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RELATIVISTIC FIELD-THEORETICAL TRANSPORT IN CONDENSED MATTER
1. INTRODUCTION

The aim of this paper is to develop a relativistic condensed matter theory based
upon a miCroscopic, i.e. field theoretical picture. In particular, we will use the Dyson
hierarchy as a solution to the underlying field theory of the condensed state and will discuss
regularization procedures suitable specifically for hadronic matter.

1.1 FUNDAMENTAL INTERACTIONS AND CONDENSED MATTER

With the advent of the Standard Model of the fundamental particles and their
interactions and the intensive search for a possible quantum field theory of the gravitational
interaction (Quantum Gravity) it became more and more luring and urgent to base all
condensed matter theories on the underlying fundamental forces of nature. This
microscopic approach to the condensed state leads directly to a rough classification of solid
state physics being the theory of electromagnetically interacting condensed matter and
nuclear physics being the theory of strongly interactin g condensed matter. On the other
hand, we have to exclude the weak and gravitational interactions from a discussion of
condensed matter theories based on a microscopic picture.

While we find gravitationally interacting condensed matter on a macroscopic scale
all around us (conventionally we call this theory Astrophysics, e.g. the earth or the solar
system are condensed states of gravity), we cannot go to microscopic scales due to a lack
of Quantum Gravity. It is interesting to note that this kind of a microscopic condensed
state of gravity has only played an important role in the very early stages of the universe
(< 10 - 43 s after the big bang).

For the weak interaction, we are able to formulate reasonable microscopic theories
for condensed states, but we cannot detect them. This is due to the short range of the weak
force. Even if we go to the densest nuclei we know, the gravitationally bound neutron .
stars (1], the binding energy due to the weak interaction will still be an order of magnitude
smaller than the temperature of the system. The binding energy of neutrinos in a neutron
weak mean field in the neutron star is, for example, in the Hartree approximation given by
Ep = \/_ GF ny, where ny, is the neutron density and G is the Fermi constant (the weak
charges c%ue to protons and electrons cancel each other for an electrically neutral neutron
star nucleus). Assuming that the neutron density is several times the nuclear density, we
obtain a binding energy on the order of a few keV, while the temperature of the neutron star



is on the order of a few tens of MeV. So overall the weak interaction in condensed states
can be considered noise to the overwhelming electromagnetic and strong foreground.

So at this point only the electromagnetic interaction based on QED and the strong
interaction seem to be suitable for investigating their condensed states with field theoretical
tools. But, considering problems that especially occur in the regularization of these
theories we have to limit ourselves even further. Due to confinement we have to split the
strong force into its fundamental interaction based on QCD and its lon g-range residual
interaction based on QHD. Not only is QCD rather complicated due to its large coupling
and non-abelian group structure, it is also a gauge theory, so that we have to use the
Faddeev-Popov technique to fix the gauge which introduces inconvenient ghost fields,
which in contrast to QED, do not decouple from the theory. Therefore, discussing QCD is
outside the scope of this paper. This leaves us with QED and QHD.

In most of this paper we stay completely general and our theory can be applied to
any of the interactions. Only in the chapter about regularization we do choose QHD and
therefore hadronic matter to be our condensed state. The advantage of QHD in comparison
to QED is that it is a phenomenological theory with a natural cut-off, the hadron size. In
contrast, QED is a fundamental theory where we don't have the freedom of introducing
cut-offs, which as we will see, complicates its discussion.

1.2 THE DYSON HIERARCHY

Any theory that wants to describe condensed matter has as its final aim the
derivation of the equations of state of the matter and its transport coefficients. The
equations of state give functional relationships for one of the intensive parameters of the
theory in terms of the independent extensive parameters in the steady state. These
equations can be calculated from the moments of the n -particle density matrices of the
system (the 1-particle density matrix is the phase-space distribution function). The
fluctuations of the time dependence of the -particle density matrices determine the
transport coefficients of the matter which in turn govern the time-dependent behavior of the
theory. Therefore if we are able to calculate the n -particle density matrices and their
fluctuations we have a complete transport theory of the condensed state.

Before continuing our discussion of the field theoretical tools we use to formulate a
transport theory microscopically, we wish to remind the reader of the two main methods
developed in classical statistical mechanics for gases to achieve this goal: the BBGKY
hierarchy and Mayer's Linked Cluster Expansion [2]. To derive the BBGKY hierarchy,
we start with defining correlation functions f; which give the probability that s particles



have specified positions and momenta in our system of interest which represents a Gibbs
ensemble. The derivation starts with Liouville's Theorem which governs the time
evolution of the Hamiltonian of our N particle system and leads then to the BBGKY
hierarchy. This hierarchy is a set of N coupled integro-differential equations, each one
consisting of a streaming term for the correlation functions Js and a "collision integral"
which relates f; to f; 41 and therefore discusses the scattering of the s particles under
consideration with an additional particle.

For an actual physical system N is very large and the coupled system can therefore
not be solved. Instead one truncates the hierarchy, setting the 3-particle correlations to zero
and approximating the 2-particle correlations usin g the "Hypothesis of Molecular Chaos"
which states that the range of the two-body potential between two particles r, is small in
comparison to the average particle separation, or in other words; that the particles are
approximately uncorrelated:

f2(r1, p1; r2, p2; 1) = fi(r1, p1) f1(r2, p2) for Iry-ral >>rg

This condition is well fulfilled for gases of atoms and molecules interacting via van
der Waals forces. The approximations then lead us directly to the Boltzmann equation
which we can solve for f1, the usual phase space distribution function. Since Liouville's
Theorem is an equal-time relation we can only get fluctuations depending on one time
variable out of the BBGKY hierarchy and therefore also the Boltzmann equation does not
contain any further fluctuations. One gets the fluctuations of the phase-space distribution
function in special regimes, like the hydrodynamic regime where the mean free path is
small compared to the scale of the system, by treatin g the time dependence of the solution
to the free gas perturbatively in the Boltzmann equation.

Another approach to obtain the phase space distribution function is the Linked
Cluster Expansion of Ursell and Mayer. Here we start from the partition function for the
Hamiltonian of a gas interacting only via two-body potentials (which is the reason that in
this theory we don't need or obtain higher-order density matrices). These two-body
interactions represent a perturbation on the partition function of the non-interacting gas.
The exponential of the potential in the phase-space integral of the partition function can then
be expanded in terms of two-particle correlation functions (these are correlations defined in
terms of the potential but they do directly relate to the probability correlations like the ones
in the BBGKY hierarchy). Ursell and Mayer then developed a diagrammatic technique to
represent the different contributions of this perturbation expansion and finally summed up
the series and obtained the equation of state. Like in the Boltzmann equation we only



obtain fluctations in one time variable out of the theory since our Hamiltonian is
instantaneous in its time dependence.

The important point to notice here is that both approaches, the BBGK'Y hierarchy as
well as the Linked Cluster Expansion, are two independent solutions to the many-body
problem of the condensed state. Furthermore, the classical Linked Cluster Expansion is the
direct predecessor to all quantum-mechanical cluster expansions and their diagrammatic
representations as well as the perturbative expansions in field theories and their
diagrammatic representatioh due to Feynman. Especially the striking similarities between
the classical Linked Cluster Expansion and the perturbative solution to a field theory leads
then to the question if there is an analog to the BBGKY hierarchy, which yields an
additional method to solve a field theory.

The answer to this question is the Dyson hierarchy. The Dyson hierarchy consists
of an infinite set of coupled integro-differential equations, each equation relating an n -point
Green's function to the (n + 1)- or (n + 2)- point Green's function for the case of 3- and 4-
point interactions in the Lagrangian respectively. It is important to realize that the Dyson
hierarchy indeed represents an independent way to solve a field theory. It can be shown
that the Dyson hierarchy is sufficient to be uniquely solved for the Feynman perturbation

series [31.
PERTURBATIVE
Y
DYSON HIERARCHY | - METHODS
LINKED CLUSTER
HY
BBGKY HIERARC - — EXPANSION

Fig. 1. Analogies between methods in classical statistical mechanics and field theories.

This paper will discuss the use of the Dyson hierarchy as a tool to investigate the
microscopic structure of a relativistic condensed state. We start in chapter 2 by defining
precisely the Green's functions of the theory and give their properties. Chapter 3 contains

the derivation of the Dyson hierarchy from a generic Lagrangian containing fermionic and



bosonic degrees of freedom interacting via 3 - and 4 - point interactions, and a recipe for
truncating this hierarchy at the level of the 4 - point Green's function. In chapter 4, we
discuss the crossing-symmetric reduction of the Dyson hierarchy, a procedure which
explicitly extracts the lowest excitations of the system out of the equations. Finally, in
chapter 5, we explore the regularization of the theory for the special case of hadronic
matter. In chapter 6 we conclude with a summary and an outlook. This work adds as a
new contribution to the field the discussion of the Dyson hierarchy with 4-point interactions
in the Lagrangian and a generic procedure to do a crossin g-symmetric reduction of a vertex
function to any order in the intermediate states. It also discusses problems arising in the
regularization of the theory and indicates possible solutions to this problem.

We would like to close this chapter by discussing how the n -point Green's
functions, the quantities we obtain from the Dyson hierarchy, can be used to generate the n
-particle density matrices and their fluctuations and so determine our transport theory. The
Green's functions are defined as expectation values of time-ordered products of fields, with
the fields being functions of their space-time coordinates. To relate these quantities to the
correlation functions of the BBGKY hierarchy we have to consider the Green's functions at
equal times (E.T.) and perform a Wigner transformation over the leftover space-time
coordinates.

For example, the connected 2-point Green's function of two adjoint fields ¢q(x1),
Op(x2) is defined as (see chapter 2 for more details):

GER0102) = <TOR(Pa(x1)> ~ <0B(¥2)><0g(x1)>

If we let the time separation of the fields go to zero ((z 2 - 7 1) — 0%) we obtain the
probability density matrix naB(X1,X2):

noB(x1,x2) = <OL(x2)dp(x1)>

corrected by the disconnected part of the Green's function. From this comparison we see
that a Wigner transform of the 2-point Green's function:

6%("’ p)= .’.d4x' foé[x +%, x -%]E.T. eipx’

combined with an integration over the energy variable of &gé yields directly the phase-



space distribution function we used in the Boltzmann equation.

In an analogous fashion we can obtain the n-particle density matrices from the
corresponding n -point Green's functions. In addition we can calculate all the fluctuations
from the Green's functions because they contain all the time variables explicitly in a
symmetric way and can therefore be explicitly used to obtain the transport coefficients
which are due to the non-instantaneous aspects of the time dependence of the system.
Thus, the Green's functions are preferable to the density matrices as the dynamical
quantities because they are not only covariant , but also contain all the information about the
fluctuations of the system.

We conclude therefore that, by solving the Dyson hierarchy for the Green's
functions, we completely determine our transport theory of the condensed state.



2. CONNECTED GREEN'S FUNCTIONS AND THEIR ONE-PARTICLE
IRREDUCIBLE COMPONENTS

In this section we define the Green's functions of the theory and discuss their
properties. The different kinds of generating functionals are introduced. The generating
functional for one-particle irreducible components of the connected Green's functions, the
so called vertex functions or proper vertices, are obtained by Legendre transforming the
generating functional of the connected Green's functions, and the relationship between the
connected Green's functions and the vertex functions is derived.

2.1 GREEN'S FUNCTIONS AND VERTEX FUNCTIONS (7]

The dynamical quantities we want to derive from our theory are the n-point Green's
functions which are defined as the vacuum expectation value of the time-ordered product of
n generic fields of the theory. These Green's functions satisfy both the laws of relativity
and the postulates of quantum mechanics and, as we saw in the last chapter, carry all the
information we need to determine the transport properties of the condensed state uniquely.

To concentrate now all of this information into one expression we introduce the
generating functional Z[j; n, ﬁ] for the Green's functions. Here ; N and ﬁ are the source
terms which produce the bosonic fields ¢ and fermionic fields \_y and  respectively.

A generating function can be understood as the most efficient way to incorporate a
sequence of numbers g(,g1,£2..... into one function:

2= ) gn i @1

m=0 '

Once we know Z(j) we can reproduce the g's by taking derivatives with respect to j at J=0.
To reproduce the Green's functions from the generating functional Z[j; 1, ﬁ] we use in
analogy functional variation with respect to the sources and then let the sources approach
ZEr0.

A standard generating function in physics is the partition function Z(T) of statistical
mechanics (here T is the temperature). It actually turns out that the partition function is a
rather theoretical construct and that it is much more convenient to introduce the Helmholtz
free energy F as the generating function:



_EM
Z(TYy= e NET

where N is the number of particles in the Gibbs ensemble and  is the Boltzmann constant.
From the free energy we can then derive all thermodynamic properties of the system in a
straightforward way.

