
Mood-Dynamic Playlist: Interpolating a Path of Emotions Using a KNN Algorithm

By
Shaurya Gaur

A THESIS

submitted to

Oregon State University

Honors College

in partial fulfillment of
the requirements for the

degree of

Honors Baccalaureate of Science in Computer Science
(Honors Scholar)

Presented May 22, 2023
Commencement June 2023

AN ABSTRACT OF THE THESIS OF

Shaurya Gaur for the degree of Honors Baccalaureate of Science in
Computer Science presented on May 22, 2023. Title:
Mood-Dynamic Playlist: Interpolating a Path of Emotions Using a KNN Algorithm

Abstract approved:

Patrick Donnelly

Users curate music playlists based on emotion to focus or relax, so streaming
services often create playlists of songs to aid this process. Prior research focuses on
generating playlists of a single mood or genre, although a few studies work to con-
struct automatic playlists that transition between the genres of their first and last
songs. Building upon previous methods, we present a novel method for efficiently gen-
erating smooth and even playlists dynamic in both mood and genre. Given starting
and target songs and a desired length, our two-stage algorithm sequentially chooses
each track in between. It first uses a K-Nearest Neighbor model to retrieve potential
songs based on emotional annotations in the Valence-Arousal emotion space, and then
a vector distance metric to choose the next song based on audio features. We eval-
uate the smoothness and evenness of playlists across various regions of an emotional
feature space. Our experiments indicate that the quality of track transitions from our
algorithm’s playlists is dependent on various input parameters and the distribution
of the songs in our emotion dataset. This algorithm has potential as a novel music
therapy tool, allowing users to create playlists in specific genres that nudge them to
a desired mood.

Key Words: Music Information Retrieval, Music Emotion Recognition, Automatic
Playlist Generation, K-Nearest Neighbor

Corresponding e-mail address: shauryavrat@live.com

©Copyright by Shaurya Gaur
May 22, 2023

Mood-Dynamic Playlist: Interpolating a Path of Emotions Using a KNN Algorithm

By
Shaurya Gaur

A THESIS

submitted to

Oregon State University

Honors College

in partial fulfillment of
the requirements for the

degree of

Honors Baccalaureate of Science in Computer Science
(Honors Scholar)

Presented May 22, 2023
Commencement June 2023

Honors Baccalaureate of Science in Computer Science project of Shaurya Gaur
presented on May 22, 2023.

APPROVED:

Patrick Donnelly, Mentor, representing School of Electrical Engineering and
Computer Science

Robin Hess, Committee Member, representing School of Electrical Engineering and
Computer Science

Mei-Ching Lien, Committee Member, representing School of Psychological Science

Toni Doolen, Dean, Oregon State University Honors College

I understand that my project will become part of the permanent collection of
Oregon State University Honors College. My signature below authorizes release of
my project to any reader upon request.

Shaurya Gaur, Author

Contents

1 Introduction 3

2 Modeling Music and Emotions 5
2.1 Models of Emotion . 5
2.2 Musical Features . 6

3 Distance-Based Algorithms 8
3.1 Distance Metrics . 8

3.1.1 Minkowski Distances . 8
3.1.2 Cosine Similarity . 9
3.1.3 Jaccard Index . 9

3.2 K-Nearest Neighbor . 9

4 Related Work 11
4.1 Playlist Continuations . 11
4.2 Dynamic Playlists . 11
4.3 Mood Playlists . 12

5 Datasets 13
5.1 Music Emotion Datasets . 13
5.2 Audio Feature Datasets . 15

5.2.1 Spotify Audio Features . 15
5.2.2 Million Song Dataset . 18
5.2.3 Spotify Audio Segments . 20

6 Preprocessing 23
6.1 Principal Component Analysis . 23
6.2 Data Cleaning Process . 24
6.3 Song Dataset Class . 26

7 Mood-Dynamic Playlist Algorithm 27
7.1 Stage 1: K-Nearest Neighbors . 29
7.2 Stage 2: Distance-based Song Selection 30
7.3 Time Complexity Analysis . 31

8 Evaluation 32
8.1 Experimental Design . 32
8.2 Evaluation Metrics . 33

8.2.1 Smoothness: Pearson Correlation Coefficient 33
8.2.2 Evenness: Step Size Variance 34

9 Experiments & Results 36

9.1 Distance Metrics . 36
9.2 Audio Datasets . 37
9.3 K Values . 42
9.4 Playlist Lengths . 43
9.5 Dataset Segment Durations . 45
9.6 Regional Variances . 46

10 Discussion 49
10.1 Summary of Findings . 49
10.2 Limitations . 50
10.3 Future Work . 50
10.4 Applications . 51
10.5 Conclusion . 51

References 52

1 Introduction

Imagine yourself feeling frustrated and tense, late into the night. You need to go
to sleep soon in order to wake up early in the morning, but you have far too much
energy or are in a foul mood. To help yourself relax, you might listen to music.
Studies have shown that listening to music for as little as five minutes can improve a
user’s mood and energy level [27], revitalize focus and productivity [34, 38], and break
the monotony of work [48]. Music has been shown to be effective in elementary school
classrooms as well, encouraging positive and productive behavior among children [74].
Using music can help children stay relaxed [23] and even provide a means of therapy
for children with autism or dyslexia [44].

Researchers in the psychological effects of music have found that different types
of music have varying impacts on a listener’s mood. Faster songs [26] with a major-
key [6] are linked with happiness [23], and more energetic music such as rock can
increase a listener’s stress and adrenaline, which can distract from exercise pain [26].
However, these effects also depend on the listener, as background music is more likely
to distract introverted people than extroverted people [28]. Additionally, a listener’s
familiarity with a song can foster productivity in writing [18].

Streaming services such as Spotify [33] and Deezer [8] generate personalized au-
tomatic playlists for listeners. Recommending music for users is an important task
in this field. Most systems in automatic playlist generation rely on data collected
from tracks and users, including songs’ audio characteristics [17], the popularity or
genres of their artists [37], and user listening history [49]. Given this data, music
recommendation systems often perform one of two tasks: choose the next song to
play given a user’s listening history, or produce a playlist of songs for them to enjoy.

Ongoing research efforts in this area strive to choose songs that are similar in
features or mood to the current song being played. This requires tools and metrics
that determine how similar two songs are to each other. Many approaches represent
songs as a vector of relevant features, and calculate their distances to each other using
metrics such as the Euclidean [22], Jaccard [2], and Cosine [42] scores. These allow
researchers to use a K-Nearest Neighbor (KNN) model which returns a playlist of
the K closest songs to one in the user’s listening history or library [46, 49]. Some
approaches use data which maps songs to emotions, which are in turn used to create
playlists of tracks with a similar mood [10, 17].

While most studies focus on recommending similar songs, recent methods also
aim to create dynamic playlists which smoothly transition between songs or artists.
Some of these processes build graphs of similar artists [37, 64], which allow playlists to
follow a path from one artist in one genre to another artist of a different genre. In one
approach, Flexer et al. [25] use probability models to choose a playlist that bridges

the gap between two songs of different genres. However, this method only uses the
genre categories of songs to evaluate the transitions between tracks in a playlist.

In this thesis, we present a novel algorithm that builds playlists which gradually
transition from the mood of an origin song to that of a destination song. First, we
collect and analyze public datasets of songs and their values in a two-dimensional
emotional space [16] alongside their audio features [5, 70]. We then apply a KNN
model and various distance scores in a two-stage algorithm, which analyzes our data
to choose songs that lie in a linear path between the start and end songs of a playlist.
To our knowledge, this method is the first to successfully generate playlists that are
dynamic in both the mood and genre of the songs within it.

To evaluate the transitions between songs, we identify two key traits in a successful
dynamic playlist: smoothness and evenness. We present a novel methodology to
measuring these qualities empirically by analyzing playlists as points in a continuous
space. In our experiments, we generate a large number of playlists that travel between
various moods to examine the effectiveness of our algorithm in various conditions. We
test the impact of various factors in our playlist algorithm, including the recall of the
KNN model, the distance metric to compare songs, and the dataset of audio features.

Our algorithm can allow users to create playlists that slowly nudge them from
their current mood to a desired state of mind. This approach will enable development
of powerful new therapeutic tools to help users gain focus to work [18], calm down
before sleep [74], maintain intensity in exercise [26], or improve happiness [62].

2 Modeling Music and Emotions

Research in computational methods of emotion recognition have produced models
that represent moods as a set of categories and as a spectrum of values in a multi-
dimensional space. Similarly, investigators in the field of music information retrieval
(MIR) have created methods to distill a song’s audio characteristics into numerical
features. This foundational background enables computational methods, such as our
algorithm, to interface with mood and audio to generate playlists that use music to
travel through emotions.

2.1 Models of Emotion

To build technology that effectively interfaces with human emotion, researchers have
established various frameworks to model different moods. Studies in emotion clas-
sification often examine affect as either a series of discrete categories, or as multi-
dimensional points in a continuous space. Two of the most popular approaches in
discrete categorization are Ekman’s six basic mood labels [20] and Plutchik’s con-
centric circle model [57]. For continuous representations, Russell’s circumplex model
[63] maps emotions as points in a two-dimensional space by their Valence (positivity)
or Arousal (intensity). This representation of affect has been used in several music
emotion studies [10, 17, 36, 46].

Discrete frameworks allow researchers to classify emotions into a handful of cat-
egorical labels, shown in Table 1. Models that attempt to recognize emotions from
facial expressions have reported an accuracy of over 80% when classifying discrete
moods [19, 66], but found far weaker performance when trying to predict continu-
ous values in the Russell continuous space [36]. However, studies have found that
mapping discrete labels from Plutchik and Ekman to the Russell space [52], or using
quadrants of this space [50] have also been effective in classifying emotions.

Author Basic Emotions

[20] Ekman Anger, Disgust, Fear, Happiness, Sadness, Surprise
[57] Plutchik Joy, Sadness, Anger, Fear, Trust, Disgust, Surprise, Anticipation

Table 1: List of the simple emotions proposed by Plutchik and Ekman.

However, using only six or eight categories fails to capture the full spectrum of
human emotion. The ability to better approximate this granularity is a strength of
continuous models, which have been used in recent studies on mood-based playlist
generation [10, 46]. These models typically have mapped emotions in the Valence
and Arousal dimensions, as seen in Figure 1, but some studies also augment these

Figure 1: Russell’s circumplex model of emotion (from [63]).

with dominance (regarding the locus of control in an emotion) or harmonic reso-
nance, which can factor in a user’s satisfaction in a song [17]. These dimensions and
models are often interrelated, as Russell claims that the emotions from Ekman’s and
Plutchik’s models can be represented in the Valence-Arousal plane [63].

2.2 Musical Features

Researchers in MIR focus on extracting the most essential features of songs from au-
dio, symbolic music scores or user-based data. Many studies extract features from a
song’s raw audio, [30] such as the tempo in beats per minute (BPM), pitch from 12
chroma feature classes [22, 30, 31], and timbre, represented through Mel-Frequency
Cepstral Coefficients (MFCC) [71, 73]. Figure 2 shows the distribution of timbre
and pitch values throughout the duration of a song. This numerical data is pop-
ularly found in large datasets such as the Million Song Dataset [5] or through the
application programming interfaces (API) of streaming services such as Spotify [70].
Other studies [22, 68] use MIDI data to represent the musical notes of songs, though
MIDI-based datasets in MIR have often been limited to genres such as folk or jazz.

While many studies use data that represents the audio features of songs, some
collect user-created descriptions from social media platforms like Twitter [55] or album
review scores from Pitchfork [56]. Other approaches collect descriptive tags from

Figure 2: Mel-frequency spectral values, representing timbre, and chroma features,
representing pitch classes, throughout the duration of Black Sabbath’s song Sabbath
Bloody Sabbath, from [58].

music information services like Last.FM [16], DBPedia or MusicBrainz [2]. Data is
often collected at the artist [2, 37], album [56] or playlist [42] level as well. While
these datasets are descriptive and plentiful, a 2020 study by Daikoku et al. [15] found
that current MIR methods do not generalize well to non-Western music, underscoring
the lack of cultural and stylistic diversity in these widely-used music datasets.

Representing the audio and emotional characteristics of songs numerically enables
the use of mathematical formulas to calculate the similarities and differences between
them. These methods compare songs as points in a multi-dimensional vector space,
allowing researchers to represent playlists as a collection of points.

3 Distance-Based Algorithms

A key task in automatic playlist generation is determining how similar one song is
to another. To model this similarity, researchers employ mathematical scores that
determine the distances between songs, and store this information in models that
allow developers to efficiently retrieve the closest songs to a sample.

3.1 Distance Metrics

Techniques in MIR rely on mathematical metrics that calculate the differences be-
tween songs, based on their data from a variety of features. Several studies calculate
the discrete differences of MIDI notes [22, 68] or pitch values [9, 30] through different
song segments to identify transformations within a song or between two songs. Others
[31] create Gaussian probability models to predict discrete genre values, representing
songs as distributions to compare using the Kullback-Leibler (KL) divergence. Some
studies build graphs [45, 41, 37, 64] to model similarity, such as the MusicLynx1 plat-
form [2], a visualizer that connects similar artists based on a weighted metric that
compares their genres.

While researchers employ various methods to compare discrete or categorical data,
our work focuses on a song’s numerical features. These represent songs as vectors in
a multi-dimensional space, and allow us to use mathematical metrics to calculate the
distance between them. Some scores calculate vector similarity instead of distance,
which we easily convert to distance metrics by subtracting these similarities from
their maximum values. We examine three metrics below.

3.1.1 Minkowski Distances

Perhaps the most popular vector distance metrics in mathematics are the Manhattan
and Euclidean distances [22, 46, 73]. These are specific versions of the Minkowski
distance [69], a formula for calculating the distance between two vectors in a space of
a specific order, as shown in Equation (1).

DM(X, Y) = (
n∑

i=1

|Xi − Yi|p)
1
p (1)

This is equivalent to the p-norm of a vector X − Y . The Manhattan distance,
also known as the taxicab distance, uses p = 1, which is the sum of the distances
between two vectors in every single dimension. The Euclidean distance uses p = 2,
and it is often used as the default norm for vector problems.

