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The problem of determining whether a crack impinging on an interface will 

penetrate into the substrate or deflect along the interface is vital to the effective design 

of layered and composite material systems.  Of particular interest is the transition 

between crack propagation by penetration through an interface and deflection along an 

interface.  There has been a great deal of work done on this problem to determine what 

parameters and formulations are necessary to accurately determine under what 

conditions penetration-deflection transition will occur.  Previous work has studied this 

problem using stress-based, energy-based, and combined stress-energy-based 

approaches.  Most recently, a combined stress-energy-based approach was 

implemented via a cohesive-zone formulation; this work showed the conceptual basis 

and correctness of the cohesive-zone approach, however only presented limited 

investigation into the behavior penetration-deflection transition.   



 

 

Work presented here expands this investigation on transition, exposing trends and 

behavior that emerge as certain dimensionless groups are varied.  Principles of linear 

elastic fracture mechanics and, as in previous work, cohesive-theory are applied to a 

bi-material system in tension through the use of the commercial finite element analysis 

package ABAQUS.   Dimensionless groups, including strength ratios, toughness 

ratios, fracture-length scales, and substrate toughness scales are varied systematically 

to show resulting system behavior in a generalized fashion.  In using the cohesive-

zone method, aspects of previous stress-based and energy-based formulations are 

reproduced.  It is also shown where these formulations cease to be valid, revealing 

unique and previously undetected transitional interface fracture behavior.   The results 

presented here will prove valuable in interface design as the described generalized 

trends can be used as references in the design of new layered and composite systems. 
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An Investigation of Transition from Penetration to Deflection in the Fracture of Bi-

Material Interfaces 

1. Introduction 

Sound engineering of layered and composite material systems requires a firm 

understanding of material behavior at interfaces.  The integrity of many layered 

materials, such as composite, laminate, and thin film systems, depends on crack 

behavior at intra-system interfaces.  When these systems are loaded, it is at the 

interfaces where failure is common.  It follows that, to be able to design these 

composite materials to their maximum potential, it is important to understand the 

failure mechanisms at these interfaces.  An important failure mechanism to consider is 

fracture. 

Fracture is a common failure mechanism in composite material systems and, 

through design, can be counteracted by implementing toughening mechanisms.  As the 

system is loaded and begins to fail, micro-cracking forms and grows with applied load.  

With increasing applied load, cracks extend until they ultimately reach an interface.  In 

composite materials, the interface lies between the matrix and fiber; in layered 

materials, the interface is simply between layers.  During fracture, it is at these 

interfaces that toughening mechanisms are apparent.  Mechanisms, such as fiber-

bridging (Ruhle et al. [1]) and inter-material friction (Cambell et al. [2]), are known to 

increase fracture resistance. These mechanisms can be achieved in engineered 

materials through understanding crack behavior near interfaces.  These mechanisms 

rely on crack propagation by deflection along the interface.  Deflection itself has also 
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been shown to be an effective means of toughening by Faber and Evans [3].  It is 

therefore of particular importance to understand whether a crack impinging upon an 

interface will propagate by deflection along the interface or penetration through the 

interface. 

2. Penetration versus Deflection 

The overall fracture properties of composite materials depend upon whether 

penetration or deflection occurs.  That is, whether a crack impinging an interface will 

tend to penetrate through the interface and into the substrate material or deflect and 

propagate along the interface.  Figure 1 illustrates penetration versus deflection as 

applied to a bi-material system in which two materials (a film and a substrate) are 

bonded.  Figure 1(a) illustrates a crack in the film normally impinging an interface.  

Depending on the material properties of the film, interface, and substrate, the crack 

may penetrate into the substrate (Figure 1(b)) or deflect at a right-angle along the 

interface (Figure 1(c)).  For a film and substrate both isotropic and homogeneous 

under the loading shown, the impinging crack can only propagate at a parallel 

(penetrating) or normal (deflecting) path.  Determining whether penetration or 

deflection will occur has been studied using several methods. 
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3. Literature Review 

Interface fracture has been examined using three main approaches: stress-based, 

energy-based, and combined stress-energy-based.  The result of a stress-based 

approach is a critical strength ratio (strength of substrate material to strength of 

interface material) which determines penetration or deflection.  Similarly, the energy 

based approaches result in a critical toughness ratio (critical fracture energy of 

substrate material to critical fracture energy of interface material) which determines 

penetration or deflection.  In a combined stress-energy approach, the resulting 

penetration versus deflection criteria is a relationship of strength and toughness which 

separates penetration from deflection. 

3.1 Stress-Based Work 

Stress-based formulations develop stress criteria in the penetrating and deflecting 

directions which can then be compared to critical material strengths in order to 

determine which failure has occurred.  Early work by Cook and Gordon [4] used a 

formulation in which the stress field immediately ahead of a crack was examined.  By 

extracting stresses normal to each other immediately ahead of the crack (the stress 

Figure 1: Semi-infinite interfacial crack geometries. (a) Crack normally impinging interface. 

(b) Crack penetrating through interface into substrate. (c) Crack deflecting along interface. 
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immediately ahead of the crack being the stress in the penetrating direction), a critical 

ratio of substrate to interface strength of  
  

  
    was derived.  This ratio describes 

a critical set of material strengths in which a penetrating case would switch to a 

deflecting case.  The work by Gupta et. al. [5] is a great expansion of the work by 

Cook and Gordon [4], taking the stress field technique and applying it to a system 

having an interface between two anisotropic materials.  For two isotropic materials, 

however, having same elastic properties, elastic modulus and Poisson’s ratio (   

         ), a critical strength ratio of 
  

  
     was extracted.  These approaches 

take only the strengths of the interface and bulk materials into account; they do not 

consider any energy (work of fracture, or toughness) aspects of the material.  

3.2 Energy-Based Work 

Based on the methods described by linear elastic fracture mechanics (LEFM), 

several energy-based solutions exist for determining whether a crack impinging on an 

interface will penetrate or deflect.  The work of He and Hutchinson [6] is a popular 

energy-based approach for determining penetration versus deflection.  This method 

examines energy release rates associated with kinks extending from a main crack in 

the penetrating,   , and deflecting,   , directions.  This is performed through 

examining penetrating and deflecting geometries independently.  Figure 2 shows the 

two geometries considered by He and Hutchinson [6]; Figure 2(a) shows the 

penetrating geometry and Figure 2(b) shows the deflecting geometry.  Results are then 
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compared to each other to arrive at a theoretical ratio of energy release rates,  
  

  
 .  

This ratio is then taken to equate to the critical substrate to interface toughness ratio 

which separates penetration from deflection.  He and Hutchinson [6] formulate this 

transition toughness ratio to be  
  

  
   .  Because two separate geometries are used 

to analyze this penetration versus deflection, this approach will be referred to as a two-

geometry approach.   

 

 

Per the derivation presented in Appendix B, Equations (16) and (17) are plotted in 

Figure 3 as a function of toughness ratio, 
  

  
 .  This adaptation of the results of He 

and Hutchinson [6] represents the load carrying capacity for the associated geometry.  

On this plot, the curve with lower associated fracture load represents the mode of 

failure.  Further, the point at which the curves intersect represents the critical 

toughness ratio for penetration/deflection transition.  Figure 3 recaptures the critical 

toughness ratio of 
  

   
   , as described in the work of He and Hutchinson [6].  This 

Figure 2: Distinctly separate geometries used in energy based 

formulations. (a) Penetrating kink.  (b) Deflecting kink. 

(a)  (b) 
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point corresponds to the conditions under which the same applied load will cause 

either a kink in the substrate, Figure 2(a), to propagate or a kink along the interface, 

Figure 2(b) to propagate. 

 

 

Three other energy formulations are those of Leguillon et al. [7], Tullock et. al. 

[8], and Matinez and Gupta [9].  These formulations use the same approach as that of 

He and Hutchinson [6]; they independently develop energy release rates for the 

penetrating and deflecting geometries and compare them to each other.  That is, a two-

geometry approach is used. 
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Figure 3: Results of LEFM formulation by He and Hutchinson [6].  

The intersection of the two curves marks the transition toughness ratio. 
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3.3 Combined Stress-Energy-Based Work 

Most recently, stress and energy have been examined in combination to determine 

penetration versus deflection.  The combined stress-energy-based approach was first 

used to explore the penetration versus deflection problem for a normally-incident 

crack in work by Parmigiani and Thouless [10].  In this work, cohesive-zone modeling 

was used to define regions at the crack tip in the penetrating and deflecting directions 

that utilize both stress and energy components in order to determine fracture behavior.  

Following the aforementioned work by Parmigiani and Thouless [10], a subsequent 

combined stress-energy approach can be found in work by Martin et al. [11].  In this 

work, an analytical formulation of fracture for the case of a main crack approaching, 

but never reaching, an interface was developed.  This combined approach is 

advantageous as it considers both material strength and toughness, encompassing all 

solutions yielded by either single approach.  Unfortunately, however, the combined 

approach is relatively unfamiliar as it has only recently been explored.  This may be 

due to the difficulties associated with implementing such a formulation, often 

requiring the use of computational methods.   

3.4 Present Work 

Three approaches have been described above to analyze penetration versus 

deflection; these approaches are stress-based, energy-based, and stress-energy-based.  

Though these approaches analyze the same problem, they use different formulations 

and yield different criteria which distinguish penetration from deflection.  That is, the 
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stress-based formulation yields a critical strength ratio, the energy-based formulation 

yields a critical toughness ratio, and the stress-energy-based formulation yields a 

mixed strength and toughness criterion.  The significance of this difference is that 

between the stress-based and energy-based approaches, the penetration versus 

deflection criteria is defined by totally different material properties.  And thus, by 

using one approach over the other, the alternate material property is left completely 

disregarded; this may yield inaccurate analyses.  In work by Leguillon [12], it is 

shown that stress or energy based approaches alone are not sufficient in determining 

crack behavior at an interface; both stress and energy must be considered together in 

order to understand interfacial crack propagation.  This is achieved by showing 

specifically that the interfacial-fracture solution space is bounded on one end by 

stress-based formulations and on the other by energy-based formulations; this work is 

also collaborated by experimental results.  The stress-and-energy-based approach 

provides a complete solution and thus a link between these bounds.   