We apply the same procedure for our generating functional Z[j;m, M. Here we
want to get rid of the disconnected parts which only yield contributions to the normalization
of physical quantities. The generating functional for the connected Green's function
Wi n, ﬁ] is therefore defined as:

—~ Whiin, m)
ZUim, nl=e &2

Until now we only found a way to proceed from the generating functional W to the
connected Green's functions of the theory. The next step is to derive an independent way
to calculate this generating functional. In statistical mechanics we use the phase space
integral of the exponential of the reduced Hamiltonian kiT(T;(r,p)) of the system of interest
to obtain the partition function Z(T):

Z(T) = [dT(r,p) e-AT:)),

where dI'(r,p) stands for the phase space integration of the n-particle sysem and A(r,p) is

given by the reduced Hamiltonian % :

AT 00) = T ()

In analogy we use in the calculation of the generating functional Z[j; , 1] the functional
integration over the fields of the exponential of the action A[j; 1, 1 (@; v, W] of our field
theory:

Zl:n, M = [D0sy, W) e AUN TG, W) (2.3)



where D(0; v, \TI) stands for the functional integration over the boson and fermion fields of
our theory and the action A is given by:

Al M, M @5y, W)l =
103 ¥, W) + A% [Sa(00a(0) +3( MaWal) + YalMaG)] . (2.4)
o a

Here / stands for the classical action of the theory:
0: v, W) = Jd% £[000; wx), y(o)] 2.5)

This completes the procedure of how to get the Green's functions, the dynamical quantities
of the theory: we start by defining our Lagrangian £, then calculate the generating
functional for the connected Green's functions W using (2.2), (2.3), (2.4) and (2.5) and
finally find the Green's function by varying W with respect to the sources and then letting
the sources go to zero. The Green's functions we obtain in this way are the connected
Green's functions. They are tabulated in Table 1 up to the 4-point Green's function.
So, the basic input in our theory is the Lagrangian of the system of interest. This
Lagrangian is only a function of the fields, not of the sources. It seems to be reasonable
therefore to ask if there is also a generating functional that does not depend on the sources
but rather on the fields.

The same question arises in statistical mechanics where we have the Helmholtz free
energy depending on the intensive variable temperature T. By making a Legendre
transform to the internal energy U we obtain a quantity that only depends on extensive

variables, i.e. we replace the temperature T by the entropy S:
FT,V,N)=U,V,N)-TS

In analogy we Legendre transform the generating functional of the connected Green's
functions W, which is a functional of the source terms, to obtain the generating functional

of the vertex functions I, which is a functional of the fields only.

Wiy, n1=iT0¢; v, yl+i [dx % ja(x)0a(x) +3 M) + YaMa®)] ) (2.6)
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It turns out that the vertex functions we obtain by a functional variation of " with respect to
the fields (see table 1) are 1-particle irreducible and therefore represent the highly connected
pieces of diagrams.

Finally if we expand the generating functional of the vertex functions I'
semiclassically in the number of loops we find that I is equal to the classical action 7 up to
order hi2. T is therefore conventionally called the effective action of the theory since the
higher order terms in T represent the quantum fluctuations of the theory. This is again
analogous to the internal energy U of statistical mechanics, which not only represents the
expectation value of the Hamiltonian of the system but also the thermodynamic fluctuations
due to the statistical nature of the system.

This concludes the discussion of the Green's and vertex functions. For explicit
derivations of the statements we derived from analogy to statistical mechanics we refer the
reader to references [3:4.5.6.8],



definition in terms of functionaf variation

corresponding vertex function and s

order | connected Green's | definition in terms of time ordered
function producls definition
I At <bal9> 8Wij:n. n) = - O v W)
. 3 - 8o ()
i8jl) -0 ba
! Npx) = - MSF((E: v. )
Swp(v)
— (¢ ¥
l nu(-“) = (¢ W W)
B‘Va(\)
=
2 G((;[;(.\’l,,\‘z) <T 0p(x2)daclv1) > 82 ‘ (2 (r1.x9) = r
=< oplva) > < daly)) > S VS _ aptV112) = o B
dp(v2) > < daln) zsjp(,\g):ésjﬂ(x.)ﬂm_) 0 3op(x2)8gly| )jnrHO
2 6D v <Typ(r2) Yalxr) > 52w ) &r
BNb(xa)-idna )| — Ly (v1.12) = Sypr )8yt | ~
BNp(r2)-18Na(v) -0 Volr2)oWata |mn—0
3 3
3 GL[);Y(.\'“\:,,\';) < T dy(x3) op(x2) dalyr) > 33w I'i:[;y(.rl..\':‘\a) =
— <OUN3) > < 0p(r2) > < O0alvD) > | 8 hx3)i8/p(v2)iS ety —
o FAN3)10/p alt -0 Jor
— <¢7(,\-3)>GQB(.\'|.\‘2) - s )5 )5 ’
. @ $y(x3) ¢p(y2) q)a(»\l)jnﬁ_)o
- < ¢p(x2) > Gay(n 3)
)
= <balv1) > Gp (x2.v3)
K5 Twdromne ! ] )
3 G g (X1 X2.03) < T We(v3) Wplva) dodvy) > 83w , Fapl¥1iv2.43) =
(2) =T e ¢
= <Qalvr) > Gy, (v2.v3) 1B1(13)-1BNp(2)iBfalx1) im0 s
Syp(va)dy,(x2)89alvy) =0
T — poey
4 (}Lb)“,(.\';,\'2,.\'3,\'4) <T‘7”1/(-"4}‘l’r(v\'})\l/b(.\‘g)\Va(.\])> S / r:jl;)a/(-"l-‘?' 3xg) =
() (2) - ; o ;
=Gy (13.14) Gm(\-l_\-z) BNGx )i 3)i BN (2)—i8N g 1) 0 sir l

(2) (N
+G,(xja) G . (v3.v2)
ch

_ 6;;1,( u)ﬁu/((_1'3)57;11,(\-3)6\4/0(.\'] "/Y]ﬁﬁ

Table 1. Definition of the connected n-point Green's functions and n-point vertex functions. Fermion number conservation requires the

I-point Green's functions of fermions and anti-fermions to be zero. The phases of the vertex functions are choosen in such a way

that to lowest order in perturbation theory the vertex functions have the same phase as the bare vertices of the Lagrangian. Greek indices

I

are reserved for boson fields, latin indices for fermion fields.
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4 GL’;Cd(Xl.Xz;.\’:;,\'_,) <T}|;,)1(x4) %(.\'(32);1’11(.\-2)¢a(x|)> §hw r(‘:é( A2 =
_ Gaﬁ(.n,vz)c o 3 130a(4)—i8N (3)i 8 (x2) 18l x1) 0 i

5ﬁ}d(—m)5\uc(x3)5¢13(x2)5¢u(x1) |0

2
+<0p0x2) > < dale1)>) G2z )

Table 1. continued
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2.2 THE RELATIONSHIP BETWEEN THE CONNECTED GREEN'S FUNCTIONS
AND THE VERTEX FUNCTIONS

In the last section we showed how to obtain the Green's functions of the theory
starting from its Lagrangian. The procedure relied heavily on functional integration and
variation which puts harsh constraints on its feasability in the real (computer) world. To
avoid this procedure we use either perturbative methods or the Dyson hierarchy. In this
paper we want to discuss the Dyson hierarchy which yields integro-differential
relationships between the Green's functions of the theory (see chapter 3). It is now
advantageous to cast the Dyson hierarchy in terms of vertex functions instead of Green's
functions. The reason for this is two-fold. First of all the vertex functions are directly
related to the bare vertices in the Lagrangian which actually represent the lowest order
approximation to the vertex functions (therefore also called dressed vertices) and secondly
the vertex functions are one-particle irreducible so that they do not contain singularities due
to propagators. They still contain singularities corresponding to 2-particle intermediate
states and in general many-particle intermediate states. Based on its one-particle
irreducibility we will, in chapter 4, perform a crossing-symmetric reduction of the 2-
particle intermediate states in the equations to also remove the cuts due to these 2-particle
intermediate states. We finally will be left with highly connected vertex functions, rather
well behaved and containing all the complicated information of dressed vertices.

In this section we show now how to obtain the vertex functions directly from the
connected Green's functions without going through a Legendre transformation and vice
versa. Let's start for example with a relation between the boson propagator and the boson
2-point vertex function. The boson field is given by (see table I):

SWIj;m, nJ
= —_— 2.7
G (x) 187 (0) 2.7)
differentiating now with respect to the field op we obtain:
d W
= 8op 84(x1-x2)
80p(x2) [isja(xl)) o
82w &r 82w &r

= ijdxs[ ¥ — _ + 3 _ -
Y Oy(x3)8j0(x1) 3(x2)8Py(x3) T SNe(x3)80(x1) OOB(x2) e (x3)
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2 32
- 3= 0 W ]. (2.8)
¢ Mc(3)djo(x1) SOR(X2)BYc(x3)

Taking the sources to zero, we find using the definitions of table 1:

i 8o 840r1-x2) = ¥ fdx3 Gy, 13) T\ R(x3, x2) (2.9)
Y

We proceed in a similar fashion to obtain the relationship between the fermion propagator
and the fermion 2-point vertex function. The antifermion field is given by:

SWIj;n, nJ

(2.10)
—i0Mq(x)

ﬁa(x) =

We would like to remark here that taking the sources for the fermion fields to zero, which,
as we saw, yields the same result as taking the expectation value of the corresponding time
ordered fields, forces the expectation values to be zero since we can produce fermions only
in fermion - antifermion pairs. Therefore, also all expectation values over an odd number

of fermion fields will vanish. Differentiating now (2.10) with respect to \T/b(x) we obtain:

o ow
— = 8gp 8% (x1-x2)
dWp(x2) (—iﬁna(xnj ¢

. 32w &2r 32w s2r
=ifd [ -3

— -3 - _
Y 3jy(x3)8Ma(x1) SYp(x2)80y(x3) € &N (x3)8M4(x1) OYp(x2) Sy o(x3)

iy 32w o2r ]
¢ MNe(x3)8M4(x1) Syp(x2)dye(x3) ~

(2.11)

In this expression explicit care has to be taken about the ordering of sources and fields
since the sources obey a Grassmann algebra necessary due to the anticommuting property
of fermion fields.

Taking the sources to zero, we find from the definitions of table 1;
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. 2
~i 825 3401%2) = T Jdxs GDxr, x3) TD (a3, x9) . (2.12)
C

From equation (2.9) and (2.12) we see that the vertex functions I'® are the inverses of the
Green's functions G(2). Differentiating (2.8) and (2.11) with respect to further fields
yields the relationships between higher order Green's functions and vertex functions.
These relations and the equations they are obtained from (i.e. higher order differentials of
(2.8) and (2.11)) can be found in table 2 for the Green's functions up to the 4-point
Green's function.

We see from table 2 that the relations become more and more complicated the more
legs the Green's functions have. It is therefore very useful to use a diagrammatic recipe to
depict these integral relations. The symbols used in this diagrammatic representation are
listed in table 3.

The suffix (0) indicates here the bare quantities. Furthermore every loop or tadpole
supplies a factor of (—i) if we go from the equations to the graph and finally arrows have to
be put on fermion lines to indicate the motion in time of the fermion along the line, i.e. the
arrow points from the creation of the fermion to its destruction. The different symbols are
connected at corners which have a common summation index and a common integration
variable which is to be summed and integrated over respectively. Figure 2 represents the
relationship between Green's functions and vertex functions for 3 and 4 legs
diagrammatically. ’

We would like to conclude this chapter by reviewing the whole procedure discussed
in this chapter for the 5-point Green's function. In chapter 3 we will truncate the Dyson
hierarchy at the level of the 4-point Green's function. The 5-point Green's function will
still survive this truncation as a relic of the 4-point interactions contained in our Lagrangian
which connect the n-leg Green's function to the (n + 2) - leg Green's functions in the
Dyson hierarchy. Therefore we need to discuss the 5-point Green's function explicitly
(This extends the discussion of [6]).

