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gravity anomaly in terms of the parameters of the source body. Heat

transport phenomena of a similar nature are also discussed.

The general expression obtained for the two homogeneous layers




with a slowly undulating interface is used as an integral equation and
applied to the derivation of crustal thickness variation in Oregon on
the basis of two different computational methods. The first method,
called the digitized algebraic method, solves the quasi-linearized
form of the general integral equation by an iterative technique for three
reference values of the mean depth of the crust-mantle interface, viz.,
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derivative approximation method, gives a solution by the Fourier
transform technique to the linearized form of the general integral
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crust-mantle interface.
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are compared with recent results with seismic refraction and dis-
persion data obtained along a profile in eastern Oregon. The value of
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and the seismic results turns out to be 30.25 km for the depth data on
the basis of the algebraic method and 28.90 km for the depth data

obtained with the second derivative approximation method.
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ON THE NUMERICAL INTERPRETATION OF GRAVITY
AND OTHER POTENTIAL FIELD ANOMALIES CAUSED
BY LAYERS OF VARYING THICKNESS

INTRODUCTION

The last three decades have seen tremendous progress in
exploration geophysics. More accurate field measurements are being
made by well trained observers using equipment of high precision.

A considerable amount of geologic data is being obtained, thereby in-
creasing knowledge of the subsurface geology and providing the con-
trol which is needed to surmount the difficulty arising from the
inherent ambiguity of potential field interpretation. Recently various
types of electronic computers have been put into use that provide
rapid means of carrying out the numerous repetitive computations that
attend geophysical data analysis.

Corresponding progress has been made in the analysis and
interpretation of the field data. Regional-residual, various deriva-
tive, downward and upward continuation calculations have received
increasing attention. In addition to the indirect method of interpreta-
tion (Grant and West, 1965), various direct procedures have received
recognition (Tsuboi and Fuchida, 1937; Tsuboi, 1938; Bullard and
Cooper, 1948; Tomoda and Aki, 1955; Bott, 1969, 1967). The aim of

this study is the solution by two different computational methods of an




inverse problem in gravity that involves obtaining the variation of the
crustal thickness in Oregon on the basis of observed surface data.
One approach will be based on a method of solving a system of quad-
ratic algebraic equations. The inversion of a linear integral equation
of the first kind by the Fourier transform technique will form the
basis of the second approach; the finite solution involves the computa-
tion of the second vertical derivative and the upward continuation of
the gravity field.

The review of the applicable partial differential equations of
potential theory and scalar fields and their solutions for various

source bodies provides the point of departure for this study.



THE POTENTIAL EQUATION IN APPLIED GEOPHYSICS

Force Fields

—_

In potential theory, if an attractive force F over a region of

space can be expressed as the negative gradient of a scalar function,

E=-v¢ (1.1)

—_

then F is called a conservative force; the function ¢ is known as
a scalar potential function and can be shown to satisfy certain partial
differential equations of the second order known as Poisson and
Laplace's equations (Kellogg, 1929; MacMillan, 1958). Certain geo-
physical force fields can be described in terms of the potential func-
tion. As examples of these, the gravitational and magnetic fields will

be considered and the relevant equations derived for them.

Gravitational Fields

The law of gravitation discovered by Newton is that two particles

attract each other with a force which is directly proportional to the
product of the masses of the particles and inversely proportional to
the square of the distance between them. Thus if my and mQ are

the masses of two particles situated at the points P and Q

respectively and if o0 is their separation, the magnitude of the




force of attraction between them is

m_m
P
F=y > Q (1.2)
TPQ
where vy 1is the universal constant of gravitation. Now let b0
be the vector joining the points P and Q, its direction being

Q — P. In vector notation, the force of attraction exerted by the

mass M on my is given by
m_m
F(P) = -y 3 rPQ (1. 3)
"PQ

the minus sign indicating that the direction of the force is opposite to

that of the vector rPQ' In the above equation if my, = 1, then we
have
m
—_— Q —_—
g(P) = -y 3 T b0 (1.4)
PQ

—

where g(P) is referred to as the gravitational acceleration due to

the particle of mass mn at P. Define the quantity

(1.5)

It is easily seen that




E(P) = -vPU(P) (1.6)

and hence U(P) is a gravitational potential and the form of the
expression (1.5) gives the potential of the particle rnQ at P.
Although Newton's law as stated above applies to particles, it
holds also for bodies with a continuous distribution of matter. In
Equation (1.5), let B be a body with a continuous distribution of
matter represented by the density function p(P). The total mass

within B is

m_ = S p(Q)dV
B B Q

and by the principle of superposition we have

U(P) = _yjﬂ ir’—@ v, (1.7)
B PQ

Equation (1.7) gives the expression for the gravitational potential due

to a continuous distribution of matter represented by the density

function p(P). Assuming that B is finite, operate with the

Laplacian on both sides of Equation (1.7)

VZU(P) = _yvz‘y £R) dav
B Q

pQ



and interchange the integration and differentiation, which is permis-

sible when p(P) and B are bounded
2 2 1
v “u(P) = -yypto)v (——)dV (1.8)

B Piron R

We then have (Duff and Naylor, 1966)

2 1
v o(——)= -4786(P-Q)
PQ
where ©&6(P-Q) is the three-dimensional Dirac delta function. Sub-

stitute into Equation (1. 8)

v2u(s) = 4WY§ p(Q)6(P-Q)AV
B Q

or

VZU(P) = 4nyp(P) (1.9)

This result is Poisson's equation. If the point P is located in a

region of space in which there is no mass distribution, then p(P) =0

and we have

VZU(P) =0 (1.10)

which result is the well known Laplace equation.




Magnetic Fields

Assuming for convenience that magnetic monopoles exist, the
fundamental law of magnetic force is that a magnetic pole of strength

m at a point P in the field of another pole of strength m at a

P Q

-
point Q and at a distance r experiences a force F whose

PQ

magnitude is given by

F=— (1.11)

the force being attractive if the poles are of opposite polarity and

repulsive if the polarity is the same. In vector notation, define

r as the vector joining the points P and Q, its direction

PQ
being Q — P. If the poles are of opposite polarity, the attractive

force experienced by the pole at P is given by (m is negative)

Q

- (1.12)

If in Equation (1.12), my, = 1, we shall have




in which H(P) is the magnetic field intensity at P due to the pole

of strength m Define the quantity A(P) by the relation

Q

m
A(P) = - Q (1.13)
PQ
It is seen that
H(P) = -vA(P) (1.14)

and hence A(P) is a scalar magnetic potential function and the form
(1.13) gives the scalar magnetic potential of an isolated magnetic
pole.

Magnetic poles probably do not exist in nature. Magnetic fields
are due to currents, and small current loops can be approximated by
dipoles. A dipole or doublet comprises a pair of opposite pole
strengths -m and m at points Q- and Q+ at a distance d
apart, d being infinitesimal and m correspondingly large so that
the product md has a finite value M. M is called the magnetic
moment of the dipole and the line Q-Q+ is called the axis. The axis

—_—
is considered as having the direction Q-Q+. The moment can be

- ,
specified by the vector M of magnitude M and direction Q-Q+.

——) —
If the vector Q-Q+ is denoted d, then

M=md (1.15)



If the position of another point P relative to the dipole is specified
by the position vector _;PQ and inclined at the angle © to the axis,

Q being the center of the dipole, then the scalar magnetic potential

due to the dipole is given by (Chapman and Bartels, 1940)

M 0
A(P) =_§&_
PQ
—- 1
=-M.v_(—) (1.16)
P rog

and the force experienced by a unit pole at P is

H(P)

H
<
z
I

)) (1.17)

Now suppose that a closed finite region B has a continuously dis-
tributed magnetic dipole moment per unit volume given by M.

Then by superposition, the scalar magnetic potential at a point P

outside B is

A(P) =S!i/1'(Q) : vQ(r—l—)va
B

PQ

and since B is finite

dv (1.18)
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Since B is finite, operate with the Laplacian on both sides of

Equation (1.18)

VZA(P)

(1.19)

=

- 2,1
vQ-M(Q))vP(-r——-)dV

B PQ Q

2 1
As before, rewrite VP(-;——) in terms of the Dirac delta function,
PQ

. ;(;—1-—) - _4n8(P-Q)
PQ

Substitute into Equation (1.19) and we have

v2A(P) - 41r5‘ (v - M(Q))6(P-Q)dV
B Q
or

v2A(P) = 41V - M(P) (1.20)

which is Poisson's equation for the magnetic case. If the point P
is located in a region of space without dipole distribution, then

M(P) = 0 and we have that

2
v AP)=0 (1.21)

which is the Laplace equation.



Stationary Flows Without Vorticity

In discussing stationary conduction flows such as the flow of a
fluid in porous, isotropic media, let F represent the rate of flow

through unit area. Assuming the existence of a flow potential, we

have for the stationary flow

—

F = -Kv¢ (1.22)

where K is known as the conductivity of the medium through which
the flow takes place. ¢ is referred to in this case as the flow poten-
tial. For the flow across a closed surface enclosing a volume V,

the equation of continuity applies, i.e.,

S‘F ndS = S‘ AdvV (1.23)

—

where n is the outward normalto S and A is the source
density. It represents the rate of generation or of decrease of the

fluid inside V. From Gauss's law

5 F . ndS =§ div F dV

S A%

and so by substituting for the left-hand side of Equation (1.23), we

obtain
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y div FdV = y A4V (1.23a)
Substitute from Equation (1. 22) into (1.23a)

-f div(Kv ¢)dV = ‘f AdV (1.24)
\% \%s

The above equation holds for any volume V and so the integrands

should be equal. Consequently
-div(Kv¢) = A (1.25)

which is a generalized potential equation. If K is constant, Equa-

tion (1. 25) becomes

_szq):A (1.26)

which is a potential equation of the Poisson type. As examples of
stationary flow fields, heat transport and stationary diffusion fields

will be considered.

Heat Transport Fields Including Convective Terms

Consider a body B of incompressible material in which the
temperature at a point P and time t is T(P,t). Assume that

the material of the body is moving with velocity U(P,t) and that
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heat is being generated in the material at the rate S per unit mass.
Assume also that there is a fluid percolating through the material and

whose velocity relative to the material at the point P and time ¢

is V(P,t). With these assumptions, the rate of heat conduction,
—
dQC, through a surface element dA of the material is given by

Fourier's law as

—

dQC = -KdA grad T (1.27)

where grad T is the temperature gradient along the outward normal
to the surface element and K is the thermal conductivity of the
material. If the material is isotropic, K is a scalar quantity. For
non-isotropic materials, however, it is a conductivity tensor.