The focus of the work presented here will be to compare these three approaches 

under conditions for which crack-propagation changes from penetration to deflection 

(or vice versa).  That is, what material property values (strength, toughness, or both) 

are required for crack propagation to change from penetration through an interface to 

deflection along an interface (or vice versa). This change will be referred to as 

“transition”.  Predictions of transition conditions are a common use of penetration 

versus deflection criteria and provide a useful context for demonstrating the necessity 

of a strength-energy criteria.   
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4. Method 

Here, the methods used in work presented here are described.  A cohesive-zone 

approach (CZ, combined strength-energy approach) is used and deployed using finite 

element analysis. 

4.1 Nomenclature 

Below is a list and explanation of parameters used throughout the body of this 

work. 

 : Film height 

 : Substrate height  

 : Model half-length  

  : Interface kink length  

  : Substrate kink length  

        : Remote applied stress 

   : Film elastic modulus 

  : Film Poisson’s ratio 

   : Substrate elastic modulus 

  : Substrate Poisson’s ratio 

  : Substrate toughness 

   : Substrate normal cohesive strength 

  : Penetrating stress intensity factor 

  : Deflecting stress intensity factor 

  : Energy release rate in the penetrating direction 

  : Energy release rate in the deflecting direction 

   : Interface mode-I toughness 

    : Interface mode-II toughness 

   : Interface normal cohesive strength 

   : Interface shear cohesive strength  
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4.2 Cohesive-Zone Modeling 

The CZ method used here is the same as that used in the work by Parmigiani and 

Thouless [10].  This work provided the basis for and showed the correctness of the CZ 

approach as applied to interface fracture. 

Cohesive theory was first developed in work by Dugdale [13] and Barenblatt [14] 

in the early 1960’s.  In cohesive theory, a region of assumed crack extension, called 

the cohesive-zone (CZ), is governed by a stress versus crack tip opening displacement 

(CTOD)  relationship.  This relationship is called a traction separation law (TSL).  It is 

important to note that by expressing stress in terms of displacement, the resulting area 

under the TSL curve is the energy released by fracture (material toughness).  It is this 

constitutive relationship that defines the behavior of the crack extension in cohesive 

modeling.   

The TSL used in present work is trapezoidal in shape.  This law was chosen as it is 

the same used successfully in work by Parmigaini and Thouless [10].  Further, since 

normal and shear stresses exist in this present problem (shear stresses are present in 

the interface), a TSL capable of modeling mixed-mode loading must be used.  

Moreover, the TSL used here has independent components for Mode-I and Mode-II 

loading.  The ability to define Mode-I and Mode-II properties (strength and toughness) 

independently has been shown to accurately capture experimental results (Yang and 

Thouless [15], Kafkalidis and Thouless [16], and Li et al. [17]).  Figure 4 shows the 

trapezoidal geometry of the TSL’s used in this work.  From left to right, the law first 
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defines a region of linear elasticity; this is maintained until displacement reaches   .  

A region of perfect plasticity is followed (the horizontal region of the TSL) and is 

maintained until    is reached.  The final portion of the law defines a region of linear 

stiffness degradation which defines the load-carrying ability to diminish to zero at the 

critical displacement   . 

 

 

That is, as displacement increases, stiffness is degraded first at   , then again at   , 

until complete element failure occurs at   .  For this work, the ratios   
  

  and   
  

  were 

held at 0.01 and 0.75 respectively; varying these displacement ratios have a negligible 

effect on solutions.  It is the cohesive strength and resulting toughness (area under the 

Figure 4: Traction-separation law for mode-I and mode-II fracture.  

The subscripts “n” and “t” denote the normal and shear directions 

respectively. 

Mode I 

Mode II 
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curve) which control the behavior of fracture; fracture cannot occur unless these 

criteria are met.  For displacements less than   , the partial swept area under the curve 

is the instantaneous energy-release rate and when at   , the total swept area is the 

toughness.  The criterion for Mode-I fracture is therefore: 

 

  
  

    (1) 

 

 and mixed-mode fracture occurs via a simple failure criterion: 

 

  
  

     
   

    (2) 

 

where  is the energy release rate,   is the material toughness, and subscripts   and    

refer to Mode-I and Mode-II respectively. This failure criterion was chosen because of 

its success in work previously mentioned (Yang and Thouless [15], Kafkalidis and 

Thouless [16], and Li et al. [17]).  Using the TSL as the governing constitutive 

relationship and the above failure criterion, the complete process of fracture can be 

modeled.  Figure 5 illustrates how a TSL physically relates to the process of fracture.  

In Figure 5(a), each CZ sub-region is governed by an independent TSL.  The left most 
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side of Figure 5(a) and Figure 5(b) correspond to a region which is completely 

unaffected by the fracture processes zone and is still exhibiting linear elastic behavior.  

The right-most side corresponds to a region that has completely fractured; critical 

displacement has been reached and all energy has been released.  The region that lies 

in between no displacement and critical displacement is the process zone. 

 

 

The user therefore defines the fracture criterion for a CZ, by defining cohesive 

strength and toughness, cohesive strength and critical displacements, or toughness and 

critical displacements.  In this work, crack growth in the penetrating direction is purely 

mode-I while crack growth in the deflecting direction is mixed-mode.  The nonlinear 

Figure 5: (a) The traction-separation law as it corresponds to (b) 

process of fracture. 
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behavior of the above described traction-separation law can be defined and captured 

through the use of FEA. 

Here, interface fracture is studied by means of a finite element model.  The model 

consists of two bulk layers (referred to here as a film and substrate, and denoted by 

subscripts “f” and “s” respectively) separated by an interface layer (denoted by 

subscript the “i”).  The film layer is cracked such that the crack is impinging upon the 

interface at a normal angle.  A tensile load,         , is applied to the ends of the 

layered system as shown in Figure 6.  Also, from Figure 6, see that the film and 

substrate layers are defined by their elastic modulus and Poisson’s ratio.  Further, all 

layers are isotropic and homogeneous.  Under these circumstances, crack propagation 

can only penetrate through the interface and into the substrate or deflect along the 

interface. Finally, regions of cohesive elements are embedded in the deflecting 

direction (interface) and penetrating direction (substrate) and are defined by both 

cohesive strength and toughness properties. 

 

 

Figure 6: Model geometry and variables used CZ analyses.  Dashed lines 

represent cohesive zones. 
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The finite element analyses performed for this work were executed using the 

commercial package ABAQUS (version 6.10).  Using the ABAQUS user-defined 

element (UEL) feature, the constitutive relationship defined by the above described 

TSL and failure criterion was implemented through a custom FORTRAN subroutine.  

The UEL feature was used to define the elements which constructed the cohesive 

zones.  These elements are therefore cohesive elements.  This UEL can be found in 

Appendix A.  It is identical to the UEL used in the work of Parmigiani and Thouless 

[10].  The remaining regions of the model (the film and substrate) were constructed 

using three and four node plane-stress continuum elements. In using plane-stress 

element formulation, the following definition for modulus of elasticity was used 

throughout: 

 

     (3) 

 

In using this CZ formulation, two main sources of error were identified; one error 

is attributed numerical difficulties.  Under some combinations of material properties, 

specifically those near transition conditions, it was found that the finite-element 

analysis failed to run until complete fracture occurred.  That is, some analyses crashed 

before the failure criteria described by equations (1) and (2) was met.  In the worst 

cases, analyses ran until only ~ 25% failure.  In these instances, however, by simply 

shifting material properties slightly such that penetration was favored over deflection, 
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the analysis ran successfully until penetrating fracture occurred.  Further, it was found 

that in the analyses that ran successfully, the relationship between the energy release 

rates in the penetrating and deflecting directions was linear.  This principle was used 

to linearly extrapolate analyses which did not run until failure in order to confirm that 

simultaneous fracture had indeed occurred.  The error associated with these 

extrapolations was calculated by examining slightly penetrating favored analyses 

which ran until complete failure. The error was found between a linear extrapolation 

(based on data from 25% fracture) and actual full fracture data.  In the worst case, this 

error was found to be 8%.  This worst case error is applied to data presented here in 

the form of error bars associated with critical strength and toughness ratios. 

The second error in the CZ method used here is calculated based on analyzing a 

known simple fracture example and comparing it to its analytical solution.  Here, a 

simple edge-cracked bar geometry is chosen for comparison; this geometry is 

appealing because it can be modeled by using the geometry described in Figure 6 and 

fixing any crack-tip-opening-displacement in the interface cohesive-zones (effectively 

removing the interface).  The analytical solution used for comparison is from Tada et 

al. [18] and takes the form, 

 

                       (4) 
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where  is the stress intensity factor in the penetrating direction,   is the film 

thickness,   is the substrate thickness,          is the applied axial load, and 

 

                   
     

 

 
                  

    
     

 
  

 (5) 

 

Equation (4) can be rearranged to yield, 

 

         
  

            
 (6) 

 

Equation (6) is the applied load that would propagate fracture in the edge-cracked 

geometry.  From Tada et al. [18], this formulation is accurate to 1%.  When this 

problem was analyzed using the CZ method, a critical applied load was found with an 

associated 2.26% error with respect to the above analytical load.  Further, the effect of 

error due to extrapolation (discussed in the previous paragraph) was examined.  By 

forming a linear regression based on data up to 25% fracture and extrapolating the 

associated critical applied load, a maximum error of 3.82% was found.  Note that this 

value is different than the 8% error stated above (applied to strength and toughness 

ratios) because the effect of the extrapolation is less pronounced on calculated 
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normalized fracture load.  In total (summing these values), the error associated with 

the CZ method used here was found to be    .  This error is applied to data 

presented here in the form of error bars associated with the dimensionless group, 

         
 

    
. 

