

AN ABSTRACT OF THE THESIS OF

Ryan K. Albright for the degree of Master of Science in

Electrical and Computer Engineering presented on April 20, 2012.

Title: Optimizing Performance/Watt of Embedded SIMD Multiprocessors through

a priori Application Guided Power Scheduling

Abstract approved:

Patrick Y. Chiang

A method for improving performance/watt of an embedded single-instruction

multiple-data (SIMD) architecture using application-guided a priori scheduling of

hardware resources is presented. A multi-core architectural simulator is adopted that

accurately estimates power, performance, and utilization of various processor

components (logic, interconnect and memory). A greedy search is then performed on

each algorithm block of a signal processing chain in order to schedule each

component’s throughput and power. The proposed software-directed hardware

rebalancing, applied to a typical electroencephalography (EEG) filtering chain, is

analyzed for two different SIMD architectures. The first, representing a super Vth

processor demonstrates a 51%-86% improvement in performance/watt at 1%-10%

throughput reduction using block level or algorithm level a priori scheduling. The

second architecture used is Synctium, a near Vth processor which demonstrates

50%-99% performance/watt improvement across the same throughput reduction range

and optimization techniques.

c©Copyright by Ryan K. Albright
April 20, 2012

All Rights Reserved

Optimizing Performance/Watt of Embedded SIMD Multiprocessors
through a priori Application Guided Power Scheduling

by

Ryan K. Albright

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Presented April 20, 2012
Commencement June 2012

Master of Science thesis of Ryan K. Albright presented on April 20, 2012.

APPROVED:

Major Professor, representing Electrical and Computer Engineering

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon
State University libraries. My signature below authorizes release of my thesis to any
reader upon request.

Ryan K. Albright, Author

ACKNOWLEDGEMENTS

I would like to thank everyone who has helped me on my project, specifically my

advisor Dr. Patrick Chiang. I would also like to thank my committee: Dr. Terri Fiez,

Roger Traylor and Dr. Joe Zaworski. I would also like to thank my research group:

Jacob Postman, Robert Pawlowski, Joe Crop, Ben Goska, and Thomas Ruggeri whose

countless advice has made this work possible.

CONTRIBUTION OF AUTHORS

Optimization could not have happened without the simulator work and power model

exploration done by Benjamin Goska and Thomas Ruggeri as well as the work on

Synctium done by Robert Pawlowski.

TABLE OF CONTENTS

Page

1 Introduction 1

2 Motivation 4

2.1 OLAM: Oregon State University Life & Activity Monitor 4

2.2 OLAM: Design Decisions . 5

3 Literature Review 8

3.1 Parallel Processing . 8
3.1.1 Bit Level Parallelism . 9
3.1.2 Instruction Level Parallelism 10
3.1.3 Single Instruction Multiple Data 11
3.1.4 Single Instruction Multiple Thread 12

3.2 Multi-Core Simulation Environments 13
3.2.1 GPGPU-Sim . 13
3.2.2 MV5 . 14

3.3 Power Scaling & Optimization Techniques 15
3.3.1 Dynamic Voltage & Frequency Scaling 15
3.3.2 Race To Sleep . 17
3.3.3 System Level Power Optimization Techniques 18

3.4 Near/Sub-Vth Operation For Low Energy Computation 20
3.4.1 Benefits . 22
3.4.2 Complications . 22
3.4.3 Previous Solutions . 23
3.4.4 Synctium . 24

4 Overview of Approach 27

4.1 Proposed Developement Flow . 27

4.2 Example Application Used . 28
4.2.1 Application Description . 29
4.2.2 Application Details . 29
4.2.3 Kernel Function Grouping . 32

4.3 Greedy Search . 33

TABLE OF CONTENTS (Continued)

Page

5 Architectures Explored 35

5.1 Super Vth Architecture . 36

5.2 Near Vth Architecture . 37

6 Optimization Techniques Explored 39

6.1 Conventional DVFS . 39

6.2 Race To Sleep . 39

6.3 Algorithm Block a priori Scheduled DVFS 40

6.4 Full Algorithm a priori Scheduled DVFS 40

7 Results 41

7.1 Super Threshold Scaling of Core, Link and Memory Clock 41
7.1.1 Perf/Watt Optimizations for Small Performance Losses 41
7.1.2 Real-Time Constraint Optimization 46

7.2 Near-Vth Scaling of Core, Link and Memory Clock 47
7.2.1 Perf/Watt Optimizations for Small Performance Losses 47
7.2.2 Real-Time Constraint Optimization 51

8 Conclusion 52

Bibliography 53

LIST OF FIGURES

Figure Page

2.1 OLAM: PCB . 5

2.2 OLAM: Bottom View . 6

2.3 OLAM: Top View . 6

3.1 Amdahl’s Law: Speedup vs Number of Cores 9

3.2 Basic Five Stage Pipeline . 11

3.3 SIMD Processor Example . 12

3.4 ACPI Layer Diagram . 16

3.5 Clock Gating Example Circuit . 19

3.6 Power Gating Example Circuit . 19

3.7 Transistor Number vs Time Compared to Moores Law 20

3.8 Vth Scaling with Process . 21

3.9 Decoupled Queues . 25

3.10 Lane Weaving . 26

4.1 Proposed Development Flow . 28

4.2 EEG FBCSP Processing Chain . 31

4.3 Greedy Search Flowchart . 34

5.1 Super Vth Simulated Architecture . 36

5.2 Near Vth Simulated Architecture . 37

7.1 Super Vth Performance/watt comparison between conventional DVFS
and this work (optimized for algorithm DVFS and block DVFS). 42

7.2 Super Vth - Small performance loss optimization results (at 10% per-
formance loss): (a) Block DVFS power consumption, (b) Block DVFS
component frequencies . 44

LIST OF FIGURES (Continued)

Figure Page

7.3 Super Vth - Small performance loss optimization results (at 10% perfor-
mance loss): (a) Algorithm DVFS power consumption, (b) Algorithm
DVFS component frequencies. 45

7.4 Super Vth Power comparisons, given a real-time constraint, between
conventional race-to-sleep and this work. 46

7.5 Near Vth Performance/watt comparison between conventional DVFS and
this work (optimized for algorithm DVFS and block DVFS). 48

7.6 Near Vth - Small performance loss optimization results (at 10% per-
formance loss): (a) Block DVFS power consumption, (b) Block DVFS
component frequencies . 49

7.7 Near Vth - Small performance loss optimization results (at 10% perfor-
mance loss): (a) Algorithm DVFS power consumption, (b) Algorithm
DVFS component frequencies. 50

7.8 Near Vth Power comparisons, given a real-time constraint, between con-
ventional race-to-sleep and this work. 51

LIST OF TABLES

Table Page

4.1 Kernel Function to Block Mapping . 33

5.1 Component Nominal Operating Frequencies 35

5.2 Super Vth System Specifications . 37

5.3 Near Vth System Specifications . 38

DEDICATION

For my parents, Mike and Becky Albright, and my wife Heather, whose countless

guidance and support has shaped me into who I am today.

Chapter 1 – Introduction

Power consumption has become one of the most critical design decisions for next-

generation embedded computing platforms, placing tight constraints on battery size,

cost and lifetime. Power consumption in wireless embedded applications is often greatly

dependent on the choice of microprocessor. The designer will look and analyze many

processors for ease of programability, hardware resources, and power consumption. The

problem with this is that the designer also often has a timeframe in which this system

must be complete, so even with the vast amount of choices for microprocessors in to-

day’s market, they will often choose one that is almost certainly capable of the compu-

tation they are performing at the risk of under-utilizing the processor.

Most advanced applications are very expensive in terms of energy when executing on

a typical embedded microprocessors and are often either logged to non-volatile memory

or transmitted wirelessly off the system for post processing. Both of these options are

power hungry and shift where energy is used rather than solving the problem. The real

issue is that it typically costs too much energy to perform the advanced processing on

chip, and in order to limit the power profile of the system a designer will choose to use

a secondary system to analyze and manipulate data later.

Total system power has been previously shown to improve dramatically when sen-

sor signal processing is performed locally as opposed to transmitting the raw input data

through the power expensive radio [44]. Therefore, future wireless system-on-chips

2

(SoCs) will benefit from significant improvements in parallel processing that is both

low power and high performance in order to minimize radio utilization. This local par-

allel computing unit within the SoC will need to perform all of the necessary tasks

required for local signal processing, such as filtering, compressive sensing [18], multi-

channel decomposition, anomaly detection, compression, encryption, error correction

and network radio processing.

This presents a key issue in that most designs are approached by only limiting the de-

signer to a power envelope, without an efficiency requirement. For instance, a designer

is tasked with building a device that can last X hours, and already knows the power

profile of everything but the processor. They now will often choose a processor that will

fill this unused power to avoid the risk of the processor not being able to perform the

computation in time. At first glance there is nothing wrong with this, as the designer

will probably meet the specification requirements but could most likely have achieved

similar performance while using less energy. How can we accomplish this?

