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Chapter 1 – Introduction

Power consumption has become one of the most critical design decisions for next-

generation embedded computing platforms, placing tight constraints on battery size,

cost and lifetime. Power consumption in wireless embedded applications is often greatly

dependent on the choice of microprocessor. The designer will look and analyze many

processors for ease of programability, hardware resources, and power consumption. The

problem with this is that the designer also often has a timeframe in which this system

must be complete, so even with the vast amount of choices for microprocessors in to-

day’s market, they will often choose one that is almost certainly capable of the compu-

tation they are performing at the risk of under-utilizing the processor.

Most advanced applications are very expensive in terms of energy when executing on

a typical embedded microprocessors and are often either logged to non-volatile memory

or transmitted wirelessly off the system for post processing. Both of these options are

power hungry and shift where energy is used rather than solving the problem. The real

issue is that it typically costs too much energy to perform the advanced processing on

chip, and in order to limit the power profile of the system a designer will choose to use

a secondary system to analyze and manipulate data later.

Total system power has been previously shown to improve dramatically when sen-

sor signal processing is performed locally as opposed to transmitting the raw input data

through the power expensive radio [44]. Therefore, future wireless system-on-chips
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(SoCs) will benefit from significant improvements in parallel processing that is both

low power and high performance in order to minimize radio utilization. This local par-

allel computing unit within the SoC will need to perform all of the necessary tasks

required for local signal processing, such as filtering, compressive sensing [18], multi-

channel decomposition, anomaly detection, compression, encryption, error correction

and network radio processing.

This presents a key issue in that most designs are approached by only limiting the de-

signer to a power envelope, without an efficiency requirement. For instance, a designer

is tasked with building a device that can last X hours, and already knows the power

profile of everything but the processor. They now will often choose a processor that will

fill this unused power to avoid the risk of the processor not being able to perform the

computation in time. At first glance there is nothing wrong with this, as the designer

will probably meet the specification requirements but could most likely have achieved

similar performance while using less energy. How can we accomplish this?

Typically, embedded processing applications execute on a fixed set of algorithms

across a well defined signal processing chain repeatedly, as opposed to the uncertain

program execution performed on a general purpose microprocessor. Due to our prior

knowledge about the algorithm that will be executed, the amount of time we are allo-

cated to perform computation, and the necessary power profile, a priori characterization

of the hardware utilization patterns for the embedded application can be performed. Fur-

ther, it is possible for these utilization patterns to be used in order to balance hardware

resources.

For data-parallel applications such as signal processing, wide parallel architectures
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can significantly improve energy-efficiency when compared with conventional scalar

pipeline architectures [25]. These efficient parallel architectures can achieve improved

performance/watt through system-level power management, based on application-aware

hardware utilization characterization and power scheduling.

Due to the afore mentioned issues, I present an efficient greedy search optimization

technique for maximizing performance/watt in SIMD embedded architectures through

a priori scheduling of hardware resources based on algorithm and utilization patterns on

both a super Vth and near Vth processor.
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Chapter 2 – Motivation

The primary motivation for this research was due to our design of biomedical devices

which typically must be:

• Small & Lightweight

• Reliable

• Have long battery life

This presents a host of problems for a designer however. One example of such as

device is the Oregon State Univerisy Life & Activity Monitor [2].

2.1 OLAM: Oregon State University Life & Activity Monitor

OLAM was designed for the Linus Pauling Institute at Oregon State University for an

IRB approved clinical trial on the effects of lipoic acid on the circadian rhythm of pa-

tients. This required the ability to monitor heartrate and general activity over a course

of many weeks. The required specifications for OLAM were as follows.

Design contraints:

• Ability to collect data for two weeks on a single charge

• Able to detect heartbeats using a non-contact sensor
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• Able to detect motion and activity levels

• Data retrieval must be as quick as possible

• Device must be less than 2”L x 2”W x 0.5”H

2.2 OLAM: Design Decisions

What we came up with was to use an accelerometer and gyro for motion tracking and

an analog front end ADC for measuring heartbeats. These can be seen in Figure 2.1. As

for the heartbeat sensor, we developed our own non-contact sensor as seen in Figure ??.

You may also notice that the battery was a large portion of the total package. In order

to meet the battery life contraints, we chose to fill the available volume that we were

allocated with battery as seen in Figure 2.3.

Figure 2.1: OLAM: PCB
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Figure 2.2: OLAM: Bottom View

Figure 2.3: OLAM: Top View
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The necessity to increase battery size should be remedied with better energy effi-

ciency. While OLAM was designed using as low energy components that could be

found, the processor was still underutilized and therefore should have the ability to scale

resources to increase utilization and lower energy.
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Chapter 3 – Literature Review

The following is a comprehensive review of previous work as it relates to my research.

Firstly I cover various parallel processing techniques. Next I review power scaling and

optimization techniques already used. Then I cover some parallel processor simulation

environments. Lastly, I review the costs and benefits of near threshold operation of

digital circuits.

