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potential field anomalies caused by layers of varying thickness. The

partial differential equations of potential field theory are reviewed for
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with a slowly undulating interface is used as an integral equation and

applied to the derivation of crustal thickness variation in Oregon on

the basis of two different computational methods. The first method,

called the digitized algebraic method, solves the quasi-linearized

form of the general integral equation by an iterative technique for three

ref'rence va1ues of the mean depth of the crust-mantle interface, viz,,

Z5 km, 30 km, and 35 km. The second approach, called the second

derivative approximation method, gives a solution by the Fourier

transform technique to the linearized form of the general integral

equation for the same three reference values of the mean depth of the

crust-mantle interface.

The above results as to the depth of the crust-mantle interface

are compared with recent results with seismic refraction and dis-

pers ion data obtained along a profile in eastern Oregon. The value of

the reference depth d which best reconciles with the above results

and the seismic results turns out to be 30. 25 km for the depth data on

the basis of the algebraic method and 28.90 km for the depth data

obtained with the second derivative approximation method.
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ON THE NUMERICAL INTERPRETATION OF GRAVITY
AND OTHER POTENTIAL FIELD ANOMALIES CAUSED

BY LAYERS OF VARYING THICKNESS

INTRODUCTION

The last three decades have seen tremendous progress in

exploration geophysics. More accurate field measurements are being

made by well trained observers using equipment of high precision.

A considerable amount of geologic data is being obtained, thereby in-

creasing knowledge of the subsurface geology and providing the con-

trol which is needed to surmount the difficulty arising from the

inherent ambiguity of potential field interpretation. Recently various

types of electronic computers have been put into use that provide

rapid means of carrying out the numerous repetitive computations that

attend geophysical data analysis.

Corresponding progress has been made in the analysis and

interpretation of the field data. Regional-residual, various deriva-

tive, downward and upward continuation calculations have received

increasing attention. In addition to the indirect method of interpreta-

tion (Grant and West, 1965), various direct procedures have received

recognition (Tsuboi and Fuchida, 1937; Tsuboi, 1938; Bullard and

Cooper, 1948; Tomoda and Aki, 1955; Bott, 1969, 1967). The aim of

this study is the solution by two different computational methods of an
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inverse problem in gravity that involves obtaining the variation of the

crustal thickness in Oregon on the basis of observed surface data.

One approach will be based on a method of solving a system of quad-

ratic algebraic equations. The inversion of a linear integral equation

of the first kind by the Fourier transform technique will form the

basis of the second approach; the finite solution involves the computa-

tion of the second vertical derivative and the upward continuation of

the gravity field.

The review of the applicable partial differential equations of

potential theory and scalar fields and their solutions for various

source bodies provides the point of departure for this study.



THE POTENTIAL EQUATION IN APPLIED GEOPHYSICS

Force Fields

In potential theory, if an attractive force F over a region of

space can be expressed as the negative gradient of a scalar function,

i.e.

Vc

3

(1.1)

then F is called a conservative force; the function 4 is known as

a scalar potential function and can be shown to satisfy certain partial

differential equations of the second order known as Poisson and

Laplace's equations (Kellogg, 1929; MacMillan, 1958). Certain geo-

physical force fields can be described in terms of the potential func-

tion. As examples of these, the gravitational and magnetic fields will

be considered and the relevant equations derived for them.

Gravitational Fields

The law of gravitation discovered by Newton is that two particles

attract each other with a force which is directly proportional to the

product of the masses of the particles and inversely proportional to

the square of the distance between them. Thus if m and mQ are

the masses of two particles situated at the points P and Q

respectively and if rpQ is their separation, the magnitude of the



force of attraction between them is

mmQFy
rQ

where y is the universal constant of gravitation. Now let

be the vector joining the points P and Q, its direction being

Q P. In vector notation, the force of attraction exerted by the

mass mQ on rn is given by

4

(1.2)

mmQ
F(P) - 'j 3

rJ,Q (1. 3)
rQ

the minus sign indicating that the direction of the force is opposite to

that of the vector rQ. In the above equation if m = 1, then we

have
mQ

g(P) =
3

rQ
rQ

(1.4)

where g(P) is referred to as the gravitational acceleration due to

the particle of mass mQ at P. Define the quantity

m
U(P) = - rQ

It is easily seen that

(1.5)



g(P) = -VU(P) (1.6)

and hence U(P) is a gravitational potential and the form of the

expres sion (1. 5) gives the potential of the particle mQ at P.

Although Newton's law as stated above applies to particles, it

holds also for bodies with a continuous distribution of matter. In

Equation (1.5), let B be a body with a continuous distribution of

matter represented by the density function p(P). The total mass

within B is

mB dVQ

and by the principle of superposition we have

U(P) =
B

rQ dVQ (1.7)

Equation (1.7) gives the expression for the gravitational potential due

to a continuous distribution of matter represented by the density

function p(P). Assuming that B is finite, operate with the

Laplacian on both sides of Equation (1.7)

v2U(P) =

B
rQ dVQ



and interchange the integration and differentiation, which is permis-

sible when p(P) and B are bounded

v2u(P) -S p(Q)v( 1
)dV (1.8)

B
rQ Q

We then have (Duff and Naylor, 1966)

1 -48(P-Q)P rQ

where o(P-Q) is the three-dimensional Dirac delta function. Sub-

stitute into Equation (1. 8)

or

v2U(8) = 4ir1p(Q)ô(P-Q)dV0

v2U(P) = 4yp(P) (1.9)

This result is Poissons equation. If the point P is located in a

region of space in which there is no mass distribution, then p(P) = 0

and we have

v2U(P) = 0 (1. 10)

which result is the well known Laplace equation.



Magnetic Fields

Assuming for convenience that magnetic monopoles exist, the

fundamental law of magnetic force is that a magnetic pole of strength

at a point P in the field of another pole of strength mQ at a

point Q and at a distance rQ experiences a force F whose

magnitude is given by

mmQ
F

r
PQ

(1. 11)

the force being attractive if the poles are of opposite polarity and

repulsive if the polarity is the same. In vector notation, define

as the vector joining the points P and Q, its direction

being Q P. If the poles are of opposite polarity, the attractive

force experienced by the pole at P is given by (mQ is negative)

mm
F(P)= (1.12)

rQ

If in Equation (1. 12), m 1, we shall have



mQ
H(P)

3
rQ (1. 12a)

rQ

in which H(P) is the magnetic field intensity at P due to the pole

of strength mQ. Define the quantity A(P) by the relation

It is seen that

mQA(P) = (1. 13)rQ

H(P) = -vA(P) (1. 14)

and hence A(P) is a scalar magnetic potential function and the form

(1. 13) gives the scalar magnetic potential of an isolated magnetic

pole.

Magnetic poles probably do not exist in nature. Magnetic fields

are due to currents, and small current loops can be approximated by

dipoles. A dipole or doublet comprises a pair of opposite pole

strengths -m and m at points Q- and Q+ at a distance d

apart, d being infinitesimal and m correspondingly large so that

the product md has a finite value M. M is called the magnetic

moment of the dipole and the line Q-Q+ is called the axis. The axis

is considered as having the direction Q-Q+. The moment can be
- ____

specified by the vector M of magnitude M and direction Q_Q+.

If the vector Q-Q+ is denoted d, then

Mmd (1.15)



If the position of another point P relative to the dipole is specified

by the position vector rQ and inclined at the angle 0 to the axis,

Q being the center of the dipole, then the scalar magnetic potential

due to the dipole is given by (Chapman and Bartels, 1940)

A(P)
M cos 0

rQ

= -M.v ( ) (1.16)Pr0

and the force experienced by a unit pole at P is

H(P) = -vA(P)

1=v(M.v( )) (1.17)r0

Now suppose that a closed finite region B has a continuously dis-

tributed magnetic dipole moment per unit volume given by M.

Then by superposition, the scalar magnetic potential at a point P

outside B is

A(P) = cM(Q).V (
1 )dVQrQ Q

and since B is finite

A(P) =
(v.M(Q))

B
rQ dVQ (1.18)
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Since B is finite, operate with the Laplacian on both sides of

Equation (1. 18)

z(' (VQM(Q))
v2A(P) = -v rQ dVQ

= SVQ.MQV;'dVQ (1.19)

As before, rewrite
2 1 in terms of the Dirac delta function,Pr0

i.e.

2 1
VP(rpQ) = -4w6(P-Q)

Substitute into Equation (1. 19) and we have

or

v2A(P) = 4S(v .M(Q))6(PQ)dV

v2A(P) = 4irV M(P) (1.20)

which is Poisson's equation for the magnetic case. If the point P

is located in a region of space without dipole distribution, then

M(P) 0 and we have that

v2A(P) = 0 (1.21)

which is the Laplace equation.



Stationary Flows Without Vorticity

In discussing stationary conduction flows such as the flow of a

fluid in porous, isotropic media, let F represent the rate of flow

through unit area. Assuming the existence of a flow potential, we

have for the stationary flow

-
F=-Kv4

11

(1. 22)

where K is known as the conductivity of the medium through which

the flow takes place. is referred to in this case as the flow poten-

tial. For the flow across a closed surface enclosing a volume V,

the equation of continuity applies, i. e.

FUndS = AdV (1. 23)

where n is the outward normal to S and A is the source

density. It represents the rate of generation or of decrease of the

fluid inside V. From Gauss's law

FndS div FdV

and so by substituting for the left-hand side of Equation (1.23), we

obtain
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$divFdV= $AdV (1.23a)

Substitute from Equation (1. 22) into (1. 23a)

-Sdiv()dV = $AdV (1. 24)

The above equation holds for any volume V and so the integrands

should be equal. Consequently

-div(KV4) = A (1. 25)

which is a generalized potential equation. If K is constant, Equa-

tion (1. 25) becomes

-Ky
2

A (1. 26)

which is a potential equation of the Poisson type. As examples of

stationary flow fields, heat transport and stationary diffusion fields

will be considered.

Heat Transport Fields Including Convective Terms

Consider a body B of incompressible material in which the

temperature at a point P and time t is T(P, t). Assume that

the material of the body is moving with velocity U(P, t) and that



13

heat is being generated in the material at the rate S per unit mass.

Assume also that there is a fluid percolating through the material and

whose velocity relative to the material at the point P and time t

is V(P, t). With these assumptions, the rate of heat conduction,

c' through a surface element dA of the material is given by

Fourier's law as

= -KdA grad T (1. 27)

where grad T is the temperature gradient along the outward normal

to the surface element and K is the thermal conductivity of the

material. If the material is isotropic, K is a scalar quantity. For

non-isotropic materials, however, it is a conductivity tensor.