The fluid percolating through dA in the material transports

—
heat relative to it at the rate dHf given by

—_—

dHf = sprTdA
= sM__TdA (1.28)
m
where
Mm = pr
s = specific heat of the fluid

= density of the fluid

©
(.
!

— — e

The total heat transport Q is the sum of dQC and dHf, i.e.,
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3 =-Kgrad T + sf\ZmT (1.29)

On the basis of the above results and by standard method one obtains

the heat transport equation (Bodvarsson, 1966)

DT

+ di + s div(M_T) = pc — .30
pS + div(K grad T) + s d1v(Mm ) = pc Dt (1 )
Since the material of the body is moving with velocity U, the

DT .
quantity —— has to be interpreted as the total derivative, i.e.,

Dt
DT . 8T , F.grad T (1.31)
Dt t & '
Assuming that the fluid is incompressible, div I_\_/I.m =0 and hence
diviM T)=M .grad T (1.32)
m m

Substitute from Equations (1.31) and (1.32) into Equation (1.30) and

we have the final expression for the heat transport equation

div(KgradT) + pS = pc %r-f— + pc?- grad T (1.33)
where .
sM

f =0+ —= (1.34)
pc

Equation (1.33) is the general heat transport equation.
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In some aeolotropic media, the conductivity, K, is a diagonal
matrix with elements which are the same in two directions but differ-
ent in the third. If the elements are Kx, Ky and Kz, but with

K =K =K, we have
X y o

) 0T 9 0T 9 0T
; - — —_—) 4+ — —_) + — -
div(K grad T) ox (Koax) By (Koay) 32 (Kz 8z)

(1.35)
and Equation (1.33) becomes

a —_—
— (K ﬂ)+i(K .a_T).;.i(K _8_’I‘)+ pS = pca—T-+ pcf-grad T
z 0z ot

(1.36)

If the conducting material is at rest and there is no fluid motion

—

through it, the transport vector f 1is zero and the equation is

) oT ) 0T 0 0T 0T
— —_— + — _—) 4 — —_) + = —_— 37
8x(Ko 8x) 8y(Ko ay) 8z(Kz 8z) pS = pe ot (1 )

Equations (1.36) and (1.37) describe non-stationary phenomena, i.e.,
those phenomena in which the temperature varies not only in space but
also with time. In deriving them, the conducting medium has been

considered to be aeolotropic. If KX = Ky = Kz = K and the material

is homogeneous, then the heat transport equation becomes

2 0T -
Kv T=ch+ pc f-grad T - pS (1.38)
. 0T
For stationary phenomena, —— = 0 and we have

ot
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2 —_—
Kv T =pcf-grad T - pS (1.39)

which result may be considered as an extended potential equation. If
the conducting medium is at rest and there is no fluid motion through

it, then f=0 and Equation (1.39) becomes
2
-Kv T = pS (1. 40)

which is a potential equation of the Poisson type. The corresponding

heat flow is a potential flow.

Stationary Diffusion Fields

Consider a substance that is being transported by a simple diffu-
sion process. Let its concentration and density be s kg/kg and
S kg/rn3 respectively and :1. its flow in kg/rn2 sec. The density
and diffusive conductivity of the solvent are respectively p kg/m3
and K kg/m sec. Fick's law of diffusion gives the flow, :1., of the

substance by the relation
q =-Kgrads (1.41)

Put s = and assume that p 1is constant. We have

o |n

q = -a grad S (1.42)

where a = and is known as the diffusivity. Starting from Equation

o IR
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(1.42), the derivation of the diffusion equation follows a pattern which
is similar to that of heat transport fields. The resulting diffusion

equation is (Sutton, 1953)

(az-g%)=§§+v.grads (1.43)

0 [ 95 9
+—
ot

L@ 28, 2, 8
9x o x0x oy ayay 9z

—

where V is the velocity with which the medium moves and as ay

and a_are the values of the diffusion coefficient in the x, y and
z directions respectively. If the coefficients are constant along

their respective axes, Equation (1.43) becomes

2
=V‘gradS+-§% (1. 44)

Z‘S Z‘S 0
a —Z-+a ——E'+ az
x y y 9z

Q
Q

Q
Q
Nin

X

For the stationary case in which there is a source of strength

Q kg/m3 sec and for which the diffusion coefficient is a constant, we

obtain

Lavls = Q | (1.45)

which result is a Poisson-type potential equation. It is thus seen that
the stationary diffusion process with constant diffusivity is equivalent

to a potential flow.
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THE INTEGRAL EQUATIONS OF INTERPRETATION THEORY

The geophysical interpretation of potential field data involves
essentially the determination of unknown source parameters from
known field values. The problem is often referred to as the inverse
problem of potential theory. The earliest approach to solving the
problem is the indirect method, according to which theoretical field
values are computed for assumed models of the source and compared
with the observed values for a fit. Adjustments are then made to the
model, if necessary, and the theoretical field values are recomputed
until the best fit is obtained. An alternative is the direct method,
which seeks solutions to the inverse problem by means of numerical
and analytical techniques.

In general, the inverse problem of potential theory does not have
a unique solution, for there is not enough information to determine the
size and shape of the source completely and unambiguously from its
potential field. In the simple cases in which unique solutions can be
found, the direct method often involves the solution of certain integral
equations in two or three dimensions. The integral equations derive
from the general solutions of the equations whose derivations have
been given in the previous chapter. In this chapter, the fundamental
integral equations are established for some simple cases pertaining to

gravitational and heat transport fields.
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Gravitational Fields

Basic Theory

In the previous chapter, the gravitational potential due to a

continuous distribution of matter has been shown to be (Equation (1.7))

U(P) = _yS ‘r’—(@va (2.1)
B PQ
r being the distance from the field point P to the source point

PQ

Q. The gravitational acceleration at P is derivable from U(P)

and is given by

g(P) = -v ,U(P)
or
- 1
g(P) = YS v _(—)pQ)dV (2.2)
5 P rPQ Q

which, in the case of an unknown density, is an integral equation in
p(P) and is the fundamental integral equation of interpretation
theory. If E(P) is given outside B, as, for instance, on a plane
not intersecting B, the problem of solving Equation (2.2) for p(P)
is underdetermined. The sphere of constant density provides a simple

illustration of the underdetermined nature of the problem. The mass

of the sphere can be considered as concentrated at its center without
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changing the external gravitational field, i.e., the field in the space
for which 5o >R, R being the radius of the sphere and O its

center (Garland, 1965). Thus for all points external to the sphere,

the evaluation of the integral in Equation (2.1) gives (Garland, 1965)

U(P) = -y - (2. 3)
PO
We then have
- 1
g(P) = YMV () (2.4)
PO

where M is the total mass of the sphere and is given by the expres-
sion

(2.5)

<
t
Wb
=]
P
©

Whereas the total mass of the sphere is obtainable from Equation

(2. 4), it is not possible to uniquely determine p from M accord-
ing to Equation (2.5), since different combinations of the values of p
and R can be found to satisfy this equation. Hence the problem is
underdetermined. There exist, however, some simple cases for
which Equation (2.2) possesses unique solutions, provided that
restrictions are imposed on some of the source parameters. The

fundamental integral equations are established for these cases.




Single Body With Given Constant Density

The determination of the shape of a single body B, assumed
to be of given constant density p, causing a gravitational field leads

to the solution of the integral equation

—

1
g(P) = YPS‘ v_(——)dVv (2.6)
B F 'pg ©

for the form of B. The equation may be rewritten in the form

— 1
g(P) = YPS‘ X (Q)v P(;———)dv
space PQ

q (2.7)

which is an integral equation in x (Q); x(Q) 1is the characteristic

function of the body and is defined as follows

1 for P inside B
x (P) =

0 for P outside B
Since two characteristic functions cannot be superposed, Equation

(2.7) is a non-linear integral equation. By using the formula

o, (MLQ)) - o) @)y () + == (X (Q)p@)

it is possible to recast the volume integral in Equation (2. 6) into the

surface integral (Bodvarsson, 1969)
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(P)zypf knlS) ga (2.9)

g
k = 'ps S

—

where k 1is the unit vector in the direction of the gravitational
acceleration, —1; the inward normal to the surface 2 of the body
and S a point on the surface. The use of Equation {2.9) to compute
the vertical acceleration of bodies bounded by vertical faces has the
advantage that the product _k’_r; is zero for these faces; consequently
their contribution to the acceleration is zero. Equation (2. 6) or

equivalently (2. 9) is the fundamental integral equation of the single

body with constant density.

Infinitely Thin Sheet With Variable Mass Density

Let the sheet be represented by the surface X and let its
mass density be mix,y). If h(x,y) is the depth of the sheet, the
mass density may he written in terms of the one-dimensional Dirac
delta function, i.e., mass density = m(x,y)é(z-h(x, y)). Then by

using Equation (2. 2), the vertical acceleration g(P) caused by the

sheet is given by

(z-8)m(E, M6(L-h(x, y))

g(P) = vy 3 va (2.10)
space r
PQ
where
2 2
rl = (x£)° # (y-m) + (z-0)

PQ
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~ (z-h(x, y))m(§, n)d&dn
g(P)~y§ > > 5373 (2.11)
= [(x-€) 7+ (y-m) +(z-h(§, n) ]

which is the fundamental equation for the infintely thin sheet.

Two Homogeneous Layers With a Slowly Undulating Interface

This case derives from the situation in which a layer, of con-

stant density p is underlain by a second layer, also of constant

1,
density Py the two layers being separated by a slowly undulating

interface. It is assumed that is greater than Py The upper

P2
part of the top layer is assumed to be bounded by the plane z = 0,

while the bottom of the lower layer is assumed to be a plane at a fixed

depth. There is an average depth H to the interface such that

yD(S)dAS =H for large A {2.12)

>

where

Q.
>
|

= surface element at the point S on the interface

D(S) = depth of the interface at the point S

The problem arising from this case is to calculate the relief amplitude
h(x,y) on the basis of observed surface anomalies and a given density
contrast Ap = Py=P - Let d be a reference depth which is chosen

to be of the same order as H. The model used is shown in Figure 1
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below.