The first step is to construct the three connected 5-point Green's functions from the
generating functional W:

85w |
iﬁjg(xs)iSja(X4)i5jY(x3)i8j[3(xz)iﬁja(xl),mﬁ__)

5
Ggl)gy5g(X1,xz,X3,X4,xs) = (2.13)

0
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®) 3w l
G aByde*1:X2,X3;x4,x5) = = (2.14)
yde y LQ e o Lo . . _
B3 idjpCx2)idjar)i BNe(es)-idnates)|  ~
5 3w
Ggl),cde(xl;xz,x&m,xs) = l (2.15)

N5 iBNae)iBNc s -Bnp o) =

The Lagrangian we will choose in chapter 3 does not contain any S-point interaction but
we have to choose our phase convention consistent with the crossin g-symmetric 1-particle

reduction of the 5-point vertex functions discussed in chapter 4:

5) 8T I
r (X1,X2 X3,X4,X5) = — 2.16
o B 0e(x5)503(ka)50y(x3)805 200011 e O
(5) r |
r (X1,X2,X3;%4,X5) = — (2.17)
apvie B0(13)80p(x2)300(x1) SVl BVawa)|
) r l
L SbedeC X3; )E- — — 2.18
abede X1:X2 X3;X4,X5 SW(XS)sw‘i(M)6WC(X3)8W(X2)5¢°‘(XI)lmﬁ_)o ( )
Starting now from
) b ) ) oW
- — =0 (2.19)
Oe(xs) O0s(xa) Soy(x3) Sdp(x2) (lsja(xl)) =0
d b ) ) 1'%
= : =0 (2.20)
00 (xs) 005(xa) dhy(x3) Syp(xy) (—IST]a(xn) =0
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=0 (2.21)

b d Sy b (SW)
—0

80e(xs) SWalxs) Sye(xs) Syp(xz) |~idna(x1) i

we obtain the relations between the connected Green's functions and the vertex functions:

GOl pt(X1.X5 X6, X7, x9) = - }Z dede3dX4dxst8F€Bya¢(xs X2,X3,X4,X8)
xGGx1, x5) G a2, x5) G )(X3, x6) G, x7) GR(x8, x9)
> gdxzdx3dx4dxsl"gl375(xs X2.X3,X4,)
nggév(xL x5, X9') GBS'(xz’ x57) ny'(x3’ x6) G 8p.(x4, x7)
. % d[dxzdx_v,dxsdxgl“8Bw(xs X2,X3,X8)
XG a1, 5, 47) Gxa, x5) G, x6) G2 g, x9)
—i > (gdxzddedengﬁg,q,(X5,X2,X4,xs)
XG a1, X5, %6) G202, x5) 624, x7) G o2 (18, X9
—iy > ({dx3dx4dx6d18r§<75¢(x6 X3,X4,X8)
XG o1, X5, %6) Gab(03, x6) Ghxa, 179 G2 xs, x9)
gl JdX2dX3dX4dxst6dX8T€By(xs,xz x3)I K5¢(X6 X4,X8)
xGExeKm x5, 36) G g (2, ¥5) Gonk(s, x6) G, 17 G2 g, x9)
ng Jdradx3dxsdrsdxgdrsT's ega(xsxzx4)F KYq,(xs X3,X8)
GO aex X1, X5, X6) G(Bg (x2, x57) GYK'(x_v,, X6 G5p-(X4, x7Y) Gq,g)-(xs, x91)
g fdxadradrgdxsdredxsT™sy 8B(p(xs,xz,xs)l“ Kya(xw@ X4)

XG e, x5, 76) G sz, x5) G003, x6) G Dhtra, 17 6D, x99

-1 jdxzdx3dx5F€BY(xs,xz,X3)
efy
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XC e (1,45,17.19) G ax2, x50 623, xg1)
- iﬁ%ﬁjdxzdmdxsr (53)5()65,)62;64)
XGSgKvg-(n,xs,xe,xs»') Gg (xz, x5 G (X4, x77)
- iy%Kjdx3dX4dx6l"KY5 (x6,x3,x4)
XGg'gvKg(xmsuxs,xq) G(f,c)v(xa x6") G(szg-(m, x7')
- z‘%(pfdxzdxsdxsl" g3g¢(xs,xz,xs)
XGSgKvp-(xms,xs',XT) Ger )(x2, x5 G¢1= (X8, x9')
- iyE fdx3dxsdxgT™ YKq,(x:«x,xs,xg)

XG g (1.55.56:67) G5, x6) G, x9)
- i Z de4dX7dxsfp5¢(X7,X4,X8)

dop
XGrep(1.55.5657) G x4, x7) G Bt x9) (2.22)

qu 'ge’ (X6'.X7' X9%,X1,X57) = ~l E fdxzdx3dX4dX5dng(eb75¢(X5 X23X3,X4,X8)

XGig (1, x5) G h(xa, x5) GYK.<x3, x6) G5 xa, x7) G2.(x8, x99

-3 gdxzdxadmdxsr(;},)ya(xs,xz;x3,x4,>

xG$) aek *1, X5; X9°) Gbev(X2, xs') G )(X3, x6') Ggp-(m, x7)
=i ngxzﬂsﬁsdxsrebm(m X2;X3,X8)

Gﬁ,jp (x1, x55 x7) Gbe (x2, x5) G2 (xa, x6) G4 ot (X8, X9)
= Zé dede4dx5dx8Feb5¢(xs,xz;X4,xs)

xGO )K (x1, x5, x6) G Bgl(xz, xs') G(;,zg'(xm x7) fogv(xs, x9')
i 3 [drsdxadredasT sy (6. x3.%6,59)

2 2 2
XGlglx1, %53 %) G35, %) G'dxa, x7) 62, x99
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3 3
* X fdxadx3dxsdrsdredrgl ;,)Y(xs,xz;X3)F§<§¢ (x6.x4,x8)
ebyox¢
XGEJe)K(xl X5; X6) G (x2, x51) G (x3, X6') G (X4, X7 G¢§ (xg, x9')
b% dede3dX4dx5dX6dxsFeb¢(X5,x2 XS)FKY5(X6,X3 X4)
ebydk
%G aon(x1, 75, X6) Glx2, 5) G5, x6) G'bxs, 179 G, x99
3
+ %Idxzdmdmdxsdxsdxsf ebg(X5,xz,x4)F S(§¢(X6,X3,xs)
ebyox¢
2 2 2 2
XG a1, %5, 36) G 02, 35) G, x6) Cxs, 179 6D as, w91
. 3
iy fdxzdx3dxsr(eb)y(x5,x2,x3)
fozep £(X1.X5x7x9") G (xz, x5) G )(xa, x6')
2 fdxde4dx5Teb5(xs,xz;X4)
2
xGY) aex'e'X1:X5,X6'.x9") G bev(xz, x5 G(gp)~(X4, x7)
. 3
- %: IdX3dX4dX6TE<Y)5(X6 X3,X4)
XGee (1.X53%619) (x5, x6) G2, x7)
- E dezdxsdxsf eb(p(Xerz;XS)
2
<G, e)Kp (X1>X5x6 x7) Gz, x5) Gﬁpg:(xs, x9')
P> JdX3dX6dxsFyK¢(x3 X6,X8)
YK ¢
Xy (K1.355%637) G (3, x6) G2, 29
. 3
- zs%pfdx4dx7dx81‘ (pgq)(xmxus)

2 2
XGy 1ep (F1X5'3X6'5X7) G(g,p)-(x4, x7) Gﬁ,g-(xs, x9') (2.23)

5 . 5
Gévie-k-f(xg;n,xs;xe,xw) =i Z ({dxde3dX4dxsdxsl" (e,,)cd¢(X5,xz,X3,x4;xs)
2
XG (51,33) Goxs, 35) G, x3) G, 179 62, 1)

i 2 drpdxgdesdxgl™ Cbeq,(xzm 1X5,X8)
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XG(fg(X1,X7 xs)G (xz,xs)G (X6 x3) G(g(xs,m)
*z dezdx3dX4dXSF O s )
XG(eg(xlaXS,xé)G (xz,xs)G (xs X3)G( (x8, x9')
HE q{dxsdmd%dxsl“Cdm(xs’,m;xé,xs)

XGEM) (X1, X575 x6) Ggg(xs-, x3) G4 )(x4, x77) G (xg, x9')
+ Cdyz dede3dX4dx5dX6dxsF ebq,(xs,xz;xs)l“ CdK(X3,X4;X6)
Gi,e),((n xs,xs)G (xz,xs)G (x6 x3) G[;f(x4,x7') G(;g)v(xs,xq)
- c%(e{pdxzdmdmdxsdxsdxsl“gg(x:;,xz;xs)Fg(p(xam;xs)
XG o1, 35 ¥6) G2, x5) G, 13) G s, 17 G2 oxg, 20
- %Sidxzdmdxsl“(fb)g(xzrm;xs)
XGE:;?Sg(XLXT;xs,xq) G(bze)v(xz, xs1) Ggg(xg, x3)
-1 Z de3dX4dX6F (;)K(X&M;xé)
XG(e,cg (k1.x5316,%9) G o(x6', x3) G(@a)(xm x7)
- %fjdxzdxsdxﬂ“ebq,(xs,xz;xs)
XGS&f(MJSJGJT) G(li_,)-(xz, xs5') Gg‘g-(m, x7)
i3 dradvrdisl gy (cr.xaixs)
><G514e)~ky(X1,x5',x6-,x7) G(d?(m, x7) fog.(xg, x9')
- P Jdx3dxedxgl” Eiﬁ)(xz,Xcs;xs)

XGE,ekf(XerS ,X6,X7)G (x6 x3) G(é(xg x9') (2.24)
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whose diagrammatic representation is given in Figure 3. The symbols S (n,m) and A(n,m)
with n,m integers appearing in Figure 3 are the usual permutation symbols. They stand for
keeping n legs of the diagram fixed and permuting the other m legs freely. For example in
the equation for the 5-point boson vertex the first symmetrization operator S(0,5)
represents the % possible permutations of the diagram. The denominator here corrects
for the indistinguishability of the legs linked to the 3- and 4-point vertices. Another
example is the first symmetrization operator in the equation for the 3-boson-2-fermion
vertex S(2,3). It stands for %—: possible permutations of the diagram. The two legs to be
kept fixed are the fermion legs, while we permute the 3 boson legs on the 4-point
interaction. It is important here to realize that we have to imagine the 4-point interaction to
be the geometric analog of a tetrahedron, so that the arrow of the fermion line does not
enable us to distingush between the boson legs of this diagram. Finally, we also need the
antisymmetrization operator A. The symbol A(1,2,2) in the equation for the 4-fermion-1-
boson vertex function antisymmetrizes each pair of fermion and antifermion lines separately

and so generates four possible diagrams out of each diagram it operates upon.
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Table 2. Relation between connected Green's functions and vertex functions.
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Table 2. continued
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Table 3. Rules for constructing a diagramatic representation for integral equations. Dashed

lines with arrows and continuous lines represent fermion lines, dashed lines without

arrows and wiggly lines represent boson lines.
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Fig. 2. Relationship between the connected 3- and 4-point Green's functions and the 3-

and 4-point vertex functions.
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Fig. 3. Relation between the connected 5-point Green's functions and the S-point vertex -
functions.
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3. THE DYSON HIERARCHY

We are now ready to write down the Dyson hierarchy starting from a Lagrangian
that contains bosonic and fermionic degrees of freedom interacting via 3- and 4-point
interactions. We then truncate this hierarchy at the level of the connected 4-point Green's
function using the T matrix (O(4)).

3.1 THE LAGRANGIAN AND THE EQUATIONS OF MOTION

The most general Lagrangian containing interacting boson fields 0, and fermion
spinors \,, sufficient for the discussion of fundamental as well as phenomenological field
theories, is:

£x) = %azﬁ[au%(x) Bl 3¥08(1) ~ 0o (x) meg 0p(x))

+ 3 Wal) (i1 9y — Mg ) ya(x)

a
— Sfdydz 02) T{g)apr(x,3,2) 050 Ga®)

o,B.y

~ Bfdydz (@) T Qapcx:y.2) Wp0) dox)

o,b,c

- Xfdwdydz ¢§(w) O(z) F((?)))agys(x,y,z,w) oY) 0u(x)

o8 ’B 7Y,8

— — 4
= Zjdwdydz ya(w) ye(z) T ((()))abcd(X,y,Z»W) Vb(y) Yalx)
ab.cd

" Slidydz op V(@) TG oBea@yizm) W) datx). (3.1)
,p,e,

Here Bie 1s a bilinear metric that can be found by comparison with the actual Lagrangian.
This tensor has a block diagonal form with the rank of the submatrices equal to the rank of
the representation in space-time or in flavor space of the particles described by this
submatrix.

The 3- and 4-point interactions between the fields are necessary and sufficient to
describe all fundamental interactions but they are only sufficient to describe a
phenomenological field theory. For example non-relativistic QED contains 4-point
interactions, but in general no higher order interactions (there is the possibility of higher-
order non-linear terms but even the electron-phonon coupling is in general not taken up to
higher orders than 4{10]). Another example is hadronic matter. Here the Walecka
modell! 1) shows that 3-point interactions alone cannot produce stable matter therefore we
have to go up at least to 4-point interactions to make the system bound. Thus, while the
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structure of the 4 fundamental theories and the demand to regularize them limits us naturally
to 3- and 4-point interactions for them, we have to cut off higher order interactions (O(3))
in phenomenological theories using the argument that 3- and 4- -point interactions seem 1o be
sufficient to describe the system of interest.

