
AN ABSTRACT OF THE THESIS OF

Seungjin Park for the degree of Doctor of Philosophy in

Computer Science presented on March 4, 1993.

Title: Fault-Tolerant Communications in Parallel Systems

Abstract approved.

Dr. Bella Bose.

In distributed memory systems communication between processors is mainly

done via message passing. Since communication time is more costly than computa=

tion time, efficient communication algorithms are essential to achieve high perfor-

mance in these systems. Furthermore, since the messages may not be transmitted

successfully due to some reasons such as noise and/or faulty components, the sys-

tem should contain fault-tolerant features to avoid the problems.

Among many topologies suggested for parallel systems, the hypercube has

been very popular due to its numerous merits such as regularity, easy construction,

high fault-tolerance, etc.

In this thesis we present the research that has led to the following results in

an n-dimensional hypercube.

1. Optimal fault-tolerant single node broadcasting which tolerates up to n 1 faulty

links/nodes.

2. Near optimal fault-tolerant single node broadcasting which tolerates up to n22 n

faulty links.

Redacted for privacy



3. Near optimal fault-tolerant all-to-all broadcasting which tolerates up to 2 faulty

links.

4. Fault-tolerant all-to-all broadcasting which tolerates up to 71 2 faulty links

in wormhole-routed hypercubes, which produces a factor of approximately n less

traffic than previously known algorithms.



Fault-Tolerant Communications in

Parallel Systems

by

Seungjin Park

A Thesis

submitted to

Oregon State University

in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

Completed March 4, 1993

Commencement June 1993



Approved:

Professor of Computer Science in charge of major

Head of Department of Computer Science

Dean of Gra 4mfto School

Date thesis is presented March 4, 1993

Typed by Seungjin Park for Seungjin Park

Redacted for privacy

Redacted for privacy

Redacted for privacy



dedicated to my parents

Hankeum Park

Sookja Kim



ACKNOWLEDGMENTS

I would like to express my appreciation to all the people without whom this

thesis could not have been completed. First, I would like to thank my parents,

Hankeum Park and Sookja Kim, for their encouragement and support throughout

my education. Without them I would not have reached this stage of my education.

My special thanks to Professor Bella Bose, my major advisor, for his guidance, ad-

vice, financial support, and patience during the last four years. My success in this

endeavor can be largely attributed to his assistance.

Many thanks to other members of my Ph.D. Committee: Professor T. Mi-

noura, Professor V. Saletore, Professor P. Tadepalli and Professor P. Watson for

their time and help during my preparation of this thesis.

I thank Professor J. Chandler at Oklahoma State University and Professor

P. Hsia at University of Texas at Arlington for their guidance and special friendship.

My special thanks to my wife, Hyeryun, and my children, Inhye and Seik,

for their patience and love.

I would like to thank my colleagues: Bob Broeg, Mark Clement, Phyl Cran-

dle, Jie Liu, Bob Rowley, and Brad Seavers for their consistent efforts to improve

this thesis.

Finally, I would like to thank to my Korean friends: Mungmun Bae, Eunbae

Kong, Younggeun Kwon, Suckjun Lee, and Dokyung Ok who alway share good

times with me.



Table of Contents

1

2

Introduction

Single Node Broadcasting in Faulty Hypercubes

1

8

2.1 Introduction 8

2.2 Preliminaries 10

2.3 Broadcasting strategy in the presence of up to n 1 faulty links 12

2.4 Broadcasting strategy in the presence of up to 2n 3 faulty links 15

2.5 Broadcasting strategy in the presence of up to n 1 faulty nodes 17

2.6 Conclusion 19

3 Highly Fault-Tolerant Single Node Broadcasting in Hypercubes 20

3.1 Introduction 20

3.2 Notations and background 22

3.3 Broadcasting algorithm which tolerates up to n 1 faulty links 23

3.4 New single node broadcasting algorithm 26

3.5 Conclusion 37

4 All-to-All Broadcasting in Faulty Hypercubes 39

4.1 Introduction 39

4.2 Preliminaries 43

4.3 New all-to-all broadcasting algorithm in faulty hypercubes 46



4.3.1 Case of a single link failure 46

4.3.2 Case when no node has more than one faulty link inci-

dent to it 48

4.3.3 Case when all the faulty links are incident to a single node 55

4.3.4 General case of link failures 61

4.4 Conclusion 67

5 All-to-All Broadcasting in Wormhole-Routed Hypercube Multi-

computers with Link Faults 69

5.1 Introduction 69

5.2 Preliminaries 71

5.3 New all-to-all broadcasting strategy using wormhole routing 75

5.3.1 Case of up to link faults 75

5.3.2 Case of up to n 1 link faults 79

5.4 Conclusion 91

6 Conclusion 93

Bibliography 95



List of Figures

Figure Page

1.1. Construction of Q4 from two Q3's. 4

1.2. Communication primitives 6

1.3. Broadcasting tree in Q3 7

3.1. Division of Q5 along two dimensions 26

3.2. Division of Qm along several dimensions 31

3.3. Division of Qm into two subcubes 32

3.4. Algorithm COMPLETE which completes broadcasting in q,_1. 33

3.5.
n2

34Algorithm BRST 2

3.6. Generation of the longest possible fault diameter 36

4.1. Qn with one faulty link 48

4.2. Algorithm) which completes all-to-all broadcasting in hyper-

cubes with one faulty links 49

4.3. Faulty Qn in which no node has more than one faulty link

incident to it 50

4.4. Algorithm Find_Safe_D which finds all the safe dimensions . . 53

4.5. Algorithms completes all-to-all broadcasting in Qn in which no

node has more than one faulty link incident to it 54

4.6. Case when all faulty links are incident to a single node 55

4.7. Case when all faulty links are incident to a single node 57



Figure

Algorithm3 completes all-to-all broadcasting when all faulty

links are incident to a single node

Correspondence assigns fault-free safe dimensions to faulty links

Algorithm completes all-to-all broadcasting in Qr, with up to

Page

4.8.

4.9.

4.10.

60

64

faulty links 65

5.1. Linear array which is formed by a HC with a single link failure 76

5.2. Algorithm AT ABF which completes all-to-all broadcasting in

perfect hypercubes 78

5.3. Algorithm ATAB-Ii-1 completes all-to-all broadcasting in hy-

percubes with up to [2.2-1 faulty links 80

5.4. Two linear arrays formed by a HC with two faulty links 82

5.5. Algorithm Feed reassigns the packets 89

5.6. Algorithm AT AB' completes all-to-all broadcasting in hy-

percubes with up to n 1 faulty links 90



List of Tables

Table Page

4.1. Optimal time and traffic for some communication primitives . . 40

4.2. Comparison of the time steps taken by Algorithm3 and the

lower bound 61



Fault-Tolerance Communications in Parallel
Systems

Chapter 1

Introduction

Massively parallel distributed-memory machines are receiving considerable

attention to meet the demand for extraordinarily powerful computers. In order to

achieve efficient parallel processing many topologies have been suggested and advo-

cated [Sto71, HZ81, BK79, PV81, SP89, YN90, Da190, CS90a]. Among them, the

hypercube has been very popular due to its various merits such as regularity, embed-

dability of many other topologies, relatively small diameter, easy construction and

high potential for the accommodation of various algorithms. Significant research

efforts [CS87, JH89, Sei85, SS88, B+92, CS90b, BS86, GS89] have led to several re-

search [Sei85] and commercial hypercubes by Intel, NCUBE, Floating Point System,

Ametek, Thinking Machine.

Parallel architectures often consist of thousands of processors, and in dis-

tributed memory systems communication between processors is mainly done via

message passing. Thus, efficient communication schemes are extremely important



2

to achieve high performance in the systems. Many researchers have proposed var-

ious communication algorithms for hypercube multicomputers [JH89, SB77, HJ86,

B+91, L+90, JI191]. However, the messages may not be successfully transmitted to

the receiving nodes due to various impairments such as noise or faulty components

in the system. Error correcting codes have been found very useful tool for correcting

partial incorrectness of the transmitted messages[PB90a, PB9013]. Furthermore, if

the system contains some faulty components, the communication algorithms listed

above may not work properly.

One way to accomplish the fault-tolerance in the system is by reconfig-

uration, i.e., adding spare nodes and links to the system so that under certain

faulty conditions, the faulty nodes/links are replaced by the redundant components

[Ban89, LH89, JBH91b, JBH91a]. The disadvantages of this approach are (1) huge

number of extra nodes and links may be needed as the number of faults increases,

and (2) most of the extra nodes and links may be idle until some faults actually

occur.

Our approach to tolerate faults is to devise communication algorithms which

avoid those faulty components. Numerous fault-tolerant communication algorithms

in this category have been proposed [CS90c, CS90d, RS88, Fra92, LH88, PB90c,

CS89, PB92]. The differences between our approaches and the previous approaches

are explained in the appropriate chapters.

In this chapter, we define the hypercube and introduce some of the coin-



munication primitives such as routing and broadcasting and explain how they can

be done in perfect hypercubes, i.e., hypercubes which do not contain any faulty

component.

The n-dimensional hypercube, also called n-cube, is denoted as Qn, and it has

N = 2n nodes and n2' links. Each node has a unique address (an_i, an -2, , ao),

where as E {0,1} for i = 0, 1, , n 1. Two nodes are connected by a link if their

addresses differ by exactly one bit.

Let the nodes a and b differ in the i-th bit. Then the link between a and

b is uniquely represented by (an_ian_2... ai+i a2_1 ao) where a = (ari_ian_2

ai a2_1 . . . ao). We also say that the link is in the i-th dimension. For

example, the link connecting two nodes 10110 and 10100 is denoted as 101 0 and

is in dimension 1.

The definition of the product of graphs is as follows [CS87].

Definition 1.1: Let Gp = (Vp, Ep) be the product of two graphs G1 Ei) and

G2 = (V2, E2), denoted by GI, = G1 x G2. Then Vp = Vl x V2 and two nodes

u = (ui, u2) and v = (vi, v2) are adjacent in Gp iff [u1 -= v1 and u2 adjacent to v2]

or [u1 adjacent to v1 and u2 = v2].

Then Qn can be recursively defined as follows.

Definition 1.2: A Qn can be expressed as

a) Qo is a trivial graph with one node, and



4

00104A11111W
owl

1131PitA
mu

0100 111 0101 1100111

1111um

AlW142,-iseilaik
411111111°1

rt

0000

Figure 1.1. Construction of Q4 from two Q3's.

1011

1001

b) Q = K2 x where K2 is the complete graph with two nodes.

Figure 1.1 shows how Q4 can be constructed from two Q3's.

The routing algorithm in an interconnection network is the mechanism by

which packets are guided from their sources to their destinations through the net-

work. The main object of the routing algorithm is to select paths of small total delay

for each packet. The problem of minimum delay routing from a source node to a

destination node would then be reduced to the problem of finding a path connecting

the two nodes with minimum sum of link delay [EIT89].

The Hamming distance between two nodes, a and b, is denoted by a bitwise

Exclusive-Or operation of the two nodes, a ED b = c = c,i_2, , co), where

ci = ai ED b, for i = 0, 1, ... n 1. The number of links on any path between two

nodes can not be less than the Hamming distance of the two nodes. Furthermore,

there exists at least one path with a number of links that is equal to the Hamming



5

distance. Such a path can be obtained by switching in sequence the bits in which

the addresses of the two nodes differ. For example, in Q5, let nodes 00010 and 10101

be the source and destination nodes, respectively. Then 00010 ® 10101 = 10111.

Then the routing path can be obtained by converting the bits in 10111 one by one

from lowest to highest dimension as follows.

00010 -4 00011 -4 00001 -4 00101 --4 10101.

Johnsson and Ho PH891 introduce four different communication primitives,

1) one-to-all broadcasting (or single node broadcasting) in which a single node dis-

tributes a common data to all other nodes, 2) one-to-all personalized communica-

tion (or scattering) in which a single node sends unique data to all other nodes,

3) all-to-all broadcasting (or multinode broadcasting) in which all nodes broadcast

concurrently to all other nodes, and 4) all-to-all personalized communication (or to-

tal exchange) where each and every node sends a unique data to every other node.

Figure 1.2 explains the primitives in detail.

Communication algorithms can be implemented in either one-port or n-port

model. In an one-port model, a node can transmit a packet along at most one

incident link and can simultaneously receive a packet along at most one incident link,

whereas in an n-port model all incident links of a node can be used simultaneously

for packet transmission and reception.

In the case of single node broadcasting, Sullivan et al. [SB77] have given

what is now the standard algorithm, called e-cube algorithm, for broadcasting in



Ps

PN-1

Po P1 P2

m m m
(a)

mo mo mo

mi ml mi

m2 m2 m2

ITN-1 N-1 mN-1

(c)

PN-1

m Ps

PN-1

mO

m1 P1

m2

Po P1 P2 PN-1

mo mi m2

(b)

mN-1

PN-1

m00 m01 m02 mON-1

m10 m11 m12 m1 N-1

m20 m21 m22 m2N-1

mN-1 PN-1 1-114-1011h-11MN-1 2

(d)

Figure 1.2. Communication primitives. (a) single node broadcasting in which source node ps

send same message to all other nodes, (b) scattering in which source node p3 send unique mes-

sages to all other nodes, Nall-to-all broadcasting, where processor pi broadcasts its message

mi i 0, 1, , N 1, (d) total exchange, where node pi sends the message mii to processor

pi, for all 0 < < N 1 and 0 < j < N 1.



7

Figure 1.3. Broadcasting tree in Q3. Here node 000 is a source node in Q3.

the hypercube multicomputers. This algorithm works as follows. In the first time

unit the source node sends the broadcast message along the 0-th dimension and

thus at the end of the first step two nodes will have the message; at the second

time unit both of these nodes send the message along the first dimension, so four

nodes will have the message at the end of the second time unit; next all of these

four nodes will send the message along the second dimension, and so on. At the end

of n time units all 2' nodes will have the message. Since the diameter (the longest

path length between any two nodes) of Qn, is n, the e-cube algorithm is optimal.

Figure 1.3 shows the broadcasting tree which is resulted by e-cube algorithm in Q3

with source node as 000, which is also known as a binomial tree.

Other communication primitives are described in [JH89, B+91, Fra92, L+90,

BT89, HJ86, JH91].



8

Chapter 2

Single Node Broadcasting in Faulty Hypercubes

2.1 Introduction

Parallel processing has been known as the only solution to overcome the von Neu-

mann bottleneck which is caused by sequential request and reply between single

CPU and memory [Tan90]. In order to achieve efficient parallel processing many

topologies have been suggested and advocated [Sto71, HZ81, BK79, PV81, SP89,

YN90]. Among them, the hypercube has been very popular due to its various

merits such as regularity, embeddability of many other topologies, relatively small

diameter, easiness of construction, etc.

Parallel architectures often consist of thousands of processors, and in dis-

tributed memory systems communication between processors are mainly done via

message passing. Thus, efficient communication schemes are extremely important to

achieve high performance in the systems. Many researchers have proposed various

communication algorithms for hypercube multicomputers [JH89, SB77, HJ86, B+91,



9

L+90, JH91]. However, most of these communication schemes do not work prop-

erly in the presence of faulty components in the system. Numerous fault-tolerant

communication algorithms have been proposed [CS90c, CS90d, RS88, Fra92, LH88,

PB90c, CS89, PB92].

Lee and Hayes [LH88] have proposed fault-tolerant broadcasting algorithm

based on the concept of unsafeness of a node which may cause communication

difficulties in faulty hypercubes. They showed that by avoiding, if possible, these

unsafe nodes, broadcasting can be easily achieved. However, if there are more than

Li] faulty nodes in an n-dimensional hypercube, all the nodes in the hypercube

become unsafe, so their algorithm can tolerate up to al faulty nodes/links. Their

algorithm takes n 1 time steps. Ramanathan and Shin[RS88] have described

fault-tolerant broadcasting algorithm in which source node delivers multiple copies

of the broadcasting message to all other nodes in the faulty hypercube through

edge disjoint paths. They advocate that the algorithm is suitable for real-time

applications since source node does not have to know the identities of the faulty

components. However, this approach may cause much more traffic in the system

than the one in which each node receives only one copy of the broadcast message.

