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Chapter 1: Introduction

1.1 Motivation

With countless applications ranging from advancing human prosthetics to aiding in dis-

aster recovery scenarios, legged robots will play a critical part in shaping the future of

tomorrow. While the many blockbusters hits would have you believe this day is already

upon us, the reality of the matter is we are still a long way from achieving even the

most basic of tasks with comparable efficiency, speed, or robustness as animals. This

is in large part due to the fully actuated design philosophy adopted by many of todays

machines.

Many modern control techniques rely on full actuation to formally stabilize the system

dynamics. However, this full actuation approach requires actuators at every joint, which

comes with a hidden cost. A revolute joint that was once free spinning, now mounted to

motor, suddenly has different dynamics. All of the inertia of the motor and gearbox are

now inseparable from the joint’s movement. So while controllers can now apply torques,

the system is now less dynamic, and moving like a free pivoting joint now costs energy

where it previously did not. In legged robots, this means less agility and efficiency;

the very quantities we need to maximize. ASIMO, for example, which is likely the most

famous humanoid robot, walks in a manner requiring 16 times the energy cost of humans

[12].

Underactuated designs on the other-hand show a lot of promise at making robots

more efficient and agile, but also throw a lot of traditional control concepts out the

window. Typically control theorists use classical methods akin to feedback linearization

which override or cancel out dynamics instead of exploiting them. These techniques begin

to rip apart at the seams when applied to underactuated systems and only recently have

control theorists started more carefully considering the dynamics of these systems and

looking for ways to exploit them.

With these ideas guiding my motivation, I seek to use trajectory optimization and

stabilization to demonstrate control of underactuated systems in an agile and efficient



2

manner. The ultimate goal being to control ATRIAS, a highly dynamic biped that is

also highly underactuated.

1.2 Background

Fully articulated humanoid robots have been the most practical and publicly visible

representatives of bipedal locomotion. Notable examples such as Hondas ASIMO [20],

AISTs HRP series [23], KAISTs HUBO [27] are electro-mechanically driven, fully ac-

tuated machines capable of versatile, autonomous motion carrying their energy source.

These high degree of freedom robots address the challenge of bipedal balance by careful

regulation of their zero-moment point (ZMP) [34]. However, ensuring controllability of

the ZMP calls for actuators and stiff mechanical connections at every joint. This sys-

tematic rigidity prevents these humanoids from exhibiting the bouncy, highly dynamic

locomotion mastered by animals. This full-actuation approach also tends to consume a

lot of power, exhausting on-board batteries in impractically short time spans (estimated

under 30 minutes in the case of ASIMO) [12].

Another class of bipedal robots locomote with only little or no actuation utilizing

the passive dynamics of the mechanical system. While exhibiting very efficient locomo-

tion, their action is limited to a few gaits and very specific environmental conditions.

This class comprises the so called passive dynamic walkers [12] and their motorized off-

spring, the design of which was driven by the inverted pendulum model for walking [25].

Delfts robots Flame and TUlip are the largest scale implementations of this approach,

standing 1.2m tall and weighing 15kg, both were able to walk at 0.45m/s [21]. The

most energy economical example is the Cornell Ranger, which bears the pseudo-biped

inverted-pendulum configuration common among passive dynamic walkers, but is suf-

ficiently actuated and economical that it has walked over 64km (40 miles) on a single

battery charge [6], an ultra-marathon by many definitions.

1.3 Contributions

In this thesis, we seek to develop a clear methodical approach to exploiting the dynamics

of underactuated systems and then use this approach to control the ATRIAS bipedal

robot. In order to accomplish this goal, we construct a fast and easy-to-use software
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framework that packages cutting edge techniques for trajectory optimization and sta-

bilization. We demonstrate the use of this tool set on underactuated toy models of

increasing complexity. Finally, we generate and stabilize walking gaits on the ATRIAS

robot in simulation. The resulting work-optimal gaits demonstrate the fullest embrace

of the passive dynamics of this machine.
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Chapter 2: Background

2.1 The Optimal Control Problem

Many engineering problems today are driven by the need to find optimal trajectories.

These problems are not limited to a single sector but span across a wide range of dis-

ciplines including a aeronautics, robotics, economics, and chemistry. Examples include

finding optimal orbit transfer trajectories for spacecraft, energy efficient gaits for robots

and optimization of chemical reactions to name a few. As different as these problems

seem from the surface, they can all be classified as optimal control problems and solved

using similar techniques.

Finding an optimal trajectory is only half the battle though, once identified, the

candidate trajectory must be stabilized in order to be physically realizable. This two-

step process of generating and stabilizing trajectories enables some highly dynamic and

unique control measures. In this section we provide a general review of different methods

for solving the optimal control problem and stabilizing trajectories. For further details,

the reader is referred to [9, 4].

2.1.1 General Formulation

Before proceeding we need to define what an optimal control problem is and how they are

formulated. Generally, the goal of an optimal control problem is to determine the state

(trajectory) x(t) = [x1(t), ..., xi(t)]
T, control input u(t) = [u1(t), ..., uj(t)]

T, parameters

p = [p1(t), ..., pk(t)]
T, initial time t0, and terminal time tf that minimizes the scalar

performance index

J = Φ(x(t0), t0,x(tf ), tf ,p) +

∫ tf

t0

L(x(t),u(t), t,p)dt, (2.1)

subject to the first order differential equation constraints

ẋ(t) = f (x(t),u(t), t,p) , (2.2)
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the path constraints

Pmin ≤ P (x(t),u(t), t,p) ≤ Pmax, (2.3)

and the boundary conditions

φmin ≤ φ (x(t0), t0,x(tf ), tf ,p) ≤ φmax. (2.4)

Many real-world systems do not have a single set of continuous dynamics. For example, a

running robot transitions from single support dynamics to ballistic dynamics with a dis-

crete jump in between during touchdown impact. When walking, the same robot would

transition from single support to double support dynamics. It is therefore necessary to

extend the same general formulation used for a single phase system to hybrid systems.

Similar to a problem with a single set of dynamics, a hybrid problem consisting of P

phases aims to minimize the scalar performance index

J =

P∑
i=1

J (i) (2.5)

subject to the first order differential equation constraints

ẋ(i)(t) = f (i)
(
x(i)(t),u(i)(t), t,p(i)

)
, (2.6)

the path constraints

P
(i)
min ≤ P

(i)
(
x(i)(t),u(i)(t), t,p(i)

)
≤ P (i)

max, (2.7)

the boundary conditions

φ
(i)
min ≤ φ

(i)
(
x(i)(t

(i)
0 ), t

(i)
0 ,u(i)(t

(i)
f ), t

(i)
f ,p

(i)
)
≤ φ(i)max, (2.8)

and the additional phase linkage constraints

L
(s)
min ≤ L(s)

(
x(ls)(t

(ls)
f ),u(ls)(t

(ls)
f ),p(ls), t

(ls)
f ,x(rs)(t

(rs)
0 ),u(rs)(t

(rs)
0 ),p(rs), t

(rs)
0

)
≤ L(s)

max. (2.9)

In Equation 2.9, s = [1, ..., S] where S is the total number of linked phase pairs and

the vectors rs and ls represent lists of linked phase pairs. Typically phases are linked
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sequentially representing a single continuous motion however it is not uncommon for a

trajectory to split (a space craft leaving orbit breaking away from its fuel tanks) or for

a trajectory to loop forming periodic orbits (legged robot running gait).