1https://musiclynx.github.io/

https://musiclynx.github.io/

3.1.2 Cosine Similarity

Several researchers in playlist generation also measure the Cosine Similarity, or an-
gular similarity, between two vectors [17, 42, 64]. This score calculates the cosine
of the angle θ between two vectors. The domain of cos θ is bound in the range of
[−1, 1], where a value of 1.0 indicates θ = 0, or that the two vectors lie on the same
line. Therefore, to determine the similarity of two vectors [59], we can rearrange the
formula for the vector dot product to Equation (2).

SC(X, Y) = cos θ =
X ∗ Y
||X|| ||Y ||

=

∑n
i=1XiYi√∑n

i=1 X
2
i

√∑n
i=1 Y

2
i

(2)

To utilize this as a distance metric, we calculate DC(X, Y)− 1−SC(X, Y) as the
Cosine distance between songs in our algorithm.

3.1.3 Jaccard Index

This metric was designed to examine the similarity of two sample sets by comparing
the size of their intersection (the common elements in both sets) to that of their union
(the combined set of both samples) [32]. This “intersection-over-union” approach
functions similarly to a Venn diagram and has been used in models that detect objects
like stop signs in images [72]. MIR researchers have previously used the Jaccard index
to calculate the similarities between users [55] and artists [2]. For vectors, the Jaccard
index is calculated by comparing the minimum and maximum values for two vectors
at each dimension, as seen in Equation (3).

JW (X, Y) =

∑
i min(Xi, Yi)∑
i max(Xi, Yi)

(3)

A value of 1.0 means that the two vectors are the same, and a smaller value
indicates a greater distance between them. We calculate DJ(X, Y) = 1 − JW (X, Y)
as the Jaccard distance in our algorithm.

3.2 K-Nearest Neighbor

In MIR studies, these distance metrics are often employed as part of larger algorithms
that model the relationships between different songs or artists. One popular model is
K-Nearest Neighbor (KNN), which makes decisions on a sample based on the values of
the K nearest points around it, as determined by a distance metric. Proposed in 1951
[24], KNN was originally designed for classification problems in machine learning in
which a classification for a sample point is the most frequent label among its neighbors
(see Figure 3). However, this example-based learning algorithm also found success

in regression problems, where a point’s numerical value is calculated as the mean of
the values of its K nearest neighbors [3]. KNN-based regression has proven useful in
handling non-linear patterns in data.

Figure 3: Example of a KNN classification problem. The green sample point is labeled
as orange when k = 3 but as blue when k = 5.

Several researchers employ KNN for not only classification [51, 66] and regression
[55, 47], but also to search for the neighbors of a sample or target point [46]. We
employ this latter approach and utilize an unsupervised NearestNeighbors model2

provided by the scikit-learn Python package [54], a popular collection of tools used
in machine learning (ML). This model uses efficient data structures to store neighbor-
ing songs, varying its approach based on the number of songs and the dimensionality
of their features. When a dataset has few points, or the distances between points
are already computed, this model stores the distances between every pair of points.
However, this approach becomes unfeasible with a large dataset, so the scikit-learn
team resorts to tree-based approaches, which group nearby points to each other [54].
Often, these are K-dimensional trees, which partition each dimension in half based
on its median value. This effectively creates quadrants for two-dimensional data, or
octants for three-dimensional data [4]. Constructing this tree and returning neighbors
is fast for fewer dimensions but grows inefficient with the number of features. In these
cases, the NearestNeighbors model uses a Ball Tree, which clusters data into spheres
of points that extend from various centroids [54]. The adaptability and efficiency of
KNN models make them an effective tool in automatic playlist generation.

2https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.

NearestNeighbors

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestNeighbors
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestNeighbors

4 Related Work

People have curated lists of songs to play ever since we started listening to music. As a
result, the MIR community is highly motivated to develop methods that automatically
create playlists [10, 12, 17, 25] or recommend the next song for a user to play [42,
46, 49, 76]. These researchers build models based on data from songs, or in the case
of streaming platforms like Spotify, data from users’ listening tastes [46] or existing
playlists [42, 76]. Some approaches also create playlists of emotionally similar songs
[10, 17, 45], or playlists that gradually transition in audio features from an origin to
a destination song [12, 25, 64].

4.1 Playlist Continuations

Playlist generation can be seen as a continuation problem, where a model recommends
the next song to play given a list of the user’s recently played tracks. Many approaches
exist for these problems, such as Pampalk’s method [49] of comparing the similarity
of songs’ audio features to previously played and skipped songs to choose the next
song for the user.

Contestants in the 2018 ACM Recommendation Systems challenge used various
methods to choose the next track, given a playlist of previous songs from a Million
Playlist Dataset (MPD) provided by Spotify [42]. Many techniques used collaborative
filtering (CF) to choose tracks based on their occurrence in other similar playlists
[42]. CF can be a popular approach in playlist generation, and has been employed
by Spotify [33] and Pichl et al. [55] to recommend songs based on the listening
histories of other users. While this has proven effective with large datasets and
popular streaming services, it suffers from a cold-start problem when it lacks initial
users and skews towards popular tracks [46].

In contrast to CF, Ludewig [42] found that an approach using matrix factorization
algorithms and KNN techniques was simpler, yet almost as effective, as more complex
natural language processing (NLP) or convolutional neural network (CNN) systems.
Zamani’s examination of approaches in this challenge [76] found that the highest
performing systems created a two-stage algorithm to recommend songs. This type
of system uses a high-recall first stage to choose many candidate songs, and then
re-scores these in a second stage, in which the most relevant candidate is chosen as
the next song.

4.2 Dynamic Playlists

Previous studies have employed various methods to create playlists that smoothly
transition between the audio characteristics of start and end songs. Pauws [53] and
Chen [12] gather data on existing playlists using Markov embeddings or simulated

annealing to generate playlists with smooth track transitions. Sakurai [64] constructs
similarity graphs based on songs’ audio features using Reinforcement Learning to
create playlists with high diversity and smooth track transitions. On the other hand,
Lemare [37] creates playlists that transition between artists, using data on artist
popularity and the energy of their tracks to determine a playlist of songs.

Flexer [25] creates playlists that gradually transition from a start to an end song,
modeling songs as Gaussian probability models based on MFCC features. Their
approach computes each song’s KL divergence from the start and end song to create
a playlist of songs in between. However, they only evaluate the transition between the
playlists’ first, middle, and last three songs, and only examine transitions in discrete
genre categories rather than numerical audio features.

4.3 Mood Playlists

Various studies have worked to classify the emotions of users and songs to recommend
music of similar emotions. Rumiantcev [62] designs a high-level model of a system
which uses user and sensor data to recommend songs similar to a user’s predicted
mood using KNN or Random Forest approaches. Several other studies take strides
in implementing such a design. Meyers [45] models the moods of artists, albums and
songs into several discrete categories using a graph-based method [41] and compares
these emotions to those extracted from mapping the words from a user’s writing.
EMOSIC [47] is a music player that performs similar emotion recognition on a user’s
face and songs’ audio. They use Support Vector Machines and KNN approaches
to predict values in the Valence-Arousal plane, and recommend songs emotionally
similar to each other and the user’s current mood.

While the above studies use data on songs, users, and albums, some other studies
employ a purely song-based approach. Deng [17] predicts the emotions of the user’s
previously-listened songs from audio features to continue their current playlist, while
Pao [51] implements a weighted-density KNN model to map emotions into discrete
quadrants of the Valence-Arousal space. Moscato’s approach [46] uses data from
the Deezer 2018 dataset [16] and MFCCs to train a CNN to predict the Valence-
Arousal mood values of songs outside the dataset. Their system uses a KNN model
powered by the Euclidean distance to continue playlists with emotionally similar
songs. While most studies recommend music to users that maintains their current
mood, Cardoso [10] enables users to draw a path in the Valence-Arousal plane. Their
approach chooses the closest songs to that path within a certain threshold, yet does
not explicitly order these songs or evaluate the quality of these path-based playlists.

5 Datasets

To create playlists which are dynamic in emotion and audio, we require datasets which
contain these features for a large number of songs. These datasets will function as a
space in which our algorithm will select songs to form a path, representing a playlist.
We combine datasets of songs and their points in both the Valence-Arousal emotional
space, and various audio-based feature spaces.

5.1 Music Emotion Datasets

Many different datasets have been used for MIR and Music Emotion Recognition
(MER) which provide ratings for songs in a continuous emotional space. To generate
playlists that travel through emotions, we seek datasets that include information on
songs and their values in the Valence-Arousal space. Typically, high-quality MER
datasets consist of manual ratings provided by human annotators listening to music
[1, 11, 77], but these only provide such data on either a few hundred songs. To find a
sufficiently large dataset for our task, we primarily use the Deezer 2018 [16] dataset
of 18,644 songs with synthetic values for Valence and Arousal.

Researchers from the Deezer music streaming service collected mood-related tags
from the Last.FM service to describe each song, and used a dataset to map these
words to their embeddings in the Valence-Arousal emotion space. They collected and
normalized the means of these embeddings, releasing valence and arousal labels, IDs
for the songs on Deezer and the Million Song Dataset [5], and the artist and track
names for all 18,644 songs.

However, the synthetic nature of this dataset’s ratings means that songs with the
same or similar Last.FM tags may share the same value in the Valence-Arousal space
[16]. This is a major limitation of this dataset, as the 18,644 songs only occupy 2,720
unique points. Table 2 shows that around seven songs on average share an emotional
point, with as many as 1,700 songs occupying a single point.

All Songs (N=18,644) Unique Points (N=2,720)
Valence Arousal Valence Arousal Frequency

Mean -0.067258 0.195720 -0.370665 0.059615 6.854412
St.Dev. 1.057872 0.960662 0.798128 0.722372 59.394308
Min -2.148097 -2.333604 -2.148097 -2.333604 1
Median 0.032224 0.040198 -0.464615 -0.014126 1
Max 1.546714 2.755091 1.546714 2.755091 1732

Table 2: Summary statistics for all Deezer songs (left) and unique points (right).

Figure 4: Scatter-plot of the distribution of Valence and Arousal in the Valence-
Arousal circumplex space, each scaled to the [-1,+1] range.

Additionally, Table 2 and Figure 4 indicate that the distributions of the points in
the dataset are uneven. While the distribution of Valence scores seems standardized
between songs, this changes when filtering only for the unique points, which implies
that happy and upbeat songs are more likely to share the same point in the Valence-
Arousal space. The opposite is true for the Arousal values, which show a skew towards
high-energy songs, but are fairly standardized when only considering unique points.

These two skews compound each other when considering the quadrants of the
dataset. Table 3 shows that the Deezer dataset is more skewed towards songs that
are either positive or negative in both valence and arousal, but sad and depressing
songs have far more unique points in this space than any other type of song. This
creates various regions in our dataset that are denser and sparser. Despite these
limitations, Deezer’s set of popular songs provides a large sample from which to build
playlists and retrieve audio features from other public datasets.

Quadrant Valence Arousal Emotions Songs Points

I + + Excited, Happy 6001 502
II + - Angry, Afraid 3638 832
III - - Sad, Depressed 5444 1047
IV - + Calm, Content 3561 339

Table 3: Descriptions and the number of songs and unique points in each Cartesian
quadrant of the Deezer 2018 dataset.

5.2 Audio Feature Datasets

Since user preferences in genres of music have an effect on their mood, our goal is to
create mood-dynamic musical playlists that also traverse smoothly between the genres
of chosen origin and destination songs. Therefore, we augment our music emotion
data of the songs from the Deezer dataset with acoustic features and other relevant
metadata from the Spotify API [70] and the Million Song Dataset [5]. We compare
these feature sets in Section 9.2.

5.2.1 Spotify Audio Features

As a first step, we extract additional features from Spotify, a large, popular streaming
service for songs, with more than 500 million users, including 205 million subscribers
in more than 180 markets3. The company uses collaborative filtering algorithms
augmented with audio feature data driven by its 2014 acquisition of the Echo Nest
API, which specialized in extracting feature embeddings from a song’s audio and
metadata [50]. The Spotify API includes endpoints for fetching audio features and
other metadata for almost every song in its catalog [70].

To match a song from the Deezer dataset to a track from Spotify’s catalog, we
queried the API for a Spotify track ID using a search term that concatenates the
artist and title of each song. This successfully queried for the URI for 17,755 of the
Deezer dataset’s 18,644 songs, and 2,672 unique points out of a total of 2,720. All
audio-related features from the Get Audio Features4 API endpoint were extracted.
From the Get Track5 API endpoint, we extract the popularity metric and the explicit
tag of a track, since the popularity or explicit content of a song may have an effect
on the user listening experience.

3newsroom.spotify.com/company-info/
4developer.spotify.com/documentation/web-api/reference/get-audio-features
5developer.spotify.com/documentation/web-api/reference/get-track

newsroom.spotify.com/company-info/
developer.spotify.com/documentation/web-api/reference/get-audio-features
developer.spotify.com/documentation/web-api/reference/get-track

Mean St.Dev. Min Median Max

acousticness 0.2618 0.3051 0 0.1110 0.995
danceability 0.5242 0.1590 0 0.5270 0.978
duration ms 251336 81137 35587 239 1449973
energy 0.6222 0.2462 0 0.6510 0.999
instrumentalness 0.0844 0.2089 0 0.0002 0.983
key 5.2506 3.5622 0 5 11
liveness 0.1878 0.1557 0.0136 0.1250 1
loudness -8.4547 3.9755 -46.2840 -7.6410 3.744
mode 0.6823 0.4656 0 1 1
speechiness 0.0605 0.0632 0 0.0387 0.954
tempo 122.0198 29.2322 0 120.1160 217.520
time sig 3.9018 0.3680 0 4 5
valence 0.4609 0.2481 0 0.4360 0.984

popularity 34.1625 16.6780 0 33 84
explicit 0.0444 0.2059 0 0 1

Table 4: Statistics for 13 features from Spotify’s Get Audio Features API endpoint,
and two features from the Get Track endpoint, on 17,755 Deezer songs collected.

Overall, we extracted 15 features from Spotify, listed in Table 4. From this, we
can see that most features have relatively little skew, except for the duration of a
song in milliseconds. Additionally, most features are floating-point values between
0.0 and 1.0, representing confidence values for the feature described in the endpoint.
However, some features represent values at different scales, as described in Table 5.