Typically, embedded processing applications execute on a fixed set of algorithms

across a well defined signal processing chain repeatedly, as opposed to the uncertain

program execution performed on a general purpose microprocessor. Due to our prior

knowledge about the algorithm that will be executed, the amount of time we are allo-

cated to perform computation, and the necessary power profile, a priori characterization

of the hardware utilization patterns for the embedded application can be performed. Fur-

ther, it is possible for these utilization patterns to be used in order to balance hardware

resources.

For data-parallel applications such as signal processing, wide parallel architectures

3

can significantly improve energy-efficiency when compared with conventional scalar

pipeline architectures [25]. These efficient parallel architectures can achieve improved

performance/watt through system-level power management, based on application-aware

hardware utilization characterization and power scheduling.

Due to the afore mentioned issues, I present an efficient greedy search optimization

technique for maximizing performance/watt in SIMD embedded architectures through

a priori scheduling of hardware resources based on algorithm and utilization patterns on

both a super Vth and near Vth processor.

4

Chapter 2 – Motivation

The primary motivation for this research was due to our design of biomedical devices

which typically must be:

• Small & Lightweight

• Reliable

• Have long battery life

This presents a host of problems for a designer however. One example of such as

device is the Oregon State Univerisy Life & Activity Monitor [2].

2.1 OLAM: Oregon State University Life & Activity Monitor

OLAM was designed for the Linus Pauling Institute at Oregon State University for an

IRB approved clinical trial on the effects of lipoic acid on the circadian rhythm of pa-

tients. This required the ability to monitor heartrate and general activity over a course

of many weeks. The required specifications for OLAM were as follows.

Design contraints:

• Ability to collect data for two weeks on a single charge

• Able to detect heartbeats using a non-contact sensor

5

• Able to detect motion and activity levels

• Data retrieval must be as quick as possible

• Device must be less than 2”L x 2”W x 0.5”H

2.2 OLAM: Design Decisions

What we came up with was to use an accelerometer and gyro for motion tracking and

an analog front end ADC for measuring heartbeats. These can be seen in Figure 2.1. As

for the heartbeat sensor, we developed our own non-contact sensor as seen in Figure ??.

You may also notice that the battery was a large portion of the total package. In order

to meet the battery life contraints, we chose to fill the available volume that we were

allocated with battery as seen in Figure 2.3.

Figure 2.1: OLAM: PCB

6

Figure 2.2: OLAM: Bottom View

Figure 2.3: OLAM: Top View

7

The necessity to increase battery size should be remedied with better energy effi-

ciency. While OLAM was designed using as low energy components that could be

found, the processor was still underutilized and therefore should have the ability to scale

resources to increase utilization and lower energy.

8

Chapter 3 – Literature Review

The following is a comprehensive review of previous work as it relates to my research.

Firstly I cover various parallel processing techniques. Next I review power scaling and

optimization techniques already used. Then I cover some parallel processor simulation

environments. Lastly, I review the costs and benefits of near threshold operation of

digital circuits.

3.1 Parallel Processing

Parallel processing has become increasingly important as the need for higher throughput

processors exceeds our ability to execute instructions in serial. To achieve a performance

speedup (the ratio between running time of a program on a single core system versus

that of a multi-core system), designs are becoming more parallel. This speedup can

only be realized however, if algorithms tend towards parallization as well. According to

Amdahl’s law, speedup follows:

S(N,P) =
1

(1− P) + P
N

Where S is the speedup, N is the number of cores and P is the percent of the al-

gorithm that is parallelizable. Figure 3.1 shows this relationship. In [41] it is shown

that a two core system can perform almost as well as an infinite core system for entirely

9

1 2 4 8 16 32 64 128 256 512 1024
0

5

10

15

20

Number of Cores

S
pe

ed
up

Amdahls Law of Speedup Vs Number of Cores

50% Parallel
75% Parallel
90% Parallel
95% Parallel

Algorithm Parallelism

Figure 3.1: Amdahl’s Law: Speedup vs Number of Cores

serialized code which shows that the benefits of parallelization of architectures can only

be realized if algorithms also become wide parallel.

There are several different forms of parallel processing: bit-level, instruction level,

data, and task level parallelism.

3.1.1 Bit Level Parallelism

Bit level parallelism is typically implemented by increasing a processors word size [33]

and is used when increasing word size is more efficient than many smaller instructions.

By increasing word size, it is possible to reduce the total number of instructions when

dealing with very large variables. For example, consider the case where an 8 bit proces-

10

sor must perform 32 bit addition. This would require 4 addition instructions with 4 bit

carries whereas a 32 bit processor would be able to accomplish the same goal in a single

instruction. In previous processor generations, 4-bit processors were replaced by 8-bit,

then 16-bit and 32-bit and has recently settled at a 64-bit typical word size for general

computing. System level trade-offs of area, performance, and power are evaluated for

very large instruction word (VLIW) architectures in [4].

3.1.2 Instruction Level Parallelism

Instruction Level Parallelism (ILP) is a processor and compiler design technique wherein

execution speedup can be obtained through the ability to run multiple instructions at

once [45]. This technique is most commonly known for its use in superscalar architec-

tures [24] wherein a multi-stage pipeline allows for multiple instructions to be executed

at different stages in the pipeline at once. This allows for faster throughput at a given

clock rate. The superscalar technique can be identified by the following characteristics:

• Sequential Instruction Stream

• CPU dynamically checks data dependencies between instructions at run time

• CPU can accept multiple instructions per clock cycle

This type of parallelism is limited mostly by the depth of the pipeline. For large

pipelines such as the Intel Pentium series [46] this technique worked very well, and

achieved some level of speedup for most general computing applications.

11

Instruction

1 IF ID EX MEM WB IF = Instuction Fetch

2 IF ID EX MEM WB ID = Instruction Decode

3 IF ID EX MEM … EX = Execute

4 IF ID EX … MEM = Memory R/W

5 IF ID … WB = Register Writeback

Cycle 1 2 3 4 5 6 7

Pipeline Stage Stage Definitions

Figure 3.2: Basic Five Stage Pipeline

ILP can also be seen in smaller configurations such as the 5 stage pipeline adopted

by many architectures such as RISC [26]. The principle can be seen in Figure 3.2. It can

be seen that rather than waiting for an instruction to finish execution before starting the

next one, it can launch another instruction in the pipeline in order to use the hardware

resources that are currently idle.

3.1.3 Single Instruction Multiple Data

Also referred to as loop-level parallelism or data parallelism, single instruction multiple

data (SIMD) architectures are a form of parallelization of computing by performing the

same task on parallel sets of data. This can be achieved in many ways. The most com-

mon SIMD architectures involve multiple processing lanes where the same instruction

is sent to each lane, but different data might be operated on. A diagram of SIMD can be

seen in Figure 3.3.

12

Data In

SIMD Processor

Instructions

Results

Figure 3.3: SIMD Processor Example

3.1.4 Single Instruction Multiple Thread

Single instruction multiple thread (SIMT) processors are typically SIMD systems that

allow for warps to handle branches in parallel. A good example of this style of archi-

tecture is the Nvidia GPU, which has adopted the Compute Unified Device Architecture

(CUDA). CUDA has made possible the idea of having hundreds to thousands of cores

in a single processor that can account for many branches at the same time through very

finely controlled instruction scheduling [35].

Nvidia’s CUDA [28] accomplishes SIMT through the use of many graphics pro-

cessing clusters (GPC) with multiple streaming multiprocessors (SM), each with many

CUDA cores.

13

3.2 Multi-Core Simulation Environments

There are a number of useful simulators available for evaluation of digital circuits, how-

ever only a few seem to focus on energy and utilization characteristics of multi-core

processors. Given the scope of this work, I will limit my review to those simulators that

provide useful insight into the characterization and evaluation of multi-core processors.

3.2.1 GPGPU-Sim

GPGPU-Sim is a Graphics Processing Unit simulator developed at the University of

British Columbia meant to test and evaluate wide-parallel SIMD/SIMT processors sim-

ilar to that of an NVIDIA GPU. It provides many options ranging from number of cores,

size of memory (cache or external dram), interconnect configurations and many more.

This tool provides a very fast way to simulate a processor running custom, user defined

algorithms. It also allows the flexibility of programming these algorithms in the well

documented CUDA programming libraries for C/C++.

In [6] the authors use GPGPU-Sim to characterize the performance of existing CUDA

applications. They show that decreasing the number of threads running concurrently on

the hardware can improve performance by reducing contention for on-chip resources.

They also provide an analysis of application characteristics such as dynamic instruc-

tion mix, SIMD warp branch divergence properties, and DRAM locality characteristics.

Similarly [19, 50] evaluate workloads and efficiency in a GPU like processor using

GPGPU-Sim.

The only drawback to GPGPU-Sim is that while it is a great tool for evaluation of

14

utilization patterns in a GPU-like architecture, it currently does not allow for power or

energy measurements.