2.2 Solving Optimal Control Problems

Familiar with the general form of optimal control problems, we can now discuss methods

to solve them. Most practical or interesting optimal control problems cannot be solved

analytically and we must resort to numerical methods to find a solution. These numerical

methods can generally be classified as either a direct method or an indirect method.

Indirect methods are based on the calculus of variations or the maximum principle and

aim to find the root of the necessary condition, F ′(x) = 0. For an optimal control

problem, this requires explicit derivation of the adjoint equations, control equations,

and all transversality conditions. Direct methods on the other hand attempt to find

the minimum of the objective (or Lagrangian) function. Principally this means a direct

method only needs to evaluate the objective function and does not need to explicitly

derive or define the necessary conditions.

In practice, indirect methods have several well known drawbacks that make them less

desirable than direct methods [4]. The methods are less flexible, minor adjustments to the

problem formulation require a user knowledgeable in optimal control theory to re-derive

the necessary conditions which can be very difficult for some problems. Additionally,

indirect methods are highly sensitive to the initial guess of the adjoint variables which

can be very difficult because they have no physical or intuitive meaning. Even with

reasonable guesses, the adjoint equations can be ill-conditioned leading to numerical

issues. For these reasons, we will focus on direct methods for the remainder of this

section.

2.2.1 Direct Transcription Methods

The main idea behind the transcription method is to transcribe a continuous dynamic

system into a finite set of variables and constraints and then solve the resulting parameter

optimization problem. This process of converting an optimal control problem into a

nonlinear programming (NLP) problem is applicable to both direct and indirect methods
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Figure 2.1: Tree diagram showing the hierarchy of various direct transcription methods
used for solving optimal control problems. [29]

although we will focus on its applicability to direct methods.

2.2.1.1 Single Shooting Method

The single shooting method is the most intuitive approach to solving a boundary value

problem (BVP). The control input is parameterized into some functional form, the dy-

namics are integrated using a time-marching algorithm, the objective and any constraints

are evaluated, and then the control parameters are adjusted (as illustrated in Figure 2.2).

This concept is easily understood by considering the simplest example of a cannon being

aimed and fired at a target (hence the name single shooting). By adjusting the angle of

the cannon, integrating forward through the dynamics, and then evaluating the distance

from the target, a solution can readily be found. While simple in concept, the major

disadvantage of the single shooting method is that small changes in initial conditions can

lead to extreme changes in terminal conditions. This leads to large nonlinearities and

poor estimates of the Jacobian matrix increasing the difficulty of finding a reasonable

solution.

2.2.1.2 Multiple Shooting Method

An extension of the single shooting method, multiple shooting simply divides the problem

into subintervals (shoots) which are then linked together with defect constraints. This

increases the size of the resulting nonlinear programming problem as each shoot is now

subject to an additional set of initial condition variables and defect constraints. Surpris-
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Figure 2.2: Single shooting method for transcribing a optimal controls problem.

Figure 2.3: Multiple shooting method for transcribing a optimal controls problem.

ingly, this actually reduces the sensitivity and makes the problem substantially easier to

solve. This is in part possible because modern sequential quadratic programming (SQP)

solvers can take advantage of the inherent sparseness of the Jacobian structure.

2.2.1.3 Direct Collocation Method

Collocation methods take the idea and benefits of multiple shooting a step further, each

shoot is reduced down to a single integration step. This enables each defect constraint to

be explicitly written out in the form of a single step integration method, popular methods

of collocation include Runge-Kutta, Hermite-Simpson, Midpoint, and Euler. Again the

resulting Jacobian is highly sparse and large-scale nonlinear programming methods that

take advantage of this property excel. By allowing the optimizer direct control over the

states and controls while providing guidance via the defect constraints, more information

is encoded into the formulation. This can be leveraged by the optimizer, making the

problem easier to solve.
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Figure 2.4: Collocation method for transcribing a optimal controls problem.

2.3 Pitfalls of Trajectory Optimization

Trajectory optimization has largely built up a bad reputation and amount of distrust

among many researchers. This is largely due to the improper formulation of trajectory

optimization problems, overstepping claims, complaints of local minimum, and conver-

gence issues. The real issue is that trajectory optimization is still considered very much

an art. While this is somewhat true, many of these issues can be avoided by carefully and

thoughtfully formulating problems. Even when being careful the optimizer will always

try to cheat the formulation. This could be something subtle that is hardly noticeable

such as ringing in the control trajectories or something more physical such as walking

upside down underground. The user must be aware of this and be able differentiate the

good results from the bad.

That being said, trajectory optimization remains a powerful tool when used prop-

erly and the following tips can aid in this process. Defect constraints only hold at the

collocation nodes, it is therefore generally a good idea to increase the number of nodes

after a solution is found, if the solution does not change then you probably have a good

solution. Only locally optimal solutions are found, in many cases this is good enough but

starting the problem from different initial conditions can help determine how sensitive

the formulation is local minimums. If a dense mesh is required to capture fast dynamics,

it is suggested that a less dense mesh is used initially and the solution used as the initial

guess to a denser formulation (rinse and repeat as needed).
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2.4 Trajectory Stabilization

Executing the optimal control inputs found via trajectory optimization in open-loop does

not guarantee stability. In fact, rarely will the resulting trajectories be stable unless

stability was explicitly defined as part of the optimization formulation. Small differences

in integration step size and accuracy, modeling errors, variations in initial conditions,

and disturbances can all cause the system to rapidly diverge in simulation. These effects

are only compounded on experimental setups and it is therefore critical that a feedback

controller be designed to stabilize the system back to the desired trajectory.

There are many different approaches to trajectory stabilization. Many classical ap-

proaches are based on feedback linearization which is fine for fully actuated systems but

tends to breakdown when applied to underactuated systems. Because many of the most

interesting problems are underactuated systems, we will focus on methods applicable to

underactuated systems.