The Lagrangian contains all the information about our system in a Compact form.
To make this information more easily accessible, we derive the equations of motion for all
the n-point vertex functions from the Lagrangian. The set of all equations of motion forms
then the Dyson hierarchy. The equations of motion are obtained by varying the action A
(2.4) with the additional condition that the fields obey the usual equal time commutation
relations. A more practical approach is to vary the generating functional for the Green's
function Z (2.2 and 2.3) with respect to the degrees of freedom of the system. For the

boson field ¢y, we thus obtain:

0=[ D@y, ¥) [ +ja(x>J e ih (3.2)

o1
00a(x)
We replace now the fields in (3.2) with the variation of W with respect to the appropriate

source term:

o/ R
0= {_—(_i— —_)+ ]a(x):'Z(JTlﬂ) (3.3)
S (x) on i5

Expressing the classical action / (2.5) using the Lagrangian in (3.1) we obtain:

8
0= { Jo(x) — —Z[B va0Voy + BBv Vo, + maB + mBOl ] v
3) 8
=¥ [dydz T (6.y,2) ———— ——
g [0 Toebrord) o o s
3) ) b
R U Ry
@) 6 _8
= Jjdwdydz T s(x.y,z,w)
&’ (S i8js(w) i8jyz) idja(y)
@ 8 8 8
~ 3 Jdwdydz T\ @ aBea(ew:y.2) = v (G.4)
& ($)pe i8j(w) ~iBNa(z) M) }

The definitions of the different symmetrized bare vertex functions (labeled with the
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subscript (S)) are tabulated in table 4. If we carry out the differentiations with respect to
the sources we obtain our field equation for the bosonic degree of freedom:

. 2 ow
0=jat) + Bfdx MOpaa, k1) ———

1 i%l(n)
32w N oW oW

B/(2)idjg(y)  i8j(z) i8jp()
82w LW sw
—iN@)iNp(Y)  —idNc(z) IdNp(Y)

83w .\ 32w oW
iRj5(WBFU2)IBB(Y)  18js(w)idjy(z) idja(y)
N 32w oW . 32w ow N 1Y% ow ow
W0js(WIIDJR(Y) 1B)z)  iBjA2)IBjR(Y) Bjs(w)  idjs(w) djy(z) iBja(y)

) 3w
=Y fdwdydz T a(xw;y,z) : : —
& (S)ade [ Sj3(W)—idN(2)i81.(3)

. 82w SwW . 32w dw
iBjp(w)-idna(z) BNcK)  —iBNA(2)idNG) iSj(y)

. SwW 82w +8W W SW]
~idNa(2) IBBWMISN)  iBjg(w) —idNa(z) idT(y)

3
_%{ jdydz r((s))aBy(X,y,Z) [

3
~% fdydz Tglanc(xiy.d) [
C

4
—B%S dedde F((s))(xB75(x,yaZ:W) [

(3.5)

Here we used the definition of the free-boson wave operator.

2 1 2 2
FEO))aal(x,xl) = —5[B 1000, + Bﬁ‘l"vavau + Mg+ mg o J80c-x1) (3.6)

We will use equation (3.5), the field equation for the bosonic degree of freedom, to derive
all equations of motion for the all-boson n -point vertex functions by taking higher-order
derivatives of (3.5) with respect to the source j and then taking all the sources to zero (see
section 3.2).

We can use now the same procedure to derive the field equation for the fermionic
degrees of freedom. First we vary the generatin g functional Z with respect to the fermion
field yg,

31 & & S B
0= = —-_— =, — =)+ W .; ’ ’ 3.7
[ dya(x) & idn iSn )+ Malx) J (imm) (3.7)
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then express again the classical action 7 (2.5) in terms of the Lagrangian £in (3.1) and
carry out the differentiations:

SW
0= nglx) + I (O)a a(X'%)
i0 T] x)
52w W W
_z dydz T gca(vi20) -
J (Ofca [zanc(z)zsjs(w BNc(2) 1By ]
-3 [dwdyd: F( beda(W,y,2,X) [ el
Z A o ()i ()i 88T 5 (w)
82w W 82w oW S*w oW

+ — — + — = + - —
NDidN) BNpw)  BNDIBNHW) -iNg(z)  BNp(W)-idM4(2) ionc(y)
SW SW SW

+ — pr—
_B%d Jdwdydz T ((?)gﬁyda@;w;zx) [

3w
i8jB(y)idN(2)idjy(w)
52w ow . 32w oW . 32w ow
BRONINA) i8jy(w)  iBR()iSjyw) iSNaz) iBjy(w)idna(z) i8jp(y)
Y% ow ow
R . o (3.8)
i8jw) i§jp(y) ina(z)

+

The definitions of the antisymmetrized bare vertex function (labeled with the subscript (A))
is given in table 4 and the free-fermion wave operator is defined as:

r‘EO))a'a(x X) = dy, a(lyuau'*' M ) 3(x' - x) 3.9)

Equation (3.8) is the field equation for the fermionic degree of freedom and we will obtain
all n-point vertex functions containing fermion legs by taking further derivatives with
respect to the fields and then taking the sources to zero.

Flnally let's inspect the expectation value of the field equations, taking the sources
to zero: jnMn n—0. We obtain from (3.8) identically zero which is the same as realizing that
fermion fields have a zero expectation value to conserve fermion number. From (3.5) on

the other hand we obtain the expectation value of the field 0.
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2
SJdx1 T (O)aer, (641) <0, (11)> =
o
1

* Z fayas Tgopr0ey. D[ 65,2 + < 050) > < 02) >]
=% Jdydz TglancCsy.2) Ggy(z.y)
* % Jawdydz T,z [GGs0.zmw) + 6&zw) <opt) >
+ Gigw) < 0y(2) >+ Giky.2) < 0500) >+ < G5w) > < 9p(9) > < by(2) >]

-z, Jawaaz Tigjopeatwy D[ Giyomzy) + Dy <opmn >]  (3.10)

Here we used the definitions of table 1. To be able to do the integrations necessary in
equation (3.10) we need to know the Green's functions at equal times and coordinates to
accommodate the locality of the bare vertices. But the Green's functions are defined as the
expectation value of the time-ordered product of fields, so that we obviously get different
results for G( ) depending on from which side we approach the equal time condition. This
problem can be resolved by realizing that the terms of the Lagrangian responsible for the
ambiguity represent the fermion density n.p(z,y), i.e. they represent W for particles and
yy for antiparticles. We have therefore to substitute :

2 _
Gi2y) = — npc(y,2) where  npe(y.2) = — Gl(y,2) + Gy (z.y) 3.11)

Here Gfb(z,y) represent the propagators for particles and antiparticles respectively. By
multiplying now (3.10) with the free-boson propagator and using (2.9) we obtain the
Dyson equation for the expectation value of the boson field ¢, corresponding to the
equation of motion for the connected 1-point Green's function:

<¢8(H)> = - 2 jdu G(Oka(ux) {
+ 3 [dydz TR opyxy.)[C50.2) + < 050 > < 02) >]
Y (S By
=5 fdydz T{g)abc(6y.2) npc(r,2)
[4

+ B%éjdwdydz I‘((Ag))agyg(x,y,z,w)[< ds(w) > < ¢p(y) > < dy(2) >
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* Giglaw) < 090) > + GR0w) < 0@ >+ Gl0.2) < g5 >

1 3, Jéxidndsy GiROx3) Trrx(sxax) P2y 6Burm) |
_& Jdwdydz I“((‘é))aﬁcd(x;w;y,z)[ npd(¥,z) < Op(y) >

HE Jdridaades nea(22) Trgen) Gt nga]}  (12)
Ke

The diagrammatic representation of this integral equation is given in figure 4. It represents
the Hartree equation for a mean field built up out of 3- and 4-point interactions. The
equation looks more familiar if we only consider 3-point interactions. The diagrammatic

representation of this relation is shown in figure 10.



bare vertex in equation of | diagramatic relation to the bare vertices of the
motion representation Lagrangian

(3) 3) (3)
Fsyapy(x.y.z) r(o)a[iy(-\’v)’»z) + r(())ﬁya(_}’,l.x)

3
+ I‘(O)yag(z,r,y)

@
Fsyapys(x.y.z,w)

~4 (4)
I‘(o)“ﬁy5(x.y,z.»v) + F(O)ng(w,x,y,z)

@) )
*Tioyrda(z.w.x.y) + T4 py50y 2w %)

Ne))
I (S)QIS('(/(X»WQ)’.Z)

@ @
Foyapeaew:y.2) + T gypaca(w.x;y,2)

)
r( A)ahrd(Z,y,w,_\f)

4) (4)
r(())uhrd(z.)’va\') - r(())ab(l('(-”)’»wi)

&)
I oy py(xX.y,2)

3)
r(())a/u~(X:y,:)
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Floyapys(x,y,z.mw)

©
I (Oyafead(X,wiy,z)

)
1 (Oyabed(2,y,Ww.x)

K] A X
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‘Table 4. Relations between the bare vertices in the equation of motion and the bare vertices

in the Lagrangian.
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IFig. 4. Mean-field equation for the boson field.
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3.2 DERIVATION AND TRUNCATION OF THE DYSON EQUATIONS

Based on the field equations for the bosonic and fermionic degrees of freedom we
will now derive the Dyson hierarchy by using derivatives of the field equations (3.5) and
(3.8) with respect to the sources and then take the sources to zero. The integral equations
appearing in this derivation are rather lengthy and we therefore develop first a diagrammatic
procedure to obtain these Dyson equations.

Let's derive first the Dyson equation for the boson propagator. We start from the
field equation for the bosonic degree of freedom (3.5), differentiate it with respect to lb ,
take the sources to zero and use the definitions of the connected Green's function in table 1
to obtain:

. 2 2
18 008272 = Bt T{Ghaa, (5:51) G 1 (11,52)
1

3 3
+{- 132 Jdydz F((O))abc(x;y,z) G%;Cb(xz; z,y)
C
3) 3) 2 @
_Bzyjdydz F(’S)aﬁy(x,y,z)[G Bmz(y,z,xg)+ Gyaz(z,xz) <Op(y) >+ GBaz(y,xz) <¢Y(Z)>]
4 4 3
“B%de“"dydz F((s))agyg(x,y,z,W)[G(Bgsazﬁy,z,w,xz) + G(B\?OL (z,w.x2) <Op(y)>

@)

+ G%aﬂ@’w’m) <Oy(z)> + G(g;a (,z.x2) <os(w)>+ Gvé‘) z,w) GBa (y,x2)

+ G0, )G(yzozz(Z,)Q) +G2) G&X (w.x0) + Gsa (W.12) <0y(2) > <0p(y) >
*+ G, (22x2) <0501)> <080 >+ Gl (x2) <05(w) > <y(2) >]
4)
- Béi Jdwdyd: r%))cxﬁcd(x;W;y’z)[ - G(Bazdc(w’xz; z,y)

- Geplx2i 29) <0p0w) > - 65 (z) Gl (wa)] } (3.13)

2

If we multiply equation (3.13) by ¥ [dx G(On (x',x) we obtain an equation of the form
[0

@ : _~@) , - (2) v
G a'az(x ,XZ) =G (Op'a2(x ,)Cz) +1 g fdx G(Oh.a(x ,X) Zana(x,XZ) s (3.14)
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where the polarization function X contains all the corrections due to the interactions in
matter. X is given by the curly bracket in (3.13). The diagrammatic representation of
equation (3.14) is given in figure 5 in terms of connected Green's functions. The dressed
propagators which hook up this connected Green's function to the rest of the diagram are
drawn as dashed lines. Arrows indicate fermion lines. Phase factors for dashed loops and
tadpoles are not taken into account. The symmetrization operators have to be applied to the
bare verticies. Now we have to replace these connected Green's functions in terms of the
vertex functions using table 2 or figure 2. The result is given in figure (7a).