3.2.2 MV5

Another simulator commonly used is the MV5 Simulator [37] (based on gem5 [8]),

which incorporates widely cited tools for power and area models. These power models

are: Cacti 4.2 [51] for on-chip caches (which are in each core), Wattch [11] for com-

putation cores and [43] for on-chip routers. With these power and performance models,

MV5 allows for simulation of the total power consumption of a user defined multi-core

processor.

MV5 simulates each event including cache hits and misses, memory accesses, alu

operations, clock cycles, and many more. Essentially, almost any event that happens in

the processor can be output to a log file making this simulator arguably one of the more

useful tools for someone who is trying to evaluate a SIMD processor on an application

level.

The MV5 simulator uses hgfractal, a SIMD thread framework that allows the coding

of generic SIMD applications. This framework breaks the algorithm chain into a set

of functions wherein each runs at a programmer-defined width. Each kernel instance

runs on a specific subset of the data known as a “block”. Partitioning the data into these

smaller subsets allows for parallelization.

While MV5 has more processor event logging capabilities, it lacks the elegant pro-

gramming interface that was provided for GPGPU-Sim. Nevertheless, it is a proven

15

simulator that provides large amounts of timing and energy data.

3.3 Power Scaling & Optimization Techniques

There are many techniques to optimize processors for area, performance, and power.

This work focuses on performance/watt optimization through power scaling techniques.

3.3.1 Dynamic Voltage & Frequency Scaling

Dynamic Voltage & Frequency Scaling (DVFS) is a very common and widely used

power management scheme. DVFS techniques scale supply voltages and operating fre-

quencies to reduce power consumption which follows:

P ∝ CV 2f

There are many well-known control techniques for determining when to scale the

supply voltage or clock frqeuency. In [12], the authors introduce a method for accurately

estimating the potential power savings using common DVFS control techniques.

In [29], a method for using DVFS in multicore processors is presented. It is meant to

scale the clock and voltages of each core to decrease power consumption. In very wide

processors, they propose that in order to reduce the need for many voltage regulators per

core, they can cluster cores together and scale each cluster appropriately. They limit the

scope of DVFS to just core clocks.

For modern CPUs, the advanced Configuration and Power Interfcace (ACPI) [16]

16

Application

Device Driver Kernel OSPM

ACPI Driver & AML Interpreter

ACPI BIOS
ACPI

Tables
ACPI

Registers

Platform Hardware BIOS

O
S

La
ye

r
A

C
P

I L
ay

er
B

IO
S

La
ye

r
A

p
p

 L
ay

er
Figure 3.4: ACPI Layer Diagram

which was developed by Intel, Microsoft, Toshiba, HP, and Phoenix was adopted. ACPI

allows for control of power management from every layer of the system, from the ap-

plication layer through the hardware and bios as seen in Figure 3.4. One power man-

agement technique used in ACPI is the use of performance states (P0 → Pn) where P0

operates at maximum power and frequency, and each subsequent P-state continues to

follow the pattern where Pn has less performance than Pn−1. In these states, voltage and

frequency are scaled appropriately to specific values that have previously been tested to

work. The purpose of this is to give the ability to use stable DVFS points in order to

reduce power consumption based on utilization and/or application needs.

17

3.3.2 Race To Sleep

Another power management technique popular with embedded systems is race to sleep.

This technique attempts to complete a computation as quickly as possible, and then

transition into a sleep state to save energy. Power savings arise from maximizing the

amount of time spent in this low-power sleep state, thereby avoiding many power state

transitions. In [5] the authors describe a control scheme for a race-to-halt technique that

results in significant energy savings.

In [34] the authors evaluate when race to sleep is a good technique to use rather

than traditional clock scaling. They look into three classes of processors. They use an

OMAP, Intel Atom, and an Intel core i7. It was found that, in general scaling is better

as long as it doesn’t negatively affect the throughput or overall runtime of the system.

It was also found that in cases where utilization is lower, using sleep states can often

greatly improve energy efficiency.

Because many processors have sleep states now, using these low power modes is

often the easiest way to save power as it requires no extra hardware beyond the power

gating circuitry. In the previously mentioned ACPI [16] control, in addition to perfor-

mance states there are also CPU power states and Sleeping states. These both allow for

switching into lower power modes, but in this case the “deeper” the sleep state the pro-

cessor is in, the fewer capabilities the processor has, and the higher the latency before

the processor can return to normal operation.

18

3.3.3 System Level Power Optimization Techniques

There have been a number of proposed system level optimizations for power. The au-

thors of [47] lower the power consumption of an embedded core by clustering clock

gating to improve energy efficiency. This is done on an 8051 based multi-core proces-

sor.

In [7], an accurate and fast simulator of the power consumed in various IP blocks

of a System-on-Chip (SoC) designs are developed. In [42], the authors decrease the

power consumed within a single-core microprocessor using software based optimization

techniques.

In [53], the authors propose optimizing a multi-core processor for specific scientific

computations using sparse matrix-vector multiplication as an example (as it is one of

the most heavily used kernels in scientific computing). They demonstrate significant

performance increases compared to previous implementations. Game theory is used for

scheduling tasks in [1] on multi-core processors for optimization of performance and

energy.

Clock gating is another commonly used technique for power savings in synchronous

logic, minimizing dynamic clock power. Previously, clock gating has been shown to

exhibit approximately a 25% power improvement [36], however performance/watt does

not change, as no computation occurs when the clock is stopped. The theory behind

clock gating is that by not clocking portions of logic controlled by or containing flip-

flops, it keeps that portion of the circuit from switching states. By forcing a circuit to

remain in the same state, less dynamic energy is used. An example of how to gate a

19

clock is shown in Figure 3.5.

Power gating is a well known technique for minimizing leakage current during idle

periods. Recent work in [49] suggests energy savings up to 19% for SIMD multi-core

architectures, based on resource utilization patterns.

The basic theory behind power gating is that if a logic block can be deactivated so

there is no power to the transistors, then there will be less leakage current. An example

of this is shown in Figure 3.6. This typically means that the internal capacitances of the

logic will take longer to charge when the power gate returns power to the circuit.

DFF

in

cond
clk

out

Figure 3.5: Clock Gating Example Circuit

Logic

Vdd

PWR

Logic

Vdd

PWR

Vdd Gating GND Gating

Figure 3.6: Power Gating Example Circuit

20

3.4 Near/Sub-Vth Operation For Low Energy Computation

Near/Sub-Vth operation of digital circuits is becoming more prevalent as transistor sizes

decrease. Moore’s law states that the number of transistors that can be placed inexpen-

sively in an integrated circuit will double every two years [39, 40, 48]. This can be seen

in Figure 3.7.

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
103

104

105

106

107

108

109

1010

4004

8008

RCA 1802
8080

6800
Z80

8085
6809

8086

8088

68000

80186

80286

80386

80486

Pentium AMD K5

Pentium II

AMD K6
Pentium III

AMD K7

Pentium 4 Barton

AMD K8

Itanium 2
Cell
Core 2 Duo

AMD K10

Atom

Core i7

Six−Core Xeon 7400

Six−Core Opteron 2400
8−Core Xeon Nehalem−EX

4−Core z196
8−Core POWER7

Six−Core Core−i7
16−Core SPARC T3

10−Core Xeon Westmere

Processor Release Year

N
um

be
r

of
 T

ra
ns

is
to

rs

Moore’s Law Compared to Actual Processor Transistor Count

Moore’s Law Prediction
Actual Processor

Figure 3.7: Transistor Number vs Time Compared to Moores Law

21

With the doubling of transistors, it makes sense to also expect the size of these

transistors to trend downward. With higher density transistors, total leakage current rises

due to the quantum phenomenon in semiconductors for mobile charge carriers to tunnel

through an insulating region. This occurs exponentially more often as the thickness of

the insulating region decreases. This also leads to the inability to scale the transistor

threshold voltage at the same rate as transistor size (Figure 3.8).

GND

Vth

Supply

Process A
(Largest)

Process B
(Medium)

Process C
(Smallest)

Low Vth causes
Less gate voltage
Swing to turn off

Figure 3.8: Vth Scaling with Process

22

3.4.1 Benefits

One way to combat these scaling issues is to operate devices in the sub-near thresh-

old region. Research has shown that operating in these regions can lead to order of

magnitude improvements in energy efficiency over conventional processors at the same

technology node [21]. One example, a 16-bit 1024-point .18m FFT test-chip with Vdd

of 0.35V (Vth = 0.45V) achieved 155nJ per FFT at 10KHz [52]. As a comparison, an

8-bit processor [22] achieved 540fJ /operation at a Vdd of 0.3V and 160KHz operating

frequncy.