2.4.1 Linear Time Varying (LTV) LQR

A simple yet powerful method for stabilizing trajectories on underactuated systems can

be implemented using a slight variation of the Linear Quadratic Regulator (LQR). Most

commonly used for stabilizing a system around a fixed point, LQR uses a linear ap-

proximation of the dynamics and a quadratic cost function to find the optimal control

inputs. In order to apply this to a nonlinear trajectory tracking problem, we consider

the following autonomous system

ẋ(t) = f(x(t),u(t)). (2.10)

Given the feasible trajectories x∗(t) and u∗(t) we perform the coordinate transformation

∆x(t) = x(t)− x∗(t), ∆u(t) = u(t)− u∗(t), (2.11)

representing the deviation from the nominal trajectory. Computing the Taylor expansion

around this new coordinate system results in the linear time-varying (LTV) system

∆ẋ(t) = A(t)∆x(t) + b(t)∆u(t) (2.12)
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where

A(t) =
∂f(x,u)

∂x

∣∣∣∣
x∗(t),u∗(t)

, b(t) =
∂f(x,u)

∂u

∣∣∣∣
x∗(t),u∗(t)

. (2.13)

The main advantage to doing this is we can now leverage common methods used in linear

control, the only difference being that the system is now parameterized as a function of

time. We can now formulate a trajectory stabilization problem by penalizing the system

for being away from the nominal trajectory resulting in the quadratic cost function

J = ∆x(tf )TQf∆x(tf ) +

∫ tf

t0

(
∆x(t)TQ(t)∆x(t) + ∆u(t)TR(t)∆u(t)

)
dt, (2.14)

where

Qf = QT
f > 0, Q(t) = Q(t)T ≥ 0, R(t) = R(t)T > 0. (2.15)

Notice that the penalty matrices Q(t) and R(t) are time-varying as well although it need

not be a requirement. The solution P (t) is computed from reverse-time integration of

the continuous time Riccati equation

−Ṗ (t) = Q(t)− P (t)b(t)R−1(t)bT(t)P (t) + P (t)A(t) +AT(t)P (t), (2.16)

with terminal condition

P (tf ) = Qf . (2.17)

The choice for the terminal condition Qf depends on the problem goal. In the case

of an infinite-horizon trajectory which moves from state x(t0) to state x(tf ) and stays

there, the terminal condition P (tf ) = P∞ is preferred where P∞ is the steady-state

solution to the linear time-invariant (LTI) LQR problem at the terminal fixed point.

If instead the goal is a periodic orbit, Equation 2.16 can be solved iteratively using

P (i)(tf ) = P (i−1)(t0) until the solution converges.

Once solved, the optimal control policy represented by a time varying gain matrix

can be computed as

k(t) = R(t)−1bT(t)P (t), (2.18)

and the feedback control law can be formulated as

u(t) = u∗(t) + kT(t)(x∗(t)− x(t)). (2.19)
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Chapter 3: Methods

In this chapter we describe our methods for generating and stabilizing optimal control

trajectories for underactuated systems. This lays the framework which will then be used

to control an underactuated bipedal robot. To achieve this, we created an object-oriented

software package for the fast, convenient, and reliable generation of optimal trajectories.

We benchmarked the tool on classic optimal control problems with varying degrees of

linearity and underactuation. Verifying computation speed and reliability is important

for the target task, controlling a walking robot, which has many state variables and

degrees of underactuation.

3.1 COALESCE

Countless software packages have already been developed to solve optimal control prob-

lems using direct transcription methods (SOCS [5], DIRCOL [33], OTIS [19], GPOPS-

II [28], and JModelica [1]). These packages all suffer from some common drawbacks that

restrict the typical users ability to efficiently or effectively solve problems.

� Implemented in low-level languages with poor APIs resulting in cumbersome, dif-

ficult, and error-prone interfacing.

� Require the user to provide the objective and/or gradient functions which require

extensive knowledge of optimal control methods.

� Restricted to a specific optimization algorithm which may not work for all cases.

To overcome these drawbacks we designed COALESCE to provide an efficient, ver-

satile, and seamless interface for formulating and solving optimal control problems. In

order to achieve this, COALESCE is built in MATLAB [24] using an object-oriented

interface to abstract the problem formulation, allowing for a simple, intuitive and ro-

bust problem generation. Additionally, by automatically generating analytical gradients

and exporting the formulated function scripts, greater performance and accuracy can be
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achieved with no additional user overhead. This greatly increases the non-expert user’s

ability to formulate and solve problems with minimal headaches or errors.

3.1.1 Features

COALESCE has many built-in features that allow users with only a basic knowledge or

background in numerical optimization and direct collocation methods to quickly start

formulating and solving problems.

� Computes all constraint and objective gradients and corresponding sparsity pat-

terns analytically.

� Exports optimized functions by simplifying equations, substituting constants, and

using sparse matrices. Can additionally export low-level code to compile functions

to MEX files.

� Interfaces with the MATLAB Optimization Toolbox as well as other popular solvers

including SNOPT [14], IPOPT [35], and KNITRO [10]. No additional user over-

head is required to export and solve with another solver.

� Provides additional functionality for visualizing solutions, identifying infeasible

constraints, automatically encoding collocation equation constraints and exporting

results.

� Supports multi-phase optimal control problems using various implicit and explicit

direct collocation methods.

� Programmed in a high-level language with object oriented code allows additional

functionality to be added on with relative ease.

3.1.2 Implementation

At the heart of the COALESCE package is the base Problem class which solves a standard

nonlinear programming problem. Given the decision variables x = [x1, ..., xi]
T and

parameters p = [p1, ..., pj ]
T, minimize the scalar objective function

f(x,p) (3.1)
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subject to

cl ≤ c(x,p) ≤ cu (3.2)

where cl and cu are the lower and upper bounds, respectively, of the nonlinear constraints

c(x,p). After initializing, Parameter, Variable, Objective, and Constraint objects are

then added to the Problem object. The then formulated problem is passed to the abstract

Solver class which exports and solves the problem using the specified solver. This allows

the user to quickly and easily change solvers without having to reformulate the problem

to match the solver API. The resulting solution is propagated back through the Problem

class structure allowing easy access to variable solutions.

Optimal control problems can be formulated by using the Phase class which simply

builds on top of the Problem class. State and Control objects are added which automat-

ically construct the necessary Parameter, Variable, and Constraint objects to describe

the direct collocation formulation. Multiple phase can be linked together using the Phas-

eSchedule class keeping all basic functionality associated with the Problem class. Again,

once solved the solution is propagated back through the class structure so the results

can be analyzed.

3.2 Optimal Control Examples

In order to demonstrate these concepts and benchmark different methods, toy problems

of increasing complexity are formulated and solved in this section. All problems were

transcribed into a nonlinear programming (NLP) problem using the developed software

package COALESCE (Section 3.1). The resulting optimization problem was solved using

the sparse nonlinear sequential quadratic programming (SQP) solver SNOPT [14].

3.2.1 Double Integrator

We begin with the simplest possible linear second order system, the double integrator.

Intuitively, the double integrator can be thought of as a unit mass sliding on an friction-

less surface due to a single horizontal external force. A common optimal control problem

used for demonstrative purposes seeks to translate this mass from some initial position

to a target position in the least amount of time possible. This is analagous to driving an

ideal car from point A to point B as fast as possible subject to velocity and acceleration
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Figure 3.1: The double integrator (or sliding mass) is a classic optimal control problem
with linear continuous dynamics. The system model and generalized coordinates are
depicted on the top, while the minimum time optimal control problem is illustrated on
the bottom.

limits.