3.1 Parallel Processing

Parallel processing has become increasingly important as the need for higher throughput

processors exceeds our ability to execute instructions in serial. To achieve a performance

speedup (the ratio between running time of a program on a single core system versus

that of a multi-core system), designs are becoming more parallel. This speedup can

only be realized however, if algorithms tend towards parallization as well. According to

Amdahl’s law, speedup follows:

S(N,P ) =
1

(1− P ) + P
N

Where S is the speedup, N is the number of cores and P is the percent of the al-

gorithm that is parallelizable. Figure 3.1 shows this relationship. In [41] it is shown

that a two core system can perform almost as well as an infinite core system for entirely
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Figure 3.1: Amdahl’s Law: Speedup vs Number of Cores

serialized code which shows that the benefits of parallelization of architectures can only

be realized if algorithms also become wide parallel.

There are several different forms of parallel processing: bit-level, instruction level,

data, and task level parallelism.

3.1.1 Bit Level Parallelism

Bit level parallelism is typically implemented by increasing a processors word size [33]

and is used when increasing word size is more efficient than many smaller instructions.

By increasing word size, it is possible to reduce the total number of instructions when

dealing with very large variables. For example, consider the case where an 8 bit proces-
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sor must perform 32 bit addition. This would require 4 addition instructions with 4 bit

carries whereas a 32 bit processor would be able to accomplish the same goal in a single

instruction. In previous processor generations, 4-bit processors were replaced by 8-bit,

then 16-bit and 32-bit and has recently settled at a 64-bit typical word size for general

computing. System level trade-offs of area, performance, and power are evaluated for

very large instruction word (VLIW) architectures in [4].

3.1.2 Instruction Level Parallelism

Instruction Level Parallelism (ILP) is a processor and compiler design technique wherein

execution speedup can be obtained through the ability to run multiple instructions at

once [45]. This technique is most commonly known for its use in superscalar architec-

tures [24] wherein a multi-stage pipeline allows for multiple instructions to be executed

at different stages in the pipeline at once. This allows for faster throughput at a given

clock rate. The superscalar technique can be identified by the following characteristics:

• Sequential Instruction Stream

• CPU dynamically checks data dependencies between instructions at run time

• CPU can accept multiple instructions per clock cycle

This type of parallelism is limited mostly by the depth of the pipeline. For large

pipelines such as the Intel Pentium series [46] this technique worked very well, and

achieved some level of speedup for most general computing applications.
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Instruction

1 IF ID EX MEM WB IF = Instuction Fetch

2 IF ID EX MEM WB ID = Instruction Decode

3 IF ID EX MEM … EX = Execute

4 IF ID EX … MEM = Memory R/W

5 IF ID … WB = Register Writeback

Cycle 1 2 3 4 5 6 7

Pipeline Stage Stage Definitions

Figure 3.2: Basic Five Stage Pipeline

ILP can also be seen in smaller configurations such as the 5 stage pipeline adopted

by many architectures such as RISC [26]. The principle can be seen in Figure 3.2. It can

be seen that rather than waiting for an instruction to finish execution before starting the

next one, it can launch another instruction in the pipeline in order to use the hardware

resources that are currently idle.

3.1.3 Single Instruction Multiple Data

Also referred to as loop-level parallelism or data parallelism, single instruction multiple

data (SIMD) architectures are a form of parallelization of computing by performing the

same task on parallel sets of data. This can be achieved in many ways. The most com-

mon SIMD architectures involve multiple processing lanes where the same instruction

is sent to each lane, but different data might be operated on. A diagram of SIMD can be

seen in Figure 3.3.
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3.1.4 Single Instruction Multiple Thread

Single instruction multiple thread (SIMT) processors are typically SIMD systems that

allow for warps to handle branches in parallel. A good example of this style of archi-

tecture is the Nvidia GPU, which has adopted the Compute Unified Device Architecture

(CUDA). CUDA has made possible the idea of having hundreds to thousands of cores

in a single processor that can account for many branches at the same time through very

finely controlled instruction scheduling [35].

Nvidia’s CUDA [28] accomplishes SIMT through the use of many graphics pro-

cessing clusters (GPC) with multiple streaming multiprocessors (SM), each with many

CUDA cores.
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3.2 Multi-Core Simulation Environments

There are a number of useful simulators available for evaluation of digital circuits, how-

ever only a few seem to focus on energy and utilization characteristics of multi-core

processors. Given the scope of this work, I will limit my review to those simulators that

provide useful insight into the characterization and evaluation of multi-core processors.

3.2.1 GPGPU-Sim

GPGPU-Sim is a Graphics Processing Unit simulator developed at the University of

British Columbia meant to test and evaluate wide-parallel SIMD/SIMT processors sim-

ilar to that of an NVIDIA GPU. It provides many options ranging from number of cores,

size of memory (cache or external dram), interconnect configurations and many more.

This tool provides a very fast way to simulate a processor running custom, user defined

algorithms. It also allows the flexibility of programming these algorithms in the well

documented CUDA programming libraries for C/C++.

In [6] the authors use GPGPU-Sim to characterize the performance of existing CUDA

applications. They show that decreasing the number of threads running concurrently on

the hardware can improve performance by reducing contention for on-chip resources.