3.4.2 Complications

These high computational efficiencies, however, come with a cost in that operating fre-

quencies must be lowered (often significantly) and timing variability/timing violation

are more common due to added sensitivities to process variation such as random dopant

fluctuations (RDF) while operating below the threshold voltage [21]. Because of the low

clock frequency requirement, processors operating within these regions are forced to

move towards wide parallel architectures for increased performance. This requirement

will extrapolate higher as device sizes trend downward due to the afore mentioned af-

fects of transistor scaling. Programmable architectures will also need to rely on efficient

control, such as wide SIMD/vector execution [30, 54] to maintain these efficiencies.

The solution is not necessarily as simple as adding more parallelism however, due

to wide SIMD architectures timing variability which is caused by having many ALUs.

Operation at near-threshold is already limited by variability, which is degrading with

23

transistor scaling. Random dopant fluctuations, such as threshold voltage mismatch due

to statistical fluctuations of the dopant atoms severely alter the transistor current, thereby

affecting the logic delay. As the supply voltage is reduced, the transistor no longer acts

in the traditional velocity saturated manner and begins to behave as a bipolar device.

This strong dependence of current draw on Vth in near-threshold results in as much

as an 18x degradation in transistor current and logic delay across Monte Carlo variation

[21]. To make varation even harder to predict, critical RDF threshold variations are not

related to any spatial distances. This means that spatial correlations can not be drawn

for parallel functional units which would otherwise allow similar timing delays between

vector units as is shown in [15].

3.4.3 Previous Solutions

Previous solutions [22, 52] have shown that using non-minimal device sizes and longer

logic chains can reduce variation. This however, effectively moves in the opposite di-

rection of transistor scaling, and will become more problematic moving into deep sub-

micron nodes.

Other research [10, 17] identified methods of dynamic timing variation tolerance

within a scalar pipeline. The basis of which is to dynamically detect timing errors and

correct them by either flushing the pipeline and re-executing the instruction with more

relaxed timing or stalling the pipeline for one cycle while waiting for the correct result

to be generated, and then proceeding with execution. The prior approach while easier to

implement in faster and more complex pipelines, has a more severe performance penalty.

24

The latter approach has a smaller performance and power penalty.

In typical parallel designs, all functional units operate off of a single clock in lock

step, making any error encountered in a single stage result in a stall for all the func-

tional units within that processing element. This makes the typical method of stalling

and flushing the system problematic and inefficient and amplifies the performance/watt

penalty by the pipeline width when handling an error. This realization combined with

the afore mentioned increase in timing variation as parallization increases width, makes

it necessary to come up with an expandable SIMD architecture that can handle these

timing variations.

3.4.4 Synctium

Synctium [31], defined as “a near-threshold stream processor for energy constrained

parallel applications” is a SIMD processor developed at Oregon State University that

focuses on solving the previously mentioned problems with near Vth operation of wide

SIMD processors. It achieves near energy-optimal operation by combining efficient par-

allel computation techniques with the use of near-threshold circuits. This architecture,

through lane weaving and decoupled instruction queues solves much of the static and

dynamic timing variations respectively.

Decoupled instruction queues allow for each ALU to have its own list of instructions

making it possible for a single lane to stall, while other lanes may continue through their

own queue. A diagram of this can be seen in Figure 3.9. This is limited only by the

length of the queue and number of system stalls, such as concurrent memory accesses.

25

Queue 1 Queue 2 Queue n. . .

L

A

N

E

1

L

A

N

E

2

L

A

N

E

n

. . .

instruction 1

instruction 2

instruction 3

instruction 4

instruction 5

instruction 6

Lane n

instruction 1

instruction 2

instruction 3

instruction 4

instruction 5

instruction 6

Lane n-1

STALL

Note :

Even though Lane (n-1) required a stall, all

other lanes can continue through their own

queue without delay.

Figure 3.9: Decoupled Queues

Lane weaving allows for slower or defective lanes to be “weaved” around with little

delay similar to [20]. Each decode and fetch stage is connected to the processing lanes

adjacent to it. A diagram of lane weaving can be seen in Figure 3.10. This technique

requires that at least one lane at a time be inactive. In Synctium, 10 lanes were presented

with 8 active lanes, allowing for 2 lanes to be inactive at any given time. The two lanes

that cause the greatest static timing variation are chosen for this purpose.

26

RF ALU MEM WB

RF ALU MEM WB

RF ALU MEM WB

RF ALU MEM WB

RF ALU MEM WB

Decoupled
Queues

Available Path

Path Taken

Legend

Figure 3.10: Lane Weaving

27

Chapter 4 – Overview of Approach

A method for improving performance/watt of a multi-core SIMD processor using ex-

plicit a priori power and performance scheduling of each hardware component (core,

link, and memory) is presented. Due to predictable utilization patterns for a known

signal processing chain, an example electroencephalography (EEG) application is sim-

ulated and optimized. This application is representative of common bio-medical sensor

processing requirements [9]. It should be noted, that while scheduling of individual

components has been done in the past, no reference to scheduling all three major com-

ponents (core, link, and memory) could be found.

4.1 Proposed Developement Flow

First, we model an embedded multi-core system using a simulator based on the MV5

framework [37] running algorithm blocks that follow the Filter Bank Common Spa-

tial Patterns (FBCSP), which is the EEG example application [3]. Next, after accurate

characterization of the hardware utilization and power consumption using well-known

power models [51, 11, 43, 38] that have been embedded into the simulator, a greedy

search algorithm is applied to find the optimal performance/watt, varying each com-

ponent’s bandwidth and power. This greedy search optimization schedules the required

bandwidth and power settings for each component of the embedded multi-core processor

28

Code Block 1

Code Block 2

Code Block N

Algorithm Chain

Runtime
Executable

This Work

Data In

Parallel
 Compilation

Simulate
Power & Utilization

Optimize
Perfomance/Watt

Rebalance Hardware

SIMD Processor

Optimal DVFS
 Scheduling

Figure 4.1: Proposed Development Flow

before run time. This approach to pre-scheduling hardware utilization, based on explicit

software algorithm workloads, provides significant improvements in performance/watt

with small degradations to execution time. The final step is to compare the application-

directed power scheduling method with traditional power savings techniques such as

conventional Dynamic Voltage and Frequency Scaling (DVFS) [12] and “race to sleep”

[5]. The proposed development flow is outlined in Figure 4.1.

4.2 Example Application Used

The FBCSP [3] based EEG classification, which is representative of other similar signal

processing applications [9] was used as an example application. An overall overview

of this EEG classification algorithm is detailed, and each block within this signal pro-

cessing chain is defined. This processing chain has similar components as would be

required in most embedded medical devices. The importance of this application to this

work is that it both represents a real need in embedded medical electronics, and is com-

prised of very different algorithms that have different hardware utilizations and timing

29

requirements making it a good example to attempt to optimize.

4.2.1 Application Description

In continuous encephelaography (EEG) sensing applications, EEG data must be gath-

ered and processed constantly in order to detect possible medical conditions such as

seizures [13]. EEG data is continuously gathered over 16-channels. It is then processed

and classified in 1-second windows (1000 samples at a 1kHz sampling rate). The result

of this classification can be used to determine whether an anomaly has occured. If it

does produce a properly classified event, the anomalous data is then encrypted (RSA)

and sent to memory and/or transmitted. Non-anomalous data does not need to be stored.

An overview of the example filter chain can be seen in Figure 4.2. This allows only the

useful information to be stored or transmitted saving precious memory and RF energy.

It also makes the overall output of system consist of exclusively useful information.

4.2.2 Application Details

The classification technique used is based on the Filter Bank Common Spatial Patter

algorithm (FBCSP). There are many crucial steps in the FBCSP classification process.

The first step is to to notch out specific frequencies using a bank of band-pass filters.

In this implementation we use 16 banks, each with a 4Hz wide passband, starting at

4Hz (e.g. bank-1 filters 4-8Hz, bank-2 8-12Hz, etc). These filters are the first kernel

functions in our application, implemented as finite impulse response (FIR) filters with

30

32 coefficients.

The second step in FBCSP is to perform spatial filtering. These spatial filters per-

form mixing of the EEG channels to construct correlating spatial channels to the output

classes. Some common training methods for the spatial filters can be found in [3]. We

construct sixteen spatial channels per bank. Common spatial filtering (CSP) is the sec-

ond kernel function in our signal processing chain.

The third process in the chain is to reduce spatial channels to features. This is done

in a two-step process commonly known as feature extraction. In the first step, the spatial

channels are multiplied by a mixing matrix. The second step is to find the variance of

each of these mixed channels resulting in a 512-element feature vector. These two steps

are the third and fourth kernel functions in the signal processing chain.

Once the feature vector is obtained, feature classification is performed. This ap-

plication uses K-Means clustering, where we compute the Euclidean distance that our

vector is from a set of pre-trained points. The shortest distance between these points is

the class that most resembles our feature vector. This requires computing the distance

from all 256 trained locations with a three step processes. The first step is to square

the difference between each element of our feature vector and every trained point. The

second step sums these squared points. The last step determines the shortest distance

again. This three-part process is comprised of the 5th, 6th and 7th kernel functions of

the processing chain.