The fluid percolating through dA in the material transports

heat relative to it at the rate dHf given by

wh e r e

dHf SPfVTdA

=sM TdAm

M pVm f

s = specific heat of the fluid

Pf = density of the fluid

(1. 28)

The total heat transport Q is the sum of
c

and dHf. i. e.
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Q = -K grad T + sM T (1. 29)
m

On the basis of the above results and by standard method one obtains

the heat transport equation (Bodvars son, 1966)

DTpS + div(KgradT) + s div(M T) = PC (1.30)
m Dt

Since the material of the body is moving with velocity U, the

quantity has to be interpreted as the total 'derivatives

-+UgradT (1.31)
Dt at

Assuming that the fluid is incompressible, div M 0 and hence

div(M T) = M .grad T (1.32)
m m

Substitute from Equations (1.31) and (1.32) into Equation (1.30) and

we have the final expression for the heat transport equation

where

div(KgradT) + pS pc + pcf.grad T (1.33)

sM
-j T+ m (1.34)

PC

Equation (1.33) is the general heat transport equation.
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In some aeolotropic media, the conductivity, K, is a diagonal

matrix with elements which are the same in two directions but differ-

ent in the third. If the elements are K , K and K , but with
X y Z

K K = K , we have
x y 0

8x oax ay oay az z

(1. 35)
and Equation (1.33) becomes

K I) + ---(K -) + --(K I) + pS = pc pcf grad T
ax o 8x ay o ay &z a at-

(1.36)

If the conducting material is at rest and there is no fluid motion

through it, the transport vector f is zero and the equation is

a a a a a aT aT(K -) +(K -) +(K -) + pS pc
8x o 8x 8y o ay az z 8z

37)

Equations (1.36) and (1.37) describe non-stationary phenomena, i. e.

those phenomena in which the temperature varies not only in space but

also with time. In deriving them, the conducting medium has been

considered to be aeolotropic. If K = K = K = K and the material
x y z

is homogeneous, then the heat transport equation becomes

KV2T = pc---+ pcfgrad T - pS (1.38)

For stationary phenomena, = 0 and we have
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2Ky T = pcfgradT - pS (1.39)

which result may be considered as an extended potential equation. If

the conducting medium is at rest and there is no fluid motion through

it, then f 0 and Equation (1.39) becomes

-KV2T pS (1. 40)

which is a potential equation of the Poisson type. The corresponding

heat flow is a potential flow.

Stationary Diffusion Fields

Consider a substance that is being transported by a simple diffu-

sion process. Let its concentration and density be s kg/kg and

S kg/rn3 respectively and q its flow in kg/rn2 sec. The density

and diffusive conductivity of the solvent are respectively p kg/rn3

and K kg/rn sec. Fick's law of diffusion gives the flow, q, of the

substance by the relation

q-Kgrads (1.41)

Put s = and assume that p is constant. We have
p

q -agradS (1,42)

where a = and is known as the diffusivity. Starting from Equation
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(1.42), the derivation of the diffusion equation follows a pattern which

is similar to that of heat transport fields. The resulting diffusion

equation is (Sutton, 1953)

a as a as a as as(a ) + (a ) + (a ) - + V grad S (1. 43)
ax xax ay yay az zaz at

where V is the velocity with which the medium moves and a , a
x y

and a are the values of the diffusion coefficient in the x, y and

z directions respectively. If the coefficients are constant along

their respective axes, Equation (1.43) becomes

a2s a2s a2sa+a+aVgrad5+ (1.44)
x 2 z 2

ax az

For the stationary case in which there is a source of strength

Q kg/rn3 sec and for which the diffusion coefficient is a constant, we

obtain

-aV25 Q (1.45)

which result is a Poisson-type potential equation. It is thus seen that

the stationary diffusion process with constant diffusivity is equivalent

to a potential flow.



THE INTEGRAL EQUATIONS OF INTERPRETATION THEORY

The geophysical interpretation of potential field data involves

essentially the determination of unknown source parameters from

known field values. The problem is often referred to as the inverse

problem of potential theory. The earliest approach to solving the

problem is the indirect method, according to which theoretical field

values are computed for assumed models of the source and compared

with the observed values for a fit. Adjustments are then made to the

model, if necessary, and the theoretical field values are recomputed

until the best fit is obtained. A.n alternative is the direct method,

which seeks solutions to the inverse problem by means of numerical

and analytical techniques.

In general, the inverse problem of potential theory does not have

a unique solution, for there is not enough information to determine the

size and shape of the source completely and unambiguously from its

potential field. In the simple cases in which unique solutions can be

found, the direct method often involves the solution of certain integral

equations in two or three dimensions. The integral equations derive

from the general solutions of the equations whose derivations have

been given in the previous chapter. In this chapter, the fundamental

integral equations are established for some simple cases pertaining to

gravitational and heat transport fields.
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Gravitational Fields

Basic Theory

In the previous chapter, the gravitational potential due to a

continuous distribution of matter has been shown to be (Equation (1.7))

U(P)
p(Q) dV (Z. 1)

BrPQ Q

rQ being the distance from the field point P to the source point

Q. The gravitational acceleration at P is derivable from U(P)

and is given by

or

g(P) = vU(P)

g(P) = YSVP(' )p(0)dV0 (2.2)

which, in the case of an unknown density, is an integral equation in

p(P) and is the fundamental integral equation of interpretation

theory. If g(P) is given outside B, as, for instance, on a plane

not intersecting B, the problem of solving Equation (2. 2) for p(P)

is underdetermined. The sphere of constant density provides a simple

illustration of the underdetermined nature of the problem. The mass

of the sphere can be considered as concentrated at its center without



changing the external gravitational field, i. e. , the field in the space

for which r0 > R, R being the radius of the sphere and 0 its

center (Garland, 1965). Thus for all points external to the sphere,

the evaluation of the integral in Equation (2. 1) gives (Garland, 1965)

We then have

M
U(P) = "i' r

(2. 3)

g(P) = \IMVp(r') (2.4)

20

where M is the total mass of the sphere and is given by the expres-

s ion

M = irR3p (2. 5)

Whereas the total mass of the sphere is obtainable from Equation

(2. 4), it is not possible to uniquely determine p from M accord

ing to Equation (2. 5), since different combinations of the values of p

and R can be found to satisfy this equation. Hence the problem is

underdetermined. There exist, however, some simple cases for

which Equation (2. 2) possesses unique solutions, provided that

restrictions are imposed on some of the source parameters. The

fundamental integral equations are established for these cases.
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Single Body With Given Constant Pensity

The determination of the shape of a single body B, assumed

to be of given constant density p, causing a gravitational field leads

to the solution of the integral equation

g(P) v ( )dV (. 6)
BPrPQ Q

for the form of B. The equation may be rewritten in the form

g(P) x(Q)V(' )dVQ (Z.7)
space PQ

which is an integral equation in X (Q); x (Q) is the characteristic

function of the body and is defined as follows

(P) =
1 for P inside B

0 for P outside B

Since two characteristic functions cannot be superposed, Equation

(2. 7) is a non-linear integral equation. By using the formula

1 1X(Q)P(Q)) = P(Q)X(Q)VQ( )+ v((Q)p(Q))VQ( rQ rQ rQ
(2.8)

it is possible to recast the volume integral in Equation (2. 6) into the

surface integral (Bodvarsson, 1969)
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= dAs

where k is the unit vector in the direction of the gravitational

acceleration, n the inward normal to the surface 7 of the body

and S a point on the surface. The use of Equation (2. 9) to compute

the vertical acceleration of bodies bounded by vertical faces has the

advantage that the product kn is zero for these faces; consequently

their contribution to the acceleration is zero. Equation (2. 6) or

equivalently (2. 9) is the fundamental integral equation of the single

body with constant density.

Infinitely Thin Sheet With Variable Mass Density

Let the sheet be represented by the surface and let its

mass density be rn(x, y). If h(x, y) is the depth of the sheet, the

mass density may be written in terms of the one-dimensional Dirac

delta function, i. e. , mass density = m(x, y)5(z_h(x, y)). Then by

using Equation (2. 2), the vertical acceleration g(P) caused by the

sheet is given by

wh e r e

g(P) = YS
(z-)m(, i)f-h(x,y))

3
dVQ (2. 10)

space rQ

rQ = (x)2 + (yfl)Z + (z)2
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g(P) $
(z-h(x,y))m(,)dd (2 11)

2 2 23/2
[(x-) + (y.11) +(z-h(, 1))

which is the fundamental equation for the infintely thin sheet.

Two Homogeneous Layers With a Slowly Undulating Interface

This case derives from the situation in which a layer, of con-

stant density p1, is underlain by a second layer, also of constant

density p2, the two layers being separated by a slowly undulating

interface. It is assumed that is greater than p1. The upper

part of the top layer is assumed to be bounded by the plane z = 0,

while the bottom of the lower layer is assumed to be a plane at a fixed

depth. There is an average depth H to the interface such that

D(S)dAs H for large A (2. 12)

where

dAs = surface element at the point S on the interface

D(S) = depth of the interface at the point S

The problem arising from this case is to calculate the relief amplitude

h(x, y) on the basis of observed surface anomalies and a given density

contrast Ep = p2-p1. Let d be a reference depth which is chosen

to be of the same order as H. The model used is shown in Figure 1
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below.

p2

P(x, y, 0)

D(x, y)

z0

z

Figure 1. Illustration of the two homogeneous layers with a
slowly undulating interface.