They also provide an analysis of application characteristics such as dynamic instruc-

tion mix, SIMD warp branch divergence properties, and DRAM locality characteristics.

Similarly [19, 50] evaluate workloads and efficiency in a GPU like processor using

GPGPU-Sim.

The only drawback to GPGPU-Sim is that while it is a great tool for evaluation of
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utilization patterns in a GPU-like architecture, it currently does not allow for power or

energy measurements.

3.2.2 MV5

Another simulator commonly used is the MV5 Simulator [37] (based on gem5 [8]),

which incorporates widely cited tools for power and area models. These power models

are: Cacti 4.2 [51] for on-chip caches (which are in each core), Wattch [11] for com-

putation cores and [43] for on-chip routers. With these power and performance models,

MV5 allows for simulation of the total power consumption of a user defined multi-core

processor.

MV5 simulates each event including cache hits and misses, memory accesses, alu

operations, clock cycles, and many more. Essentially, almost any event that happens in

the processor can be output to a log file making this simulator arguably one of the more

useful tools for someone who is trying to evaluate a SIMD processor on an application

level.

The MV5 simulator uses hgfractal, a SIMD thread framework that allows the coding

of generic SIMD applications. This framework breaks the algorithm chain into a set

of functions wherein each runs at a programmer-defined width. Each kernel instance

runs on a specific subset of the data known as a “block”. Partitioning the data into these

smaller subsets allows for parallelization.

While MV5 has more processor event logging capabilities, it lacks the elegant pro-

gramming interface that was provided for GPGPU-Sim. Nevertheless, it is a proven
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simulator that provides large amounts of timing and energy data.

3.3 Power Scaling & Optimization Techniques

There are many techniques to optimize processors for area, performance, and power.

This work focuses on performance/watt optimization through power scaling techniques.

3.3.1 Dynamic Voltage & Frequency Scaling

Dynamic Voltage & Frequency Scaling (DVFS) is a very common and widely used

power management scheme. DVFS techniques scale supply voltages and operating fre-

quencies to reduce power consumption which follows:

P ∝ CV 2f

There are many well-known control techniques for determining when to scale the

supply voltage or clock frqeuency. In [12], the authors introduce a method for accurately

estimating the potential power savings using common DVFS control techniques.

In [29], a method for using DVFS in multicore processors is presented. It is meant to

scale the clock and voltages of each core to decrease power consumption. In very wide

processors, they propose that in order to reduce the need for many voltage regulators per

core, they can cluster cores together and scale each cluster appropriately. They limit the

scope of DVFS to just core clocks.

For modern CPUs, the advanced Configuration and Power Interfcace (ACPI) [16]
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Figure 3.4: ACPI Layer Diagram

which was developed by Intel, Microsoft, Toshiba, HP, and Phoenix was adopted. ACPI

allows for control of power management from every layer of the system, from the ap-

plication layer through the hardware and bios as seen in Figure 3.4. One power man-

agement technique used in ACPI is the use of performance states (P0 → Pn) where P0

operates at maximum power and frequency, and each subsequent P-state continues to

follow the pattern where Pn has less performance than Pn−1. In these states, voltage and

frequency are scaled appropriately to specific values that have previously been tested to

work. The purpose of this is to give the ability to use stable DVFS points in order to

reduce power consumption based on utilization and/or application needs.
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3.3.2 Race To Sleep

Another power management technique popular with embedded systems is race to sleep.

This technique attempts to complete a computation as quickly as possible, and then

transition into a sleep state to save energy. Power savings arise from maximizing the

amount of time spent in this low-power sleep state, thereby avoiding many power state

transitions. In [5] the authors describe a control scheme for a race-to-halt technique that

results in significant energy savings.

In [34] the authors evaluate when race to sleep is a good technique to use rather

than traditional clock scaling. They look into three classes of processors. They use an

OMAP, Intel Atom, and an Intel core i7. It was found that, in general scaling is better

as long as it doesn’t negatively affect the throughput or overall runtime of the system.

It was also found that in cases where utilization is lower, using sleep states can often

greatly improve energy efficiency.

Because many processors have sleep states now, using these low power modes is

often the easiest way to save power as it requires no extra hardware beyond the power

gating circuitry. In the previously mentioned ACPI [16] control, in addition to perfor-

mance states there are also CPU power states and Sleeping states. These both allow for

switching into lower power modes, but in this case the “deeper” the sleep state the pro-

cessor is in, the fewer capabilities the processor has, and the higher the latency before

the processor can return to normal operation.
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3.3.3 System Level Power Optimization Techniques

There have been a number of proposed system level optimizations for power. The au-

thors of [47] lower the power consumption of an embedded core by clustering clock

gating to improve energy efficiency. This is done on an 8051 based multi-core proces-

sor.

In [7], an accurate and fast simulator of the power consumed in various IP blocks

of a System-on-Chip (SoC) designs are developed. In [42], the authors decrease the

power consumed within a single-core microprocessor using software based optimization

techniques.

In [53], the authors propose optimizing a multi-core processor for specific scientific

computations using sparse matrix-vector multiplication as an example (as it is one of

the most heavily used kernels in scientific computing). They demonstrate significant

performance increases compared to previous implementations. Game theory is used for

scheduling tasks in [1] on multi-core processors for optimization of performance and

energy.