Feature Type Min Max Description

duration integer 35587 1449973 song’s duration in milliseconds
key integer -1 11 Pitch Class for a track (-1 for no key)
loudness float -60 0 average decibel level of the track
mode binary 0 1 1 for major-mode, 0 for minor-mode)
tempo float 0.00 217.52 tempo in beats per minute (BPM)
time sig integer 3 7 3/4 to 7/4 time signature range
popularity integer 0 100 index based on number of recent plays
explicit Boolean 0 1 1 (true) if a song is tagged as explicit

Table 5: Descriptions of Spotify features that do not lie on a 0.0 to 1.0 feature scale.

Figure 5: Correlation matrix for Valence and Arousal from Deezer 2018 and all col-
lected Spotify features (prefixed with sp).

The correlation matrix in Figure 5 shows that these features are mostly uncor-
related, save for energy, loudness, and acousticness. A 2021 study from Panda et
al. found that these three features are the most relevant to MER [50]. Their study
used an audio dataset of 900 songs to compare the effectiveness of Spotify features
to other raw audio features in MER. This was measured by the correlation between
each feature and synthetic labels for the Valence-Arousal quadrants which were vali-
dated by volunteers [50]. While the acousticness, valence, energy, and mode features
had relatively high correlations individually, the whole set of Spotify features had a
lower correlation with labeled emotions than other feature datasets, and were thus
subpar for predicting a song’s mood [50]. While this may be a detriment to other
music emotion applications, it implies that these features account for characteristics
unrelated to mood. This is useful in our application, since our audio feature datasets
are meant to balance the genres of our playlist, and are not meant to signify emotion.

5.2.2 Million Song Dataset

One dataset frequently used in MIR is the Million Song Dataset [2, 16, 39], also known
as the MSD. Created by a 2011 collaboration between researchers at Columbia Uni-
versity and The Echo Nest, with support from the National Science Foundation, this
dataset includes audio-derived features and metadata for 1,000,000 songs from 44,745
unique artists [5]. Using the included MSD track id and MSD sng id for each track
on the Deezer 2018 dataset, we extract audio-based fields which describe each track
as a whole from the MSD6, described in Table 6.

Feature Type Description

key integer predicted key of the song
mode integer major or minor key of the song
time signature integer number of beats per bar
key confidence float confidence measure of key
mode confidence float confidence measure of mode
time signature confidence float confidence measure of time signature

loudness float overall loudness in decibels
tempo float estimated tempo in BPM

Table 6: Descriptions of MSD features for tracks overall from its official field list.

In addition, we aggregated the loudness and timbre features of all segments of
our song. A segment in a song is the smallest unit of time collected by the MSD,
and contains a consistent sound throughout its duration [5]. We extract the loudness
and timbre of segments by including the value and duration of each segment’s peak
decibel value, and its 12 MFCCs respectively. For each song, we calculated the
average, variance, minimum, maximum, and median values across segments as a
representation of an aggregated measurement of timbre and loudness. Table 7 shows
descriptive statistics for all features and selected timbre aggregations. While many
features are relatively centered, they exist on widely different scales and could result
in certain features, such as the maximum loudness and timbre, overpowering others.

We extracted 78 features from MSD for all 17,755 songs from the Deezer dataset
which also contained Spotify features. While the MSD is a large dataset with many
features, it lacks album and song-level metadata and tags, and contains almost no
music from different cultures or classical music [5]. Also, the MSD has not been
updated since its release in 2011, so musical sample is restricted to tracks released
between 1922 and 2011, diminishing its relevance towards future MIR studies that
consider more contemporaneous music.

6http://millionsongdataset.com/pages/field-list/

http://millionsongdataset.com/pages/field-list/

Mean St.Dev Min Median Max

key 5.2544 3.5671 0 5 11
key confidence 0.4727 0.2694 0 0.492 1
loudness -8.7548 4.0393 -34.022 -7.881 -0.227
mode 0.6759 0.468 0 1 1
mode confidence 0.5082 0.1868 0 0.519 1
tempo 122.9944 32.0993 0 120.752 262.412
time signature 3.722 1.0331 0 4 7
time signature conf... 0.5543 0.358 0 0.606 1
loudness max avg -12.1558 4.9524 -42.4203 -11.3151 -1.4755
loudness max var 36.9183 22.6442 0.5162 32.7954 270.1014
loudness max min -54.0999 10.5726 -60 -60 -5.056
loudness max max -3.7329 2.9353 -25.451 -3.115 6.37
loudness max med -10.9841 5.0924 -48.624 -9.99 -0.864
loudness max time avg 0.0607 0.0166 0.0215 0.0581 0.418
loudness max time var 0.0092 0.382 0.0001 0.0032 50.7472
loudness max time min 0.0037 0.0041 0 0 0.0319
loudness max time max 0.8673 2.2284 0.1052 0.5913 269.3235
loudness max time med 0.0432 0.01 0.019 0.042 0.1376
timbre 0 avg 44.2645 5.1914 15.2725 44.9773 55.7646
timbre 0 var 37.421 22.0484 1.1725 33.2962 249.3499
timbre 0 min 3.7664 7.7711 0 0 47.743
timbre 0 max 52.9363 3.2002 29.65 53.604 61.504
timbre 0 med 45.469 5.3997 9.568 46.308 56.13
...
timbre 11 avg 2.3729 7.3529 -39.9886 2.1727 47.7089
timbre 11 var 287.0263 117.2919 50.5546 267.3146 1934.4954
timbre 11 min -56.8164 16.3461 -157.703 -55.137 -1.489
timbre 11 max 60.2111 16.8135 10.323 58.719 171.616
timbre 11 med 2.5286 7.3425 -42.053 2.309 49.9985

Table 7: Statistics for some of the 78 MSD features on 17,755 Deezer songs col-
lected. Aggregations for MFCCs 1 through 10 not shown for brevity. Features for
loudness max and timbre are for segments and have segments as a prefix in usage.

5.2.3 Spotify Audio Segments

The MSD and Spotify features aggregate data at the level of an entire song, which
implies that a song’s sound is the same throughout its duration. Yet this does not
reflect the reality of music, which often transitions between characteristics over the
course of a song. Since a playlist involves transitions between the end of one song
and the start of the next, collecting audio features for the start and end of each song
could potentially yield smoother transitions. The Spotify API’s “Get Audio Analy-
sis” endpoint7 contains data for various subdivisions of a song, as shown in Table 8.

Subdivision Meaning

Sections large variations in rhythm or timbre
Bars measure, given number of beats
Beats basic unit in music (e.g. metronome tick)
Tatums lowest regular pulse train that listener intuitively infers
Segments unit with consistent sound throughout its duration

Table 8: Descriptions of song subdivisions from Spotify’s Audio Analysis API.

We successfully extracted data on segments for 17,751 out of 17,755 songs. The
remaining four songs lacked lacked audio analysis data in the Spotify API. We choose
to extract data from segments since they are one of the smallest units of data in a
song. This is verified visually in Figure 6, generated from a community tool8. Seg-
ments also contain the most data when compared to other subdivisions, since they
include the peak and onset loudness of a song (in dB), as well as 12 chroma vector
values for pitch, and 12 MFCC features for the timbre.

Figure 6: Visualization of subsections of Digital Love by Daft Punk.

7developer.spotify.com/documentation/web-api/reference/get-audio-analysis
8spotify-audio-analysis.glitch.me

developer.spotify.com/documentation/web-api/reference/get-audio-analysis
spotify-audio-analysis.glitch.me

Figure 7: Custom weighted averages of up to the first and last N = 100 segments
respectively for the timbre 6 feature. Example song is Gone by Pearl Jam.

For each of these features, we compute weighted averages for the head (or first N
segments) and tail (or last N segments) of each song. Segments have a specific order
in a song, and each segment has a varying duration in terms of the length of the song.
Therefore, we decided to create a custom weighted average that considers the order
− defined as the closeness to the head or tail − and duration of each segment when
creating our weighted average:

W =

∑N−1
i=0 fidi(N − i)∑N−1
i=0 di(N − i)

(4)

where N = the number of segments in the calculation, fi = value of feature at the ith

segment, and di = duration of the ith segment. In this formula, segments closer to the
start or end with longer duration hold greater weight than later, shorter segments,
since they are heard prominently at the beginning or end of a song. As more segments
are factored into the weighted average, our custom weighted average value tends to
stabilize around certain values. This is illustrated in Figure 7.

We collect various segment feature datasets based on the number and total du-
ration of segments (e.g., the first 30 seconds) and round each to six decimal places.
These datasets contain 26 features for the head of the song (12 from pitch vectors, 12
from timbre MFCCs, and 2 from loudness) and for the tail, for a total of 52 features.
Table 9 describes the distribution of the averaged features for the first 100 segments
of Deezer songs. These statistics imply that segment-based features are not skewed,
but that the timbre and loudness features are at much larger scales than the pitch.

Mean St.Dev. Min Median Max

head loudness max -16.1074 7.4773 -55.929 -15.3226 0.5292
head loudness start -26.1861 7.9473 -58.8554 -26.0611 -4.4365
head pitches 0 0.3627 0.1857 0.0098 0.3455 0.9999
head pitches 1 0.3473 0.1834 0.0199 0.3263 0.9987
head pitches 2 0.3264 0.171 0.0155 0.3063 0.992
head pitches 3 0.2657 0.1485 0.012 0.2413 0.9974
head pitches 4 0.3219 0.1681 0.0097 0.3017 0.9986
head pitches 5 0.2842 0.1534 0.0099 0.2636 0.9845
head pitches 6 0.2857 0.1466 0.0111 0.2658 0.9915
head pitches 7 0.3181 0.1632 0.0112 0.299 0.9992
head pitches 8 0.2767 0.1489 0.0148 0.2544 0.9919
head pitches 9 0.3198 0.1688 0.0074 0.2969 0.9998
head pitches 10 0.2593 0.1444 0.007 0.2349 0.9959
head pitches 11 0.3114 0.1606 0.0026 0.2923 1
head timbre 0 39.2529 7.5379 2.32 39.7333 58.4351
head timbre 1 18.5281 61.975 -281.1501 22.838 369.1475
head timbre 2 -5.1866 45.059 -203.8026 -4.3076 239.6
head timbre 3 0.5451 26.534 -105.625 -3.9182 254.2491
head timbre 4 19.9278 23.7255 -66.6107 18.5872 191.5217
head timbre 5 -17.6264 14.7215 -106.4868 -18.8081 71.0534
head timbre 6 -6.7193 15.0338 -72.4662 -6.8596 76.7225
head timbre 7 -1.8159 10.8272 -71.919 -1.7113 87.3362
head timbre 8 -7.5361 9.6454 -71.3813 -7.3055 50.1824
head timbre 9 0.3965 6.1872 -44.9041 0.3477 45.4983
head timbre 10 -10.9828 7.7418 -92.756 -9.7548 23.8244
head timbre 11 1.6325 7.6403 -48.6695 1.6404 51.5329

Table 9: Descriptive statistics for 26 features for a segment dataset averaging data
for the first N = 100 segments for 17,751 Deezer songs. We also collect the same 26
features for the tail, or the last N segments, of all of our songs.

6 Preprocessing

We see from Tables 2, 4, 7, and 9 that the audio feature datasets vary greatly in their
dimensionality, the number of songs collected, and the scales of their features. To
prepare these datasets for our playlist algorithm, we must account for these factors
by transforming the data. We begin by removing any songs from our dataset that
do not have features from all three audio datasets, leaving each dataset with 17,751
songs out of a possible 18,644. This results in the loss of 893 songs but we retain
95.2% of the Deezer dataset. Next, we apply a set of transformations to account for
the dataset’s varying dimensionality and feature scales.

6.1 Principal Component Analysis

Spotify and the MSD provide audio feature datasets that differ in dimensionality.
More specifically, there are only 15 Spotify features compared to the 78 features of
the MSD. Inputs with high dimensionality have typically hindered the performance of
many approaches in ML, including KNN methods [43]. We examine the effect of this
dimensionality in song transitions by comparing playlists made by the full Spotify
and MSD features against those made by a reduction of these datasets.

We employ a Principal Component Analysis (PCA) to reduce the Spotify features,
MSD features, and a combination of Spotify and MSD features to 12 dimensions each.
Table 10 shows that this number explains over 95% of the variance in Spotify features,
using an approach in line with common ML practices [65].

Dataset Original Feature Count Variance Retained

Spotify 15 96.7%
MSD 78 68.3%
All (Spotify + MSD) 93 62.7%

Table 10: The proportion of variance kept after performing a PCA to 12 features on
each audio feature dataset.

We employ the PCA9 module from scikit-learn [54] for this transformation,
which uses Singular Value Decomposition (SVD) to project the feature data into a
lower-dimensional space. Figure 8 illustrates the effects of this PCA transformation on
the Spotify features, showing that a PCA yields 12 features with zero correlation, or
maximum covariance. Only musical features from Spotify and MSD are transformed
with PCA, and the Valence-Arousal values from Deezer are untouched.

9scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA

scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA

Figure 8: Correlation of Spotify features after PCA, with Deezer features untouched.

6.2 Data Cleaning Process

Since we aim to create playlists that travel across various feature spaces, it is im-
perative to transform each feature to a consistent scale. Originally, we hypothesized
that transforming data to have zero mean and unit variance would suffice. However,
we observed that transforming data using the StandardScaler10 included with the
scikit-learn Python package [54] still resulted in different tail sizes between features
with large numbers of outliers, as depicted in Figure 9. This is a problem because
features with larger or more extreme values would have an outsized effect on the path
of the song. To reduce the effect of outliers, we employ a power transformation on
each feature to rein in each distribution. To achieve this, we apply scikit-learn’s
[54] PowerTransformer11, which employs the Yeo-Johnson transformation [75], to
reduce the range of outliers.

10scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler
11scikit-learn.org/stable/modules/generated/sklearn.preprocessing.

PowerTransformer

scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler
scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PowerTransformer
scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PowerTransformer

Figure 9: Deezer dataset and Spotify features after standardization. Notice the out-
liers on most features and the inconsistent ranges between features.

While this transformation manages most outliers to reasonable levels, some fea-
tures still retain extreme outliers outside the interquartile range (IQR). We define
extreme outliers as any features that had values that strayed 5.5 × IQR from the
median. Features that contain extreme outliers are discretized into 20 bins using
scikit-learn’s [54] KBinsDiscretizer12.We determined 5.5 as an appropriate coef-
ficient since smaller coefficients (i.e. 2.5 or 3) would discretize almost every feature for
some datasets, such as those with segment data. In our preliminary experiments, we
find that a coefficient of 5.5 provided a balance between keeping the data continuous
and removing the most extreme outliers.