Since a slab of constant density does not produce a gravity

anomaly, with reference to Figure 1, the vertical gravity anomaly at P

is given by

dddag(P) = -p
[(x-)2+(y-n) +(z-) I

2 21/2

=
(z-)ddd

iO
(2. 13)

If the point P is located on the surface, then z 0 and the

expression for the anomaly is



D(,) ddidg(P) =
[(x-)2+(y-fl) + I

2 23/2

D(x, y) may be written as

D(x, y) = d - h(x, y)

Substitute into Equation (2. 14) and we have

d-h(,)
g(P) = -p $ $ $

[(x-) +(y-fl) + I

2 2 23/2
110

d

S 2 Z3/2= -YP çTh

'ii 0 [(x_) +(y-) + ]

d-h(, r)
- SS 2 2 3/2

d [(x-) +(y1) + I
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(2. 14)

(2. 15)

The first integral on the right-.hand side of Equation (2. 15) is a con-

stant since the limits of integration are fixed. Denote this integral by

g . Then Equation (2. 15) becomes
0

d-h(,) -d
2

g(P) = g
+ [(x2+yfl +

g0 +p$$t [x)2+(yn)2+(dh)ZIh/Z

1

2 2 2 1/2 dd (2. 16)
[(x_,) +(y_r) +d I
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1 1

M=
2 2 21/2 2 2 21/2

[(x-) +(y-) +(d-h) ] {(x-) +(y-fl) +d I

(2 17)

= [(x-)2+(y-n)2+d2F'12[1-
2dh-h2

[(x)2 2 2
- +(yr1) +d I

2 2 2-1/2
- {(x-) +(y-fl) +d ]

R1{1- Zdh-h21-1/2
-

R2

2 2 2 2
R = (x-) + (y-n) + d

(2. 17a)

-h2 -1/2
The binomial expansion of the factor [i Zdh

I
in Equation

R

(2. 17a) gives

13
Zdh-h2

F112 = +
1 Zdh-h2 2x2 Zdh-h2 2

2
(-i-)[i-

R2 R 2! R (2. 18)

The right-hand side of (2. 18) is an infinite series whose nth term

Is

13 zn-1
2x .. . x(

2 Zdh-h )fll (2. 19)
2

U (n-i)! Rn

for n >1

The (n+1)th term is
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1 3 5 zn-i zn+l
Zdh-h2 n (2.20)2 2

Un+i:: n! R

The ratio of the (n+i)th term to the nth term is

zn-i Zn+i1 3
5 . . .x(

2 Zdh-h2)n
2n! R

U
1 3 5 Zn-in xx
2 2

. x( Zdh-h )fli

(n-i)! R

1 Zn+i Zdh-h2
2 2

R

(1i)(zdh-h
Zn

R2
(2.21)

If it is assumed that jhI<< d,

n+i becomes
n

then dh - h dh. The ratio

2(i+) dh
U ZnZ

n R

Un+i.
Limit <1
n n R

since R is much larger than both d and h. It follows that the

series on the right-hand side of Equation (2. 18) is convergent. Since



we have assumed lh << d, we may terminate the binomial expansion

at the third term and write

where

13
(1

Zdh-h2)i/Z i Zdhh2 Zdh-h2
2

)+
2!

R2
+E

R R

1 +
dh h2 3d2h2 3dh3 3h4

R2 ZR2
-

ZR ZR 8R

dh (3d2-R2)h2 6dh3-3h4 +E
R ZR4 8R4

= 1 + (3d2-R2)h2 + E' (2. 22)2+ 4
R 2R

6dh3-3h4= E - (2. 23)
8R4

E being the error involved in terminating the expansion at the third

term. The quantity M becomes

-1 dh (3d2M = R [i+ +
-R2)h2 + F!] - R'

R2 ZR

222
dh (3d -R )h (2.24)

ZR5
R

The gravity anomaly is then given by
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g(P) g
+

h(,) dd

+ f
(3d2-R2)h2(,

+ p

Ti ZR5 11

(2. 25)

Put g(P) - g = g(P) and the expression (2. 25) becomes

g(P) = ç dh(, n) (3d2-R2) h2(, Ti) dd
n R3

+

ZR5

+ p$$ (2. 26)

which is a non-linear integral equation in h(x, y). It is the funda-

mental integral equation for the two homogeneous layers with a slowly

undulating interface. Equation (2. 26) cannot be solved in its present

form. To obtain a solution, it first has to be either quasL=-linearized

or linearized.

Two- Layer Case Having a Vertically-Constant-Density
Lower Layer

This case consists of a layer with constant density p1 over-

lying a second layer in which the density distribution is represented

by p2(x, y), the vertical density contrast being

p(x,y) p2(x,y) p1. The layers are separated by a slowly undulat-

ing interface. See the definition (2. 12). The top layer is bounded at
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its upper face by the plane z = 0 and the lower layer is bounded at

its bottom face by the plane z H. See Figure 2 for an illustration.

P(x,y,0) = 0
/ X/ / 7/ A/ /77 J / / / 7/ / / / / 7 / / / '

D(x, y)

p2(x, y)

,)

Figure 2. Illustration of the two-layer case having a vertically..
constant-density lower layer.

The gravity anomaly at any point P is (see the explanation for

the two homogeneous layers)

a ( 'dVQg(P)-j rQspace

H
(2. 28)=

SSSD(, i)

If the point P is located n the surface, then z = 0 and Equation

(2. 28) becomes
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H 11)ddnd,
g(P)

1) [(x-) +(y-fl) +2 2 23/2 29)

From this point on, the derivation follows a pattern similar to that

for the two homogeneous layers. The gravity anomaly is given by the

express ion

g(P)
{

dh(, n) + (3d2)h2(, n) )dd
ri R3 ZR

+ p()dd (2.30)

which is the fundamental integral equation for the two-layer case

having a vertica11y-constnt-densitv lower layer. It is non-linear in

h(x,y), but can be ]iiiearized if Ih< d.

Heat Transiort Fields

Basic Theor

The interpretation of heat flow anomalies i.s done on the basis of

solutions of the general heat transport equation with appropriate

boundary conditions. Problems of this type are discussed by Shih

(1968). The general heat transport equation has been found to be

(see Equation (1. 33))
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div(K grad T) = Pc + f grad T p5

div(agradT) +fgrad T S/c
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where a and is the diffusivity of the conducting medium. While

no general solutions of this equation are known, solutions can be

obtained by the perturbation method for those cases in which f is

small or zero and variations in K or a are small. Let the

conducting medium be an isotropic half-space in a steady state and let

the heat production be zero, i. e. , S 0. We will assume that the

thermal diffusivity may be considered as consisting of two terms,

i. e.

aa +a with aI<<IaI
0 1 1 0

where a is constant and a is due to perturbation. it is
0 1

assumed that f is small. The temperature is given to a first

approximation by

T=T +T
0

where T is a solution of the Laplace equation and T1 is the

small temperature perturbation due to a1 and f. Substitute T

into the heat transport equation and neglect second-order terms in

T1. There results the equation
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V - [div(a1 grad T) - f grad T] (2. 32)
0

which is a Poisson-type equation. Suppose that the following boundary

condition must be satisfied

T0 at zO

Then Equation (2. 32) can be solved by the method of Green's function,

the solution being

where

T1 (2.33)
0

-F(Q) = div(a gradT ) -fgradT
1 o 0

G(P,Q) = Green's function

The Green's function for a homogeneous isotropic half-space with zero

surface temperature is (Duff and Naylor, 1966)

G(P,Q)= 1 1

4irr 41rrQl

where Q' is the image in the upper hal.f-space of the source point

Q. The disturbed thermal gradient is

= -SSSF(Q)G(P,Q)dvQ (2.34)
0 space
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&a DT

$$ (2.35)g g0 2jTa space 3
0 r

2 2 2 2
r = (x-) + (y-) + (z-)

Equation (2. 35) is the fundamental equation that is applicable to prob-

lems involving the perturbation of the heat-flow fields. The problem

of a basement rock covered by sediments with variable thickness and

a flat surface is discussed below.

Basement Rock Covered by Sediments With Variable
Thickness and a Flat Surface

The basement rock, of constant conductivity K2, is covered

with sediments, also of constant conductivity K1 and a flat surface.

It is assumed that K2 >K1. The interface separating the two layers

is assumed to be a slowly undulating one at a mean depth d (see

Equation (2. 12)). See Figure 3 for an illustration of this case. The

problem that arises from this case is to determine the relief ampli-

tude h(x, y) and hence the thickness of the sediments from the heat

flow anomalies measured on the surface of the sedimentary layer.
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P(x, y, 0)

Basement rock, K2

z0

z

Figure 3. Illustration of basement rock covered by sediments
with variable thickness and a flat surface.

Assume that the conducting layers are at rest and have no fluid

moving through them, i. e. , the transport vector f in Equation

(1. 35) is zero. If it is further assumed that the difference between

the conductivities K1 and K2 is small, then the problem can be

solved by the perturbation method and the approximate solution (2. 35)

is valid, viz.

8a DT
g = g0 Zira 5$

0 space 3r

Write K with the help of U(z), the unit step function, i. e.

K = K1[1+
K1

)U(z-D)J

Differentiate with respect to z

(2.35)
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- K 
K2-K1 

8z l K1 
6(z-D) 

If the product pc is assumed to be the same for both layers, we 

obtain by dividing both sides by pc 

K 
K1 K2-K1 

.; (;.;) = K1 
8(z-D) 

Da______ )ö(z-D) 
az 0 K1 

Substitute into Equation (2. 35) and integrate over the source hail- 

space. One obtains for the surface thermal gradient at z = 0 

1 
= g0 - K1 

)g0 
D(,) ddi (2.36) 

r 

2 2 2 2 
r = (x-) + (y_11) + D 

Put D(x,y) = d - h(x,y), and substitute into Equation (2.40) 

K-K 
1 2 1 

______ 
(d-h(, r))ddr 

= g0 - K1 
)g0 [(x-)2+(y- 2 2 3/2 

r) +(d h(,q)) 
(2. 37) 

Carry out the series expansion along the same line as for (2. 16) and 

neglect all terms containing h(x, y) raised to the third power or 
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greater. The final express ion is

where

i_______
K1

)g0

S+ (3dR2)h() (l5d39dR2)h2()dd
R5

+
ZR7

(2. 37)

2 2 2 2R = (x-) + (y-q) + d

which is a non-linear integral equation in h(x, y). It is the funda.-

mental integral equation for h(x, y) in the case of a given surface

temperature gradient.



APPLICATION TO A GRAVITY PROBLEM

Introduction

The two-layer homogeneous case is encountered in the earth, in

which the curst overlies the mantle, the boundary between them being

called the Mohorovicic discontinuity. According to the theories of

isostasy (Airy, 1855; Pratt, 1857; Vening Meinesz, 1931), a variation

in the thickness of the crust is to be expected in areas of varying

topography, the thickness being greater under mountains and smaller

under areas of low relief and valleys. Several studies have been

undertaken with a view to testing the validity of these theories. (See,

for example, Putnam and Gilbert, 1895; Hayford, 1906; Reid, 1911;

Bowie, 1921, 1922; Washington, 1922; Byerly, 1937; Gutemberg,

1943; Woollard, 1962. ) The various lines of evidence show that

isostasy is true in general, although no one isostatic system is able

to completely explain the actual conditions.

The problem tackled is the application of the results obtained

above to the investigation of the variation of crustal thickness in Ore-

gon by two different computation methods based on the fundamental

Equation (2. 26) derived for the two-layer case with constant densities.

The crust and upper mantle are assumed to be homogeneous and two

values are tentatively assumed for their density constrast, namely,
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0.45 gm/cc and 0.60 gm/cc. The first value is adopted from

Woollard (1969) and is the presently adopted value; while the second

value is adopted from Coulomb and Jobert (1963) arid is the previously

adopted value. The undulating character of the crustmantle interface

and the density jump across it perturb the earth's gravity field. The

perturbation is reflected in the form of variations in the gravity field.