Their algorithm can tolerate up to n 1 faulty components, and it takes n 1 and

2n time steps for n-port and one-port communications, respectively.

In this chapter a simple and optimal fault-tolerant broadcasting algorithm in

hypercube multicomputers in the presence of up to n-1 faulty links is given. Further

results for up to 2n 3 faulty links are also described. In addition, fault-tolerant



10

broadcasting algorithm in the presence of n 1 faulty nodes is also presented. Our

algorithm takes n 1 time steps even in the presence of n 1 faulty links or nodes;

this can be achieved even with one-port communication. For up to 2n 3 link

or node faults, the proposed algorithm takes at most n + 3 time steps even with

one-port communication.

The outline of the chapter is as follows. Section 2.2 summarizes the notations

and definitions which will be used throughout the chapter. Section 2.3 introduces

a new broadcasting algorithm which can tolerate up to n 1 link faults. In Section

2.4, we extend our algorithm to tolerate up to 2n 3 faulty links. Broadcasting

algorithm with node failures is presented in Section 2.5. The conclusion follows in

Section 2.6.

2.2 Preliminaries

An n-dimensional hypercube, Qn, consists of 2n nodes and n2n-1 links. Each node

has a unique address (an_i, an_2, ao), where ai E {0,1} for i = 0,1, , n 1.

Two nodes are connected by a link iff their addresses differ by exactly one bit.

Let the nodes a and b differ in the i-th bit. Then the link connecting a and b is

uniquely represented by (an_1an_2 ai+1 ai_1 ao) where a = (an_i an_2 ao)

We also say that the link is in the i-th dimension. For example, the link connecting

two nodes 10110 and 10100 is denoted as 101 0 and is in dimension 1.

In the case of broadcasting, sometimes called single node broadcasting, a



11

single node sends the same message to all other nodes. As explained in Chapter 1,

Sullivan et al.[SB77] have given what is now the standard algorithm, called e-cube

algorithm, for broadcasting in the perfect hypercube multicomputers.

Any subcube Q,, in Q,, x < n, can be uniquely represented by a sequence of

n ternary symbols (t-n-1, -n-2, . , to), ti E {0, 1, *}, 0 < i < n 1, where * is a don't

care symbol. For example, the subcube 011 * * consists of the nodes {01100, 01101,

01110, 01111 }. If we divide (or partition) Qn into two subcubes along dimension d,

the addresses of the two Qn_1 subcubes are ***... ld**...** and *** Od** .**.

For example, if Q4 is divided along the 1st dimension, the resulting two subcubes

are * * 0* and * * 1*. In the following Q7 indicates an x-dimensional hypercube

which contains at most p faulty links.

The originator or source node is the node which initiates the broadcasting in

Qn, and originating cube is the subcube which contains the originator node. A cube

(or subcube) is called faulty if it contains some faulty links or nodes and perfect if

it doesn't.

The following assumptions are made in this chapter.

(1) Each node knows all the identities of faulty links and nodes in the networks.

(2) It takes one time unit to send a message to an adjacent node.



12

2.3 Broadcasting strategy in the presence of up to n 1

faulty links

In the e-cube algorithm only 21' 1 out of n2n-' links are used. Also note that

all the 2n-1 links in one dimension (i.e., the dimension used in the last step of the

e-cube algorithm) participate in the broadcasting. For example, in Q3, if 000 is the

originator node, then all the links in dimension 2 are used in step 3. Thus, if there

is no faulty link in dimension 2 and broadcasting is done in one of the Q2's, 1 * * or

0 * *, then all the nodes in the other Q2 can receive the message along the dimension

2. Using these observations, we propose a new fault-tolerant broadcasting algorithm

for Qn-1n

Let F be the set of faulty links in Qn. If F is empty, broadcasting can be

done using e-cube algorithm. When there are faulty links in Qn, at least one of the

dimensions, say dimension p, does not contain any faulty link since IF' < n 1.

Let us divide QT, into two subcubes, Q.-1 and Qn'_1, along dimension p. Then

broadcasting in Qn can be done if we could broadcast in one of the subcubes,

say Q,i_i; this is because all the nodes in Qn can receive the message from the

corresponding nodes in Qfl_i, since no link in dimension p is faulty. When we divide

Qn along dimension p, two cases can occur.

CASE 1) All the faulty links belong to one of the two subcubes, say Qn'_1. Suppose

the source node is in 0,n-1. Then using the e-cube algorithm, broadcasting can

first be done in Qn_i; then all the nodes in Q.-1 can send the message to the



13

corresponding nodes in QT,'_1 along dimension p.

On the other hand if the source node is in Q'ri_1, first the source node can send

the message to its neighboring node in Qn_i; then the steps of CASE 1 described

above can be repeated except that the receiving node should not send the message

back to the sender. In any case broadcasting in Q can be done in at most n 1

time units.

CASE 2) Each subcube contains some faulty links. The subcube, say which

contains the source node can have at most n 2 faulty links because the other

subcube contains at least one faulty link. If we could broadcast the message among

the nodes in Q_1, then the complete broadcasting can be done in one more step

by sending the message from the nodes in to the nodes in along p-th

dimension. Now the original problem of broadcasting in Qr, with up to n 1 faulty

links is reduced to the problem of broadcasting in Qn_i with up to n 2 faulty

links. We keep dividing the subcube Qi which contains the originator node into

two subcubes, Qi_1 and q_1, along fault-free dimensions for i = n 1, n 2, ... , 2.

Eventually for some k > 1, we will get a subcube Qk which does not contain any

faulty link. If the adjacent subcube Q'k contains the source node, first that node can

send the message to the corresponding node in Qk. On the other hand, if Qk itself

contains the originator node this extra step is unnecessary. Now using the e-cube

algorithm broadcasting can be done first in Qk in k steps. Then the message can

be successively sent along the fault-free dimensions to the new nodes. In any case

the complete broadcasting can be done in n + 1 steps.



14

Example 2.1. Let F = {000, 11 1, 00 0} in Q4. Let node 0000 be the source

node. Here, no link in dimension 2 or 3 is faulty. Choose any one from these

fault-free dimensions, say dimension 2, and divide Q4 along this dimension. The

originating cube *0 * * contains the faulty links 000 and 00 0, and no link in

dimension 3 in this cube is faulty. Since neither of the resulting Q3's is perfect,

the originating cube *0 * * is again divided into two subcubes, Q2 = 00 * * and

= 10 * *. Now Q'2 is perfect, but Q2 contains the source node. The source node

0000 sends the message to node 1000 in Q. Then broadcasting in (212 can be done

in two steps. Nodes except 1000 send the message to the nodes in Q2 in the next

time step. Finally nodes in Q3, which is the union of Q2 and Q/2, send the message

to the corresponding nodes in Q13.

In the following we prove the correctness and optimality of the above algo-

rithm.

Theorem 2.1. Every node in the hypercube receives the broadcast message exactly

once.

Proof : The algorithm recursively divides originating cube Q, into two Qx_i's along

the dimension p such that no link which is in dimension p and in cube Q, is faulty.

The division precess continues until a perfect subcube is found. After completing

broadcasting in the perfect subcube using e-cube algorithm, it starts to broadcast

along the fault-free dimensions. In this way every node receives the message exactly

once. Note that for the case when both all the faulty links and the source node are



15

in the same subcube, we have modified the algorithm so that the source node does

not receive the message it sent.

Theorem 2.2. At least n 1 time steps are needed to broadcast in Cr,2-1.

0

Proof : Suppose the source node is 000 ... 000 and the n 1 faulty links are

0111. . .111, 0111...11-1, 0111...1-11, . ., 0-11. . .1111. Then node 0111 . . . 1111

has to receive the message from node 111 ... 111. But the distance between 00 ... 00

and 111 ... 111 is n. Thus node 0111 ... 1111 receives the message only after n time

units. 0

Since the lower bound is n 1 and the proposed algorithm takes at most

n 1 time steps, the given algorithm is optimal.

2.4 Broadcasting strategy in the presence of up to 2n 3

faulty links

Even in the presence of up to 2n 3 link failures, we assume that the hypercube is

connected. In this case, there must exist a dimension where at most one link can

be faulty. This is because if all the dimensions have two or more faulty links then

we will have more than 2n 1 link failures which contradicts our assumption.

Let p be the dimension with least number of link faults. Divide the hypercube

along p-th dimension to get the two subcubes Qm_i and Q.' Then two cases can

OMIT.



16

CASE 1) Suppose there is no link fault along this p-th dimension. Note that one

of the subcubes, say Qn_1, must contain at most n 2 faulty links. If the source

node is in Qn_1, then using the algorithm developed in the previous section, first

broadcasting can be done in Qn_1 and then all nodes in Qn_1 can send the message

along dimension p to nodes in However, if the source node is in Q'n_i, first

the source node can send the message to the corresponding node in Q,_1; then the

above steps can be repeated except that the receiving node should not send the

message back to the sender. In any case broadcasting can be done in at most n + 2

steps.

CASE 2) Suppose the number of faulty links in dimension p is 1. Again one of

the subcubes, say Qn_1, will have at most n 2 faulty links. If the source node

is in Qn_1, broadcasting in Q_1 can first be done in n steps using the algorithm

developed in the previous section. Then all nodes in Q,_1 send the message along

dimension p to nodes in 0 In this case exactly one node, say b, in Q'n_i will

not receive the message because there is a faulty link in dimension p. Note that not

all links connecting b to the nodes in Qin_1 can be faulty. Otherwise node b would

have been disconnected from the rest of the nodes and this is contradictory to our

assumption that the faulty hypercube is connected. Thus b can receive the message

from one of the adjacent nodes which is in Qn _1.

On the other hand if the source node is in Q,c_1, first it can try to send the

message to a node in Qn_1. If the link connecting the source node which is in Q'n_i

and its corresponding node in Qn_1 is not faulty then this can be done in one step;



17

otherwise this can be done in two steps. After this all the steps described in the

previous paragraph can be executed. In any case the complete broadcasting can be

done in n + 3 steps.

2.5 Broadcasting strategy in the presence of up to n 1

faulty nodes

Our new broadcasting algorithm in hypercube multicomputers with node failures

is again based on the fact that the hypercube has a recursive structure; i.e., Qn is

composed of two Qn,_1's. We recursively divide Qn into smaller subcubes such that

one fault-free node in each subcube contains the message, thus the original problem

of broadcasting in Qn is divided into two subproblems of broadcasting in Qn_i with

at most n 2 faulty nodes in each subcube. Once we have found the fault-free

subcube, nodes in the corresponding faulty subcube will receive the message from

the nodes in the fault-free subcube. The detail of our algorithm is given below.

In the presence of a single faulty node b = (bn_1bn_2 bo) the source node

a = (an_i an_2 ao) can broadcast to all other nodes in n time steps as follows.

Let a and b differ in some bit, say i-th bit (i.e., ai = bi). Then the subcube

Qn -1 = * * * * * * ai * *... * ** contains the source node a but not the faulty

node b. Now node a can broadcast to all the nodes in Qn_i in n 1 steps using the

e-cube algorithm. In the n-th step all the nodes in Qn_i can send the message to

all the nodes except b in the other subcube Q7c_1 = * * *... * * * bi * * * **.



18

Now consider the case for t < n 1 faulty nodes in Qn. Let ao = (aon-i,

aon-2, , a00) be the source node and ak = akn-2, , ako) for k = 1, 2, ... , t

be the t faulty nodes.

CASE 1) Suppose values of some bit, say bit i, of all the faulty nodes are the same.

Then we can partition the original cube Qn into two Qn_i's, Qn-i = * * * *

*aki * * * * and Qn-1 * * * . * *a-ki * * * * such that all the faulty nodes

are in Qn_i and none of the nodes in Q'n_1 is faulty. Note that Qn_i and Qn' _1

are adjacent each other. If the source node ao is in Qn' _1 then ao can broadcast in

Qn-1 using e-cube algorithm in n 1 steps; in the n-th step all the nodes in Q'n_i

can send the message to all the non-faulty nodes in Qn_1. However, if the source

node ao is in Qn_i which contains all the faulty nodes, first ao can send the message

to the adjacent node ao which is in Qn 1. Then ao can broadcast the message to

all the nodes in Q'n_1 in n 1 time steps using the e-cube algorithm and finally

all the nodes in Q7,'_1 can send the message to all the nodes other than the faulty

nodes and ao in Qn_i in one step. Thus the total number of time steps taken by

the algorithm will be n + 1.

CASE 2) Now let us consider the other case; i.e., no position of the t < n

1 faulty nodes has the same bit value. Let a'0 be a non-faulty adjacent node

of the source node ao. Let ao and a'0 differ in the i-th bit position, i.e., a'0 =

aon_2, , aoa+1, aoi-i, , a00) Node ao can send the message to a'0

in one step. Now consider the subcubes *... *aoi * *... ** and

c-1/
* * * * *croi * * . . . * *. Not all faulty nodes can be in Qn_i or in Qn-1 If



19

they were, the i-th bit of the faulty nodes would have the same bit value; this would

contradict the original assumption. Let there be t1 and t2 faults in Qn_i and in V7,_i

respectively, where 1 < t1 < n 1, 1 < t2 < n 1 and ti t2 = t < n 1. After one

step, the original problem of broadcasting in Qn in the presence of t < n 1 faulty

nodes with ao as the source node is reduced to two subproblems of broadcasting in

Q,,_1 and in Qn_i with ao and a'0 respectively as the source nodes. Each subcube

can have at most n 2 faulty nodes.

Now depending on the bit values of the faulty nodes in Qn_i and either

CASE 1 or CASE 2 can be applied to each subcube. In any case the maximum

number of steps taken by the algorithm will be at most n 1.

By using similar ideas shown in Section 2.4, broadcasting in hypercube mul-

ticomputers with up to 2n 3 faulty nodes can be achieved.

2.6 Conclusion

We have given broadcasting algorithms, one that tolerates up to n 1 and the other

that tolerates up to 2n 3 link faults in an n-dimensional hypercube. An optimal

fault-tolerant broadcasting algorithm for up to n 1 faulty nodes is also described.

Even though the implementation of the algorithm is non-adaptive, it can be made

adaptive with some minor modifications.



20

Chapter 3

Highly Fault-Tolerant Single Node Broadcasting
in Hypercubes

3.1 Introduction

In this chapter we concentrate on single node broadcasting in hypercubes in which

a single source node sends a broadcast message to all other nodes. Lee and Hayes

[LH88] have proposed an algorithm that achieves fault-tolerant broadcasting in the

presence of up to Lid faulty nodes. They introduce the concept of unsafeness; if

the status of a node is unsafe, then the messages to be routed through the node

may experience some difficulty. They show that by avoiding, if possible, these unsafe

nodes, broadcasting can be achieved. However, if the hypercube contains more than

[1] faults, all the nodes in the cube become unsafe. Their algorithm takes n +1 time

steps. Ramanathan and Shin [RS88] have proposed a broadcasting algorithm which

delivers multiple copies of the broadcast message to all nodes through multiple edge-

disjoint paths. In their algorithm the broadcasting node does not have to know the

identities of the faulty components in the network, so it may be suitable for the real-



21

time applications. However, this approach may cause a large amount of unnecessary

traffic in the system. Their algorithm can tolerate up to n 1 faulty components,

and it takes n 1 and 2n time steps for n-port and one-port communications,

respectively.