Clock gating is another commonly used technique for power savings in synchronous

logic, minimizing dynamic clock power. Previously, clock gating has been shown to

exhibit approximately a 25% power improvement [36], however performance/watt does

not change, as no computation occurs when the clock is stopped. The theory behind

clock gating is that by not clocking portions of logic controlled by or containing flip-

flops, it keeps that portion of the circuit from switching states. By forcing a circuit to

remain in the same state, less dynamic energy is used. An example of how to gate a
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clock is shown in Figure 3.5.

Power gating is a well known technique for minimizing leakage current during idle

periods. Recent work in [49] suggests energy savings up to 19% for SIMD multi-core

architectures, based on resource utilization patterns.

The basic theory behind power gating is that if a logic block can be deactivated so

there is no power to the transistors, then there will be less leakage current. An example

of this is shown in Figure 3.6. This typically means that the internal capacitances of the

logic will take longer to charge when the power gate returns power to the circuit.

DFF
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cond
clk
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Figure 3.5: Clock Gating Example Circuit

Logic

Vdd

PWR

Logic

Vdd

PWR

Vdd Gating GND Gating

Figure 3.6: Power Gating Example Circuit
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3.4 Near/Sub-Vth Operation For Low Energy Computation

Near/Sub-Vth operation of digital circuits is becoming more prevalent as transistor sizes

decrease. Moore’s law states that the number of transistors that can be placed inexpen-

sively in an integrated circuit will double every two years [39, 40, 48]. This can be seen

in Figure 3.7.
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With the doubling of transistors, it makes sense to also expect the size of these

transistors to trend downward. With higher density transistors, total leakage current rises

due to the quantum phenomenon in semiconductors for mobile charge carriers to tunnel

through an insulating region. This occurs exponentially more often as the thickness of

the insulating region decreases. This also leads to the inability to scale the transistor

threshold voltage at the same rate as transistor size (Figure 3.8).

GND

Vth

Supply

Process A
(Largest)

Process B
(Medium)

Process C
(Smallest)

Low Vth causes
Less gate voltage
Swing to turn off

Figure 3.8: Vth Scaling with Process
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3.4.1 Benefits

One way to combat these scaling issues is to operate devices in the sub-near thresh-

old region. Research has shown that operating in these regions can lead to order of

magnitude improvements in energy efficiency over conventional processors at the same

technology node [21]. One example, a 16-bit 1024-point .18m FFT test-chip with Vdd

of 0.35V (Vth = 0.45V) achieved 155nJ per FFT at 10KHz [52]. As a comparison, an

8-bit processor [22] achieved 540fJ /operation at a Vdd of 0.3V and 160KHz operating

frequncy.

3.4.2 Complications

These high computational efficiencies, however, come with a cost in that operating fre-

quencies must be lowered (often significantly) and timing variability/timing violation

are more common due to added sensitivities to process variation such as random dopant

fluctuations (RDF) while operating below the threshold voltage [21]. Because of the low

clock frequency requirement, processors operating within these regions are forced to

move towards wide parallel architectures for increased performance. This requirement

will extrapolate higher as device sizes trend downward due to the afore mentioned af-

fects of transistor scaling. Programmable architectures will also need to rely on efficient

control, such as wide SIMD/vector execution [30, 54] to maintain these efficiencies.

The solution is not necessarily as simple as adding more parallelism however, due

to wide SIMD architectures timing variability which is caused by having many ALUs.

Operation at near-threshold is already limited by variability, which is degrading with
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transistor scaling. Random dopant fluctuations, such as threshold voltage mismatch due

to statistical fluctuations of the dopant atoms severely alter the transistor current, thereby

affecting the logic delay. As the supply voltage is reduced, the transistor no longer acts

in the traditional velocity saturated manner and begins to behave as a bipolar device.

This strong dependence of current draw on Vth in near-threshold results in as much

as an 18x degradation in transistor current and logic delay across Monte Carlo variation

[21]. To make varation even harder to predict, critical RDF threshold variations are not

related to any spatial distances. This means that spatial correlations can not be drawn

for parallel functional units which would otherwise allow similar timing delays between

vector units as is shown in [15].

3.4.3 Previous Solutions

Previous solutions [22, 52] have shown that using non-minimal device sizes and longer

logic chains can reduce variation. This however, effectively moves in the opposite di-

rection of transistor scaling, and will become more problematic moving into deep sub-

micron nodes.

Other research [10, 17] identified methods of dynamic timing variation tolerance

within a scalar pipeline. The basis of which is to dynamically detect timing errors and

correct them by either flushing the pipeline and re-executing the instruction with more

relaxed timing or stalling the pipeline for one cycle while waiting for the correct result

to be generated, and then proceeding with execution. The prior approach while easier to

implement in faster and more complex pipelines, has a more severe performance penalty.
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The latter approach has a smaller performance and power penalty.