Assuming a slightly undulating interface then on the basis of

equation 2,26) it is possible to investigate the variation of the

crustal thickness and to obtain a model of the crust that is consistent

with the known values of the Bouguer field and also with the crust-

mantle density contrast and an assumed average depth of the crust-

mantle interface.

The first method of analysis is the digitized algebraic method.

It starts off by solving the quasi-linearized form of the fundamental

equation (2. 26) for the relief amplitude h(x, y) by an iterative

method. The solution is programmed for use in the Oregon State

University CD 3300 computer. The values of h(x, y) so obtained are

converted into crustal thicknesses by addition to, or subtraction from,

d, the assumed average depth of the crust-mantle interface. To

check on the accuracy of the method of computation that has been

designed, two two-layer models are constructed with the top layer

varying in two dimensions in one case and in one dimension in the

other. From the thicknesses of the top layers, gravity anomalies are



40

computed from which the thicknesses are recomputed. A comparison

between the model thickness and the recomputed thickness provides a

basis for making a judgment on the accuracy of the digitized algebraic

method.

The second approach to the problem inverts a linearized form of

Equation (2. 26) by the Fourier transform technique. The formal solu-

tion involves the second derivative of the regional field and its upward

continuation. Computer programs are developed for performing

these two operations and also for obtaining the final solution. A com-

parison is established between this method and the algebraic method,

which is illustrated by means of critical cross-sections through the

results obtained by the two methods.

Some results are available from previous investigations of the

crustal thickness in Oregon by different methods. A comparison is

established between these results and the results obtained from the

present investigation.

Physiography of Oregon

The physiography of Oregon is characterized on the west by the

Coast Range, to the south of which lie the Kiamath Mountains. The

general crestline of the former is about 455 meters in altitude while

the latter show a maximum relief of about 1,550 meters. The

Willamette Valley is a depression with hills of moderate relief. It
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separates the Coast Range from the Cascades, which extend the entire

length of the state and whose eastern margin is marked by a crestline

that averages a little more than 1,550 meters in altitude. The

Cascade Range is studded with such peaks as Mount Hood, 3,420

meters; Mount Jefferson, 3, 280 meters and the Three Sisters, of

which the South Sister stands 3, 240 meters high. East of the Cas-

cades, the relief changes from 910 meters in the Deschutes-Umatilla

Plateau to 1,550 meters in the Blue Mountains and dips to a moderate

altitude in the High Lava Plains before rising to a little over 1,210

meters in the Basin and Range province and the Owyhee Plateau. The

physiographic map, adopted from Baldwin (1964), is presented in

Figure 4.

Data and Regional Field Separation

Source of Data

Some of the gravity data used in this investigation are the results

of measurements made by the following organizations: The Univer-

sity of Wisconsin, U.S. Geological Survey, the University of Oregon,

Southern Methodist University, Standard Oil of California and Humble

Oil and Refining Company. Data from these sources were supple-

mented by measurements made by the Geophysics Group at Oregon

State University at about 500 selected stations within the state.
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Altogether 4, 000 measurements were selected and adjusted, where

necessary, to the gravity base stations in the state.

Complete Bouguer gravity anomalies are available, having been

calculated using a crustal density of 2.67 gm/cc. Data from 460 sta-

tions have been terrain-corrected using Hammer's terrain correction

chart for zones D through M (Hammer, 1939). Terrain corrections

for many of the other stations have been achieved by interpolation. In

southwestern Oregon, the stations have been individually terrain cor-

rected by Blank (1965).

A Bouguer map can be regarded as consisting of two components.

There are the larger features, characterized by smooth trends that

extend over considerable areas. These may be considered as caused

by deep-seated crustal features and are known as the regional field.

Superimposed on these are the smaller disturbances of a more corn-

plicated configuration, caused by crustal structures that are close to

the surface. These are the residuals. Within the context of the pre_

sent investigation, the regional field is the more important and has

to be separated from the complete anomaly field.

Regional Field Separation

There exist three well known methods for separating the regional

field from the total anomaly field. These have been described by

Peters (1949), Elkins (1951), Henderson and Zietz (1949), and
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Simpson (1954). For the purpose of this investigation, a 10th_degree

polynomial map constructed by Thiruvathukal (1968) according to

Simpson's least-square polynomial method was used. The resulting

map is shown in Figure 5.

Calculations were carried out on ZOO anomaly field values

selected from corresponding points on the complete anomaly map and

the regional map. According to the result, the regional field values

showed a root-mean-square deviation of 13. 79 mgls from the com-

plete anomaly field. A comparison of the root-mean-square deviation

with the regional field values showed that on the whole the regional

field makes up a substantial part of the complete anomaly field.

Given the underd etermined nature of the problem of calculating the

source parameters from known field values, the least-square poly-

nomial method and, for that matter, any other method of separating a

gravity field into regional and residual components is ambiguous. It

has been argued, however, that the method is based on the assumption

that the regional field is smooth enough to be represented by a low-

degree polynomial surface while the residual is not. This argument

has been assumed to be true to some extent in gravity surveys; and

so the application of the least-square method can be relied upon to

give useful results.

In the absence of lateral variations of density within the crust

and upper mantle, the lOthdegree polynomial surface will be assumed



Figure 5. 10th degree least-square polynomial for the Bouguer gravity anomalies
of Oregon. Contour interval 10 milligals. Reproduced from Thiruvathukal.
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to reflect anomalies due to the density jump at the Mohorovicic dis-

continuity.

The Digitized Algebraic Method

rrhe Working Eqtion

In Equation (Z. Z6), since Ihl<< d, the second integral on the

right-hand side can he ignored so that we have

5
h(,n) (3dZ )h2 dd (3.1)+

ZR5

which is the working equation for the algebraic method. Since jhj<<d,

the first term on the right-hand side is much larger than the second

and Equation (3. 1) may be called a quasi-linear integral equation in

h(x, y). It involves an error term which may be denoted by and

which is given by the integral (see Equation (Z. Z6))

wh e r e

E j --ddr1

E = E 6dh3-3h4

E - 6(4)

(see Equation (Z. Z3))



47

E being the remainder that results from terminating the binomial

Zdh-h2 -1/2
expansion of the quantity (1- ) at the third term.

R
Arfken (1966) has shown that the binomial expansion of the function

f(x) = (l+X)m, where m is a negative integer or fraction, leaves

a remainder R bounded by
n

IRnI < m(m-l) ... (m-n+1)
I

if the expansion is terminated at the (n-l)th term. By comparison

1 Zdh-h2
with the problem on hand, m = - and x

2
and so

R

We then have

tEl < I

lx3x5x7 dh-h2 4
8x4! R

1x3x5x7 ()( a)4
8x4! 2 d

lx3x5x7 dh
8x4! since 1 >>h/d

R

1x3x5x7 dh dh3
IE'I

I
(-) 6()8x 4! R 8R

Consider an anomalous source point that is located directly under a

field point For this source point, R d and consequently the

error at the field point is at most



1x3x5x7 h b h
8 x4! d2

dd - p()33d

A. calculation with the values of p = 0.60 gm/cc, d Z5 km and

gives an error of not more than 3. 50 rngals from the source

point located directly under a field point. For the other source

points, the error is very much smaller still, since R is always

much larger than d and h, so that the total error at a field point

should at most be comparable with the uncertainty involved in the

regional field values used in this interpretation.

Transition into a Set of Algebraic Equations

In order to solve the working equation by an algebraic method,

it first has to be transformed into a system of algebraic equations.

To this purpose rewrite it in the form

where

K1(x,y;,fl)h(,)ddfl

+ 2$$ K2(x,y;,fl)h2(,fl)ddfl (32)

c1

- y.Apc2-
2



1
K1

R

223d -R
K2

ZR

Since in practice we are dealing with a finite area, the integrals in

Equation (3. 2) may be replaced with a summation (Kantorovich and

Krylov, 1958). Suppose that the integrals are carried out over the

same intervals, ay, (a, b). We shall then have

= c1 K1(x, y; , )h(, fl)dd11

+ cZSSKZ(x,y;,fl)h2(,fl)ddfl (3.Za)

Divide the interval (a, b) into n equal sub-intervals of length

b-a- LX y = 11.
n

Put

K1(a+px,a+qy;a+r,a+sfl) K
1 pq r S

K2(a+px, a+qy; a+rL, a+s) K Zpqr S

h(a+rL,a+s) = h rs

2 2h (a+r,a+sYI) = hrs

g(a+px, a+sy)
pq
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where

p,q: l,Z,...,n
r,s

Equation (3. Za) may now be replaced by

c K h +c K h2 n=g
1 lpqrs rs 2 Zpqrs rs pq
r1 sl rl s1 (33)

which is a set of n2 quadratic equations in n2 unknown hrs

As L and fl both tend to zero, the summation goes over into

Equation (3. 2a).

Solution by the Iterative Method

Since the main contribution to the Bouguer field is so much

larger than the second-order effect, because
J

h < d, and since the

iterative method of solution that is envisaged is applicable only to

linear systems, an approximate initial solution will be obtained by

ignoring the quadratic term in Equation (3. 3). We then have to solve

the following equation for the approximate initial solution

n n

c1 K h Afl g (3.4)lpqrs rs pq
r1 s1

This is a set of linear algebraic equations in hrs and will be solved
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by the iterative method. This method gives the solution in the form

of a sequence of certain vectors all constructed by a uniform process.

In order to more easily discuss the process of constructing these

vectors and to investigate the conditions under which the iterative

method can be applied, rewrite Equation (3.4) in matrix form

KH = G (3.5)

in which for simplicity the constant c1 and the factor EtTi in

Equation (3.4) have been absorbed into the matrix of coefficients K.

H is the vector of unknown and C the vector representing the

observed values of the Bouguer field. Equation (3.5) may be trans-

formed into the following form

(K-I)H+H=G (3.6)

where I is the unit matrix. By transposing terms, we have

H= (I-K)H+G (3.7)

Put I - K F and substitute

H=FH+G (3.8)

H is obtained by solving Equation (3.8). The uniform process

referred to above goes as follows. Suppose that the solution is esti-

mated to be H = H (o) Construct the following sequence of vectors
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= FH° +

(Z)
= FH' + a-

(n)
+ FH' + a-

It may be seen that the process computes the nth approximation to

the h.. component of H by means of the formula

n n

h = + g.. (3.9)
'3

k1 L=l

which does not take into account the already computed nth approxi-

mation to the components h11,h12, . . . ,h.i-1,j-1
_..() _..()Now if the sequence H ,H , . . . ,H has a limit H,

then this limit will be the solution of the system (3.8); for in the

limit as n tends to infinity, the equation H = FH
(n-I) + G

tends to I-I FH + G. The solution may also be rewritten in the

f o rm
n-i(n)

H FnH(o) + (I+F+F2+. . . +F )G (3. 10)

This form may be verified by the method of induction. It is evident

from this last form of the solution that the iterative process converges

if the matrix series I + F + . . . + F' converges in a proper sense.