We apply now the same procedure to obtain the fermion propagator. Starting from
the field equation for the fermionic degree of freedom (3.8), we take a derivative with
respect to -in ap> take the sources to zero and use the definitions for the connected Green's
functions from table 1:

- 1840 8(x - x1) = = 2 Jdx T(o) a,a(x2%) Ga a,(¥1.%)
+{ g fdydz F(O)Bca(y 2 (G 0o1.2) + Gae1.2) <080)> |
+ Z jdwdydz T (O BYda(iwsz,x) [GyBa AW yx1.2) + G Ba d03x1,2) <@y(w)>
+ Gl dwi21.2) <OB0)> + G 4061,2) <0B0)> <Gy(w)> + G 1061,2) Giglw.y) |
+ 3 fawdydz T@peaamas) [Ga o(ewxt )

‘”( 2y) Ga o) + GDw) 6P C(xl,y)] ] (3.15)

Multiplying (3.14) by ¥ dx G((%)))aa3(x,xg,), we obtain an equation of the form:
a

)] _~2) . 2)
G a1a3(x1J3) = G(0y1a3(xl>x3) +1i % Jdx G(O)zaS(xJ3) I_Lzla(xl,x) (3.16)

Again the polarization function IT contains all the information about the corrections due to
the interactions in matter and is given by the curly bracket in (3.15). The diagrammatic
representation of (3.16) is given in figure 5. After replacing the connected Green's
functions with their corresponding vertex functions from table 2 we obtain the Dyson
equation for the fermion propagator (shown in figure 6b).
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The Dyson equations for the 3-point vertex functions are obtained from the field
equations by taking second derivatives. For the 3-boson vertex function we take first the
derivative of (3.5) with respect to ij,z and secondly with respect to zij, take the sources to
zero and use again the definitions of the connected Green's functions from table 1:

2 3
0= Yfdx 1—‘((0))0L0L1(JC,J‘T1) G(aiazaS(xl,XZ,R)
%

3 )
+3 [dydz r((O))(xbc(X;y’z) G o o,cb*2:X3;2,)
bc 273

(3) 4) 3)

—g:y Jdydz I () opy(x:7:2) [c Byazaa(y,z,xzx3)+ Gya2a3(z,xz,x3) <0g(y)>

(3) ) (2) @ )
+ GBa2a3()’rx2rx3) <Oy(2)> + Gyaz(z,xz) GB%(}’JB) + GBaz(y,xz) GY%(Z,)@)

) (5)
- Bzyg[d“’dydz I'§)opysy.zw) [G BYSey o, 07, W,%2,23)
4 4)
+ G(ya)aza3(z,w,xzx3)<¢ﬁ(y)> + G([&aaz%(y,w,xz,X3)<¢Y(z)>

4 3 3
é$a2a3(v,z,xzx3)<¢8(w)> + G(Yﬁ)az(z’w’x:") G(B&3(y’x3)

+G
+ G%)%(z,w,m G([széz(vxz) + Gg)&z%(y,xzm) G(Y:Q(z,vv)
* Ggo0x2) Gy (2.55) + G, (r33) G (2.2
+ Glaya, @323) CRROW) + Gl 0,2.52) Gy (w33)
+ Gy 0.23) Gl (w2) + Gl (w2.x3) Gy.a)
+ Ggo)zz%(w,xzm) <Oy(2)> <Pp(y) > + G(ygz%(z,xzm) <Ps(w)> <Op(y)>

+ Gy, (32,43) <05(w)> <0y(2)>

2 2 2 2
* Goa,n22) G (23) <0g0)> + G 0w2) G, 0. <o)
2 2
* Gha, (:32) G0, (0.x3) <0p0Y> + Gl (212) Gl (vx3) <05(w)>
+ G, 052) Gl (w,13) <02)> + G, (02 Ga,(:33) <05(w)> |

4 5 4
+ B%i Jdwdydz I‘((S))aﬁcd(x;w;y,z) [G%&z%dc(w,xz,m;z,y) + G(a;%cb(xzm;z,y) <pp(w)>
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3 2 € ¢
+ Gfx;cb(xZZ,)’) Gf333(w,x3) +G a;cb(m;z,y) G Béz(w,xz)

3 2
+ Goa, 0v2203) 6Dz (3.17)

We see that we need to calculate I" %)pal(x,n) to be able to solve for the 3-boson vertex.

We obtain I'g) from cquation (3.13) by multiplying by 3 fdx I"%)pzav(xz,x' ).
o
2

2 , . 2 ’
r%)m.(x,x') =T® () + 1 EZ fdxy T )aza-(xz,x) g, (532) (3.18)

The diagrammatic representation of equation (3.18) is given in figure 8. The dots in the
circles representing the connected Green's functions indicate the joint where we hook up
the external boson legs. With the help of the graphical representation of (3.18) (figure 8)
we can obtain the diagrammatic representation of (3.17) where we then replace the
connected Green's functions with vertex functions using table 2 and thus obtain the Dyson
equation for the 3-boson vertex (figure 9a). There are diagrams in figure 9 which are
multiplied with the product of two symmetrization operators. Of these symmetrization
operators, one operates on the legs of the bare vertex function contained in the diagram
while the other one permutes the external legs of the diagram representing the three corners
of the 3-point vertex function. The identification of which operator does which operation is
straightforward.

The result in figure 9 already made use of the definitions of the 4- and 5-point
Green's function in terms of the full or completely reducibleT matrix and the full or
completely reducible S-point vertex function P defined in figure 11 and figure 12
respectivly. These quantities are directly accessible to experiment and can therefore easily
be parametrized. The exact relationship between this truncation of the hierarchy and the
various relations between Green's and vertex function will be intensively studied in chapter
4, where we perform crossing symmetric reductions of the 2-particle intermediate states.
In a numerical solution we would have to parametrize the 2-particle irreducible kernels of
the T'matrix and the pentagon. For massive particles all the singularities of the kernels
would lie at high momenta, so that for a theory describing low excitations, we could
parametrize the kernels smoothly. We would obtain so on- and off-shell values for the T
matrix and the pentagon and could fix our parameters by comparison with the experimental
on-shell data.

Now we are finally ready to derive the Dyson equation for the 2-fermion- 1-boson
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vertex. We start from the field equation for the fermionic degree of freedom (3.8), take
first the derivative with respect to -iﬁl and secondly with respect to -i c.» take the

sources to zero and use again the definitions of the connected Green's functions from table
1:

@) 3) ,
0= 3Yjdq a0, 1) G b o (1349
%

3) 4 .
_%jdydz F(S)aBy(-xsyaz)[G B’Yblcl (y,Z,u,V)
3 3
+ G(yb)lcl(z;u,v) <%0’) >+ G%glcl(y;u,v) <%(z)>]
3 (4) (2) 2
+3 fdydz Fioyosc 02 [ Ghop ¢ @yum -G (1) Gl 2) ]
(4) ) o
_Bzyg[dwdydz F(S)aﬁys(x,y,z,w) [G BYSblcl(y’z’W’“’v)
G(4) ; + G<4) ; >+ G(4) ;
* Cyop o) (Bwiv) <GO)> + Gpgp o Owiuv) <@ (2) Byt c, OZ3v) <gs(w)>
) ) A& . ) €) ) 2, .
+ GBblcl(y,u,V) Gyslzw) + GYblcl(z,u,v) Gps.w) + nglcl(w,u,v) G gy(r.2
€) ) ) )
+ G5blcl(w,u,v) <¢Y(z)> <¢B(y)>+ GYblcl(z’u’V) <¢y(w) > <qb(y)>
3)
+ Gp o, Giwy) <@ (2)> <ts(w)> |

4 5
- ¥ fJdwdydz F(S)a cdXW3Y,2) [-G( jcb c.(wiz,y,u,v)
(S)ap B 141

3 2 3 2 3 2
+ Géﬁcl(w;z,V) Gg, l)c(u,y) + G%b)lc(w;u,y) G&Bl (z,v) - G(pb)lcl(W;u,V) G(cb)(z,y)
@ @) 2
- Gdcblcl(z,y,u,v) <(1B(w)> + Gdcl(z,v) Gblc(u,y) <qb(w)> ] (3.19)

We use then the diagrammatic representation of (3.18) (figure 8) to display (3.19)
graphically and replace the connected Green's function with the corresponding vertex
functions from table 2.
Again we truncate the hierarchy using the T matrix and the pentagon P . The resulting
Dyson equation is represented in figure (9b).

Higher-order Dyson equations can be derived analogously by taking higher order
derivatives, but we stop here since our truncation procedure, i.e. our parametrized 2-
particle irreducible 4- and 5-point vertex functions include all the higher-order information
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via their parametrization and thus via their experimental input. For completeness we show
the Dyson equations to O(4) with only 3—point interactions in the Lagrangian in figure (10).
Figure 13 finally shows the Dyson equations for the fields and the propagators after
substitution of the T matrix.
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Fig. 8. Diagramatic representation of the equation for the bare 2-boson vertex function
(equation 3.18).
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4. CROSSING-SYMMETRIC REDUCTION

In this chapter we perform the complete crossing-symmetricreduction for the 2-
particle intermediate states of the T matrix and the pentagon. We show that we obtain a
reduction hierarchy which we truncate on the level of the 6-point vertex function (O(6)) to
be consistent with the truncation of the Dyson hierarchy ((4)). The reduction hierarchy
- can furthermore be used to test the quality of the approximation, i.e. the truncation. This
chapter is a generalization and extension of work done by Korpa and Siemens!9] who
performed the crossing-symmetric 2-particle reduction of the T matrix.

4.1 TOPOLOGICAL CLASSIFICATION AND THE REDUCTION
HIERARCHY

In chapter 3 we truncated the Dyson hierarchy on the level of the 4-point vertex
function through introduction of the T matrix. If we now compare the Dyson equations for
the fields, propagators, and the 3-point vertex functions first for only 3-point interactions in
the Lagrangian (Fig. 14) and then for 3- and 4-point interactions in the Lagrangian (Fig.
13,9) we realize that 3- and 4-point interactions in the Lagrangian introduce 2 and 3-particle
intermediate states respectively. The topological classification of diagrams containing these’
intermediate states is depicted in Figure 15. The second column represents diagrams
containing 1-particle intermediate states. These diagrams are generated by the sources
which also represent interactions in the Lagrangian. We removed the sources through the
Legendre transformation from the Lagrangian and thus made the vertex functions I-particle
irreducible but we still obtain 1-particle reducible diagrams in the Dyson hierarchy. They
reappear after we replace the connected n-leg Green's function with the appropriate vertex
functions (compare the first column of Fig. 15 with Table 2 and Fig. 3). Diagrams (h) and
(1) do not appear explicitly in these equations since we have no 5-point interactions in the
Lagrangian and the Dyson equations connect only Green's functions of order n to Green's
functions of order (n + 1) and (n + 2).

In general an n-point interaction in the Lagrangian will generate (7 - 1)-particle
intermediate states in the Dyson hierarchy. All higher order intermediate states will then be
generated if we solve the Dyson hierarchy iteratively. Since we truncate the Dyson
hierarchy on the level of the 4-point vertex function (O@)) we lose all the information about
2- and 3-particle intermediate states of the 4- and 5-point vertex functions which are
explicitly contained in the Dyson equations for the fields, propagators and 3-point vertex
functions. For consistency we have therefore to perform a reduction of the 2 and 3-particle



53

intermediate states for the T matrix and the pentagon. This reduction has to be crossing-
symmetric sihce crossing-symmetry is a generic property of a system of interacting
particles.

In this chapter we develop a crossing-symmetricreduction of the 7 matrix and the
pentagon with respect to the 2-particle intermediate states. The crossing-symmetric
reduction for the 3-particle intermediate states is rather difficult and therefore outside the
scope of this text. We must note that a 2-particle reduction is necessary and sufficient for
all Lagrangians containing only 3-point interactions while it is necessary but not sufficient
for Lagrangians containing also 4-point interactions. Still, in a lot of applications the 2-
particle reduction will be satisfactory since either the masses of the particles involved
suppress the 3-particle intermediate states (e.g. QHD) or conservation laws forbid most of
them (e.g. non-relativistic QED).

Next to diagram (a) of Fig. 15 which represents the 2-particle reducible diagrams of
the 3-point vertex function, we have two topologically distinct diagrams representing the 4-
point vertex function and containing 2-particle intermediate states. Diagram (b) of Fig. 15
represents a scattering process and we call this topological class of diagrams a 2-particle
reducible scattering diagram or in short, a scattering reducible diagram. Diagram (c) of
Fig. 15 on the other hand represents a decay process and we therefore call this class a 2-
particle reducible decay diagram, or decay reducible diagram. Diagrams (d) and (e) along
with all higher order topological classes of diagrams containing 2-particle intermediate
states should be contained in this reduction explicitly. However, we will truncate this
reduction hierarchy by setting the 6-point vertex function (hexagon) to zero and thus have
only to take care of diagram (d) when discussing the reduction of the pentagon. This
truncation ((X(6)) is consistent with the truncation of the Dyson hierarchy (0(4)).