After each of these 7 FBCSP blocks are complete, we know whether the EEG sam-

ple is anomalous which is dependant on which class it matches the most. If the EEG

sample is determined to be anomalous we encrypt it using RSA encryption, which is

31

implemented with 4-byte blocks. This encryption forms the 8th and final block of our

entire example signal processing application.

FIR Bank

CSP Bank

Feature Extraction

KMeans Classification

RSA Encryption

Transmit Signal

EEG Data

Spectral,
Spatial Filtering

Classification

Encrypt & transmit
if needed

Figure 4.2: EEG FBCSP Processing Chain

32

4.2.3 Kernel Function Grouping

The final step in preparing the application for performance/watt optimization is to choose

which kernel functions should be grouped together before optimization. This is particu-

larly useful when there is a string of many short code blocks. By grouping some kernel

functions together it can reduce the number of DVFS changes required to execute the

entire application. Grouping kernel functions too much however can limit potential per-

formance/watt gains from finding the optimal operating point. In this example, a few

rules were employed for grouping.

Non-adjacent kernel blocks are not grouped together because there will already be a

DVFS change expected between these blocks. Also, a limit on the total execution time of

a kernel function is adopted, such that if its time duration is too small it is then grouped

with an adjacent block. As a requirement, any kernel that executed in less than 20µs on

the super Vth processor at full speed was grouped with another kernel function. These

kernel functions that require grouping are paired with a neighbor block that exhibits the

most similar characteristics determined by analyzing the kernel implementations. In this

application there were two short kernel functions. The feature-mixing step is the first. It

was combined with the CSP filters due to their similiarity because they both consist of

primarily matrix multiplications. The second short kernel is the final step of K-Means,

which is combined with the second step of K-Means because they share more similar

data than grouping K-Means with the encryption kernel. These groupings were kept the

same on the near Vth processor as well for comparison, even though all of the kernel

functions operated well above the 20µs threshold. Table 4.1 shows all of the kernel

33

mappings.

Kernel Functions Kernel Numbers Block Numbers
FIR Bandpass 1 1

CSP, Feature Mixing 2, 3 2
Feature Variance 4 3
K-Means Step 1 5 4

K-Means Step 2,3 6,7 5
Encryption 8 6

Table 4.1: Kernel Function to Block Mapping

4.3 Greedy Search

A greedy search algorithm is used to optimize the algorithms of the proposed filter chain,

maximizing performance/watt using DVFS of each component (core, memory and in-

terconnects). A flowchart of our greedy search can be seen in Figure 4.3. The greedy

search algorithm starts with default DVFS settings for each component of the simulated

system. We define a maximum and minimum step size for each component with respect

to that components clock frequency. Each loop of the optimization launches six simula-

tions in parallel (one maximum stepsize above and below each of the three components

described above). This results in initial frequency settings for each component to be

set to both the the maximum and minimum values for the current loop. Whichever of

the six simulations that resulted in the greatest performance/watt improvement within

the simulation time constraints is selected for the next iteration of the greedy search. If

none of the simulations improve performance/watt within the specified time increase,

the optimizer halves the maximum step size and iterates again with these new settings.

34

This process is iterated until all three maximum step sizes have been reduced to less

than their corresponding minimum step size.

Greedy search was used for the optimization algorithm because of the benefit in

simulation time over a fine-grained grid search, which would require weeks→months

in order to optimize depending on granularity. The proposed greedy search allows for

optimization within 24 hours in most cases. So while a greedy search by definition is

not guaranteed to find the globally optimal solution, it can be shown that we are still

able to get significant gains with a greedy optimal solution. Greedy search algorithms

have been explored to optimize the expected variation in system-level DVFS in [23].

Yes

No

Yes

No

Decrease
step size

Better
perf/watt?

Step sizes
below min?

Done

Initial Sim For Baseline

Simulate Each

+/- step size
each component

Use best
settings

Figure 4.3: Greedy Search Flowchart

35

Chapter 5 – Architectures Explored

As a comparison, two architectures were explored. The first is a 4-core with 8-lanes/

core architecture. This was built into the MV5 simulator by default, and was used as an

example of a SIMD system operating at supplies above Vth. Synctium [31] was used as

the core architecture as a comparison to a system that can move its DVFS curve to near

threshold operation.

As part of the power management for the entire system, the assumption is made that

we have the capability to apply DVFS to each of the major components independently

(core, on-chip routers, and off-chip memory). Previous works [27, 32] suggest that

efficient on-die voltage regulators with multiple outputs are soon becoming a viable

substitute for slow off-chip regulators. Another possibility for applying separate DVFS

is to utilize multiple power gates for multiple supply rails [14]. In this work, we do not

advocate a particular circuit implementation for either of these approaches, as the power

overhead for scaling between each voltage domain is negligible for our application.

It should be noted that the nominal starting frequencies for both architectures were

the same, and are outlined in Table 5.1.

Component Nominal Operating Frequency
Cores 500MHz

Memory 600MHz
Links 1 GHz

Table 5.1: Component Nominal Operating Frequencies

36

5.1 Super Vth Architecture

The simulated system architecture can be seen in Figure 5.1. The system consists of four

homogeneous cores, all capable of running SIMD applications. The details of the system

configuration are summarized in Table 5.2. These specifications were chosen because

they are common configurations for high-performance, quad-core embedded processors

with SIMD extensions. The cache sizes were chosen to be small, as is common with

embedded applications.

Full NoC Interconnection Network

I Cache D CacheI Cache D Cache

I Cache D Cache I Cache D Cache

NoC
Router

NoC
Router

NoC
Router

NoC
Router

NoC
Router

C
R
O
S
S
B
A
R

Quad-Core Processor

SIMD Core 1 SIMD Core 2

SIMD Core 4 SIMD Core 3

Off Chip DRAM

Figure 5.1: Super Vth Simulated Architecture

37

Component Quantity Unit
Cores 4 Alpha Cores
SIMD Lanes/Core 8 Lanes
Core I-cache Size 512 Bytes
Core D-cache Size 1k Bytes
DRAM Memory Size 1G Bytes
NoC Routers (Full Duplex) 5 Routers

Table 5.2: Super Vth System Specifications

5.2 Near Vth Architecture

The simulated system architecture can be seen in Figure 5.2. The system consists of a

single synctium [31] core with 8 lanes. The system configuration is summarized in Table

5.3. These specifications were chosen to match the previous architecture as closely as

possible.

I Cache D Cache

Off Chip DRAM

NoC Router

NoC Router

Synctium Core

L
A
N
E

1

L
A
N
E

2

L
A
N
E

3

L
A
N
E

4

L
A
N
E

5

L
A
N
E

6

L
A
N
E

7

L
A
N
E

8

Decoupled Queues

Figure 5.2: Near Vth Simulated Architecture

38

Component Quantity Unit
Cores 1 Synctium Cores
SIMD Lanes/Core 8 Lanes
Core I-cache Size 512 Bytes
Core D-cache Size 1k Bytes
DRAM Memory Size 1G Bytes
NoC Routers (Full Duplex) 2 Routers

Table 5.3: Near Vth System Specifications

39

Chapter 6 – Optimization Techniques Explored

In order to analyze the effectivness of a priori scheduled DVFS, two metrics for opti-

mization were considered. The first was to optimize performance/watt within a percent

of performance loss. This was considered for the 1%, 5%, and 10% cases. This tech-

nique is compared with convential DVFS. The second style of optimization is when the

designer knows how often the algorithm must run giving an effective time window. This

style of optimization is compared with the traditional race to sleep method.

6.1 Conventional DVFS

Conventional DVFS in this case is where the clocks are scaled at the beginning of the

algorithm based on how the device is utilized at that point in time and will remain the

same across the whole algorithm. This is how most systems use DVFS, assuming that

the algorithm will remain at a similar utilization. They will find clock settings that work

every time and might save some energy consumption but do not consider the change in

utilizations that occur in the different sections of the algorithm.

6.2 Race To Sleep

As mentioned in Chapter 3, this technique is used in many embedded applications where

sleep states are available. These states allow the processor to consume less energy as it

40

turns portions of the processor off. For this example, the assumption was made that in

the best case scenario only the leakage current of the circuit would consume energy.

6.3 Algorithm Block a priori Scheduled DVFS

There are two methods for constraining greedy search. The first is to search for the

optimal DVFS settings for each section (block) of the filter chain algorithm indepen-

dently. For each of these blocks, different DVFS settings for each hardware component

results in optimal performance/watt. Hence, this method improves performance/watt

by exploiting the differences in hardware utilization of the block within the filter chain

algorithm. For example, a block that is very compute intensive will exhibit different

optimal DVFS settings from a block that is very memory intensive.

6.4 Full Algorithm a priori Scheduled DVFS

The second method for constraining the greedy search is to only allow DVFS settings

for the entire filter chain. Here each block of the chain will operate with the same DVFS

settings as adjacent settings, but the entire filter chain is still optimized for performance/

watt. This method would be most appropriate with an application where changing the

DVFS settings was not feasible on a fine-grained time basis.

