
AN ABSTRACT OF THE THESIS OF

Krishna S. Garimella for the degree of Master of Science in Electrical

and Computer Engineering presented on October 26, 1989.

Title: Performance Analysis of Network Based File Systems.

Redacted for Privacy
Abstract approved :

Roy Rathja

The performance of multi-user workstations that access files

over a local area network is studied. Such file systems, called

distributed file systems, provide access of remote file systems with a

great degree of transparency. The main objectives are

To study the principles of distributed file systems. specifically

NFS from Sun Microsystems and RFS from AT&T.

To investigate a methodology to evaluate the performance of

such file systems.

To evaluate the performance of these network based file

systems and study the effect of various implementation issues

on their performance.

The major conclusions drawn are

Allowing larger block transfers from a remote resource to

clients over the network improves performance. The benefits,

however, are limited to disk block sizes of 12-16 Kbytes

data. Performance can also be improved by proper layout

structure on the disk.

Enhancements of the server prove to be more cost

effective than those of the client.

Network contention is not the major bottleneck when a high

speed network is being used.

A configuration of computers sharing file systems over a LAN

can have satisfactory performance in a software development

environment.

Performance Analysis

of Network Based File Systems

by

Krishna S. Garimella

A THESIS

submitted to

Oregon State University

In partial fulfillment of

the requirements for the

degree of

Master of Science

Completed October 20. 1989

Commencement June 1990

APPROVED

Redacted for Privacy
Associde Professor ofbectrical and Computer Engineering in
charge of major

Redacted for Privacy
vir

Head of Department of Electrical and Computer Engineering

Redacted for Privacy

Dean of

Date thesis is presented October 26th. 1989

Typed by Krishna Garimella for Krishna S. Garimella

Table of Contents

Page

1. Introduction 1

1.0 Motivation 1

1.1 Objectives 2

1.2 Overview of the Dissertation 2

1.3 Conclusions 3

2. On Networks and File Systems 5

2.0 Introduction 5

2.1 Review of Underlying Network Concepts 5

2.1.1 Protocol Hierarchies 5

2.1.2 The ISO-OSI Model 6

2.2 File Systems 9

2.3 NFS : Network File System 10

2.3.0 Introduction 10

2.3.1 Remote Procedure Call 11

2.3.2 External Data Representation 1 1

2.3.3 The RPC, XDR and the ISO-OSI Model 12

2.3.4 Stateless Servers 12

2.3.5 File System Model 13

2.3.6 NFS Implementation Issues 14

2.3.7 Implementation of RPC 16

2.4 RFS: Remote File Sharing 19

2.4.0 Introduction 19

2.4.1 RFS Goals 19

2.4.2 RFS Architecture 20

2.5 RFS Implementation and Differences with NFS 23

2.5.1 System call Vs File System Switch 23

2.5.2 Stateless Vs Stateful Systems 25

3 Performance Models and Configuration 26

3.0 Introduction 26

3.1 Queuing Network Models 26

3.1.1 The Canonical System 27

3.2 Benchmarks and Configuration 29

3.2.1 Benchmarking RFS 29

3.2.2 Benchmarking NFS 30

3.2.3 Results obtained from Literature 30

4. Analysis of Results 32

4.0 Introduction 32

4.1 The Effect of Congestion 32

4.2 Design Alternatives 35

4.2.1 Increased Disk Block Size 35

4.2.2 Increased LAN packet size 37

4.2.3 Limitations of Amortization 38

4.2.4 File Block Caching 38

4.3 Enhancement of Configuration 39

5. Conclusions 40

5.0 Introduction 40

5.1 Conclusions of the Dissertation 40

5.2 Future Research 42

References 44

Appendices

Appendix A The Benchmarks and Results 46

Appendix B Comparison of RPCs from current vendors 51

List of Figures

Figure rage

2.1 OSI Layering and Correspondence with ARPANET 6

2.2 RPC, XDR and the ISO-OSI Model 12

2.3 The Client Server Model 15

2.4 Ten steps to Execute an RPC 17

2.5 Client Server Binding via a Database 18

2.6 STREAMS Based Communication 23

3.1 The Canonical System 28

3.2 The Canonical Model 2 9

4.1 The Effect of Congestion 34

4.2 CPU, Disk and Network Utilization 34

4.3 Effect of Block Size on Remote Disk Access Time 36

4.4 Effect of Increased Network Packet Size 3 7

A.1 Comparison of Remote and Local Reads 47

A.2 Comparison of Remote and Local Writes 48

List of Tables

Table Page

A.1 Remote and Local Reads in RFS 4 7

A.2 Remote and Local Writes in RFS 48

A.3 Raw Results of Test2 50

Performance Analysis of Network Based File Systems

CHAPTER1

1. Introduction

1.0 Motivation

The performance of multi-user workstations that access files

over a Local Area Network (LAN) is studied. Examples of such systems

are the Sun Microsystems' Network File System (NFS) [1], AT&T's

Remote File Sharing (RFS) [2] and the DOMAIN File System from

Apollo Computers [3]. The advent of low-cost personal computers and

workstations has brought about a need for information and peripheral

sharing across machine boundaries. In response, researchers have

developed a number of network disk servers and subsequently high

speed local area network based file systems. Several configurations

with a variety of performance and cost trade-offs have emerged. These

include configurations in which workstations with little or no local

disk storage are connected to a powerful file server with fast disks,

and ones in which personal desktop computers are connected to hosts

for backup and archival storage.

Network or distributed file systems typically allow multiple

machines to transparently access file system resources across machine

boundaries. Distributed operating systems extend the network

2

transparency to resources other than files, such as processes and

virtual memory. To effectively design, configure and administer

network based file systems, one must be able to understand and

quantify their performance. The objective is, thus, to assess the

penalty on performance due to remote file accesses and explore a

number of design alternatives that can minimize the penalty.

1.1 Objectives

The objectives of this dissertation can be summarized as:

To study the underlying issues of distributed file systems.

To investigate a methodology to evaluate the performance of such

file systems.

To evaluate the performance of popular network based file systems

and investigate the effect of various implementation issues on their

performance.