3.2.1.1 System Model

The double integrator ẍ = u can be represented by the linear time invariant (LTI) system

ẋ(t) = Ax(t) + Bu(t) (3.3)

where

A =

[
0 1

0 0

]
, B =

[
0 1

]
. (3.4)

Furthermore, the system is subject to the following velocity and force limitations

|ẋ| ≤ 1.0m/s, |f | ≤ 1.0N. (3.5)

3.2.1.2 Minimum Time Problem

The objective of the minimum time double integrator problem is to move from the

stationary point given by initial conditions

x(0) = 0m, ẋ(0) = 0m/s (3.6)
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Figure 3.2: Optimal state and control trajectories for the minimum time double inte-
grator optimal control problem. The optimal control trajectory illustrates bang-bang
control, the known analytic solution to the minimum time problem.

to another stationary point given by

x(T ) = 2m, ẋ(T ) = 0m/s (3.7)

while minimizing the total maneuver duration T .

3.2.1.3 Trajectory Optimization

The resulting optimal trajectories (Figure 3.2) illustrate bang-bang control. Intuitively

we know this to be correct, the fastest way to get somewhere is to accelerate as fast as

you can for as long as you can before rapidly decelerating. Because of simplicity of the

model, this can of course be proven analytically and it is well know that the solution to

the minimum time double integrator probelm is bang-bang control.

3.2.2 Double Pendulum on a Cart

The single pendulum on a cart (sometimes referred to as the cart-pole problem) is a

classic example of an underactuated nonlinear controls problem. The system has been

widely used to demonstrate and benchmark nonlinear control techniques by stabilizing

the pendulum around an unstable fixed point (inverted pendulum) [26, 2]. Further-
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Figure 3.3: An extension of the classic cart-pole control problem, the double pendulum
on a cart swing-up and side-step problems are significantly more complex due to the
extra degree of underactuation. The system model and generalized coordinates for the
double pendulum on a cart are illustrated above.

more, the system has been used to investigate the swing-up and side-stepping optimal

control problems [3, 15, 17]. Recently, these problems have gained increasing popular-

ity and variations have been addressed in research literature for the acrobot [31, 36],

pendubot [32, 13], and double pendulum on a cart [18, 30].

3.2.2.1 System Model

The double pendulum on a cart (Figure 3.3) consists of three rigid bodies; an actuated

cart constrained to move along a horizontal track, and two pendula connected to the

cart in series through pin joints. The system is controlled by a single force acting on the

cart while all other degrees of freedom remain unactuated. The system parameters and

corresponding values are summarized in Table 3.1. Furthermore, the system is subject

to the following physical limitations

|x| ≤ 1.0m, |f | ≤ 10.0N. (3.8)

The differential equations of motion for the double pendulum on a cart can be derived

using the Lagrange method. The forward kinematic relations describing the center of
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Parameter Description Value

mc Cart Mass 1.0 [kg]
bc Cart Friction 0.5 [N s/m]
Ip1, Ip2 Pendula Inertia 0.01 [kgm2]
mp1,mp2 Pendula Mass 0.01 [kg]
bp1, bp2 Pendula Friction 0.005 [N ms/rad]
rp1, rp2 Pendula Distance to COM 0.25 [m]
lp1, lp2 Pendula Length 0.5 [m]

Table 3.1: List of double pendulum on a cart model parameters.

mass locations in terms of our generalized coordinates q = [x, θ1, θ2]
T are given by

pc =

[
x

0

]
, pp1 =

[
x+ rp1 cos(θ1)

rp1 sin(θ1)

]
, pp2 =

[
x+ lp1 cos(θ1) + rp2 cos(θ2)

lp1 sin(θ1) + rp2 sin(θ2)

]
. (3.9)

Thus, the kinetic energy in the system is

T (q, q̇) =
1

2
mcṗ

T
c ṗc +

1

2

2∑
i=1

[
mpiṗ

T
piṗpi + Ipiθ̇

2
i

]
(3.10)

and the potential energy due to the gravitational field g is given by

V (q) = g

2∑
i=1

[mpippi,2] (3.11)

From Hamilton’s principle, the equations of motion can be computed from the La-

grangian L(q, q̇) = T (q, q̇)− V (q) as

d

dt

∂L(q, q̇)

∂q̇i
− ∂L(q, q̇)

∂qi
+
∂R(q̇)

∂q̇i
= τi, i = 1, ..., 3 (3.12)

where τi = [f 01×2]
T are the external forces acting on each ith generalized coordinate

and R(q̇) is the Rayleigh dissipation function defined as

R(q̇) =
1

2
bcẋ

2 +
1

2
bp1θ̇

2
1 +

1

2
bp2(θ̇2 − θ̇1)2 (3.13)
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H =

 mc +mp1 +mp2 − sin(θ1)(lp1mp2 +mp1rp1) −mp2rp2 sin(θ1)
− sin(θ1)(lp1mp2 +mp1rp1) mp2l

2
p1 +mp1r

2
p1 + Ip1 lp1mp2rp2cos(θ1 − θ2)

−mp2rp2 sin(θ2) lp1mp2rp2 cos(θ1 − θ2) mp2r
2
p2 + Ip2


η1 = f − ẋbc +mp2lp1 cos(θ1)θ̇

2
1 +mp2rp2 cos(θ2)θ̇

2
2 + θ̇21mp1rp1 cos(θ1)

η2 = −lp1mp2rp2 sin(θ1 − θ2)θ̇22 + bp2θ̇2 − θ̇1bp1 − θ̇1bp2 − glp1mp2 cos(θ1)− gmp1rp1 cos(θ1)

η3 = lp1mp2rp2 sin(θ1 − θ2)θ̇21 + bp2θ̇1 − θ̇2bp2 − gmp2rp2 cos(θ2)

Table 3.2: Inertia matrixH(q) and nonconservative force vector η(q, q̇, τ ) for the double
pendulum on a cart equations of motion.

The equations of motion can then be written in general matrix form

H(q)q̈ = η(q, q̇, τ ) (3.14)

where matrix H(q) and vector η(q, q̇, τ ) are defined in Table 3.2. Because the inertia

matrix H(q) is positive definite and thus invertible, we can rewrite Equation (3.14) in

terms of acceleration and by then introducing the new state vector x = [q q̇]T, reduce

to the first order system of equations defined as

f(x, u) = ẋ =
d

dt

[
q

q̇

]
=

[
q̇

H−1(q)η(q, q̇, τ )

]
. (3.15)

3.2.2.2 Minimum Time Swing-Up Problem

The objective of the minimum time swing-up problem is to swing the pendula from the

downward hanging stable fixed point state given by initial conditions

q(0) = [0,−π/2,−π/2]T, q̇(0) = 0 (3.16)

to the inverted unstable fixed point state given by

q(T ) = [0, π/2, π/2]T, q̇(T ) = 0 (3.17)

while minimizing the total maneuver duration T .
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Figure 3.4: Stroboscopic illustration of the time optimal double pendulum on a cart
swing-up maneuver. For each sequence the darkness increases with time.

3.2.2.3 Minimum Time Side-Stepping Problem

The objective of the minimum time side-stepping problem is to balance the pendula at

the inverted unstable fixed point while translating the cart from one state given by initial

conditions

q(0) = [−3/2, π/2, π/2]T, q̇(0) = 0 (3.18)

to another state given by

q(T ) = [3/2, π/2, π/2]T, q̇(T ) = 0 (3.19)

while minimizing the total maneuver duration T .