7 7 7 7 7 7 7 7 7 ST 7 7/

D(x, y)

Figure 1. Illustration of the two homogeneous layers with a
slowly undulating interface.
Since a slab of constant density does not produce a gravity
anomaly, withreferencetoFigurel, theverticalgravity anomalyat P

is given by

o)
4
I

_YApiyffD(g’n) dédndt
82 Je J Yy [(x-£)2+(y-m) 2+ (z-1) 21 /2

t

) y ({‘D(g’”) (z-1)dtdndt,
Yar ) ), 2 2 2.3/2
£no [(x-€) "+(y-n) +(z-0)"]

(2.13)
If the point P is located on the surface, then =z =0 and the

expression for the anomaly is
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Y ~D(§, M)
g (P) = —YAPJ‘ ff sl (2.14)
&0 [(x-£) 4 (y-n’+2%]

D{(x,y) may be written as
D(x,y) =d - h(x,y)

Substitute into Equation (2.14) and we have

. yyyd'h(g’”) tdgdndy
TYAP 2 2 2.3/2
£Yn"0 [(x-€)"+(y-m)"+¢"]

édédndé
'YAPS (.S\ 2 2372

t:,) +Hy-m"+L"]

d-h(€, n)
- YAP.S\ .S\y nggdndé 2372 (2.15)
£¥nvd [(x-§)+-)+§]

o
)
n

"

The first integral on the right-hand side of Equation (2.15) is a con-
stant since the limits of integration are fixed. Denote this integral by

g . Then Equation (2.15) becomes

(o]
d-h(€, n)
& +YAP.S\ C{y 2 ‘édéz 23/2}‘“3dn

(x-§) "+(y-m) +L7]

1
go+YAp§§.§n§[( 2 2 2172

x-£) +(y-n)"+(d-h)"]

it

g(P)

t

1

2172 } d€dn (2.16)

[(x-£)“+(y-m) +d”]
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Put
1 1
M = : (2.17)
1/2 2 2
[8)24(y-m 2+ @ m ]2 [x-8) 4 y-mP+a®TH?
2 2 2.-1/2 2dh-h" 1/2
= [(x-£)"+(y-n)"+d" ] [1- > - > > I
[(x-€&)"+(y-m) +d"]
_1/2
[e8) P (yomPeat) Y
2
= R'I[L.Eéhjh—]'l/z- R} (2.17a)
R
where
2
R% = (x-8)° + (y-m)° +
2dh-h% .-1/2
The binomial expansion of the factor [1- —-2—]- in Equation
R
(2.17a) gives
2dh-h’ -1/2 1 2dh-b° %””% 2dh-h% 2
[1———2——] :1+E( > )+» ( 5 )T+ L.
R R 21 R (2. 18)

The right-hand side of (2. 18) is an infinite series whose nth term

is

lxéxix X(Zn-l) 2
_2E2E o * T 2dh-h“ n-1
Uy © n-1)! (=) (2.19)

The (nt+l)th term is
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n+l n! 2 ) (2.20)

The ratio of the (n+l)th term to the nth term is

l 2 é_ (Zn—l)(2n+l) >
2X2%X* X 2" 2dh-hn
] 2
Un+l_ n R
Un lxixé (Zn-l)
R e R ) (Zdh-h )n—l
_1)! 2
(n-1) R
__1_(2n+1)(2dh-h2)
" n 2 2
R
1 2dh-h°
= (14 5=) (=) (2.21)
R
2
If it is assumed that |h|< d, then dh - h = dh. The ratio
U
1
nt becomes
n
U
n+l 1 dh
2(1+ —) 22
u_ 2n’ o2
+1  2dh
Limit =—EZ— <1

since R is much larger than both d and h. It follows that the

series on the right-hand side of Equation (2. 18) is convergent. Since
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we have assumed ]h ]<< d, we may terminate the binomial expansion

at the third term and write

2 2 L3 2
X
2dh-h -1/2 1, 2dh-h 272 ,2dh-h 2
(l—"'d, ) / =1+ = dh ) + ( ) + E
2 2 2 21 2
R R R
dh h2 3d2h2 3dh 3h
=1+ -——2 - 2 2 - + + E
R 2R 2R 2R 8R

2 2 2 4
dh | (3d -R )h 6dh3—3h

=1+—+ + E
2 4
R 2R 8R4
2 2
:1+§-}32+(3d '1: b + E' (2.22)
R 2R
where
3 4
E'=E—6d—h—4_3h— (2.23)
8R

E being the error involved in terminating the expansion at the third

term. The quantity M becomes

2 2.2
-1 -
R 2R

-1

g

2 2.2
h _ !

9—3+———(3d = )h +% (2. 24)
R 2R

The gravity anomaly is then given by
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h(€, n)
5 3 d&édn

g(P) = g, t yap Z
(% n R.

2 2.2 ’ '
+ yAp S‘ (3d -R )5h (g’n)dgdn+ yAp‘yy%dédn
£7n

Y€ 2R
(2.25)
Put g(P) - g, " Avg(P) and the expression (2. 25) becomes
2 2
Ag(P) = yaAp (‘5{ dh‘i’“’ 34 '1; ) hz(é,n)} d&dn
YEYnt R 2R
+ yApyy £ agan (2. 26)
£

which is a non-linear integral equation in h(x, y). It is the funda-
mental integral equation for the two homogeneous layers with a slowly
undulating interface. Equation (2.26) cannot be solved in its present
form. To obtain a solution, it first has to be either quasi-linearized

or linearized.

Two-Layer Case Having a Vertically-Constant-Density
Lower Layer

This case consists of a layer with constant density p, over-
lying a second layer in which the density distribution is represented
by pz(x, y), the vertical density contrast being
aAp(x,y) = pz(x,y) - Py The layers are separated by a slowly undulat-

ing interface. See the definition (2.12). The top layer is bounded at
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its upper face by the plane =z = 0 and the lower layer is bounded at

its bottom face by the plane =z = H. See Figure 2 for an illustration.

P(x, vy, 0) 2 =0
ST 7777 7 Vvl 7/ 7 S 7 7/ ST 4

pz(x’ Y)

Figure 2. Illustration of the two-layer case having a vertically-
constant-density lower layer.

The gravity anomaly at any point P is (see the explanation for

the two homogeneous layers)

9 Ap(€E, M)
g(P) = -y —dV
oz space PQ Q
_ Ap €, n)dédnd&
= yyy 5 >373 (2.28)
D(g, n) E) +Hy-m) +(z-L)" ]

If the point P is located on the surface, then =z =0 and Equation

(2. 28) becomes
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H .
_ Lap(€, n)JdEdnd
g(P) = Yj‘yy 2 > 2.3/2 (2.29)
EYNYD(E, n) [(x-€) " +(y-n)"+L7]

From this point on, the derivation follows a pattern similar to that
for the two homogeneous layers. The gravity anomaly is given by the

expression

. 2 2
Ag(P) = yjﬁ f { dbiE., Bd R )hz(&,m}Ap(g, mdEdn
£5n R 2R

+ Yyy % Ap(E, mdédn (2.30)
£"n

which is the fundamental integral equation for the two-layer case
having a vertically-constant-density lower layer. It is ncn-linear in

h(x,y), but can be linearized if |h|< d.

Heat Transport Fields

Basic Theory

The interpretation of heat flow anomalies is done on the basis of
solutions of the general heat transport equation with appropriate
boundary conditions. Problems of this type are discussed by Shih
(1968). The general heat transport equation has been found to be

(see Equation (1. 33))



8 —_—
diviK grad T) = pc3%+ f-grad T - p8S

or

div(a grad T) = %—% +f-grad T - S/c

where a = -Iic and is the diffusivity of the conducting medium. While

no general solutions of this equation are known, solutions can be

—

obtained by the perturbation method for those cases in which f{ is

small or zero and variations in K or a are small. Let the

32

conducting medium be an isotropic half-space in a steady state and let

the heat production be zero, i.e., S =0. We will assume that the

thermal diffusivity may be considered as consisting of two terms,

a=a +a with |a

o 1 « Iaol

.|

where a is constant and a is due to perturbation. It is
o

1

—

assumed that f is small. The temperature is given to a first

approximation by

T=T + T
o 1

where TO is a solution of the Laplace equation and T1 is the

—

small temperature perturbation due to a, and f. Substitute T

into the heat transport equation and neglect second-order terms in

Tl' There results the equation




33

2 1 ) -
vT, = - ao[c11v(a1 grad To) - f gradTo] (2.32)

which is a Poisson-type equation. Suppose that the following boundary

condition must be satisfied

Then Equation (2. 32) can be solved by the method of Green's function,

the solution being

1
T1 = - a_ S“Y‘S‘ F(Q)G(P,Q)dVQ (2. 33)
where
-F(Q) = d.'1v(a1 grad To) - f -grad.To
G(P,Q) = Green's function

The Green's function for a homogeneous isotropic half-space with zero
g P P

surface temperature is (Duff and Naylor, 1966)

1 1
G(P,Q) = 4rr " 47r

PQ PQ'

where Q' is the image in the upper half-space of the source point

Q. The disturbed thermal gradient is

0T
1
z

oL f 2
= = -3 yyg F(Q) 5~ G(P,Q)dV, (2.34)

O space



34

8a18To
v (z-8)dEdnd?L
N ) ol .35

(o] Znao space 3

1.0}
t

2 2 2
r = (x-¢§) +(y-m) + (z-0)

Equation (2. 35) is the fundamental equation that is applicable to prob-
lems involving the perturbation of the heat-flow fields. The problem

of a basement rock covered by sediments with variable thickness and

a flat surface is discussed below.

Basement Rock Covered by Sediments With Variable

Thickness and a Flat Surface

The basement rock, of constant conductivity KZ’ is covered
with sediments, also of constant conductivity Kl and a flat surface.
It is assumed that K2 > Kl. The interface separating the two layers
is assumed to be a slowly undulating one at a mean depth d (see
Equation (2.12)). See Figure 3 for an illustration of this case. The
problem that arises from this case is to determine the relief ampli-
tude h(x,y) and hence the thickness of the sediments from the heat

flow anomalies measured on the surface of the sedimentary layer.
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P(x,y,0) z =0
/S S S S S SSTSS /s /7 7 7 7777 7 77 7777/ VAVAVA

D(x, v)

Sediment, K

Q(€,n, L)

Basement rock, K2

Figure 3. Illustration of basement rock covered by sediments
with variable thickness and a flat surface.