4.3 Dimensionless Groups 

Dimensionless groups used in this study are introduced and described here.  These 

dimensionless groups are the same as those used by Parmigiani and Thouless [10].  

Using the Buckingham Pi Theorem, these dimensionless relationships were developed 

which completely define the cohesive-zone model.  The length ratio,    , is simply 

the ratio between the substrate thickness and film thickness or crack-length.  The 

substrate toughness-scale,  
  

    
, is a value which compares the substrate toughness to 

substrate modulus while normalizing with respect to the crack-length.  The physical 

interpretation of this dimensionless group is a relative toughness to stiffness ratio of 

the substrate.  Next, the Dundurs parameters (as described by Dundurs [19]),   

       

       
 ,    

 

 
 
                   

                   
 , depicts the relative stiffness and Poisson’s effect 

of the film and substrate; this value controls the degree of mixed-mode behavior at the 

interface.  The toughness ratio, 
  

  
 , is simply the ratio of substrate toughness to 

interface toughness.  Similarly, the strength ratio, 
   

   
 , is the ratio of substrate 
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cohesive-strength to interface cohesive-strength.  The fracture length-scale, 
     

   
  

 , 
     

   
  

 

(presented here for both the interface and substrate), is the dimensionless group which 

describes the length of the fracture process zone.  That is, this value scales with the 

distance    from Figure 5.  Finally, the normalized fracture load,          
 

    
, 

represents the applied load at which fracture begins. 

5. Transition 

As defined above, transition, refers to the changing from a case in which a main 

crack impinging upon an interface tends to penetrate to the case in which the crack 

tends to deflect (or vice versa).  This occurrence has been studied by many using a 

variety of formulations, but has not been expressed as a specific event.  Here, this 

unique event is a function of material and geometric properties which permits 

simultaneous crack growth in the penetrating and deflecting directions.  That is, as 

load is applied to a cracked and layered geometry, like the one seen in Figure 6, 

stresses and energy release rates rise in both the penetrating and deflecting directions.  

Though not necessarily at the same rate, these values continue to rise until their 

associated critical values, be it a material toughness or a critical material strength, are 

reached.  This fulfillment is reached at the exact same moment thus enabling 

simultaneous onset of fracture in both directions.  This simultaneous growth and 

fracture occurs when the opportunity for propagation in the penetrating and deflecting 

directions is equal.  In this section, transition is explored and discussed in great depth. 
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5.1 LEFM 3-Kink Approach 

Here transition is examined using a three-kink approach and compared to previous 

formulations.  The previous two-geometry approach used by He and Hutchinson [6] is 

correct in formulation, but does not reflect the characteristics of transition.  As 

described above, at transition, crack growth occurs as penetration and deflection occur 

simultaneously.  The two-geometry approach cannot capture this propagation 

behavior.  To demonstrate this shortcoming, we consider a single, three-kink 

geometry, as shown in Figure 7. This geometry can be used to determine the energy 

release rate of kinks propagating in the penetrating and deflecting directions at the 

same time.  Here, we use FEA to examine the three-kink geometry. 

 

 

The method for performing an LEFM analysis using FEA is widely used and 

established; the collapsed-edge quarter point method was used.   Using the FEA 

package ABAQUS (version 6.10) and referring to its documentation, ABAQUS 

Analysis User’s Manual [20], a ring of eight node collapsed-edge quadrilateral 

elements (forming a ring of triangular elements) can be placed around the end of a pre-

existing flaw.  Further, each side node location is moved from a mid-point location to 

Figure 7: Three-kink geometry used to study penetration vs. deflection 
via LEFM formulation. 
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a quarter-point location in order to properly take into account the  
  

  singularity 

present in LEFM formulations. 

To analyze the problem of penetration versus deflection, an edge-cracked and 

axially loaded bar was analyzed.  Per requirements of LEFM, pre-existing flaws 

(kinks) were placed at a main crack tip in the penetrating and deflecting directions.  

Figure 8 shows the geometry and properties used in the LEFM analyses in this work.   

 

 

Upon applying a remote axial stress, the stress intensity factors at the interface and 

substrate kinks were found and used to calculate the associated energy release rates 

using: 

   
  

 

  
  (7) 

and 

Figure 8: Model geometry and variables used in LEFM three-
kink analyses. 
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  (8) 

For a given applied load,         , failure was assumed to occur and thus the 

calculated ratio of energy release rates equates to a critical toughness ratio: 

  
  

  
  

  
  (9) 

This three-kink geometry was studied using a finite element model and method 

described above.  It is worth noting that this method was applied to the two-kink 

geometry and the results of Figure 3 reproduced (see Figure 9) to within less than a 

2% error. 
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Figure 9: FEA LEFM analysis verified by comparing to LEFM two-

geometry results. 
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 The geometry of the model used in this three-kink analysis is shown above in 

Figure 8.  This geometry includes interface and substrate kinks in the three-kink 

orientation and associated kink lengths,    and   .  In this analysis, the relations 

  

   
     ,       ,        , and       were kept constant.  A convergence 

study was carried out to determine the appropriate kink length. 

The relationship,    , which describes the relative thickness of the main crack 

length to the kink length, was used to control the kink length in a normalized fashion.  

For each analysis, the energy release rates in the penetrating and deflecting directions 

were observed and used to form the transition toughness ratio for that given geometry 

and dimensionless group combination.  It was then assumed that toughness ratios less 

than that of the transition toughness ratio would result in penetration while toughness 

ratios greater than the transition toughness ration would result in deflection.  Also, the 

normalized fracture load was calculated by extracting the applied force at which the 

energy release rates in the penetrating and deflecting directions reached their 

associated critical values.  Starting with       , the kink length was decreased until 

a toughness ratio was converged upon.  The results of the study can be seen in Figure 

10 and Figure 11.  Figure 10 shows the resulting transition toughness ratios versus 

relative kink length.  An asymptotic limit of 
  

  
      was found with reducing the 

kink length and convergence was found at        .  Similarly, Figure 11 shows the 

convergence of the normalized fracture load with respect to decreasing kink length. 
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Here, a limit of          
 

    
     was found.  The resulting penetration/deflection 

curve can be seen in Figure 12; in this figure the normalized fracture load is plotted 

against toughness ratio for a range of kink lengths.  Similar to the curves in Figure 3, 

the inflection point marks the point of transition from penetration to deflection.  These 

results are supported by those presented by Wilson and Cherepko [21].  In this work, 

an investigation of stress intensity factors for multiple cracks branching at the end of a 

main-crack was carried out.  The stress intensity factors yielded by the above three-

kink analysis align with those found by Wilson and Cherepko [21]. 
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Figure 10: Three-kink solution; transition toughness ratio plotted 

against relative kink length. 
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Figure 11: Three-kink solution; transition normalized fracture load 

plotted against relative kink length. 
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There is a drastic difference between the He and Hutchinson [6] two-geometry 

solution and the above three-kink solution.  Figure 13 shows these two solutions 

overlaid with each other.  Most notably is the difference between the proposed 

toughness ratios and difference between normalized fracture loads.  In terms of 

predicted transition toughness ratio, the two-geometry approach predicts ratio of 

  
   

    while the three-kink approach predicts a ratio of 
  

  
     .  This is a 

significant difference.  Similarly, the two-geometry approach predicts a transition 

normalized fracture load of           
 

    
       while the three-kink approach 

predicts          
 

    
    .  Again, this is a significant difference.  This significance 

of these differences is the fact that upon using one geometry versus the other a 

drastically different solution is derived.  Based on these differences it is obvious that if 

the correct geometry is not analyzed, the correct solution may not be reached.  In the 

next section, the geometry considered is further refined and analyzed using the CZ 

method. 
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5.2 CZ Approach 

Here, the CZ method described in section 4.2 is used to examine transition. 

5.2.1 Behavior of Transition 

A combined stress-energy-based approach is the most complete formulation 

because it does not exclude material strength or toughness and can be applied to the 

present problem without compromising the geometry.  Previously discussed 

approaches are incomplete and/or compromise the modeling geometry due to 

requirements of the analysis.  Both of the discussed stress-based approaches are 

incomplete in that they do not consider material toughness.  The above discussed 
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energy-based approaches do not consider material strength and also used a modified 

geometry for analysis due the requirements of the LEFM formulation.  In studying a 

main crack penetrating into the substrate or deflecting into the interface, the initial 

geometry should reflect that of a sharp notch impinging an interface as shown in 

Figure 14.  The cohesive-zone method, as describe in the section 4.2 allows the proper 

geometry to be studied. 

 

 

Using the CZ method, a more accurate depiction of transition can be made.  Figure 

15 shows the process of fracture at the crack tip in a cracked bi-layer system (same 

model as described above by Figure 6) subject to conditions that promote transition.  

In this figure, cohesive elements are used to form penetrating and deflecting 

directions.  The penetrating and deflecting cracks are the simultaneous extensions of 

the main crack.  Further, simultaneous fracture occurs at transition when a critical 

amount of energy is released concurrently in the penetrating and deflecting direction. 

Figure 14: Geometry of sharp notch impinging interface used in 

cohesive modeling analysis. 
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With transition lying in the middle, the solution space between penetration and 

deflection is a continuum.  Through the use of cohesive modeling, the entire spectrum 

between penetration and deflection can be examined; Figure 16 illustrates this 

spectrum.  Using cohesive modeling, a range of material properties (from those which 

promote penetration to those which promote deflection) were solved for and illustrated 

in this figure.  Previous formulations have been used to capture transition, but did so 

without considering the surrounding solution space.  Transition has been characterized 

in the past using strength or energy methods. 