1.2 Overview of the dissertation

In Chapter 2 an introduction to distributed file systems from

different vendors is given and the underlying differences in design and

operation are outlined. The approach taken for the performance

analysis builds queuing network performance models from the

measurement data. This is explained in detail in Chapter 3. A

summary of results, comparisons and conclusions are given in Chapter

4, explained in light of earlier chapters.

3

Chapter 5 lists the major conclusions that can be drawn from the

performance measurements. It also describes some future work that

can be done in the area of performance analysis.

Appendix A gives a description of the Business Benchmark and

the Multi Vendor Test Suite (MV'TS) used to analyze RFS and NFS

respectively. Also included are the "raw" test results for RFS and NFS.

Appendix B looks at an analysis of the performance of different

vendor's Remote Procedure Calls (RPCs), which are the building

blocks of distributed file systems. The results are a summary of tests

done by Joshua Levy of Atherton Corporation [4] .

1.3 Conclusions

The major conclusions of this study can be summarized as

follows

Allowing volume transfers from the remote resource to the

client over the network improves performance. However these

benefits are limited to moderate disk block sizes of 12-16 Kbytes.

Volume transfers can be made more efficient by having a better

page layout strategy on disks, such that fast and contiguous access

of pages is possible.

Enhancements to the server prove to be more cost effective as

improvements on the client end pertain to only one client.

Network contention is not the major bottleneck when a high

speed physical link (e.g. Ethernet) is used.

4

Workstations that share file systems over a local area network can

have satisfactory performance. A fairly good performance can be

achieved even if the file systems of hosts are entirely remote and

all the file accesses are over the network (as in the case of diskless

systems).

5

CHAPTER 2

2. On Networks and File Systems

2.0 Introduction

This chapter provides a brief overview of underlying networking

principles and an outline of different distributed file systems, their

implementations and fundamental differences.

2.1 Review of underlying network concepts

The implementation of modern computer networks is done in a

highly structured way. The following sections briefly describe the

structure.

2.1.1 Protocol Hierarchies

To reduce design complexity, most networks are organized as a

series of layers or levels, each built upon its predecessor. The

number, the name, and the function of each layer differs from network

to network. However, in all networks, the purpose of each layer is to

offer certain services to the higher layer, shielding those layers from

the details of how the offered services are actually implemented.

Layer n on one machine carries on a conversation with layer n on

another machine. The entities comprising the corresponding layers

on different machines are called peer processes. In reality no data is

transferred directly between two peer processes (except the lowest

6

layers). Instead, each layer passes data and control information to the

layer immediately below it, until the lowest layer is reached. At the

lowest layer there is physical communication with the other machine

as opposed to the virtual communication used by higher layers.

2.1.2 The ISO-OSI Model

The International Standards Organization (ISO) proposed a seven

layer networking model as the first step toward standardization of

various protocols. The reference model of the Open Systems

Interconnection (OSI) was described by Zimmermann in 1980 [5].

The major components of the ISO-OSI and ARPANET models are

outlined in Figure 2.1.

ISO-OSI

APPLICATION

PRESENTATION

SESSION

TRANSPORT

NETWORK

DATA LINK

PHYSICAL

ARPANET

APPLICATION
LAYER (Telnet, FTP)

and
SESSION LAYER

HOST-HOST
(TCP,UDP etc)

SOURCE-DESTINATION
IMP

IMP -IMP

PHYSICAL

FIGURE 2.1: OSI Layering and Correspondence With ARPANET

7

The following paragraphs briefly describe the seven layers of the

ISO-OSI model.

The Physical Layer

The physical layer is concerned with transmitting raw bits over a

communication channel. This layer is concerned with transmission of

an unstructured bit stream over the physical link. It also deals with

such parameters as signal voltage swing and bit duration. The design

issues here largely deal with mechanical, electrical and procedural

interfacing to the subnet.

The Data Link Layer

The data link layer does the accounting and traffic control

chores needed to transfer information on an electrical link. It puts

every piece of information into the right place and checks it before

putting it on the physical link. The data link was originally thought of

as being a function of the software in a device. It is increasingly being

done by special-purpose integrated circuits requiring little external

programming.

The Network Layer

The network layer sets up a logical transmission path through a

switched network. This is sometimes called the communication

subnet layer. In local networks the transmission path may only be

theoretical, since the individual units are almost always electrically

8

connected to the network. But in large systems, several transmission

paths (or routes) and even alternative media (dial-up telephone lines,

satellite links etc.) may exist. The key design issue is how the route is

determined. It could be based on tables that are static and are rarely

changed. It could also be based on dynamic routing tables, where the

dynamism is determined by different routing algorithms.

The Transport Layer

The basic function of the transport layer is to accept data from

the session layer, split it into smaller units, if need be, and pass it on
to the network layer. It translates whatever unique requirements the

other higher layers might have, into something the network can

understand. There are error detection and correction facilities and

also provisions for expedited delivery of high priority messages. This

layer also attempts to re-establish lost connections due to network

failure. This layer is a true source-to-destination or end-to-end layer.

The transport layer establishes connection between the "peer"

processes at each end of the communication system. This part is

often implemented by the host operating system.

The Session Layer

The session layer is a coordinating function. It establishes a

communications link between units and gradually feeds or buffers

information to the devices or program performing the presentation

function. Ignoring the presentation layer, which merely performs

9

certain transformations, the session layer is the user's interface to the

network. In some networks, the session and the transport layers are

merged into a single layer, or the session layer is absent altogether, if

all that the user wants is raw communication service.

The Presentation Layer

The next layer in the model is the presentation layer. This layer

prepares the information for the application. Services that this layer

would typically provide include data translation, formatting and syntax

selection. Transformations like text compression and encryption are

also done in this layer.

The Application Layer

The content of the application layer is dictated by the user. This

includes applications that are to be run in a distributed environments,

vendor provided utilities like electronic mail, and file transfer

utilities. Human user interfaces, like the X-Window system, also are a
part of this layer.

2.2 File Systems

Most applications of computers use files for storage of

information. The file is an abstraction of a storage construct that is

based on magnetic disks or other secondary storage media.