In Chapter 2, we have proposed a broadcasting algorithm which can tolerate

up to n 1 link/node faults. The algorithm takes n +1 time steps, which is optimal

[PB92]. Further, it is shown in Section 2.4 that the proposed algorithm with some

minor modifications can easily tolerate up to 2n 3 faults. The algorithm which

tolerates up to n 1 link faults will be briefly explained in Section 3.3. This chapter

presents a new broadcasting algorithm which can tolerate up to 7-1-21--n- faulty links.

The assumptions made in this chapter are (1) even though there are up to n22 n

faulty links, the network is connected, and (2) each node knows the identities of the

faulty links.

The rest of the chapter is organized as follows. Section 3.2 introduces the

notations, definitions and background which will be used throughout the chap-

ter. Section 3.3 briefly explains the algorithm which completes broadcasting in

n-dimensional hypercube with up to n 1 faulty links. Section 3.4 proposes a new

fault-tolerant broadcasting algorithm in hypercubes with up to 7122 71 faulty links.

The conclusion follows in Section 3.5.



22

3.2 Notations and background

An n-dimensional hypercube, Qn, consists of 2n nodes and n2n-1 links. Each node

has a unique address (an_i, an_2, ao), where ai E 10,11 for i = 0,1, ... , n 1.

Two nodes are connected by a link iff their addresses differ by exactly one bit.

Bitwise Exclusive-Or operation of the two nodes, a and b, is denoted by a ED b = c =

(cn-i, Cn-2) co), where ci = ai ® bi for i = 0,1, ... , n 1. ei denotes a unit vector

such that all the bits have value 0 except the i-th bit which has value 1. Thus if

nodes a and b are adjacent to each other, then a eb = ei for some i. It is said

that link connecting the two nodes is in dimension i, and this link is represented

uniquely by (an_i, afl_2, , a1+1, ai_1, , ao), where the address of the node a

is (an-i, an-2, ,
ao). For example, the link connecting nodes 01010 and 01011 is

denoted as 0101- and is in dimension 0. There are 2n-1 links in each dimension.

A dimension is fault free if no faulty link is in that dimension. Let S be a

set of links. Then SII is a n-dimensional vector whose i -th component, denoted

114 (i), is equal to the number of links in dimension i in S. For example, if S =

{01 00,1011,0111, 1101,0011}, then IISII = 10103, and 114(2) = 1.

Any subcube Q, in Qn, x < n, can be uniquely represented by a sequence of

n ternary symbols (tn-1,tn-2, , to), ti E {0,1,*}, 0 < i < n 1, where * is a don't

care symbol. For example, the subcube 011** consists of the nodes {01100, 01101,

01110, 01111}. If we divide (or partition) Qn into two subcubes along dimension d,

the addresses of the two Qn_i subcubes are ***... 1d** ...** and *** Od** .**.



23

For example, if Q4 is divided along the 1st dimension, the resulting two subcubes

are * * 0* and * * 1*. FAULT(QX) denotes the number of faulty links in Q,.

A cube is connected if there is a path between every pair of nodes. Likewise,

a subcube is connected if for every pair of nodes in the subcube, there exists a path

between them such that all the links in the path are in the subcube. A cube is

called faulty if it contains some faulty links and perfect otherwise.

In the case of broadcasting, a single node, called a source node, sends the

same message to all other nodes. Sullivan and Bashkow [SB77] have given what is

now the standard algorithm, called the e-cube algorithm, for broadcasting in perfect

hypercubes. The detail of the e-cube algorithm is explained in Chapter 1.

3.3 Broadcasting algorithm which tolerates up to n 1

faulty links

In this section we will briefly explain the algorithm proposed in [PB92] which tol-

erates up to n 1 faulty link in Q,. Even though it may be a repetition of Section

2.3, we present the algorithm in slightly different way with different example. The

algorithm will be referred to as BRST' in the rest of the chapter.

Let s and F denote the source node and the set of faulty links in Qn, respec-

tively. If F is empty, broadcasting can be done using e-cube algorithm. When there

are faulty links in Q,,, there exists at least one fault-free dimension, say dimension

I), since IF1 < n 1. Let us divide Qn into two subcubes, Qn_i and C2'_1, along the



24

fault-free dimension p. Then the broadcasting in Qn can be done if broadcasting in

one of the subcubes, say Qn_1, can be done. This is because all the nodes in Qn_1

can receive the broadcast message from the corresponding nodes in Qn_1, since no

link in dimension p is faulty. When Qn is divided along dimension p, two cases can

occur.

CASE 1 : All the faulty links belong to one of the subcubes, say Q'n-14 Suppose

the source node, s is in Qn_1. Then using the e-cube algorithm, broadcasting can

first be done in Qn_1, and then all the nodes in Qn_1 send the message to the

corresponding nodes in Qn along the dimension p. On the other hand if s is

in Qn'_1, first s can send the message to its corresponding node, ,s' = s e2, in

Qn_1, and then the steps of CASE 1 described above can be repeated except that

the receiving node should not send the message back to the sender. In any case,

broadcasting in Qn can be done in at most n 1 time units.

CASE 2 : Both subcubes contain some faulty links. In this case the subcube, say

Qn_1, which contains the source node can have at most n 2 faulty links because

the other subcube contains at least one faulty link. If broadcasting in Qn_1 is done,

then the complete broadcasting can be done in one more time step by sending the

message from the nodes in Qn_1 to nodes in Q,,_1 along the p-th dimension. Now

the original problem of broadcasting in Qn with up to n 1 faulty links is reduced to

the problem of broadcasting in Qn_1 with up to n 2 faulty links. We keep dividing

the subcube Qi which contains the source node into two subcubes, Qi_i and Vi_1,

along fault-free dimensions for i = n 1, n 2, ... , 2, at the same time the fault-free



25

dimensions are pushed into a stack, STACK. Eventually for some k > 1, we will

get a perfect subcube Qk. If the adjacent subcube Q'k contains the source node s,

first s sends the message to the corresponding node, s EDer in Qk, where r is the

dimension dividing Qk and Q`k. On the other hand if Qk itself contains the source

node, this extra step is unnecessary. Now using the e-cube algorithm, broadcasting

can be done first in Qk in k steps. Then the message can be successively sent along

the fault-free dimensions which are obtained by popping the STACK. In any case,

the complete broadcasting can be done in n 1 time steps. The following example

illustrates this.

Example 3.1. Let the source node be 00000 and F = {0011, 001-0, 00- 00,1100 }

be the set of faulty links in Q5. Then, since dimensions 3 and 4 are fault-free, we

arbitrarily choose dimension 3 and divide Q5 along it. Since both subcubes *0 * **

and *1*** contain some faulty links, CASE 2 will be applied; Dimension 3 is pushed

into the STACK, and we have a smaller problem broadcasting in Q *0 * ** with

F = OX11,0X1 0,0X 00, where X is a don't care symbol. Since dimension 4

is fault-free, *0 * ** is divided along it, which produces two subcubes, 00 * ** and

10 * **. At the same time, dimension 4 is pushed into the STACK. Refer to Figure

3.1. Since subcube 10 * ** does not contain any faulty links, source node 00000

sends the message to node 10000. The e-cube algorithm completes broadcasting

in 10 * ** in three steps. At step 4, all nodes in 10 * ** except node 10000 send

the message along dimension 4 which is obtained by popping the STACK. Now,

all nodes in *0 * ** have the message, and at step 5 these nodes send the message



00***

0 00000

01***

0 10000

10 ***

Dimension 3

Dimension 4

26

Figure 3.1. Division of Q5 along two dimensions. Q5 is divided first along dimension 3 and then

along dimension 4. Node 00000 is the source node, and 0011-, 001-0, 00-00, 1100- are the faulty

links.

along dimension 3 which, again, is obtained by popping the STACK. At this point

broadcasting in Q5 is completed.

3.4 New single node broadcasting algorithm

In the previous section, a broadcasting algorithm for QT, with n 1 faulty links was

described. In that algorithm, (27, is continuously divided into smaller subcubes until

a perfect subcube is found and at the same time the sequence of the dimensions

along which Qn is divided is saved. After the perfect subcube is found, broadcasting

is completed in the subcube first, and then the broadcasting for the rest of the Q.



27

is done along the sequence of the dimensions stored. The algorithm works since

1) whenever a subcube, say Qm, is partitioned into smaller subcubes, Qm_i's, it is

guaranteed that one of the subcubes contains at least one fewer fault than Qm, and

2) the subcube is connected since it contains at most m 2 faulty links.

Note that the algorithm tolerates only up to n-1 faults since only one faulty

link is guaranteed to be eliminated when a cube is partitioned into smaller subcubes.

Thus, for example, if there is an algorithm which guarantees that two faulty links

are eliminated by each partitioning, the algorithm will tolerate up to 2n 2 faulty

links. The above observation leads us to the following question : Can we develop

an algorithm that can guarantee that a large number of faulty links are eliminated

by each partitioning? This chapter presents an algorithm which guarantees that at

least m 1 faulty links are eliminated when Q,,,m < n, is partitioned. Thus, our

algorithm tolerates up to 1 + 2 + (n 1) = n% -n faulty links.

The basic idea of the proposed algorithm, BRST
2

, is similar to that of

BRSTn-1 which is described in the previous section; Qn is continuously divided

until a subcube, Qx which contains x 1 faulty links, is found. Let Qx be the

starting subcube. Once the starting subcube is found, then broadcasting in the

subcube can be done using BRSTn- 1. Note that since the total number of faulty

links in Qn can be at most n22 71, it is guaranteed that there exists at least one Q2

starting subcube which contains at most one faulty link (this is because Q3 contains

at most 32-2 3 = 3 faulty links, one of the Q2's contains at most one faulty link).

Broadcasting in the rest of the Qn can be continued along the stored dimensions in



28

the STACK as was done in BRST"1. However, there are some problems left to

be solved in this case.

PROBLEM 1) Does there exist a dimension such that if a cube, say Qm, is divided

along it, one of the subcubes contains at least m 1 fewer faulty links than Qm and

at the same time the subcube is connected?

PROBLEM 2) The source node may not be in the starting subcube.

PROBLEM 3) In BRST"1, cubes are divided along fault-free dimensions. There-

fore, the nodes not belonging to starting subcube will receive the message without

any difficulty. However, in BRST
n2

2 some of the dimensions along which cubes

are divided may contain some faulty links. As a result, some of the nodes may not

receive the message directly from the corresponding nodes in adjacent subcube. For

example, at step 4 in Example 3.1, if some of the links connecting 10 * ** and 00 * **

are faulty, then some of the nodes in 00 * ** may not receive the message directly

from the nodes in 10 * **.

We first prove the existence of the dimension which satisfies PROBLEM 1

above, i.e., we will prove the existence of a dimension such that if Qn, is partitioned

along the dimension, at least one of following conditions is satisfied.

1) One subcube contains at most m 2 faulty links.

)(2) One subcube is connected, and it contains at most 7422In ((m 1) = (m-12 m-2)

faulty links.



29

Note that if 1) is satisfied, then broadcasting can be done in the subcube

by using BRST', and broadcasting will be continued to the rest of Qn, along

the stored dimensions. If 2) is satisfied, then the problem is reduced to a smaller

problem. We keep dividing QT, into smaller subcubes until a subcube, say Qx which

contains less than x faults, is found. Since, as mentioned before, there exists at

least one Q2 which contains at most one faulty link, condition 1 will be satisfied

eventually. The following theorem shows the existence of the dimension which

satisfies condition 2 above.

Theorem 3.1. Suppose Qn m < n, is connected and has at most m22-m faulty links.

Then Qm contains an (m 1)-dimensional subcube which is connected.

Proof Since there are in dimensions in Qm, Qm can be divided into two sub-

cubes along m different dimensions, which produces 2m different Qm_i's. For each

dimension, the number of faulty links needed to disconnect the subcubes will be

calculated. If the total number of faulty links needed to disconnect all the Qm_i's

is greater than m22 m , we get a contradiction and so the theorem proved. Without

loss of generality, let us first divide Qm along dimension 0. Then, in order to dis-

connect both subcubes, there should be some disconnected groups of nodes such

as g1, g2 and g3 as shown in Figure 3.2.a. We will consider only one group, say

g1, which will give the least number of faulty links. In the following, from the two

subcubes resulting from each division only one subcube which needs less number

of faulty links to be disconnected is considered. Thus, the total number of faulty

links needed to disconnect only m subcubes will be obtained. Note that in order



30

to form gl, there should be at least m 1 faulty links in Qni_i. Since no node is

disconnected in the network, at least one node, say al, in 91 should be connected

to a node, say a2, in Q",7,_1. Now let us divide Qm, along dimension 1 as shown in

Figure 3.2.b. Note that al and a2 are in the same subcube. Also note that it does

not matter whether 91 is in Q'fl,_1 or it is spread out in both subcubes. Now we will

disconnect Q"._1 instead of Qn,_i since the former takes less faulty links than the

latter. That is, in order to disconnect there should be at least m 2 faulty

links which are incident to node a2, whereas there should be at least m 1 faulty

links to disconnect Qm_i. Note that node a2 should be connected to a node, say

a4, in Qm_i; if not, the nodes in gi and a2 are disconnected in the network. Now

let us divide the Qm along dimension 2 as shown in Figure 3.2.c. Again, the nodes

al , a2 and a4 will be in the same subcube. By the same reason explained above

in order to disconnect qm_1, at least m 2 faulty links incident to node a4 are

needed. In general, for each dimension, at least m 2 faulty links are needed to

disconnect a subcube, except dimension 0 which needs m 1 faulty links. Thus, a

total of (m 2) * (m 1) + (m 1) faulty links are needed. Since this number is

greater than 7112r1 the theorem follows.

We now discuss PROBLEM 2 Source node may not be in the starting

subcube. Recall that in the proof of Theorem 3.1, of the two subcubes resulting

from a division only one subcube which needs fewer faulty links to be disconnected

is considered. This implies that there exists a dimension such that if Q, is divided

along the dimension, at least one of the subcubes 1) contains the source node, 2)



g1 0

Dimension 0

al

Qm-1

a4 0

0
a3

(a)

Dimension 1

0 a2

Q'm_i

0 al

`y6 m -1

as

(b)

Dimension 2

Q.-1
(c)

Q'm_i

Q'm_i

31

Figure 3.2. Division of Q, along several dimensions. gi through g3 denote the sets of nodes

disconnected in the subcubes they belong.



32

Q m-1

Figure 3.3. Division of Qm into two subcubes. Every node in Qn,_i has broadcast message, and

they are sending the message to corresponding nodes in Cjrni_1. Here some of the links connecting

two subcubes may be faulty. gi and g2 denote the sets of nodes disconnected in

contains at least m 1 fewer faults than Qm, and 3) is connected.

PROBLEM 3 concerns the possibility that some of the dimensions along

which cubes are divided may contain faulty links. As a result, some of the nodes

may not receive the message directly from the corresponding nodes in the adjacent

subcube. Refer to Figure 3.3. Suppose Qn, is divided along dimension d, and

suppose all the nodes in Q77,_1 already have the broadcast message and that they

have sent the message to the corresponding nodes in Q1,n_1. However, since some of

the links in dimension d may be faulty, some of the nodes in Q_1 may not receive

the message. Let Ube the set of nodes which did not receive the message. In this

case, nodes which are in the same subcube as U try to send the message to nodes

in U. This is possible since even if some groups of nodes, e.g., gi and g2 in Figure

3.3, are disconnected in Q'_1, at least one node in each disconnected group should



Algorithm COMPLETE

P = set of nodes in Q'7,1 which do not receive the messages from

corresponding nodes in Q,7,_1. F = set of all the faulty links in

while P {} do begin

calculate VII

let k be the dimension such that 11F11(k) < IIFII(i), for all 0 < i < m 1,

i k

for all p E P do

if (p ek) P then begin

(p ED ek) send the message to p

P = P p

end

end

33

Figure 3.4. Algorithm COMPLETE which completes broadcasting in Qin,_1.

be able to receive the message from the corresponding node in Qm_i. We present

a simple algorithm COMPLETE in Figure 3.4 which completes the broadcasting in

QIrri -1°

x`22Now we give the complete algorithm BRST in Figure 3.5 which broad-

casts in an n-dimensional hypercube with up to n22 -n faulty links.