For the convergence to take place with an initial vector H (o) and
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with the value of the vector G, it is necessary and sufficient that

the eigenvalues of the matrix F all have absolute values less than

one (Fadddeeva, 1959). In order to verify this condition, it would be

necessary to calculate the eigenvalues of F, which will be a tedious

process. It is more convenient to judge the convergence in terms of

the elements of F. Scarborough (1966) gives a sufficient, though not

necessary, condition for the convergence as that the absolute value of

the largest element in any row or column of F be greater than the

sum of the absolute values of all the other elements in the same row or

column. Because convergence is necessary for the existence of a

solution to the system (3. 8), it is important that this latter condition

be verified once a computation scheme has been set up. Now suppose

that an estimate of the solution to the system (3.8) were =

Then the first iteration would give = G and the second iteration

= FG + G. If, on the other hand, the initial estimate were

H = G, then the first iteration would give H
(1) = FG + C,

which would be the same as the result of the second iteration for the

first estimate and the subsequent iterations would be one step ahead.

The second estimate, therefore, makes for a reduction of the number

of iterations necessary for convergence, which is an advantage.

Another fact to note is that since the system (3.8) is linear in char-

acter, one would normally expect H to have the same variation as

C. It follows from this fact that a natural choice for the estimate is
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a.

Equation (3.8) has a unique solution which m'.r be written in the

form H = K1G, provided that K is a non-singular matrix. In

relation to the problem in hand, G consists of the observed regional

gravity anomalies, which are subject to error. It is necessary to

investigate the effect of this error on the solution. Let us call the
-

error in G and the corresponding error in H 6G and oH

respectively. It can be shown (Forsythe and Moller, 1967) that

OH 1
OG

< IIKII IlK (2.11)-
I1 It Ii

where the norms of the various quantities are involved. Define the

condition number of K as

Then

cond(K) = IIK K'lI

-
IJ o'' II< cond(K) (3. 12)

II

IlIl . . .may be defined as a measure of the relative error in G. In

uGh
the same way, can be interpreted as the relative error in

H

H. It follows that cond(K) binds the relative error in H to that

of C. If cond(K) = 1, then hIoH bears the same ratio to
- -

tHu that hIOGhI bears to uGh; in other words, the relative error
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in H is precisely the same as that of G. If cond(K) is rela-

tively small, the error in C does not have an appreciable effect on

H. K is then said to be well-conditioned with respect to the error in

G. If cond(K) is relatively large, the error in C does lead to an

appreciably large error in H and K is said to be badly- or ill-

conditioned with respect to the error in C. In fact with large

cond(K), the effect of the error in C is reflected in the form of

high amplitude and high frequency noise in the solution. The noise

can, however, be removed by first smoothing the input regional field.

The point is elaborated by Bullard and Cooper (1948); Kreisel (1949);

Philips (1962) and Baker (1964).

While discussing the sources of error in the solution of Equation

(3. 8), a second point that is worth looking into is the extent to which

changes in the elements of K' affect the solution. Since K1 is

the inverse of K, the study of this effect reduces to a study of the

sensitivity of the elements of K1 to small changes in the elements

of K. K exists if the determinant of K is not zero. The ele-

ments of K are subject to rounding errors. In situations in which

the determinant of K is not much different from zero, the rounding-

off can change the elements in such a way as to yield a matrix with

determinant equal to zero. This is equivalent to saying that small

perturbations in the elements of a matrix may produce correspondingly

large changes in the elements of its inverse. Under this condition, the
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matrix is said to be unstable or ill-conditioned with respect to small

changes in its elements. It turns out, however, that the determinant

of a matrix of coefficients, such as K is, is not a reliable mdi-

cator of the stability of a system. A reliable indicator is the condition

number of the matrix (Forsythe and Moller, 1967). We may then

write

8H)I IIoK1I< cond(K) (3. 13)
-

IIHI( KII

Here also, cond(K) binds the relative error in K to that of H.

It is clear, therefore, that cond(K) is a reliable indicator of the

stability of H with respect to changes in the elements of K and

G. When it is greater than about 100, this indicates a relatively

unstable system (Emilia, 1968). A measure of the condition number

is given by

cond(K) = IIKIL IIK'I

n
(3. 14)

where and are the largest and smallest eigenvalues of K

respectively (Faddeeva and Faddeeva, 1963). Since K and hence

cond(K) are determined by the relative positions of the field points

and the centers of the anomalous blocks, it is imperative that these

positions be chosen in such a way as to make for a stable system.
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The choice will be made so that the centers of the anomalous blocks

are placed directly below the field points.

The method of solution discussed so far is known as the simple

iterative method. As has been pointed out already, it gives the nth

approximation to the h.. component of H by means of the formula

(see Equation (3. 9))

n n
(n-i)

h = fIjkhk + g..
13

k=l i=l

which does not take into account the already computed nth approxi-

mation to the components h11,h12, . . . Seydel's iterative

method on the other hand takes these into account and gives the nth

approximation to the component h.. according to the formula

(Faddeeva, 1959)

i-ij-1 n n

h = f.. h+ f.. + g.. (3. 15)
13 ijrs rs ijrs rs 13

r1 s1 r=i sj

The above formula has the advantage that it yields a more complete

solution than that expressed in Equation (3. 9). Consequently Seydel's

method was adopted as the method of solution.

For reasons already stated, in seeking a solution to the working

equation by the application of the iterative method, the non-linear



portion of the working equation has been ignored; it has also been

pointed out that any solution so obtained is only an approximate one.

However, such a solution can be improved upon by taking into account

the quadratic term in Equation (3. 3) and using the following iterative

improvement (Hertling, 1969). Call h any solution yielded by the

Seydel's iterative method. Since it is only an approximation, it may

be considered to be in error in relation to the complete solution of the

working equation by Lh, say, so that the complete solution is

Fi + Substitute h + th into a modified form of Equation

(3. 3) in which the matrices K1 and K2 and their associated con-

stant factors are replaced by the linear operators L1 and L2

respectively; at the same time make the approximation
- 2 --2(h +Ah ) h + Zh Lh since h << h . The resulting equation is
o o 0 0 0 0 0

Put

We then have

L (h +h ) + L ((h+h ))
1 o o 2 o o

L (h) + L (h) + L (h ) + L (h ) (3. 16)lo 2o 1 o 2 o

L (h ) + L (Lh ) = L (h ).
1 0 2 o 3 0

-
L (h ) = g - L (h ) - L (h ) (3. 17)

3 o lo 20

Equation (3. 17) is linear in i. By solving for h, we have the
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first complete solution of the working equation, namely,
-* -*

h = h + h This solution may itself be considered to be in error
1 0 0

by so that a more accurate solution is h1 ± Lh1. This is in

turn substituted into Equation (3. 17) and the value of h1 is calcu-

lated. The iterative improvement is continued until it converges. In

actual fact, the process may or may not converge. As Tanner (1967)

has pointed out, instability arises when a solution is being sought for

an assumed value of d that is too large. In view of this fact, non-

convergence of the iterative improvement can be interpreted as a

warning that the assumed value of d is on the high side.

Computation Scheme

The computer program that was developed to solve the working

equation was designed to take all the foregoing considerations into

account. First, the digitization of the regional anomaly field

required that the digitizing intervals be specified both in the east-west

or x direction and in the north-south or y direction.

Experience has shown that when the ratio of the digitzing inter-

val to the depth of the source plane exceeds half, excessive oscilla-

tions begin to develop and the solution becomes unstable (Dix, 1964),

This means in effect that for a stable solution the discrete represen-

tation of the input regional field should preferably be carried out in

such a way that the interval between field points is at least twice d
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the assumed depth of the source plane. The results of crustal studies

undertaken in Oregon show a crustal structure with greater variation

in the east-west direction than in the north-south, especially in the

western half of the state. This makes the digitizing interval more

critical in the former direction. Accordingly the interval was set at

80 km in this direction in order to allow the use of values of d of

up to 40 km while at the same time satisfying the requirement that the

digitizing interval should be at least twice as large as d. In the

north-south direction, the interval was fixed at half-degree latitude,

which was equivalent to a horizontal distance of about 55. 50 km. The

choice thus made allowed for a grid of 56 points aligned along eight

lines running from east to west at a separation of half-degree latitude.

Considerations of stability and the need not to force a solution on the

system make it imperative that the position of the center of each

source block be made to correspond with the position of a field point in

both the x and y directions. First, the positions of the centers

of the source blocks were fixed in the source plane so as to coincide

with the grid points. Then the field points were selected in such a

way as to coincide with the centers of the source blocks. Consequently

there was the same number of source blocks as of field points.

The computer program written was identified as GRAVCALC

and is reproduced in full in Appendix A.. There were two parts to it.

The first part was based on Seydel's method of solving a system of
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linear algebraic equations. The solution obtained from this part of

the program was called the initial solution and was fed as input to the

second part, which performed the iterative improvement that takes

the quadratic term in Equation (3. 3) into account. Since both parts

involved iterations, it was necessary to set a criterion for bringing

the iterations to an end. Many possible mathematical criteria can be

used. For instance, one can set such a criterion that the process is

stopped when

max 1G.. Ki.H < E (3. 18)

where E represents the error from measurement and data reduc-

tion. According to this criterion, the iteration is stopped when the

absolute value of the maximum component of the residual vector is

less than the estimated error in the input values. The disadvantage

with this criterion is that it involves a lot of tedious computation,

which is unnecessary. A second possibility is to set a criterion which

involves the required vector H. In this case, one can make the pro-

cess stop when the Euclidean norm of the vector H H_U is

less than some specified constant times the Euclidean norm of

(k-i)H, i.e.,
fl11 <constant ,(kl),1 (3.19)



62

The constant factor is chosen in view of the particular problem under

consideration. This second criterion was applied and the constant

factor was chosen to be 10. In view of the expected magnitudes of

the components of H, this figure was judged to be convenient.

Such was the flexibility built into the program that it was pos-

sible to stop the computer at any stage during the iterative improve-

ment and check on the results obtained after each iteration. Also,

the program was designed to produce two sets of results, one set at

the end of Seydel's iterative process and the second at the end of the

iterative improvement. It was, therefore, possible to compare the

two sets of results and to determine to what extent the iterative

improvement modified the results obtained by the Seydel's iterative

method.

Once the program was compiled inside the computer, the follow-

ing tests were carried out. First for three values of d, viz.