Conventional operating systems include a file system that is

concerned with organization, storing, retrieval, naming, sharing and

10

protection of files. File systems are designed to allow programs to use

a set of operations that characterize the file abstraction and free them

from concerns about details of disk storage and layout. At their

simplest, files are defined as sequences of similar data items and file

systems provide functions to read and write sub-sequences of data

beginning at any point in a file.

A distributed file system extends the file system beyond the

machine boundaries. A distributed file system is an essential

component of a distributed system; it is needed to support shared

information, to enable users to access files without copying them to

their local workstation disk and if diskless workstations are used it is

needed for all permanent storage. In the following sections we look,

in detail, at two popular vendor supplied distributed file systems; NFS

from Sun Microsystems and RFS from AT&T

2.3 NFS: Network File System

2.3.0 Introduction

The Sun Network File System (NFS) protocol provides

transparent remote access to shared files across networks. The NFS

protocol is designed to be portable across different machines,

operating systems, network architectures, and transport protocols.

This portability is achieved through the use of Remote Procedure Call

(RPC) primitives built on top of an eXternal Data Representation(XDR).

11

Implementations already exist for a variety of machines, from personal

computers to supercomputers.

2.3.1 Remote Procedure Call

Sun's Remote Procedure Call (RPC) specification provides a

procedure-oriented interface to remote services. Each server supplies

a "program" that is a set of procedures. NFS is one such program.

The combination of host address, program number, and procedure

number specifies one remote procedure. A goal of NFS was to not

require any specific level of reliability from its lower levels, so it could

potentially be used on many underlying transport protocols, or even

another remote procedure call implementation. For ease of

discussion, the rest of the description will assume that NFS is

implemented on top of Sun RPC [7].

2.3.2 External Data Representation

The eXternal Data Representation (XDR) standard [8] provides a

common way of representing a set of data types over a network.

Although automated RPC/XDR [9] compilers exist to generate server

and client "stubs", NFS does not require their use. Any software that

provides equivalent functionality can be used, and if the encoding is

exactly the same it can interoperate with other implementations of

NFS.

12

2.3.3 The RPC. XDR and the ISO-OSI Model:

The RPC and XDR reside in the ISO-OSI model as shown in

Figure 2.2. The actual layering is complex, as RPC does not fit into the

model especially well. It has been designed to be fast, and therefore

does not contain a multi-layer structure. It can logically be considered

to be equivalent to the session layer of the OSI layer.

,
Application Mount

Presentation XDR

Session
RPC

Transport TCP, UDP

Network IP

Data-Link
ETHERNET

_.i
Physical

FIGURE 2.2: RPC, XDR and the ISO-OSI model

2.3.4 Stateless Servers

The NFS protocol was intended to be as stateless as possible.

That is, a server should not need to maintain any protocol state

information about any of its clients in order to function correctly.

13

Stateless servers have a distinct advantage over servers that maintain

state, also known as "stateful" servers, in the event of a failure. With

stateless servers, a client need only retry a request until the server

responds: it does not even need to know that the server has crashed,

or the network temporarily went down. The client of a stateful server,

on the other hand, needs to either detect a server failure and rebuild

the server's state when it comes back up, or cause client operations to

fail.

This may not sound like an important issue, but it affects the

protocol in some unexpected ways. Note that even if a reliable

transport protocol such as TCP is used, the client must still be able to

handle interruptions of service by re-opening connections when they

time out. Thus, a stateless protocol may actually simplify the

implementation.

On the other hand, NFS deals with objects such as files and

directories that inherently have state. The file will be of no use if its
contents are not kept intact. Inherently stateful operations such as

file or record locking, and remote execution, were implemented as
separate services.

2.3.5 File System Model

NFS assumes a hierarchical file system similar to UNIX. Each

entry in a directory (file, directory, device, etc.) has a string name.

14

Different operating systems have different ways of naming the files or

different syntax to represent the "pathname". A "file system" is a tree

on a single server (usually a single disk or physical partition) with a

specified "root". Some operating systems provide a "mount" operation

to make all file systems appear as a single tree, while others maintain

a "forest" of file systems. Version 3 of NFS uses a slightly more general

file system model [11.

Although files and directories are similar objects in many ways,

different procedures are used to read directories and files. This

requires a network standard format for representing directories. The

same argument as above could have been used to justify a procedure

that returns only one directory entry per call. The problem is

efficiency. Directories can contain many entries, and a remote call to

return each would be too slow.

2.3.6 NFS Implementation Issues

The NFS protocol was designed to allow different operating

systems to share files. However, since it was designed in a UNIX

environment, many operations have semantics similar to the

operations of the UNIX file system. This section discusses some of the

implementation specific details and semantic issues.

15

Server/Client Relationship

The Remote Procedure Call is implemented using the client-

server Model. The client-server model involves a set of processes

called clients which communicate with a process called the server.

The server process can reside either on the local host or on a remote

host accessible through the network. The clients send a request to

the server and the reply is a "service" to the client.

Client

Request

Reply-.
Server

FIGURE 2.3: The Client - Server Model

In the RPC school of thought, a client sending a message to the

server and getting a reply is like a program calling a procedure and

getting a result. As in the case of the client-server model the caller

initiates an action and waits until it is completed and the results are

available. The procedure call to a remote machine is transparent to

the user. Thus the caller need not be aware of the difference between

a local procedure call and a RPC. To help hide the differences

between local and remote calls, a set of library calls can be provided

to programmers.

16

2.3.7 Implementation of RPC

As we have seen, a set of "library" calls can be provided on the

client to hide the details of the network from the user. These library

procedures are called stubs. Stub procedures not only transfer data

between the client and the server but also send messages. The

following example gives an idea about the steps of a remote call.

Referring to Figure 2.4, in Step 1 the client program calls the stub

procedure. Parameters are passed in the usual way as between a

calling program and a procedure. The client does not notice any

difference between local and remote calls. In Step 2, the client stub

collects the parameters and encapsulates them to be sent over to the

server end. This is known as parameter marshalling. After this the

message is handed over to the transport layer. Step 3 consists of the

transport layer passing over the packet to the server end by

transmission. Next, in Step 4, the transport layer of the server

collects the messages and passes it on to the server stub. The server

stub "un-marshalls" the packet in Step 5, and passes it on to the

server. The server then executes the instruction and sends back the

reply. The server stub then marshalls the reply(Step 7) and passes it

on to the server's transport layer to be transmitted back to the

client(Step 8). The purpose of the whole operation is to give the

client procedure, transparency of the underlying details of getting a

reply from a remote server.