Inspecting the procedure previously developed (particularly Fig. 15) it seems
reasonable to ask about the general structure of the reduction hierarchy. Until this point we
have talked only about a hierarchy in terms of the order of the vertex functions
characterizing a specific topological class. Obviously the complete reduction hierarchy is
also a hierarchy in terms of the different topological classes, representing the n-particle
intermediate states. We are using then the Dyson hierarchy to truncate the complete
reduction hierarchy on the level of the topological class representing a 4-particle
intermediate state (O(4)). The complete reduction hierarchy by itself Tepresents a necessary
and sufficient infinite set of equations to solve the field theory. The crucial difference
between both approaches, the complete reduction hierarchy and the Dyson hierarchy
combined with the reduction hierarchy truncated in one direction, is that they divide the set
of all diagrams up into an infinite number of different subsets. Each subset contains an
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infinite number of diagrams characterized by distinct topological features. The topological
features are, in the case of the Dyson hierarchy, the number of legs of the connected
Green's function, while for the complete reduction hierarchy we classify the subsets
according to the number of intermediate states. Each subset is represented by an integral
equation which sums up the infinite number of diagrams contained in each subset. We use
these two independent ways to solve the field theory as a test for the convergence of the
Dyson hierarchy by comparing the results of both schemes order by order. For the
truncation of the complete reduction hierarchy in its topological classes representing n-
particle intermediate states, special care has to be taken for the types of particles in the
intermediate states, since this series does not have to converge if the particle is massless.
The Dyson hierarchy combined with the truncated reduction hierarchy seems therefore to be
the more generic and more easily accessible way to solve the field theory.

To start the development of the reduction procedures necessary for both types of
hierarchies to order 3 in the intermediate states we will finish this section by discussing the
2-particle reducible diagrams of the 3-point vertex function (diagram (a) of Fig. 15). In
section 4.2 we will perform the crossing-symmetric1-particle reduction of the T matrix and
the pentagon and will then develop the crossing-symmetric 2-particle reduction of the
scattering diagrams, as well as the 2-particle reduction of the pentagon-like class of
diagrams (diagrams (d) of Fig. 15). Finally in section 4.3 we conclude the reduction
schemes of the 2-particle reducible diagrams by discussin g the decay reducible diagrams.

Let's finish this section by discussing the 2-particle reduction of the 3-point vertex
function as an example of the reduction procedure (Fig. 16). The 3-point vertex function is
automatically 1-particle irreducible. To find now the 2-particle reduction of this 1-particle-
irreducible 3-point vertex function Vip; we have to find first the different topological
classes of diagrams containing 2-particle intermediate states. There is only one, given by
diagram (a) of Fig. 15. The next step is to find all reducibility classes of this diagram. The
reducibility classes represent the different channels in which the diagram is 2-particle
reducible. In the case of for example the 2-fermion-1-boson vertex function they
correspond to the 3 sides of the triangle representing the vertex function and we labels them
albe, blae, clab with the greek letters representing boson lines, the latin letters
representing incoming fermion lines and the bold latin letters representin g outgoin g fermion
lines (compare also Fig. 16). The 4-point vertex function contained in this 2-particle
reducible diagram still contains 1-particle reducible pieces. These 1-particle reducible
pieces allow us to construct in ew)ery reducibility class a diagram which is reducible in two
other channels. We label this diagram adble and have to subtract out 2 of these to avoid
overcounting. The general rule here is that a diagram reducible in n different channels has
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to be subtracted (n - 1) times to avoid over countingin the reduction scheme. The integral
equation representing the 2-particle reduction of the 3-point vertex function is therefore
given by:

Virtase = Voprove ¥ Vome T Valoe * Voo ™ 2V appic (4.1)

V. +5(0,3)V

VlPI,ocBy ~ " 2PLoBy (4.2)

oy aIBIY

The primed and double primed variabls represent the boson-fermion and the all-boson case
respectively. The symmetrization operator S(0,3) in the all-boson case takes account of the
indistinguishability of the 3 boson legs and therefore also of the reducibility classes. These
equations are shown diagrammatically in Fig. 16. The 2-particle reducible diagrams are
shown in their topological form according to diagram (a) in Fi g. 15. The factors of %
correct for the indistinguishibility of the intermediate boson lines.

We have to construct the 2-particle reducible pieces out of the 2-particle irreducible
piece of the 3-point vertex function and the 1-particle irreducible piece of T matrix both in
the appropriate channel. This allows us then to generate all rescattering or ladder diagrams
in the T matrices.

To make sure that the 2-particle reducible pieces are still 1-particle irreducible we have to
extract the appropriate 1-particle reducible piece R out of the T matrix. Conventionally the
different reducibility classes of the T matrix are labelled S, T and U. To allow for
generalization to the 3- and 5-point vertex functions we introduce our labelling scheme.
For 1- particle reducibility we have to partition the four external legs of the T matrix into
two incoming and two outgoing legs corresponding to %= 3 reducibility classes. Now
we label again the external legs of, for example, the 2-fermion-2-boson vertex function
with o, B, ¢, d. The direct or S-channel can then be labelled as afled, the exchange or U-
channel as occl Bd and the T-channel as odiBc. Analogously we get for the decay reducible
dlagrams 3, = 4 different reducibility classes labelled for example in the case of the all-
boson T matrix with oJfy3, Bloyd, oS and S|aBy. In the all-boson case the 4
reducibility classes would be summed up using the symmetrization operator $(0,4). With
the help of this labelling scheme we can reproduce the ladder summation shown in fi gure
16:

1 1 '

Voise = Viprade ™ Voide) G(de)( debe ™ Raelpe)
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n

+ %(VIPI,aSe . V;ISE) G(Sg) (T'&-:bc - R'53|bc) (4.3)
V'blow = (VVIPI,bBe - V;)ISe) G se) (Téseac - Ré‘)elac) (4.4)
V;IByz %(lel,mas ) V;ISs) @) ¢ SEBY 68|By)

+ (V'H,mI o~ Vo) G ey € der delBY) (4.5)

The G stands for the two intermediate propagators with the subscripts indicating if the
intermediate lines represent fermions or bosons. Equation (4.4) allows us to also determine
the time-reversed case of this relation, corresponding to Vc| b by replacing all incoming
with outgoing fermion lines and vice versa. We have thus completed the 2-particle
reduction of the 3-point vertex function. The 2-particle reduction equations corresponding
to (4.3)-(4.5) but with the ladder summations in the 3-point vertex functions instead of the
4-point vertex function are given in equations (4.36)-(4.38).

The general procedure for the 2-particle reduction is thus first a topological
classification of the diagrams to be reduced, second the 1-particle reduction, third determine
and label the 2-particle reducibility classes of the topological classes, fourth find the
overcounted diagrams, i.e. the diagrams reducible in more than one channel, fifth write
down formally the integral equation representing the reduction of the topological class and
sixth put in the ladder summations into the different reducibility channels. We apply this
recipe in section 4.2 to the 7 matrix and the pentagon.

To study the relationship between the Dyson hierarchy and the reduction hierarchy
we expand the 2-particle irreducible kernel of the 3-point vertex function perturbatively.
The two lowest order terms for the all-boson case are shown in Fig. 17. The T matrices
used in this expansion have to be 1-particle irreducible and 2-particle decay irreducible for
the kernel to be 2-particle irreducible. If we compare this expansion with the
corresponding Dyson equation (Fig. 13.c) we see that they are identical in the lowest order.
All 2-particle irreducible higher-order terms in the Dyson equation have to come from
diagrams containing pentagons. Actually the parts of the pentagon which are scattering
reducible in two channels are the only pieces of the pentagon which account for this next
lowest order. This will be straightforward to see from the results of section 4.2. The
remarkable point here is that both hierarchies, although summing up different topological
subsets of diagrams, give identical answers and therefore allow for an examination of the
quality of the truncation scheme we introduced by comparing the results of both hierarchies
order by order.
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Fig. 15. Topological classification of diagrams containing 1-, 2- and 3-particle intermediate
states appearing in the Dyson hierarchy up to O(6).
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4.2 CROSSING-SYMMETRIC REDUCTION OF THE SCATTERING TYPE OF 2-
PARTICLE INTERMEDIATE STATES

The first step in our development is the crossing-symmetric reduction of the 1-
particle intermediate states of the 7' matrix and the pentagon. For the T matrix this was
done by Korpa and Siemens and we give their results using our labeling schemes. The
diagramatic representation of these equations is given in Fig. 18.

Tavea”™ Tiprapca T AGPR 4y (4.6)
T upea = T1propea * Ragiea + SEDR 154 (4.7)
TO‘B'YS = TlPI,OLBYS + 5(1’3)ROLBIY5 (4.8)

In these equations the R 's describe the 1-particlem reducible parts of the T matrix and the
unprimed, primed and double-primed quantities represent the all-fermion, fermion-boson
and all-boson cases of the 7 matrix respectively.

For the 1-particle reduction of the pentagon we encounter the same over
countingproblem we dealt with at the 2-particle reduction of the 3-point vertex function.
There are diagrams which are 1-particle reducible in two channels and which therefore have
to be subtracted once. These over counting terms can be determined by comparin g the 1-
particle reduction in terms of the full T matrix given in Fig. 19 with the one where we
replace the full T matrix with its 1-particle-reducible and -irreducible pieces. The reduction

equations in terms of the full 7 matrix (represented in Fig. 19) are:

Psede = Piptabede ¥ AN pes * Qopiege * Qe
) Qlalbclde - Q'blowlde - Q'cl(xblde} (4.9)
P ;xByde =P 'IPI,ocByde + Q;ielocBy +S$ (2’3){Q;xﬁlyde + Q'oceIByd + Q;deBye
i Q;ilaeIBy ) Q;IaBWd -0 vog|[3y1de -0 'aIBerd} (4.10)

" "

PocBySe = PlPLaBySs +3 (O’S)Qaﬁly&e i S(O’S)Qa[ﬁw]& (4.11)
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The Q 's represent the 1-particle reducible parts of the pentagon and the unprimed, primed
and double-primed quantities represent the 4-fermion-1-boson, 2-fermion-3-boson and all-
boson 5-point vertex functions respectively. To better understand these equations look for
example at legs d and e and at the partition. They appear in every possible ordering in the
reducible parts Q . The symmetrization and antisymmetrization operators assure then that
the remaining legs are permuted if they are indistinguishable (A(1,2,2) stands here for
antisymmetrization of the pair of incoming and the pair of outgoing fermion lines). The last
terms in every equation contain two partitions in their labeling and represent the over
countingterms.

We are now ready for the 2-particle reduction of the scatterin g diagrams of the T
matrix. As for the 1-particle reduction of the pentagon, we start with a classification of the
diagrams which are 2-particle reducible in more than one channel. These diagrams are
shown in Fig. 20 and we obtain:

T viaa * Ttae * Lt (4.12)
TaBIIoui + TaBIIac * T(xcllocd (4.13)
TaBHaS + TocBllow + T(xylloaﬁ (4.14)

Here we are using only the first two letter indices characterizing every reducibility
channel and then separate them with a double partition to indicate that these diagrams are
reducible in two channels. Special care has to be taken in determining the signs for the all-
fermion case. Every exchange of 2 fermion indices generates a minus sign. Most of the
reducibility classes contain two topological diagrams (in figure ¢ depicted above each other)
which we generate by exchanging all the fermion intermediate states with boson
intermediate states and vice versa. For the all-boson case the lower diagram of every class
can be drawn with two possible directions of the arrow of the fermion intermediate states.
Both directions are generated by the symmetrization operator § (2,2). This completes the
over counting problem for the T-matrix and allows us to formally determine the integral

equations for the 2-particle reduction of the scattering diagrams:

= + T + -
TlPI,abcd ]éPI,abcd 5(2.2) ablcd 7;Jclbd

{T

abliad * 7;:blla(: * T(;CIIad} (4.15)

T1prapea = Toprapea * Tapiea * @27 080 Togioa * Topioe ™ Toclina)  (416)
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"

1PLapys

"

T aBlys {TocBllaS * TchII(xy * TayllaE}

T +S(1,3)T (4.17)

2PL,aBy6

The symmetrization operators used here sum up the S- and T-channel. The next step is to
put the ladder summations into the 2-particle-reducible classes. Let's discuss first the all-
boson case. The 2-particle-reducible T matrix T;.l 1 a0 be expressed as:

7T apeo Ropieo’ Py Teors ™ Teonys ~ Raprye’

T(th/S

TaBef i RaBIef) G(ef) (TefY5 i TeﬂYS i ReﬂYS)

We generate the ladders in the first factor where we assume only 1-particle irreducibility in
the appropriate channel. In the last factor we also extract the 2-particle-reducible pieces of
the T matrix.

We apply the same procedure to the fermion-boson case. Here we have to write out
two relations corresponding to the cases where the reducibility channels cut only boson or
only fermion lines and the case where the channels cut mixed boson-fermion 2-particle
intermediate states.