25 km, 30 km and 35 km, corresponding values of cond(K) (see

Equation (3. 14)) were calculated. They were all found to be approxi-

mately one, indicating stable systems for all three values of d.

Next the condition was tested as to whether the convergence of the

SeydelTs iterative process was possible. This condition was satisfied

for all three values of d. So convergence was expected. The

computations were carried out only after these tests had been made.

Since Oregon is part of a wider area, it was important to take
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into account the gravitational effect of the surrounding area and to

correct for it. To this effect, a boundary region was constructed

around the state whose width was defined as the horizontal distance

beyond which the source block with the largest value of h produced

a gravitational effect equal to the estimated observational error

involved in the regional field values. The width was calculated as

follows. The gravitational effect due to a single block is given by

(3d2-R2) (3. 20)
R5

where R represents the distance from the center of the block to the

field point. Since the second term on the right-hand of Equation

(3. 20) is a small second-order effect, it can be neglected in this con-

text and hence

= pd (3. 21)

The value of was fixed at 0. 25 mgal and for h the largest

value from the already computed results was used. This value was

11 km. For d = 35 km, the value of R was calculated and from

it the width of the boundary region was calculated, since

R2 = d2 +

L being the horizontal distance between source point and field point



and hence the required width of the region. L was found to be

187 km. The grid covering the state was then extended into the

region and for each grid point in the region crustal thicknesses were

calculated according to the following scheme. First estimates of h

for each grid point in the boundary region were made on the basis of a

single block attraction given by Equation (3. al). In this connection,

was taken as the value of the regional field at the grid point.

Each estimate of h was then improved by an iterative process in

which the influences of the surrounding blocks were calculated on the

basis of the results of the above first estimate and removed and a new

value of h was computed from the recalculated field value. The

process ran as follows. First, the estimate of h at a field point

was corrected for the influence of the eight blocks immediately sur-

rounding the field point. Then, the improved value of h was further

improved by correcting for the influence of the next set of blocks.

These are 16 in number. The process was continued until the magni-

tude of the influences of the farther blocks fell below the estimated

observational error of the regional field values. The field values

were obtained from Bouguer anomaly data published by Woollard and

Rose (1963). The data had not been filtered into a 1othdegree poly-

nomial surface. However, they had first been subjected to a visual

smoothing process from which emerged a set of contours that were

continuous with the 1othdegree polynomial surface used in the main
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computation. The crustal thickness profiles obtained for the Oregon

area are shown in Figures 6a to 8a for p = 0. 45 gm/cc and in

Figures 6b to 8b for p = 0.60 gm/cc.

Results and Discussion

Seydel's iterative process for solving the working equation con-

verged for all three values of d. The process was supposed to stop

at the criterion (see Equation (3. 19)) or go to 21 iterations and to

stop. It turned out that for the three values of d convergence was

reached before the 21 iterations were carried out. The iterative

improvement converged for d = 25 km and for d = 30 km after

four iterations; it did not converge for d = 35 km, even after 21

iterations, so that the results obtained from the Seydel iterations

were used in constructing the crustal thickness variation shown in Fig-

ures 8a,b. From the results for d 25 km and d = 30 dm, it

was found that the maximum change in crustal thickness brought about

by the iterative improvement was about one part in 18. Consequently,

the results shown in Figures 8a,b could be considered as approximately

representative of the crustal thickness variation for d 35 km. A.s

Tanner has pointed out, the failure of the iterative improvement to

converge can be interpreted as an indication that a solution is being

sought for too high an assumed value of d. As a consequence, no

values of d higher than 35 km were used for the computation.
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Values of d equal to 34 km, 33 km, 32 km and 31 km were tried in

that order. For these, too, the iterative improvement failed to con-

verge.

The physiographic map of Oregon shows a terrain that generally

increases in relief gradually from west to east, if exception is made

of the Willamette Valley. In accordance with the predictions of

isostasy, one would normally expect a crustal thickness variation

marked by a general gradual increase from west to east. This was

borne out, as the results indicate. Since the Willamette Valley repre-

sents a structural depression between the Coast Range and the Cas-

cades, one would expect a correspondingly thinner crust under the

Valley than under most of the rest of the state. This was also borne

out. In all six figures, the Valley stands out clearly as a contour

low. The point needs stressing, however, that the thinner crust under

the Valley obtained above may partially be a reflection of the assump-

tion of constant crust-mantle density contrast made in computing the

crustal thicknesses. It is entirely possible that if allowance is made

for local changes in density within the crust and the mantle, the Valley

may not be associated with a thinner crust than is the topography on

either side of it.

As regards numerical values, for d = 25 km and ApO. 45 gmicc

(see Figure 7a), the thicknesses average about 26 km under the Coast

Range, increasing to a little over 36 km under the Kiamath Mountains,
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which are due south of the Coast Range. The thickness ranges from

about 27 km under the western margin of the Cascades to between

28 km and 30 km under the eastern margin. Thereafter, there is a

gentle increase towards eastern Oregon, this increase becoming

rather rapid near the Oregon-Idaho border. The thicknesses are

correspondingly greater for d = 30 km and d = 35 km, but

approximately the same trend is evident as for d = 25 km. The

thickness profiles resulting from the use of tp = 0.60 gm/cc in the

computation also show the same trend as the above differing, as is to

be expected, only in numerical values.

For Oregon and its surrounding areas, the following results on

crustal thickness were obtained by investigators using different

methods. On the basis of local travel-time curves, Dehlinger et al.

(1965) obtained an average crustal thickness of 25 km to 30 km for the

region west of the Cascades. Phase velocity dispersion studies car-

ned out by Chiburis (1966) gave 38 km for the crustal thickness under

the Coast Range. Bert etal. (1966) obtained about 16 km for the

western edge of the northwestern Coast Range from seismic refraction

studies. For eastern Oregon, Chiburis obtained an average depth to

the Moho of 45 km, while Dehlinger etal. obtained an average of

35 km.

Studies of the crustal structure for an area extending from east

of the Cascades into southern Idaho were undertaken by Pakiser and
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Hill (1963), Hill and Pakiser (1966) and Hill (1970). Their results

varied from 28-36 km under the Basin and Range province to 41-48 km

in the Western Snake River Plain in southern Idaho. Near Baker in

northeastern Oregon, Couch and Whitsett (1969) obtained a crustal

thickness of 42 km using travel-time curves from the North Powder

earthquake.

The most extensive seismic refraction and dispersion studies

for the area under investigation were carried out by Dehlinger et al.

(1968). Their results are presented in the cross-section in Figure 9.

From this cross-section, one obtains for the Oregon region an aver-

age depth to the Moho of about 36 km. Since the results for seismic

analyses are more absolute than the ones obtained from the present

gravity method, this figure might be considered to be an appropriate

value of d to be used in the two computational methods that have

been the subject of application in the present investigation. However,

the use of d 36 km in the computations would have led to much

larger crustal thicknesses in Eastern Oregon than the seismic analy-

ses have yielded. This value of d will, therefore, have to be

rejected for the present purpose. The discrepancy is possibly a

reflection of the fact that the above computational model assumed a

crust and a mantle of constant densities, which is a simplified model.

For example, the regional field data used in the computations were

not corrected for the anomalies resulting from the discontinuities in
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the crust evident in the cross-section in Figure 9. Such a correction

would have been possible only if the two-dimensional structure of the

discontinuities had been available.

By using the cross-section in Figure 9 and an average density

contrast of 0.45 gm/cc as a standard of comparison, it is possible to

interpolate between the assumed values of d and to arrive at a

single value of d the best reconciles the above gravity and seismic

results. Since there appear to be crustal density inhomogeneities

west of the Cascades, this interpolation will be carried out only along

the section of the seismic profile in Figure 10, extending from the

Cascades into Idaho. The position of this section is indicated in Fig-

ures 6(a), 7(a), 8(a) and 9 by the line AB. The interpolation is car-

ned out as follows. The average crustal thickness obtained for the

section from the data in Figures £(a), 7(a) and 8(a) is plotted in Figure

10 against the corresponding value of d. The three points can be

connected by a straight line. The seismic data in Figure 9 yields an

average depth of the Moho along the same section of 43 km. From

Figure 10, we obtain the corresponding value of d equal to 30. 25

km. On the presently available data, this value of d appears to be

the most likely value for the reference crustal thickness to be applied

as the basis of the present calculation.

In carrying out the iterative process in the boundary region, it

was found that only the eight blocks immediately surrounding a field
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point produced a significant effect there for those values of d equal

to 25 km and 30 km. The effects were large enough to cause changes

in the initial estimates of the crustal thickness of up to one part in 10.

The farther blocks did not change the estimates to any significant

extent; in most cases they either produced effects which were less

than the estimated error of the input regional field or caused changes

in crustal thickness of around one part in 50. For d = 35 km, the

16 blocks next to the eight immediately surrounding a field point pro-

duced effects which were greater than the estimated error of the input

field. However, the farther blocks produced no significant influences,

i. e. , either their effects were small in comparison with the estimated

error of the input field or they caused changes in the crustal thickness

of not more than one part in 50.

Test of the Reliability of the Algebraic Method

In order to test the reliability of the computation method that had

been developed, a two-layer model was constructed for an area the

size of Oregon. The thickness of the upper layer of the model was

made to vary in both the east-west and north-south directions, i. e.

the model was two-dimensional. Table 1 shows the thickness of the

top layer at the various grid points, while Figure 11 is the correspond-

ing contour representation. Given the thicknesses, anomalies were

calculated for each grid point on the basis of Equation (3. 1). These
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anomalies constituted the input field to the computer program

GRAVCALC. The results were compared with the model and a con-

clusion drawn as to the reliability of the algebraic method. This test

was repeated for a second two-layer model in which the thickness of

the top layer varied only in the east-west direction, a one-dimensional

variation. Table 2 is a presentation of the values of the thicknesses

at the grid points. An east-west cross-section is shown in Figure 12.

The computations that followed were the same as for the two-

dimensional model and the results were again used to establish a corn-

parison with the original model.

Table 3 shows a comparison between the two-dimensional model

and the computed results. The upper figures are the thicknesses of

the top layer of the model, while the lower ones are the calculated

results. The agreement between the two sets of figures is good. The

maximum and minimum differences between the two have absolute

values of 2. 77 km and 0. 02 km at points where the model has thick-

nesses of 34. 00 and 23. 50 km respectively. Figure 13 is a contour

representation of the computed model. It shows nearly the same

trends as are evident in the model, Figure 11.

In Table 4 are presented the corresponding results for the one-

dimensional model. A comparison of east-west cross-sections is

presented in Figure 14. Here also the agreement is good, the maxi-

mum difference having an absolute value of 1. 63 km for a model



thickness of 29.00 km; the absolute minimum is 0.01 km where the

model is again 29. 00 km thick.