Client Machine Server Machine

17

FIGURE 2.4 Ten steps to execute an RPC

One may wonder how a client comes to know which server to

call for a particular protocol. A scheme due to Birrel and Nelson 191

includes not only the client and the server but also a specialized

database system. In their method, when a server is booted, it

registers with the data base system by sending a message containing

its name, its network address and a unique identifier. When the client

makes its first call to the server, its stub is faced with the problem of

locating the server. To do this, the server stub sends its name to the

database system. The database returns a unique identifier and the

network address of the server. This is called binding . The unique

identifier distinguishes the server from other servers on the network.

Database System

Client Machine

Transport

18

Server Machine

Server
Stub

Server

Transport

FIGURE 2.5 Client - Server binding done via a database

Thus we see that RPC provides the following services.

It allows users to initiate a procedure on a remote machine so that
the procedure appears to execute on the local machine in the

user's address space. RPC does this by interfacing with the
network layers below it.

RPC provides a message format that interacts with and specifies a
high level protocol. RPC allows users to obtain necessary data on

the remote server without the user being aware of it.

RPC provides a library of function calls in a high level language for

local and inter process communications.

19

The generality and simplicity incorporated in implementing NFS

servers is not without drawbacks. It is impossible to implement some

complicated file system semantics, like removal of open files, on a

stateless system. These problems are solved by doing some tricks

with the file semantics [1].

2.4 RFS: Remote File Sharing

2.4.0 Introduction

This section describes the implementation of AT&T's Remote

File Sharing (RFS). RFS is a distributed file system provided with

UNIX System V, Release 3 that allows a network of machines to

transparently share files [2]. A process running on one machine can

access a remote file in the same manner as if it were local. To

accomplish this transparency RFS meshes with the existing UNIX file

naming semantics. Unlike other distributed file systems RFS

preserves the full UNIX file system facilities and allows access to all

types of files including special devices and named pipes. In addition

RFS extends file and record locking to remote files. The following

sections describe the implementation issues on which RFS is based

and the architecture used to achieve the goals.

2.4.1 RFS Goals

The RFS was implemented with the following goals in mind, as

outlined by Andrew Rifkin et al [2]:

20

Transparent Access: To preserve the standard UNIX interface and

make the access of remote and local files identical, except for a

difference in performance.

Semantics: To preserve the UNIX semantics by providing access to

special devices and special files regardless of them being local or

remote.

Binary Compatibility: To provide binary compatibility for existing

applications with a new environment with network resources.

Network Independence: To provide compatibility with different

technologies, RFS should be implemented with network

independence.

Performance: High performance should be achieved, by minimizing

network access.

2.4.2 RFS Architecture

The RFS architecture is based on the client-server model which

has been described in Section 2.3.6. Once connected the machines
communicate using a message protocol based on the UNIX system call

interface. The streams mechanism [11] is used in conjunction with

the transport interface defined in System V to separate RFS from the
underlying network, making RFS network independent. By defining

an RFS file system type, RFS is cleanly integrated into the UNIX

kernel using the File System Switch (FSS) mechanism in System V

Release 3 (SVR3). Also, to ensure security, the normal UNIX file

21

protection is extended to remote files and a mechanism is provided to

map user id's.

Client-Server

A file sharing relationship consists of two machines. Like in

NFS, the file physically resides on the server machine, while the client

machine remotely accesses the file. The client accesses the file by

sending a request message to the server. The server's response is to

provide the requested resource.

Connection Establishment

The RFS connection establishment involves locating and

identifying a remote resource followed by remotely mounting it. The
location and identification of resources is done using the RFS name

server. The remote mount adds the remote file system to the local file

system.

RFS Message Protocol

The RFS message protocol is based on UNIX system calls, which

are well defined and accepted. This protocol is used to communicate

remote resource requests between client and server machines. For
each system call there exists a request and response message. The

request message formats all pertinent information necessary to

execute the system call, while the response message formats all

possible results.

22

Network Independence

By separating RFS from the underlying transport service, RFS is

able to run over a variety of protocols and networks without

modification. To accomplish this, two problems had to be solved.

First it was necessary to choose the right type of transport service.

Second, a standard interface between RFS and the transport service

had to be provided.

Unlike NFS, RFS was designed to work over large concatenated

networks and since the overhead of retransmission and error
detection is high for datagram service over large networks, reliable

virtual circuit service was chosen. To compensate for virtual circuit
setup costs, a single virtual circuit is maintained between a client and

a server machine. This circuit is established during the first remote

mount, and all subsequent mounts are multiplexed over this circuit.

The circuit is held open for the duration of the mounts.

The second problem was solved using the transport interface
(based on the ISO Transport Service Definition) defined within the
System V networking framework and the streams mechanism. By
adhering to the transport interface, a connection between RFS and a

transport service is provided through the streams interface as
illustrated in Figure 2.6.

23

FIGURE 2.6: STREAMS Based Communication

2.5 RFS Implementation and Differences with NFS

At the application level, RFS functionality is quite similar to that
provided by NFS. However, the underlying design and implementation
of RFS and NFS are quite different.

2.5.1 System Call Vs File System

One of the principal differences between RFS and NFS is in the
abstractions used as models for their design and implementation. RFS
uses a remote system call abstraction whereas NFS uses a remote file
system abstraction.

24

The System Call Abstraction

The system call abstraction uses system calls as the interface by

which one manipulates file system objects. There are a number of

important points to note about this abstraction.

One argument to the system call is always a reference or a

handle to a file. This reference takes the form of either a

pathname or a file descriptor.

A pathname relies on the uniform file system name space

presented by UNIX file system semantics. The resolution of the

pathname across and within the file systems is below the level of

abstraction presented by the system call interface to the user.

Also the relation between pathnames and files themselves is

"many to one", i.e., there can be several names for the same file.

A file descriptor is returned by a system call and represents a

reference to a file which is guaranteed by UNIX semantics to

exist until the descriptor is closed.

In contrast to the System Call Abstraction, the file system

abstraction typically provides a somewhat lower level of operations on

files and file systems.