34

nAlgorithm BRST
n2

2

if number of faulty links in Qn is less than n, then call BRST'
else begin

STACK = {}, Q = * * *...* **, qsize = n, Dim = {0,1, ... ,n 1}

do begin
Found = false
for all i E Dim do begin

Divide the Q along dimension i
if one of the subcubes contains qsize 2 or less faulty links

then begin
Found = true
FoundD =
Push i into STACK

end
else if one of the subcubes contains < (m-T-2) faulty links

and contains source node, and if it is connected then
FoundD =

end
if Found = true then begin

Complete broadcast in Q using BRST"1
Nodes start to broadcast along the sequence of dimensions

which will be obtained by popping the STACK.
At the same time call COMPLETE for the nodes which
did not receive the message.

end
else begin

Q = Qgsizei which contains the source node.
Push FoundD into STACK
Dim = Dim FoundD

end
until (Found = true)

end

Figure 3.5. Algorithm BRST "22 . It completes broadcasting in hypercubes with up to "22 n

faulty links.



35

A linear array is a network topology which looks like a ring with one faulty

link. The length of a linear array is the same as the number of links it contains. For

example, in Figure 3.6 nodes 111...111 through 00011..111 with links only shown

in the figure form a linear array of length three. Let us present the following

proposition before we discuss the communication complexity of the BRST
n2

. In

the following, we derive an approximate bound on the broadcasting time.

Proposition 3.2. Suppose Qn, contains m22' faulty links. Then the number of time

steps taken to complete the broadcasting in Q, is at least

Proof : We will give the fault diameter, i.e., the diameter of the network with the

faulty links, of the Qm,, since the time steps taken by broadcasting cannot be smaller

than the diameter of the network. Without loss of generality, let the source node

be 000...000. Then node 111...111 is the farthest from the source node. In order to

increase the diameter, we try to form the longest possible linear array starting at

node 111...111 as follows. Refer to Figure 3.6. We make all incident links to node

111...111 faulty except the two links 111...111- and -111...111. Likewise, let all links

incident to node 0111...111 be faulty except the two links -111...111 and 0-111...111,

and so on. Then the maximum diameter of Qin is m x, where the value of x

the length of the linear array and can be calculated from (m 2)x < m22-m . Since

the value of x is close to .21-. the diameter of the Qm, is roughly a--rLi
2 2

Proposition 3.2 implies that with a given number of faulty links, the smaller

the subcube the longer the linear array that can be formed. For example, if the



000011_1111

00011...111

00111...111

0111...111 111_1110

111...111

36

Figure 3.6. Generation of the longest possible fault diameter. Here m is the dimension of the

cube and the number of faulty links allowed in Qm is z2 m 1. Among all the links incident

to nodes 111...111, 0111...111, 00111...11, 000111...111, ..., those links which are not shown in the

figure are faulty.



37

number of tolerable faulty links is 20, then the length of the longest possible linear

array in Qio is two, whereas it is four in Q6. Since Q2 is the smallest subcube which

can contain linear array, starting from Q2 we assign as many faults as possible to

subcubes Qi,i = 2, 3, ..., until we run out of given faults, n22 n. This will give the

longest possible linear arrays in all subcubes. Refer to Figure 7. Since Qn contains

at most m22-m faulty links, Q2 contains at most 22-2 2 faulty links. However, Q3

which consists of Q2 and Q'2, contains up to 332 3 2222 faulty links in Q2, which

will be used to calculate the possible longest linear array in Q3 since faults in Q2

is already considered. In general, Qi,i > 3, contains fi = i22 i (i-1)2(i-1) faulty

links. Starting from Q3, we will assign fi faulty links for each Q, until we run out

of faulty links. Thus, we arrive at the following formula

_2
k

32

2 2
21 + I _4

, , 322
3 \

+ 2 2

(r-1)2-(r-1)) < n2-n
)/ k / 2

Above formula gives the value r = n. Since each term 2i (i-1)2-(i-1) 3 < < n,
2

gives a linear array with length 1, the total length of the linear arrays, Ltotai, is

Ltotal = n 1

Thus, the total time steps taken by the proposed algorithm will be n+Ltotal

2n.

3.5 Conclusion

We have given a single node broadcasting algorithm which tolerates up to n2 71'
2

faulty links in an n-dimensional hypercube. The total time steps taken by the



38

algorithm does not exceed twice the dimension of the hypercube. Since the fault

diameter of the network is approximately t, the total time steps taken by the

proposed algorithm is close to optimal.



39

Chapter 4

All-to-All Broadcasting in Faulty Hypercubes

4.1 Introduction

The hypercube has been studied extensively as an interconnection network topology

for multicomputer systems[Sei85, SS88, BS86], and has led to numerous experimen-

tal and commercial machines [JH89] including the recent development of the sys-

tem with more than 6000 nodes by NCUBE [DB92]. The hypercube contains many

salient features such as regularity, symmetry, high fault-tolerance and structural

recursiveness, and some have been explored [Sei85, SS88, BS86].

In distributed memory systems communication between the processors is

mainly done via message passing. Since the communication time may be quite

costly compared to the computation time, efficient communication schemes are ex-

tremely important to achieve the high performance in the system. Johnsson and

Ho [JI189] introduce four different communication primitives, 1) one-to-all broad-

casting (or single node broadcasting) in which a single node distributes a common

data to all other nodes, 2) one-to-all personalized communication (or scattering)



40

Primitives Time steps taken No. of Transmissions

Routing n n 1

SNB n 2n 1

ATAB 1 2n-1 I 2n(2n 1)
L n -1

TX 2n-1 n22n-1

Table 4.1. Optimal time steps and traffic for some communication primitives. Here the number

of transmissions is used for the measurement of the traffic in the network. n-port communication

is assumed. n is the dimension of the hypercube, and SNB, ATAB and TX stand for single node

broadcasting, all-to-all broadcasting and total exchange, respectively.

in which a single node sends unique data to all other nodes, 3) all-to-all broad-

casting (or multinode broadcasting) in which all nodes broadcast concurrently to all

other nodes, and 4) all-to-all personalized communication (or total exchange) where

each and every node sends a unique data to every other node. Many researchers

have proposed various communication algorithms for hypercube multicomputers

[JH89, SB77, HJ86, B+91, JH91], most of them concentrating on routing or one-

to-all broadcasting. However, most of these communication schemes may not work

properly in the presence of faulty components in the system. Numerous fault-

tolerant communication algorithms have been proposed in [CS90c, CS90d, GS88,

PB92, LH88, PB90c, CS89, CS88, RS88], again most of them concentrating on

routing or one-to-all broadcasting.



41

Table 4.1 shows optimal times and number of packet transmissions for some

basic communication primitives with n-port assumption, i.e., all the incident links

to a node can be used simultaneously for packet transmission and reception. In

general, the number of packet transmissions is used as a synonym to the traffic in

the network which is quantified by the number of packet transmissions taken by an

algorithm that solves the corresponding communication problem. Note that a factor

of 2n difference between single node broadcasting (SNB) and all-to-all broadcasting

(ATAB) or total exchange (TX) in terms of both time and traffic. Thus, it is not

difficult to imagine that inefficient algorithms for ATAB and TX may result very

poor performance in the system.

In this chapter we introduce a simple and near optimal fault-tolerant all-to-

all broadcasting algorithm in hypercube multicomputers in the presence of up to

III faulty links, where n is the dimension of the hypercube. Lee and Shin [LS90]

have given some of the important applications of fault-tolerant all-to-all broadcast-

ing distributed agreement [LLP82], clock synchronization [LMS85], distributed

diagnosis of intermittently faulty processors [YM88], etc. In these algorithms, each

non-faulty node must be able to deliver its message to all other non-faulty nodes

in the system. Both Lee and Shin (LS) [LS90] and Fraigniaud (FR) [Fra92] have

proposed algorithms which achieve this under the assumption of non-availability

of global fault information, i.e., each non-faulty node does not know the identities

of faulty components. In both LS and FR algorithms each node delivers multiple

copies of the broadcasting message through disjoint paths to all other nodes in the



42

system. On receiving the multiple copies of each message, each non-faulty node

identifies the original message using some schemes such as majority voting. These

algorithms have the advantage of not having to know the addresses of the faulty

components, and therefore they may be suitable for the real-time applications.

However, since multiple copies of the same message cause much more traffic

in the network, it may severely degrade the performance in the system, especially

ones using wormhole [S+85, Da187, Da190] or virtual cut-through [KK79] routing as

shown in [LS90]. Further, since the occurrence of the component faults is infrequent,

it may be more efficient to broadcast the fault information by using some some fault-

tolerant single node broadcasting algorithm such as in [RS88], so that each node

contains the identities of the faulty components (note that the fault-tolerant single

node broadcasting requires at most 2n time steps even when the algorithm does not

require the global fault information) This allows that each node sends only one copy

of the message, as proposed here, to complete all-to-all broadcasting. Therefore, if

merging messages is not allowed, our algorithm produces approximately a factor of

T1 less traffic than LS and FR algorithms.

Many fault-tolerant algorithms do not have the capability of utilizing algo-

rithms developed for the non-faulty system; this forces the parallel systems to have

two totally different algorithms, one for the faulty and the other for the non-faulty

system (these will be referred to as faulty and non-faulty algorithms, respectively.)

One of the advantages of the proposed algorithm is that it fully utilizes the non-

faulty algorithm, and this non-faulty algorithm can be any existing one or any new



43

one yet to be developed.

The rest of the chapter is organized as follows. Section 4.2 summarizes the

notation and definitions which will be used throughout the chapter. Section 4.3

introduces a new all-to-all broadcasting algorithm which can tolerate up to L zi link

faults. The conclusion follows in Section 4.4.

4.2 Preliminaries

As mentioned in Chapter 1, in hypercube topology two nodes are connected by a link

iff their addresses differ by exactly one bit, and they are called the end nodes of the

link. The relative address of two nodes, a and b, is bitwise Exclusive-Or operation of

the two nodes aeb = c = , co), where ci = aiebi for i = 0, 1, , n 1.
ei denotes a unit vector such that all the bits have value 0 except the i-th bit which

has value 1. Thus if nodes a and b are adjacent to each other, then a ® b = e2 for

some i. It is said that link connecting the two nodes a and b is in dimension i, and

this link is uniquely represented by (an_i, , a,+1, ai_i, ao), where the

address of the node a is (an_i, an_2, , ao). For example, the link connecting nodes

01010 and 01011 is denoted as 0101- and is in dimension 0. The relative address of

the two links / and m is also bitwise Exclusive-Or of their addresses, 1 ® m, where

li ® mi = 1 iff /i = 0 (respectively, 1) and mi = 1 (respectively, 0); li ®mi = 0,

otherwise.

The weight of a node or link r is the number of l's in r. The distance between

two nodes a and b (or two links 1 and m) is given by W(a ® b) (or W(/ ® m)). Let



44

S be the set of nodes or links. Then ISI denotes the cardinality of S.

Any subcube Qs in Qri, x < n, can be uniquely represented by a sequence of

n ternary symbols t(..77,-1, tn-2, , to), to E {0, 1, * }, 0 < i < n 1, where * is a don't

care symbol. If Q,, is divided (or partitioned) into two subcubes along dimension

d, the addresses of the two resulting Qn_1 subcubes are * * *... id * * * * and

*** Od** ...**. The dimensions which contain * are called don't care dimensions

and non-don't care, otherwise. For example, if Q4 is divided along 1st dimension,

the resulting two subcubes are * * 0* and * * 1*. Dimensions 0, 2 and 3 are don't

care dimensions and dimension 1 is a non-don't care dimension. Faulty (Perfect)

subcube is the one which contains some (no) faulty components.

If Qn is divided along k dimensions, d1, d2, , dk, then there will be 2k

(n k)-dimensional subcubes. A partner set (PS) denotes a set of nodes obtained

by giving the same value for the *'s in each subcube. There are 2n-kPS's each of

which contains 2k nodes, and each PS forms a k-dimensional cube. Corresponding

nodes are a pair of nodes adjacent to each other in the same PS. Corresponding nodes

along dimension d are the corresponding nodes which differ in d-th bit. Likewise,

corresponding links are a pair of links such that they are in the same dimension and

their addresses differ in only one of the non-don't care dimensions, and if they differ

in d-th dimension, then they are called the corresponding links along dimension d.

The dimension d is also referred to as a corresponding dimension. Links belonging

to PS's are called intersubcubal and intersubcubal otherwise.



45

Example 4.1. If Q5 is divided along three dimensions, 0, 1, 2, then there are eight

2-dimensional subcubes, * * 000, * * 001, * * 010, * * 011, * * 100, * * 101, * * 110,

* * 111. Nodes 01000, 01001, 01010, 01011, 01100, 01101, 01110, 01111 form one of

the 22 PS's since all the *'s in each subcube have the same value, 01. Each PS forms

a 3-dimensional cube. Nodes 01000 and 01001 are the corresponding nodes since

they are in the same PS and differ in only one bit. Also they are corresponding

nodes along dimension 0. Two links 0 000 and 0 001 form corresponding links

along dimension 0.

In all-to-all broadcasting, each node has a message to broadcast to all other

nodes. Let Ms denote the set of messages initially belonging to the nodes in subcube

Qx.

Communication algorithms can be implemented in either one-port or n-port

model. Algorithms designed for a one-port model are simpler than the ones designed

for an n-port model P3+911 and are not considered here.

As mentioned earlier, the proposed algorithm fully utilizes any non-faulty

algorithm employed by the system. Thus, we will choose any one of the optimal

non-faulty algorithms, for example shown in [B+91], and refer to it as ATABP

throughout the chapter. Since it is optimal, it would take 2-1 time steps in a

perfect Qn.



46

4.3 New all-to-all broadcasting algorithm in faulty hyper-

cubes

We now present a fault-tolerant all-to-all broadcasting algorithm in hypercubes

with up to Li] faulty links. This section starts with a simple case and goes through

different cases of link failures, which will help in understanding the general algorithm

presented in Section 4.3.4.

4.3.1 Case of a single link failure

First, let us start with a case where there is only one faulty link in Qn. Even though

the case is very simple, it presents the basic and the most important idea presented

in this chapter.

Qn-1

Let f be the dimension of the faulty link. If we divide Q. into two subcubes,

and Qn'_1, along dimension d, d f, one of the subcubes contains no faulty

link. Without loss of generality, let us assume that Qn° contains the faulty link

connecting nodes a' and b' as shown in Figure 4.1. Let M._1 and M:_1 be the sets

of messages initially belonging to the nodes in Qn_i and Q'n_i, respectively.

At the first step of the proposed algorithm, every node in Q. sends its mes-

sage along dimension d. After this, both subcubes contain /14._1 as well as

which allows each subcube to perform all-to-all broadcasting independently using

ATABP. We will describe how all-to-all broadcasting can be done in Q first with

M.._1. In the new algorithm, step i of ATABP is done in two steps, (2i 1) and



47

(2i), for i = 1, 2, 3, .... At the (2i 1)-th step both subcubes execute i-th step of

the ATABP , except nodes a' and b' can not exchange the messages between them.