T(xBch = (TaBef' RaBIef) G(ef) (Tefcd) ) Teﬁcd ) Reﬂcd)

p—

. 4.19)

2 (T(xBeq) - R ocBleq)) G(scp) (T£q>cd ) Tecplcd ) Rstplcd)

TacIBd = (Tacsf i Raclef) G(sj) T

effd TeﬂBd ) ReﬂBd) (4.20)
The second equation (4.20) has only one term on the right hand side to assure fermion

number conservation.

We obtain the all-fermion case analogously:

Tocba = Tacer ™ Raciep G(ef) Teva ™ Tepva ™ Repod (4.21)
Tablcd = (Ygzbef. Rablef) G(ef) (Efcd) ) Teﬂcd ) Reﬂcd)
1,4 ' : = s
T2 (Tab€¢ Rablsq)) G(ecp) (Teq)cd Teq>|cd Re¢|cd) (4.22)
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The only new rule we have to take into account to understand these equations is the minus
sign generated for every antisymmetrization. If we compare in equations (4.21) and (4.22)
the diagrams containing 2-fermion intermediate states, we can fix the relative minus si gn
by recognizing the necessary exchange of two-fermion indices between the diagrams.

We have now collected all the rules needed to develop the 2-particle reduction of the
pentagon P. The topological class to which these type of diagrams belong is depicted in
diagram (d) of Fig. 15. It corresponds to diagram (b) of Fig. 15 and is therefore also a
scattering-reducible type of diagram. Again we start with the over countingproblem. For

the all-boson case we obtain for possible overcountings (compare to Fig. 21.a):

"

ey +4P ) (4.23)

S(0,5{P oelily )

2P

The three terms in equation (4.23) represent the overcounted diagrams reducible in 2,3 and
5 channels respectively. In our labeling scheme we represent the diagrams reducible in two
channels with a double partition and by numbering the legs of the 1-particle irreducible T
matrices. Diagrams reducible in three channels are labeled with a triple partition and by
numbering the legs of the 1-particle-irreducible T matrix and the 3-point vertex function
which is singled out by not being a neighbor of this 1-particle-irreducible T matrix.
Diagrams reducible in five channels are labeled by the subscript (5).

The over counting problem is solved by comparing the diagrams containing the full
T-matrix with the one where we replaced the full 7 matrix with its I-particle-reducible and -
irreducible pieces. We find that in general diagrams reducible in n channels are over
counted (n - 1) times which explains the factors of 2 and 4 in front of the 2-particle
reducible pieces in 3 and 5 channels respectively. In Fig. 21 we show the over counted
diagrams in terms of the 1-particle-irreducible T matrix since we need precisely this
collection of diagrams in the reduction equations Note that in the diagramatic
representation of Fig. 21.a we have again two types of diagrams in every reducibility class
corresponding to the exchange of boson intermediate states with fermion intermediate states
and vice versa. The classes representing diagrams reducible in 2 and 3 channels contain 60
diagrams while the class representing diagrams reducible in 5 channels contains 120
diagrams. This enormous collection of diagrams is summed up using the symmetrization
operator. For example in the case of the diagrams reducible in 2 channels the § (0,5) in
front of the case with bosons in the intermediate state sums up 30 diagrams while the S
(0,5) in front of the case with fermions in the intermediate state sums up 15 diagrams for

each direction a fermion can run.
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The direction in which the intermediate fermion lines are running is, in the case of
the 2-fermion-3-boson vertex function, related to the arrows of the external legs. Therefore
we cannot sum up these different diagrams into one reducibility class (in Fig. 21.b the
diagrams obtainable from each other by exchanging the arrows of the fermion lines
corresponding to the time reversal operation are the first 5 neighbouring pairs). We sum up
different diagrams of a reducibility class by permuting the three boson le gs using the
symmetrization operator S (2,3).

abliyd +

t 1

S2,3){P obiys * Pabllyd + PaBllcd

P

' '

2@ oy + Pasiy * Fapine T Papiie ¥ Pasiie ™ Posie P iy * £ apiry

+4P ) (4.24)

The rules we learned from the all-boson vertex function and the 2-fermion-3-boson
vertex function allow us finally to solve the over countingproblem for the 4-fermion-1-
boson vertex function (Fig. 21.c). Again we generate diagrams from each other
exchanging the direction of the fermion line (the first two diagrams as well as line 2 and 3
and line 4 and 5 are time reversed to each other), obtain the different diagrams of one
reducibility class from each other by exchanging fermion and boson intermediate lines and
determine all reducibility classes reducible in a certain number of channels by permuting the
fermion legs (leg ¢ and d are therefore our legs of reference). The antisymmetrization can
be described with the antisymmetrization operator A(3,2):

P

ACDE pies * Favics * Fasica * Fapies * Fapics

* 2F oy * Faviry * Fapnie ¥ Fasiie * Fagiie * Fagind

+ 4P(5)} (4.25)

In most reducibility classes we get only one diagram since we have to hook up the internal
to the external fermion lines. But in the classes Pa blics and Pa blicS this same requirement
generates 3 possible diagrams.

We proceed now by formally writing down the 2-particle reduction of the pentagon
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- $(0,5){P +2P 4 4P

+50,5P, (stIBy aelliy (5)}

(4.26)

PlPI,ocBySe - P2PI,aBy§s of|yoe

PlPI,aByde = P2PI,aByde + PaBIyde * PdeIaBy + PeaIByd + Pd(xIBys

-S@3)(P, abliy +P ablys T +P abid T Fopica
+ 2(Pozbllly ablly * P(xBIIIc +PaBch +P bile P obiic ¥ Papiry * Papiry
4P ) | 4.27)

Prprabede = Poprabede * Foclode * Fretapa * Fodiace + Faplede * FPaclbde

“AGDUE yies *apies Fasica *raptes apics

+2(P P +P +P

ably ¥ abl“v aviie ™ Fasiie T Fapue * Fapind)

+ 4P(5)} (4.28)

It is now straightforward to put the ladder summations into the 2-particle-reducible
classes of the pentagon since we just have to add a boson leg to the corresponding integral
equations for the T matrix (4.18-4.22). For the all-boson 5-point vertex function we obtain:

" P = ) =
PO‘BW& =z ofpr Raﬁlpn) G(pn) (PPRYSS PPEIY&: 5@, 3)Q78IP7re 32, 3)QYIP '88)
+(T°‘B’P i RO(BI’P) G(rp) (Prpy& rplySe -S(2, 3>Q’y§l € +5(2, 3)Q (4 29)

In the pentagon part of the 2-particle-reducible diagrams we have to assure 2-particle
irreducibility in the appropriate channel. We achieve this again by subtracting out the pieces
which are 1- and 2- particle reducible in the channel under consideration. The 1-particle
reducible pieces of the pentagon are given in terms of the full 7 matrix. This creates again
an over countingproblem and we have to add back in all the 1-particle-reducible pieces we
subtracted out too often. We avoided an over countingproblem in the 2-particle reducibility
channel by determining here the diagrams reducible in more than one channel in terms of
the 1-particle-irreducible 7 matrices (4.23-4.25).

For the 2-fermion-3-boson vertex function we obtain:

P )G (P -P 52,3)Q.

L' _p
delafy ™ 2 T dept Rdelpn om Comse "L priyoe + 52, 3)Q

Ydlpme vlpnlé‘m
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+(Tderp . Rdelrp) G(rp) (Prpy&a ) PrplySe } S(Z’S)Qy8lrpe + S(2’3)lerpl86) (4.30)

P

L _p
ofldey ~ 2 T ofpn Raﬁlpﬂ) G(pn) (P

Endev i P'pnldev

ooy ™ Lione™ Levpma * Cyprize * Loty ™ Lapriey
* (T'ozBrp - R’(xBlrp) Copy Crpdey ™ Frpldey

" Qtetrpy ™ Lavirpe ™ Covtrpa Qirpide ™ Cotrplay Qtirpley’ (4.31)

. Lo . , ,
==(T -R G (P -P
PadtBev 2 ( odpp adlpp) (pp)( prBey ~ ppiBey

-53.2) QBe!ppv ) QBYIppe +5G.2) QBlppIYe * Qelpp!ﬁv) (4.32)

Again we use time reversal upon (4.32) to generate the leftover reducibility class.
Finally we are also ready to write down the ladder summation for the 4-fermion-1-

boson vertex function:

=1l R ' _p
Pabldey— 2 T abpm Rablpn) G(pn:) (Ppndey Ppnldey

" Quetony~ Lavipre ~ Cevpna ¥ Lyppmide ™ Leipriay + Lapriey

* Tabrp  Ravirw) Gpy Crpaey T, rpldey
" Qeirpy ™ Ciyirpe ™ Covirpa T Qirpide * Cetrplay * Dirpley (4.33)
Podvee =" T aipp ™ Radip) Gopy Foppec ™ Popivec
5G.2) Qbelppc ) QeCIppb +56.2) chpplbe " Qelpplbc) @.34)
Paviaey™ ™ Tavrp ™ Baviey’ Gpy Crptey ™ Frpidey” Qetrpy
G2 * Qyppige + SG20,, 1) (4.35)

We are again using time reversal to generate two more reducibility classes from (4.34) and
(4.35). The relative minus signs of the equations can be determined by counting the
necessary permutations of the anticommuting fermion indices.

In this reduction procedure we generated the ladder summations for the 3-point
vertex function and the pentagon in the T-matrix part of the 2-particle reducible diagram.
We could also do this in the other part contained in the diagram, i.e. in the 3-point and 5-
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point vertex functions for the 3-point vertex functions and the pentagon respectively. Since
the 7 matrix is symmetric in in- and outgoing legs we would obtain identical equations by
applying this procedure. We conclude now this section by giving the equations for the
scattering reduction of the 3-point vertex functions and the pentagon with the ladder
summations in the 3-point and 5-point vertex functions respectivly.

Valbc = VlPI,ade G&de) ( debc Tdelbc ) Rdelbc)
1

* -2-ViPI,0158 G(Se) (T'Ssbc i TISalbc i R’Sslbc) (4.36)
V'blow - V'IPI,bSe (5e)( ;Seow T;Selac -Rlﬁelac) (4.37)
V’(leBy = % V'iPI,aISs G(Se) (T'("‘»sBy ) TésIBy ) R.E‘Sslﬁy)
+ VIPI alde Zde) 7, deBy ;IeIBy - R;IeIBy) (4.38)
P;Bwﬁe - ;—( ofpr aﬁlpn ) RaBIpn) G(pn) (Ppmﬁe S2.3) Qvfilp +5@.3) prnlﬁe)
+(TaBrp - TaBlrp -R;xﬁlrp) G (P'erSS S(2 3)QY&r . +52.3)0. srpise) (439
P;ielaBy = %—(T ;1ep1t -T ;ielpn: ) R;ielpn) G(pn) (P;m& $23)0, Y3lpme +350, 3)Q Yipn ISE
Terp ~ Laerp ™ Raerp) Copy P Irpyﬁs -5 (2’3)anlr +5(2, 3)ler g (4:40)
Fapider =2 T aor T ogion” Raion) Cory Poraey
) Q;ielpfw ) Q;mpne ) Q;npnd * Q'YIPNIde * Q;flpnldv +Q;11pn|ew)
* (T;xBrp ) T‘aBlrp ) R‘aBIrp) G(rp) Frpdey
" Lietrpy ™ Lyirpe ™ Coyirpa * Qirpide = Cotrplay + D tirpley) (4.41)
P;xdlﬁev - %(T .adpp T ;xd!pp i R|ozdlpp) G(pp) (P;wBev
) 3(3’2)Q‘Belppv ) Q'Bvlppe +56.2) Q'Blpplve i Q;Ipplﬁv) (4.42)
P abldey ~ % (T, abpr -T ;zblpn i Rlablpn) G(pn) @+ 'p1tdey

i Qde!prw i QdYIpne i Qeﬂpnd * prnlde +Qelpnldv +lepnlev)



+ (Tabrp ) T;zblrp ) Rab[rp) G(rp) (Prpdey

) Qdelrpy ) Qdylrpe ) Qeylrpd + Qﬂrp!de + Qelrpld.y * lerpley)

) (

Padlbec =-T adpp T adpp R(xdlpp G(pp) Pppbec

3G ei0pe ~ Geetppp + SC2C opive *elppive

(PrpdeY

)
- T

abrp ~ 7;zblrp B Rablrp G(;p)
-0

delrpy S(3’2)Qdylrpe + Q’ylrplde + S(3’2)Qelrpldy)

Pabldey = )
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(4.43)

(4.44)

(4.45)
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Fig. 18. Diagramatic representation of the crossing-symmetric reduction of the 1-particle

intermediate states of the 7 matrix.
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71

a,é’llaé‘ Zﬂﬂay eyllead

‘%

b)

|

abllaé‘ ablla)/ ayllad

1L =
I I

F @

X

Tablloo ~locllaa Tubllac

-

i

Fig. 20. Scattering reducible diagrams of the T matrix in two channels. a.) All-boson
vertex function, b.) fermion-boson vertex function, ¢.) all-fermion vertex function.
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boson vertex function, b.) 2-fermion-3-boson vertex function, ¢.) 4-fermion-1-boson
vertex function.
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4.3 THE DECAY TYPE OF 2-PARTICLE INTERMEDIATE STATES

In section 4.2 we developed the crossing-symmetricreduction scheme for the
scattering type of 2-particle intermediate states. We could devise now an analogous
procedure for the decay type of 2-particle intermediate states, but we would take into
account diagrams already treated in the reduction of the scattering type of 2-particle
intermediate states. If we would have solved the Dyson hierarchy completely then the
equations would have taken care of this over countingautomatically, now we have to do
this explicitly.