3.2.2.4 Trajectory Optimization

The resulting time optimal maneuvers are illustrated in Figures 3.4 and 3.5. Using only

the feed forward control input, the system was re-simulated using an adaptive time step

integrator and the corresponding open-loop state time histories are compared to the

nominal trajectories in Figures 3.6 and 3.8.

3.2.2.5 Feedback Control Design

The importance of feedback control becomes readily apparent when observing the open-

loop time histories (Figures 3.6 and 3.8). While the swing-up maneuver open-loop re-
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Figure 3.5: Stroboscopic illustration of the time optimal double pendulum on a cart
side-step maneuver. For each sequence the darkness increases with time.

Figure 3.6: The computed optimal trajectories (lighter dashed lines) are compared to the
simulated open-loop trajectories (thin solid lines) for the double pendulum on a cart time
optimal swing-up maneuver. The open-loop response performs very well and approaches
the target terminal condition.
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Figure 3.7: The computed optimal trajectories (lighter dashed lines) are compared to
the simulated open-loop trajectories (thin solid lines) for the double pendulum on a
cart time optimal side-step maneuver. The open-loop response quickly diverges from the
target trajectory highlighting the need for a feedback controller to regulate the optimized
trajectory.
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sponse approaches the target terminal condition, the side-stepping maneuver quickly

diverges from the desired trajectory. This may be surprising initially but intuitively it

makes sense. The swing up maneuver starts from the stable fixed point with the min-

imum potential energy and so stabilization is not an issue until later in the maneuver.

The side-stepping maneuver on the other-hand starts from an unstable fixed point with

the maximum amount of potential energy and thus requires feedback stabilization from

the start. It is interesting to note that while stabilization of an inverted double pendu-

lum is a relatively complex task, the optimizer doesn’t concern itself with stabilization

and actually finds a solution much quicker than for the swing-up maneuver. This just

emphasizes the importance of using trajectory stabilization along side trajectory opti-

mization.

In order to stabilize either maneuver back to the nominal trajectory in presence of

numerical error, disturbances, and even initial condition offsets, a linear time-varying

(LTV) linear quadratic regulator (LQR) was derived and implemented. For clarity and

to keep this chapter self contained, some equations from Section 2.4.1 are repeated.

Linearizing the equations of motion (Equation 3.15) around a coordinate system that

moves along the feasible trajectories x∗(t) and u∗(t) results in the time-varying linear

system

∆ẋ(t) = A(t)∆x(t) + b(t)∆u(t) (3.20)

where

A(t) =
∂f(x, u)

∂x

∣∣∣∣
x∗(t),u∗(t)

, b(t) =
∂f(x, u)

∂u

∣∣∣∣
x∗(t),u∗(t)

, (3.21)

and

∆x(t) = x(t)− x∗(t), ∆u(t) = u(t)− u∗(t). (3.22)

Given this time-varying linear system, a linear quadratic regulator can be derived

that minimizes the cost function given by

J = ∆x(T )TQf∆x(T ) +

∫ T

0

(
∆x(t)TQ∆x(t) + ∆u(t)TR∆u(t)

)
dt. (3.23)

The time-varying gain matrix k(t) is computed from reverse-time integration of the
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Figure 3.8: Time-varying linear quadratic regulator gainsKi(t), i = 1, ..., 6 for the double
pendulum on a cart swing-up (left side) and side-step (right side) maneuvers. For both
maneuvers, the gains associated with cart position and velocity error (K1(t) and K2(t))
are not labeled because they are so small relative to the other gains.

Riccati equation

−Ṗ (t) = Q− P (t)b(t)R−1bT(t)P (t) + P (t)A(t) +AT(t)P (t), P (T ) = Qf (3.24)

where

k(t) = R−1bT(t)P (t). (3.25)

Since we want to stabilize an infinite-horizon trajectory, we select the boundary condition

P (T ) = P∞ where P∞ is the steady-state solution to the linear time-invariant (LTI) LQR

problem at the terminal fixed point. The resulting time-varying gain matrices depicted

in Figure 3.8 were computed using the following weighting matrices

Q = diag(1, 1, 1, 1, 1, 1), R = 1. (3.26)

Using the feedback controller given by

u(t) = u∗(t) + kT(t)(x∗(t)− x(t)) (3.27)

both maneuvers were then simulated from perturbed initial conditions. The resulting

stabilized trajectories are shown in Figures 3.9 and 3.10. Even with the simple identity
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Figure 3.9: The computed optimal trajectories (lighter dashed lines) are compared to the
simulated closed-loop trajectories (thin solid lines) for the double pendulum on a cart
time optimal swing-up maneuver. Even with significantly perturbed initial conditions,
the controller is able to “catch-up” with the target trajectory and stabilize the system.

weighting matrices the system is robust enough to recover from significant disturbances

in initial conditions while respecting actuator limits. However, because the nominal

control input is bang-bang, there is an inherent lack of control authority to stabilize

the system in certain directions. When disturbed in these directions the system has no

chance to recover. This could be dealt with by finding an time optimal trajectory that

uses an actuator limits less than the actual limit. The lesser the limit, the more overhead

available for making corrections.

3.2.3 Triple Pendulum on a Cart

Continuing with the pendulum on a cart theme, we now extend the problem and examine

the lesser investigated problem of the triple pendulum on a cart. While successful swing-

up and side-stepping of a triple pendulum on cart have been achieved experimentally [15,

17], the maneuvers were discovered by solving a boundary value problem (BVP) with a

fixed duration.
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Figure 3.10: The computed optimal trajectories (lighter dashed lines) are compared to
the simulated closed-loop trajectories (thin solid lines) for the double pendulum on a
cart time optimal side-step maneuver. Because the side-step maneuver starts from an
unstable fixed point it is more susceptible to initial condition perturbations than the
swing up maneuver. Despite this, the controller is able to regulate the system back to
the nominal trajectory for moderate offsets.
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Figure 3.11: The lesser studied triple pendulum on a cart swing-up and side-step ma-
neuvers are significantly more difficult due to the extra degree of underactuation. The
system model and generalized coordinates are illustrated above.

3.2.3.1 System Model

The triple pendulum on a cart (Figure 3.11) consists of three rigid bodies; an actuated

cart constrained to move along a horizontal track, and three pendula connected to the

cart in series through pin joints. The system is controlled by a single force acting on the

cart while all other degrees of freedom remain unactuated. The system parameters are

summarized in Table 3.3. Furthermore, the system is subject to the following physical

limitations

|x| ≤ 1.0m, |f | ≤ 10.0N. (3.28)

Using the same process as the double pendulum on a cart, but with an additional

link, the differential equations of motion for the triple pendulum on a cart are derived

using the Lagrange method. The resulting first order system of equations is written as

f(x, u) = ẋ =
d

dt

[
q

q̇

]
=

[
q̇

H−1(q)η(q, q̇, τ )

]
. (3.29)
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Parameter Description Value

mc Cart Mass 1.0 [kg]
bc Cart Friction 0.5 [N s/m]
Ip1, Ip2, Ip3 Pendula Inertia 0.01 [kgm2]
mp1,mp2,mp3 Pendula Mass 0.01 [kg]
bp1, bp2, bp3 Pendula Friction 0.005 [N ms/rad]
rp1, rp2, rp3 Pendula Distance to COM 0.25 [m]
lp1, lp2, lp3 Pendula Length 0.5 [m]

Table 3.3: List of triple pendulum on a cart model parameters.

where H(q) is the inertia matrix, vector η(q, q̇, τ ) is the left over Coriolis and gravity

terms, and q = [x, θ1, θ2, θ3]
T is the generalized coordinates.