Assume that the conducting layers are at rest and have no fluid

moving through them, i.e., the transport vector f in Equation
(1.35) is zero. If it is further assumed that the difference betweén
the conductivities K and K is small, then the problem can be

1 2

solved by the perturbation method and the approximate solution (2.35)

is valid, viz.,

oo, (IS 25

space 3

z-0)dEdnd

(2.35)

Write K with the help of U(z), the unit step function, i.e.,

K_-K

K = K [1+ ( 1)U(z-D)]

1

Differentiate with respect to z
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8K . K (——) 8(z-D)

If the product pc is assumed to be the same for both layers, we

obtain by dividing both sides by pc

2 (K, —ﬁ(——KZ_Kl) §(z-D)
9z pc’ pc K1
or
22 ;, (KZ-KI) §(z-D)
0z K1 -

Substitute into Equation (2.35) and integrate over the source half-
space. One obtains for the surface thermal gradient at z =0
zZ=

K, -K
_ 1 727 D(§.m)

£ (X-E.)2 + (y-n)2 + D

Put D(x,y) =d - h(x,y), and substitute into Equation (2.40)

T
€,-0 &, 2t K €o

1 ¢ 2

S" (d-h(§, m))dé&dn
3/2
ulll

(x-£) %+ (y-1) “+(d-h(£, 1) ]

(2.37)

Carry out the series expansion along the same line as for (2.16) and

neglect all terms containing h(x,y) raised to the third power or




greater. The final expression is

37

g - (——)
€220 €6 " 2m K1 €
3d R 15d 9dR
ff{——ﬁ BT e 4 LE=9R 20 ] agar
2R
(2.37)
where
2 2
= (x-§) + (y-m) +d

which is a non-linear integral equation in h(x,y). It is the funda-

mental integral equation for h(x,y) in the case of a given surface

temperature gradient.
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APPLICATION TO A GRAVITY PROBLEM

Introduction

The two-layer homogeneous case is encountered in the earth, in
which the curst overlies the mantle, the boundary between them being
called the Mohorovicic discontinuity. According to the theories of
isostasy (Airy, 1855; Pratt, 1857; Vening Meinesz, 1931), a variation
in the thickness of the crust is to be expected in areas of varying
topography, the thickness being greater under mountains and smaller
under areas of low relief and valleys. Several studies have been
undertaken with a view to testing the validity of these theories. (See,
for example, Putnam and Gilbert, 1895; Hayford, 1906; Reid, 1911;
Bowie, 1921, 1922; Washington, 1922; Byerly, 1937; Gutemberg,
1943; Woollard, 1962.) The various lines of evidence show that
isostasy is true in general, although no one isostatic system is able
to completely explain the actual conditions.

The problem tackled is the application of the results obtained
above to the investigation of the variation of crustal thickness in Ore-
gon by two different computation methods based on the fundamental
Equation (2. 26) derived for the two-layer case with constant densities.
The crust and upper mantle are assumed to be homogeneous and two

values are tentatively assumed for their density constrast, namely,
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0.45 gm/cc and 0. 60 gm/cc. The first value is adopted from
Woollard (1969) and is the presently adopted value; while the second
value is adopted from Coulomb and Jobert (1963) and is the previously
adopted value. The undulating character of the crust-mantle interface
and the density jump across it perturb the earth's gravity field. The
perturbation is reflected in the form of variations in the gravity field.
Assuming a slightly undulating interface then on the basis of
equation 2.26, it is possible to investigate the variation of the
crustal thickness and to obtain a model of the crust that is consistent
with the known values of the Bouguer field and also with the crust-
mantle density contrast and an assumed average depth of the crust-
mantle interface.

The first method of analysis is the digitized algebraic method.
It starts off by solving the quasi-linearized form of the fundamental
equation (2.26) for the relief amplitude hi{x,y) by an iterative
method. The solution is programmed for use in the Oregon State
University CD 3300 computer. The values of h(x,y) so obtained are
converted into crustal thicknesses by addition to, or subtraction from,
d, the assumed average depth of the crust-mantle interface. To
check on the accuracy of the method of computation that has been
designed, two two-layer models are constructed with the top layer
varying in two dimensions in one case and in one dimension in the

other. From the thicknesses of the top layers, gravity anomalies are
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computed from which the thicknesses are recomputed. A comparison
between the model thickness and the recomputed thickness provides a
basis for making a judgment on the accuracy of the digitized algebraic
method.

The second approach to the problem inverts a linearized form of
Equation (2. 26) by the Fourier transform technique. The formal solu-
tion involves the second derivative of the regional field and its upward
continuation. Computer programs are developed for performing
these two operations and also for obtaining the final solution. A com-
parison is established between this method and the algebraic method,
which is illustrated by means of critical cross-sections through the
results obtained by the two methods.

Some results are available from previous investigations of the
crustal thickness in Oregon by different methods. A comparison is
established between these results and the results obtained from the

present investigation.

Physiography of Oregon

The physiography of Oregon is characterized on the west by the
Coast Range, to the south of which lie the Klamath Mountains. The
general crestline of the former is about 455 meters in altitude while
the latter show a maximum relief of about 1,550 meters. The

Willamette Valley is a depression with hills of moderate relief. It
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separates the Coast Range from the Cascades, which extend the entire
length of the state and whose eastern margin is marked by a crestline
that averages a little more than 1,550 meters in altitude. The
Cascade Range is studded with such peaks as Mount Hood, 3,420
meters; Mount Jefferson, 3, 280 meters and the Three Sisters, of
which the South Sister stands 3, 240 meters high. East of the Cas-
cades, the relief changes from 910 meters in the Deschutes-Umatilla
Plateau to 1,550 meters in the Blue Mountains and dips to a moderate
altitude in the High Lava Plains before rising to a little over 1,210
meters in the Basin and Range province and the Owyhee Plateau. The
physiographic map, adopted from Baldwin (1964), is presented in

Figure 4.

Data and Regional Field Separation

Source of Data

Some of the gravity data used in this investigation are the results
of measurements made by the following organizations: The Univer-
sity of Wisconsin, U.S. Geological Survey, the University of Oregon,
Southern Methodist University, Standard Oil of California and Humble
Oil and Refining Company. Data from these sources were supple-
mented by measurements made by the Geophysics Group at Oregon

State University at about 500 selected stations within the state.
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Altogether 4,000 measurements were selected and adjusted, where
necessary, to the gravity base stations in the state.

Complete Bouguer gravity anomalies‘ are available, having been
calculated using a crustal density of 2.67 gm/cc. Data from 460 sta-
tions have been terrain-corrected using Hammer's terrain correction
chart for zones D through M (Hammer, 1939). Terrain corrections
for many of the other stations have been achieved by interpolation. In
southwestern Oregon, the stations have been individually terrain cor-
rected by Blank (1965).

A Bouguer map can be regarded as consisting of two components.
There are the larger features, characterized by smooth trends that
extend over considerable areas. These may be considered as caused
by deep-seated crustal features and are known as the regional field.
Superimposed on these are the smaller disturbances of a more com-
plicated configuration, caused by crustal structures that are close to
the surface. These are the residuals. Within the context of the pre-
sent investigation, the regional field is the more important and has

to be separated from the complete anomaly field.

Regional Field Separation

There exist three well known methods for separating the regional
field from the total anomaly field. These have been described by

Peters (1949), Elkins (1951), Henderson and Zietz (1949), and
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Simpson (1954). For the purpose of this investigation, a loth—degree
polynomial map constructed by Thiruvathukal (1968) according to
Simpson's least-square polynomial method was used. The resulting
map is shown in Figure 5.

Calculations were carried out on 200 anomaly field values
selected from corresponding points on the complete anomaly map and
the regional map. According to the result, the regional field values
showed a root-mean-square deviation of 13.79 mgls from the com-
plete aﬁomaly field. A comparison of the root-mean-square deviation
with the regional field values showed that on the whole the regional
field makes up a substantial part of the complete anomaly field.

Given the underdetermined nature of the problem of calculating the
source parameters from known field values, the least-square poly-
nomial method and, for that matter, any other method of separating a
gravity field into regional and residual components is ambiguous. It
has been argued, however, that the method is based on the assumption
that the regional field is smooth enough to be represented by a low -
degree polynomial surface while the residual is not. This argument
has been assumed to be true to some extent in gravity surveys; and
so the application of the least-square method can be relied upon to
give useful results.

In the absence of lateral variations of density within the crust

and upper mantle, the lOth—degree polynomial surface will be assumed
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Figure 5. 10th degree least-square polynomial for the Bouguer gravity anomalies
of Oregon. Contour interval 10 milligals. Reproduced from Thiruvathukal.
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to reflect anomalies due to the density jump at the Mohorovicic dis-

continuity.

The Digitized Algebraic Method

The Working Equation

In Equation (2. 26), since Ih]<< d, the second integral on the

right-hand side can be ignored so that we have

2 2
g%h(g,m ! “d——f’hztg,m} agan  (3.1)

R 2R

which is the working equation for the algebraic method. Since Ih]<< d,
the first term on the right-hand side is much larger than the second
and Equation (3. 1) may be called a quasi-linear integral equation in
h(x,y). It involves an error term which may be denoted by ¢ and

which is given by the integral (see Equation (2.26))

€ = YApj‘gj‘n% d&dn

where
3 4
6dh -3h
E'=E - — 2 (see Equation (2.23))
8R
3
N dh
T E - 6( 4)

8R
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E being the remainder that results from terminating the binomial

_h2 .
M ) 1/2 at the third term.
RZ

Arfken (1966) has shown that the binomial expansion of the function

expansion of the quantity (1-

f(x) = (1+x)m, where m is a negative integer or fraction, leaves

a remainder Rn bounded by

if the expansion is terminated at the (n-1)th term. By comparison

2
1 2dh -

with the problem on hand, m = - > and x = —Th— and so
R

1x3x5%x7 dh—h2 4
< | l

‘E‘ 8x4! ( RZ )
1x3x5x 7 ,dh h 4
=== (=)(1-=)
! 2
8x4 R d
1x3
z_ﬂ(ﬂ) since 1 > h/d
8x4! 2
R
We then have
1x3x5%x7,dh dh3
Bl < 1 gear )63
) R 8R

Consider an anomalous source point that is located directly under a
field point. For this source point, R =d and consequently the

error at the field point is at most




I 1%x3x5%x7
8x4!

h b h .3
vap = dédn - yap7(57) 36dn |

2
d d

A calculation with the values of Ap = 0.60 gm/cc, d=25km and
h 1 ,

3 - To B&ivesan error of not more than 3.50 mgals from the source
point located directly under a field point. For the other source
points, the error is very much smaller still, since R is always
much larger than d and h, so that the total error at a field point

should at most be comparable with the uncertainty involved in the

regional field values used in this interpretation.