In typical parallel designs, all functional units operate off of a single clock in lock

step, making any error encountered in a single stage result in a stall for all the func-

tional units within that processing element. This makes the typical method of stalling

and flushing the system problematic and inefficient and amplifies the performance/watt

penalty by the pipeline width when handling an error. This realization combined with

the afore mentioned increase in timing variation as parallization increases width, makes

it necessary to come up with an expandable SIMD architecture that can handle these

timing variations.

3.4.4 Synctium

Synctium [31], defined as “a near-threshold stream processor for energy constrained

parallel applications” is a SIMD processor developed at Oregon State University that

focuses on solving the previously mentioned problems with near Vth operation of wide

SIMD processors. It achieves near energy-optimal operation by combining efficient par-

allel computation techniques with the use of near-threshold circuits. This architecture,

through lane weaving and decoupled instruction queues solves much of the static and

dynamic timing variations respectively.

Decoupled instruction queues allow for each ALU to have its own list of instructions

making it possible for a single lane to stall, while other lanes may continue through their

own queue. A diagram of this can be seen in Figure 3.9. This is limited only by the

length of the queue and number of system stalls, such as concurrent memory accesses.
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Figure 3.9: Decoupled Queues

Lane weaving allows for slower or defective lanes to be “weaved” around with little

delay similar to [20]. Each decode and fetch stage is connected to the processing lanes

adjacent to it. A diagram of lane weaving can be seen in Figure 3.10. This technique

requires that at least one lane at a time be inactive. In Synctium, 10 lanes were presented

with 8 active lanes, allowing for 2 lanes to be inactive at any given time. The two lanes

that cause the greatest static timing variation are chosen for this purpose.
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Chapter 4 – Overview of Approach

A method for improving performance/watt of a multi-core SIMD processor using ex-

plicit a priori power and performance scheduling of each hardware component (core,

link, and memory) is presented. Due to predictable utilization patterns for a known

signal processing chain, an example electroencephalography (EEG) application is sim-

ulated and optimized. This application is representative of common bio-medical sensor

processing requirements [9]. It should be noted, that while scheduling of individual

components has been done in the past, no reference to scheduling all three major com-

ponents (core, link, and memory) could be found.

4.1 Proposed Developement Flow

First, we model an embedded multi-core system using a simulator based on the MV5

framework [37] running algorithm blocks that follow the Filter Bank Common Spa-

tial Patterns (FBCSP), which is the EEG example application [3]. Next, after accurate

characterization of the hardware utilization and power consumption using well-known

power models [51, 11, 43, 38] that have been embedded into the simulator, a greedy

search algorithm is applied to find the optimal performance/watt, varying each com-

ponent’s bandwidth and power. This greedy search optimization schedules the required

bandwidth and power settings for each component of the embedded multi-core processor
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Figure 4.1: Proposed Development Flow

before run time. This approach to pre-scheduling hardware utilization, based on explicit

software algorithm workloads, provides significant improvements in performance/watt

with small degradations to execution time. The final step is to compare the application-

directed power scheduling method with traditional power savings techniques such as

conventional Dynamic Voltage and Frequency Scaling (DVFS) [12] and “race to sleep”

[5]. The proposed development flow is outlined in Figure 4.1.

4.2 Example Application Used

The FBCSP [3] based EEG classification, which is representative of other similar signal

processing applications [9] was used as an example application. An overall overview

of this EEG classification algorithm is detailed, and each block within this signal pro-

cessing chain is defined. This processing chain has similar components as would be

required in most embedded medical devices. The importance of this application to this

work is that it both represents a real need in embedded medical electronics, and is com-

prised of very different algorithms that have different hardware utilizations and timing
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requirements making it a good example to attempt to optimize.

4.2.1 Application Description

In continuous encephelaography (EEG) sensing applications, EEG data must be gath-

ered and processed constantly in order to detect possible medical conditions such as

seizures [13]. EEG data is continuously gathered over 16-channels. It is then processed

and classified in 1-second windows (1000 samples at a 1kHz sampling rate). The result

of this classification can be used to determine whether an anomaly has occured. If it

does produce a properly classified event, the anomalous data is then encrypted (RSA)

and sent to memory and/or transmitted. Non-anomalous data does not need to be stored.

An overview of the example filter chain can be seen in Figure 4.2. This allows only the

useful information to be stored or transmitted saving precious memory and RF energy.

It also makes the overall output of system consist of exclusively useful information.

4.2.2 Application Details

The classification technique used is based on the Filter Bank Common Spatial Patter

algorithm (FBCSP). There are many crucial steps in the FBCSP classification process.

The first step is to to notch out specific frequencies using a bank of band-pass filters.

In this implementation we use 16 banks, each with a 4Hz wide passband, starting at

4Hz (e.g. bank-1 filters 4-8Hz, bank-2 8-12Hz, etc). These filters are the first kernel

functions in our application, implemented as finite impulse response (FIR) filters with
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32 coefficients.

The second step in FBCSP is to perform spatial filtering. These spatial filters per-

form mixing of the EEG channels to construct correlating spatial channels to the output

classes. Some common training methods for the spatial filters can be found in [3]. We

construct sixteen spatial channels per bank. Common spatial filtering (CSP) is the sec-

ond kernel function in our signal processing chain.