 

 

Figure 15: Finite element model illustration of simultaneous crack 

penetration and crack deflection.  
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The CZ method was used to quantitatively analyze the solution space surrounding 

transition.  For a given set of dimensionless groups and a fully defined model, an 

analysis was carried out and the resulting fracture load was recorded.  It was also 

noted what mode the fracture occurred in (penetration, deflection, or transition).  The 

toughness ratio was then varied and the model was analyzed repeatedly.  The solutions 

to this set of analyses form a curve similar to those in Figure 3 and Figure 12.  Figure 

17 shows the cohesive-zone analysis solution curve for       , 
  

    
     ,     

,     , 
     

   
  

 
     

   
  

     .  The inflection point at 
  

  
      marks the critical 

transition toughness ratio.  It is important to make clear that simultaneous crack 

propagation in the penetrating and deflecting directions occurs only at transition; to 

the left of the peak, the mode of fracture is penetration (though some energy is 

released in the deflecting direction, fracture occurs in the penetrating direction) and to 

the right is deflection (though some energy is released in the penetrating direction, 

fracture occurs in the deflecting directions).  Also, the inflection point marks a peak 

normalized fracture load of          
 

    
    .  The shape of this curve is significant 

Figure 16: The transition continuum bounded by penetration and 
deflection. 
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because it indicates that a peak load carrying capacity exists at transition.  This can be 

attributed to the dispersion of energy over multiple crack fronts; more energy can be 

absorbed by growing multiple cracks (simultaneous extension in both the penetrating 

and deflecting directions) than extending in either the penetrating or deflecting 

direction alone.  Note that the energy-based, two-geometry approach fails to predict 

this intuitive result.   

 

 

At toughness ratios much greater or smaller than that of transition, the combined 

strength and energy approach aligns with the two-geometry solutions.   At toughness 
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ratios much smaller than transition, substrate toughness is much less than interface 

toughness, which is similar to a geometry in which no interface crack is present. This 

corresponds to a kink in only the penetrating direction, which is one of the geometries 

of the two-geometry approach.  Conversely, at toughness ratios much larger than that 

of transition, a geometry in which only deflecting cracks are present is emulated 

(corresponding to the other geometry of the two-geometry approach Figure 18 shows 

how the cohesive zone solution converges to the penetration-only and deflection-only 

solutions of the two-geometry approach.  In this figure, the cohesive zone solution to 

the left of transition (small toughness ratios which favor penetration) converges to the 

penetrating only solution.  Also, the cohesive zone solution to the right of transition 

(large toughness ratios which favor failure in the deflecting directions) converges upon 

the deflecting only solution. This occurs because far from transition, under the CZ 

approach large process zones form in either the penetrating or deflecting directions 

which behave similarly to the discrete kinks of the two-geometry model.  
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The approaches discussed in sections 3.1 and 3.2 fail to reveal the true nature of 

transition, giving the CZ method a significant insight to as how cracks act as they 

propagate simultaneously in the penetrating and deflecting directions.  This is most 

apparent in comparing the CZ curve with the He and Hutchinson [6] two-geometry 

curves as the behavior of transition (the behavior between 
  

  
    and 

  
  

    ) 

goes completely un-captured by the latter approach.  The impact of this difference is a 

region of increased load carrying capacity (         
 

    
     over          
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Figure 18: CZ solution predicts two geometry solution at very large 

and very small toughness ratios.  Three-kink geometry used to study 

penetration vs. deflection via LEFM formulation.  The parameters 

 
     , 

  

    
     ,     ,     , 

     

   
  

 
     

   
  

      were used. 
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     , a 63% increase) which would have gone unseen if not for the presently applied 

CZ method. 

5.2.2 Fracture Length-Scale 

In this section, the effect of varying the fracture length-scale on transition is 

presented.  As mentioned in section 4.3, the fracture length-scale is the dimensionless 

group which scales with the relative length of the process zone during fracture in 

cohesive-zone models (i.e. larger fracture length scales correspond to larger process 

zones).  Small process zones are required for the LEFM method to be accurate.   

The fracture length-scale has a great influence on transition.  Using the cohesive 

modeling approach, a range of fracture length-scales were analyzed and compared.  It 

is important to note that the fracture length-scales in the penetrating and deflecting 

directions were kept equal.  In Figure 19, transition points are labeled, varied with 

fracture length-scale, and plotted against normalized fracture load.  Further, the 

analytical LEFM solution for transition, developed in Appendix C as equation (29), is 

labeled and plotted on the same axes.  As seen in the figure, the transition points for 

fracture length-scale at or below ~0.1, align with the analytical LEFM formulation.  

Alternatively, at fracture length-scales above ~0.1, the transition points begin to 

misalign and diverge rapidly from the LEFM solution.  It is also important to notice 

that a peak is present at fracture length-scale ~1.   
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At toughness ratios much less than the critical transition toughness ratio, solutions 

predicted using a wide variety of fracture length-scales converge to a common 

solution.  The common solution is the penetration solution developed by He and 

Hutchinson [6].  Similarly, at toughness ratios much greater than the transition 

toughness ratio, the LEFM deflecting only solution is converged upon regardless of 

fracture length-scale has.   Figure 20 shows this behavior; at both the low and high 

extremes, convergence is shared among varying fracture length scales.  These 
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Figure 19: CZ transition points align with LEFM solution for 

decreasing fracture length-scales.  The parameters  
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extremes converge to the two distinctly different geometry solutions developed by He 

and Hutchinson [6]. 

 

 

Fracture length-scales can be varied independently of each other to provide curves 

that further define transition.  Curves that distinguish between penetration and 

deflection can be formed by holding constant the interface fracture length-scale, 

systematically varying the substrate fracture length scale, and finding transition.  

Figure 21 shows one such transition curve; the interface fracture length-scale is held at 

0.01 and the substrate fracture length-scale is varied from 0.0001 to 0.025.  The curve 

represents the dividing line through penetrating and deflecting cases.  This can easily 
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Figure 20: The effect of reducing the fracture length-scale on 

transition.  The parameters  
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be understood by considering a point lying on the vertical portion of the curve; at 

substrate fracture length-scale greater than 0.1.  From this point, decreasing the 

strength ratio,        , only would result in a material with a substrate strength that is 

decreasing with respect to the interface strength.  A loaded system with relatively low 

substrate strength will penetrate.  Alternately, increasing the strength ratio (traversing 

to the right side of the graph) will yield a system that will deflect.  In this vertical 

region, toughness has little to no influence on penetration versus deflection.  At lower 

substrate fracture length-scales (the more horizontal portion of the curve), however, 

both strength and toughness influence crack behavior.  That is, from starting at a point 

on the transition cure, traversing horizontally (varying strength), vertically (varying 

toughness), or any combination of both strength and toughness will result in deviation 

from transition.  Further, it is interesting to identify that for a substrate fracture length-

scale approaching zero, the transition curve becomes horizontal (toughness dependent) 

and approaches horizontal asymptote at a toughness ratio of zero; the curve 

approaches a region in which penetration is impossible.  The physical interpretation of 

this is a situation in which process zones exists in the deflecting directions and a 

relatively non-existent process zone in the penetrating direction; if no energy can be 

released in the penetrating direction, fracture is forced to occur in the deflecting 

directions.  
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Here, it is useful to make a comparison to the stress-based solution developed by  

Gupta et al [5]; this transition criteria can be seen in Figure 22.  The line, defined by 

   
  

  
          

   represents the dividing criteria between a penetrating case and a 

deflecting case.  Further, in Figure 23, the transition strength ratio developed by Gupta 

et. al [5] is shown as a dashed vertical line.  For this interface fracture length-scale, the 

transition curve seems to converge to the proposed  
  

  
  

          
   indicating that 

this solution is valid for this set of material properties. 
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Figure 21: Transition curve.  The parameters       , 
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    ,     , 
     

   
  

      were used. 
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Figure 23: Transition curve.  The Gupta et. al [5] strength ratio of ~3 is 

shown as a vertical dashed line. The parameters for  
     , 

  

    
     ,     ,     , 

     

   
  

      were used. 

Figure 22: The Gupta et. Al [5] stress-based solution for determining 

transition does not consider any aspect of material toughness. 
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When transition curves for multiple interface fracture length scales are plotted 

beside each other on the same axes, an interesting trend emerges.  Figure 24 shows a 

range of such transition curves.  Each curve shown here exhibits the same general 

shape as that in Figure 23; the major distinguishing element is a translated position.  

Starting with the rightmost curve, 
     

   
  

    , each curve to the left is defined by a 

decreasing interface fracture length-scale.  The leftmost curve has an interface fracture 

length-scale of  
     

   
  

     .  Furthermore, each subsequent curve with decreasing 

FLSi are spaced closer together indicating some limit is being approached.  In 

examining the transition strength ratio proposed by Gupta et al. [5] in comparison with 

the rest of the transition curves, as seen in Figure 24, it appears as though the critical 

strength ratio of  
  

  
  

          
   is in close proximity to the vertical portions of 

transition curves for 0.0001<FLSi<0.1.  This indicates this previous solution is valid 

for this range of material properties. 
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This apparent limit can better be examined by plotting the critical transition 

toughness and strength ratios against their respective fracture length-scales.  If a limit 

exists, a horizontal limit will exist at some strength or toughness ratio.  In Figure 25, 

transition strength and toughness ratios are plotted against their corresponding fracture 

length-scales (equal for interface and substrate).  The shape of the curve defined by 

toughness ratios and the curve defined by strength ratios are very similar in shape; this 

is to be expected as the transition toughness ratios are defined to be the square of the 

transition strength ratios for any given fracture length-scale.  From the rightmost side 
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Figure 24: Transition curves for decreasing fracture length-scale.  The 

leftmost curve is for 
     

   
  

      and the rightmost curve is for 

     

   
  

    ; intermediate curves are separated by factors of 
     

   
  

 

   . The Gupta et. al [5] strength ratio of ~3 is shown as a vertical 

dashed line. The parameters       , 
  

    
     ,     ,      

were used. 
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of the plot (fracture length-scale equal to 100, transition strength and toughness ratios 

seem to converge rapidly with decreasing fracture length-scale.  This is the same 

behavior displayed in Figure 24.  See also, in Figure 25, that the Gupta et. Al [5] 

strength ratio of  
  

  
  

          
   is shown as a horizontal line.  As fracture length-

scale continues to decrease (less that ~0.01), however, it appears as though transition 

strength and toughness ratios decrease slightly in a linear manner and no asymptotic 

limit exists.  This may be explained in that a finite process zone length is required for 

fracture so a self-similar situation is never created. 