The close agreement between the models and the computed

results does indicate that, with the proper choice of digitizing interval,

the algebraic method can be relied upon to yield satisfactory values

for those parameters of a source body that are sought. However, to

what extent the results approximate the true geological situation,

depends upon the restrictions that are placed upon the other unknown

parameters of the source body.

Table 1. Thicknesses of the top layer of the two-
dimensional two-layer model. Figures are
in kilometers.

23.50 27.00 27.00 26.50 28.00 29.00 30.00
23.50 27.00 28.00 27.00 28.00 29.00 29.00
23.50 27.00 29.00 28.00 29.00 30.00 29.00
23.00 28.00 30.00 29.00 29.00 30.00 29.00
23.00 27.50 30.00 29.00 30.00 31.00 29.00
21.00 29.00 30.00 29.50 30.00 30.00 28.50
28.00 28.00 29.80 29.70 30.00 30.00 30.50
34.00 29.00 30.00 30.00 31.00 31.00 32.00

Table 2. Thicknesses of the top layer of the one-
dimensional two-layer model.

23.00 21.00 24.00 29.00 26.00 29.00 30.00
23.00 21.00 24.00 29.00 26.00 29.00 30.00
23.00 21.00 24.00 29.00 26.00 29.00 30.00
23.00 21.00 24.00 29.00 26.00 29.00 30.00
23.00 21.00 24 00 29.00 26.00 29.00 30.00
23.00 21.00 24.00 29.00 26.00 29.00 30.00
23.00 21.00 24.00 29.00 26.00 29.00 30.00
23.00 21.00 24.00 29.00 26.00 29.00 30.00



20

25

Figure 12. East-west cross-section through the top layer of the one-dimensional model.
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Table 3. Comparison between the thicknesses (upper fig
ures) of the top layer of the two-dimensional
two-layer model and the thicknesses (lower fig-
ures) recomputed by the algebraic method.

23.50 27.00 27.00 26.50 28.00 29.00 30.00
23.48 27.17 27.43 27.05 28.39 29.22 29.68

23.50 27.00 28.00 27.00 28.00 29.00 29.00
23.43 27.41 28.55 27.85 28.87 29.75 29.50

23.50 27.00 29.00 28.00 29.00 30.00 29.00
23.43 25.57 29.57 28.94 29.75 30.52 29.54

23.00 28.00 30.00 29.00 29.00 30.00 29.00
23.43 28.42 30.38 29.85 30.03 30.73 29.61

23.00 27.50 30.00 29.00 30.00 31.00 29.00
22.86 28.24 30.52 30.03 30.73 31.26 29.61

21.00 29.00 30.00 29.50 30.00 30.00 28.50
29.92 29.33 30.59 30.38 30.80 30.80 29.40

28.00 28.00 29.80 29.70 30.00 30.00 30.50
28.39 28.90 30.42 30.49 30.77 30.77 30.63

34.00 29.00 30.00 30.00 31.00 31.00 32.00
31.23 29.29 30.03 30.14 30.73 30.77 30.94



Table 4. Comparison between the thicknesses (upper fig-
ures) of the top layer of the one-dimensional
two-layer model and the thicknesses (lower fig-
ures) recomputed by the algebraic method.

23.00 21.00 24.00 29.00 26.00 29.00 30.00
22.52 21.27 23.75 29.19 26.32 29.12 30,35

23.00 21.00 24.00 29.00 26.00 29.00 30.00
22.34 21.13 23.64 30.07 26.47 29.50 30.84

23.00 21.00 24.00 29.00 26.00 29.00 30.00
22.31 20.99 23.62 30.63 26.51 29.57 30.94

23.00 21.00 24.00 29.00 26.00 29.00 30.00
22.30 20.96 23.61 30.91 26.52 29.61 30.94

23.00 21.00 24.00 29.00 26.00 29.00 30.00
22.30 20.96 23.61 30.91 26.52 29.61 30.94

23.00 21.00 24.00 29.00 26.00 2900 30.00
22.31 20.99 23.62 30.63 26.51 29.57 30.94

23.00 21.00 24.00 29.00 26.00 29.00 30.00
22.34 21.13 23.64 30.07 26.47 29.50 30.84

23.00 21.00 24.00 29.00 26.00 29.00 30.00
22.52 21.27 23.75 29.19 26.32 29.12 30.35



A Second Derivative Approximation Method

The Working Equation

The working equation for this method is

g(x,y,O) = pd ç ç h(,n)dd (322)
[(x-) +(y-i) +d

which is the linear approximation to the fundamental Equation (2. 26),

which is valid for h d. Equation (3. 22) is an integral equation of

the first kind and may be rewritten in the form

where

g(x,y,O) c (3.23)

c yLpd

1

2 2 23/2[(x) +(y-i]) +d

A method of solution which immediately suggests itself derives from

the nature of kernel K(x, y; , ri). It is symmetric in its variables,

continuous and square integrable. Consequently. for the finite domain

that we are here dealing with, it has eigenvaiues and corres.-

ponding eigenfunctions in terms of which i g(x, y, 0) and h(x, y)

may be expanded (Morse and Feshback, 1953; Sobolev, 1964).



By carrying ot this expansion, Equation (3. Z3) is transformed into

the following equation

Co

c.. = .h. .

L_ I 1 1 1 1.

i=l i=l

The required solution is given by

provided that X. 1 0. This method is somewhat tedious to apply.

Instead a solution is adopted that is based on the inversion of Equation

(3. 2Z) by the Fourier transform technique and that involves the corn-

putation of the second derivative and the upward continuation of the

regional field.

Solution by the Fourier Transform Method

If G(i,wz) is the two-dimensional Fourier transform of

gtx,y,0), we have

x Y -j((A) x+O)2y)
= Limit g(x,y,O)e dxdy

Xoo
ycO

where (-X, X) and (-Y, Y) are the gravity profile dimensions in



the x and y directions. If H(1,2) s the corresponding trans-

form of h(x, y), then the transformed version of Equation (3. 22)

takes the form

G(1,) = Zp exp(dJ f )H(1w2) (3. 24)

whose formal solution is

1 /2 2
exp(d 1+2)G(1,c2) (3.25)

Inverting (3. 25) should yield h(x,y). A difficulty is posed by the

presence on the right-hand side of the exponential which is unbounded

and consequently prevents the inversion from being carried out unless

the function G(c1,2) attenuates rapidly for large wave numbers.

Due to errors of measurement, the g(x, y, 0) data invariably con-

tam components with large wave numbers which are magnified out of

proportion. A smoothing of the observed field values L g(x, y, 0)

enables one to circumvent this difficulty. However, smoothing

removes useful information in the form of short-wave components and

an inversion of Equation (3. 25) on the basis of smoothed data will,

therefore, yield an incomplete solution. A useful solution may yet be

obtained by expanding the exponential factor in Equation (3. 25) into a

power series. Such an expansion would involve odd powers of

which are somewhat unpleasant terms to handle. However,



they can be avoided by a method used by Snow (1923) and later by

Bateman (1946) which consists of adding and subtracting the term

1 exp(dJ+)G(1,w2) (3. 26)
Zir' p

on the right-hand side of Equation (3. 25). The addition of this term

leads to a term including the factor

[exp(dJw+) + exp(-dj w+w)JG(1 ,w2) (3. 27)

which, when expanded into series, contains only even powers of

J+c , i.e. , terms of the form

(+)2G(1,2) (3. 28)

where n is a positive integer. These terms imierted into (x, y)

space give the terms

Zn(-v ) .gtx,y,O)

Thus is obtained the Snow-Bateman form of the solution of the

integral Equation (3. 22)



h(x,y)
Zn Zn

(2n)! g(x,y,O)

n= 0

d çc
'g(,n)ddn

I

2 2 23/2
7

(21T)'
[(x- +(y-i) +d j

JL

(3. 29)

in which the last term on the right--liaTid side is the inverse Fourier

transform of the expression (3. 26). This solution includes an infinite

series in the Laplacian derivatives of ig(x, y, 0). The series will

diverge in the general case, but if g(x, y, 0) is a band-limited

function with cut-off limit , the series will converge (bodvarsson,
0

1971), the convergence being rapid when

Zd w < 1
0

Under this condition, the Snow-Batemen solution is applicable. For

the relatively long wave components in h(x, y), the series can be

truncated after the second term to yield the solution

h(x,y) 1 [xYO
r\'L p

cTh.4,r
L

d 2
-. -- \7 (Aijx, y, 0))

(3. 30)

in which the term V 2(g(x, y, 0)) represents the second derivative



of the observed regional field and

2
1(x-) -(y-i+d2}3 /2

represents the upward continuation of the regional field to the plane at

a height d above its plane of observation. As Bodvarsson (1971)

has shown, the solution expressed in Equation (3. 30) is valid only for

wavelengths of the undulating interface equal to or greater than 4d

to 6d.

Comoutation Scheme

There were three parts to the computation. The fio:st was the

calculation of the second derivative, The schemes designed for this

calculation reduce to this general formu].a (Dobrin, 1960)

a2 c
...] (3.31)

s

where g is the value of the regional field at the point where the

second derivative is required; g1, ig2, . . . are the averages of

the field values along circles of radii , s''iZ, . . . respectively. C

is a numerical constant. W, W1, W2, . . . are weighting factors for

the respective gravity values. Some of them are positive, others are

negative and their algebraic sum is zero. The theory behind the above
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general formula has been discussed by Peters (1949). The specific

formula used in calculating the second derivative was Griffin's (1949)

center-point-and-one-ring formula which gives the second derivative

as

4(ig) = - (g_t.g()) (3. 3Z)
S

Since the above equation does not contain d, the second derivative

had to be calculated only once. The second part of the computation

involved the upward continuation, which was performed by a computer

program called UPWARD, reproduced i Appendix B. The calculation

was carried out for the three values of 5 km, 30 km and 35 km.

Finally a computer program, identified as SUM and reproduced in

Appendix C, was written to calculate the values of h(x, y) in accord-

ance with Equation (3. 30). One of the functions of this program was

to first compute the second derivatives with the appropriate values of

tg and ag(s) as input (see Equation (3. 3)). The values of

h(x, y) were converted into crustal thicknesses by addition to, or sub-

traction from, d. The results are shown in Figures 15a through 17b.

Reu1ts and Discussion

The broad features discernible in the crustal thicknesses

obtained by the algebraic method are also evident in the results

yielded by the present method. The Willamette Valley again stands



94

out as a trough. The same gradual increase in thickness towards the

eastern margin of the state is also evident. On the whole, the

results for d = 25 km and d = 30 km agree better with the cor-

responding results by the algebraic method than do the results for

d 35 km.