After discretization, all features are normalized into a [−1, 1] range, with a mini-
mum value of −1.0 and a maximum value of +1.0, to keep the total distance for each
feature the same and ensure no single feature is given undue weight in calculation
for the transition between songs. We use the MinMaxScaler13 from scikit-learn

[54] to achieve this goal. Figure 10 presents the Deezer and Spotify features after
transformation. We apply this transformation to all datasets: the original Deezer
Valence-Arousal data, Spotify and MSD audio features, segment-based data, and
PCA datasets.

12scikit-learn.org/stable/modules/generated/sklearn.preprocessing.

KBinsDiscretizer
13scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler

scikit-learn.org/stable/modules/generated/sklearn.preprocessing.KBinsDiscretizer
scikit-learn.org/stable/modules/generated/sklearn.preprocessing.KBinsDiscretizer
scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler

Figure 10: Deezer dataset and Spotify features after the power transformation, dis-
cretization, and normalization process.

6.3 Song Dataset Class

To manage mood, audio and segment-based features for 17,751 songs, we build a
custom object to contain our datasets. Using the pandas package in Python, we
create a separate DataFrame, or table, for each audio feature dataset and the Deezer
2018 dataset, containing features for each song. For a segment-based dataset, we split
the audio feature tables into two tables − one for the features for the head of the
song and another for the tail.

For the purposes of this study, we generate large numbers of playlists to test
the algorithm’s capability. To save time when running our experiments, we build an
unsupervised scikit-learn [54] KNN model using the unique points of the Deezer
2018 dataset in our class, which is reused for creating every playlist. Finally, for the
purposes of our algorithm in Section 7, we save a map which returns the Deezer song
IDs that share a given Valence-Arousal point.

7 Mood-Dynamic Playlist Algorithm

In this work, we build upon existing approaches to create an algorithm that generates
mood-dynamic playlists. Given an origin song, a destination song, and a desired
length, our tool can generate a playlist in which the songs form a path between the
origin and destination. This path lies in the Valence-Arousal emotional space, with
additional considerations given to an audio feature space.

Our playlist generator requires a few key input parameters. First, the user pro-
vides the algorithm with a dataset that contains Valence-Arousal data and audio
features for songs. In addition, they specify an origin song S1 and a destination song
SN , which must be IDs for songs that exist inside the dataset. Finally, the user
specifies the number of songs N desired in the playlist.

In a different approach to Cardoso [10], our playlist algorithm works sequentially.
choosing each subsequent song in a loop until the length L of the playlist is equal to
N − 1. Each iteration of this loop begins with the knowledge of the most recently
chosen song, the destination song, and the number of songs remaining.

Within this loop lies a two-stage algorithm to select the next song, which we use
to ensure a balance between emotional and genre transitions. This approach is similar
to approaches outlined in Zamani [76], where the first stage of the algorithm recalls
a large number of candidate points to be re-scored for accuracy in the second stage.
Such a method is required, since the high dimensionality in each audio feature dataset
could vastly overpower the two Valence and Arousal features in the Deezer dataset
if not separated. For example, a combined KNN model with 15 Spotify features
and two Valence-Arousal features would primarily choose neighbors based on audio
characteristics. We describe our two-stage generator with pseudocode in Algorithm
1, and explain each stage fully in Sections 7.1 and 7.2.

Algorithm 1: Two-stage mood-dynamic playlist algorithm.

Input : Dataset D. KNN mood model K, and audio vectors V , ∀ S ∈ D.
Origin and destination songs for the playlist S1, SN ∈ D.
Length of the final playlist N .

Output: A playlist P of N ordered songs [S1, ..., SN] ∈ D.
P,L← [S1], 1;
while L < N − 1 do

[Scandidates]← neighbors(K,SL, SN , L) ; /* Stage 1 */

[Scandidates]← filter([Scandidates], P);
SL+1 ← distance(V, [Scandidates], SL, SN , N − L) ; /* Stage 2 */

P,L← [P, SL+1], L+ 1;

end
P ← [P, SN];

After the execution of the loop shown in Algorithm 1, the destination song is
added to the playlist. This is returned as a pandas DataFrame table containing
Deezer IDs for each song in the playlist, along with the Valence and Arousal points,
artist and name for each song. Table 11 describes the songs in an example playlist
that charts a path through the Valence-Arousal space shown in Figure 11, starting
at a sad, depressed region and eventually ending at a happy, excited song.

Figure 11: An example playlist traveling through the Valence-Arousal space. Each
point is a song listed in Table 11.

Artist Song Title Valence Arousal

Patty Loveless How Can I Help You Say Goodbye -1.483343 -0.688598
Elefant Ester -1.272664 -0.494736
Crossfade Cold -1.066284 -0.350541
Vanessa Carlton Paradise -0.827658 -0.264024
Julian Casablancas Tourist -0.623428 -0.099001
Aimee Mann Going Through the Motions -0.347825 +0.019559
Röyksopp The Girl and The Robot -0.110919 +0.163753
Black Kids Love Me Already +0.107500 +0.391261
Carpenters Yesterday Once More +0.277763 +0.448938
Interpol C’mere +0.478983 +0.589929
311 Mindspin +0.685363 +0.745339
Rachael Yamagata 1963 +1.075764 +0.852684

Table 11: Artists, titles, and points for the songs in the playlist shown in Figure 11.

Figure 12: A diagram showing the target point in Stage 1 as the first step in a linear
trajectory from the current point in the playlist to the destination.

7.1 Stage 1: K-Nearest Neighbors

The first stage in the playlist loop uses a K-Nearest Neighbor (KNN) model to choose
K points in the Valence-Arousal space that represent songs in our music emotion
dataset, similar to approaches in Cardoso [10] and Flexer [25].

Given the current SL and destination SN songs as points in the Valence-Arousal
space, and the number of loop iterations remainingN−L to achieve the playlist length
desired by the user, we calculate a hypothetical target point ST using Equation (5).
This equation divides the line between the current and destination songs into even
steps in the Valence-Arousal space, and determines a hypothetical point as a single
step down this path. Figure 12 visualizes the relationships between these three points,
with the target point as the first step in a linear path of N−L songs from the current
to the destination song.

ST = SL +
SN − SL

N − L
(5)

We collect the songs in our dataset nearest to our hypothetical target point using
scikit-learn’s NearestNeighbor model, fit to the unique Valence-Arousal points
in our music emotion dataset [54]. Because of the two dimensions and 2762 unique
points in the Deezer 2018 dataset, this algorithm uses a K-dimensional tree to store
points for a search, achieving a computational cost of O[DN log(N)], or O[N log(N)]
given the consistent use of D = 2 Valence-Arousal dimensions in our KNN stage. In
this model, scikit-learn uses the Euclidean distance to determine the K nearest
neighbors to a point.

We extract the LK nearest neighbors to the target point from this model, where
L is the current length of the playlist. Occasionally, the NearestNeighbors model re-
turns points already chosen for the playlist. To avoid repeating points in the Valence-
Arousal space, we manually filter to receive the K nearest neighbors that have not
been already chosen. We test various values for K in Section 9.3.

Figure 13: A visualization showing the candidate points and vectors (blue, dashed
lines) which are compared to the target vector (green solid line) in Stage 2.

7.2 Stage 2: Distance-based Song Selection

Stage 1 produces a set of K Valence-Arousal points representing songs that are can-
didates for the next song in our playlist. From these candidate points, we query our
dataset for all of their corresponding Deezer songs and their acoustic features from
the provided audio dataset. For datasets that contain separate features for the head
and tail segments of each song, the features at the head of a song are returned.

When the current point nears the destination, one of the neighboring points from
Stage 1 may be the destination point itself. This may occur if there are less than
K points from the Deezer dataset between the current point and the destination in
the Valence-Arousal space. In this case, one of the K points returned may be the
destination point, which may contain the destination song as well as some songs that
share that point. Here, we remove this point to prevent the playlist from finishing
early and having a length shorter than what the user requested.

Next, we feed the candidate songs’ audio features into Stage 2, where we employ
a distance metric configurable by the user to choose a single song. Here, we compare
the distance between two vectors extending from the current song point: the vector
from the current song to the candidate song, and a vector representing a single step
on the line from the current song to the destination, calculated in a similar fashion to
Equation (5). For segment-based data, we use the features at the tail of the current
song to create a transition from the end of one song to the start of the next. Figure 13
demonstrates these points and vectors in two dimensions, with a vector to the target
point as a step towards the destination in green, and blue vectors from the current
song to each candidate being compared with various distance metrics.

These two vectors are compared using a distance metric which can be specified
by the user. We test and compare various metrics in Section 9.1, including Cosine
Similarity [59], Euclidean and Manhattan Distances [69], and Jaccard Distance [32].
The candidate song whose audio feature vector has the lowest distance score based
on the metric specified is chosen as the next song. This song is added to the playlist
and becomes the current song to continue to the next iteration of the loop.

7.3 Time Complexity Analysis

Given a dataset of P unique Valence-Arousal points and D audio features, creat-
ing a playlist of N songs, we analyze our algorithm’s computational complexity be-
low. Before the loop runs, we construct a K-dimensional tree of the unique Valence-
Arousal points. The scikit-learn model constructs this structure by sorting each
value in the two dimensions and splitting along their medians, with a complexity of
O[P log(P)] [4]. During Stage 1 of the loop, we first select up to NK neighbors from
the KNN model at a cost of O[P log(P)] as well.

For the algorithm’s first stage, we filter up to NK neighboring points to a total
of K songs. This has a worst-case time complexity of O[N2K], since each candidate
point is compared to N previous songs in the playlist. For the second stage, evaluating
the songs for the K neighbors along D audio features takes a time complexity of
O[KD]. Since P = 2, 762 unique points is far larger than the maximum values this
experiment uses for N(19), K(31), D(78), the first stage is more expensive than the
second, and each song is selected in O[P logP] time. This loop runs L times for the
length of the playlist, so the total time complexity of the algorithm is O[LP log(P)].

8 Evaluation

We rigorously test our algorithm using a wide variety of parameters in order to better
understand the quality of its playlists. These parameters include the K values for the
algorithm’s first stage, the distance metrics and audio datasets for the second stage,
desired playlist lengths, and the number of segments in segment-based datasets.

8.1 Experimental Design

Our algorithm generates playlists in the Valence-Arousal feature space from the
Deezer dataset, and is thus subject to its uneven distribution, as shown in Section
5.1. Therefore, a thorough test requires playlists that travel across various sections of
this space. To ensure this diversity in travel, we create playlists that traverse between
the four Cartesian quadrants in the Valence-Arousal space, in a similar approach to
Deng [17]. For each quadrant in this space, we gather 100 Valence-Arousal points
and choose a random song for each, resulting in 100 songs from each quadrant. We
visualize this sample’s distribution and label these quadrants in Figure 14.

Figure 14: Map of the sample songs for each quadrant (N = 100 each), split by the
Valence and Arousal axes, from the Deezer 2018 dataset [16].

Quadrants Direction Songs Points

I II Horizontal 8448 1069
I III Diagonal 11407 1613
I IV Vertical 9236 902
II III Vertical 8515 1770
II IV Diagonal 6344 1059
III IV Horizontal 9303 1603

Table 12: The direction of travel, number of songs, and number of unique Valence-
Arousal points for each pair of quadrants in the Deezer dataset.

We create playlists that traverse from one quadrant in the Valence-Arousal space
to another. Table 12 shows that the number of songs and unique points in the Deezer
dataset for each pair of quadrants has a relatively uneven distribution, highlighting the
need to traverse various regions with our playlists. For each of these six pairs, we build
playlists from each point in the first quadrant to each point in the second quadrant,
and vice versa. This yields 20,000 playlists for each of the six quadrant pairs, or
120,000 playlists total, for each dataset and parameter we test in our experiments.

8.2 Evaluation Metrics

Each song can be represented as a point (or vector) in the Valence-Arousal and audio
feature spaces. Therefore, we evaluate the qualities of the playlist as a path of points
from the origin to the destination. We adopt two key priorities for our playlists −
smoothness and evenness − and create measurements for each.

8.2.1 Smoothness: Pearson Correlation Coefficient

First, the path should be smooth: the songs should fall in a linear path from the origin
to the destination. This ensures that all of the emotional and audio characteristics of
a point are consistently making changes from one song to the next. Nonlinear paths
could result in playlists that change only in arousal for the first half of the playlist,
and then abruptly change in valence while keeping a consistent energy level.

Figure 15 visualizes three 11-song playlist paths with different smoothness. The
leftmost playlist has extreme divergence from the dotted ideal line between the origin
and destination. The middle playlist contains less variation from the ideal line, but
the rightmost playlist stays closest to the ideal line and is thus the smoothest.

To evaluate a playlist’s smoothness, we use a version of the Pearson Correlation
Coefficient (PCC) [61]. Shown in Equation (6), this score measures how well two
feature vectors A and B fall on a straight line on a score between 0.0 and 1.0, where

Figure 15: Example playlist paths with different Pearson Correlation Coefficients,
representing playlists with poor, fair and strong smoothness respectively.

1.0 signifies perfect linear correlation. In their study of line smoothing techniques,
Rosen and Quadri verify that PCC is an effective metric to evaluate linearity [61].

ρAB = |Cov(A,B)

σAσB

| (6)

For the Valence-Arousal emotion space, we consider the PCC between Valence
and Arousal to evaluate the smoothness of a playlist. For audio feature spaces, we
calculate the average PCC for all pairs of audio features in the given space.

8.2.2 Evenness: Step Size Variance

Second, the path should be evenly spaced : there should be an equivalent jump in
the emotional and audio characteristics from one song to the next. Uneven playlists
could startle users in the case of an unusually large differences in the mood or audio
characteristics between two songs.

Figure 16 illustrates three paths of playlists with varying evenness, accompanied
by a score showing the variance of their step sizes. The leftmost playlist contains a
few emotional transitions that are much larger than others, seen by the longer line
segments in the path. The middle playlist has more consistent step sizes in its path,
but the rightmost playlist is the most even, with the most evenly-sized transitions.