 

 

5.3.3 Substrate Toughness-Scale 

Here, the effect of varying the substrate toughness-scale is examined.  Recall that 

this dimensionless group quantifies the substrate toughness with respect to the 

-50 

0 

50 

100 

150 

200 

250 

300 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

1.E-06 1.E-04 1.E-02 1.E+00 1.E+02 

To
u

gh
n

e
ss

 R
at

io
 

St
re

n
gt

h
 R

at
io

 

Fracture Length Scale (FLSi=FLSs) 

Transition Ratios versus Decreasing FLS 

Gupta 
Strength 
Ratio 

SR vs FLS 

TR vs FLS 

Figure 25: Transition strength and toughness ratios decrease with 

fracture length-scale. 



43 

 

substrate modulus and normalizes by the main crack-length.  In all previously shown 

analyses, this dimensionless group was held at     .  Figure 26 shows the effect of 

varying the substrate toughness-scale on transition toughness ratio for fracture length-

scale of 0.001 (the most computationally stable fracture length-scale studied).  It is 

apparent that a horizontal limit is met with decreasing substrate toughness-scale.  That 

is, as the substrate toughness-scale is decreased (below     ) and the transition 

toughness ratio is found, the toughness ratio reaches an upper limit of ~11. 
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5.2.3 Dundurs Parameters 

In this section, the effect of varying the Dundars parameter,  , is examined.  In all 

previously discussed results, this dimensionless value (along with the other commonly 

used Dundurs parameter,  ) was held at zero.  Here   
       

       
 is varied.  The physical 

interpretation of this is a relative elastic modulus mismatch between the film and 

substrate.  The range of possible values for   exist between the limits -1 and 1; the 

limits represent cases which one material has infinitely greater elastic modulus than 

the other.  It is important to note however, for real materials and holding  =0, realistic 

values for   exist near    .  It is accepted, however, that for results like those 

presented here, that the range of        for     be presented.  In this work, 

when     , the elastic modulus of the substrate is infinitely greater than that of the 

film.  Alternately, when    , the elastic modulus of the film is infinitely greater 

than that of the substrate.   

The effect of varying   on the normalized fracture-load shows extreme behavior.  

Figure 27 shows the effect of varying   between its limits on the transitional 

normalized fracture-load.  As   approaches -1, the associated transitional normalized 

fracture-load goes to infinity.  This can be attributed to the extreme stiffness of the 

substrate relative to the film; to reach transition at this infinite mismatch, an infinite 

normalized fracture-load is required.  Conversely, as   approaches 1, the opposite 

occurs and an infinitely small normalized-fracture load is required to propagate 

fracture in both the penetrating and deflecting directions.   
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The end behavior of the transition toughness ratio curve is less extreme.  Figure 28 

shows the effect of varying   between its limits on the transition toughness ratio.  A 

distinct maximum toughness ratio occurs at approximately      .  This equates to a 

film elastic modulus that is ~1.86 times greater than that of the substrate.  The 

significance of a maximum transition toughness ratio (here the maximum is ~14) is a 

region of opportunity for penetration.  On either side of this peak are areas of 

decreasing toughness ratios until apparent end convergence at toughness ratios of ~2 

and ~6 at   values of -1 and 1 respectively.  These areas of decreasing toughness ratio 

are indicative of areas of increased opportunity for deflection.  A valid use of the data 

presented in Figure 27 and Figure 28 is in designing a relatively strong bi-layer 

material system that favors deflection; if a material was designed to have an   value of 
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less than zero, it will be relatively stronger and have an increased likelihood of 

deflection than a system having an   value of greater than zero. 

 

 

5.2.4 Linear vs. Nonlinear Geometry 

In this section, the effect of using the nonlinear solving algorithm built into 

ABAQUS is discussed.  In all previously discussed analyses, solutions were found 

using a linear solving method.  In linear solving methods, the stiffness matrix is 

formed and solved once for an entire analysis.  This solution method assumes that 

stiffness properties of the system are constant throughout the analysis.  It is important 

to note that the material nonlinearities that are present throughout the process of 

fracture are handled separately from the solver by the UEL.  By using a nonlinear 
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solution method, the ABAQUS solver forms and solves the finite-element model’s 

stiffness matrix for each iteration.  By doing this, non-linear problems, such as large 

displacement problems where tractions become misaligned as the model deforms, can 

be solved.  

When the nonlinear solution method was applied to the problem at hand, alternate 

solutions were found.  Figure 29 shows the difference among transition points between 

linear and nonlinear solutions against the analytical LEFM curve.  Recall, from Figure 

19, that the linear solution converges to the analytical LEFM curve.  From Figure 29, 

however, it is clear that the nonlinear solution diverges from the analytical LEFM 

solution at small fracture length scales (FLS<0.1).  It makes sense that the linear 

solution method converges with the analytical LEFM solution since both are linearly 

derived.  It is unclear, however, why the nonlinear solution differs so drastically at 

small fracture length scales.  In examining the problem studied here, it does not seem 

as though a nonlinear solution method should converge to a different solution set than 

the linear solution method.  Further, it is unclear which solution set is more valid.  

Examining the use of nonlinear solution methods in combination with the combined 

strength and energy approach, presented here, should be pursued and further 

investigated. 
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6. Conclusion 

Many formulations have been developed to determine the behavior of a crack 

impinging normally upon an interface using stress-based and energy-based 

approaches.  One main contribution of these analyses has typically been some critical 

substrate-interface strength or toughness ratio which acts as the distinguishing value 

between crack penetration (into the substrate) and deflection (along the interface).  

Though these formulations were not derived with transition (as described in present 

work) in mind, these critical ratios do indicate combinations of material proerties 

which should permit simultaneous fracture in the penetrating and deflecting directions; 
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transition.  In reviewing previous work, an obvious disconnect among approaches is 

that some are stress-based and some are energy-based formulations.  The disconnect is 

that in considering only one metric (material strength or toughness) the complimentary 

property is disregarded.  Present work, in using a combined stress-energy-based 

approach (a cohesive-zone method),  shows the entire spectrum of transition solutions 

including those derived with stress-based and energy-based formulations.  That is to 

say the strength-energy-based solution acts as a connection between previous work, 

showing under what circumstances a given formulation is valid or not valid.  In 

comparing to both the CZ forumlation and a computational LEFM formulation. it was 

found that one popular solution for penetration versus deflection, the work of He and 

Hutchinson [6], does not appropriately predict transition.  This inaccuracy is due to 

incorrectly applied two-geometry approach.  This formulation, however, does seem to 

produce an accurate solution for a deflecting only or penetrating only geometry.  

Alternately, it was shown that the transition strength ratio proposed by Gupta et al. [5] 

may be valid in for geometries in which interface fracture length-scale is in the range 

0.0001<FLSi<0.1 and the substrate interface fracture length-scale is greater than that 

of the interface fracture length-scale. 

Using the CZ approach, transition  was also investigated in a general manner by 

varying a collection of dimensionless groups.  It is shown that for small fracture 

length-scales (at or below ~0.1), the CZ solution aligns with that predicted by LEFM, 

an energy-based solution.  This alignment is shown between an analytically derived 

LEFM solution for present geometry and the CZ analysis for varying fracture length-
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scales.  The effect of varying of dimensionless groups, including the substrate 

toughness-scale and the Dundurs parameter  , is also examined.  It was concluded that 

for substrate toughness-scales below     , this dimensionless group has no effect on 

the transition toughness-ratio.  Further, it was found that a region of maximized 

opportunity for penetration exists for    . 