The third process in the chain is to reduce spatial channels to features. This is done

in a two-step process commonly known as feature extraction. In the first step, the spatial

channels are multiplied by a mixing matrix. The second step is to find the variance of

each of these mixed channels resulting in a 512-element feature vector. These two steps

are the third and fourth kernel functions in the signal processing chain.

Once the feature vector is obtained, feature classification is performed. This ap-

plication uses K-Means clustering, where we compute the Euclidean distance that our

vector is from a set of pre-trained points. The shortest distance between these points is

the class that most resembles our feature vector. This requires computing the distance

from all 256 trained locations with a three step processes. The first step is to square

the difference between each element of our feature vector and every trained point. The

second step sums these squared points. The last step determines the shortest distance

again. This three-part process is comprised of the 5th, 6th and 7th kernel functions of

the processing chain.

After each of these 7 FBCSP blocks are complete, we know whether the EEG sam-

ple is anomalous which is dependant on which class it matches the most. If the EEG

sample is determined to be anomalous we encrypt it using RSA encryption, which is
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implemented with 4-byte blocks. This encryption forms the 8th and final block of our

entire example signal processing application.

FIR Bank

CSP Bank

Feature Extraction

KMeans Classification

RSA Encryption

Transmit Signal

EEG Data

Spectral,
Spatial Filtering

Classification

Encrypt & transmit
if needed

Figure 4.2: EEG FBCSP Processing Chain
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4.2.3 Kernel Function Grouping

The final step in preparing the application for performance/watt optimization is to choose

which kernel functions should be grouped together before optimization. This is particu-

larly useful when there is a string of many short code blocks. By grouping some kernel

functions together it can reduce the number of DVFS changes required to execute the

entire application. Grouping kernel functions too much however can limit potential per-

formance/watt gains from finding the optimal operating point. In this example, a few

rules were employed for grouping.

Non-adjacent kernel blocks are not grouped together because there will already be a

DVFS change expected between these blocks. Also, a limit on the total execution time of

a kernel function is adopted, such that if its time duration is too small it is then grouped

with an adjacent block. As a requirement, any kernel that executed in less than 20µs on

the super Vth processor at full speed was grouped with another kernel function. These

kernel functions that require grouping are paired with a neighbor block that exhibits the

most similar characteristics determined by analyzing the kernel implementations. In this

application there were two short kernel functions. The feature-mixing step is the first. It

was combined with the CSP filters due to their similiarity because they both consist of

primarily matrix multiplications. The second short kernel is the final step of K-Means,

which is combined with the second step of K-Means because they share more similar

data than grouping K-Means with the encryption kernel. These groupings were kept the

same on the near Vth processor as well for comparison, even though all of the kernel

functions operated well above the 20µs threshold. Table 4.1 shows all of the kernel
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mappings.

Kernel Functions Kernel Numbers Block Numbers
FIR Bandpass 1 1

CSP, Feature Mixing 2, 3 2
Feature Variance 4 3
K-Means Step 1 5 4

K-Means Step 2,3 6,7 5
Encryption 8 6

Table 4.1: Kernel Function to Block Mapping

4.3 Greedy Search

A greedy search algorithm is used to optimize the algorithms of the proposed filter chain,

maximizing performance/watt using DVFS of each component (core, memory and in-

terconnects). A flowchart of our greedy search can be seen in Figure 4.3. The greedy

search algorithm starts with default DVFS settings for each component of the simulated

system. We define a maximum and minimum step size for each component with respect

to that components clock frequency. Each loop of the optimization launches six simula-

tions in parallel (one maximum stepsize above and below each of the three components

described above). This results in initial frequency settings for each component to be

set to both the the maximum and minimum values for the current loop. Whichever of

the six simulations that resulted in the greatest performance/watt improvement within

the simulation time constraints is selected for the next iteration of the greedy search. If

none of the simulations improve performance/watt within the specified time increase,

the optimizer halves the maximum step size and iterates again with these new settings.
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This process is iterated until all three maximum step sizes have been reduced to less

than their corresponding minimum step size.

Greedy search was used for the optimization algorithm because of the benefit in

simulation time over a fine-grained grid search, which would require weeks→months

in order to optimize depending on granularity. The proposed greedy search allows for

optimization within 24 hours in most cases. So while a greedy search by definition is

not guaranteed to find the globally optimal solution, it can be shown that we are still

able to get significant gains with a greedy optimal solution. Greedy search algorithms

have been explored to optimize the expected variation in system-level DVFS in [23].

Yes

No

Yes

No

Decrease 
step size

Better 
perf/watt?

Step sizes
below min?

Done

Initial Sim For Baseline

Simulate Each

+/- step size 
each component

Use best
settings

Figure 4.3: Greedy Search Flowchart
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Chapter 5 – Architectures Explored

As a comparison, two architectures were explored. The first is a 4-core with 8-lanes/

core architecture. This was built into the MV5 simulator by default, and was used as an

example of a SIMD system operating at supplies above Vth. Synctium [31] was used as

the core architecture as a comparison to a system that can move its DVFS curve to near

threshold operation.