In the (2i)-th step nodes a and b will send to nodes a' and b', respectively, the

messages they received from each other in the previous step (this action will be

referred to as intersubcubal transmission). Note that the intersubcubal transmis-

sions have the same effect as the messages being exchanged between nodes a' and

Thus all-to-all broadcasting with A2_1 can be done in both Qn_i and Q'n_i in

22n
n 1

1-1 1 2n 2 + steps. However, note that when a and b send the messages
I n-1

to a' and b' during (2i)-th steps along d-th dimension, the intrasubcubal links, i.e.,

the links in Qn_i and Qn'_1 are idle; further at (2i 1)-th steps, i = 2, 3, ..., the

intersubcubal links are idle. In order to achieve more efficient link utilization, in

step 2i both Qn_i and Q'n_i execute the i-th step of ATABP with and at time

step (2i + 1), a and b will send to a' and b', respectively, the messages they received

from each other at time step 2i, i = 1, 2, .... Thus using this 'interleaving scheme',

the links in the network are fully utilized. The total time needed to complete the

all-to-all broadcasting in this case is 2?-11=2 + 2. The complete algorithm is given inn-1

Figure 4.2 as Algorithm).

It is straightforward to verify that Algorithm) is correct. We now consider

the optimality of the algorithm.

Lemma 4.1. It takes at least 2n-1 time steps to complete all-to-all broadcasting ifnf



Dimension d

Qn-1 Q' n_i

48

Figure 4.1. Qn with one faulty link. Link connecting nodes a' and b' is faulty.

the maximum number of faulty links incident to a node is f .

Proof : Each node has to receive 2n 1 different messages. Since one node has n f

non-faulty links incident to it, the node can receive at most n f messages at one

time unit. Thus the lemma follows.

Algorithml takes at most 27-2-11 + 2, which is close to the lower bound shownn

in Lemma 4.1.

4.3.2 Case when no node has more than one faulty link

incident to it

Note that Algorithml can also be applied to the case when 1) each node has no

more than one faulty link incident to it, and 2) all the faulty links reside in one

subcube. In this section it is shown that even after dropping the second condition,



49

Algorithml

Let the link connecting nodes a' and b' be faulty as shown in Figure 4.1.

1) Divide Q, into two subcubes, Qn_1 and (4_1, along dimension d, d f, where

f is the dimension of the faulty link.

2) At time step 0, every node sends its message along dimension d.

3) Both Qn_i and QTj_i execute the i-th step of ATABP with Mn_1 at time step

(2i 1) and with M7',_1 at time step 2i, i = 1, 2, ..., except nodes a' and b' can not

exchange any message between them.

4) At time steps i, i = 2, 3, 4, ..., nodes a and b, where a = a' ® ed and b = b'

send to nodes a' and b', respectively, the messages they received from each other at

time step i 1.

Figure 4.2. Algorithml which completes all-to-all broadcasting in hypercubes with one faulty

links.



Qn-1 Q'n-1

50

Figure 4.3. Faulty Qr, in which no node has more than one faulty link incident to it. Lines with

X indicate faulty.

all-to-all broadcasting can be done in near optimal time. Refer to Figure 4.3.

Before giving the algorithm, some terminology is explained.

A dimension is faulty free if there is no faulty link in that dimension. A

dimension is unsafe if, when Q7, is partitioned into Q,_1 and Q'Ti_1 along dimension

d, there exist faulty links 1 in Qn_i and 1' in _1 that differ only in d-th bit. If no

such faulty links exist, then dimension d is called safe. For example, if the set of

faulty links F = {0-00, 1-00, 00-1}, then dimension 3 is unsafe because of the links

{0-00, 1 00}. All the other dimensions are safe. Note that if a dimension is unsafe,

then there exists two faulty links 1 and /' such that W(/ED = 1. The converse is not

necessarily true. For example, if the set of faulty links F = {0 00, 1 00, 00 1}

as before, even though W(0 00 ®00 1) = 1, dimension 0 is safe by our definition.

A dimension is fault free safe if it is fault-free and also safe. Dimension 0 in



51

the above example is fault-free safe. Note that if there is a fault-free safe dimension

in Qn, Algorithml can be directly applied for all-to-all broadcasting. We show below

that even in the presence of n 1 faulty links, there exists at least one fault-free

safe dimension in Q.

Let F = {11,12,. ., fk} be the set of faulty links and let all these faulty links

be in the same dimension. In this case, note that a dimension d is unsafe if there

exist two faulty links fi and J., such that they differ only in the d-th bit. Now we

can get another set S = { fi ED fa
I fZ, fi E F} and find out the number of distinct

weight 1 vectors in S. This gives the list of the unsafe dimensions. For example, let

F = {00011, 00010, 00111, 00110}. Then S = {00001, 00100, 00101}.

Therefore, there are two unsafe dimensions, which are 1 and 3; the other dimensions

are safe. Some concepts from vector space are needed to prove the main results and

are explained below.

The set of all binary n-tuples can be considered as a vector space V over

GF(2) = {0, 1}. A set of t binary vectors {A1, A2, At} are linearly independent

if no vector can be expressed as a linear combination of the other vectors. For

example, the four vectors {0001, 0010, 0100, 1000} are linearly independent. The

number of linearly independent vectors in the set S is referred to as the dimension

of S, or dim(S).

Lemma 4.2. If there are k faulty links in Qn, and if all of them are in the same

dimension, then there exist at least n k fault-free safe dimensions in Qn.



52

Proof: Let the set of faulty links F = 12, . , fk} be the set of non-zero vectors

over GF(2) {0, O. Consider the set S = {fi ®
I

i, j = 1, 2, ... , k}. We need

to prove that the number of distinct weight 1 vectors in S < k 1. However, we

will prove the stronger result that the dim(S) < k 1. dim(S) < dim(F) since any

vector v which is a linear combination of the vectors in S is also a linear combination

of the vectors in F. Thus if dim(F) < k 1, then the theorem is true. Suppose that

dim(F) = k. This means all the vectors in F are linearly independent. In this case

it is easy to show that none of the fi's in F is a linear combination of the vectors

in S. Thus dim(S) < dim(F) = k, i.e., dim(S) < k 1. Since there is only one

faulty dimension, the total number of fault-free safe dimensions is greater than or

equal to n k.

Theorem 4.3. If ki is the number of faulty links in dimension i, 0 < i < n 1, in

Q7, such that Eiiifol ki = k < n 1, then there exist at least n k fault-free safe

dimensions in Qn.

Proof: This follows both from Lemma 4.2 and from the fact that no two links in

different dimensions can make any dimension unsafe. 0

The algorithm Find_Safe_D in Figure 4.4 determines the set of all safe dimen-

sions. As it has been mentioned earlier, even in the presence of up to n 1 faulty

links, at least one fault-free safe dimension can be found. If Qn, is divided along the

fault-free safe dimension, say s, then there is no pair of corresponding links in which

both links are faulty. This allows intersubcubal transmissions be possible between



53

Find_Safe_D (F, Safe_D)

Input F = f2,..., fk} : list of the faulty links in Qn

Output Safe_D : list of safe dimensions.

Unsafe = {}

for i = 1 to k do

for j i 1 to k do

if (fi and fj are in the same dimension) and (fi ED = ed for some d)

then

Unsafe = Unsafe U {d}

Safe_D = 2,... ,n 1} Unsafe

Figure 4.4. Algorithm Find_Safe_D which finds all the safe dimensions.

any pair of corresponding links, since the messages can be exchanged along at least

one of the two corresponding links. Thus, once we find a fault-free safe dimension,

Algorithm' with minor modifications can be used for all-to-all broadcasting in this

case. The complete algorithm is given in Figure 4.5 as Algorithm2. The time taken

for this algorithm is n2n i + 2, which is close to optimal.-



54

Algorithm2

F = ffi .fi Al: list of faulty links

D = {d1,d2,. ,di}: list of fault-free dimensions, where i > k

Let a'3 and bij be the end nodes of faulty link h

1) Call Find_Safe_D to find the safe dimensions, Safe_D.

2) Divide the Q,, into two subcubes, Qn_i and Q'n_1, along dimension d E (Safe_Dn

D).

3) At time step 0, every node sends its message along dimension d.

4) Both Qn_i and (4-1 execute the i-th step of ATABP with Mn_1 at time steps

(2i 1) and with /Wi_1 at time steps 2i, i = 1, 2, ..., except the end nodes of all

faulty links can not exchange any message.

5) At time steps i, i = 2, 3, ..., for all faulty links fi E F, nodes a3 and b3, where

a3 = ed and b3 = ED ed send to and bj, respectively, along the dimension

d the messages they received from each other at time step i 1.

Figure 4.5. Algorithm2 completes all-to-all broadcasting in Q7, in which no node has more than

one faulty link incident to it.



Dimension d

Qn-1 Qen-1

55

Figure 4.6. Case when all faulty links are incident to a single node. Here, node a' has two faulty

links, (a', b') and (a', c'), incident to it.

4.3.3 Case when all the faulty links are incident to a single

node

Let F = 12, fk}, k < Ill, be the set of faulty links incident to a single

node. Figure 4.6 gives an example where two faulty links are incident to node a'.

In order for an algorithm similar to Algorithm2 to work in this case, a' must be

able to receive two messages from a during each intersubcubal transmission step,

one from node b and one from node c, because node a' has two faulty links, (a', b')

and (a', c'), incident to it. In this case the time complexity of this algorithm can

be twice that of Algorithm2. In general, when there are k faulty links incident to

a single node, an algorithm similar to Algorithm2 can be a factor of k slower than

Algorithm2.



56

In order to overcome this situation, first, Qr, is partitioned into (n k)-

dimensional subcubes along some k fault-free safe dimensions D = {d1, d2, . , dk }.

Note that, since the number of faulty links is k < Li], there exist at least (nk) > k

fault-free safe dimensions by Theorem 4.3. In addition, note that all nodes within

a subcube will have the same values for the address bits di, i = 1,2, ... , k, and we

refer this subcube by Q For example, Figure 4.7 shows the four subcubes

Qoo, Qol, Qio and Qii resulting from the division of Qn along any two fault-free safe

dimensions. Qii is divided along two dimensions since node a' contains two faulty

links incident to it.

This set of subcubes {Qdld2...dk I di E 10,111 has the following properties.

(1) The set of 2k nodes, one from each subcube and whose values in don't care

dimensions are same, form a k-dimensional subcube. Recall that these nodes are

called partner set (PS). For example in Figure 4.7, nodes a, a', a", and a"' form a PS

which is Q2. There are 2n-k k-dimensional PS's; further, all these subcubes (PS's)

are perfect since the partitions are done over the fault-free safe dimensions.

(2) Only one subcube contains all the faulty links, since Qn, is divided along fault-

free dimensions. Further, the node which has all the faulty links incident to it has

n k adjacent nodes, and of which n 2k are in the same subcube and k are in k

different perfect subcubes. For example in Figure 4.7, adjacent to node a', there are

two nodes a and a" which are in different perfect subcubes. Thus, for each faulty

link, fi, we may assign a unique dimension, di, such that the corresponding link

of fi along dimension di, i.e., fi ED edi, is fault-free and also is in a distinct perfect



Q o o

Dimension d1

Dimension d2

Q10 a 111

0
b"

a"

Cu,

Q01

Q11

57

Figure 4.7. Case when all faulty links are incident to a single node. Link with X indicates faulty.

Here node a' has two faulty links incident to it.



58

subcube.

By Property (2) above, node which has all k faulty links incident to it can

receive the k messages simultaneously from its corresponding nodes one from each

of its adjacent perfect subcube. Thus intersubcubal transmission in this case can

be achieved. Let Qdld2...dk initially contain a message set Mdid2...dk. In the proposed

algorithm, first, every node executes ATABP within the PS it belongs to. Since

every PS forms a perfect k-dimensional subcube and all PS's are edge-disjoint, i.e.,

no link appears more than once in all PS's, all-to-all broadcasting in all PS's can

be done in 2kk-1 steps using ATABP. After this, every subcube contains all the

message sets, Mo, 2k_1, with every node in (4 containing 2k messages.

Next, ATABP in each subcube and intersubcubal transmissions, if necessary, will

be done. Let the link L ®Cd' be in charge of intersubcubal transmission for the

faulty link A, for all fi E F, d2 E D. Then the faulty subcube and each of its

adjacent subcubes form a (n k + 1)-dimensional subcube which logically contains

only one faulty link. For example in Figure 4.7, subcubes Q00 and Qoi form a

(n k + 1)-dimensional subcube which contains only one faulty link (a', b') and

sub cubes Q01 and Qii contains (a', c'). This enables us to use Algorithm2 within

the logical Qn_k+ilS.

In Algorithm2 there are only two sets of messages, Mn_1 and However,

there are 2k sets of messages in this case since there are 2k subcubes after the division

of QT, along k dimensions. Thus, the following exhaustive ordering scheme is adopted

for handling the 2k message sets. Let m = 2k and assume that ATABP in each PS



59

is completed at time step t. At time step t =1,2, ..., every subcube executes

((i div (m + 1)) + 1)-th step of ATABP within itself with message set Mi_1, while

every logical Qn_k+i's does intersubcubal transmissions, if necessary. A/gorithm,3

in Figure 4.8 illustrates the process in detail.

Now let us consider the time complexity of the algorithm in this case. ATABP

in PS's takes 2k;:1 steps. Execution of ATABP in subcubes and intersubcubal trans-

missions would take 2k ( 2 117:_k k- 1) + 1 time steps. Thus the total time steps taken

would be T = -i + 2k (2nk1) + 1. By Lemma 4.1 the lower bound would be

To nn= Thus, T To 2k (1-1; nl ) denotes the difference in time steps taken

by Algorithm3 and the lower bound. Table 4.2 shows T To for some values of n.

In the table, the values for the number of faulty links, k, is chosen such that the

value T To is maximum. From these values of T To, it can be seen that the

proposed algorithm is close to optimal.

The total time steps taken by the algorithms presented so far can be ex-

pressed as

Ttotal = Tpa T +1

where Tps is the number of time steps taken to complete all-to-all broadcasting

within PS's, T is the number of time steps taken by all-to-all broadcasting in

subcubes. Note that T is the dominant factor in the above formula.



60

Algorithm3

F = Ih,12, , Al: list of faulty links in Q.

D = {d1, d2, , dk }: list of k fault-free dimensions

1) Divide Qn along every dimension in D.

2) At time step 0, all PS's start ATABP which would take (2+1) time steps

to complete all-to-all broadcasting in all PS's.

Let to = (2k1"--1), m = 2k and j = 0

3) At time step to, all subcubes start executing ATABP with Mo.

while (all-to-all broadcasting in QT, is not completed) do begin

At time step to j, all subcubes execute ((j div (m + 1)) + 1)-th step of

ATABP with M3 mod m

At the same time for all faulty links fi E F, end nodes of the link fi ED eds send

along the dimension di the messages which were exchanged , if any,

at time to j 1 along the link fie ed..

j =i +1

end

Figure 4.8. Algorithm3 completes all-to-all broadcasting when all faulty links are incident to a

single node.



61

n k To T To

5 1 8 2

10 1 114

15 1 3641 3

20 3 87382 4

Table 4.2. Comparison of the time steps taken by Algorithm3 and the lower bound. n is the

dimension of the hypercube and k is the number of the faulty links which gives maximum value

of T To, where To is the lower bound and T is the time steps taken by Algorithm3.

4.3.4 General case of link failures

We are now ready for the general case in which up to L2 i faulty links can occur in

Qn in any pattern. First, choose a node, say p, which has the maximum number of

faulty links incident to it among all nodes, and let k be the number of faulty links

incident to p. From Lemma 4.1, it can be seen that node p is the bottleneck , i.e., all-

to-all broadcasting can be slowed down most by node p since it has the minimum

number of non-faulty links incident to it among all nodes. As explained in the

previous section, first, k fault-free safe dimensions are chosen and these dimensions

are used to divide Qn. The existence of such k fault-free safe dimensions follows

from Theorem 4.3. Since these k dimensions are fault-free, ATABP in the PS's can

be done without any difficulty.