Finally, two recommendations are made for future work.  First, it is recommended 

that further refinement of the finite element model used in present work be pursued in 

future work.  Numerical instabilities and limits were introduced in this work due to the 

mesh refinement necessary to study small fracture length-scales.  These limitations 

directly inhibited pursuing fracture length-scales      .  In being able to analyze 

said smaller fracture length-scales, a higher degree of confidence could be had in 

postulating possible asymptotic limits.  Specifically, in examining the data in Figure 

25; the end behavior (as fracture length-scale decreases) does not yield any definite or 

indefinite convergence.  Second, it is recommended that the UEL used to deploy the 

CZ method, or the method in which the UEL interacts with the rest of the finite 

element model, be enhanced to include a higher degree of stability.  One major 

difficulty encountered in the work presented here was building a finite element 

analysis that would run until the CZ would fracture.  This was especially apparent in 

analyses which portrayed transitional behavior.  Elemental stability methods, such as 

damping, should be pursued in order achieve a robust analysis. 
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APPENDIX A - UEL 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCCCCCCCCCC 

c from mix_mod-4.f 

c    2D_EPZ.FOR                 c 

c THIS SUBROUTINE IS FOR TRACTION-SEPERATION LAW FOR 

MIXED_MODE c 

c            IN THIS SUBROUTINE, MODE_I + MODE_II WAS APPLIED AND THE      c 

c FRACTURE CRITERION IS GAMMA = (GI/GIc)+ (GII/GIIc) > 1.0      c 

c STATE VARIABLES ARE USED TO PREVENT FRACTURED ELEMENTS        c 

c FROM BEING USED AGAIN           c  

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCCCCCCCCCC 

c 

     SUBROUTINE UEL(RHS,AMATRX,SVARS,ENERGY,NDOFEL,NRHS,NSVARS, 

     1  PROPS,NPROPS,COORDS,MCRD,NNODE,U,DU,V,A,JTYPE,TIME,DTIME, 

     2  KSTEP,KINC,JELEM,PARAMS,NDLOAD,JDLTYP,ADLMAG,PREDEF,NPREDF, 

     3  LFLAGS,MLVARX,DDLMAG,MDLOAD,PNEWDT,JPROPS,NJPROP,PERIOD) 

c 

     INCLUDE 'ABA_PARAM.INC' 

c 

     DIMENSION RHS(MLVARX,*),AMATRX(NDOFEL,NDOFEL),PROPS(*), 

     1  SVARS(*),ENERGY(8),COORDS(MCRD,NNODE),U(NDOFEL), 

     2  DU(MLVARX,*),V(NDOFEL),A(NDOFEL),TIME(2),PARAMS(*), 

     3  JDLTYP(MDLOAD,*),ADLMAG(MDLOAD),DDLMAG(MDLOAD,*), 

     4  PREDEF(2,NPREDF,NNODE),LFLAGS(*),JPROPS(*) 

c  

     DIMENSION C_COOR(2,4), R_COOR(2,4), R_F(8), R_MATRX(8,8) 

c 

c*********************************************************************** 

c 

      IF(JTYPE.EQ.1)THEN 

        scap=PROPS(1) 

        rtn1=PROPS(2) 

        rtn2=PROPS(3) 

        dltn=PROPS(4) 

c 

        g_ic=0.5D0*scap*(1.0D0-rtn1+rtn2)*dltn 

c 

        u1=U(3)-U(1) 

        u3=U(5)-U(7) 

c 

        rn_13=u1/dltn 

 rn_57=u3/dltn 

c 

        aht=ABS(COORDS(2,4)-COORDS(2,1)) 
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        alen=ABS(COORDS(1,1)-COORDS(1,2)) 

c     

        DO 10 i=1,NDOFEL 

          DO 11 j=1,NDOFEL 

            AMATRX(j,i)=0.0D0 

11        CONTINUE 

10      CONTINUE 

c 

c  NODE PAIR 1 AND 3 

        IF(rn_13.GT.1.0D0)SVARS(11)=10.0D0 

        IF(SVARS(11).GT.1.0D0)THEN 

   TN1=0.0D0 

   g_crt_13=1.0D0 

 ELSE 

   CALL ENRG_N(rn_13,scap,rtn1,rtn2,dltn,g_ic,g_i_13) 

          g_crt_13=g_i_13/g_ic 

   IF(g_crt_13.GT.1.0D0)THEN 

     TN1=0.0D0 

            SVARS(11)=10.0D0 

   ELSE 

     CALL TEN(rn_13,scap,rtn1,rtn2,dltn,strn_13,stfn_13) 

     TN1=strn_13 

            AMATRX(1,1)= aht*stfn_13/3.0D0/dltn 

            AMATRX(1,3)=-aht*stfn_13/3.0D0/dltn 

            AMATRX(3,1)=-aht*stfn_13/3.0D0/dltn 

            AMATRX(3,3)= aht*stfn_13/3.0D0/dltn 

            AMATRX(5,1)=-aht*stfn_13/6.0D0/dltn 

            AMATRX(5,3)= aht*stfn_13/6.0D0/dltn 

            AMATRX(7,1)= aht*stfn_13/6.0D0/dltn 

            AMATRX(7,3)=-aht*stfn_13/6.0D0/dltn 

          ENDIF 

        ENDIF 

c 

c  NODE PAIR 5 AND 7 

        IF(rn_57.GT.1.0D0)SVARS(12)=10.0D0 

        IF(SVARS(12).GT.1.0D0)THEN 

   TN2=0.0D0 

   g_crt_57=1.0D0 

 ELSE 

   CALL ENRG_N(rn_57,scap,rtn1,rtn2,dltn,g_iC,g_i_57) 

          g_crt_57=g_i_57/g_ic 

          IF(g_crt_57.GT.1.0D0)THEN 

     TN2=0.0D0 

            SVARS(12)=10.0D0 

   ELSE 

     CALL TEN(rn_57,scap,rtn1,rtn2,dltn,strn_57,stfn_57) 

     TN2=STRN_57 

            AMATRX(1,5)=-aht*stfn_57/6.0D0/dltn 
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            AMATRX(1,7)= aht*stfn_57/6.0D0/dltn 

            AMATRX(3,5)= aht*stfn_57/6.0D0/dltn 

            AMATRX(3,7)=-aht*stfn_57/6.0D0/dltn 

            AMATRX(5,5)= aht*stfn_57/3.0D0/dltn 

            AMATRX(5,7)=-aht*stfn_57/3.0D0/dltn 

            AMATRX(7,5)=-aht*stfn_57/3.0D0/dltn 

            AMATRX(7,7)= aht*stfn_57/3.0D0/dltn 

          ENDIF 

        ENDIF 

c 

c  FORCE VECTOR 

        DO 20 i=1,8 

          RHS(i,1)=0.0D0 

20      CONTINUE 

c 

        RHS(1,1)= aht*(2.0D0*TN1+TN2)/6.0D0 

        RHS(3,1)=-RHS(1,1) 

        RHS(5,1)=-aht*(TN1+2.0D0*TN2)/6.0D0 

        RHS(7,1)=-RHS(5,1) 

c 

 

        SVARS(1)=u1 

        SVARS(2)=u3 

        SVARS(3)=TN1 

        SVARS(4)=TN2 

        SVARS(5)=g_crt_13 

        SVARS(6)=g_crt_57 

c 

      ENDIF 

c 

c*********************************************************************** 

c 

      IF(JTYPE.EQ.2)THEN 

 SCAP=PROPS(1) 

 RTN1=PROPS(2) 

 RTN2=PROPS(3) 

 DLTN=PROPS(4) 

 TCAP=PROPS(5) 

 RTT1=PROPS(6) 

 RTT2=PROPS(7) 

 DLTT=PROPS(8) 

c  

c  INITIALIZE VARIABLES 

 G_I_14=0.00D0 

 G_II_14=0.00D0 

 G_I_23=0.00D0 

 G_II_23=0.00D0 

 G_CRT_14=0.00D0 
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 G_CRT_23=0.00D0 

 G_IC=0.5D0*SCAP*(1.0D0-RTN1+RTN2)*DLTN 

 G_IIC=0.5D0*TCAP*(1.0D0-RTT1+RTT2)*DLTT 

c  

 DO 140 I=1,8 

   DO 150 J=1,8 

     R_MATRX(I,J)=0.0D0 

150       CONTINUE 

140 CONTINUE 

c 

c  Prevent "broken" elements from being engaged again 

c    SYMBOL_1>1.0 ==> nodes 1&4 have been "separated" 

c    SYMBOL_2>1.0 ==> nodes 1&4 have been "separated" 

c 

 SYMBOL_1=SVARS(11) 

 SYMBOL_2=SVARS(12) 

c  

 DO 100 K1=1,NDOFEL 

   DO 110 KRHS=1,NRHS 

     RHS(K1,KRHS)=0.0D0 

110   CONTINUE  

   DO 120 K2=1,NDOFEL 

     R_MATRX(K2,K1)=0.0D0 

120   CONTINUE 

100 CONTINUE 

c 

 DO 130 I=1,8 

   R_F(I)=0.0 

   DO 130 J=1,8 

     R_MATRX(I,J)=0.0D0 

130 CONTINUE 

c 

c  COMPUTE THE LENGTH AND THICKNESS OF AN EPZ ELEMENT  

 ALEN1=SQRT((COORDS(1,1)-COORDS(1,2))**2 

     1        +(COORDS(2,1)-COORDS(2,2))**2.0) 

      ALEN2=SQRT((COORDS(1,4)-COORDS(1,3))**2 

     1        +(COORDS(2,4)-COORDS(2,3))**2.0) 

      ALEN=(ALEN1+ALEN2)/2.0D0 

      THIK1_0=SQRT((COORDS(1,1)-COORDS(1,4))**2 

     1          +(COORDS(2,1)-COORDS(2,4))**2.0) 

 THIK2_0=SQRT((COORDS(1,2)-COORDS(1,3))**2 

     1          +(COORDS(2,2)-COORDS(2,3))**2.0)  

c 

        xb=ABS(COORDS(1,1)-COORDS(1,2))/2.0D0 

        xh=ABS(COORDS(2,4)-COORDS(2,1))/2.0D0 

c 

        C_COOR(1,1)=-xb+U(1) 

        C_COOR(2,1)=-xh+U(2) 
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        C_COOR(1,2)= xb+U(3) 

        C_COOR(2,2)=-xh+U(4) 

        C_COOR(1,3)= xb+U(5) 

        C_COOR(2,3)= xh+U(6) 

        C_COOR(1,4)=-xb+U(7) 

        C_COOR(2,4)= xh+U(8) 

c  

c  COMPUTE THE ROTATION ANGLE 

 P1_X=(C_COOR(1,1)+C_COOR(1,4))/2.0D0 

 P1_Y=(C_COOR(2,1)+C_COOR(2,4))/2.0D0 

 P2_X=(C_COOR(1,2)+C_COOR(1,3))/2.0D0 

 P2_Y=(C_COOR(2,2)+C_COOR(2,3))/2.0D0 

 IF(ABS(P2_X-P1_X).LE.1.0E-10) THEN 

   FI=3.14159265/2.0D0 

 ELSE 

   FI=ATAN((P2_Y - P1_Y)/(P2_X - P1_X)) 