As part of the power management for the entire system, the assumption is made that

we have the capability to apply DVFS to each of the major components independently

(core, on-chip routers, and off-chip memory). Previous works [27, 32] suggest that

efficient on-die voltage regulators with multiple outputs are soon becoming a viable

substitute for slow off-chip regulators. Another possibility for applying separate DVFS

is to utilize multiple power gates for multiple supply rails [14]. In this work, we do not

advocate a particular circuit implementation for either of these approaches, as the power

overhead for scaling between each voltage domain is negligible for our application.

It should be noted that the nominal starting frequencies for both architectures were

the same, and are outlined in Table 5.1.

Component Nominal Operating Frequency
Cores 500MHz

Memory 600MHz
Links 1 GHz

Table 5.1: Component Nominal Operating Frequencies
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5.1 Super Vth Architecture

The simulated system architecture can be seen in Figure 5.1. The system consists of four

homogeneous cores, all capable of running SIMD applications. The details of the system

configuration are summarized in Table 5.2. These specifications were chosen because

they are common configurations for high-performance, quad-core embedded processors

with SIMD extensions. The cache sizes were chosen to be small, as is common with

embedded applications.
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Figure 5.1: Super Vth Simulated Architecture
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Component Quantity Unit
# Cores 4 Alpha Cores
# SIMD Lanes/Core 8 Lanes
Core I-cache Size 512 Bytes
Core D-cache Size 1k Bytes
DRAM Memory Size 1G Bytes
NoC Routers (Full Duplex) 5 Routers

Table 5.2: Super Vth System Specifications

5.2 Near Vth Architecture

The simulated system architecture can be seen in Figure 5.2. The system consists of a

single synctium [31] core with 8 lanes. The system configuration is summarized in Table

5.3. These specifications were chosen to match the previous architecture as closely as

possible.
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Component Quantity Unit
# Cores 1 Synctium Cores
# SIMD Lanes/Core 8 Lanes
Core I-cache Size 512 Bytes
Core D-cache Size 1k Bytes
DRAM Memory Size 1G Bytes
NoC Routers (Full Duplex) 2 Routers

Table 5.3: Near Vth System Specifications
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Chapter 6 – Optimization Techniques Explored

In order to analyze the effectivness of a priori scheduled DVFS, two metrics for opti-

mization were considered. The first was to optimize performance/watt within a percent

of performance loss. This was considered for the 1%, 5%, and 10% cases. This tech-

nique is compared with convential DVFS. The second style of optimization is when the

designer knows how often the algorithm must run giving an effective time window. This

style of optimization is compared with the traditional race to sleep method.

6.1 Conventional DVFS

Conventional DVFS in this case is where the clocks are scaled at the beginning of the

algorithm based on how the device is utilized at that point in time and will remain the

same across the whole algorithm. This is how most systems use DVFS, assuming that

the algorithm will remain at a similar utilization. They will find clock settings that work

every time and might save some energy consumption but do not consider the change in

utilizations that occur in the different sections of the algorithm.

6.2 Race To Sleep

As mentioned in Chapter 3, this technique is used in many embedded applications where

sleep states are available. These states allow the processor to consume less energy as it



40

turns portions of the processor off. For this example, the assumption was made that in

the best case scenario only the leakage current of the circuit would consume energy.

6.3 Algorithm Block a priori Scheduled DVFS

There are two methods for constraining greedy search. The first is to search for the

optimal DVFS settings for each section (block) of the filter chain algorithm indepen-

dently. For each of these blocks, different DVFS settings for each hardware component

results in optimal performance/watt. Hence, this method improves performance/watt

by exploiting the differences in hardware utilization of the block within the filter chain

algorithm. For example, a block that is very compute intensive will exhibit different

optimal DVFS settings from a block that is very memory intensive.

6.4 Full Algorithm a priori Scheduled DVFS

The second method for constraining the greedy search is to only allow DVFS settings

for the entire filter chain. Here each block of the chain will operate with the same DVFS

settings as adjacent settings, but the entire filter chain is still optimized for performance/

watt. This method would be most appropriate with an application where changing the

DVFS settings was not feasible on a fine-grained time basis.
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Chapter 7 – Results

The results are broken into two sections. The first consists of the simulations and opti-

mizations performed on the super Vth architecture and the second on the near Vth exam-

ple.

7.1 Super Threshold Scaling of Core, Link and Memory Clock

As mentioned previously, there are two main categories for comparison. The first con-

sists of optimizations of the power consumption given a small performance loss, which

is compared to traditional DVFS. Improvements in total power were evaluated given

execution time increases (performance loss) of 1%, 5% and 10%. The other category

consists of power optimizations within a given execution time window, which is com-

pared to a race to sleep technique. Given the example end-to-end algorithm nominally

takes 72ms to execute, time windows of 100ms, 500ms and 1000ms were explored.