25

2.5.2 Stateless Vs Stateful Systems

The second notable point concerning the differences between

RFS and NFS is that, whereas NFS does not maintain server state on
behalf of a client, RFS does.

The NFS server is designed to retain no memory of its clients

activities; it is "stateless". The primary reason for statelessness is to
make recovery after a server crash easy; if the server has no state,

then there is no state to restore. As far as the client is concerned the

server has slowed down infinitely and will eventually respond. Thus

the client keeps sending requests.

The RFS server, however keeps a record of the client state
information. Thus a special recovery mechanism has been designed to

erase this state in the event of a crash on the client side. The main

purpose of the recovery mechanism is to restore state on the server
machine in the event of a client crash, and to cleanup a client machine
in the event of a server crash. The statefulness assures that data
integrity and consistency is maintained in case of system crashes and
network failures.

26
CHAPTER 3

3. Performance Models and Configurations

3.0 Introduction

This chapter introduces a Queuing Network Performance Model

which can be be used to analyze performance measurement data. No

mathematical analysis of the model is attempted in this dissertation.

The purpose of presenting this model is to get familiar with service

centers and customer demands in a distributed file system. These

models can be used as a basis for developing simulation tools for

distributed environments as described in Chapter 5. Later in this

chapter the configuration used for gathering the measurement data is

described.

3.1 Queuing Network Models

The input requirements of models dictate the quantities that

must be measured. The queuing model can be used for analysis

because it posses an attractive combination of efficiency and accuracy.

In recent years queuing models have become a tool of choice in

computer system design and analysis of applications. There are three

components to the specification of a queuing network model: the

service center description, the customer description, and the service

demands.

27

The service center description identifies the resources of the

system that will be represented in the model: disks, CPUs,

communication networks, etc.

The customer description indicates the workload intensity: the

average number of requests in the system, or the average rate at

which requests arrive to the system, or the number of users and the

average time that a user pauses between receipt of a response and

initiation of another request.

The service demands describe the average amount of service that

each request requires at each service center.

Once these inputs have been specified, the model can be

evaluated using efficient numerical algorithms, yielding performance

measures such as utilization, residence times, queue lengths and

throughputs. The model can also be used to project the performance

of the system under various modifications.

3.1.1 The Canonical System

Figure 3.1 represents the "canonical system" studied in this

paper. The tests had been run on a configuration similar to the one

shown in Figure 3.1. The configuration consisted of 4 Intel - 80386

based workstations, running Unix System V. They were connected by a

10 Mbps ethernet. Figure 3.2 illustrates the canonical model used in

our study. The file server is represented by two service centers,

corresponding to CPU and the disk. The network is represented by a

28

single load dependent service centre, since the efficiency of an

Ethernet depends on the number of workstations simultaneously

attempting to assert data. Each client is represented by a single

service station corresponding to its CPU. The local disk is not a

service station when remote files are accessed.

Local

Disk

CLIENTS

NETWORK

SERVER

L----j
Server Disk

FIGURE 3.1: Canonical System

Client CPU

Client Disk

Client CPU

1 d cl d= 0

CPU Disk

Network

File Server

0 Service Centre

Load Dependent
Service Centre

FIGURE 3.2: The Canonical Model

3.2 Benchmarks and Configuration

3.2.1 Benchmarking RFS

29

Client CPU

The Business Benchmark from Neal-Nelson Associates was used

to study RFS. The benchmark is described in Appendix A. This is an

industry standard benchmark program provided for performance

analysis of different system configurations. The configuration

consisted of 4 - Intel 80386 based workstations running Unix System

30

V. Each had a main memory of 8 Megabytes and were running at a

clock speed of 20 MHz. They were also running TCP/IP and were

connected to a Ethernet based LAN. One of the machines was

configured as a server of RFS. The Business Benchmark was located

on the server's file system. The server's directory, containing the

benchmark, was remotely mounted on the client and the program was

run over the network. The tests were also run on the stand alone

systems and the local and remote test results were compared. The

results are presented in Appendix A.

3.2.2 Benclunarking NFS

For NFS the Neal-Nelson's tests could not be used for

benchmarking, because NFS does not allow remote mounting of

special files, specifically remote disks. The setup of Neal-Nelson tests

required such a mount and hence they could not be used. Instead, a

special test suite, called the Multi Vendor Test Suite (MVTS) was used

to determine the times for remote and local read/writes. To find the

effect of block size on the performance, the program "ioperf' run on

NFS. The raw results are presented in Appendix A.

3.2.3 Results Obtained from Literature

Because of access to better resources, E. D. Lazowska, et al, [12]

have been able to run exhaustive tests involving measurements to

determine the effect of a large number of workstations on the

network. The results also show the effect of different parameters like

network packet size and file cache size on performance. Their results

31

in conjunction with the benchmark results are used to analyze the

performance of the file systems. Lazowska et al [12] ran tests on
configurations based on similar models on Remote File Systems by

SUN Microsystems (NFS), Apollo (DOMAIN) and V - Kernel systems
from Stanford University.

RPCs from different vendors, due to the inherent

implementation differences, influence the performance of the file

systems implemented on top of them. A study of performance of

different RPCs has been done by Joshua Levy [4] as outlined in

Appendix B.

32
CHAPTER 4

4. Analysis of Results

4.0 Introduction

This chapter presents results obtained from various

measurements and from previous work done in this area. The results

are presented along with some design alternatives which might

improve the performance of distributed file systems. The effect of

issues governing performance, like congestion due to increased

network usage, is also studied. Implementation issues like disk block

size, network packet size and file block caching are also studied.

4.1 The Effect of Congestion

Unlike a dedicated disk on a single workstation, the file server

and local area network are shared facilities, and access to them is

subject to delay owing to competition from other workstations. In

other words, the relative response time perceived by a workstation

user in remote file system environment can be thought of as having

three components:

User mode processing. This is the time spent in computation by

the application program.

Basic I/O time. This is lower for the local than for remote access in

a configuration where identical workstations are used on the

network.

33

Queuing Delay. This is due to congestion in remote access and this

grows with number of workstations sharing the file server. This

delay increases the penalty of remote access.