41

Chapter 7 – Results

The results are broken into two sections. The first consists of the simulations and opti-

mizations performed on the super Vth architecture and the second on the near Vth exam-

ple.

7.1 Super Threshold Scaling of Core, Link and Memory Clock

As mentioned previously, there are two main categories for comparison. The first con-

sists of optimizations of the power consumption given a small performance loss, which

is compared to traditional DVFS. Improvements in total power were evaluated given

execution time increases (performance loss) of 1%, 5% and 10%. The other category

consists of power optimizations within a given execution time window, which is com-

pared to a race to sleep technique. Given the example end-to-end algorithm nominally

takes 72ms to execute, time windows of 100ms, 500ms and 1000ms were explored.

7.1.1 Perf/Watt Optimizations for Small Performance Losses

In Figure 7.1, the performance/watt gains are plotted for the three performance loss

values explored (1%, 5%, and 10%). It can easily be seen that both the block DVFS

and algorithm DVFS with a priori scheduling exhibit significantly better performance/

watt gains. One interesting observation is that the algorithm DVFS and standard DVFS

42

optimizations result in less performance/watt gains for 10% performance loss than the

5% performance loss case. This can be explained due to greedy optimization, which

cannot guarantee a globally optimal result. As seen in Figure 7.1 our greedy search

still provided significant gains over conventional DVFS. Another interesting result is

when only a 1% performance loss was allowed. In this scenario, both block DVFS and

algorithm DVFS optimization results in 51% and 61% performance/watt improvements

respectively. This is a substantial improvement for very little performance cost.

This Work (Block DVFS)
This Work (Algorithm DVFS)
Conventional DVFS

Performance/Watt Gains

P
er

fo
rm

an
ce

/W
at

t G
ai

n
(%

)

Execution Time Increase (%)

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10

Figure 7.1: Super Vth Performance/watt comparison between conventional DVFS and
this work (optimized for algorithm DVFS and block DVFS).

The comparison between block DVFS versus algorithm DVFS optimization provides

further insight into the optimization process. Initial thoughts might create the assump-

tion that the finer control of block DVFS would result in higher performance/watt than

algorithm DVFS (because each sub-block is tuned independantly). This was not the

43

case however due to the large portion of the total power that was spent within the FIR

algorithm (kernel-1). The algorithm DVFS optimization was able to allocate more of the

total allotted time to this block in order to decrease the clock further, thereby resulting

in improved performance/watt. Block level a priori scheduling results can be seen in

Figure 7.2 while algorithm a priori scheduled results are in Figure 7.3.

44

Core
Memory
NoC

Block
 1

Block
 2

Block
 3

Block
 4

Block
 5

Block
 6

Power Consumption Per Block - Block DVFS

A
ve

ra
ge

 P
ow

er
 (W

)

Time (ms)

0

1

2

3

4

0 78.74

(a)

Core
Memory
NoC

Block
 1

Block
 2

Block
 3

Block
 4

Block
 5

Block
 6

Clock Frequencies - Block DVFS

C
lo

ck
 F

re
qu

en
cy

 (M
H

z)

Time (ms)

0

100

200

300

400

500

600

700

0 78.74

(b)

Figure 7.2: Super Vth - Small performance loss optimization results (at 10% perfor-
mance loss): (a) Block DVFS power consumption, (b) Block DVFS component fre-
quencies

45

Core
Memory
NoC

Block
 1

Block
 2

Block
 3

Block
 4

Block
 5

Block
 6

Power Consumption Per Block - Algorithm DVFS

A
ve

ra
ge

 P
ow

er
 (W

)

Time (ms)

0

1

2

3

4

0 78.74

(a)

Core
Memory
NoC

Block
 1

Block
 2

Block
 3

Block
 4

Block
 5

Block
 6

Clock Frequencies - Algorithm DVFS

C
lo

ck
 F

re
qu

en
cy

 (M
H

z)

Time (ms)

0

100

200

300

400

500

600

700

0 78.74

(b)

Figure 7.3: Super Vth - Small performance loss optimization results (at 10% perfor-
mance loss): (a) Algorithm DVFS power consumption, (b) Algorithm DVFS component
frequencies.

46

7.1.2 Real-Time Constraint Optimization

The time window constrained optimization results can be seen in Figure 7.4. These re-

sults clearly show that both of our a priori scheduled DVFS optimization methods (block

DVFS and algorithm DVFS) greatly decrease average power when compared with the

conventional race to sleep method. Since the algorithm takes a minimum of 72ms to

complete, we observe a much larger power reduction as the time window becomes much

greater than 100ms.

100ms 500ms 1000ms

A
ve

ra
ge

 P
ow

er
 (W

)

0

1

2

3

4

Conve
ntio

nal
(R

ac
e t

o Slee
p)

This
Work

(B
lock

 D
VFS)

This
Work

(A
lgorit

hm D
VFS)

Conve
ntio

nal
(R

ac
e t

o Slee
p)

This
Work

(B
lock

 D
VFS)

This
Work

(A
lgorit

hm D
VFS)

Conve
ntio

nal
(R

ac
e t

o Slee
p)

This
Work

(B
lock

 D
VFS)

This
Work

(A
lgorit

hm D
VFS)

Conve
ntio

nal
(R

ac
e t

o Slee
p)

This
Work

(B
lock

 D
VFS)

This
Work

(A
lgorit

hm D
VFS)

Conve
ntio

nal
(R

ac
e t

o Slee
p)

This
Work

(B
lock

 D
VFS)

This
Work

(A
lgorit

hm D
VFS)

Conve
ntio

nal
(R

ac
e t

o Slee
p)

This
Work

(B
lock

 D
VFS)

This
Work

(A
lgorit

hm D
VFS)

Active Power
Idle Power

Figure 7.4: Super Vth Power comparisons, given a real-time constraint, between con-
ventional race-to-sleep and this work.

47

7.2 Near-Vth Scaling of Core, Link and Memory Clock

The same tests for the Super Vth case were performed with the near Vth models. One

test was of optimizations of performance/watt given a small performance loss, which is

compared to traditional DVFS. These small performance losses were 1%, 5% and 10%

runtime increases. The second category was performance/watt optimization within a

given execution time window, which is compared to the race to sleep technique. Given

the example end-to-end algorithm nominally takes 3.88s to execute, time windows of

4s, 7s and 10s were explored. It should be noted that these times are significantly larger

than the Super Vth case, this is due the the architecture differences and that Synctium is

operating with 8 lanes only rather than 4 cores with 8 lanes as in the previous architec-

ture.

7.2.1 Perf/Watt Optimizations for Small Performance Losses

In Figure 7.1, the performance/watt gains are plotted for the three performance loss

values explored (1%, 5%, and 10%). It can easily be seen that, like the super Vth case,

both the block DVFS and algorithm DVFS with a priori scheduling exhibit significantly

better performance/watt gains over conventional DVFS. This can be seen in Figure 7.5.

One interesting result is that all optimization techniques have better numbers than in

the super Vth example. This could be a manifestation of the advantages of near Vth

operation. It is also important to note that at 1% performance loss, both block DVFS and

algorithm DVFS optimization results in 50% and 95% performance/watt improvements

respectively. This is once again a substantial improvement for very little performance

48

cost.

Once again, the algorithm level a priori scheduled DVFS was generally the best

option, while block level a priori scheduled DVFS was in some cases very close (see

10% in Figure 7.5).

This Work (Block DVFS)
This Work (Algorithm DVFS)
Conventional DVFS

Performance/Watt Gains

P
er

fo
rm

an
ce

/W
at

t G
ai

n
(%

)

Execution Time Increase (%)

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10

Figure 7.5: Near Vth Performance/watt comparison between conventional DVFS and
this work (optimized for algorithm DVFS and block DVFS).

49

Core
Memory
Links

NFIR
FIL

NCSPFIL

NVARIEN

NKMEAN1

NKMEAN2

NENCRYP

Power Consumption Per Block - Block DVFS

A
ve

ra
ge

 P
ow

er
 (W

)

Time (ms)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0 4210

(a)

Core
Memory
Links

NFIR
FIL

NCSPFIL

NVARIEN

NKMEAN1

NKMEAN2

NENCRYP

Clock Frequencies - Block DVFS

C
lo

ck
 F

re
qu

en
cy

 (M
H

z)

Time (ms)

0

100

200

300

400

500

600

0 4210

(b)

Figure 7.6: Near Vth - Small performance loss optimization results (at 10% performance
loss): (a) Block DVFS power consumption, (b) Block DVFS component frequencies

50

Core
Memory
Links

NFIR
FIL

NCSPFIL

NVARIEN

NKMEAN1

NKMEAN2

NENCRYP

Power Consumption Per Block - Algorithm DVFS

A
ve

ra
ge

 P
ow

er
 (W

)

Time (ms)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0 4270

(a)

Core
Memory
Links

NFIR
FIL

NCSPFIL

NVARIEN

NKMEAN1

NKMEAN2

NENCRYP

Clock Frequencies - Algorithm DVFS

C
lo

ck
 F

re
qu

en
cy

 (M
H

z)

Time (ms)

0

100

200

300

400

500

600

0 4270

(b)

Figure 7.7: Near Vth - Small performance loss optimization results (at 10% performance
loss): (a) Algorithm DVFS power consumption, (b) Algorithm DVFS component fre-
quencies.