To quantify the evenness of a playlist, we measure the variance of the distribution
of step sizes between each pair of songs in the playlist. To find distances between
adjacent songs Sk and Sk+1 over D features, we calculate their Root Mean Square
Error (RMSE), as shown in Equation (7).

Figure 16: Example playlist paths with different step size variances, representing
playlists with poor, fair and strong evenness respectively.

RMSEk =

√
||Sk+1 − Sk||2

N
(7)

To calculate the RMSE, we employ the Euclidean distance to find the distance
between Sk and Sk+1. We average these distances by the number of features to create
a standard measure between feature sets of varying dimensionality. The RMSE is
used as the step size between point transitions, such that their variance indicates the
difference between each transition’s magnitude.

To understand our algorithm’s behavior in mood and audio spaces, we calculate
step size variances separately for both the Valence-Arousal emotion space and the
various feature spaces of audio datasets.

9 Experiments & Results

We empirically test our playlist algorithm’s behavior against a wide variety of tunable
parameters: the distance metrics and audio feature datasets for Stage 2, the K values
for Stage 1, desired playlist lengths, and different numbers of segments for segment-
based datasets. When we are not testing these specific parameters, we use K = 7
for our algorithm’s first stage, Euclidean distance for the second stage, and various
audio feature datasets. By default, we generate 12-song playlists, since a 2014 survey
of automatic playlist generation studies found that three datasets of playlists from
popular sources contained 11.6 tracks on average [7].

9.1 Distance Metrics

We first test the effects of different common distance metrics on Stage 2 of our al-
gorithm, measuring the evenness and smoothness of the playlists it generates across
audio and mood spaces. Here, we examine the impact of using the Euclidean, Man-
hattan, Cosine, and Jaccard distances to compare candidate songs, against a baseline
method which randomly chooses a single neighboring song.

Table 13 indicates that the choice of distance metric for the audio features in Stage
2 has no significant effect on a playlist’s smoothness or evenness in mood. Since the
first stage chooses the K closest songs in the Valence-Arousal space to the target, the
candidate songs are already highly similar in mood. This mitigates the effect of the
second stage, which could choose the song that provides the best audio transition but
the worst emotional transition. This finding allows developers and users to choose a
distance metric that optimizes audio transitions without worrying about mood.

Table 14 reveals that using the Cosine, Euclidean and Manhattan distances for
Stage 2 generate the smoothest playlists in audio feature spaces, as measured by the
PCC. The Jaccard distance performs poorly in comparison, performing similarly to
the random neighbors baseline, since it does not consider the vector between two
points, but only the minima and maxima of their numerical values.

Pearson Correlation Step-Size Variance
Mean St.Dev. Median Mean St.Dev. Median

Cosine 0.928681 0.162085 0.988357 0.001140 0.001299 0.000749
Euclidean 0.929177 0.161056 0.988305 0.001143 0.001304 0.000750
Jaccard 0.928412 0.162658 0.988152 0.001149 0.001332 0.000744
Manhattan 0.929301 0.160845 0.988395 0.001132 0.001289 0.000745
Random 0.928845 0.161913 0.988449 0.001134 0.001303 0.000745

Table 13: Mood-based scores of playlists based on the distance metric in Stage 2.

Dataset All (Spotify + MSD) Spotify
PCC Mean St.Dev. Median Mean St.Dev. Median

Cosine 0.458472 0.021189 0.454996 0.463596 0.045715 0.457373
Euclidean 0.456487 0.021741 0.452252 0.462629 0.048104 0.455204
Jaccard 0.454744 0.019066 0.451646 0.449793 0.040179 0.444198
Manhattan 0.457390 0.022524 0.452986 0.464987 0.049874 0.457012
Random 0.453964 0.018526 0.451040 0.447270 0.037652 0.442471

Table 14: Audio-based PCC of playlists by distance metric, measuring smoothness
across two audio feature spaces, with N = 600, 000 playlists total.

The use of the Cosine distance metric in Stage 2 yields the smoothest playlists in
most audio feature spaces. Since the Pearson Correlation Coefficient is a measure of
linearity, smoother playlists have songs that lie closer to a line. The Cosine distance
measures the angle between candidate songs and a target point that falls in a perfect
line. Minimizing this angle yields the closest songs to that ideal line, yielding smooth
and linear playlists. However, while this approach creates smoother playlists than
Euclidean and Manhattan distances in a combined feature space, it fails to improve
upon them when only considering Spotify audio features. This may be a result of the
distributions of features we observe in the Spotify and MSD feature spaces.

Figure 17 reveals that using Euclidean and Manhattan distances creates more
evenly-spaced playlists than any other metric. While using the Cosine distance yields
somewhat smoother playlists, its singular consideration of the angle between two
vectors means that it does not factor the magnitude of the vector between them. As
a result, a song with a far larger or smaller step size than the target vector, but with
a smaller angle to it, may minimize the Cosine distance. This can lead to more linear
playlists but at the expense of an uneven step size.

Using the Euclidean and Manhattan distances yields songs with the shortest vec-
tors to the target point at each loop in our algorithm. This approach yields songs
that are the closest to the ideal target points, or playlists that are both smooth and
even, because the target points fall at even steps in the line between the playlist’s
origin and destination songs. These results indicate that the vector p-Norms are the
strongest distance metrics for our algorithm’s second stage.

9.2 Audio Datasets

We next examine the audio feature spaces to be traversed by our playlist algorithm
in Stage 2. In this test, we compare the effectiveness of using Spotify features, MSD
features, and a combined set of both (titled All) in our algorithm, against a baseline of
reusing the mood features from the Deezer dataset. To inspect the impact of variance

Figure 17: Evenness of playlists by distance metric in an audio feature space.

and dimensionality, we include 12-feature PCA datasets of the Spotify, MSD, and
combined sets of features in our tests. We also juxtapose the aggregate audio feature
datasets with two segment-based datasets, that collect average scores of features for
the first and last 100 segments, and the first and last 30 seconds, of each song.

Table 15 displays the smoothness and evenness in the Valence-Arousal space of
playlists created with various datasets. When evaluating emotion-based travel, using
the Deezer features for both spaces leads to smoother and more even playlists based on
mood. The choice in audio feature dataset has no impact on mood-based smoothness
or evenness. This performance discrepancy is expected, since using only mood features
effectively turns our algorithm into a 1-NN model, where the song emotionally closest
to a target is chosen every time. By introducing separate audio feature spaces into
the algorithm, we require playlists to balance emotional and audio transitions, which
results in playlists that may be less smooth or even in mood transitions but provide
songs that are more consistent in genre.

A closer inspection of the mood-based Pearson Correlation scores reveals a slightly
more optimistic story for audio feature datasets. While the mean difference be-
tween mood-only playlists (those that use Valence-Arousal data for both stages) and
playlists that use audio-based data for the second stage is quite large, the median
smoothness scores are much closer. The left-hand side of Figure 18 visualizes this
difference using box-and-whisker plots, showing the distribution of the PCC scores
across playlists made with different audio datasets. The plots indicate that over half
of the playlists created in this scenario are almost perfectly linear in emotional travel,
with PCC scores of over 0.96 (see Table 15). The distribution’s large tail implies

Pearson Correlation Step-Size Variance
Mean St.Dev. Median Mean St.Dev. Median

Deezer 0.933566 0.159031 0.990886 0.000311 0.000302 0.000224

MSD 0.873421 0.205108 0.963398 0.001037 0.000869 0.000801
Spotify 0.873176 0.205091 0.962892 0.001043 0.000848 0.000816
All 0.873134 0.205579 0.963379 0.001040 0.000883 0.000796
PCA-MSD 0.871881 0.206737 0.962992 0.001040 0.000870 0.000805
PCA-Spotify 0.873293 0.205178 0.963092 0.001038 0.000852 0.000808
PCA-All 0.872370 0.205998 0.963027 0.001046 0.000864 0.000804
30 seconds 0.873470 0.205019 0.962998 0.001046 0.000876 0.000798
100 segments 0.873356 0.205373 0.963230 0.001051 0.000894 0.000804

Table 15: Mood-based scores of all playlists based on the dataset used Stage 2, with
N = 1, 080, 000 playlists total (120, 000 playlists per dataset). We compare eight
audio datasets against reusing the Deezer dataset’s mood features.

that playlists of low smoothness in mood are the outlier. This reveals that using
audio-based features for Stage 2 yields playlists that travel smoothly in mood.

Traveling through different pairs of quadrants of the Valence-Arousal space often
results in varied performance. To provide an example, the right-hand side of Figure
18 isolates for playlists that travel from the third quadrant, with negative Valence
and Arousal, to the first quadrant, with positive values for each. As a pair, these
two quadrants induce diagonal travel in playlists and contain the most songs and a
high number of unique Valence-Arousal points, as shown in Table 12. In this subset,
playlists generated by audio are much smoother than the entire set, and their PCC
scores are much closer to those using Deezer data for both stages. The variance
of density is a result of the Deezer dataset’s uneven distribution, and implies that
the smoothness of mood-dynamic playlists is dependent on the distribution of points
across the Valence-Arousal plane.

We measure the performance of each dataset in each audio feature space that we
test, to evaluate the merits of different audio datasets and employing PCA among
them. Table 16 shows playlists’ performance by dataset when evaluated against a
combined Spotify and MSD feature space, shown as All. Here, the playlists created
using MSD-based features (including the All feature space) outperformed not only
the Deezer dataset but other audio datasets as well. This implies that the combined
dataset was far more influenced by the 78 features of the MSD data than the 15
features from Spotify, and that the different audio datasets describing features of the
same songs are not highly correlated with each other.

Figure 18: Smoothness of playlists by dataset, for all 1,080,000 playlists (left), and
90,000 playlists that travel only from Quadrant III to Quadrant I (right).

Pearson Correlation Step-Size Variance
Mean St.Dev. Median Mean St.Dev. Median

Deezer 0.294501 0.014783 0.293004 0.006281 0.002941 0.005821

MSD 0.294415 0.018481 0.291252 0.004019 0.001832 0.003746
Spotify 0.292482 0.016099 0.290243 0.005449 0.002574 0.005030
All 0.294538 0.018706 0.291339 0.003500 0.001625 0.003247
PCA-MSD 0.300396 0.017297 0.298441 0.005870 0.002734 0.005438
PCA-Spotify 0.292421 0.015304 0.290586 0.005851 0.002665 0.005454
PCA-All 0.299186 0.017052 0.297231 0.005800 0.002692 0.005371
30 seconds 0.292375 0.014951 0.290564 0.005828 0.002736 0.005391
100 segments 0.293484 0.015424 0.291664 0.005857 0.002724 0.005418

Table 16: Audio-based scores of N = 1, 080, 000 playlists based on dataset, scored in
a combined Spotify and MSD feature space.

Figure 19: Smoothness (left) and evenness (right) scores of playlists based on dataset,
scored in a Spotify feature space.

More interestingly, we observe in Table 16 that playlists were only smoother
when applying PCA to MSD-related data, yet this came at the expense of a playlist’s
evenness. However, when evaluating against Spotify features alone, as shown in Figure
19, our algorithm generates smoother playlists when considering the Spotify dataset
with or without PCA applied. Using the combined dataset also yields much more
even playlists than other datasets, second to the Spotify features alone.

These findings reveal a few key findings in the smoothness and evenness of playlists
across audio features. First, different audio feature datasets share little correlation,
and segment-based datasets fail to yield improvements in these spaces compared to the
baseline of purely mood-based playlists. In addition, using audio datasets with lower
dimensionality yields smoother playlists, since applying PCA to 12 features yielded
strong improvements over a 78-feature MSD dataset, but only mild improvements
over the 15-feature Spotify data. However, while applying a PCA transformation can
can retain the relative differences between songs, it loses their true differences, so thus
sacrifices even transitions when evaluating against the original feature space.

Figure 20: Pearson Correlation Coefficients of N = 960, 000 playlist paths byK value,
measuring smoothness across mood and audio feature spaces.

9.3 K Values

In our third experiment, we evaluate different values for K, or the number of can-
didate points our algorithm extracts for a transition in the Valence-Arousal space.
We examine the effects of extracting K = [3, 7, 11, 15, 19, 23, 27, 31] points from our
unsupervised KNN model in Stage 1 of our algorithm.

From Figures 20 and 21, we observe that asK increases, we generate playlists that
travel more smoothly and evenly in audio feature spaces, at the expense of the smooth-
ness and evenness in emotional travel. With a smallerK, recalling theK closest points
means that these candidates are closer on average to the ideal Valence-Arousal tran-
sition. This enables our algorithm to create more precise emotional travel. However,
yielding fewer songs in Stage 1 limits the optimization of our playlists’ audio travel
in Stage 2. A larger K reverses this effect, allowing the second stage to choose a song
that provides the best audio travel, but this song could potentially be much farther
than other candidates from the ideal emotional target. This effect is due to our al-
gorithm’s two-stage structure, first recalling a K songs based on mood transitions
and re-scoring for audio similarity. These findings indicate that our algorithm gives
designers and users the power to directly tune the balance between the emotional and
genre transitions of their playlists using the recall, or K value, of its first stage.

Figure 21: Step-Size Variances of N = 960, 000 playlist paths by K value, measuring
evenness across mood and audio feature spaces.

9.4 Playlist Lengths

We also examine the effect of requesting different lengths for playlists. Given the same
origin and destination songs, as the length of the playlist between them increases, we
expect the step sizes between songs to shrink. This enables us to study how the density
of our dataset impacts playlists as the step size decreases. We generate playlists of
N = [3, 5, 7, 11, 13, 15, 17, 19] songs. Figure 22 and Table 17 show the effects of playlist
lengths on theirs smoothness and evenness across both types of feature spaces.

As a playlist’s length increases, its smoothness over both mood and audio spaces
decreases. This effect is strongest when increasing from three songs to five, but weak-
ens as playlists get longer, especially for the audio features in Stage 2. With larger
playlists, the number of songs in between a fixed origin and destination increases,
and so the step size for choosing the next song decreases. In this smaller scale, the
distances between candidate song points in both feature spaces is much larger relative
to the step size, and some regions may be sparse in their song points.