After the completion of ATABP in each PS, ATABP within each subcube



62

and intersubcubal transmissions, if necessary, will be done next in the proposed

algorithm. However, for intersubcubal transmission, it has to be decided which

non-faulty links is in charge for the given faulty link. In Section 4.3.3, all faulty

links are incident to a single node; thus they are confined in a single subcube

and are in different dimensions. That allows a link fi ® ed. is in charge of the

faulty link fi, for all fi E F, di E D, where F is the set of faulty links and D

d2, . , dk} is a subset of the fault-free safe dimension set; each di serves as

a corresponding dimension for a distinct faulty link fi, i = 1, 2, , k. However,

in general case, one dimension might be used as a corresponding dimension for

more than one faulty link which may be in different dimensions. For example, let

F = 10000000,000000 0,00110 00,0011 000 }. Then, node 00000000 has

the most faulty links incident to it, and here k = 2. Without loss of generality,

let dimensions 6 and 7 be chosen to divide this Q8. Since all links in F are in

the same subcube (which is just coincidence), dimensions 6 and 7 should be used

as the corresponding dimensions for more than one faulty links. In this example,

dimension 6 might be a corresponding dimension for faulty links 0000000 and

00110 00, and dimension 7 for faulty links 000000 0 and 0011 000. Algorithm

Correspondence in Figure 4.9 shows how to couple faulty links with one of the

fault-free safe dimensions. The basis for this algorithm is explained below.

Two links are said to be adjacent if they are incident to the same node. The

distance between any two links 1 and m is denoted as

n-1
W(1 ® m) E li ® mi, where li ® mi = 1 iff li ,mi , and li mi.

i.o



63

Note that two links are adjacent if the distance between them is zero. Fur-

ther, every pair of adjacent faulty links are in the same subcube and are in different

dimensions. Any two non-adjacent faulty links which are in any dimensions, can

have their corresponding links along the same fault-free safe dimension. Since any

faulty link has at most k 1 adjacent faulty links, k fault-free safe dimensions

should be enough to couple all faulty links with corresponding non-faulty links,

even though the number of faulty links might be greater than k. Incorporating the

above observations, Correspondence picks any faulty link, say f, and finds a set of

faulty links, F', in which all links are at a distance one or more apart from link

f, and assigns a fault-free safe dimension to the links in F' U 1. With the set

of faulty links F (F' U }), Correspondence repeats the process described above

until F = {}.

Once the corresponding links of all faulty links are found, the intersubcubal

transmissions can be done according to it, and the rest of all-to-all broadcasting

steps will be the same as in Algorithm3. Algorithm4 in Figure 4.10 completes all-

to-all broadcasting in Qn, with up to [12-z j faulty links.

It is straightforward to see that the time complexity of Algorithm/ is the

same as that of Algorithm3 described in previous section. Example 4.2 illustrates

Algorithm/.

Example .2. Let the dimension of the cube n be 6 and the list of faulty links

F = {00000, 0000 0, 0010 0}. Since node 000000 has the maximum number of

faulty links incident to it, k = 2. In order to get the list of safe dimensions, Safe_D,



64

Correspondence

F = f2,... , ft}: list of faulty links in Q.
D = dr}: list of fault-free safe dimensions in Q.
k = maximum number of faulty links incident to a node.
Call Find_Sa f e_D to get the list of safe dimensions Sa f e_D.
FFS_D = set of arbitrary k fault-free safe dimensions from D fl Safe_D.

while F {} do begin

F' = {}

Choose first element, say f', from F

= F' U {1}

i = 2

while i F I do begin

Choose i-th element, say f*, from F

if (W(f* e m > 1, for all fa E F') then

= F' U {f}

i = i 1

end

F = F F'

Generate tuples (f3, d), for all fi E F', d = first element in Sa f e_D

Safe_D = Sa f e_D {d}

end

Figure 4.9. Correspondence assigns fault-free safe dimensions to faulty links. This will be used

for intersubcubal transmissions.



65

Algorithm4

F f2, , ft}: list of faulty links in Q.

FF_D = list of all fault-free dimensions

k = maximum number of faulty links incident to a node

Call Find_Safe_D to get the list of all safe dimensions, Safe_D.

S = set of arbitrary k fault-free safe dimensions from FF_D fl Safe_D

Call Correspondence to calculate tuples dh), for all fi E F, dh E S

At time step 0, each PS starts ATABP which would take 21+1 time steps.

Let to = 2kk-1,m = 2k, and j = 0

while (all-to-all broadcasting in Qn, is not completed) do begin

At time step to j, all subcubes execute ((j div (m 1)) + 1)-th step of

AT ABP with Ma mod m

At the same time for all faulty links fi E F, end nodes of the link fi edh

send along dimension dh the messages which were exchanged, if any,

at time to j 1 along the link fi ® edh.

+

end

Figure 4.10. Algorithm4 completes all-to-all broadcasting in Qn with up to L 2 j faulty links.



66

call Find_Safe_D, which returns S a f e_D = {0, 1, 2, 4, 5 }. The set of fault-free dimen-

sions, D = {2, 3, 4, 5}, and thus the set of fault-free safe dimensions, S = {2, 4, 5}.

Next, choose any S' from S, where IS'I = k, and call Correspondence to couple

them with faulty links in F such that for every (fi, si), s3 E S', not both fi and

corresponding link along s3, fi ED es', are faulty for all fi E F. Without loss of gener-

ality, let S' be the least two dimensions from S, i.e., S' {2, 4}. Then output from

Correspondence will be C = {(fi,si)} = {(00000-, 2), (0010 0, 2), (0000 0, 4)).

Thus, for example, nodes 000000 and 000001, which are the end nodes of link

00000-, will receive the messages from 000100 and 000101, respectively. the com-

plete set of pairs of corresponding nodes are P = {(pi,pi) } = {(000000, 000100),

(000001, 000101), (001000, 001100), (001010, 001110), (000000, 010000), (000010,

010010)). Now divide Q6 along dimensions 2 and 4 into four 4-dimensional sub-

cubes, *0 *0**,*0*1**,*1*0**,*1*1**, which have message sets Mo, Ml, M2)11/3,

respectively. There are 24 PS's each of which forms Q2. At time step 0, ATABP

will be executed within each PS which would take 22-2 1 = 2 time steps. Now, each

node has four messages, and each subcube of size Q4 contains all the necessary

information for all-to-all broadcasting.

At time step 2: All four subcubes start executing 1st step of AT ABP within them-

selves with Mo.

At time step 3: All four subcubes execute 1st step of ATABP within themselves

with M1. At the same time, for all pairs in C, end nodes, say ai and hi, of the link

(fi ® es.) send to the end nodes of link fi the messages they (ai and bi) exchanged



67

at time step 2.(Recall that this is referred to as intersubcubal transmission).

At time step 4: All subcubes execute 1st step of ATABP within themselves with

M2. At the same time, intersubcubal transmissions with the messages exchanged

at time step 3 is done.

At time step 5: All subcubes execute 1st step of ATABP within themselves with

M3. At the same time, intersubcubal transmissions with the messages exchanged

at time step 4 is done.

At time step 6: All subcubes execute 2nd step of ATABP within themselves with

Mo. At the same time, intersubcubal transmissions with the messages exchanged

at time step 5 is done.

At time step 7: All subcubes execute 2nd step of ATABP within themselves with

Mt. At the same time, intersubcubal transmissions with the messages exchanged

at time step 6 is done.

And so on.

4.4 Conclusion

We have presented a new fault-tolerant all-to-all broadcasting algorithm which can

tolerate up to Li] link faults. The proposed algorithm has several desirable features

such as (1) each node sends only one copy of the broadcast message, which reduces

traffic in the network by a factor of n over the schemes used in [LS90, Fra92], (2)

it utilizes an algorithm developed for the non-faulty system (non-faulty algorithm),

(3) further, it can use any of those efficient non-faulty algorithms, which have been



68

developed or yet to be developed, and (4) it achieves near optimal performance.

All-to-all broadcasting with node failures can be done by using the same idea

presented in this chapter. In addition, the idea presented in this chapter can be

extended to a set of problems in which each subcube performs the same algorithm.



69

Chapter 5

All-to-All Broadcasting in Wormhole-Routed
Hypercube Multicomputers with Link Faults

5.1 Introduction

In this chapter, we consider networks that implement a cut-through routing tech-

nique rather than store-and-forward. In the store-and-forward method, all the in-

termediate nodes between source and destination nodes must completely store the

incoming message before they forward the message to the next node. However, in

the cut-through method, the head of the packet is advanced directly from incoming

to outgoing channels. Only a few flow control digits are buffered at each node. Both

wormhole [S+85, Da187, Da190] and virtual cut-through [KK79] routing methods be-

long to this category. The only difference between them is that virtual cut-through

routing buffers messages when they are blocked, removing them from the network,

whereas the blocked messages remain in the network in wormhole routing. The

operation of advancing a message directly from incoming to outgoing channels is

referred to as cut-through.



70

In this chapter we introduce a simple fault-tolerant ATAB algorithm in

wormhole-routed hypercube multicomputers in the presence of up to n 1 faulty

links, where n is the dimension of the hypercube. In ATAB, each non-faulty node

must be able to deliver its message to all the other non-faulty nodes in the system.

Both Lee and Shin (LS) [LS90] and Fraigniaud (FR) [Fra92] achieve this under the

assumption of non-availability of global fault information, i.e., each non-faulty node

does not know the identities of the faulty components. In their algorithms each

node delivers multiple copies of the broadcast message through disjoint paths to

all the other nodes in the system. On receiving the multiple copies of the same

message, each non-faulty node identifies the original message using some schemes

such as majority voting. These algorithms have the advantage of not having to

know the addresses of the faulty components, and therefore they may be suitable

for real-time applications.

The difference between the LS and FR algorithms is that the LS algorithm

is based on Hamiltonian Cycles, whereas the FR algorithm is based on tree struc-

ture. Since tree structure is not suitable to the networks implementing cut-through

routing [LN91], only the LS algorithm will be considered in the remainder of the

chapter.

Since each node receives n copies of the same message in the LS algorithm,

and since the optimal traffic is To = N(N-1), the traffic caused by the LS algorithm

is at least TLS = nN(N 1). To TLS is huge and will severely degrade the

performance in the system, especially ones using wormhole or virtual cut-through



71

routing [LS90].

The occurrence of the component faults is infrequent, therefore, it may be

more efficient to broadcast the fault information by using some fault-tolerant single

node broadcasting algorithm such as the Ramanathan and Shin's (RS) algorithm

[RS88], so that each node contains the identities of the faulty components. (Note

that the RS algorithm does not require the information of the identities of the

faulty components in each node, and it takes only n time steps and n2n traffic to

complete the single node broadcasting under n-port assumption.) This allows that

each node to send only one copy of the message, as proposed here, to complete all-to-

all broadcasting. Therefore, the traffic required by our algorithm is only N(N 1),

which is approximately a factor of n less than the LS algorithm.

The rest of the chapter is organized as follows. Section 5.2 summarizes the

notations and definitions which will be used throughout the chapter. Section 5.3

introduces a new ATAB algorithm which can tolerate up to n 1 link failures. The

conclusion follows in Section 5.4.

5.2 Preliminaries

The relative address of the two adjacent nodes in n-dimensional space is a unit

vector 000... 001p00... 00, and p is the dimension of the link connecting the two

nodes. We denote the above unit vector by e. The relative address of the two links

/ and m is also bitwise Exclusive-Or of their addresses, / m, where i mi = 1 if

/i = 0 (resp., 1) and mi = 1 (resp., 0); li ® mi = 0, otherwise. The weight of a node



72

or link r is the number of l's in r. The distance between two nodes a and b (or two

links 1 and m) is given by W (a ED b)(orW (1 e m)).

In the following we explain some of the notations and concepts similar to

those used in [LS90]. It was noted in [LS90] that an n-dimensional hypercube

contains L2_1 edge-disjoint Hamiltonian Cycles (HC's).

Let HCi, HC2, , HCm, m be the HC's in Qn. Further, each HC,

say HCi, is composed of two directed HC's, HCi and HCI, which share a common

undirected HC, HCi, but their directions are opposite. HC: denotes one of the two

directed HC's in HCi. Also HC: = HC?" if s = , and HCf = HC r if s =

Note that these 2m directed HC's are edge-disjoint, i.e., no directed edge (link)

appears more than once in all directed HC's. Since the difference between n and

2m becomes insignificant as n increases, n will be used for 2m for the remainder

of the chapter. A fault-free HC does not contain any faulty link, whereas a faulty

HC does. In the following, HC and HCd denote a undirected and directed HC's,

respectively. However, we will use them interchangeably when the context is clear.

HCF denotes a fault-free HC and HCc3 denotes an HC which contains some faulty

links according to c and j, where c E {>, <, <, >, =} and j is an integer. For

example, HC>2 denotes an HC which contains more than two faulty links.

In our algorithm, different sets of messages are assigned to be routed along

different HC's. Thus, if an HC is fault-free, then the set of messages assigned to

the HC can be broadcast without any difficulty. We will refer to that as partial



73

completion of the ATAB in that HC. Since there are n edge-disjoint HCd's, n sets

of messages can be routed concurrently in n different HCd's.

Let us assume that the broadcasting messages are delivered in packets of

length it x BFIF0, where BFIF0 is the size of the FIFO buffers at the receivers of

the nodes and it is an integer. TL and Ts denote propagation time between adjacent

nodes and startup time, respectively. If the packet cuts through a node d, then the

delay at the node is denoted by a, which is proportional to BFIFO. If the packet is

stored into the intermediate storage buffer before being transmitted, then the delay

at the node is Ts + LTE, = Ts + pa, where L is the length of the packet.

The LS algorithm accomplishes all-to-all broadcasting in i stages as follows.

Let Po be any designated node. In stage i, every y-th node in direction HC, starting

from i-th neighbor of po in direction HC; is permitted to initiate a packet along

HC; for all j, 1 < j < n. Once packets have been started along directed HC's,

they keep flowing for N 1 hops along the cycles in which they started. In a

dedicated network, i.e., the entire network is devoted to the all-to-all broadcasting

for the duration of the broadcast operation, the time, required by the LS algorithm

is q(Ts + pa + (N 2)a). It is proved in [L590] that the LS algorithm is optimal

when q = p. Since Ts is much smaller than TL, it is better to minimize it. Since

> 2, when p = 2 the time taken by the LS algorithm is 2(Ts Na). In this case

the size of the message can be no longer than 2 x BFIF0. If it is necessary to send

larger message, the LS algorithm requires more startup time. The traffic generated

by the LS algorithm is nN(N 1) since there are N nodes and each node must



74

receive up to n copies of the same packet from all other nodes in Q.

In the following we propose an all-to-all broadcasting algorithm which tol-

erates up to n 1 faulty links in Qn. The time taken by our algorithm is at most

3(rs + (N 2)a) if the number of faulty links incident to a single node is not

greater than Lt.]. This would be most likely case since the probability of having

more than Ltd faulty links incident to a single node is quite low. Further, in the

best case, i.e., when there are no faults, the proposed algorithm accommodates

times longer message than that of the LS within the same time bound, 2(rs +Nce).

Even in the worst case, i.e., all n 1 faulty links are incident to a single node, our

algorithm accommodates the same message size as that of LS's. Since the buffer

size in the wormhole-routed network is usually quite small, it may not feasible to

restrict the message size to 2 x BFIFO. When the message size is a multiple of

n x BFIFO, our algorithm outperforms LS algorithm by at least a factor of Is' when

the maximum number of faulty links incident to a node is less than or equal to

As for the traffic, our algorithm always produces 0(N(N 1)) which is a factor of

n less than that of the LS algorithm when there is no fault in the network.

In the following, it is assumed that the message size is n x BFIFO, unless

otherwise specified.



75

5.3 New all-to-all broadcasting strategy using wormhole

routing

In Section 5.3.1, we explain the simple ATAB algorithm which tolerates up to

link faults. Section 5.3.2 presents a somewhat more complex algorithm which

tolerates up to it 1 faults.