 ENDIF 

c  

c  COMPUTE THE COORDINATES IN LOCAL COORDINATE SYSTEM 

 R_COOR(1,1)=C_COOR(1,1)*COS(FI)+C_COOR(2,1)*SIN(FI) 

 R_COOR(2,1)=-1.0D0*C_COOR(1,1)*SIN(FI)+C_COOR(2,1)*COS(FI) 

 R_COOR(1,2)=C_COOR(1,2)*COS(FI)+C_COOR(2,2)*SIN(FI) 

 R_COOR(2,2)=-1.0D0*C_COOR(1,2)*SIN(FI)+C_COOR(2,2)*COS(FI) 

 R_COOR(1,3)=C_COOR(1,3)*COS(FI)+C_COOR(2,3)*SIN(FI) 

 R_COOR(2,3)=-1.0D0*C_COOR(1,3)*SIN(FI)+C_COOR(2,3)*COS(FI) 

 R_COOR(1,4)=C_COOR(1,4)*COS(FI)+C_COOR(2,4)*SIN(FI) 

 R_COOR(2,4)=-1.0D0*C_COOR(1,4)*SIN(FI)+C_COOR(2,4)*COS(FI) 

c  

c  COMPUTE THE RELATIVE DISPLACEMENTS IN LOCAL COORDINATE SYSTEM 

 DUX1=R_COOR(1,4)-R_COOR(1,1)   !U(7)-U(1) 

 DUX2=R_COOR(1,3)-R_COOR(1,2)   !U(5)-U(3) 

 DUY1=R_COOR(2,4)-R_COOR(2,1)-THIK1_0         !U(8)-U(2) 

 DUY2=R_COOR(2,3)-R_COOR(2,2)-THIK2_0         !U(6)-U(4) 

 RN_14=DUY1/DLTN 

 RT_14=DUX1/DLTT 

 RN_23=DUY2/DLTN 

 RT_23=DUX2/DLTT  

c  

c  COMPUTE THE CURRENT THICKNESS OF THE EPZ ELEMENT 

 XXL1=R_COOR(1,1)              !COORDS(1,1)+U(1) 

 YYL1=R_COOR(2,1)              !COORDS(2,1)+U(2) 

 XXL2=R_COOR(1,4)              !COORDS(1,4)+U(7) 

 YYL2=R_COOR(2,4)              !COORDS(2,4)+U(8)  

 XXR1=R_COOR(1,2)              !COORDS(1,2)+U(3) 

 YYR1=R_COOR(2,2)              !COORDS(2,2)+U(4) 

 XXR2=R_COOR(1,3)              !COORDS(1,3)+U(5) 

 YYR2=R_COOR(2,3)              !COORDS(2,3)+U(6) 

 THIK1_1=SQRT((XXL1-XXL2)**2.0+(YYL1-YYL2)**2.0) 
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      THIK2_1=SQRT((XXR1-XXR2)**2.0+(YYR1-YYR2)**2.0) 

c       

c  COMPUTE THE LOCAL STIFFNESS MATRIX AND RESIDUAL FORCES FOR  

c  NODE PAIR 1 AND 4 

c  CHECK IF CRITICAL DISPLACEMENT IS REACHED: IF EITHER DLTN 

c   OR DLTT IS REACHED, THE TOTAL STIFFNESS MATRIX AND RESIDUAL 

c   FORCE WILL BE SET TO BE ZERO 

c  

 IF((RN_14.GT.1.0D0).OR.(ABS(RT_14).GT.1.0D0))SYMBOL_1=10.0D0 

 IF(SYMBOL_1.GT.1.0D0)THEN 

   TN1=0.0D0 

   TT1=0.0D0 

        ELSE 

   CALL ENRG_T(RT_14, TCAP, RTT1, RTT2, DLTT, G_IIC, G_II_14) 

   CALL ENRG_N(RN_14, SCAP, RTN1, RTN2, DLTN, G_IC, G_I_14) 

   G_CRT_14=G_I_14/G_IC + G_II_14/G_IIC   

   IF (G_CRT_14.GT.1.0D0) THEN 

     TN1=0.0D0 

     TT1=0.0D0 

     SYMBOL_1=10.0D0 

          ELSE 

     CALL TEN(RN_14,SCAP,RTN1,RTN2,DLTN,STRN_14,STFN_14) 

     CALL SHR(RT_14,TCAP,RTT1,RTT2,DLTT,STRT_14,STFT_14) 

c 

     TN1=STRN_14 

     TT1=STRT_14 

c 

     R_MATRX(1,1)= ALEN*STFT_14/3.0D0/DLTT      

            R_MATRX(1,2)= 0.0D0 

     R_MATRX(1,7)= -1.0D0*ALEN*STFT_14/3.0D0/DLTT 

            R_MATRX(1,8)= 0.0D0 

         

            R_MATRX(2,1)= 0.0D0      

            R_MATRX(2,2)= ALEN*STFN_14/3.0D0/DLTN  

     R_MATRX(2,7)= 0.0D0 

            R_MATRX(2,8)= -1.0D0*ALEN*STFN_14/3.0D0/DLTN 

         

            R_MATRX(3,1)= ALEN*STFT_14/6.0D0/DLTT      

            R_MATRX(3,2)= 0.0D0 

     R_MATRX(3,7)= -1.0D0*ALEN*STFT_14/6.0D0/DLTT 

            R_MATRX(3,8)= 0.0D0 

         

            R_MATRX(4,1)= 0.0D0      

            R_MATRX(4,2)= ALEN*STFN_14/6.0D0/DLTN  

     R_MATRX(4,7)= 0.0D0 

            R_MATRX(4,8)= -1.0D0*ALEN*STFN_14/6.0D0/DLTN 

c         

          ENDIF 
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        ENDIF 

c 

c  COMPUTE THE LOCAL STIFFNESS MATRIX AND RESIDUAL FORCES FOR  

c   NODE PAIR 2 AND 3 

c   CHECK IF CRITICAL DISPLACEMENT IS REACHED: IF EITHER DLTN 

c   OR DLTT IS REACHED, THE TOTAL STIFFNESS MATRIX AND RESIDUAL 

c   FORCE WILL BE SET TO BE ZERO 

c 

 IF((RN_23.GT.1.0D0).OR.(ABS(RT_23).GT.1.0D0))SYMBOL_2=10.0D0 

 IF(SYMBOL_2.GT.1.0D0) THEN 

   TN2=0.0D0 

   TT2=0.0D0 

        ELSE   

   CALL ENRG_T(RT_23, TCAP, RTT1, RTT2, DLTT, G_IIC, G_II_23) 

   CALL ENRG_N(RN_23, SCAP, RTN1, RTN2, DLTN, G_IC, G_I_23) 

   G_CRT_23=G_I_23/G_IC + G_II_23/G_IIC 

   IF (G_CRT_23.GT.1.0D0) THEN 

     TN2=0.0D0 

     TT2=0.0D0 

     SYMBOL_2=10.0D0 

   ELSE 

     CALL TEN(RN_23,SCAP,RTN1,RTN2,DLTN,STRN_23,STFN_23) 

     CALL SHR(RT_23,TCAP,RTT1,RTT2,DLTT,STRT_23,STFT_23) 

c 

     TN2=STRN_23 

     TT2=STRT_23 

c  

     R_MATRX(1,3)= ALEN*STFT_23/6.0D0/DLTT      

            R_MATRX(1,4)= 0.0D0 

     R_MATRX(1,5)= -1.0D0*ALEN*STFT_23/6.0D0/DLTT 

            R_MATRX(1,6)= 0.0D0 

c  

     R_MATRX(2,3)= 0.0D0      

            R_MATRX(2,4)= ALEN*STFN_23/6.0D0/DLTN  

     R_MATRX(2,5)= 0.0D0 

            R_MATRX(2,6)= -1.0D0*ALEN*STFN_23/6.0D0/DLTN 

c 

     R_MATRX(3,3)= ALEN*STFT_23/3.0D0/DLTT      

            R_MATRX(3,4)= 0.0D0 

     R_MATRX(3,5)= -1.0D0*ALEN*STFT_23/3.0D0/DLTT 

            R_MATRX(3,6)= 0.0D0 

         

            R_MATRX(4,3)= 0.0D0      

            R_MATRX(4,4)= ALEN*STFN_23/3.0D0/DLTN  

     R_MATRX(4,5)= 0.0D0 

            R_MATRX(4,6)= -1.0D0*ALEN*STFN_23/3.0D0/DLTN 

c 

   ENDIF 
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 ENDIF 

c 

199 CONTINUE 

c 

 DO 200 I=1,8 

   R_MATRX(5,I)=-1.0D0*R_MATRX(3,I) 

   R_MATRX(6,I)=-1.0D0*R_MATRX(4,I) 

   R_MATRX(7,I)=-1.0D0*R_MATRX(1,I) 

   R_MATRX(8,I)=-1.0D0*R_MATRX(2,I) 

200 CONTINUE 

c  

c COMPUTE THE RESIDUAL FORCES IN LOCAL COORD. SYS. 

c        

 R_F(1)=(TT1*ALEN/3.0D0+TT2*ALEN/6.0D0) 

 R_F(2)=(TN1*ALEN/3.0D0+TN2*ALEN/6.0D0) 

 R_F(3)=(TT1*ALEN/6.0D0+TT2*ALEN/3.0D0) 

 R_F(4)=(TN1*ALEN/6.0D0+TN2*ALEN/3.0D0) 

 R_F(5)=-R_F(3) 

 R_F(6)=-R_F(4) 

 R_F(7)=-R_F(1) 