51

7.2.2 Real-Time Constraint Optimization

The time window constrained optimization results can be seen in Figure 7.8. These

results once again clearly show that both of our a priori scheduled DVFS optimization

methods (block DVFS and algorithm DVFS) greatly decrease average power when com-

pared with the conventional race to sleep method. Since the algorithm takes a minimum

of 72ms to complete, we observe a much larger power reduction as the time window

becomes much greater than 100ms.

4s 7s 10s

A
ve

ra
ge

 P
ow

er
 (W

)

0.0

0.1

0.2

0.3

0.4

Conve
ntio

nal
(R

ac
e t

o Slee
p)

This
Work

(B
lock

 D
VFS)

This
Work

(A
lgorit

hm D
VFS)

Conve
ntio

nal
(R

ac
e t

o Slee
p)

This
Work

(B
lock

 D
VFS)

This
Work

(A
lgorit

hm D
VFS)

Conve
ntio

nal
(R

ac
e t

o Slee
p)

This
Work

(B
lock

 D
VFS)

This
Work

(A
lgorit

hm D
VFS)

Conve
ntio

nal
(R

ac
e t

o Slee
p)

This
Work

(B
lock

 D
VFS)

This
Work

(A
lgorit

hm D
VFS)

Conve
ntio

nal
(R

ac
e t

o Slee
p)

This
Work

(B
lock

 D
VFS)

This
Work

(A
lgorit

hm D
VFS)

Conve
ntio

nal
(R

ac
e t

o Slee
p)

This
Work

(B
lock

 D
VFS)

This
Work

(A
lgorit

hm D
VFS)

Active Power
Idle Power

Figure 7.8: Near Vth Power comparisons, given a real-time constraint, between conven-
tional race-to-sleep and this work.

52

Chapter 8 – Conclusion

I have shown that a priori scheduling of DVFS settings in a parallel architecture vastly

out performs traditional DVFS methods. Because embedded designs are typically run

the same algorithms repetitively, this method can be applied to achieve large perfor-

mance/watt improvements. Due to the increased prevalence of wide parallel embedded

devices, and the technology scaling effects on power, any methodology that is adopted

will need to be able to counter these negative effects because while the high perfor-

mance computing world can be matched with almost unlimited power, the embedded

market will remain limited to a few watts. This work has shown that large improve-

ments in performance/watt in both super and near Vth architectures, and will be useful

in either design spaces as embedded SIMD microprocessors move forward. This work

demonstrates a minimum of 50% improvement in performance/watt at 1% performance

reduction, whereas a typical DVFS scheme achieved a maximum of 32% improvment

at the same point.

This technique, if implemented in a real processor, would make it possible to reduce

the battery size of OLAM [2] significantly. Considering that OLAM primarily used the

race to sleep method of power reduction, we should get at least 50% improvement in

performance/watt.

53

Bibliography

[1] I. Ahmad, S. Ranka, and S.U. Khan. Using game theory for scheduling tasks on
multi-core processors for simultaneous optimization of performance and energy.
In Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE International
Symposium on, pages 1 –6, april 2008.

[2] R.K. Albright, B.J. Goska, T.M. Hagen, M.Y. Chi, G. Cauwenberghs, and P.Y. Chi-
ang. Olam: A wearable, non-contact sensor for continuous heart-rate and activity
monitoring. In Engineering in Medicine and Biology Society,EMBC, 2011 Annual
International Conference of the IEEE, pages 5625 –5628, 30 2011-sept. 3 2011.

[3] K.K. Ang, Z.Y. Chin, H. Zhang, and C. Guan. Filter bank common spatial pattern
(fbcsp) in brain-computer interface. In Neural Networks, 2008. IJCNN 2008.(IEEE
World Congress on Computational Intelligence). IEEE International Joint Confer-
ence on, pages 2390–2397. IEEE, 2008.

[4] G. Ascia, V. Catania, M. Palesi, and D. Patti. A system-level framework for eval-
uating area/performance/power trade-offs of vliw-based embedded systems. In
Design Automation Conference, 2005. Proceedings of the ASP-DAC 2005. Asia
and South Pacific, volume 2, pages 940 – 943 Vol. 2, jan. 2005.

[5] M.A. Awan and S.M. Petters. Enhanced race-to-halt: A leakage-aware en-
ergy management approach for dynamic priority systems. In Real-Time Systems
(ECRTS), 2011 23rd Euromicro Conference on, pages 92 –101, july 2011.

[6] A. Bakhoda, G.L. Yuan, W.W.L. Fung, H. Wong, and T.M. Aamodt. Analyzing
cuda workloads using a detailed gpu simulator. In ISPASS 2009, pages 163–174.
IEEE, 2009.

[7] N. Bansal, K. Lahiri, and A. Raghunathan. Automatic power modeling of infras-
tructure ip for system-on-chip power analysis. In VLSI Design, 2007. Held jointly
with 6th International Conference on Embedded Systems., 20th International Con-
ference on, pages 513 –520, jan. 2007.

[8] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh

54

Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. The gem5 simulator. SIGARCH Comput. Archit. News,
39(2):1–7, August 2011.

[9] Jo De Boeck. Game-changing opportunities for wireless personal healthcare and
lifestyle. In Solid-State Circuits Conference Digest of Technical Papers (ISSCC),
2011 IEEE International, pages 15–21, feb. 2011.

[10] K. Bowman, J. Tschanz, C. Wilkerson, Shih-Lien Lu, T. Karnik, V. De, and
S. Borkar. Circuit techniques for dynamic variation tolerance. In Design Au-
tomation Conference, 2009. DAC ’09. 46th ACM/IEEE, pages 4 –7, july 2009.

[11] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a framework for architectural-
level power analysis and optimizations. In ACM SIGARCH Computer Architecture
News, volume 28, pages 83–94. ACM, 2000.

[12] A. Castagnetti, C. Belleudy, S. Bilavarn, and M. Auguin. Power consumption mod-
eling for dvfs exploitation. In Digital System Design: Architectures, Methods and
Tools (DSD), 2010 13th Euromicro Conference on, pages 579 –586, sept. 2010.

[13] J. Claassen, SA Mayer, RG Kowalski, RG Emerson, and LJ Hirsch. Detection
of electrographic seizures with continuous eeg monitoring in critically ill patients.
Neurology, 62(10):1743–1748, 2004.

[14] Liang Di, M. Putic, J. Lach, and B.H. Calhoun. Power switch characterization
for fine-grained dynamic voltage scaling. In Computer Design, 2008. ICCD 2008.
IEEE International Conference on, pages 605 –611, oct. 2008.

[15] N. Drego, A. Chandrakasan, and D. Boning. All-digital circuits for measure-
ment of spatial variation in digital circuits. Solid-State Circuits, IEEE Journal
of, 45(3):640 –651, march 2010.

[16] Loc Duflot, Olivier Levillain, and Benjamin Morin. Acpi: Design principles and
concerns. In Liqun Chen, Chris Mitchell, and Andrew Martin, editors, Trusted
Computing, volume 5471 of Lecture Notes in Computer Science, pages 14–28.
Springer Berlin / Heidelberg, 2009.

[17] D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, Nam Sung Kim, and
K. Flautner. Razor: circuit-level correction of timing errors for low-power opera-
tion. Micro, IEEE, 24(6):10 –20, nov.-dec. 2004.

55

[18] S. Feizi, M. Medard, and M. Effros. Compressive sensing over networks. In
Communication, Control, and Computing (Allerton), 2010 48th Annual Allerton
Conference on, pages 1129 –1136, 29 2010-oct. 1 2010.

[19] N. Goswami, R. Shankar, M. Joshi, and Tao Li. Exploring gpgpu workloads: Char-
acterization methodology, analysis and microarchitecture evaluation implications.
In IISWC 2010, pages 1 –10, dec. 2010.

[20] S. Gupta, Shuguang Feng, A. Ansari, J. Blome, and S. Mahlke. The stagenet fabric
for constructing resilient multicore systems. In Microarchitecture, 2008. MICRO-
41. 2008 41st IEEE/ACM International Symposium on, pages 141 –151, nov. 2008.

[21] S. Hanson, B. Zhai, K. Bernstein, D. Blaauw, A. Bryant, L. Chang, K. K. Das,
W. Haensch, E. J. Nowak, and D. M. Sylvester. Ultralow-voltage, minimum-
energy cmos. IBM Journal of Research and Development, 50(4.5):469 –490, july
2006.