5.3.1 Case of up to Lin link faults

We now present our new ATAB algorithm in faulty hypercubes with up to LZi link

faults. The following lemmas help in understanding and proving correctness of the

proposed algorithm.

Lemma 5.1. Let HCi be any undirected HC, and let A be the set of messages

which are assigned to be broadcasted along, say HCit. Suppose HCi contains a

single faulty link. Then if A is broadcasted along both HC,± and HCI, then the

partial ATAB in HCi+ will be completed.

Proof : Let nodes a and b be the end nodes of the faulty link in HCi. Then, HCi

is nothing but a linear array with nodes a and b as end nodes as shown in Figure

5.1. If the darkened nodes have messages to be broadcast along HC-, then it is

straightforward to see that if all the darkened nodes send their messages along both

HC,± and HCT, then the partial ATAB in HCi+ will be completed with the set of

messages belonging to the darkened nodes.



a b

0

76

Figure 5.1. Linear array which is formed by a HC with a single link failure. Darkened nodes

have the messages to be broadcast.

Lemma 5.2. Let F be the set of HC's each of which contains more than one faulty

links in it. If there are at most faults in Q,,, then there are at least IF1 fault-free

HC's.

Proof : Let IF! = k. Without loss of generality, let HCi contain L faulty links, where

fi > 2, for all 1 < i < k. The number of HC-1's is at most III L. Thus,

the total number of fault-free HC's is 131-] k ([11 fi) = k k.

0

The weight of a node is even (resp., odd) if the number of l's in its address

is even (resp., odd). Let even messages (resp., odd messages) denote the broadcast

messages which initially belong to the nodes with even (resp., odd) weight. In our

new algorithm, packets are assigned to HCd's so that each packet is routed along

specific HC('s). The more evenly the assignments are distributed, the better link

utilization is achieved. In the proposed algorithm, the even messages are assigned to

the HCit's and the odd messages to HCrs, for all 1 < i < Li]. Since each message

is assigned to [3- j HCd's and since all directed HC's are edge-disjoint, the message



77

at each node can be divided into [12-1i packets which can be routed along different

HCd's simultaneously (assume a message size < L 2 i x packet size = n x BFIFo).

Thus, every node with even weight sends its i-th packet along HC, and every node

with odd weight sends its i-th packet along HCI, for all 1 < i < L2j . Once packets

have been started along directed HC's, they keep flowing for N 1 hops along the

cycles in which they started.

Algorithm ATABF shown in Figure 5.2 completes all-to-all broadcasting in

fault-free hypercubes. Let HC.; be the j-th directed HC, 1 < j < 2[2 ]. Then,

for any given node x and given HC3, NEXT3(x) and PREI/j(x) denote the next

and previous nodes, respectively, of x in the HC3. Note that in each HC, = 2

since the distance between even (odd) weighted nodes is at least two. Also note

that since even and odd weighted nodes use different HC's, they can start all-to-all

broadcasting simultaneously. Thus if there is no faulty link and if the message size

< L2 J x packet size, then ATAB will be completed in (Ts + tta + (N 2)a) since

= 1. This result is better than that of LS algorithm by Ts when the message

size < 2 x BFIFO and by 2 7-, when the message size is the multiple of n x BFIFO.

The gain is huge since Ts is usually much larger than TL. Further, the proposed

algorithm completes ATAB with 2-.2i times bigger message size within the same time

bound.

Let FAULT(Hqs) denote the number of faulty links in HC,;9. Note that

FAULT(HC,±). FAULT(HCI). Now we consider the case when there are up to

faulty links in Q. In this case, our algorithm is composed of two stages. At



78

Algorithm ATABF

for all nodes doparallel

each node divides its broadcast message into Li] packets

for i = 1 to doparallel

for every node x doparallel

begin

nodes with even weight send their i-th packets along HC7I-.

nodes with odd weight send their i-th packets along HCI

end

for k =1 to N I do

for j = 1 to 2 doparallel

for every node x doparallel

begin

receive packet from PREV3(x)

if (k < N 1) then

relay the message to NEXT, (x)

end

Figure 5.2. Algorithm ATABF which completes all-to-all broadcasting in perfect hypercubes.



79

the first stage, algorithm AT AB' will be executed. Therefore, after the first stage,

partial ATAB will be completed in HCF's, i.e., fault-free HC's. Partial ATAB in

faulty HC's will be completed in the second stage as follows. Every packet initially

assigned to the directed HC -1's (HC's which contain only one fault) are reassigned

to the same undirected HC's with reversed direction. For example, if HCit contains

a single faulty link, then all the nodes assigned to HCzt send their messages along

HC27.- at the second stage. Since all the nodes assigned to HC' send their messages

along one direction in the first stage and the other at the second stage, the partial

ATAB in the HC -1 is completed by Lemma 5.1. Partial ATAB for the packets

initially assigned to HC>1's will be completed at the second stage as follows. Let R

be the set of HC>l's. Then since there are at least IRI number of HCF's by Lemma

5.2, the packets initially assigned to HC>1's will be reassigned to and broadcast

along HCF's. Algorithm ATABI-21 shown in Figure 5.3 accomplishes all-to-all

broadcasting in hypercubes with up to al faulty links.

It is straightforward to verify that ATAB-Lii is correct. Note that since

some nodes receive more than one copy of the same message, the nodes improve the

possibility of receiving a correct message by comparing multiple copies of the same

message.

5.3.2 Case of up to n 1 link faults

If the number of faulty links is more than W , then there may not be enough

HCF's to handle the packets initially assigned to HC>1's. For example, let n = 10



80

Algorithm AT A_B-Lf-1

Execute algorithm AT ABF {at stage 1}

Let R be the set of all the fault-free HC's (HCF's) {at stage 2}

for every node in HC?1's doparallel

begin

for all packets assigned to HC -1 do

Send the packets along HC f which were initially assigned to Hcf

for all packets assigned to HC>1 do

Send the packets which were initially assigned to Hq along HC; E R,

where HC; is not taken by any other HC>1

for k =1 to N -I do

for j = 1 to 2[21 doparallel

for every node x doparallel

begin

receive packet from PREVi(x) in reassigned HC, HC;

if (k < N -1) then

relay the message to NEXTj(x) in reassigned HC,

end

end

Figure 5.3. Algorithm ATA135-1-11-1 completes all-to-all broadcasting in hypercubes with up to

Li] faulty links.



81

and suppose HC1 through HC3 contain two faulty links each and HC4 and HC5

contain one faulty link each. Then there are not enough HCF's to take up the

packets initially assigned to HCl through HC3. We, of course, can reassign the

packets in HC>l's to HC -1's, e.g., reassign the packets in HCl through HC3 to

Hai and HC5. Then all-to-all broadcasting will take six stages in this case, since at

the first and second stages partial broadcasting in Hai and HC5 will be completed

with the packets initially assigned to Hai and HC5, at the third and fourth stages

packets initially assigned to HC1 and HC2 will be reassigned to Hai and HC5 and

the partial broadcasting will be completed, and the fifth and sixth stages packets

initially assigned to HC3 will be reassigned to Hai and the partial broadcasting

will be completed. In general this strategy takes Lei stages in the worst case.

This implies that, as far as startup time is concerned, it will take Ln-±-1.1 Ts. Since, as

mentioned before, TS takes too much time, we will not use this approach to handle

the case.

The above observations have led us to develop a scheme for partial all-to-all

broadcasting for HC-2's. Refer to Figure 5.4.a. Suppose nodes a through k form

an HC in which links (f, k) and (a, g) are faulty (in the figure, link (c, i) is not part

of the HC). Since the HC contains two faulty links, it forms two linear arrays, one

with nodes a through f and the other with nodes g through k. Note that since the

network is connected and the number of faulty links is less than or equal to n 1,

there must exist at least one link connecting the two linear arrays (see Lemma 5.3).

We refer to that link as a bridging link. For example, in Figure 5.4.a, links (c, i) is



a

co

a

co

d e f

g h

(a)

b C

d

(b)

e

OD

82

Figure 5.4. Two linear arrays formed by a HC with two faulty links. (a)Two linear arrays which

result from the HC with two faulty links (a, g) and (f, k). Link (c, i) is not part of the HC and is

called a bridging link. (b) Two linear arrays which result from the HC with two faulty links (a, d)

and (e, d). In this case one linear array contains only one node. Link (b, d) is a bridging link.



83

the bridging link. Figure 5.4.b shows the case when one of the linear arrays contains

only one node. Further, Lemma 5.3 shows that the bridging link can be chosen from

the links in f/C1's.

Lemma 5.3. For every HC=2, there exist at least one bridging link chosen from

1105.1)s.

Proof : Since there can be at most n 1 faulty links, there should exist at least

one HC-1. If we embed a HCF into the two linear arrays, it is straightforward to

see that there should be at least two bridging links, since if the HCF starts from

one of the nodes in one of the linear arrays, then the cycle should go to the other

linear array and come back to to the starting node. Even if we do the same process

described above with HC-' instead of HCF, there should be at least one bridging

link. Thus the lemma follows. 0

The bridging links are used to form a HC with the two linear arrays as follows.

Refer to Figure 5.4. The length of a HC is the number of (directed) links in the

cycle. Dotted lines in (a) and (b) in Figure 5.4 indicate the HC formed by the two

linear arrays and bridging links. Note that the length of the HC" is less than 2N.

Thus, partial ATAB in HC -2 can be completed within T2 = (TS + µa -1-(2N 2)a).

Let us assign Ts = (TS + ,ua (N 2)a) time steps for each stage in ATAB. Then

T2 < 2Ts, i.e., partial ATAB in HC -2's can be completed within two stages.

We now present the outline of the strategy to complete the partial all-to-all

broadcasting in HC-2's. In the previous section, different packets are assigned to



84

different directed HCri's. However, note that since HC -2's contain links which are

part of the HC-5-1's, i.e., bridging links, partial ATAB in HC-2's can start only

after the partial completion of ATAB in all the HC1's. In order to accomplish the

early completion in HC5-1's, the same packet will be assigned to and routed along

both directions in the HC=1. Thus, by Lemma 5.1 partial completion in these HC's

will be completed in one stage. HC-2's can start ATAB from second stage. Thus,

partial completion of ATAB in HC5-2's can be done in three stages.

Even though Lemma 5.3 shows the existence of the bridging links from the

HC` -1's, the bridging links may not be disjoint in HC -2's, i.e., some of the bridging

links may appear in more than one HC=2. We try to avoid this multiple appearances

since it will cause the link contention problem. However, it may not be possible to

avoid it for some cases. For example, suppose node d has k = n 1 faulty links

incident to it, where n > 6. Then the fault-free link incident to d may appear as

the bridging links in all the HC-2's. This may cause link contention problem in

HC -2's after the first stage of ATAB. Lemma 5.4 shows a tight upper bound on the

number of faulty links incident to a single node so that each bridging link appears

in only one HC=2.

Lemma 5.4. Let k be the maximumnumber of faulty links incident to a single node.

Then, if k < j, it is possible to arrange the bridging links so that none of them

appears in more than one HC=2.

Proof : We will prove the lemma by showing that (1) if k > [-V1 , there is an



85

example in which some bridging links must appear in more than one HC=2, and (2)

if k < Ltj, there is a way to assign bridging links to HC -2's so that no bridging

link appears in more than one HC2.

(1) Since the worst case occurs when there is only one node, say d, in one of the

two linear arrays as shown in Figure 5.4.b, let the node d have k > [t faulty links

incident to it. Note that in each HC, every node has at most two incident links.

Thus, among all 1:i J HC's, both incident links to node d in t > L4J HC's are faulty,

i.e., there are t > Li) HC' 's. However, since there are less than [V non-faulty

links incident to d, it is obvious that some bridging links should appear in more

than one HC=2.

(2) Let node d have 2 < k < Lti incident faulty links (if node d has less than two

faulty links incident to it, then there is no bridging link incident to d). Also let

/ be any of the bridging links incident to d. Then the lemma follows if we prove

that the link 1 does not have to be the bridging link in any other HC=2. Let d'

be the node connected to d by link 1. Without loss of generality, assume that the

number of faulty links incident to node d is greater than or equal to that of node

d'. Then, if k < 1_11-41 , link 1 does not have to be the bridging link incident to node

d. If k = Lt.], then since node d' has at most (n 1) Lti 1 = L4j faulty links

incident to it, it does not have to use link 1 as a bridging link. Thus the lemma

follows.

Even when each node has [11- j or less faulty links incident to it, HC-2's

may be used only in the following situation. Let S=2, S=1 and SF be the set of



86

undirected HC -2's, HC -1's and HCF's, respectively. Recall that (1) each HC"

completes partial ATAB with two packets, one for each direction, within two stages

starting from the second stage, (2) each HC -1 completes partial ATAB with one

packet within one stage by sending the packet in both direction (Lemma 1), and

(3) each HCF completes partial ATAB with two packets in one stage. Note that it

would take at least 3 stages if HC2 's involve in ATAB. Thus, for example, since

each HCF and HC -1 complete partial ATAB with 6 and 3 packets, respectively, in

three stages, if 3 x 1S=11 + 6 x ISF1 > n, it is not necessary to use HC-2's at all.

71Thus, HC -2's will be used only when 15'11+ 21,59 21-21;3211 < 21
r

21S=11+4ISFI I

Even though the probability of having more than Lti faulty links incident

to a single node is quite low, in the following we give a strategy to handle the case.

Note that sometimes, depending on the size of the message, it may not be necessary

to choose distinct bridging links for the HC-2's since we may not use any HC-2 at

all. Example 5.1 illustrates this.

Example 5.1. Suppose n = 20, the number of faulty links in Q9, is 16, and node d

has 16 faulty links incident to it. Then there are at least 6 HC-2's, and only 4 links

incident to d are available for the bridging links. Since the 6 HC -2's should share

the 4 bridging links, there may be a contention problem. However, if the message

size < 2 x BFIFO, then ATAB can be done by using only one of HC1's. In this

case no HC=2 is needed at all.

However, the contention problem may occur in the bridging links as the



87

message size increases. Recall that the contention problem occurs only when a

node has more than Lvj faulty links incident to it. There can be at most one such

node since the total number of faulty links in Qr, is n 1 or less.

Our solution to the contention problem is to reassign to HC-1's the packets

initially assigned to HC?2, i.e., no HC-2 is used in this case. Thus, with this strat-

egy, the total time steps to complete ATAB is ris=i11721,5,11 . Example 5.2 illustrates

this.

Example 5.2. Suppose n = 20, the number of faulty links in Q7, is 19, and node

d has 19 faulty links incident to it. Also suppose that there are one HC=3, seven

HC -2's, two HC's and one HCF. Since the seven HC -2's should share the 4

bridging links, there is contention problem. If the broadcast message size at each

node is Lij x packet size, then the 10 packets are assigned to HC's as follows.

Since one HCF and one HC -1 can complete two and one packets, respectively, in

one stage, all the HC-1 in Qr, can complete 2 x 1 + 2 = 4 packets in one stage.

Thus, total number of stages taken in this case is .142 = 3 stages. Note that with LS

algorithm, it would take 20 stages since their algorithm takes two stages with one

packet.

Theorem 5.5 shows the optimality of the algorithm in this case.

Theorem 5.5. When the maximum number of faulty links incident to a single node

3n <1)is greater than L-4 j/ the strategy which uses only HC- s for ATAB requires opti-



88

mal number of stages.

Proof: The performance in this case is restricted by the links in HC5.1 since if

HC=2's are used, then the bridging links are chosen from HC51. However, the

strategy is optimal since it fully utilizes the links in HC5-1's at every stage.