The queuing delays evident in Figure 4.1 are due to the

congestion at the file server. Figure 4.2 shows the utilization of the

server CPU, the disk and the network. Several points can be noted

from Figure 4.1 and Figure 4.2.

At light loads (i.e. small number of workstations), a file server

design that minimizes file access latency in the absence of

congestion is of some value.

The performance at higher loads is governed by the most heavily

used resource, which limits the throughput. This would be the file

server CPU in this case.

Ethernet can accommodate a large number of file servers because

of its high bandwidth and network contention is not much of a

problem.

0.5

0.4

0.3

Time
0.2

0.1

0.0

34

Queuing

ES User Processing

Basic I/O time

Local Remote:1 10 20 30
Wkstns Wkstns Wkstns Wkstns

FIGURE 4.1: The Effect of Congestion (Source: [121)

Utilization
CV
v.:

0,

N
0

-0. Disk
Not*

0- Server

0 10 20 30 40
Workstations

50 60

FIGURE 4.2: CPU, Disk and Network Utilization (Source: 1121)

35

4.2 Design Alternatives

In this section, measurements are used to investigate a number

of design alternatives intended to improve the performance. As noted

above light-load performance can be improved by reducing the time

spent for the service at any resource (e.g. A reduced file access

latency) or by improving the concurrency of processing the requests.

However at high loads the increase in concurrency is difficult, so the

performance is most improved only by reducing the service demand at

the most heavily utilized device. As can be seen from Figures 4.1 &

4.2 the bottleneck seems to be the server CPU. The design

alternatives must, therefore, aim at reducing the service demands on

the server CPU.

4.2.1 Increased Disk Block Size

The program "ioperf' was written to conduct experiments on

the effect of different disk block sizes. This was a part of the MVTS

test described in Appendix A. For this test a SUN Sparcstation was

configured as an NFS server and an Altos 1000 (Based on Intel-

80386) as a client. There was no other network activity and .no more

user load on the machines. The "time" command from the "csh" was

used to get the timings. A 100 Kbytes file was used and the times per

kilobyte of transfer were calculated. The raw results are presented in

Table A.1.

36

The disk access time per kilobyte of data transferred is

presented in Figure 4.3. The reduction in access times can be

explained as follows. File access in UNIX is accomplished in blocks of

4 K Bytes. Consider an increase in the disk block size from the default

value of 4 Kbytes to 8 Kbytes. This change will have two primary

effects: The effective disk access time is reduced since seek and

latency times are "amortized" over 8 Kbytes rather than over 4 Kbytes.

The server CPU time is also reduced since only one disk I/O operation

and one user request packet are required per 8k transferred as

opposed to two of each operation for a block size of 4 Kbytes.

O

O
O

O

Disk Time/K

IIIHM11111111
1111111-71

4 8 12 16 20
Block Size, K

24 28 32

FIGURE 4.3: Effect Of Block Size on The Remote Disk Access time

37

4.2.2 Increased LAN Packet Size

It is clear from Figure 4.3 that increasing the block size can be

extremely effective in improving performance. However, the increase

in the block size actually increases the number of data carrying

messages passed between the server and client. If the amount of data

that is carried in one message is increased, then the fragmentation

required will be less and so will be the overhead for such an operation.

Lazowska et al [12] investigated the effect of increasing the packet size

to 4 Kbytes from the standard 1 Kbytes. The modification improved

the response times as seen in Figure 4.4. The baseline system is

nothing but a system with standard network packet size of 1 Kbytes

and 4 Kbytes block size.

cc!

cc!0

"0:
O

O

O
O

0

-----4-----tr-Ifirelirid-
1111111111111 .

. -*-4.K.P.acket

11111 i _MI
pro....ams.P...

A-------4

10 20 30
Workstations

40 50 60

FIGURE 4.4: Effect of Increased Network Packet Size. (Source: [12])

38

4.2.3 Limitations of Amortization

The advantages of amortization of overheads like the disk access

and network overheads, over large volumes of data, are quite

conclusive. There are, however, several limitations of amortization.

If the blocks are very large, then the network will be busy for

long "bursts" of data which will be a limitation when many

clients are on the network.

For applications where the processing cost depends on the
amount of data processed, the marginal benefit of amortization
decreases.

The access time will no longer decrease, when the block size

exceeds the file size. The average file size in a software

development environment can be assumed to be approximately

10-15 KBytes. This figure, however, varies depending on the type
of application that's being run on the systems.

4.2.4 File Block Caching

In a caching scheme, file blocks are saved in main memory so

that subsequent requests for these blocks can be satisfied without a

disk operation. The success of caching depends on the principle of
locality, or on the cache hit ratio. There are two possible

configurations for caching in network based file systems [12]. Caching
on the server end can reduce the demand on server CPU but client

end caching will also reduce the network performance overhead.

39

However additional main memory is generally required for client

caching and thus would require more resources as each client will

need to have an independent cache. There were no measurements

done to study the effect of caching on the file systems. File cache

performance is considered in considerably great detail in [12].

4.3 ENHANCEMENT OF THE CONFIGURATION

This section briefly describes the possibility of improving

performance by enhancement of the configuration. Instead of

reducing the amount of work done, the work can be spread among
more devices.

The most obvious solution is to acquire a second file server to

share the load imposed by the client workstations. Because the effect

of this is to halve the service demand at the bottleneck, performance

at high loads is similar to that of client caching, as about 50% cache

hit ratio can be expected in the cache scheme [12]. The other

alternative is to replace the file server CPU with a much faster CPU

and have a lower service demand. Lazowska et al claim to have gotten

the expected performance gains after making the above two

enhancements [12].

40

CHAPTER 5

Conclusions

5.0 Introduction

Economic and administrative considerations have pushed the

development of technologies for distributed file systems quite rapidly.

The measurement data presented in this dissertation is used to study
the factors governing the performance of such systems. In the
following section, major conclusions are described. Work that can be
done in this area in the future will also be discussed.

5.1 Conclusions of the Dissertation

The following conclusions can be drawn from the observations made
so far.