In order to arrive at the best value of d, the same method of

interpolation was used as for the algebraic.method. Averages were

calculated from the results shown in Figures 15(a)-17(a) and plotted

against the corresponding values of d. From the graph, which is

presented in Figure 18, the value of d that best reconciles the

above gravity results and the seismic results in Figure 9 was found

to be 28.90 km.

The cross-sections in Figures 19-21 present a comparison of

the results obtained from the algebraic and the second derivative

approximation methods. The divergence that they show may be

accounted for by the fact that the second derivative approximation

method is based in part on the computation of the second vertical

derivative of the regional gravity field. As has been pointed out by

several workers (see, for instance, Rosenbach, 1953; Nettleton,

1954; Mesko, 1965, 1966; Skeels, 1967), the second derivative cannot

be accurately calculated. Not only is it sensitive to grid spacing, but

it also varies with the radii of the circles used in computing it. In

practice, the second derivative has been found to relate more closely
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to the residual than to the regional field that has been the basis of this

investigation. As Peters (1949) points out, the schemes for calculat-

ing the second derivative are only approximations and give results

which are more qualitative than quantitative.

From the foregoing discussion, it is safe to conclude that the

second derivative approximation method should be expected to yield

somewhat less accurate results than the algebraic method.
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CONCLUSION

The algebraic and the second derivative approximation methods

provide two approaches to the study of the crustal thickness and its

variation. The two methods are adaptable to a high speed computer

and produce results rapidly. In this respect, they may often be pre-

ferable to the indirect method of interpretation. It is concluded that

the algebraic approach can be extended to the study of the shapes of

massive anomalous bodies.

In so far as each assumed value of d, the average crustal

thickness, produces its own thickness profiles, the results yielded by

the two methods are not absolute. However, when an absolute value of

the average crustal thickness is known from a seismic profile, this

value should be used for d so as to obtain the best approximation to

absolute thicknesses. In this way the two methods, although based on

a simple model of a homogeneous crust and a homogeneous upper

mantle, provide a convenient and economical way of combining the

gravitational and seismic methods for regional studies of crustal

thickness in regions in which a few seismic profiles are available.
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APPENDIX A
PROGRAM GRAVCALC

1101 I7T1 21045177 2.1 11/11/70 1401047 A' 7242C4L10

a'AL I .10/
I'ITFOEa' ?72,TCL
IA 1011,00 6710-2

co - =
=

= lo-.a
-14101 a' 2 / 2
10'=410 l'A=rasr,sr.nFTo,,.oE_.3

I1 1.42?4
041-1, 4. .?. 4,lFAaa.21

a 1=1.10

10 =1.)

ci =
a 10=1,1-4

a' l 1) I 4-21 TI .0'
2TA=Q.0
77 4

* 1

(10.1014)

1107(1 (5')a'10?

4'(--(,CT[I =10674 273_.47(/a'3/47
10 0a') 0*21104
77711 JR

''T12F
4-IS
a' a rw Ta

S

ST

,OTI10(J,l2flI( All
1a'T) 1011'ATI 1'JITIAp S:1LIITT7N CSTAT'1vn 1712.46 ACU,AC2a'l
7 ='TTIcJI

Y= l()
71 ,1, J'1,45
CIT. J)10l It. ii ?.0p1'I1.Jl4I1 II
a' =Y J I a' I 011,11 4 I I IT, J I

4 a''[14(10
4-IS (1) *10

0 CTIIT'J'110

1I'10T.iT.1.rl101l lRT11'fl.110107) 01010.51C' *'7l4r I a' OILY C1lVEl1aEl1 T6EI2.4a' CS STEPa'131
I'll .01.72) 47 T7 11

100 10.JT'l - VESTTI 0.1 a',4AV1081 C

1211,45
YY* 110514(7

(112111 a'(1(
I 'TTTT'1f

17 7

11 111710
2111104.1103) [.11,4

122' I70"Al( AVtr(1*1la' IIF9ATTCII'
I 3)' a',l'J,)7,/a' 0,711),.?))

10 1' 12

11/11/7) 14O'

11114 IFLa'ITI CS'74a'1I*.40 4 ISa',

1)3131
0337?
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T113'.
011,14
flC1O

00177
01100
10313)

103110
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71117
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ODIIA
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101'? 1
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103120
07127
03124
03 '24

31131
07032
27131

a' 114
03'34
103136
01137
03324
71110
03137
73041
0314?
71141
01144
01135
71144
71147
101140
71140
03050
01151
01147
03161
01154
101155
03164
03157
0014*
10 3150
03160

07151
01162
03161
00144
(13150

03164
73147
73160
03164
70070
73171
03172
03173
01174
03170
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S1 FHTiAN VEHSION 0.1 11/11/7) l4OrCTION C,S(A,NS,N,N.y,ITIONT,IOL( 03)74
N I IFN(1 ION H I . C II A I) 00037/C( ''E Nc,',lTCNT.TOL 33r,7

o 0)715o
000RDo V115-SIE1NEL 1TFVA7I0i FOG SOLVINE, LINEAR SISTERS OP 00151

C CNCAT0NS.
11)18?C k(NS,,..) 1 DI NSTONING STATE'.IEHT 00151C =H(N.N) IN PROGGAM USAGE 0)184

C x5OLIT0N VECTOG
GONGS

0=VISAAI HAND SIDE VECTOR
C T1CNTNU'lEP OF ITERATIONS ALLOWED. IF NFSAIIVC 0)187
C (1SF V AS TT IAL VALUE AND TPANSFORM SYST TO
C ONE WITH ZERO NIAGOCAL. IF POSITIVE USE A IRE
C INITIAL VAII'E AND 1(ON#T IPANSFORM SISTER.
C ToI=CO:vFRNFNc VALIJEIN DIGIT ANSWFP II(511 00)91C

11119?
C

C 'S WILL RE THE NORHI CF THE DIFFEGENCE IVIUED WY THE
0 'OR OF THE SOLUTION VECTOR CA RETURN 00198
C

00194C
00197

C
00198IITCI(1.FJ.ol 0,0 TO I 01195

0
03100O T0'SFOPR SYSTF'4 00101

C
(001(7101
110101

NO ' 00104.AIIR(lU1
111105
01104
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NO I 5=1,1 1)1081(TF)311F)/Hll 00105TIF,NN 0)110
1 O'JTIN(E 00111

(1111?
10111

0 00(1 (NIlE 03114ITCIJT,.ITCNT GIllS
C

0)1)4C VEVIN A-S ITEPATIOI(S 01117
C DollS1 OONTTNIC oous101

031204 T0TTM, 001218HX110. 01127
NO H 1=1.4 00123(=1

(1111411v1II 03125XlXN,AHS(XI1)l 0112'NO S F'l,'l 11127HIIHI I'IIJI x U') (1128l*NS 00125
S COTINII! (11(311V(8p,AA(1 II 1-SIll) 01)31'(1lH11 o313pH rO4TI'V
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APPENDIX B

PROGRAM UPWARD

0S F0PTAN VES10J 2.1 0./?0/71 f30
DO0GAM UPWARO SOJfll

OIMENSION 4(15,15), 6(15,15), 06(15,15)
Afl (1,) 0, 07

9 0RMAT (2F10.5)
OONST1 = -n i +. 3.1+159)
READ (1,102) ((G(Tt,12),I1=1,10),12=1,l5)
EAfl (1,103) ((r,(I1,12),Il=ll,15),12r1,15)

102 0PMAT (X,IOEIU.1)
103 0RMAT (X,510.3) qOPIS

12Sf) = 02 * 02 1flfl))

ISO = 0 0 11

10 50 Ii = 1,15 flIrt?

Ii 50 12 1,15
SUM = 0.
10 L+fl 13 = 1,15
10 40 14 = 1,15

= ((02 * (TI. - 13)) 2 + (02 (I? - 14)) 7 +050) ' 1.5 10P17
SUM = SUM + (6(11,14) * 02S0 / 5n

40 OONTINUE
16(11,12) = fIONSTI * SUM

50 OONTINUE
RITE (2,100) ((DG(I1,12),Tlrl,I.0),121,tc)

WRITE (2,101) ((06(11, 12) ,I1=t1,15) ,12=1,15)
100 0RMT (1t,/,15( ,10E10.,/))
101 OPUAT U t,.',1U ,5E10.3,/)) Jflfl2S



APPENDIX C
PROGRAM SUM

0S3 FORTRAN VERSION 2.1 0R113/70 1024
PROGRAM SUM

OTMEWSION Q1c21,21), 022?1), 03(21,21), H(21,2fl, oc4(21,21)
OTMENSION G021.21). GS(21,21',, ESULT(2t,2l)

3.14159
ONST 1. / (RI 6,67 * .60)

C LUM 1 HAS INPUT TO WMPS PRRAM
RFAD (1101) ( (01 (IeJ) ,Ia1,10) ,J.h21)
REAO (1,105) ( (01 (!,J) ,I.l1,21) J.1.21)

101 FORMAT (1OE1O.3)
T0 FORT tlltlO.3)

C LUN 2 HAS GO Ori IT
C LUN 3 HAS r,s ON IT

00 10 1 1,21
00 10 J 1,21
(0 (I,J) 01 (T,J)

10 COrT1NU
READ (3,102) ((GS(I,j),I1,1O).J1,21)
READ (3,106) ((GS(I,.J) ,I1121)J.121)

102 PMAT (F5.3,X.F5.3,RF7.31
106 FORMAT (F6.3,10F7.3)

0 25.
C LUJ6 )4AS UG ON 17 (OUT1J1 FIY1

REAO (4,j04) ((DGtI,j),I.,1O).Js1.21)
READ (4,107) ((DG(1,J),I.11,21)'JS1,21)

104 FORMAT (1OEIO.4)
107 FORMAT (X,1IEIO.4)

00 30 J 1,21

r (I,J) 2. 0 * 0 / 900. 0 (C(I,J) GS(I,J)
S(t,J) GS(I,J) * n / . * 1.14159)

113 (I,.)) 0 / (4 * PT) * 013 (I,J)
RESULT (I.J) 0 -CONST ( Oi (,J) - 02 (I,J)

30 CONTINtJE
w1T tZ,iO3) 0

103 FORMAT (10EPTk ,E15.4,
wITE (2,100) ((RESULT (T,J),1.l,?1,,J.1,?1)

100 FCR1AT (1RE=,/,P(X,7F9.2,/))
F

- 03 (11J))
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0 r02
00003
00004
00005
0000A
00007
000
00009
oOo'l 0
00011
00012
00013
00014
00015
Ot1?1
00017
oOolR
00019
00020
00021
022

00023
00024
00025
00026
00027

00o29
00o30
00031
0003?
00033
00034
00035

00037
00o3