The general idea in this chapter is that whenever an HC has difficulty com-

pleting the partial ATAB with the packets initially assigned to it, the packets will

be reassigned to another HC which can complete partial ATAB relatively easily. At

the same time, we try to reduce the total startup time and to maximize the message

size. In order to achieve those it is critical to finish ATAB with a minimum number

of stages. Thus an efficient algorithm is needed to reassign the packets initially

assigned to the HC?2's to HC5-2's. Note that the reassigning problem is quite

similar to that of scheduling; HC>2's are tasks and HCF's, HC -1's and HC-2's

are the processors which complete two, one, and 2 tasks, respectively, in one stage.

Algorithm Feed in Figure 5.5 shows this reassigning procedure when the number of

faults is greater than [v.

Now we present the algorithm ATAIP-1 in Figure 5.6 which completes

ATAB in hypercube with up to n 1 faulty links.



89

Algorithm Feed
F = set of faulty links in Q,-,
k = the maximum number of faulty links incident to a single node, d.
< HC >= set of all undirected HC's, thus I < HC >
SF = set of HCF's, 5=1 = set of HC -1's, S>1 = set of HC>l's
if k < P19 then begin

if ISFI then
reassign the packets which are initially assigned to HC1's to HCF's

else if 15=11+ 2ISFI + 2[ ri-3 1 < 2[
-1-

then
21,5=21 21s=1141sFI

reassign the packets which are initially assigned to HC°2's to HC-''s
else

reassign the packets which are initially assigned to HC-.2's to HC5-1's
end
else begin {case when k > PL4111

Let R be the set of HC>1's
Let HC =< HC > R
Let q = (2141s=ii)

reassign 2q HC's in R to each of HCF
reassign q HC's in R to each of HC''

end

Figure 5.5. Algorithm Feed reassigns the packets. The packets were initially assigned to HC's

which have difficulty to complete partial ATAB.



90

Algorithm ATAB'l
F = set of faulty links in Q,,

k = the maximum number of faulty links incident to a single node, d.
< HC >= set of all the undirected HC's, thus I < HC > j=
SF = set of HCF's, S=1 = set of HC=1's, S>1 = set of HC>1's
if no faulty link in Qn then execute ATABF

else if IF1 < 13-j then execute ATAB:qii
else if k < 11-4-'.] then begin

call algorithm Feed
for every node doparallel in each stage

if the number of HCF's > then begin
At the 1st stage : HC-F's complete partial ATAB with the packets
initially assigned to them
At the 2nd stage : HCF's complete partial ATAB with the packets
which are reassigned to them

end
else if IS=11 + 2ISFI + 214L=- 1 < 21- _in

2J S=21 2LS- I -1-41SF then begin
calculate the bridging links for HC-2's
At the 1st stage : HC-1's complete partial ATAB with the packets
initially assigned to them
At each stage i = 2, 3, ...,IS=11 + 21SF1+ : HC=2's complete
partial ATAB with packets which are reassigned to them.

end
else begin

At the 1st stage : HC-1's complete partial ATAB with the packets
initially assigned to them
At the 2nd stage : HC-1's complete partial ATAB
with the packets which are reassigned to them.

end
end
else begin {case when k > Nj}

Let R be the set of HC -2's in which both incident links to node d
are faulty and the set of HC>2's.
Let HC =< HC > -R
for every node doparallel

At the 1st stage : all the HC's in HC complete partial ATAB with the
packets which are assigned to them.

fR)Let q = (2I
each of HCr executes 2q packets reassigned to it
each of HC=1 executes q packets reassigned to it

end
end

Figure 5.6. Algorithm ATABn-1 completes all-to-all broadcasting in hypercubes with up to n-1

faulty links.



91

5.4 Conclusion

We have proposed a new all-to-all broadcasting algorithm in faulty wormhole-routed

hypercubes with up to n 1 faulty links. The algorithm often produces a factor of

n less traffic and accommodates a larger message size than the previously known

algorithms Further, it tries to minimize the startup time which is much slower than

the propagation time. Even though the proposed algorithm may work for networks

implementing store-and-forward routing technique, it better suits wormhole or

virtual cut-throughrouted networks since in those networks startup time is the

dominant factor in the communication performance.

The packet size is 2 x BFIFO in both the proposed algorithm and Lee and

Shin's (LS). The traffic generated by the proposed algorithm is close to the lower

bound, N(N 1), which is a factor of n less than that of the LS algorithm. Further,

it can accommodate n times longer message than that of the LS algorithm within

the same time bound. As for the time, the LS algorithm is close to the proposed

one only when the message size < 2 x BFIFO. However, since the buffer size in

the wormhole-routed network is usually small, it may not be feasible to restrict the

message size to 2 x BFIFO. When the message size is n x BFIFO and when the

number of faulty links incident to each node is less than or equal to P2-4/-] , the time

taken by our algorithm is often at most 3(TS + pa -I- (N 2)a), whereas that of LS's

is n(TS ,ua (N 2)a). Thus, when the message size is a multiple of n x

our algorithm outperforms the LS algorithm by a factor of up to 3.



92

One of the open questions we are currently working on is how to find all the

disjoint Hamiltonian Cycles dynamically such that all the faulty links are confined

to a minimum number of cycles. If such an algorithm is found, then many more

faults may be tolerated.



93

Chapter 6

Conclusion

We have proposed (1) fault-tolerant single node broadcasting in hypercubes with up

to n 1 link/node faults, (2) fault-tolerant single node broadcasting in hypercubes

with up to n22 11 faulty links, (3) fault-tolerant all-to-all broadcasting in hypercubes

with up to L z i faulty links, and (4) fault-tolerant broadcasting in wormhole-routed

hypercubes with up to n 1 faulty links.

The proposed single node broadcasting algorithm which tolerates up to n

1 link/node faults is optimal in terms of both time and traffic. It utilizes the

characteristic of the recursive construction of the hypercube, which is the basis of

most of the work done here.

We improved the algorithm described above to tolerate up to n22 71 faulty

links. Traffic caused and time steps taken by the algorithm are optimal and close to

optimal, respectively. Similar ideas can also be applied to the case of node failures.

Two fault-tolerant all-to-all broadcasting algorithms have been presented:

one for networks which implement store-and-forward and the other for wormhole



94

routing techniques. All the previously known algorithms assume that each node does

not know the identities of the faulty components, which forces the algorithms to

send multiple copies of the same message to disjoint paths. This causes unnecessary

traffic in the network. Whereas, in our algorithms each node knows the addresses

of the faulty components, thus there will be no redundant traffic in the network.

Since our assumption is that each node knows the global information in

the network, each node should always be alert to the conditions of the neighboring

components. When fault occurs, a node which is in charge of the fault may broadcast

the identity of the faulty component to all nodes in the system. This causes some

overheads in the system. One of the future tasks may be to minimize the overheads.

For example, the concept of unsafeness [LH88] can be applied to the proposed

algorithms so that the node in charge of the fault broadcasts the faulty information

only to a subset of the nodes in the system.

As mentioned in the previous chapter, another future task is to find a method

to confine as many faulty links to the minimum number of Hamiltonian Cycles. If

it is possible, then we can utilize more fault-free Hamiltonian Cycles for reassigning

the packets in faulty Hamiltonian Cycles.



95

BIBLIOGRAPHY

[3+91] D. P. Bertsekas et al. "Optimal communication algorithms for hypercubes". Journal
of Parallel and Distributed Computing, 11:263-275, 1991.

[B+92] J. Bruck et al. "Tolerating faults in hypercubes using subcube partitioning". IEEE
Trans. Comput., 41(5):599-604, 1992.

[Ban89] P. Banerjee. "Reconfiguring a hypercube multiprocessor in the presence of faults". In
Proc. 4th Conf. on Hypercubes, Concurrent Computers and Applications, pages 95-102,
Mar. 1989.

[BK79] J. Bent ly and H. T. Kung. "A tree machine for searching problem". In Proc. 1979
Int'l Conf. Parallel Processing, pages 257-266, Aug. 1979.

[BS86] B. Becker and H. U. Simon. "How robust is the n-cube?". In Proc. 27-th Annual
Sympo. on Foundation of Computer Science, pages 283-291, 1986.

[BT89] D. Bertsekas and J. Tsitsiklis. "Parallel and distributed computation". Prentice-Hall,
1989.

[CS87] M. Chen and K. Shin. "Processor allocation in an n-cube multiprocessor using Gray
codes". IEEE Trans. Comput., c-36(12):1396-1407, Dec. 1987.

[CS88] M. S. Chen and K. Shin. "Message routing in an injured hypercube". In Proc. 3rd
Conf. on Hypercube Concurrent Computers and Applications, pages 312-317, 1988.

[CS89] M. S. Chen and K. Shin. "On hypercube fault-tolerant routing using global informa-
tion". In Proc. 4th Conf. on Hypercube Concurrent Computers and Applications, pages
83-86, 1989.

[CS90a] M. Chen and K. Shin. "Addressing, Routing, and broadcasting in hexagonal mesh
multiprocessors". IEEE Trans. Comput., 39(1):10-18, Jan. 1990.

[CS9013] M. Chen and K. Shin. "Subcube allocation and task migration in hypercube multipro-
cessors". IEEE Trans. Comput., 39(9):1146-1155, Sept. 1990.

[CS90c] M. S. Chen and K. Shin. "Depth-first search approach for fault-tolerant routing in
hypercube multicomputers". IEEE Trans. Parallel and Distributed Syst., 1(2):152-
159, Apr. 1990.



96

[CS90d] M. S. Chen and K. Shin. "Adaptive fault-tolerant routing in hypercube multicomput-
ers" . IEEE Trans. Comput., 39(12):1406-1416, Dec. 1990.

[Da187] W. Dally. "Deadlock-free message routing in multiprocessor interconnection networks".
IEEE Trans. Compel., c-36(5):547-553, May 1987.

[Da190] W. Da lly. "Performance analysis of k-ary n-cube interconnection networks". IEEE
Trans. Compel., 39(6):775-785, June 1990.

[DB92] B. Duzett and R. Buck. "An overview of the nCUBE 3 supercomputer". In Proc. 4th
Symp. on the Frontiers of Massively Parallel Computation, pages 458-464, 1992.

[Fra92] P. Fraigniaud. "Asymptotically optimal broadcasting and gossiping in faulty hypercube
multicomputers". IEEE Trans. Comput., 41(11):1410-1419, Nov. 1992.

[GS88] J. M. Gordon and Q. F. Stout. "Hypercube message routing in the presence of faults ".
In Proc. 3rd Conf. on Hypercube Concurrent Computers and Applications, pages 318-
327, 1988.

[GS89] A. Ghafoor and P. Sole. "Performance of fault-tolerant diagnostics in the hypercube
systems". IEEE Trans. Compel., 38(8):1164-1171, Aug. 1989.

[HJ86] C. T. Ho and S. Johnsson. "Distributed routing algorithms for broadcasting and per-
sonalized communication in hypercubes". In Proc. Int'l Conf. on Parallel Processing,
pages 640-648, 1986.

[HZ81] E. Horowitz and A. Zorat. "The binary tree as an interconnection network: Appli-
cations to multiprocessor systems and VLSI". IEEE Trans. Comput., c-30:247-253,
1981.

[JBH91a] R. Cypher J. Bruck and C. Ho. "On the construction of fault-tolerant cube-connected
cycles networks". In Int'l Conf. on Parallel Processing, pages 692-693, 1991.

[JBH91b] R. Cypher J. Bruck and C. Ho. "Fault-tolerant parallel architectures with minimum
number of spares". In Tech. Report, IBM RJ 8029,'Mar. 1991.

PH891 S. Johnsson and C. T. Ho. "Optimum broadcasting and personalized communication
in hypercubes". IEEE Trans. Compd., 38(9):1249-1268, Sept. 1989.

[JH91] S. Johnsson and C. T. Ho. "Optimal all-to-all personalized communication with min-
imum span on boolean cubes". In Proc. 6-th Distributed Memory Computing Confer-
ence, pages 299-304, 1991.

[KK79] P. Kermani and L. Kleinrock. "Virtual cut-through: A new computer communication
switching technique". Comput. Networks, 3:267-286, 979.

[L+90] Y. Lan et al. "Multicast in hypercube multiprocessors" . J. of Parallel and Distributed
Computing, 8:30-41, 1990.



97

[LH88] T. C. Lee and J. P. Hayes. "Routing and broadcasting in faulty hypercube computers".
In Proc. 3rd Conf. on Hypercube Concurrent Computers and Applications, pages 625-
630, 1988.

[LH89] T. Lee and J. Hayes. "One-step-degradable fault-tolerant hypercubes". In Proc. 4th
Conf. on Hypercubes, Concurrent Computers and Applications, pages 87-93, Mar.
1989.

[LLP82] R. Shostak L. Lamport and M. Pease. "The Byzantine general problem". ACM Trans.
Prog. Languages and Systems, 4(3):382-401, July 1982.

[LMS85] L. Lamport and P. M. Mel liar-Smith. "Synchronizing clocks in the presence of faults".
J. of ACM, 32(1):52-78, Jan. 1985.

[LN91] X. Lin and L. M. Ni. "Deadlock-free multicast wormhole routing in multicomputer
networks". In Proc. 18th Int'l Symp. Computer Architecture, pages 116-125, 1991.

[LS90] S. Lee and K. Shin. "Interleaved all-to-all reliable broadcast on meshes and hyper-
cubes". In Proc. Int'l Conf. on Parallel Processing, pages 111-110-111-113, 1990.

[PB90a] S. Park and B. Bose. "Burst unidirectional/asymmetric error correcting codes". In
Int'l Symposium on Information Theory, Jan. 1990.

[PB90b] S. Park and B. Bose. "Burst unidirectional/asymmetric error correcting and detecting
codes". In Proc. Symposium on Fault Tolerant Computing, pages 273-280, June 1990.

[PB90c] M. Peercy and P. Banerjee. "Distributed algorithms for shortest-path, deadlock-free
routing and broadcasting in arbitrarily faulty hypercubes". In Proc. 20th FTCS, pages
218-225, 1990.

[PB92] S. Park and B. Bose. "Broadcasting in hypercubes with link/node failures". In Proc.
4th Symp. on the Frontiers of Massively Parallel Computation, pages 286-290, 1992.

[PV81] F. P. Preparata and J. E. Vuillemin. "The cube-connected-cycles: A versatile network
for parallel computation". CACM, pages 300-309, May 1981.

[RS88] P. Ramanathan and K. Shin. "Reliable broadcast in hypercube multicomputers". IEEE
Trans. Comput., 37(12):1654-1657, Dec. 1988.

[S+85] C. L. Seitz et al. "Wormhole chip project report", Winter 1985.

[SB77] H. Sullivan and T. R. Bashkow. "A large scale homogeneous fully distributed parallel
machine". In Proc. 4-th Symp. Computer Architecture, pages 105-117, 1977.

[Sei85] C. L. Seitz. "The cosmic cube". Commun. of the ACM, 28(1):22-33, Jan. 1985.



98

[SP89] M. Samatham and D. Pradhan. "The de Bruijn multiprocessor network: a versatile
parallel processing and sorting network for VLSI". IEEE Trans. Comput., 38(4):567-
581, Apr. 1989.

[SS88] Y. Saad and M. Schultz. "Topological properties of hypercubes". IEEE Trans. Com-
pd., 37(7):867-872, July 1988.

[Sto71] H. S. Stone. "Parallel processing with the perfect shuffle". IEEE Trans. Comput.,
c- 20:153 -161, 1971.

[Tan90] A. N. Tanenbaum. "Structured Computer Organization". Prentice-Hall, 1990.

[YM88] C. L. Yang and G. M. Masson. "A distributed algorithm for fault diagnosis in systems
with soft failures". IEEE Trans. Comput., 37(11):1476 -1479, Nov. 1988.

[YN90] A. Youssef and B. Narahari. "The Banyan-hypercube networks". IEEE Trans. Com-
put., 1(2):160-169, Apr. 1990.