3.2.3.2 Minimum Time Swing-Up Problem

The objective of the minimum time swing-up problem is to swing the pendula from the

downward hanging stable fixed point state given by initial conditions

q(0) = [0,−π/2,−π/2,−π/2]T, q̇(0) = 0 (3.30)

to the inverted unstable fixed point state given by

q(T ) = [0, π/2, π/2, π/2]T, q̇(T ) = 0 (3.31)

while minimizing the total maneuver duration T .

3.2.3.3 Minimum Time Side-Stepping Problem

The objective of the minimum time side-stepping problem is to balance the pendula at

the inverted unstable fixed point while translating the cart from one state given by initial

conditions

q(0) = [−3/2, π/2, π/2, π/2]T, q̇(0) = 0 (3.32)
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Figure 3.12: Stroboscopic illustration of the time optimal triple pendulum on a cart
swing-up maneuver. For each sequence the darkness increases with time.

to another state given by

q(T ) = [3/2, π/2, π/2, π/2]T, q̇(T ) = 0 (3.33)

while minimizing the total maneuver duration T .

3.2.3.4 Trajectory Optimization

The discovered time optimal swing-up and side-step maneuvers are illustrated in Figures

3.12 and 3.13.

3.2.3.5 Feedback Control Design

Using the same methodology as the double pendulum on a cart, a linear time varying

linear quadratic regulator is designed to stabilize around the nominal trajectory. Despite

the extra degree of underactuation the regulator performs surprisingly well and is able to

stabilize the maneuvers from substantial offsets in initial conditions. However, because

the controller is time dependent, the system will occasionally fail from perturbations

which cause the system to get ahead of its self. In other words, if the perturbation
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Figure 3.13: Stroboscopic illustration of the time optimal triple pendulum on a cart
side-step maneuver. For each sequence the darkness increases with time.

pushes in the direction of the desired state progression, the controller will try to resist

that movement which can have catastrophic results especially if it’s during a dynamic

or passive region of the trajectory.

3.2.4 Reduced Order Gait Generation

Reduced order dynamic models are commonly used to encapsulate the most important

properties and behaviors of complex systems while retaining physical relevance. This

enables more general conclusions to be formed from the resulting insights. Common

reduced order locomotion models include the compass gait walker [16], spring loaded

inverted pendulum (SLIP) model [7], and the rimless wheel [11]. While these mod-

els are low-dimensional, they are inherently still complex as locomotion dynamics are

nonlinear, have discrete and continuous regions resulting from impacts, and are heavily

underactuated.

3.2.4.1 System Model

The popular and highly relevant model used in this section is commonly referred to as the

spring-mass model. The SLIP model has been shown to approximate animal walking

and running behaviors in everything from cockroaches, to quail, to kangaroos [8], to

humans [7]. This makes it an ideal candidate model to use for the investigation of

efficient locomotion behaviors. As an added benefit, the robot used in Chapter 4 is
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Figure 3.14: The computed optimal trajectories (lighter dashed lines) are compared to
the simulated closed-loop trajectories (thin solid lines) for the triple pendulum on a
cart time optimal swing-up maneuver. Disturbances on the pendula states can only
be corrected with large cart movements thus the cart state tends to diverge slightly
returning to the target after the pendulum is inverted.
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Figure 3.15: The computed optimal trajectories (lighter dashed lines) are compared to
the simulated closed-loop trajectories (thin solid lines) for the triple pendulum on a cart
time optimal side-step maneuver. The stabilization of a triple pendulum is much more
sensitive to disturbances than an double pendulum making a time optimal side step very
challenging.
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Figure 3.16: The spring loaded inverted pendulum (SLIP) model is a popular reduced
order template used to express animal walking and running behaviors. The system model
illustrated above is variation of the SLIP model that includes actuators with series springs
and dampers introducing inherent losses.

based on this exact model.

The spring-mass model consists of a point mass with two massless springy legs. We

use a variation of this model (Figure 3.16) that includes actuators and damping in the leg

length direction, thus introducing inherent system losses. The equations of motion for

the system during double support can readily be produced using the Newtonian method

and summing the forces resulting in

ẍ =
f1 cos(θ1) + f2 cos(θ2)

m
(3.34)

z̈ =
f1 sin(θ1) + f2 sin(θ2)

m
− g (3.35)

where

fi = k(ri − li) + b(ṙi − l̇i), i = 1, 2. (3.36)

During single support, the swing leg is not in contact with the ground thus it cannot

apply forces and the corresponding force fi in Equation 3.35 goes to zero. The same is

true for flight phase where both forces go to zero and the point mass simply follows a

ballistic trajectory dictated by gravity.
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3.2.4.2 Minimum Cost of Transport Problem

A common performance measure for locomotion systems is the mechanical cost of trans-

port (COT). This dimensionless quantity is essentially a measure of the absolute work

W required to travel some distance d scaled relative to mass m. The lower the number,

the more efficient the system. We thus define our objective as

J =
|ṙ1f1|+ |ṙ2f2|

mgd
, (3.37)

3.2.4.3 Trajectory Optimization

In order to demonstrate the basics of phase scheduling, we pose the simple case of

finding walking and running limit cycles for the target speed s. Knowing the phase

sequence of running (single support (ss), flight (f)) and walking (single support (ss),

double support (ds)), we can schedule the phases ahead of time. Because the springs

are massless and there is no resulting impact, the phases can be linked by equating the

boundary conditions.

q(ss)(t
(ss)
f ) = q(ds)(t

(ds)
0 ) (3.38)

q(ds)(t
(ds)
f ) = q(ss)(t

(ss)
0 ) (3.39)

where q = [ri, ṙi, li, l̇i, θi, θ̇i]
T for i = 1, 2.

We must now formulate a variation of our objective to eliminate the absolute value

operator and the resulting non-smoothness. We can do this by defining a slack variable

and applying the linear programming trick described by

min(|ṙifi|) (3.40)

is equivalent to

min(W ) (3.41)

W ≥ ṙifi (3.42)

W ≥ −ṙifi (3.43)
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Figure 3.17: Illustration of the resulting cost-of-transport optimal walking gait for a
non-ideal actuated spring-mass model. The resulting optimal control strategy re-injects
lost energy into the system by pushing off with the trailing stance leg.