Since our algorithm recalculates the trajectory to the destination point when
choosing each song, the choice of a song far from the direct line between the origin
and destination has a disproportionate impact on the shape of the playlist path. In
this scenario, the playlist will create a new line to the destination instead of returning
to the direct line from the origin, and subsequent points will continue to be far from

Figure 22: Pearson Correlations of N = 960, 000 playlists of different lengths, mea-
suring smoothness across mood and audio spaces.

the ideal line. A longer playlist can lead to more opportunities for such behavior from
our algorithm, potentially resulting in curved or jagged playlist paths that are not
smooth in a linear sense.

Each subsequent song added to the playlist seems to consistently impact the
smoothness of playlists, as seen in the linear decay in the mood-based PCC score in
Figure 22. Over audio feature spaces, longer playlists experience a sharp decline, as
their PCC score drops from over 0.6 with a three-song playlist to well below 0.3 for
a 19-song playlist in Figure 22. However, this decay seems exponential, and seems to
stabilize as the playlist continues to get larger.

Table 17 shows that three-song playlists are much more evenly-spaced than longer
playlists, since their median step size variance is far smaller than all longer playlists.
This is an interesting edge case of our algorithm, since a three-song playlist only
runs the algorithm once to choose a single song between the origin and destination.
These playlists also have a denser pool of candidate points relative to their large
step size. However, the standard deviations of their step size variances, especially in
audio features, is much larger than with longer playlists. This suggests that three-
song playlists may often have more evenly-spaced playlists, but that this is highly
dependent on the uneven density of the Valence-Arousal space in the Deezer dataset.

Mood-Based Evenness Audio-Based Evenness
N Mean St.Dev. Median Mean St.Dev. Median

3 0.000873 0.001489 0.000388 0.003130 0.004302 0.001458

5 0.001142 0.001302 0.000750 0.003424 0.002799 0.002705
7 0.001158 0.001170 0.000818 0.003464 0.002244 0.002992
9 0.001112 0.001028 0.000824 0.003477 0.001910 0.003127
11 0.001061 0.000924 0.000804 0.003490 0.001706 0.003214
13 0.001011 0.000834 0.000785 0.003514 0.001559 0.003276
15 0.000965 0.000763 0.000765 0.003520 0.001443 0.003318
17 0.000925 0.000711 0.000743 0.003528 0.001341 0.003353
19 0.000888 0.000668 0.000722 0.003536 0.001264 0.003379

Table 17: Evenness of playlists by length across both mood and audio spaces.

Outside of this edge case, Table 17 shows that playlist songs are less evenly spaced
in their audio features as their length increases. This behavior is also consistent with
mood-based evenness, though this effect reverses with playlists longer than seven or
nine songs. Due to the inclusion of discretization for some audio features in our data
cleaning process, some features have a step size of 0.1 between their 20 bins with
values ranging from −1 to +1. For a longer playlist, this step in a feature becomes
quite large relative to the ideal step size between songs, and may have an undue weight
in song selection. The Valence-Arousal features from the Deezer dataset do not face
this issue, as they were not discretized during the cleaning process. This suggests that
discrete features should be avoided in audio datasets for dynamic playlist generation.

9.5 Dataset Segment Durations

The number of segments from the start and end of a song to include is configurable
when compiling the weighted average of features for a segment-based dataset. Since
these segments correspond to a single note or sound in a song, they do not have
consistent duration. We account for this when we collect our segment datasets, so each
song’s features are a weighted average of a different number of segments at its head
and tail. As a result, we compare nine datasets that are created from each song’s first
and last D = [1, 2, 5, 10, 20, 30, 40, 50, 60] seconds. Each playlist is evaluated against
the audio feature space of the segment dataset collected with D = 30 seconds, with
results for both mood and audio in Figures 23 and 24.

In the Valence-Arousal space, there is no observable improvement with segment-
based datasets of various durations. This is consistent with other audio datasets, as
seen in Section 9.2. For a segment-based audio feature space, playlist smoothness
increases with segment duration up until 10 seconds, after which it decreases. This

Figure 23: Pearson Correlation Coefficients of N = 1, 080, 000 playlists generated
from the first and last D seconds of songs across both mood and audio spaces.

peak at around 10 seconds of segments implies that the first and last 10 seconds are
the most representative of a song’s audio features, and including more seconds in
the calculation with Equation (4) may hinder the smoothness of track transitions in
dynamic playlists. This implies that studies in segment-based playlist generation can
focus on optimizing the transitions between the last 10 seconds of one song and the
first 10 seconds of the next to guarantee the smoothest playlists.

Datasets that collect the first and last 30 seconds of segments generated more
even playlists when evaluated the same 30-second segment dataset. However, from
the relatively similar evenness for playlists generated by datasets containing more
than 30 seconds of segment data, we see further evidence of the stabilization effect
of Equation (4). This shows that including more segment data yields diminishing
returns in the evenness of dynamic playlists.

9.6 Regional Variances

Across all tests, the uneven distribution of points in the Valence-Arousal space has an
effect on playlists’ smoothness and evenness. Table 18 shows that opposite quadrant
pairs, which induce diagonal travel, have the smoothest playlists overall. Within
the same direction of travel, quadrant pairs with more unique points in the Valence-
Arousal space had smoother playlists. These findings indicate that playlists which

Figure 24: Step-Size Variances of playlists generated from the first and last D seconds
of songs across both mood and audio spaces.

transition in both the Valence and Arousal of their songs are likely to provide a
smoother listening experience for users. Transitioning in both emotion dimensions
represents potentially the most common and effective use case of dynamic playlists,
where a user may need to be cheered up after feeling sad and depressed, or perhaps
to find calm after feeling tense and angry.

Our results also indicate that more points in the origin and destination quad-
rants can also improve a playlist’s evenness. In our algorithm, a denser region in the
Valence-Arousal space means that the K nearest candidates to an ideal target point
are closer than they would be in a sparser region. This means that the step size be-
tween subsequent songs will be closer to a consistent ideal, minimizing such variance.
Thus, the distribution and density of Valence-Arousal points is a limitation of the
Deezer dataset. To ensure playlists have evenly spaced songs and that the emotional
transition is consistent for users in the listening experience, datasets should include
a dense, even distribution of emotional points.

Q
u
a
d
ra

n
ts

P
e
a
rs
o
n
C
o
rr
e
la
ti
o
n

S
te
p
-S

iz
e
V
a
ri
a
n
ce

O
ri
gi
n

D
es
ti
n
at
io
n

D
ir
e
ct
io
n

P
o
in
ts

M
ea
n

S
t.
D
ev
.

M
ed
ia
n

M
ea
n

S
t.
D
ev
.

M
ed
ia
n

I
II

H
or
iz
on

ta
l

10
69

0.
79
46
34

0.
24
62
56

0.
90
75
50

0.
00
14
54

0.
00
12
15

0.
00
11
15

I
II
I

D
ia
g
o
n
a
l

16
13

0
.9
7
1
9
6
5

0
.0
6
4
5
1
6

0
.9
8
7
9
5
8

0.
00
08
25

0.
00
06
06

0.
00
06
93

I
IV

V
er
ti
ca
l

90
2

0.
83
33
96

0.
22
72
08

0.
93
71
48

0.
00
11
65

0.
00
08
60

0.
00
09
68

II
I

H
or
iz
on

ta
l

10
69

0.
79
61
46

0.
24
57
12

0.
90
81
72

0.
00
14
43

0.
00
11
53

0.
00
11
29

II
II
I

V
er
ti
ca
l

1
7
7
0

0.
88
87
97

0.
19
12
75

0.
96
86
05

0
.0
0
0
5
1
2

0
.0
0
0
3
6
2

0
.0
0
0
4
2
5

II
IV

D
ia
g
o
n
a
l

10
59

0
.9
5
5
2
3
0

0
.1
0
6
9
2
3

0
.9
8
7
3
4
2

0.
00
09
28

0.
00
07
73

0.
00
07
28

II
I

I
D
ia
g
o
n
a
l

16
13

0
.9
7
4
3
2
2

0
.0
6
0
4
7
5

0
.9
8
9
0
9
6

0.
00
09
33

0.
00
07
20

0.
00
07
64

II
I

II
V
er
ti
ca
l

1
7
7
0

0.
88
97
05

0.
19
30
54

0.
97
00
80

0
.0
0
0
5
6
9

0
.0
0
0
4
3
5

0
.0
0
0
4
5
0

II
I

IV
H
or
iz
on

ta
l

16
03

0.
83
44
96

0.
23
15
89

0.
94
26
02

0.
00
08
61

0.
00
08
67

0.
00
06
06

IV
I

V
er
ti
ca
l

90
2

0.
83
18
87

0.
22
92
91

0.
93
80
66

0.
00
12
00

0.
00
08
97

0.
00
09
92

IV
II

D
ia
g
o
n
a
l

10
59

0
.9
5
3
4
2
4

0
.1
0
8
6
5
3

0
.9
8
7
0
1
7

0.
00
08
88

0.
00
06
57

0.
00
07
19

IV
II
I

H
or
iz
on

ta
l

16
03

0.
83
28
87

0.
23
05
28

0.
93
94
57

0.
00
07
58

0.
00
06
92

0.
00
05
65

T
ab

le
18
:
M
o
o
d
-b
as
ed

sm
o
ot
h
n
es
s
an

d
ev
en
n
es
s
sc
or
es

fo
r
N

=
1,
08
0,
00
0
p
la
y
li
st
s
ge
n
er
at
ed

d
u
ri
n
g
th
e
d
at
as
et

te
st

in
S
ec
ti
on

9.
2,

se
p
ar
at
ed

b
y
th
e
or
ig
in

an
d
d
es
ti
n
at
io
n
q
u
ad

ra
n
ts

of
th
e
p
la
y
li
st
s.

10 Discussion

Previous studies have introduced methods to create playlists that are dynamic in
either mood [10] or audio spaces [25]. We combine these aspects into a multi-stage
algorithm that generates playlists which gradually travel through both spaces between
origin and destination songs. Our novel approach creates a path through vector
spaces of song features, and thus requires no personalized data on existing playlists
or the status of the user. We define numerical metrics for a playlist’s smoothness
and evenness, and a novel testing methodology for mood-dynamic playlists which
evaluates across several regions of a feature space. This is the first approach in the
automatic playlist generation field that evaluates dynamic playlists as paths in a
vector space of mood and audio.

10.1 Summary of Findings

We observe that our algorithm’s input parameters have a strong effect on the perfor-
mance characteristics of playlists. The balance of a playlist’s performance between
mood and audio characteristics can be easily tuned by adjusting the recall of its first
stage. Our approach builds upon research into two-stage algorithms [76] by using the
high recall of the first stage as an important parameter.

In the algorithm’s second stage, using the Cosine distance metric and reducing
the dimensionality of feature data can lead to slightly smoother travel through audio.
This ensures that each song in a playlist moves the user on a linear emotional and
acoustic journey. However, this comes at the expense of consistent steps through
these spaces, potentially making these transitions more jarring for users.

In addition, the distribution of Valence-Arousal points in our dataset has a strong
effect on a playlist’s smoothness or evenness. Controlling for the first and final songs
of the playlist, including more songs in between reduces the size of each emotional
transition between tracks. Requesting shorter playlists, with a larger step between
songs, leads to smoother playlists than a smaller step due to the relative sparsity of
the data at a smaller scale.

Playlists that travel through sparser regions of our Valence-Arousal feature space
tend to vary more in the magnitude of their emotional transitions from one song to
the next. However, smoothness is more dependent on the direction of travel; playlists
that transition heavily in both Valence and Arousal more likely to have their points
lie on a linear path than those which only mainly travel in one dimension.

10.2 Limitations

The primary limitation of our work is the quantity and quality of music emotion
datasets. Although the Deezer 2018 dataset [16] is a large repository of songs and
their Valence-Arousal scores, the synthetic nature of its emotion annotations limits
their effectiveness. As discussed earlier in Section 5.1, as many as 1700 songs share
a Valence-Arousal point, and the number of unique points is only 15% of the total
number of songs. This required us to implement additional structures that filter for
unique points and handle them, as described in Section 6.3.

Datasets that collect Valence-Arousal readings from humans not only potentially
serve as a more accurate reflection of a song’s mood, but can avoid this problem
due to the variance of multiple users labeling songs. However, existing datasets that
employ these methods [1, 11, 77] are too small in size and sometimes consist of less
popular songs for which it is more difficult to find other features from public datasets.

10.3 Future Work

Building on the contributions of this work, there are many opportunities for future
improvements and extensions of our mood-dynamic playlist algorithm. Currently, we
evaluate a purely linear trajectory from an origin to a destination song, but some
approaches allow users to draw a curved path on the Valence-Arousal plane on which
to generate playlists [10, 14]. Adding a curved trajectory for our playlist’s song
selection could potentially allow for more personalized transitions for users, but this
requires testing to see if it creates a more satisfying listening experience.

In this experiment, we collect data on the segments of a song and demonstrate
that they have little effect in improving playlists. However, our current evaluation
methods only examine smoothness and evenness at the whole song level, treating each
song as an acoustic and emotional monolith. Future studies can examine the change
in mood throughout the duration of a song, and perhaps create a smoother listening
experience for the user. Furthermore, this approach can be extended to personalized
data, such as a user’s ratings of songs or listening history, to create playlists that
directly reflect their own specific taste in music.

This works presents an opportunity to test the effectiveness of mood-dynamic
playlists on human subjects to measure the change in a user’s emotion throughout
the listening experience. Previous studies in dynamic playlists [10, 25] either do not
evaluate their recommendations or use existing data to measure playlists which travel
in genre, but not in mood. Our algorithm can power an application that recommends
a playlist based on the user’s current mood a state which they desire. During and
after listening to the playlist, the user’s mood can be measured to examine if the
desired emotional transition from the playlist was achieved.

10.4 Applications

Researchers could potentially integrate this algorithm with a human-in-the-loop sys-
tem that collects the user’s current mood. A few studies [19, 67] explore systems for
recognizing emotions in facial expressions, and recommending music that matches the
user’s mood. Other studies use data from accelerometers [21, 35] or electrocardio-
grams [29] to choose songs related to a user’s present state. However, such systems
can also factor context-related data such as foreground computer processes [66] and
the current climate [29, 60] when recommending songs to users.

However, with the exception of Liu et al. [40] whose approach seeks to lower a
user’s high heart rate with calming music and vice versa, most studies seek to keep the
user in the same mood. Future studies might integrate these methods for emotion
recognition with our work in experiments that examine the change in a listener’s
mood after listening to a mood-dynamic playlist generated by our algorithm.

