ = 1− λ2 then Φ2
∗

2
≤ γ ≤ 2Φ∗ where Φ∗ is

Conductance (Bottleneck ratio revisited) of the chain [4].

Therefore,

Φ2
∗

2
≤ γ → γ ≥ 2α2n

→ λ2 = 1− γ ≤ 1− 2α2n (A.9)
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A.5 Proof of Proposition 4

Proposition 4

Proof:

Denote a vector s =
√
π∗ −

√
π then |si| ≤ ∆ ∀i ∈ Ω where ∆ = επ√

π∗min
> 0

Using Taylor series for function f(x) = 1
c+x

at point x = 0 in the interval

x ∈ (−∆,∆), we have:

1√
π∗i

=
1

√
πi + si

=
1
√
πi
− 1

πi
si +Ri

where Ri is the Taylor Remainder then |Ri| ≤ 1

π∗min
3/2 ∆2.

Denote R is a vector whose entries are Ri then


D

1/2
π∗ = D

1/2
π +Ds

D
−1/2
π∗ = D

−1/2
π −Ds/π +DR

We also denote:
A = D

1/2
π∗ PD

−1/2
π∗ −

√
π∗(
√
π∗)T → µ3 = ||A||2

B = D
1/2
π PD

−1/2
π −

√
π(
√
π)T → µ2 = ||B||2

(A.10)
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Then we have:

A = (D1/2
π +Ds)P (D−1/2

π −Ds/π +DR)

− (
√
π + s)(

√
π + s)T

= B +DsPD
−1/2
π −D1/2

π PDs/π

−DsPDs/π +D1/2
π PDR +DsPDR

− s(
√
π)T −

√
πsT − ssT (A.11)

Since ||P || = 1, using sub-multiplicative property of matrix norm each element in

the right side of (A.11) (except B) can be bound as following:



||DsPD
−1/2
π || ≤ maxi| si√πi | =

∆√
π∗min−∆

||D1/2
π PDs/π|| ≤ maxi| si√πi | =

∆√
π∗min−∆

||DsPDs/π|| ≤ maxi| s
2
i

πi
| = ∆2

(
√
π∗min−∆)2

||D1/2
π PDR|| ≤ maxi|

√
πi||Ri| = (

√
π∗max + ∆) ∆2

π∗min
3/2

||DsPDR|| ≤ maxi |si||Ri| = ∆3

π∗min
3/2

||s(
√
π)T || ≤ |Ω|maxi |si(

√
π∗i − si)| = |Ω|δ(

√
π∗max + ∆)

||(
√
π)sT || ≤ |Ω|maxi |si(

√
π∗i − si)| = |Ω|δ(

√
π∗max + ∆)

||ssT || ≤ |Ω|maxi |s2
i | = |Ω|∆2

Sum up all these elements, we now have:

||A−B|| ≤ C =
∆(2

√
π∗min −∆)

(
√
π∗min −∆)2

+ (
√
π∗max + 2∆)

∆2

π∗min
3/2

+ |Ω|∆(2
√
π∗max + 3∆) (A.12)
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Also,

|(min ||A|| −min ||B||)| ≤ max ||A−B||

From (A.10), we have:

|µ3 − µ2| ≤ C (A.13)

A.6 Proof of Proposition 5

Proposition 5 The proof can be found in [5, Section 5.1]

Proof: Since P is symmetric and y is a unit eigenvector associated with λmax(P ),

we have

λmax(P ) = yTPy

λmax(P̃ ) ≥ yT P̃ y

From two above equations, we have the desired inequality

λmax(P̃ ) ≥ λmax(P̃ ) + yT (P̃ − P )y = λmax(P ) +
∑
i,j

yiyj(P̃ij − Pij)

Hence G = yyT is a subgradient of P .
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