7.1.1 Perf/Watt Optimizations for Small Performance Losses

In Figure 7.1, the performance/watt gains are plotted for the three performance loss

values explored (1%, 5%, and 10%). It can easily be seen that both the block DVFS

and algorithm DVFS with a priori scheduling exhibit significantly better performance/

watt gains. One interesting observation is that the algorithm DVFS and standard DVFS
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optimizations result in less performance/watt gains for 10% performance loss than the

5% performance loss case. This can be explained due to greedy optimization, which

cannot guarantee a globally optimal result. As seen in Figure 7.1 our greedy search

still provided significant gains over conventional DVFS. Another interesting result is

when only a 1% performance loss was allowed. In this scenario, both block DVFS and

algorithm DVFS optimization results in 51% and 61% performance/watt improvements

respectively. This is a substantial improvement for very little performance cost.
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Figure 7.1: Super Vth Performance/watt comparison between conventional DVFS and
this work (optimized for algorithm DVFS and block DVFS).

The comparison between block DVFS versus algorithm DVFS optimization provides

further insight into the optimization process. Initial thoughts might create the assump-

tion that the finer control of block DVFS would result in higher performance/watt than

algorithm DVFS (because each sub-block is tuned independantly). This was not the
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case however due to the large portion of the total power that was spent within the FIR

algorithm (kernel-1). The algorithm DVFS optimization was able to allocate more of the

total allotted time to this block in order to decrease the clock further, thereby resulting

in improved performance/watt. Block level a priori scheduling results can be seen in

Figure 7.2 while algorithm a priori scheduled results are in Figure 7.3.
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7.1.2 Real-Time Constraint Optimization

The time window constrained optimization results can be seen in Figure 7.4. These re-

sults clearly show that both of our a priori scheduled DVFS optimization methods (block

DVFS and algorithm DVFS) greatly decrease average power when compared with the

conventional race to sleep method. Since the algorithm takes a minimum of 72ms to

complete, we observe a much larger power reduction as the time window becomes much

greater than 100ms.
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Figure 7.4: Super Vth Power comparisons, given a real-time constraint, between con-
ventional race-to-sleep and this work.
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7.2 Near-Vth Scaling of Core, Link and Memory Clock

The same tests for the Super Vth case were performed with the near Vth models. One

test was of optimizations of performance/watt given a small performance loss, which is

compared to traditional DVFS. These small performance losses were 1%, 5% and 10%

runtime increases. The second category was performance/watt optimization within a

given execution time window, which is compared to the race to sleep technique. Given

the example end-to-end algorithm nominally takes 3.88s to execute, time windows of

4s, 7s and 10s were explored. It should be noted that these times are significantly larger

than the Super Vth case, this is due the the architecture differences and that Synctium is

operating with 8 lanes only rather than 4 cores with 8 lanes as in the previous architec-

ture.

7.2.1 Perf/Watt Optimizations for Small Performance Losses

In Figure 7.1, the performance/watt gains are plotted for the three performance loss

values explored (1%, 5%, and 10%). It can easily be seen that, like the super Vth case,

both the block DVFS and algorithm DVFS with a priori scheduling exhibit significantly

better performance/watt gains over conventional DVFS. This can be seen in Figure 7.5.

One interesting result is that all optimization techniques have better numbers than in

the super Vth example. This could be a manifestation of the advantages of near Vth

operation. It is also important to note that at 1% performance loss, both block DVFS and

algorithm DVFS optimization results in 50% and 95% performance/watt improvements

respectively. This is once again a substantial improvement for very little performance
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cost.

Once again, the algorithm level a priori scheduled DVFS was generally the best

option, while block level a priori scheduled DVFS was in some cases very close (see

10% in Figure 7.5).
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Figure 7.5: Near Vth Performance/watt comparison between conventional DVFS and
this work (optimized for algorithm DVFS and block DVFS).
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7.2.2 Real-Time Constraint Optimization

The time window constrained optimization results can be seen in Figure 7.8. These

results once again clearly show that both of our a priori scheduled DVFS optimization

methods (block DVFS and algorithm DVFS) greatly decrease average power when com-

pared with the conventional race to sleep method. Since the algorithm takes a minimum

of 72ms to complete, we observe a much larger power reduction as the time window

becomes much greater than 100ms.
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Figure 7.8: Near Vth Power comparisons, given a real-time constraint, between conven-
tional race-to-sleep and this work.
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Chapter 8 – Conclusion

I have shown that a priori scheduling of DVFS settings in a parallel architecture vastly

out performs traditional DVFS methods. Because embedded designs are typically run

the same algorithms repetitively, this method can be applied to achieve large perfor-

mance/watt improvements. Due to the increased prevalence of wide parallel embedded

devices, and the technology scaling effects on power, any methodology that is adopted

will need to be able to counter these negative effects because while the high perfor-

mance computing world can be matched with almost unlimited power, the embedded

market will remain limited to a few watts. This work has shown that large improve-

ments in performance/watt in both super and near Vth architectures, and will be useful

in either design spaces as embedded SIMD microprocessors move forward. This work

demonstrates a minimum of 50% improvement in performance/watt at 1% performance

reduction, whereas a typical DVFS scheme achieved a maximum of 32% improvment

at the same point.

This technique, if implemented in a real processor, would make it possible to reduce

the battery size of OLAM [2] significantly. Considering that OLAM primarily used the

race to sleep method of power reduction, we should get at least 50% improvement in

performance/watt.
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