 R_F(8)=-R_F(2) 

c 

c FORM THE GLOBAL STIFFNESS MATRIX AND RESIDUAL FORCE 

 DO 300 I=1,7,2 

   DO 300 J=1,7,2 

     AMATRX(  I,  J)  = R_MATRX(  I,  J)*COS(FI)**2.0D0+ 

     1                  R_MATRX(I+1,J+1)*SIN(FI)**2.0D0- 

     2                  R_MATRX(  I,J+1)*SIN(FI)*COS(FI)- 

     3                  R_MATRX(I+1,  J)*SIN(FI)*COS(FI) 

c      

          AMATRX(I+1,  J) = R_MATRX(  I,  J)*SIN(FI)*COS(FI)- 

     1                 R_MATRX(I+1,J+1)*SIN(FI)*COS(FI)- 

     2                 R_MATRX(  I,J+1)*SIN(FI)**2.0D0+ 

     3                 R_MATRX(I+1,  J)*COS(FI)**2.0D0 

c 

          AMATRX(  I,J+1) = R_MATRX(  I,  J)*SIN(FI)*COS(FI)- 

     1                 R_MATRX(I+1,J+1)*SIN(FI)*COS(FI)+ 

     2                 R_MATRX(  I,J+1)*COS(FI)**2.0D0- 

     3                 R_MATRX(I+1,  J)*SIN(FI)**2.0D0 

      

c      

          AMATRX(I+1,J+1) = R_MATRX(  I,  J)*SIN(FI)**2.0D0+ 

     1                 R_MATRX(I+1,J+1)*COS(FI)**2.0D0+ 

     2                 R_MATRX(  I,J+1)*SIN(FI)*COS(FI)+ 

     3                 R_MATRX(I+1,  J)*SIN(FI)*COS(FI) 

c 

300 CONTINUE 

c      
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 DO 310 I=1,7,2 

   RHS( I ,1)=R_F(I)*COS(FI) - R_F(I+1)*SIN(FI) 

   RHS(I+1,1)=R_F(I)*SIN(FI) + R_F(I+1)*COS(FI)  

310 CONTINUE 

c 

c UPDATE INTERNAL VARIABLES 

 SVARS(11)=SYMBOL_1 

 SVARS(12)=SYMBOL_2  

c  

        SVARS(2)=TN1 

        SVARS(4)=TT1 

 SVARS(6)=TN2 

 SVARS(8)=TT2 

c  

        SVARS(9)=FI 

c 

 SVARS(18)=G_I_14 

 SVARS(19)=G_II_14 

 SVARS(20)=G_I_23 

 SVARS(21)=G_II_23 

c  

 SVARS(22)=G_CRT_14 

 SVARS(23)=G_CRT_23 

c 

      ENDIF 

c 

      RETURN 

      END 

c  

c 

c SUBROUTINES 

c 

      SUBROUTINE SHR(RTT,TAO,RTT1,RTT2,DLTT,STRT,STFT) 

        IMPLICIT DOUBLE PRECISION(A-H, O-Z) 

        IF(ABS(RTT).LE.RTT1)THEN 

          STRT=TAO*RTT/RTT1 

          STFT=TAO/RTT1 

        ELSEIF((ABS(RTT).GT.RTT1).AND.(ABS(RTT).LE.RTT2))THEN 

          STRT=TAO*(ABS(RTT)/RTT) 

          STFT=0.0D0 

        ELSEIF((ABS(RTT).GT.RTT2).AND.(ABS(RTT).LE.1.0D0))THEN 

          STRT=TAO*(1.0D0-ABS(RTT))/(1.0D0-RTT2)*(ABS(RTT)/RTT) 

        STFT=-TAO/(1.0D0-RTT2) 

        ELSEIF(ABS(RTT).GT.1.0D0)THEN 

          STRT=0.0D0 

          STFT=0.0D0 

        ENDIF 

      RETURN 
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      END 

c 

      SUBROUTINE TEN(RTN,SCAP,RTN1,RTN2,DLTN,STRN,STFN) 

        IMPLICIT DOUBLE PRECISION(A-H, O-Z) 

        IF(RTN.LE.RTN1)THEN 

          STRN=SCAP*RTN/RTN1 

          STFN=SCAP/RTN1 

        ELSEIF((RTN.GT.RTN1).AND.(RTN.LE.RTN2))THEN 

          STRN=SCAP 

          STFN=0.0D0  

        ELSEIF((RTN.GT.RTN2).AND.(RTN.LE.1.0D0))THEN 

          STRN=SCAP*(1.0D0-RTN)/(1.0D0-RTN2) 

          STFN=-1.0D0*SCAP/(1.0D0-RTN2) 

        ELSEIF(RTN.GT.1.0D0)THEN 

          STRN=0.0D0 

          STFN=0.0D0 

        ENDIF 

      RETURN 

      END 

c  

      SUBROUTINE ENRG_N(RTN, SCAP, RTN1, RTN2, DLTN, G_IC, G_I) 

        IMPLICIT DOUBLE PRECISION(A-H, O-Z) 

        IF(RTN.LE.1.0E-10)THEN 

          G_I=0.0D0 

        ELSEIF((RTN.GT.1.0E-10).AND.(RTN.LE.RTN1))THEN 

          G_I=0.5D0*SCAP*RTN*RTN*DLTN/RTN1 

        ELSEIF((RTN.GT.RTN1).AND.(RTN.LE.RTN2))THEN 

          G_I=0.5D0*SCAP*RTN1*DLTN + SCAP*(RTN-RTN1)*DLTN  

        ELSEIF((RTN.GT.RTN2).AND.(RTN.LE.1.0D0)) THEN 

          G_I=DLTN*((RTN-2.0D0)*RTN+RTN1-RTN1*RTN2+(RTN2)**2)*SCAP/ 

     1        (2.0D0*(RTN2-1.0D0))         

        ELSEIF(RTN.GT.1.0D0) THEN 

          G_I=G_IC 

        ENDIF 

      RETURN 

      END      

c 

      SUBROUTINE ENRG_T(RTT, TAO, RTT1, RTT2, DLTT, G_IIC, G_II) 

        IMPLICIT DOUBLE PRECISION(A-H, O-Z) 

        IF(ABS(RTT).LE.1.0E-10) THEN 

          G_II=0.0D0 

        ELSEIF((ABS(RTT).GT.1.0E-10).AND.(ABS(RTT).LE.RTT1)) THEN 

          G_II=0.5D0*TAO*ABS(RTT)*ABS(RTT)*DLTT/RTT1 

        ELSEIF((ABS(RTT).GT.RTT1).AND.(ABS(RTT).LE.RTT2)) THEN 

          G_II=0.5D0*TAO*RTT1*DLTT + TAO*(ABS(RTT)-RTT1)*DLTT  

        ELSEIF((ABS(RTT).GT.RTT2).AND.(ABS(RTT).LE.1.0D0)) THEN 

          G_II=DLTT*((ABS(RTT)-2.0D0)*ABS(RTT)+RTT1-RTT1*RTT2+(RTT2)**2) 

     1         *TAO/(2.0D0*(RTT2-1.0D0))     
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        ELSEIF(ABS(RTT).GT.1.0D0) THEN 

          G_II=G_IIC 

        ENDIF 

      RETURN 

      END 
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APPENDIX B – LEFM Two-Geometry Curves Derivation 

Here, the work of He and Hutchinson [6] is adapted to the fracture model 

studied in present work in order to make comparisons and draw conclusions.  At 

fracture, He and Hutchinson [6] formulate  
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for the penetrating direction, and 
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for the deflecting direction where   is the stress intensity factor (with   and    

representing mode-I and mode-II respectively),   is Poisson’s ratio,   is shear 

modulus,   is an oscillation index dependent on the Dundurs parameter,  , from 

Dundurs [19].  Also, subscripts         represent substrate, penetrating, interface, and 

film respectively. 
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The results of He and Hutchinson [6] can be expanded to show the fracture load 

associated with this two-geometry approach.  First, from LEFM, the Mode-I critical 

energy release rate (   ) is defined to be: 
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where    is the mode-I material toughness and    is the elastic modulus.  Next, a 

solution for a semi-infinite edge-crack loaded axially (here, the solution for crack 

length ten times smaller than ligament length is used) from Tada et al. [18] is defined 

to be: 
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where          is the remote applied tensile stress and   is the crack length.  

Combining equations (12) and (13) the following relationship can be formed: 
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Next, a dimensionless group which normalizes a remote applied tensile stress by a 

crack length, elastic modulus, and toughness can be defined as: 

 

         
 

    

 Fracture Load (15) 

 

Next, by combining equations (14) and (15) the fracture load is becomes 
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 in the penetrating direction, and 
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in the deflecting direction for Dundurs parameters both equal to zero. 
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APPENDIX C – LEFM Transition Curve Derivation 

Here, an analytical LEFM derivation of transition is derived.  We start with 

results from Wilson and Cherepko [21] for stress intensity factors associated with 

branched kinks at the end of a main crack.  The kinks are positioned at ninety degree 

angles with respect to each other like that pictured in Figure 7.  In this work, 

percentage stress intensity factors for mode-I and mode-II,    and    , are developed 

for the penetrating and deflecting kinks; these values are percentage intensities of the 

main crack stress intensity factor,   .  Wilson and Cherepko [21] formulate: 
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To arrive at a single percentage stress intensity for each kink, the magnitude between 

mode-I and mode-II is taken: 
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Next, taking into account that Wilson and Cherepko [21] used a plane strain 

formulation in which    
 

    , we sum the total energy release rate for all three kinks 

using equation (12) for      : 
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(24) 

 

This can be rewritten as: 

 

  
          (25) 

 

Equation (13) can be rewritten as: 

 



70 

 

  
             (26) 

 

Equations (25) and (26) can be combined such that, 
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Next, we assume the system is taken until the energy release rate,  , is taken until 

fracture (                        ).  Equation (27) can then be rewritten: 

 

                              
    

 
 (28) 

 

Finally, we solve for normalized fracture load: 
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