To constrain the gait speed, we constrain d to equal the difference in final and initial

positions, and s as the total distance over time. Finally, we apply physical limitation

constraints to the model of the form

0 ≤ ri ≤ 1, z ≥ 0, 0 ≤ θi ≤ π, |r̈| ≤ 1. (3.44)

The resulting optimal limit cycle gaits are depicted in Figure 3.17. Using such a simple

model allows us to intuitively investigate the found optimal strategies for fundamental

insights that could be applicable to more complex systems. In this case, it is apparent

that the controller prefers an extended push off of the trailing stance leg to add back

any dissipated energy. This makes sense intuitively, as you would want to add energy

back into the system when it is the least costly.
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Chapter 4: Implementation

ATRIAS (Assume The Robot Is A Sphere) is designed to be agile and efficient, which

is accomplished by embracing underactuation. Specifically, we built the robot to ap-

proximate a simple, yet underactuated, dynamic model, the Spring-Loaded Inverted

Pendulum. Among the primary manifestations of this design approach are lightweight

legs to reduce impact losses and series springs to store and reinsert energy during dy-

namic maneuvers. A more detailed description of the design philosophy is presented in

[22].

For our purposes, ATRIAS serves as a fitting testbed for our trajectory optimization

and stabilization techniques. The springs and point feet all contribute to a robot with

many degrees of underactuation, even when operating in just the sagittal plane. The

robot is also designed such that actuators have a very indirect effect on the state of the

system. Motors must first accelerate high-inertia rotors to deflect the in-series springs,

and the springs must then apply forces through their own dynamics before any of the

actuators’ energy is imparted to the system. These slow dynamics between the motors

and the gait mean that planning is likely very important to achieve locomotion. Lastly,

gait economy is a driving goal of ATRIAS’ construction, making it a well-suited target

energy-optimal control.

4.1 System Model

Consider the planar model of ATRIAS illustrated in Figure 4.1. Due to the four bar

mechanism in each leg, the configuration of the robot can be uniquely described using

the generalized coordinates [θt, θ1s, θ2s, θ1ns, θ2ns]
T. We use the notation ns for non-

stance leg and s for stance leg. Because the leg actuators are connected to the upper

segments through series springs, additional coordinates [θm1s, θm2s, θm1ns, θm2ns]
T are

used to model actuator dynamics. The complete generalize coordinates are therefore

expressed by

q = [θt, θ1s, θ2s, θ1ns, θ2ns, θm1s, θm2s, θm1ns, θm2ns]
T (4.1)
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Figure 4.1: Illustration of the ATRIAS system model and generalized coordinates. The
unique four-bar mechanisms on each leg minimizes leg mass and thus impact losses. The
motors are located at the hips and are isolated from the load by series springs enabling
highly dynamic maneuvers such as hopping.

The control inputs are the torques acting on the actuator rotors u = [τm1s, τm2s, τm1ns, τm2ns]
T.

Even in the planar case the underactuated nature of ATRIAS is now directly apparent.

With 9 generalized state coordinates and only 4 control inputs, ATRIAS is highly un-

deractuated.

4.1.1 Single Support Model

In single support, the stance leg is pinned to the ground while the non-stance leg remains

free. The model for the resulting open kinematic chain can be derived using the method

of Lagrange. First the forward kinematics are derived and then the kinetic energy and

potential energy of each link are computed. Summing the terms to get the total kinetic

energy T (q, q̇) and total potential energy V (q), we write the Lagrangian as

L(q, q̇) = T (q, q̇)− V (q) (4.2)
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Solving using the method of Lagrange and putting into general robot manipulator form

results in

H(q)q̈ +C(q, q̇)q̇ +G(q) = B(q)u (4.3)

where H(q) is the inertia matrix, C(q, q̇) is the Coriolis matrix, G(q) is the gravity

vector, and B(q) is the mapping from joint torques to generalized forces.

4.1.2 Impact Model

The lower leg assemblies are sufficiently lightweight that we do not include impact losses

resulting from swing leg touchdown. However, there is still an instantaneous change in

velocities of the four-bar mechanism as the toe touches down. There is also a relabeling

of coordinates as the non-stance leg becomes the new stance leg. This post-impact jump

in states can be computed from the pre-impact states using the jump map defined by

x+ = ∆(x−) (4.4)

where x+ = [q+, q̇+] is the state just after impact, x− = [q−, q̇−] is the state just before

impact, and ∆(x−) is the jump map.

4.2 System Identification

ATRIAS was painstakingly modeled with all components and material properties in

SolidWorks to ensure parameters could be accurately estimated. Using this, the bulk of

the system parameters were extracted leaving only spring and friction constants to be

identified.

4.3 Trajectory Optimization

This section summarizes the many formulation details required to find an optimal tra-

jectory for a full-order hybrid robot model.
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Parameter Description Value

mt Torso Mass(∗) 45.588 [kg]

rt Torso COM Location(∗) 0.18116 [m]
Ga Actuator Gear Ratio 50

Ia Actuator Reflected Inertia(∗) 3.0517 [kgm2]

ma Actuator Mass(∗) 2.8755 [kg]
ba Actuator Friction 19 [N ms/rad]

kτ Actuator Torque Constant(∗) 0.0987 [N m/amp]
ks Leaf Spring Constant 1600 [N m/rad]
bs Leaf Spring Damping 1.46 [N ms/rad]

l1, l2 Leg Segment Lengths(∗) 0.5 [m]

kfs Static Coefficient of Friction(∗) 1.16

Table 4.1: List of ATRIAS parameters used for model simulation. Parameters marked
with an asterisk are computed from specification sheets and SolidWorks model.

4.3.1 Minimum Cost of Transport

Similar to the reduced order template problem, we seek to minimize the cost of transport.

This will not only attempt to minimize absolute mechanical work but maximize the

distance traveled with each step. Cost of transport is also commonly used to benchmark

and compare robot and animal gait performance. This makes it an ideal objective to

minimize and thus our performance index is defined as

J =
|τm1sθ̇m1s|+ |τm2sθ̇m2s|+ |τm1nsθ̇m1ns|+ |τm2nsθ̇m2ns|

(mt + 4ma) g d
, (4.5)

Because the performance index must be smooth for convergence, the non-smooth

absolute value operator must be eliminated. this is accomplished by defining a slack

variable for each work term and applying the linear programming trick described by

min(|q̇iτi|) (4.6)
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is equivalent to

min(W ) (4.7)

W ≥ q̇iτi (4.8)

W ≥ −q̇iτi (4.9)

4.3.2 Dynamic Constraints

As the number of degrees of freedom increases, the size of resulting dynamic differen-

tial equations also increases. This can lead to convergence issues during optimization,

especially as the number of collocation nodes increases. To overcome this and to im-

prove solver performance we take the idea of slack variables a step further. Typically,

accelerations are explicitly solved for and the resulting equations are used directly in the

numerical collocation constraints.

q̈ = H(q)−1(B(q)u−C(q, q̇)q̇ −G(q)) (4.10)

When done symbolically as COALESCE is designed to do, this results in enormous

constraint equations that take substantially more time to evaluate. This is especially

true for higher-order integration methods such as Hermite-Simpson and classical Runge-

Kutta. Realizing and taking advantage of modern SQP algorithms abilities to solve

systems of equations, we can leave the manipulator equation in standard form and simply

create new acceleration slack variables for each state. The new slack variables q̈i are used

in the collocation integration scheme but are additionally constrained to make dynamic

sense by equating

0 = H(q)q̈ − (B(q)u−C(q, q̇)q̇ −G(q)). (4.11)

This formulation was tested on the triple, quadruple, and quintuple pendulum on a

cart problems and resulted in the same solutions but in an order of magnitude less

time than the standard formulation. Additionally, this slack dynamics formulation en-

abled solutions to be found for the decuple (ten-link), viguple (twenty-link), and triguple

(thirty-link) pendulum on a cart swing-up problems.
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4.3.3 Hybrid Transition Constraints

The impact model and limit cycle constraints implementation is fairly straight forward.