Transition into a Set of Algebraic Equations

In order to solve the working equation by an algebraic method,
it first has to be transformed into a system of algebraic equations.

To this purpose rewrite it in the form

sg=c, | [ & 6oy mie matan
£

+ cz‘gﬂy K, (%, y; é,n)hz(é,n)dédn (3.2)
£
where
€= vApd
- YApP
c. =
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K = —L
T3
Log

3d° R2

K,*~ %

2R

Since in practice we are dealing with a finite area, the integrals in
Equation (3.2) may be replaced with a summation (Kantorovich and
Krylov, 1958). Suppose that the integrals are carried out over the

same intervals, say, (a,b). We shall then have

b
pg=cy y‘g‘ Kl(x, y; £, Mh(§, n)d€dn
a

b
+ CZS“YKZ(X’ y;é,ﬂ)hz(é,ﬂ)dédﬂ (3. 2a)

a

Divide the interval (a,b) into n equal sub-intervals of length

b-a _
— = ax= Ay =0E =AM,
n
Put
+ ,at ;atrAg,atsh =
Kl(a pAx,atqay;atrag,atsan) Klpqrs
+ ;at + =
Kz(a pAx,atqay;atrag,atsam) Kqurs
h(a+tra§,atsamn) = h
rs
2 2
h (a+rag,atsamn) = h
rs
AglatpAx,atsAy) = Ag

pa
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where
pP-9 - l,Z,...,n

r,s =1,2,...,n

Equation (3. 2a) may now be replaced by

n n n
Z ZK h aéan+c E ZK h rEan = ag
lpgrs rs 2 L 2pqrs rs pa

r=1 s=1 r=1 s=1 (3.3)

) 2 . .
which is a set of n quadratic equations in n unknown hrs'
As Aft and AmM both tend to zero, the summation goes over into

Equation (3. 2a).

Solution by the Iterative Method

Since the main contribution to the Bouguer field is so much
larger than the second-order effect, because |h|<< d, and since the
iterative method of solution that is envisaged is applicable only to
linear systems, an approximate initial solution will be obtained by
ignoring the quadratic term in Equation (3.3). We then have to solve

the following equation for the approximate initial solution

n n
AN = 3.4
, Z Z LN OL Y (3. 4)

r=1 s=1

This is a set of linear algebraic equations in hrs and will be solved
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by the iterative method. This method gives the solution in the form
of a sequence of certain vectors all constructed by a uniform process.
In order to more easily discuss the process of constructing these
vectors and to investigate the conditions under which the iterative

method can be applied, rewrite Equation (3.4) in matrix form
KH =G (3.5)

in which for simplicity the constant <) and the factor A§ATM in

Equation (3.4) have been absorbed into the matrix of coefficients K.
H is the vector of unknown and G the vector representing the

observed values of the Bouguer field. Equation (3.5) may be trans-

formed into the following form

—_

(K-IIH+H =G (3.6)
where I is the unit matrix. By transposing terms, we have

H=(I-KH+G (3.7)

Put I - K =F and substitute

H=FH+G (3.8)

—

H is obtained by solving Equation (3.8). The uniform process

referred to above goes as follows. Suppose that the solution is esti-

(0)_

mated to be H =H Construct the following sequence of vectors
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g - pH"Y + G
7@ rrM i g
M, e, g

It may be seen that the process computes the nth approximation to

the h.lj component of H by means of the formula

n n

_ 1)

) Z Z Eie® kz t ey (3-9)
k=

1¢£=1

which does not take into account the already computed nth approxi-

mation to the components hll’hlz’ . ’hi-l,j-l'
Now if the sequence H(o),H(l), ce ,H(n) has a limit H,

then this limit will be the solution of the system (3.8); for in the

— 1 —
limit as n tends to infinity, the equation H (n) = FH g -l + G

tends to H = FH + G. The solution may also be rewritten in the

form

g g et 48 H3E (3-10)

This form may be verified by the method of induction. It is evident

from this last form of the solution that the iterative process converges

. n .
if the matrix series I+F + ...+ F converges in a proper sense.
= (o)

For the convergence to take place with an initial vector H and
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—

with the value of the vector G, it is necessary and sufficient that
the eigenvalues of the matrix F all have absolute values less than
one (Fadddeeva, 1959). In order to verify this condition, it would be
necessary to calculate the eigenvalues of F, which will be a tedious
process. It is more convenient to judge the convergence in terms of
the elements of F. Scarborough (1966) gives a sufficient, though not
necessary, condition for the convergence as that the absolute value of
the largest element in any row or column of F be greater than the
sum of the absolute values of all the other elements in the same row or
column. Because convergence is necessary for the existence of a
solution to the system (3.8), it is important that this latter condition
be verified once a computation scheme has been set up. Now suppose

that an estimate of the solution to the system (3.8) were H(o) = 0.

. : . (1 pag . :
Then the first iteration would give H( ) - G and the second iteration

E(Z) = Fa+ E If, on the other hand, the initial estimate were
-»(o) N — . . . . ——»(1) _ — —_—
H = G, then the first iteration would give H =FG + G,

which would be the same as the result of the second iteration for the
first estimate and the subsequent iterations would be one step ahead.
The second estimate, therefore, makes for a reduction of the number
of iterations necessary for convergence, which is an advantage.
Another fact to note is that since the system (3. 8) is linear in char-

acter, one would normally expect H to have the same variation as

G. It follows from this fact that a natural choice for the estimate is
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(o)

H=3G.

Equation (3.8) has a unique solution which mav be written in the
form H = K_IE, provided that K is a non-singular matrix. In
relation to the problem in hand, E consists of the observed regional
gravity anomalies, which are subject to error. It is necessary to
investigate the effect of this error on the solution. Let us call the

— —>
error in G and the corresponding error in H 8G and ©6&H

respectively. It can be shown (Forsythe and Moller, 1967) that

LDy ety LEEL o)

el IS

where the norms of the various quantities are involved. Define the

condition number of K as

cond(K) = ”K” ”K_IH

Then

— —
Lemll < cond(K) leGlL (3.12)

—

=l IG1

8 —
-”-”T_,qd-l- may be defined as a measure of the relative error in G. In
G —>
the same way, _,” can be interpreted as the relative error in
IH

H. It follows that cond(K) binds the relative error in H to that

—

— —
of G. If cond(K)=1, then I 6H| bears the same ratio to

— —_ —
||H|| that H6G” bears to HGH, in other words, the relative error
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in H is precisely the same as that of G. If cond(K) is rela-

tively small, the error in G does not have an appreciable effect on

H. K is then said to be well-conditioned with respect to the error in

Q)

If cond(K) is relatively large, the error in G does lead to an
appreciably large error in H and K 1is said to be badly- or ill-

—_

conditioned with respect to the error in G. In fact with large
cond(K), the effect of the error in 5 is reflected in the form of
high amplitude and high frequency noise in the solution. The noise
can, however, be removed by first smoothing the input regional field.
The point is elaborated by Bullard and Cooper (1948); Kreisel (1949);
Philips (1962) and Baker (1964).

While discussing the sources of error in the solution of Equation
(3.8), a second point that is worth looking into is the extent to which
changes in the elements of K’1 affect the solution. Since K‘1 is
the inverse of K, the study of this effect reduces to a study of the
sensitivity of the elements of K™! to small changes in the elements
of K. K_1 exists if the determinant of K 1is not zero. The ele-
ments of K are subject to rounding errors. In situations in which
the determinant of K is not much different from zero, the rounding-
off can change the elements in such a way as to yield a matrix with
determinant equal to zero. This is equivalent to saying that small

perturbations in the elements of a matrix may produce correspondingly

large changes in the elements of its inverse. Under this condition, the
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matrix is said to be unstable or ill-conditioned with respect to small
changes in its elements. It turns out, however, that the determinant
of a matrix of coefficients, such as K 1is, is not a reliable indi-
cator of the stability of a system. A reliable indicator is the condition

number of the matrix (Forsythe and Moller, 1967). We may then

write
—_
Jl—-‘”_f < cona(x) L2EL (3.13)
= | x|
Here also, cond(K) binds the relative error in K to that of ﬁ

It is clear, therefore, that cond(K) isa reliable indicator of the
stability of f—f with respect to changes in the elements of K and
G. When it is greater than about 100, this indicates a relatively
unstable system (Emilia, 1968). A measure of the condition number

is given by

cond(K) = K[| 1K™

H1
b=
n

where Ky and b, are the largest and smallest eigenvalues of K
respectively (Faddeeva and Faddeeva, 1963). Since K and hence
cond(K) are determined by the relative positions of the field points
and the centers of the anomalous blocks, it is imperative that these

positions be chosen in such a way as to make for a stable system.
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The choice will be made so that the centers of the anomalous blocks
are placed directly below the field points.
The method of solution discussed so far is known as the simple
iterative method. As has been pointed out already, it gives the nth
approximation to the h,lj component of ﬁ by means of the formula

(see Equation (3.9))

n) z z (n-1)
e Pt 81

=1 £=1

which does not take into account the already computed nth approxi-

mation to the components h_ .,h

t . .
1Pz ’hi-l,j—l' Seydel's iterative

method on the other hand takes these into account and gives the nth
approximation to the component hij according to the formula

(Faddeeva, 1959)

i-1 j-1
n) z Z Z z (n-1) 4 o (3.15)
1Jrs rs 1Jrs rs ij
r=1 s=1 r=i s=j

The above formula has the advantage that it yields a more complete
solution than that expressed in Equation (3.9). Consequently Seydel's
method was adopted as the method of solution.

For reasons already stated, in seeking a solution to the working

equation by the application of the iterative method, the non-linear
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porti'on of the wofking equation has been ignored; it has also been
pointed out that any solution so obtained is only an approximate one.
However, such a solution can be improved upon by taking into account
the quadratic term in Equation (3. 3) and using the following iterative
improvement (Hertling, 1969). Call go any solution yielded by the
Seydel's iterative method. Since it is only an approximation, it may
be considered to be in error in relation to the complete solution of the
working equation by A—ltlo, say, so that the complete solution is

1'-1:) + Zho. Substitute ho + Aho into a modified form of Equation

(3.3) in which the matrices K1 and K2 and their associated con-

stant factors are replaced by the linear operators L1 and L2

respectively; at the same time make the approximation

— — 2 — —_—  — — —
(h +ah ) = h2 + 2h Ah since Ah <« h . The resulting equation is
o o o) o o o o
L. (h +ah )+ L_((h +ah )) = Ag
1 o o 2 o o
Ll(ho) + Lz(ho) + Ll(Aho) + LZ(Aho) = Ag (3.16)
Put
L (AR ) + h )= N
1( 0) LZ(AhO) L3( ho)
We then have
— _ -— — —
L3(Aho) = Ag - Ll(ho) - LZ(ho) (3.17)

Equation (3.17) is linear in A_};O. By solving for Zho, we have the
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first complete solution of the working equation, namely,

e — —

hl =h + Aho. This solution may itself be considered to be in error
0

by A~El, so that a more accurate solution is h1 + Ehl. This is in

turn substituted into Equation (3.17) and the value of An};l is calcu-
lated. The iterative improvement is continued until it converges. In
actual fact, the process may or may not converge. As Tanner (1967)
has pointed out, instability arises when a solution is being sought for
an assumed value of d that is too large. In view of this fact, non-

convergence of the iterative improvement can be interpreted as a

warning that the assumed value of d is on the high side.