This playlist algorithm could also be integrated into continuous systems which
recommend the next song to play based on user preferences and a desired target
mood. Studies from Chi [13] and Liebman [39] use reinforcement learning techniques
that repeatedly adjust recommendations based on whether a user replayed, skipped,
or rated the current song. With our algorithm, such a system could change rec-
ommendations based on the user’s current mood, perhaps as an extension to recent
studies such as Rumiantcev [62] which allow users to report their current mood and
environment to deliver them their next song. We show that a three-song playlist,
where the algorithm just chooses a single step towards a desired mood, has strong
performance. However, this requires more thorough examination on the proper step
size to use for the algorithm, and user testing to evaluate the true emotional impact
of such playlists.

10.5 Conclusion

This work presents a novel and efficient exemplar-based learning algorithm, leverag-
ing existing public datasets of songs to create musical playlists that travel in mood
while maintaining similarity in audio. We define and measure two key qualities in
evaluating a playlist’s effectiveness, utilizing the Pearson Correlation Coefficient and
Root Mean Square Error to measure smoothness and evenness in continuous mood
and audio spaces. Our experiments indicate that this algorithm can be tuned through
several parameters to adjust the effectiveness of a playlist’s track transitions. To our
knowledge, this is the first study that uses a nearest-neighbor approach to construct
and evaluate mood-dynamic playlists that also smoothly transitions by acoustic simi-
larity. Such an interactive tool could serve as an aid to music therapy, gently nudging
users from their current mood towards more happy, focused, or content state of mind.

References

[1] Anna Aljanaki, Yi-Hsuan Yang, and Mohammad Soleymani. “Developing a
Benchmark for Emotional Analysis of Music”. In: PLOS ONE 12.3 (Mar. 2017),
pp. 1–22. doi: 10.1371/journal.pone.0173392.

[2] Alo Allik, Florian Thalmann, and Mark Sandler. “MusicLynx: Exploring Music
Through Artist Similarity Graphs”. In: Proceedings of the The Web Conference.
2018, pp. 167–170. doi: 10.1145/3184558.3186970.

[3] N. S. Altman. “An Introduction to Kernel and Nearest-Neighbor Nonparametric
Regression”. In: The American Statistician 46.3 (1992), pp. 175–185. doi: 10.
1080/00031305.1992.10475879.

[4] Jon Louis Bentley. “Multidimensional Binary Search Trees Used for Associative
Searching”. In: Communications of the ACM 18.9 (Sept. 1975), pp. 509–517.
issn: 0001-0782. doi: 10.1145/361002.361007.

[5] Thierry Bertin-Mahieux et al. “The Million Song Dataset”. In: Proceedings of
the 12th International Conference on Music Information Retrieval. ISMIR 2011.
2011, pp. 591–596. doi: 10.7916/D8NZ8J07.

[6] Deborah J Blood and Stephen J Ferriss. “Effects of Background Music on Anxi-
ety, Satisfaction with Communication, and Productivity”. In: Psychological Re-
ports 72.1 (1993), pp. 171–177. doi: 10.2466/pr0.1993.72.1.171.

[7] Geoffray Bonnin and Dietmar Jannach. “Automated Generation of Music Playlists:
Survey and Experiments”. In: ACM Computing Surveys 47.2 (Nov. 2014). issn:
0360-0300. doi: 10.1145/2652481.

[8] Théo Bontempelli et al. “Flow Moods: Recommending Music by Moods on
Deezer”. In: Proceedings of the 16th ACM Conference on Recommender Sys-
tems. RecSys 2022. Seattle, WA, USA: Association for Computing Machinery,
2022, pp. 452–455. isbn: 9781450392785. doi: 10.1145/3523227.3547378.

[9] Emilios Cambouropoulos and Maximos Kaliakatsos-Papakostas. “Symbolic Ap-
proaches and Methods for Analyzing Musical Similarity: Representation and
Pattern Processing in Harmony”. In: The Oxford Handbook of Music and Cor-
pus Studies. Oxford University Press. isbn: 978-0-19-094544-2. doi: 10.1093/
oxfordhb/9780190945442.013.9.

[10] Lúıs Cardoso, Renato Panda, and Rui Pedro Paiva. “MOODetector: A Pro-
totype Software Tool for Mood-based Playlist Generation”. In: Proceedings of
the 2nd Portuguese National Symposium on Informatics. INForum 2011. Sept.
2011.

[11] Yu-An Chen et al. “The AMG1608 Dataset for Music Emotion Recognition”.
In: Proceedings of the 40th IEEE International Conference on Acoustics, Speech
and Signal Processing. ICASSP 2015. 2015, pp. 693–697. doi: 10.1109/ICASSP.
2015.7178058.

[12] Shuo Chen et al. “Playlist Prediction via Metric Embedding”. In: Proceedings
of the 18th ACM SIGKDD International Conference on Knowledge Discovery

https://doi.org/10.1371/journal.pone.0173392
https://doi.org/10.1145/3184558.3186970
https://doi.org/10.1080/00031305.1992.10475879
https://doi.org/10.1080/00031305.1992.10475879
https://doi.org/10.1145/361002.361007
https://doi.org/10.7916/D8NZ8J07
https://doi.org/10.2466/pr0.1993.72.1.171
https://doi.org/10.1145/2652481
https://doi.org/10.1145/3523227.3547378
https://doi.org/10.1093/oxfordhb/9780190945442.013.9
https://doi.org/10.1093/oxfordhb/9780190945442.013.9
https://doi.org/10.1109/ICASSP.2015.7178058
https://doi.org/10.1109/ICASSP.2015.7178058

and Data Mining. Beijing China: ACM, Aug. 2012, pp. 714–722. doi: 10.1145/
2339530.2339643.

[13] Chung-Yi Chi et al. “A Reinforcement Learning Approach to Emotion-based
Automatic Playlist Generation”. In: Proceedings of the 15th International Con-
ference on Technologies and Applications of Artificial Intelligence. TAAI 2010.
Dec. 2010, pp. 60–65. doi: 10.1109/TAAI.2010.21.

[14] Rahul Kashinathrao Dahule and Shubhangi Mahadeo Jadhav. “Music Track
Exploration and Playlist Creation”. US20140052731A1. Feb. 2014. url: https:
//patents.google.com/patent/US20140052731/en.

[15] Hideo Daikoku et al. “Agreement Among Human and Automated Estimates of
Similarity in a Global Music Sample”. In: Proceedings of the 10th International
Workshop on Folk Music Analysis. FMA 2022. PsyArXiv, July 2020. doi: 10.
31234/osf.io/76fmq.

[16] Rémi Delbouys et al. “Music Mood Detection Based on Audio and Lyrics with
Deep Neural Net”. In: Proceedings of the 19th International Conference on Mu-
sic Information Retrieval. Ed. by Emilia Gómez et al. ISMIR 2018. 2018. doi:
10.48550/arXiv.1809.07276.

[17] James J. Deng and Clement Leung. “Emotion-based Music Recommendation
Using Audio Features and User Playlist”. In: 6th International Conference on
New Trends in Information Science, Service Science and Data Mining. ISSDM
2012. Oct. 2012, pp. 796–801.

[18] Renee Donohoe and Teresa McNeely. The Effect of Student Music Choice on
Writing Productivity. Tech. rep. US Department of Education, 1999.

[19] Anukriti Dureha. “An Accurate Algorithm for Generating a Music Playlist
based on Facial Expressions”. In: International Journal of Computer Applica-
tions 100.9 (Aug. 2014), pp. 33–39. issn: 09758887. doi: 10.5120/17557-8163.

[20] Paul Ekman. “Facial Expressions of Emotion: New Findings, New Questions”.
In: Psychological Science 3.1 (1992), pp. 34–38. doi: 10.1111/j.1467-9280.
1992.tb00253.x.

[21] Greg T. Elliott and Bill Tomlinson. “PersonalSoundtrack: Context-Aware Playlists
that Adapt to User Pace”. In: CHI 2006 Extended Abstracts on Human Factors
in Computing Systems. CHI EA 2006. New York, NY, USA: Association for
Computing Machinery, Apr. 2006, pp. 736–741. isbn: 978-1-59593-298-3. doi:
10.1145/1125451.1125599.

[22] Jeff Ens and Philippe Pasquier. “Quantifying Musical Style: Ranking Symbolic
Music based on Similarity to a Style”. In: Proceedings of the 20th International
Symposium on Music Information Retrieval. ISMIR 2020. arXiv, Mar. 2020.
doi: 10.48550/arXiv.2003.06226.

[23] Stuart Feldman. “Music Affects Productivity”. In: Management Review 80.7
(1991), pp. 6–7.

https://doi.org/10.1145/2339530.2339643
https://doi.org/10.1145/2339530.2339643
https://doi.org/10.1109/TAAI.2010.21
https://patents.google.com/patent/US20140052731/en
https://patents.google.com/patent/US20140052731/en
https://doi.org/10.31234/osf.io/76fmq
https://doi.org/10.31234/osf.io/76fmq
https://doi.org/10.48550/arXiv.1809.07276
https://doi.org/10.5120/17557-8163
https://doi.org/10.1111/j.1467-9280.1992.tb00253.x
https://doi.org/10.1111/j.1467-9280.1992.tb00253.x
https://doi.org/10.1145/1125451.1125599
https://doi.org/10.48550/arXiv.2003.06226

[24] Evelyn Fix and Joseph Lawson Hodges. “Discriminatory Analysis, Nonpara-
metric Estimation: Consistency Properties”. In: Report 4, Project no. 21-49 4
(1951).

[25] Arthur Flexer et al. “Playlist Generation using Start and End Songs.” In: Pro-
ceedings of the 9th International Conference on Music Information Retrieval.
ISMIR 2008. Jan. 2008, pp. 173–178.

[26] Mariagrace Flint. “The Effects of Music on Physical Productivity”. PhD Thesis.
Columbus, OH: The Ohio State University, 2010.

[27] JG Fox and ED Embrey. “Music - An Aid to Productivity”. In: Applied er-
gonomics 3.4 (1972), pp. 202–205.

[28] Adrian Furnham, Sarah Trew, and Ian Sneade. “The Distracting Effects of Vocal
and Instrumental Music on the Cognitive Test Performance of Introverts and
Extraverts”. In: Personality and Individual Differences 27.2 (1999), pp. 381–
392. issn: 0191-8869. doi: 10.1016/S0191-8869(98)00249-9.

[29] Darryl Griffiths, Stuart Cunningham, and Jonathan Weinel. “A Discussion of
Musical Features for Automatic Music Playlist Generation Using Affective Tech-
nologies”. In: Proceedings of the 8th Audio Mostly Conference. AM 2013. Pite̊a,
Sweden: Association for Computing Machinery, 2013. isbn: 9781450326599.
doi: 10.1145/2544114.2544128.

[30] W. Bas de Haas, Frans Wiering, and Remco C. Veltkamp. “A Geometrical
Distance Measure for Determining the Similarity of Musical Harmony”. In:
International Journal of Multimedia Information Retrieval 2.3 (Sept. 2013),
pp. 189–202. issn: 2192-662X. doi: 10.1007/s13735-013-0036-6.

[31] Matthew Hoffman, David Blei, and Perry Cook. “Content-Based Musical Simi-
larity Computation using the Hierarchical Dirichlet Process.” In: Proceedings of
the 9th International Conference of Music Information Retrieval. ISMIR 2008.
Jan. 2008, pp. 349–354.

[32] Paul Jaccard. “The Distribution of the Flora in the Alpine Zone.” In: New
Phytologist 11.2 (1912), pp. 37–50. issn: 1469-8137. doi: 10.1111/j.1469-
8137.1912.tb05611.x.

[33] Kurt Jacobson et al. “Music Personalization at Spotify”. In: Proceedings of
the 10th ACM Conference on Recommender Systems. RecSys 2016. Boston,
Massachusetts, USA: Association for Computing Machinery, 2016, p. 373. isbn:
9781450340359. doi: 10.1145/2959100.2959120.

[34] Ronald T Kellogg. Writing Habits and Productivity in Technical Writing. Tech.
rep. US Department of Education, 1982.

[35] Hyoung-Gook Kim, Gee Yeun Kim, and Jin Young Kim. “Music Recommen-
dation System Using Human Activity Recognition From Accelerometer Data”.
In: Transactions on Consumer Electronics 65.3 (Aug. 2019), pp. 349–358. issn:
0098-3063. doi: 10.1109/TCE.2019.2924177.

[36] Dimitrios Kollias and Stefanos Zafeiriou. Aff-Wild2: Extending the Aff-Wild
Database for Affect Recognition. 2019. doi: 10.48550/arXiv.1811.07770.

https://doi.org/10.1016/S0191-8869(98)00249-9
https://doi.org/10.1145/2544114.2544128
https://doi.org/10.1007/s13735-013-0036-6
https://doi.org/10.1111/j.1469-8137.1912.tb05611.x
https://doi.org/10.1111/j.1469-8137.1912.tb05611.x
https://doi.org/10.1145/2959100.2959120
https://doi.org/10.1109/TCE.2019.2924177
https://doi.org/10.48550/arXiv.1811.07770

[37] Paul Lemare. Boil The Frog. Jan. 2013. url: https://musicmachinery.com/
2013/01/02/boil-the-frog-2/.

[38] Teresa Lesiuk. “The Effect of Music Listening on Work Performance”. In: Psy-
chology of music 33.2 (2005), pp. 173–191. doi: 10.1177/0305735605050650.

[39] Elad Liebman, Maytal Saar-Tsechansky, and Peter Stone. “DJ-MC: A Reinforcement-
Learning Agent for Music Playlist Recommendation”. In: Proceedings of the
2015 International Conference on Autonomous Agents and Multiagent Systems.
AAMAS 2015. Istanbul, Turkey: International Foundation for Autonomous Agents
and Multiagent Systems, 2015, pp. 591–599. doi: 10.48550/arXiv.1401.1880.

[40] Hao Liu, Jun Hu, and Matthias Rauterberg. “Music Playlist Recommendation
Based on User Heartbeat and Music Preference”. In: Proceedings of the 2009
International Conference on Computer Technology and Development. Vol. 1.
ICCTD 2009. Jan. 2009, pp. 545–549. isbn: 978-0-7695-3892-1. doi: 10.1109/
ICCTD.2009.246.