Instead of devising a similar procedure to the one discussed in section 4.2 and then
subtracting the multiply counted diagrams we split a generic decay-reducible (DR) diagram
into its different generic pieces containing only 3-point vertex functions and 4-, 5-, 6, 7-
and 8- point 2-particle-irreducible vertex functions (shown as squares, pentagons,
hexagons, heptagons and octagons respectivly in figure 22). The first two and last three
generic pieces are also scattering reducible and we see that in general a diagram which is
decay reducible in more than one channel is also scattering reducible and therefore is
valready taken care of. So we avoid an over countingproblem and the only thing left to do is
to extract out of the leftover diagrams all decay-reducible diagrams which are not scattering
reducible. For these decay-reducible but scattering-irreducible pieces (S/) we develop

again integral equations.

Ts1apys = Tropye * SO gy g0 + O6) (4.46)
Tstoped = Tropea t ST 51 gipea * Tstcopa Ts1diope ¥ O© (4.47)
Tstabea = Tapca + 5@y gipeq + ST 40y + O(6) - (4.48)

The subscript I stands here for complete scattering and decay irreducibility. We neglected
here all diagrams which contain vertex functions with more than 6 legs (O(6)). This
approximation does not correspond to the truncations we did until now. The truncations
included the higher order terms via the parametrization of the 7 matrix and the pentagon.
Here we really neglect these higher order processes since we have no way to actually
calculate nor parametrize these objects without solving the reduction hierarchy to their
corresponding orders which in turn introduces then even higher-order diagrams.

For the decay-reducible pieces of the diagram containing the pentagon we develop
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integral equations analogous to the ones developed in section 4.2. Let's start again with
the all-boson case. Our choices are to put the ladder summation either into the 3-point
vertex function or into the pentagon. If we would put the ladder summation into the 3-
point vertex function we would have to make the pentagon itself scattering irreducible in the
appropriate channel , which means that the pentagon would have to be I-particle irreducible
for all channels and 2-particle irreducible in the channel under discussion.

" 1 "

TSI,aIB'yS =72 VlPI,aIscp G(e¢)

(PIPI,sq)ByS ) Pe¢|[376)

+V (4.49)

1PI,alef G(ef) P 1PLefBys ~ P eﬂBya)

We could also use the peculiarity that scattering and decay reducibility in the case of the 3-
point vertex function are identical since there is only one diagram in the topological class of
the 3-point vertex function describing 2-particle intermediate states, and put the ladders into
the pentagon. We would thus have only to assure scattering irreducibility in the appropriate
channel for the 3-point vertex function and could use the 1-particle-irreducible pentagon.

" 1 " " 1]
TSI,aIByS = E(VIPI,odecb ) V(xlsq>) G(ed))PlPI,sq)ByéS
* (VIPI,oclef' Vodef) G(ej) P1p1,efo5 (4.50)
For the mixed fermion-boson case we have two cases:
TSI,olecd =V iPLoes G(ef) (P 1PLefcdp " L eficd®
l ] ' i '
) VlPI,oce(p G(gq,) (P€¢>cd[3 Peq)lch) “4.51)
TSI,claBd = VipLcer G(gf) P efoap efladp’ (4.52)
TSI,aIBcd - (lel,aef' Votes) G(ef) P 1PLefcd
1 1 " 1
"2 Vipraco ™~ Voleo) Cep) F1preocap (4.53)
Tstciopa = Vietcer ™ Veres Gent 1PLefoudp (4.54)

In the first two equations we put the ladders into the 3-point vertex function while we put it
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in the pentagon for the last two equations. We use again time reversal to obtain the last
decay reducibility class from (4.52) or (4.54).

Finally we determine the all-fermion case. Also here we can determine both

reducibility classes from one equation using time reversal.

Tsvavea = Vievaer Gep Prpremea  Fepea (4.55)

Tstabea = Vieraer ™ Vaies Gep) Fesboa (4.56)

Again we put the ladder summation in (4.55) into the 3-point vertex function and in (4.56)
into the pentagon. We have thus completed the crossing-symmetric reduction of the
diagrams containing 2-particle intermediate states.
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Iig. 22. Generic decay diagram and its different generic pieces in terms of 3-,4-,5-, 6-, 7-,

and 8-point 2-particle scattering irreducible vertex functions.
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5. REGULARIZATION

With the crossing-symmetric reduction done in chapter 4 we completed the
discussion of the microscopic approach to the condensed state and so reached the goals we
proposed in chapter 1. Still, although we have a satisfying theory, we cannot apply it
unless we discuss the regularization of this procedure. In this chapter we want to discuss
the main ideas involved in the regularization of hadronic matter without going into proofs
or details. At the moment we have not completely evolved our ideas and feel , therefore,
not confident to make explicit statements.

There are two main approaches to the understanding of the singularities appearin g
in any field theory. The one relates the singularity to the point-like interactions in the
Lagrangian, which is of course a singular construct. This singularity can be expressed as
the possibility of having a zero space-time separation Ax = 0. By imposing the condition
Ax = 0 on the field theory we could remove this singularity. The second approach in
understanding the singular structure of a field theory is to look at the generic output of our
theory, which are the Green's functions. These Green's functions are defined in terms of
time-ordered products of fields which are ill-defined at equal times. This indefiniteness at
equal times represents itself then as a singularity in momentum space, ¢.g. propagators
have singular denominators and loop integrals develop ultraviolet singularities. We will
use now both approaches to indicate possible ways out of this dilemma.

The conditon of non-zero space-time separation is actually too weak since it allows
an approach to the singularity via two independent degrees of freedom (i.e. the singularity
lies at the origin of the space-time plane). One approach to remove this singularity is to
assign form factors to every vertex, and then to maintain causality using dispersion
relations(613]. A vertex function with one leg fixed contains eight more independent
variables, three of which can be integrated out because of symmetries. The form factors
then regularize three more variables corresponding to the invariants describing the sides of
the triangle. The other two variables get fixed in more complicated diagrams due to their
connection to other vertex functions of the diagram (e.g. consider the two-point loop). A
tadpole, on the other hand, will still contain both singularities, since neither of the left-over
degrees of freedom is fixed. The regularization of tadpoles for a Dyson hierarchy is
discussed by Milana and Siemens(12], who employ a Euclidean cutoff procedure. The
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same counting of degrees of freedom works for the loop diagrams containing T matrices in
the Dyson equations for the three-point vertex functions. Since Siemens et al.[6] regularize
a Dyson hierarchy up to order four with three-point interactions in the Lagrangian, the
method of form factors and dispersion relations works. In our case we don't have to redo
the counting procedure since the 4-point interactions in the Lagrangian introduce only more
highly connected diagrams (3-particle intermediate states).

Another approach to the regularization of a phenomenological theory like QHD
would be to implement causal and covariant form factors directly into the action (the
Lagrangian is an equal time operator). We would then achieve causality by using the 2-
particle-irreducible kernels of the vertex functions, so that one event is not able to influence
two disconnected events simultaneously. The singularities due to Ax2 =0 lie on the light
cone which is straightforward to realize by inspecting the Pauli-Jordan expansion of
Green's functions[3]. This kind of singularity could be removed by a covariant form factor
in the action of the type F(I2 <x2 < L2) with L — [ representing the size scale of the
hadrons. If F is real we also obey unitarity, and by choosing a product of different F's,
corresponding to the different channels of the vertex function, we obey crossing symmetry
and thus complete a sufficient approximation of the physical form factor without the trouble
of the light-cone singularity. Again we have two leftover degrees of freedom, and we
would have to find a possible way to remove the associated singularities if we are to obtain
a regularized theory from the beginning.

The only covariant function which is not a function of x2 is the delta function 8(x).
This choice of F brings us back to our first approach. This approach is intensively
discussed in introductory field-theory textbooks[13] and its use in the case of hadronic
matter is explicitly discussed by Siemens ez al.[0] for a Lagrangian containing only 3-point
interactions. Siemens et al. combine two steps in their discussion of regularization which
we would like to separate here. They use dispersion relations to show how to introduce
form factors in a causal way. These form factors are again real, to obtain unitarity, but they
break crossing-symmetry because they include the Migdal approximation to make the
Dyson equations numerically accessible. The Migdal approximation corresponds
physically to the collapse of two neighboring points of a vertex function through
introduction of a delta function in the coordinates of these two points. Their causal form
factor then smears out this delta function so that, e.g. geometrically a 3-point vertex



&3

function represented originally by a triangle changes to a L - shaped object. We see
therefore that we lost one geometric degree of freedom: we replaced 3 sides of a triangle by
its base and height, and lost an angle. The physical justification for this approximation is
weak, and we see that the main advantage of this approximation is that it makes the theory
numerically accessible.

Let us first generalize this approach by dropping the Migdal approximation. For
our theory with also 4-point interactions in the Lagrangian we would have to develop all
dispersion relations for loops up to the 5-point loop. The dispersion relations for more
complicated singular diagrams (we are allowed to have 3-particle intermediate states) can
then be easily constructed from the dispersion relations of the loops. A Dyson hierarchy
with only 3-point interactions, on the other hand, would only need the dispersion relation
for a 3-point loop in addition to the discussion for the 2-point loop and tadpole by Siemens
et al. Since the development of dispersion relations for higher order loops is rather
involved, we propose a different approach. Using the Migdal approximation on the Dyson
hierarchy containing also 4-point interactions, it is easy to realize that we again only need
dispersion relations for 2- and 3-point loops. Thus, with the additional discussion of the
dispersion relation for 3-point loops, we could achieve a general regularization of a Dyson
hierarchy with 3-point interactions in the Lagrangian, and also, using the Migdal
approximation for vertex functions, a regularization of a Dyson hierarchy with 3- and 4-

point interactions in the Lagrangian.
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6. CONCLUSION

We developed a relativistic condensed matter theory based upon a microscopic, i.e.
field theoretical picture. The Green's functions of the theory can be used to obtain the
equations of state as well as the transport coefficients of this matter. The vertex functions
were obtained by Legendre transforming the generating functional of the connected Green's
functions and the relationship between the connected Green's functions and the vertex
functions was derived. We developed the Dyson hierarchy as a tool to calculate the
Green's functions of the field theory starting from a Lagrangian that contains bosonic and
fermionic degrees of freedom interacting via 3- and 4-point interactions. We truncated this
hierarchy at the level of the connected 4-point Green's function using the T matrix ( O(4)).
Finally we performed a complete crossing symmetric reduction for the 2-particle
intermediate states of the 7 matrix and the pentagon. We showed that in addition to the
Dyson hierarchy we obtain a reduction hierarchy which we truncate on the level of the 6-
point vertex function (O(6)) to be consistent with the truncation of the Dyson hierarchy
(O(4)). The reduction hierarchy can furthermore be used to test the quality of the
truncation procedure. The theory so far is completely general and can be used to describe
fundamental as well as phenomenological theories. Then we proceeded with the discussion
of regularization using hadronic matter as our system of interest. The conventional
procedure of using form factors as cut-offs and dispersion relations to assure that these
form factors satisfy causality was discussed and the Migdal reduction was introduced to
make the theory numerically accessible. We furthermore explored the possibility of directly
putting form factors into the action and showed how regularization is obtained so from the
beginning.

We conclude this paper by discussing the possible future development necessary to
introduce this theory into the framework of already existing theories.

» The first and most urgent step is to obtain numerical solutions from this theory which can
then be compared to experiment. First results were obtained for the delta-nucleon-pion
system(!4]. Further application to other systems like the jellium model(10] are necessary.

* An investigation of the higher order diagrams (O(6)) which appear in the discussion of the
decay reducible diagrams is necessary.

* The applicability of putting the form factors into the action should be further explored.

» For consistency we should explore the possibility of a crossing symmetric reduction of
the 3-particle intermediate states.

*The dispersion relations for higher order loops (O(3)) should be developed.
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