Computation Scheme

The computer program that was developed to solve the working
equation was designed to take all the foregoing considerations into
account. First, the digitization of the regional anomaly field
required that the digitizing intervals be specified both in the east-west
or x direction and in the north-south or y direction.

Experience has shown that when the ratio of the digitzing inter-
val to the depth of the source plane exceeds half, excessive oscilla-
tions begin to develop and the solution becomes unstable (Dix, 1964),
This means in effect that for a stable solution the discrete represen-
tation of the input regional field should preferably be carried out in

such a way that the interval between field points is at least twice d
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the assumed depth of the source plane.  The results of crustal studies
undertaken in Oregon show a crustal structure with greater variation
in the east-west direction than in the north-south, especially in the
western half of the state. This makes the digitizing interval more
critical in the former direction. Accordingly the interval was set at
80 km in this direction in order to allow the use of values of d of
up to 40 km while at the same time satisfying the requirement that the
digitizing interval should be at least twice as large as d. Inthe
north-south direction, the interval was fixed at half-degree latitude,
which was equivalent to a horizontal distance of about 55.50 km. The
choice thus made allowed for a grid of 56 points aligned along eight
lines running from east to west at a separation of half-degree latitude.
Considerations of stability and the need not to force a solution on the
system make it imperative that the position of the center of each
source block be made to correspond with the position of a field point in
both the x and vy directions. First, the positions of the centers
of the source blocks were fixed in the source plane so as to coincide
with the grid points. Then the field points were selected in such a
way as to coincide with the centers of the source blocks. Consequently
there was the same number of source blocks as of field points.

The computer program Wwritten was identified as GRAVCALC
and is reproduced in full in Appendix A. There were two parts to it.

The first part was based on Seydel's method of solving a system of
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linear algebraic equations. The solution obtained from this part of
the program was called the initial solution and was fed as input to the
second part, which performed the iterative improvement that takes
the quadratic term in Equation (3. 3) into account. Since both parts
involved iterations, it was necessary to set a criterion for bringing
the iterations to an end. Many possible mathematical criteria can be
used. For instance, one can set such a criterion thatthe process is

stopped when

max “Gij - Z zKijlekl | <E (3.18)
k 1

where E represents the error from measurement and data reduc-
tion. According to this criterion, the iteration is stopped when the
absolute value of the maximum component of the residual vector is
less than the estimated error in the input values. The disadvantage
with this criterion is that it involves a lot of tedious computation,
which is unnecessary. A second possibility is to set a criterion which
involves the required vector ﬁ In this case, one can make the pro-
gk g K-1)

cess stop when the Euclidean norm of the vector is

less than some specified constant times the Euclidean norm of

ﬁ(k-l),

l]ﬁ(k) - ﬁ(k_l)|| < constant xllﬁ(k_l)l| (3.19)
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The constant factor is chosen in view of the particular problem under
consideration. This second criterion was applied and the constant
factor was chosen to be 10_3. In view of the expected magnitudes of
the components of ﬁ, this figure was judged to be convenient.

Such was the flexibility built into the program that it was pos-
sible to stop the computer at any stage during the iterative improve-
ment and check on the results obtained after each iteration. Also,
the program was designed to produce two sets of results, one set at
the end of Seydel's iterative process and the second at the end of the
iterative improvement. It was, therefore, possible to compare the
two sets of results and to determine to what extent the iterative
improvement modified the results obtained by the Seydel's iterative
method.

Once the program was compiled inside the computer, the follow-
ing tests were carried out. First for three values of d, wviz.,

25 km, 30 km and 35 km, corresponding values of cond(K) (see
Equation (3.14)) were calculated. They were all found to be approxi-
mately one, indicating stable systems for all three values of d.
Next the condition was tested as to whether the convergence of the
Seydel's iterative process was possible. This condition was satisfied
for all three values of d. So convergence was expected. The

computations were carried out only after these tests had been made.

Since Oregon is part of a wider area, it was important to take
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into account the gravitational effect of the surrounding area and to
correct for it. To this effect, a boundary region was constructed
around the state whose width was defined as the horizontal distance
beyond which the source block with the largest value of h produced
a gravitational effect equal to the estimated observational error
involved in the regional field values. The width was calculated as

follows. The gravitational effect due to a single block is given by

2 2
—y 3d - 2
Ag = YA pd —h3 AEAaM + ng (3d 5R ) h agan (3.20)
R

R

where R represents the distance from the center of the block to the
field point. Since the second term on the right-hand of Equation
(3.20) is a small second-order effect, it can be neglected in this con-
text and hence

3¢ = yapd %A&An (3.21)

R
The value of A_E was fixed at 0.25 mgal and for h the largest
value from the already computed results was used. This value was
11 km. For d = 35km, the valueof R was calculated and from

it the width of the boundary region was calculated, since

2 2 2
R =d +L

L being the horizontal distance between source point and field point
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and hence the required width of the region. L. was found to be
187 kmm. The grid covering the state was then extended into the
region and for each grid point in the region crustal thicknesses were
calculated according to the following scheme. First estimates of h
for each grid point in the boundary region were made on the basis of a
single block attraction given by Equation (3.21). In this connection,
sg was taken as the value of the regional field at the grid point.
Each estimate of h was then improved by an iterative process in
which the influences of the surrounding blocks were calculated on the
basis of the results of the above first estimate and removed and a new
value of h was computed from the recalculated field value. The
process ran as follows. First, the estimate of h at a field point
was corrected for the influence of the eight blocks immediately sur-
rounding the field point. Then, the improved value of h was further
improved by correcting for the influence of the next set of blocks.
These are 16 in number. The process was continued until the magni-
tude of the influences of the farther blocks fell below the estimated
observational error of the regional field values. The field values
were obtained from Bouguer anomaly data published by Woollard and
Rose (1963). The data had not been filtered into a lOth—degree poly-
nomial surface. However, they had first been subjected to a visual
smoothing process from which emerged a set of contours that were

. th .
continuous with the 10 -degree polynomial surface used in the main
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computation. The crustal thickness profiles obtained for the Oregon
area are shown in Figures 6a to 8a for ap = 0. 45 gm/cc and in

Figures 6b to 8b for aAp = 0.60 gm/cc.

Results and Discussion

Seydel's iterative process for solving the working equation con-
verged for all three values of d. The process was supposed to stop
at the criterion (see Equation (3.19)) or go to 21 iterations and to
stop. It turned out that for the three values of d convergence was
reached before the 21 iterations were carried out. The iterative
improvement converged for d = 25 km and for d = 30 km after
four iterations; it did not converge for d = 35 km, even after 21
iterations, so that the results obtained from the Seydel iterations
were used in constructing the crustal thickness variation shown in Fig-
ures 8a,b. From the results for d = 25 km and d = 30dm, it
was found that the maximum change in crustal thickness brought about
by the iterative improvement was about one part in 18. Consequently,
the results shown in Figures 8a,b could be considered as approximately
representative of the crustal thickness variation for d=35km. As
Tanner has pointed out, the failure of the iterative improvement to
converge can be interpreted as an indication that a solution is being
sought for too high an assumed value of d. As a consequence, no

values of d higher than 35 km were used for the computation.
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Figure 6a. Crustal thickness profiles for d = 25 km and
ap = 0.45 gm/cc obtained by the digitized algebraic
method. Contour interval: 1 km.
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Figure 6b. Crustal thickness profiles for d = 25 km and
Ap = 0.60 gm/cc obtained by the digitized algebraic
method. Contour interval: 1 km.



Figure 7a. Crustal thickness profiles for d = 30 km and
aAp = 0.45 gm/cc obtained by the digitized algebraic
method. Contour interval: 2 km.
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Figure 8b. Crustal thickness profiles for d = 35 km and
Ap = 0.60 gm/cc obtained by the digitized algebraic
method. Contour interval: 4 km.
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Values of d equal to 34 km, 33 km, 32 km and 31 km were tried in
that order. For these, too, the iterative improvement failed to con-
verge.

The physiographic map of Oregon shows a terrain that generally
increases in relief gradually from west to east, if exception is made
of the Willamette Valley. In accordance with the predictions of
isostasy, one would normally expect a crustal thickness variation
marked by a general gradual increase from west to east. This was
borne out, as the results indicate. Since the Willamette Valley repre-
sents a structural depression between the Coast Range and the Cas-
cades, one would expect a correspondingly thinner crust under the
Valley than under most of the rest of the state. This was also borne
out. In all six figures, the Valley stands out clearly as a contour
low. The point needs stressing, however, that the thinner crust under
the Valley obtained above may partially be a reflection of the assump-
tion of constant crust-mantle density contrast made in computing the
crustal thicknesses. It is entirely possible that if allowance is made
for local changes in density within the crust and the mantle, the Valley
may not be associated with a thinner crust than is the topography on
either side of it,

As regards numerical values, for d =25 km and Ap=0.45 gm/ec
(see Figure 7a), the thicknesses average about 26 km under the Coast

Range, increasing to a little over 36 km under the Klamath Mountains,
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which are due south of the Coast Range. The thickness ranges from
about 27 km under the western margin of the Cascades to between
28 km and 30 km under the eastern margin. Thereafter, there is a
gentle increase towards eastern Oregon, this increase becoming
rather rapid near the Oregon-Idaho border. The thicknesses are
correspondingly greater for d = 30 km and d = 35 km, but
approximately the same trend is evident as for d = 25 km. The
thickness profiles resulting from the use of Ap = 0.60 gm /cc in the
computation also show the same trend as the above differing, as is to
be expected, only in numerical values.