[41] Hugo Liu and Push Singh. “ConceptNet - A Practical Commonsense Reasoning
Tool-kit”. In: BT Technology Journal 22.4 (2004), pp. 211–226. doi: 10.1023/
B:BTTJ.0000047600.45421.6d.

[42] Malte Ludewig et al. “Effective Nearest-Neighbor Music Recommendations”.
In: Proceedings of the ACM Recommender Systems Challenge 2018. RecSys
Challenge 2018. New York, NY, USA: Association for Computing Machinery,
Oct. 2018, pp. 1–6. doi: 10.1145/3267471.3267474.

[43] R. B. Marimont and M. B. Sharpiro. “Nearest Neighbour Searches and the
Curse of Dimensionality”. In: IMA Journal of Applied Mathematics 24.1 (Aug.
1979), pp. 59–70. issn: 0272-4960. doi: 10.1093/imamat/24.1.59.

[44] Hanna Mayer-Benarous et al. “Music Therapy for Children With Autistic Spec-
trum Disorder and/or Other Neurodevelopmental Disorders: A Systematic Re-
view”. In: Frontiers in Psychiatry 12 (2021). issn: 1664-0640. doi: 10.3389/
fpsyt.2021.643234.

[45] Owen Craigie Meyers. “A Mood-Based Music Classification and Exploration
System”. Thesis. Massachusetts Institute of Technology, 2007. url: https:
//dspace.mit.edu/handle/1721.1/39337.

[46] Vincenzo Moscato, Antonio Picariello, and Giancarlo Sperĺı. “An Emotional
Recommender System for Music”. In: IEEE Intelligent Systems 36.5 (Sept.
2021), pp. 57–68. issn: 1941-1294. doi: 10.1109/MIS.2020.3026000.

[47] Karthik Subramanian Nathan, Manasi Arun, and Megala S Kannan. “EMOSIC
— An Emotion Based Music Player for Android”. In: Proceedings of the 17th
IEEE International Symposium on Signal Processing and Information Tech-
nology. ISSPIT 2017. Dec. 2017, pp. 371–276. doi: 10.1109/ISSPIT.2017.
8388671.

[48] Richard I Newman Jr, Donald L Hunt, and Fen Rhodes. “Effects of Music on
Employee Attitude and Productivity in a Skateboard Factory.” In: Journal of
Applied Psychology 50.6 (1966), pp. 493–496. doi: 10.1037/h0024046.

https://musicmachinery.com/2013/01/02/boil-the-frog-2/
https://musicmachinery.com/2013/01/02/boil-the-frog-2/
https://doi.org/10.1177/0305735605050650
https://doi.org/10.48550/arXiv.1401.1880
https://doi.org/10.1109/ICCTD.2009.246
https://doi.org/10.1109/ICCTD.2009.246
https://doi.org/10.1023/B:BTTJ.0000047600.45421.6d
https://doi.org/10.1023/B:BTTJ.0000047600.45421.6d
https://doi.org/10.1145/3267471.3267474
https://doi.org/10.1093/imamat/24.1.59
https://doi.org/10.3389/fpsyt.2021.643234
https://doi.org/10.3389/fpsyt.2021.643234
https://dspace.mit.edu/handle/1721.1/39337
https://dspace.mit.edu/handle/1721.1/39337
https://doi.org/10.1109/MIS.2020.3026000
https://doi.org/10.1109/ISSPIT.2017.8388671
https://doi.org/10.1109/ISSPIT.2017.8388671
https://doi.org/10.1037/h0024046

[49] Elias Pampalk, Tim Pohle, and Gerhard Widmer. “Dynamic Playlist Gener-
ation Based on Skipping Behavior”. In: Proceedings of the 6th International
Conference on Music Information Retrieval. ISMIR 2005. Jan. 2005, pp. 634–
637.

[50] Renato Panda et al. “How Does the Spotify API Compare to the Music Emotion
Recognition State-of-the-Art?” In: Proceedings of the 18th Sound and Music
Computing Conference. SMC 2021. Axea sas/SMC Network, July 2021, pp. 238–
245. doi: 10.5281/zenodo.5045100.

[51] Tsang-Long Pao et al. “Comparison between Weighted D-KNN and Other Clas-
sifiers for Music Emotion Recognition”. In: Proceedings of the 3rd International
Conference on Innovative Computing Information and Control. ICICIC 2008.
June 2008, pp. 530–530. doi: 10.1109/ICICIC.2008.679.

[52] Sungjoon Park et al. “Dimensional Emotion Detection from Categorical Emo-
tion”. In: Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing. Online and Punta Cana, Dominican Republic: Associa-
tion for Computational Linguistics, Nov. 2021, pp. 4367–4380. doi: 10.18653/
v1/2021.emnlp-main.358.

[53] Steffen Pauws, Wim Verhaegh, and Mark Vossen. “Fast Generation of Optimal
Music Playlists using Local Search”. In: Proceedings of the 7th International
Conference on Music Information Retrieval. ISMIR 2006. 2006.

[54] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of
Machine Learning Research 12 (2011), pp. 2825–2830.

[55] Martin Pichl, Eva Zangerle, and Günther Specht. “Combining Spotify and Twit-
ter Data for Generating a Recent and Public Dataset for Music Recommen-
dation”. In: Proceedings of the 26th Workshop Grundlagen von Datenbanken.
GvDB 2014, pp. 35–40.

[56] Anthony T. Pinter et al. “P4KxSpotify: A Dataset of Pitchfork Music Reviews
and Spotify Musical Features”. In: Proceedings of the International AAAI Con-
ference on Web and Social Media 14 (May 2020), pp. 895–902. issn: 2334-0770.
doi: 10.1609/icwsm.v14i1.7355.

[57] Robert Plutchik. “Chapter 1 - A General Pscyhoevolutionary Theory of Emo-
tion”. In: Theories of Emotion. Ed. by Robert Plutchik and Henry Kellerman.
Academic Press, Jan. 1980, pp. 3–33. isbn: 978-0-12-558701-3. doi: 10.1016/
B978-0-12-558701-3.50007-7.

[58] Konstantinos Pyrovolakis, Paraskevi Tzouveli, and Giorgos Stamou. “Multi-
Modal Song Mood Detection with Deep Learning”. In: Sensors 22.3 (2022).
doi: 10.3390/s22031065.

[59] Wolfram Research. Cosine Distance. 2007. url: https://reference.wolfram.
com/language/ref/CosineDistance.html.

[60] Gordon Reynolds et al. “Towards a Personal Automatic Music Playlist Gen-
eration Algorithm: the Need for Contextual Information”. In: Proceedings of

https://doi.org/10.5281/zenodo.5045100
https://doi.org/10.1109/ICICIC.2008.679
https://doi.org/10.18653/v1/2021.emnlp-main.358
https://doi.org/10.18653/v1/2021.emnlp-main.358
https://doi.org/10.1609/icwsm.v14i1.7355
https://doi.org/10.1016/B978-0-12-558701-3.50007-7
https://doi.org/10.1016/B978-0-12-558701-3.50007-7
https://doi.org/10.3390/s22031065
https://reference.wolfram.com/language/ref/CosineDistance.html
https://reference.wolfram.com/language/ref/CosineDistance.html

the 2nd International Audio Mostly Conference: Interaction with Sound. 2007,
pp. 84–89.

[61] Paul Rosen and Ghulam Jilani Quadri. LineSmooth: An Analytical Frame-
work for Evaluating the Effectiveness of Smoothing Techniques on Line Charts.
Vol. 27. 2. 2021, pp. 1536–1546. doi: 10.1109/TVCG.2020.3030421.

[62] Mikhail Rumiantcev and Oleksiy Khriyenko. “Emotion Based Music Recom-
mendation System”. In: Proceedings of the 26th Conference of Open Innovations
Association FRUCT. FRUCT 26 (2020), pp. 639–645.

[63] James A Russell. “A Circumplex Model of Affect.” In: Journal of Personality
and Social Psychology 39.6 (1980), p. 1161.

[64] Keigo Sakurai et al. “Music Playlist Generation Based on Graph Exploration
Using Reinforcement Learning”. In: Proceedings of the IEEE 3rd Global Con-
ference on Life Sciences and Technologies. LifeTech 2021. Mar. 2021, pp. 53–54.
doi: 10.1109/LifeTech52111.2021.9391870.

[65] Basna Mohammed Salih Hasan and Adnan Mohsin Abdulazeez. “A Review of
Principal Component Analysis Algorithm for Dimensionality Reduction”. In:
Journal of Soft Computing and Data Mining 2.1 (Apr. 2021), pp. 20–30. doi:
10.30880/jscdm.2021.02.01.003.

[66] Arnaja Sen et al. “Music Playlist Generation using Facial Expression Analy-
sis and Task Extraction”. In: Annales Universitatis Mariae Curie-Sklodowska,
sectio AI – Informatica 16.2 (Dec. 2017), pp. 1–6. issn: 2083-3628. doi: 10.
17951/ai.2016.16.2.1.

[67] Jangid Sheetal Kailash et al. “Behavioural, Emotional State Based Music Se-
lection & Playlist Generating Player”. In: International Journal Of Current
Engineering And Scientific Research. IJCESR 4.12 (2017), pp. 39–43. doi: 10.
21276/ijcesr.

[68] Federico Simonetta et al. “Symbolic Music Similarity through a Graph-Based
Representation”. In: Proceedings of the Audio Mostly 2018 on Sound in Immer-
sion and Emotion. AM 2018. New York, NY, USA: Association for Comput-
ing Machinery, Sept. 2018, pp. 1–7. isbn: 978-1-4503-6609-0. doi: 10.1145/
3243274.3243301.

[69] Archana Singh, Avantika Yadav, and Ajay Rana. “K-means with Three Dif-
ferent Distance Metrics”. In: International Journal of Computer Applications
67.10 (2013). doi: 10.5120/11430-6785.

[70] Spotify.Web API — Spotify for Developers. url: https://developer.spotify.
com/documentation/web-api.

[71] Carl Thomé, Sebastian Piwell, and Oscar Utterbäck. Musical Audio Similarity
with Self-supervised Convolutional Neural Networks. Feb. 2022. doi: 10.48550/
arXiv.2202.02112. (Visited on 03/28/2023).

[72] Yuchi Tian et al. “DeepTest: Automated Testing of Deep-Neural-Network-Driven
Autonomous Cars”. In: Proceedings of the 40th International Conference on
Software Engineering. ICSE 2018. Gothenburg, Sweden: Association for Com-

https://doi.org/10.1109/TVCG.2020.3030421
https://doi.org/10.1109/LifeTech52111.2021.9391870
https://doi.org/10.30880/jscdm.2021.02.01.003
https://doi.org/10.17951/ai.2016.16.2.1
https://doi.org/10.17951/ai.2016.16.2.1
https://doi.org/10.21276/ijcesr
https://doi.org/10.21276/ijcesr
https://doi.org/10.1145/3243274.3243301
https://doi.org/10.1145/3243274.3243301
https://doi.org/10.5120/11430-6785
https://developer.spotify.com/documentation/web-api
https://developer.spotify.com/documentation/web-api
https://doi.org/10.48550/arXiv.2202.02112
https://doi.org/10.48550/arXiv.2202.02112

puting Machinery, 2018, pp. 303–314. isbn: 9781450356381. doi: 10.1145/
3180155.3180220.

[73] Petri Toiviainen, Mauri Kaipainen, and Jukka Louhivuori. “Musical Timbre:
Similarity Ratings Correlate with Computational Feature Space Distances”. In:
Journal of New Music Research 24.3 (Sept. 1995), pp. 282–298. issn: 0929-8215.
doi: 10.1080/09298219508570686.

[74] Kevin N White. “The Effects of Background Music in the Classroom on the
Productivity, Motivation, and Behavior of Fourth Grade Students.” MA thesis.
Columbia, SC: Columbia College, 2007.

[75] In-Kwon Yeo and Richard A. Johnson. “A New Family of Power Transforma-
tions to Improve Normality or Symmetry”. In: Biometrika 87.4 (2000), pp. 954–
959. issn: 00063444. doi: 10.1093/biomet/87.4.954.

[76] Hamed Zamani et al. “An Analysis of Approaches Taken in the ACM RecSys
Challenge 2018 for Automatic Music Playlist Continuation”. In: ACM Trans.
Intell. Syst. Technol. 10.5 (Sept. 2019). issn: 2157-6904. doi: 10.1145/3344257.

[77] Kejun Zhang et al. “The PMEmo Dataset for Music Emotion Recognition”.
In: Proceedings of the 2018 ACM International Conference on Multimedia Re-
trieval. ICMR 2018. Yokohama, Japan: Association for Computing Machinery,
2018, pp. 135–142. isbn: 9781450350464. doi: 10.1145/3206025.3206037.

https://doi.org/10.1145/3180155.3180220
https://doi.org/10.1145/3180155.3180220
https://doi.org/10.1080/09298219508570686
https://doi.org/10.1093/biomet/87.4.954
https://doi.org/10.1145/3344257
https://doi.org/10.1145/3206025.3206037

	Introduction
	Modeling Music and Emotions
	Models of Emotion
	Musical Features

	Distance-Based Algorithms
	Distance Metrics
	Minkowski Distances
	Cosine Similarity
	Jaccard Index

	K-Nearest Neighbor

	Related Work
	Playlist Continuations
	Dynamic Playlists
	Mood Playlists

	Datasets
	Music Emotion Datasets
	Audio Feature Datasets
	Spotify Audio Features
	Million Song Dataset
	Spotify Audio Segments

	Preprocessing
	Principal Component Analysis
	Data Cleaning Process
	Song Dataset Class

	Mood-Dynamic Playlist Algorithm
	Stage 1: K-Nearest Neighbors
	Stage 2: Distance-based Song Selection
	Time Complexity Analysis

	Evaluation
	Experimental Design
	Evaluation Metrics
	Smoothness: Pearson Correlation Coefficient
	Evenness: Step Size Variance

	Experiments & Results
	Distance Metrics
	Audio Datasets
	K Values
	Playlist Lengths
	Dataset Segment Durations
	Regional Variances

	Discussion
	Summary of Findings
	Limitations
	Future Work
	Applications
	Conclusion

	References