Allowing volume transfers, or "amortization" of overhead over a
large number of bytes is a definite performance improver. The

improvements tend to be smaller for higher block sizes. This is
because large block sizes result in increased network contention,
particularly in a CSMA/CD network. Furthermore the performance

benefit decreases as the amortized volume of data exceeds the
actual file size. The benefits are thus limited to moderate sizes of

12-16 Kbytes of data. Better efficiency can also be gained by having

file layouts which ease the access. Large transfer units might

41

require large buffering capability. This can be avoided by either

having large page sizes or highly contiguous allocation of small

pages. The fragmentation due to large pages can be avoided by

using the latter method, which is quite efficient due to the layout

strategy.

Enhancements on the server side may prove to be more cost-

effective as the improvements on the client side pertain to only

one client. A faster server means a faster service to all the

clients. The enhancements on the client end will, however,

reduce the network overhead. The client will use the data stored

in the local cache without actually needing to fetch the data over

the network and thus will save on the network overhead.

A system of workstations sharing file systems over a local area

network can have satisfactory performance. As with any shared

facility, a good design is necessary to minimize queuing delays

under high loads. As the load increases, queuing delays cause

performance to degrade. With a well designed file server and

client/server interface, the cost of remote file access is

reasonable even for a substantial number of client workstations.

Even if the entire file system is located on the server and there is

no local secondary storage, as in case of diskless workstations, the

performance remains satisfactory [12]. In fact diskless

workstations provide an economical alternative to expensive local

42

disk storage capacity at the cost of tolerable performance

degradation.

Network contention is not a major bottleneck when a high

speed network (e.g. Ethernet) is used as even achieving an

average utilization of 50% is an incredibly large amount of data

being transferred.

5.2 Future Research

Future work in performance analysis should investigate the

possibilities of creating simulation tools for distributed file systems.

These simulation tools should assume the models presented in this

dissertation. The tools should provide good user interface for ease of

specifying service centers, customer description and the service

demands such that the researcher can reconfigure the system under

study. This will expedite the process of performance analysis and also

provide an economical way of doing so. The models can be

generalized for distributed environments for computer resource

management. This would extend the ease of analysis to distributed

operating systems. An excellent treatment of performance models for

distributed environments is given in [141

In the network based file systems the possibility of increasing

the concurrency of operations should be investigated. This is likely to

improve the performance at high user loads. Further, the studies

43

should aim at bettering the performance for diskless configurations, as

these really prove to be cost effective and easy to administer in a

multiuser software development environment.

44

References

1. RFC 1094, "NFS: Network File System Protocol Specification"

Network Working Group, Sun Microsystems, Inc., March 1989.
2. Andrew P. Rifkin, "Remote File Sharing: Architectural

Overview", USENIX Conference Proceedings, Summer 1986,

pp 248 -259.

3. The DOMAIN System User's Guide, Revision 01, Apollo Computer
Inc. 1987.

4 . Joshua Levy, "A Comparison of Commercial RPC Systems", Report

to Atherton Corporation, Sept. 1989.

5. H. Zimmermann. , "OSI Reference Model-The ISO Model of

Architecture for Open Systems Interconnection", IEEE Trans.

Communications, vol. COM-28, April 1980, pp 425-432.
6 . Andrew Tannenbaum, Computer Networks, Prentice Hall Inc.,

1981.

7. 1057, "RPC: Remote Procedure Call Protocol Specification", Sun

Microsystems, Inc., June 1988

8. RFC1014, "XDR: External Data Representation", Sun
Microsystems, Inc., June 1987.

9. George F. Couloris, et al., Distributed Systems: Concepts and
Design, Adison-Wesley, 1988.

10. Andrew D. Birrel, and Bruce Jaynelson, "Implementing

Remote Procedure Calls", ACM Transactions on Computer

Systems, Vol 2 No. 1, Feb 1984, pp 39-59.

45

11. Howard Chartock, "RFS in SunOS", USENIX Conference

Proceedings, Winter 1987.

12. Edward D. Lazowska, et al., "File Access Performance of Disk less

Workstations", ACM Transactions on Computer Systems, Vol 4,

No. 3, Aug 1986, pp 238-268.

13. John H. Howard, et al., "Scale and Performance in a
Distributed File System" ACM Transactions on Computer

Systems, Vol 6 No. 1, Feb '88, pp 51-81.

14. Cheriton D.R. and Zwaenpoel W., "Distributed V Kernel and its

Performance for Disk less Workstations", Proc 9th ACM

Symposium on Operating Systems Principles , Oct 1983,
pp 128-140.

15. Wilbur H. Leyman, Performance Analysis of Transaction

Processing Systems, Prentice Hall, Inc., 1989.

16. Charles Hedrick, "Introduction to Internet Protocols" CSFG, July

1987, Rutgers, The State University of New Jersy.
17. Douglas E. Corner, Internetworking with TCP/IP, Prentice Hall

Inc., 1987.

18. A.S.Melamed, "Performance Analysis of UNIX-based Network File

Systems", IEEE MICRO, Feb 1987, pp 25-38.

19. John Quaterman, et al., "The UNIX System: 4.2 BSD" Report to the

Department of Computer Sciences, University of Texas, Austin,
May 1985.

APPENDICES

46

APPENDIX A

The Benchmarks and Results

1. The Neal-Nelson's Business Benchmark

The Business Benchmark from Neal-Nelson Associates profiles a

machine's operation under a given configuration by running a series of

standard programs. There are eighteen different categories under

which the program tests a range of simultaneous tasks.

The program measures the time required for each copy to

complete each test under various load conditions. When the

benchmark has collected the information, a report is generated about

how the machine responds under increasing levels of activity. The

two tests pertinent to distributed file systems were run for this study.

The results of these tests are outlined in

Tables A.1 and A.2 and Figures A.1 and A.2.

Test 1: This test consists of a 500 cycle loop with one read of 512

bytes inside each loop. It is intended to measure the speed of block

disk I/O and data transfer while reading.

Read Times

Local Remote

3 7

1.5 11

1.5 22.5

47

2.8 25.75

6.20 32

10.8 41.5

12.3 48.5

14.14 52.0

TABLE A.1: Remote and Local Reads in RFS

60

50

40

30

20

10

0

1 2 3 4 5 6 7 8 9 10
COPIES

IN Read LOCAL
IS Read REMOTE

FIGURE A.1: Comparison of Remote and Local reads

Test 2: This test consists of a 500 cycle loop with one write of 512

bytes inside each loop. It is intended to measure the speed of block

disk I/O and data transfer while writing.