For Oregon and its surrounding areas, the following results on
crustal thickness were obtained by investigators using different
methods. On the basis of local travel-time curves, Dehlinger et al.
(1965) obtained an average crustal thickness of 25 km to 30 km for the
region west of the Cascades. Phase velocity dispersion studies car-
ried out by Chiburis (1966) gave 38 km for the crustal thickness under
the Coast Range. Bert et al. (1966) obtained about 16 km for the
western edge of the northwestern Coast Range from seismic refraction
studies. For eastern Oregon, Chiburis obtained an average depth to
the Moho of 45 km, while Dehlinger et al. obtained an average of
35 km.

Studies of the crustal structure for an area extending from east

of the Cascades into southern Idaho were undertaken by Pakiser and
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Hill (1963), Hill and Pakiser (1966) and Hill (1970). Their results
varied from 28-36 km under the Basin and Range province to 41-48km
in the Western Snake River Plain in southern Idaho. Near Baker in
northeastern Oregon, Couch and Whitsett (1969) obtained a crustal
thickness of 42 km using travel-time curves from the North Powder
earthquake.

The most extensive seismic refraction and dispersion studies
for the area under investigation were carried out by Dehlinger et al.
(1968). Their results are presented in the cross-section in Figure 9.
From this cross-section, one obtains for the Oregon region an aver-
age depth to the Moho of about 36 km. Since the results for seismic
analyses are more absolute than the ones obtained from the present
gravity method, this figure might be considered to be an appropriate
value of d to be used in the two computational methods that have
been the subject of application in the present investigation. However,
the use of d = 36 km in the computations would have led to much
larger crustal thicknesses in Eastern Oregon than the seismic analy-
ses have yielded. This value of d will, therefore, have to be
rejected for the present purpose. The discrepancy is possibly a
reflection of the fact that the above computational model assumed a
crust and a mantle of constant densities, which is a simplified model.
For example, the regional field data used in the computations were

not corrected for the anomalies resulting from the discontinuities in
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the crust evident in the cross-section in Figure 9. Such a correction
would have been possible only if the two-dimensional structure of the
discontinuities had been available.

By using the cross-section in Figure 9 and an average density
contrast of 0.45 gm/cc as a standard of comparison, it is possible to
interpolate between the assumed values of d and to arrive at a
single value of d the best reconciles the above gravity and seismic
results. Since there appear to be crustal density inhomogeneities
west of the Cascades, this interpolation will be carried out only along
the section of the seismic profile in Figure 10, extending from the
Cascades into Idaho. The position of this section is indicated in Fig-
ures 6(a), 7(a), 8(a) and 9 by the line AB. The interpolation is car-
ried out as follows. The average crustal thickness obtained for the
section from the data in Figures 6(a), 7(a) and 8(a) is plotted in Figure
10 against the corresponding value of d. The three points can be
connected by a straight line. The seismic data in Figure 9 yields an
average depth of the Moho along the same section of 43 km. From
Figure 10, we obtain the corresponding value of d equal to 30.25
km. On the presently available data, this value of d appears to be
the most likely value for the reference crustal thickness to be applied
as the basis of the present calculation.

In carrying out the iterative process in the boundary region, it

was found that only the eight blocks immediately surrounding a field
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Figure 10.

Graph of average thickness against assumed values of
d, with p = 0.45 gm/cc. :
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point produced a significant effect there for those values of d equal
to 25 km and 30 kmm. The effects were large enough to cause changes
in the initial estimates of the crustal thickness of up to one part in 10.
The farther blocks did not change the estimates to any significant
extent; in most cases they either produced effects which were less
than the estimated error of the input regional field or caused changes
in crustal thickness of around one part in 50. For d = 35 km, the
16 blocks next to the eight immediately surrounding a field point pro-
duced effects which were greater than the estimated error of the input
field. However, the farther blocks produced no significant influences,
i.e., either their effects were small in comparison with the estimated
error of the input field or they caused changes in the crustal thickness

of not more than one part in 50.

Test of the Reliability of the Algebraic Method

In order to test the reliability of the computation method that had
been developed, a two-layer model was constructed for an area the
size of Oregon. The thickness of the upper layer of the model was
made to vary in both the east-west and north-south directions, i.e.,
the model was two-dimensional. Table 1 shows the thickness of the
top layer at the various grid points, while Figure 11 is the correspond-
ing contour representation. Given the thicknesses, anomalies were

calculated for each grid point on the basis of Equation (3.1). These
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Figure 11. Contour representation of the top layer of two-

dimensional model. Contour interval: 1 km.
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anomalies constituted the input field to the computer program
GRAVCALC. The results were compared with the model and a con-
clusion drawn as to the reliability of the élgebraic method. This test
was repeated for a second two-layer model in which the thickness of
the top layer varied only in the east-west direction, a one-dimensional
variation. Table 2 is a presentation of the values of the thicknesses
at the grid points. An east-west cross-section is shown in Figure 12.
The computations that followed were the same as for the two-
dimensional model and the results were again used to establish a com-
parison with the original model.

Table 3 shows a comparison between the two-dimensional model
and the computed results. The upper figures are the thicknesses of
the top layer of the model, while the lower ones are the calculated
results. The agreement between the two sets of figures is good. The
maximum and minimum differences between the two have absolute
values of 2. 77 km and 0.02 km at points where the model has thick-
nesses of 34.00 and 23.50 km respectively. Figure 13 is a contour
representation of the computed model. It shows nearly the same
trends as are evident in the model, Figure 11.

In Table 4 are presented the corresponding results for the one-
dimensional model. A comparison of east-west cross-sections is
presented in Figure 14. Here also the agreement is good, the maxi-

mum difference having an absolute value of 1. 63 km for a model




81
thickness of 29.00 km; the absolute minimum is 0.01 km where the
model is again 29. 00 km thick.

The close agreement between the models and the computed
results does indicate that, with the proper choice of digitizing interval,
the algebraic method can be relied upon to yield satisfactory values
for those parameters of a source body that are sought. However, to
what extent the results approximate the true geological situation,
depends upon the restrictions that are placed upon the other unknown

parameters of the source body.
Table 1. Thicknesses of the top layer of the two-

dimensional two-layer model. Figures are
in kilometers.

23.50 27.00 27.00 26.50 28.00 29.00 30.00
23.50 27.00 28.00 27.00 28.00 29.00 29.00
23.50 27.00 29.00 28.00 29.00 30.00 29.00
23.00 28. 00 30.00 29.00 29.00 30. 00 29.00
23.00 27.50 30.00 29.00 30. 00 31.00 29.00
21.00 29.00 30.00 29.50 30. 00 30.00 28.50
28.00 28.00 29.80 29.70 30.00 30. 00 30.50
34. 00 29.00 30.00 30.00 31.00 31.00 32.00

Table 2. Thicknesses of the top layer of the one-
dimensional two-layer model.

23.00 21.00 24.00 29.00 26.00 29.00 30. 00
23.00 21.00 24.00 29.00 26.00 29.00 30.00
23.00 21.00 24.00 29.00 26.00 29.00 30.00
23.00 21.00 24.00 29.00 26.00 29.00 30.00
23.00 21.00 24 00 29.00 26.00 29.00 30.00
23.00 21.00 24.00 29.00 26.00 29.00 30.00
23.00 21.00 24.00 29.00 26.00 29.00 30. 00
23.00 21.00 24.00 29.00 26.00 29.00 30.00
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Figure 13. Recomputed thicknesses of the top-layer of the two-
! dimensional model. Contour interval: 1 km.
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Figure 14. Comparison of the east-west cross-sections through the one-dimensional model
(full line) and the recomputed model (broken line).




Table 3. Comparison between the thicknesses (upper fig-
ures) of the top layer of the two-dimensional
two-layer model and the thicknesses (lower fig-
ures) recomputed by the algebraic method.

23.50 27.00 27.00 26.50 28.00 29.00 30.00

23.48 27.17 27.43 27.05 28.39 29.22 29.68

23.50 27.00 28.00 27.00 28.00 29.00 29.00

23.43 27. 41 28.55 27.85 28.87 29.75 29.50

23.50 27.00 29.00 28.00 29.00 30.00 29.00

23.43 25.57 29.57 28.94 29.75 30.52 29.54

23.00 28.00 30.00 29.00 29.00 30.00 29.00

23.43 28. 42 30. 38 29.85 30.03 30.73 29. 61

23.00 27.50 30.00 29.00 30.00 31.00 29.00

22.86 28.24 30.52 30.03 30.73 31.26 29.61

21.00 29.00 30.00 29.50 30.00 30.00 28.50

29.92 29.33 30.59 30.38 30.80 30.80 29.40

28.00 28.00 29.80 29.70 30.00 30.00 30.50

28.39 28.90 30.42 30.49 30.77 30. 77 30.63

34.00 29.00 30.00 30.00 31.00 31.00 32.00

31.23 29.29 30.03 30.14 30.73 30.77 30.94
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Table 4. Comparison between the thicknesses (upper fig-
ures) of the top layer of the one-dimensional
two-layer model and the thicknesses (lower fig-
ures) recomputed by the algebraic method.

23.00 21.00 24.00 29.00 26.00 29.00 30.00

22.52 21.27 23.75 29.19 26.32 29.12 30. 35

23.00 21.00 24.00 29.00 26.00 29.00 30.00

22.34 21.13 23. 64 30.07 26.47 29.50 30.84

23.00 21.00 24.00 29.00 26.00 29.00 30.00

22.31 20.99 23.62 30.63 26.51 29.57 30.94

23.00 21.00 24.00 29.00 26.00 29.00 30.00

22.30 20.96 23.61 30.91 26.52 29.61 30.94

23.00 21.00 24.00 29.00 26.00 29.00 30.00

22.30 20.96 23.61 30.91 26.52 29.61 30.94

23.00 21.00 24.00 29.00 26.00 29.00 30.00

22. 31 20.99 23.62 30.63 26.51 29.57 30.94

23.00 21.00 24.00 29.00 26.00 29.00 30.00

22.34 21.13 23.64 30.07 26.47 29.50 30.84

23.00 21.00 24.00 29.00 26.00 29.00 30.00

22.52 21.27 23.75 29.19 26.32 29.12 30. 35
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A Second Derivative Approximation Method

The Working Equation

The working equation for this method is

Ag(x,y,0) = yapd C ( h(g’”)dgdnz]g/z (3. 22)

YEn [x-8) 54y +d’]

which is the linear approximation to the fundamental Equation (2. 26),
which is valid for lh l<< d. Equation (3.22) is an integral equation of

the first kind and may be rewritten in the form

o0
rg(x,y,0) = ¢ CCK(x,y;f;,n)h(é,n)dédn (3.23)
-0
where
c = yapd
K = L
[(x-£) 24 (y-m 2+a’)>/?