[22] S. Hanson, Bo Zhai, Mingoo Seok, B. Cline, K. Zhou, M. Singhal, M. Minuth,
J. Olson, L. Nazhandali, T. Austin, D. Sylvester, and D. Blaauw. Exploring vari-
ability and performance in a sub-200-mv processor. Solid-State Circuits, IEEE
Journal of, 43(4):881 –891, april 2008.

[23] S. Herbert and D. Marculescu. Variation-aware dynamic voltage/frequency scal-
ing. In High Performance Computer Architecture, 2009. HPCA 2009. IEEE 15th
International Symposium on, pages 301 –312, feb. 2009.

[24] Mike Johnson. Superscalar microprocessor design. Prentice Hall series in inno-
vative technology. 1991.

[25] A. Kandhalu, Junsung Kim, K. Lakshmanan, and R. Rajkumar. Energy-aware
partitioned fixed-priority scheduling for chip multi-processors. In RTCSA 2011,
volume 1, pages 93 –102, aug. 2011.

[26] Gerry Kane. MIPS RISC architecture. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1988.

[27] Wonyoung Kim, D.M. Brooks, and Gu-Yeon Wei. A fully-integrated 3-level dc/dc
converter for nanosecond-scale dvs with fast shunt regulation. In Solid-State Cir-
cuits Conference Digest of Technical Papers (ISSCC), 2011 IEEE International,
pages 268 –270, feb. 2011.

56

[28] David Kirk. Nvidia cuda software and gpu parallel computing architecture. In
Proceedings of the 6th international symposium on Memory management, ISMM
’07, pages 103–104, New York, NY, USA, 2007. ACM.

[29] T. Kolpe, A. Zhai, and S.S. Sapatnekar. Enabling improved power management in
multicore processors through clustered dvfs. In Design, Automation Test in Europe
Conference Exhibition (DATE), 2011, pages 1 –6, march 2011.

[30] R. Krashinsky, C. Batten, M. Hampton, S. Gerding, B. Pharris, J. Casper, and
K. Asanovic. The vector-thread architecture. In Computer Architecture, 2004.
Proceedings. 31st Annual International Symposium on, pages 52 – 63, june 2004.

[31] E. Krimer, R. Pawlowski, M. Erez, and P. Chiang. Synctium: a near-threshold
stream processor for energy-constrained parallel applications. Computer Architec-
ture Letters, 9(1):21 –24, jan. 2010.

[32] Chien-Wei Kuan and Hung-Chih Lin. Near-independently regulated 5-output
single-inductor dc-dc buck converter delivering 1.2w/mm2 in 65nm cmos. In
Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2012 IEEE
International, pages 274–275, feb. 2012.

[33] Samuel Larsen and Saman Amarasinghe. Exploiting superword level parallelism
with multimedia instruction sets. SIGPLAN Not., 35(5):145–156, May 2000.

[34] Etienne Le Sueur and Gernot Heiser. Slow down or sleep, that is the question. In
Proceedings of the 2011 USENIX conference on USENIX annual technical confer-
ence, USENIXATC’11, pages 16–16, Berkeley, CA, USA, 2011. USENIX Asso-
ciation.

[35] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. Nvidia tesla: A uni-
fied graphics and computing architecture. Micro, IEEE, 28(2):39 –55, march-april
2008.

[36] H. Mahmoodi, V. Tirumalashetty, M. Cooke, and K. Roy. Ultra low-power clock-
ing scheme using energy recovery and clock gating. VLSI Systems, IEEE Transac-
tions on, 17(1):33 –44, jan. 2009.

[37] Jiayuan Meng and K. Skadron. A reconfigurable simulator for large-scale hetero-
geneous multicore architectures. In Performance Analysis of Systems and Software
(ISPASS), 2011 IEEE International Symposium on, pages 119 –120, april 2011.

57

[38] Micron Inc. Calculating Memory System Power for DDR3. Technical Note.

[39] Gordon E. Moore. Cramming more components onto integrated circuits, reprinted
from electronics, volume 38, number 8, april 19, 1965, pp.114 ff. Solid-State
Circuits Newsletter, IEEE, 20(3):33 –35, sept. 2006.

[40] Gordon E. Moore. Lithography and the future of moore’s law, copyright 1995
ieee. reprinted with permission. proc. spie vol. 2437, pp. 2. Solid-State Circuits
Newsletter, IEEE, 20(3):37 –42, sept. 2006.

[41] I. Onyuksel and S.H. Hosseini. Amdahl’s law: a generalization under processor
failures. Reliability, IEEE Transactions on, 44(3):455 –462, sep 1995.

[42] D.A. Ortiz and N.G. Santiago. High-level optimization for low power consumption
on microprocessor-based systems. In Circuits and Systems, 2007. MWSCAS 2007.
50th Midwest Symposium on, pages 1265 –1268, aug. 2007.

[43] A. Pullini, F. Angiolini, S. Murali, D. Atienza, G. De Micheli, and L. Benini.
Bringing nocs to 65 nm. Micro, IEEE, 27(5):75–85, 2007.

[44] J. Rabaey and D. Markovic. Low power design essentials. Springer Verlag, 2009.

[45] B. Ramakrishna Rau and Joseph A Fisher. Instruction-level parallel process-
ing: History, overview, and perspective. In B. R. Rau and J. A. Fisher, editors,
Instruction-Level Parallelism, volume 235 of The Kluwer International Series in
Engineering and Computer Science, pages 9–50. Springer US, 1993.

[46] Dave Sager, Desktop Platforms Group, and Intel Corp. The microarchitecture of
the pentium 4 processor. Intel Technology Journal, 2001.

[47] Sergio Saponara, Luca Fanucci, and Pierangelo Terreni. Architectural-level power
optimization of microcontroller cores in embedded systems. Industrial Electron-
ics, IEEE Transactions on, 54(1):680 –683, feb. 2007.

[48] R.R. Schaller. Moore’s law: past, present and future. Spectrum, IEEE, 34(6):52
–59, jun 1997.

[49] H. Singh, K. Agarwal, D. Sylvester, and K.J. Nowka. Enhanced leakage reduc-
tion techniques using intermediate strength power gating. VLSI Systems, IEEE
Transactions on, 15(11):1215 –1224, nov. 2007.

58

[50] S. Sirisup, S. U-raekolan, and E. Kijsipongse. Multi-level parallelism, global ar-
rays, gpgpu programming: Unify programming paradigms on grid computing with
efficiency. In ECTI-CON 2011, pages 455 –458, may 2011.

[51] D. Tarjan, S. Thoziyoor, and N.P. Jouppi. Cacti 4.0. HP Laboratories Palo Alto,
Tech. Rep. HPL-2006-86, 2006.

[52] A. Wang and A. Chandrakasan. A 180-mv subthreshold fft processor using a mini-
mum energy design methodology. Solid-State Circuits, IEEE Journal of, 40(1):310
– 319, jan. 2005.

[53] Samuel Williams, Leonid Oliker, Richard Vuduc, John Shalf, Katherine Yelick,
and James Demmel. Optimization of sparse matrixvector multiplication on emerg-
ing multicore platforms. Parallel Computing, 35(3):178 – 194, 2009.

[54] M. Woh, Sangwon Seo, S. Mahlke, T. Mudge, C. Chakrabarti, and K. Flautner.
Anysp: Anytime anywhere anyway signal processing. Micro, IEEE, 30(1):81 –91,
jan.-feb. 2010.

	Introduction
	Motivation
	OLAM: Oregon State University Life & Activity Monitor
	OLAM: Design Decisions

	Literature Review
	Parallel Processing
	Bit Level Parallelism
	Instruction Level Parallelism
	Single Instruction Multiple Data
	Single Instruction Multiple Thread

	Multi-Core Simulation Environments
	GPGPU-Sim
	MV5

	Power Scaling & Optimization Techniques
	Dynamic Voltage & Frequency Scaling
	Race To Sleep
	System Level Power Optimization Techniques

	Near/Sub-Vth Operation For Low Energy Computation
	Benefits
	Complications
	Previous Solutions
	Synctium

	Overview of Approach
	Proposed Developement Flow
	Example Application Used
	Application Description
	Application Details
	Kernel Function Grouping

	Greedy Search

	Architectures Explored
	Super Vth Architecture
	Near Vth Architecture

	Optimization Techniques Explored
	Conventional DVFS
	Race To Sleep
	Algorithm Block a priori Scheduled DVFS
	Full Algorithm a priori Scheduled DVFS

	Results
	Super Threshold Scaling of Core, Link and Memory Clock
	Perf/Watt Optimizations for Small Performance Losses
	Real-Time Constraint Optimization

	Near-Vth Scaling of Core, Link and Memory Clock
	Perf/Watt Optimizations for Small Performance Losses
	Real-Time Constraint Optimization

	Conclusion
	Bibliography