48

Write Times

Local Remote

.3 20

.4 41

.6 32

6.25 112

16.4 115

20.3 121

24.1 127

28.6 129

TABLE A.2: Remote and Local Writes in RFS

200

100

0

1 2 3 4 5 6 7 8 9 10

COPIES

MI WRITE LOCAL
MI WRITE REMOTE

FIGURE A.2: Comparison of Remote and Local Writes

49

2. The Multivendor Test Suite (MVTS) FOR NFS.

The multivendor test suite is a set of programs from Sun

Microsystems Inc. to test the performance of various implementations

of NFS. It contains 2 tests.

Test 1: Read and Write tests:

These tests measure the time elapsed for remote and local

writing and reading of a 10 Megabyte file 10 times.

Test2: IOPERF:

This program measures the elapsed times for remote reads with

increasing block size. Actually IOPERF just tests the functionality of

the NFS implementation at different block sizes by using a 100 Kbyte

file. The times were measured using the "time" function of the csh.

The raw results obtained for the NFS MVTS are as follows.

Test 1: LOCAL:

Read: 126.0 Seconds (83220 Bytes/Sec)

Write: 124.0 Seconds (84562 Bytes/Sec)

REMOTE

Read: 183.0 Seconds (57299 Bytes/Sec)

Write: 264.0 Seconds (39718 Bytes/Sec)

50

Test 2:
ACCESS TIMEBLOCK SIZE

4 15.0
8 9.9
12 7.0
16 6.6
20 6.0
24 5.0
28 4.2
32 4.0

TABLE A.3: Raw Results of Test2

51

APPENDIX B

Comparison of RPCs from Current Vendors

1. Introduction

RPCs (Remote Procedure Calls) represent a convenient and

increasingly common method for distributing systems among

networked computers. This Appendix presents a comparison of

RPC systems from Apollo and Sun for speed and dependability.

Speed tests showed Sun's and Apollo's RPC products

performed comparably for small packets, but Apollo's system

degraded for increasingly large packets. Dependability tests showed

both Sun (using UDP) and Apollo performed dependably at machine

loads under 5, but Sun lost dependability at higher loads. All data

was gathered using the commercially available versions of each

vendor's software as of November 1988. The work presented in this

appendix is entirely due to Joshua Levy of Atherton Corporation.

2. Network Environment

Network software is implemented in layers, each layer being

built at the one below with several different protocols available on each

layer. A common configuration has (from lowest to highest) ethernet.

IP, UDP and TCP, and finally, an RPC protocol.

52

UDP is an unreliable packet oriented protocol, while TCP is a

reliable connection oriented protocol. "Unreliable" means that a data

packet may not arrive, may arrive after a packet sent before it (i.e. in

any order), or may arrive more than once; the only guarantee is that

every time a packet arrives, the data in it is uncorrupted. "Reliable"

means data arrives exactly once, in the right order, and uncorrupted.

"Packet oriented" communications are similar to a letter since each

piece of mail is addressed and routed separately. "Connection

oriented" communications are similar to a phone call, because a

connection is established, messages are sent back and forth, and the

connection is broken.

UDP packets have a maximum size, which varies from machine

to machine, but TCP connections can handle any amount of data.

However, in UNIX, each TCP connection requires a file descriptor,

therefore, an application can have only a limited number of TCP

connections open at any one time. Conversely, all UDP

communications are sent through one file descriptor. allowing an

unlimited number of UDP "connections".

3 Analysis

The results obtained by Joshua Levy were as follows

(1) Sun (udp) is the fastest RPC, when it is usable.

(2) Sun (tcp) is the fastest RPC, when Sun (udp) is not

usable.

53

These differences in performance are understandable when

a few facts are known about (1) which transport layer each RPC system

uses, and (2) how it is used. Apollo uses UDP, making sure each

packet is 1K or less. Sun (udp) uses UDP, using the maximum packet

size, while Sun (tcp) uses TCP.

First, consider the two UDP based systems: Apollo and

Sun(udp). Since both use the same communications layer they should

be the same speed. An explanation for their speed discrepancy is the

UDP packet size they use. Since UDP is unreliable, an RPC system

using it must wait for an acknowledgement that its packet arrived.

This means sending 2 1K byte packets take longer than sending 1 2K

byte packet. The more data which must be sent (up to the maximum

UDP packet size) the worse things will get for the Apollo

implementation.

Second, compare UDP and TCP based RPC systems. Setting up

and tearing down a TCP connection requires 6 small packets. Once

the connection is set up, however, TCP can move data more

economically than UDP. The result: UDP will always be faster for RPC

calls which require a small number of UDP packets to move the

arguments. TCP will become faster as more UDP packets are required.

The exact number of UDP packets which must be sent to make TCP

more economical depends on each protocol's implementation and the

54

type of network being used. Empirical tests show for 8 UDP packets

worth of data (8Kbytes), Apollo is slower than Sun (tcp).

4 Conclusions

The proper conclusion for an analysis of this sort is an

algorithm, which, given an application and its implementation

constraints, returns the "best" RPC system to use in implementing

that application. Unfortunately, generalizing such an algorithm is

difficult. Here are some general rules to keep in mind while

evaluating an RPC product:

(1) Determine what is important to your application: speed.

dependability, ease of use, a particular feature. etc.

Each RPC system has its own strengths and weaknesses.

They are not all the same.

(2) Distributed programs can be modified to use any RPC

system very quickly, in as little as a week. It may be

worthwhile, therefore, to experiment with several systems

before deciding on one.

(3) For small packets (below 1K bytes), Sun (udp) and Apollo

are the same speed. As the amount of data increases,

however, Sun outperforms Apollo.

55

(4) Once an application is using RPCs, the overhead of having

the service routine(s) on a foreign machine (as compared

to the local machine) is small.

(5) For lightly (under 5) loaded machines, Sun (udp) and

Apollo are equally dependable, but as the load increases,

Sun becomes less reliable.

(6) If an application has a relatively small number of

servers and clients, it may be better to open a

permanent TCP connection between them.