A method of solution which immediately suggests itself derives from
the nature of kernel K(x,y;£,n). It is symmetric in its variables,
continuous and square integrable. Consequently. for the finite domain
that we are here dealing with, it has eigenvalues ?\i and corres-
ponding eigenfunctions q>_1 in terms of which Ag(x,y,0) and h(x,y)

may be expanded (Morse and Feshback, 1953; Sobolev, 1964).
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By carrying out this expansion, Equation (3.23) is transformed into

the following equation

provided that )\,1 # 0. This method is somewhat tedious to apply.
Instead a solution is adopted that is based on the inversion of Equation
(3.22) by the Fourier transform technique and that involves the com-
putation of the second derivative and the upward continuation of the

regional field.

Solution by the Fourier Transform Method

If Glo,,w

1 Z) is the two-dimensional Fourier transform of

Ag\X: Y. 0), we have

] X Y —i(wlx-i-w y)
G(w1 w.) = Limit > f S\ Ag(x,y,0)e dxdy
X = o0 -X -Y
Y —

where (-X,X) and (-Y,Y) are the gravity profile dimensions in
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the x and vy directions. If H(w ,c.oz) is the corresponding trans-

1

form of h(x,y), then the transformed version of Equation (3.22)

takes the form

2 2
G(c.ol,c.oz) = 2myAp exp(-d c.ol+<.o2 )H(c.ol,c.oz) (3. 24)
whose formal solution is
Ho ,w,) = 53— (d [ w2+l )Glo, 0,) (3. 25)
Q)I,Q)Z - ZTI’YAP exp X (.01 (.02 Q)l,(.\)z .

Inverting (3. 25) should yield h(x,y). A difficulty is posed by the
presence on the right-hand side of the exponential which is unbounded
and consequently prevents the inversion from being carried out unless
the function G(ml,mz) attenuates rapidly for large wave numbers.
Due to errors of measurement, the Ag(x,y,0) data invariably con-
tain components with large wave numbers which are magnified out of
proportion. A smoothing of the observed field values Ag(x,y,0)
enables one to circumvent this difficulty. However, smoothing
removes useful information in the form of short-wave components and
an inversion of Equation (3.25) on the basis of smoothed data will,
therefore, yield an incomplete solution. A useful solution may yet be
obtained by expanding the exponential factor in Equation (3. 25) into a
power series. Such an expansion would involve odd powers of

2 2

ml+m2 ,  which are somewhat unpleasant terms to handle. However,
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they can be avoided by a method used by Snow (1923) and later by

Bateman (1946) which consists of adding and subtracting the term

1 2 2
2D p exp(-d fw1+w2)G(w1,w2) (3.26)

on the right-hand side of Equation (3.25). The addition of this term

leads to a term including the factor

[exp(d ( w?ﬂo;) + exp(-d wf+w§)]G(w1,w2) (3.27)

which, when expanded into series, contains only even powers of

/ 2 2
w1+w2 s i.e., terms of the form

2.2n

(wiﬂoz) G(wl,wz) (3.28)

where n is a positive integer. These terms inverted into (x,y)

space give the terms

2
(-v )7 agix, y, 0)

Thus is obtained the Snow-Bateman form of the solution of the

integral Equation (3.22)



Ag é n)d€dn

(x-£) +( n)2+d ]3/2

(3.29)

in which the last term on the right-hand side is the inverse Fourier
transform of the expression (3.26). This solution includes an infinite
series in the Laplacian derivatives of Ag(x,y,0). The series will
diverge in the general case, but if Ag(x,y,0) is a band-limited
function with cut-off limit w the series will converge (Bodvarsson,

1971), the convergence being rapid when
2
2d w_ <1
o
Under this condition, the Snow-Batemen solution is applicable. For

the relatively long wave components in h(x,y), the series can be

truncated after the second term to yield the solution

2
; d
hix,y) = WIAP Aglx, v, 0) - 5 v antx v, 0)
o0
d ) Ag(g»n)d%dn
4Tr .,(1,_( 2 2 2.3/2 (3.30)
"o [x-8) " Hy-m)+d ]

2,
in which the term VvV (Ag(x,y,0)) represents the second derivative
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of the observed regional field and

4 ___agls, mdédn

2w JJ 2. 23372
T ) Hy-m) THd ] /

represents the upward continuation of the regional field to the plane at
a height d above its plane of observation. As Bodvarsson (1971}
has shown, the solution expressed in Equation (3.30) is valid only for
wavelengths of the undulating interface equal tc or greater than 4d

to 6d.

Computation Scheme

There were three parts to the computaticrn. The first was the
calculation of the second derivative. The schemes desigried for this

calculation reduce to this gencral formula (Dobrin, 1960)

2
9 . C _—
azz(Ag) ——SZ[WOA%+W1AGI+WZAGZ+ L] (3.31)

where Ag is the value of the regional field at the point where the

second derivative is required; gy, Agz, c are the averages of
the field values along circles of radii s,sNZ2,... respectively. C

is a numerical constant. Wo’wl’ w are weighting factors for

IR

the respective gravity values. Some of them are positive, others are

negative and their algebraic sum is zero. The thecry behind the abeve
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general formula has been discussed by Peters (1949). The specific
formula used in calculating the second derivative was Griffin's (1949)

center-point-and-one-ring formula which gives the second derivative

as

82

= (ag) = = (ag_-Bgls)) (3. 32)
0z s

Since the above equation does not contain d, the second derivative
had to be calculated only once. The second part of the computation
involved the upward continuation, which was performed by a computer
program called UPWARD, reproduced in Appendix B. The calculation
was carried out for the three values of 25 km, 30 km and 35 km.
Finally a computer program, identified as SUM and reproduced in
Appendix C, was written to calculate the values of h(x,y) in accord-
ance with Equation (3. 30). One of the functions of this program was

to first compute the second derivatives with the appropriate values of

Ago and Ag(s) as input (see Equation (3. 3¢)). The values of
h(x, y) were converted into crustal thicknesses by addition to, or sub-

traction from, d. The results are shown in Figures 15a through 17b.

Results and Discussion

—

The broad features discernible in the crustal thicknesses
obtained by the algebraic method are also evident in the results

yielded by the present method. The Willamette Valley again stands
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out as a trough. The same gradual increase in thickness towards the
eastern margin of the state is also evident. On the whole, the
results for d =25 km and d =30km agree better with the cor-
responding results by the algebraic method than do the results for
d = 35 km.

In order to arrive at the best value of d, the same method of
interpolation was used as for the algebraic.method. Averages were
calculated from the results shown in Figures 15(a)-17(a) and plotted
against the corresponding values of d. From the graph, which is
presented in Figure 18, the value of d that best reconciles the
above gravity results and the seismic results in Figure 9 was found
to be 28. 90 km.

The cross-sections in Figures 19-21 present a comparison of
the results obtained from the algebraic and the second derivative
approximation methods. The divergence that they show may be
accounted for by the fact that the second derivative approximation
method is based in part on the computation of the second vertical
derivative of the regional gravity field. As has been pointed out by
several workers (see, for instance, Rosenbach, 1953; Nettleton,
1954; Mesko, 1965, 1966; Skeels, 1967), the second derivative cannot
be accurately calculated. Not only is it sensitive to grid spacing, but
it also varies with the radii of the circles used in computing it. In

practice, the second derivative has been found to relate more closely
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to the residual than to the regional field that has been the basis of this
investigation. As Peters (1949) points out, the schemes for calculat-
ing the second derivative are only approximations and give results
which are more qualitative than quantitative.

From the foregoing discussion, it is safe to conclude that the
second derivative approximation method should be expected to yield

somewhat less accurate results than the algebraic method.
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Figure 15a. Crustal thickness profiles for d = 25 km and

Ap = 0.45 gm/cc obtained by the second derivative

approximation method.

Contour interval:

4 km.
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Figure 16a. Crustal thickness profiles for d = 30 km and
Ap = 0.45 gm/cc obtained by the second derivative
approximation method. Contour interval: 4 km.
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Figure 16b. Crustal thickness profiles for d = 30 km and
Ap = 0.60 gm/cc obtained by the second derivative
approximation method. Contour interval: 2 km.

99




47

46

45

44

43

42

100

62~

l 42 46
[
|
|
1 1 I |
125 12 123 121 120 119 118 117 116

Degrees

Figure 17a. Crustal thickness profiles for d = 35 km and
Ap = 0.45 gm/cc obtained by the second derivative
approximation method. Contour interval: 4 km.
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Figure 17b. Crustal thickness profiles for d = 35 km and

Ap = 0.60 gm/cc obtained by the second derivative
approximation method. Contour interval: 2 km.
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Figure 18. Graph of average thicknesses against assumed values of
d, with p = 0.45 gm/cc.




Figure 19. Cross-sections along latitudes 45°N (A) and 43°N (B), from longitude 116°30' to
123°30', through Figure 6b (broken curve) and Figure 15b (full curve).
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Figure 20. Cross-sections along latitudes 45°N (A) and 43°N (B), from longitude 116°30' to
123°30', through Figure 7b (broken curve) and Figure 16b (full curve).
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Figure 2la. Cross-sections along latitude 45°N, from longitude 116°30' to 123°30',through
Figure 8b (broken curve) and Figure 17b (full curve).
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Figure 21b. Cross-sections along latitude 43°N, from longitude 116°30' to 123°30/, through
Figure 8b (broken curve) and Figure 17b (full curve).
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CONCILUSION

The algebraic and the second derivative approximation methods
provide two approaches to the study of the crustal thickness and its
variation. The two methods are adaptable to a high speed computer
and produce results rapidly. In this respect, they may often be pre-
ferable to the indirect method of interpretation. It is concluded that
the algebraic approach can be extended to the study of the shapes of
massive anomalous bodies.

In so far as each assumed value of d, the average crustal
thickness, produces its own thickness profiles, the results yielded by
the two methods are not absolute. However, when an absolute value of
the average crustal thickness is known from a seismic profile, this
value should be used for d so as to obtain the best approximation to
absolute thicknesses. In this way the two methods, although based on
a simple model of a homogeneous crust and a homogeneous upper
mantle, provide a convenient and economical way of combining the
gravitational and seismic methods for regional studies of crustal

thickness in regions in which a few seismic profiles are available.
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APPENDIX B
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APPENDIX C
PROGRAM SUM
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