The boundary conditions of a single single-support phase are constrained using the im-

pact and relabeling model derived in Section 4.1.2. This ensures that only periodic orbits

are considered.

4.3.4 Physical Constraints

ATRIAS has a number of physical limitations that could shape or exclude some otherwise

desirable gait trajectories. It is therefore essential that we include additional physical

limitation constraints to make sure the found gait is within the capabilities of the robot.

Most obvious, is the actuator torque and velocity limits given by

−7.88 ≤ [θ̇m1s, θ̇m2s, θ̇m1ns, θ̇m2ns] ≤ 7.88, (4.12)

−296.1 ≤ [τm1s, τm2s, τm1ns, τm2ns] ≤ 296.1 (4.13)

Additionally, the four-bar mechanisms have built in hard-stops to limit range of motion

(Figure 4.2. It is important that we stay away from these potentially dangerous areas to

avoid damage. We therefore give a little extra buffer so the generated gaits don’t push

the limits to close. The resulting leg extension and flexion constraints are given by

0.60214 ≤ [θ2s − θ1s, θ2ns − θ1ns] ≤ 1.7453 (4.14)

and the rotation relative to the torso is limited by

1.2654 ≤ [θt − θ1s, θt − θ1ns] ≤ 3.927 (4.15)

2.3562 ≤ [θt − θ2s, θt − θ2ns] ≤ 5.0178 (4.16)

Finally, because the pivot point at the toe is not actually a pin joint, we need to

consider the force directions and cone of friction. To ensure that only positive vertical

forces can be applied to the ground we limit

0 ≤ [fz1, fz2] ≤ ∞. (4.17)
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Figure 4.2: Illustration of the range of motion available in the ATRIAS four-bar leg
mechanism. The leg has hard-stops that limit extension, flexion and swing of each
coordinate.

To prevent the foot from applying large horizontal forces and slipping, we limit the forces

to remain within the static cone of friction defined by

−∞ ≤ [fx1 − kfsfz1, fx2 − kfsfz2] ≤ 0, (4.18)

0 ≤ [fx1 + kfsfz1, fx2 − kfsfz2] ≤ ∞. (4.19)

4.3.5 Gait Constraints

There are a couple minor additions to the formulation that can help us shape or select

the preferred gait. First we can set a target gait speed by constraining the horizontal

distance d traveled to some specified value. For the illustrated examples we use a target

speed of 0.75m/s. To prevent scuffing of the swing leg on the ground we set a foot

clearance profile that the toe must stay above. This profile is defined using a sine wave

and cross zero (the ground) at the moment of touch-down and take-off. The height of the

apex can be adjusted depending on the desired clearance, to start we define a clearance

of 3.0cm.

4.3.6 Result

A stroboscopic sequence of the resulting gait is illustrated in Figure 4.3. With as many

state and control variables as ATRIAS has it is hard to make heads or tails of the

corresponding time histories in any intuitive manner. It is much easier to look at the
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Figure 4.3: Stroboscopic sequence of the resulting cost-of-transport optimal walking gait.
The controller appears to be exploiting the natural dynamics of the system, resulting in
a very natural and bouncy gait.

Figure 4.4: The ground reaction forces and center of mass trajectory depicted indicate
that ATRIAS is indeed spring-mass like due to the common double hump vertical ground
reaction forces.

global dynamics defined by the ground reaction forces and the center of mass trajectory.

We can see from Figure 4.4, that the resulting vertical ground reaction forces have a

nice double hump shape. This profile is commonly associated with human walking and

spring-mass templates. It not surprising that ATRIAS exhibits this behavior as ATRIAS

was designed to encapsulate the key dynamical features of these models.

4.4 Trajectory Stabilization

The resulting optimal trajectory is not open-loop stable and thus we need to derive a

feedback controller to stabilize the trajectory. For this purpose we construct a time
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Figure 4.5: Stabilized walking gait on ATRIAS using trajectory optimization and LTV
LQR. The dashed lines represent the optimal trajectories and the solid lines represent
the stabilized trajectories.

varying linear quadratic regulator using the techniques described in Section 2.4.1. The

key difference between the previously demonstrated implementations, is that now we now

seek to stabilize a periodic orbit and not a finite horizon problem. This means we need to

iterate our backward integration of the Riccati equation until the time varying solution

P (t) converges. The resulting time varying gain schedule was turned into a controller and

applied to a full-order model simulation. The resulting controller is able to stabilize the

otherwise unstable trajectory and can recover from small initial condition perturbations.

Figure 4.5 shows a two step recovery motion from a disturbance, demonstrating the

effectiveness of the controller.
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Chapter 5: Conclusion

This thesis set out to efficiently control a simulation of ATRIAS, a highly dynamic and

underactuated bipedal robot. This task was approached as an optimal control problem,

finding energy-optimal trajectories using numerical methods and stabilizing them with

locally linear controllers. The resulting gait was stable and exhibited dynamical trade-

marks of ATRIAS’ intended template, the spring-mass locomotion model. Particularly,

the resulting gait bears the double-humped ground-reaction force characteristic of both

spring-mass-model walking and human walking. We argue that this similarity to our

target model is an indicator that the optimization is succeeding in maximally utilizing

the dynamics of the machine.

In order to formulate and solve optimal control problems in an efficient manner, a

framework entitled COALESCE was designed and built. This framework was coded in

a high level language using an object oriented structure to make it user friendly and

highly adaptable. It handles the direct transcription process, sparse symbolic Jacobian

derivation and interfaces with many common optimization solvers enabling none expert

users to quickly get started formulating problems. This framework was demonstrated on

a variety of toy problems of increasing complexity and underactuation. A stabilization

technique known as LTV LQR (Linear Time Varying Linear Quadratic Regulator) was

used to demonstrate stabilization of these optimal control trajectories, a necessary step

to bring feedback into the controller. This succession of increasingly complex examples

culminated in a stabilized walking simulation of ATRIAS.

A few key take-away observations were found during this process. First, our solutions

are not proven to be global, but there are many indicators that suggest they may be

global. At the very least, these solutions aren’t improvable in any obvious way, and

certainly are not a product of numerical pseudo-minima. Due to COALESCE’s embrace

of symbolic formulations, high degree of freedom problems can become impractically

immense when explicitly inverting the inertia matrix to solve for accelerations. We do

have promising avenues to ameliorate this issue, and have preliminarily implemented a

strategy using slack variables, leaving the equations of motion in manipulator form. This
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formulation has improved both build and solve performance by an order of magnitude

and has been demonstrated on problems as large as the triguple (thirty-link) pendulum

on a cart swing up maneuver thus far.
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