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A MODEL OF WIND-FORCED VISCOUS CIRCULATION
NEAR COASTAL BOUNDARIES

I. INTRODUCTION

Studies of sealevel and current meter record spectra from
continental shelves show the existence of low freguency oscillations
with periods ranging from a few days to a few weeks. The fluctua-
tions are in many cases related to local atmospheric variables and,
1ike these fields, are often coherent over alongshore distances of
several hundred kilometers. Theoretical models demonstrate the
possibility of a variety of forced and wavelike motions of the
appropriate scales. Among these are baratropic continental shelf
waves, which are topographic Rossby waves, trapped near the coastal
boundary through the agency of vorticity. This mechanism is
clearly described by lLonguet-Higgins (1968a, 1968b), both for the
discontinucus depth profiles with which the earlier models were
concerned and the later continuous profiles. The models themselves,
and the bulk of the observational evidence, are reviewed by LeBlond
and Mysak (1977), Mysak (1980) and Allen (1980).

Continental shelf waves can originate or be driven by processes
in the ocean interior, as considered for example by Kroll and Niiler
(1976) and Allen and Romea (1980). On the other hand the high cor-

relation often observed between currents or sealevel and Jocal



meteorological variables suggests that continental shelf motions may
~ be generated on the shelf by the passage of mesoscale atmospheric
disturbances. Early studies considered atmospheric pressure as the
driving force but, since these shelf motions involve vorticity, Adams
and Buchwald (1969) conclude that the alongshore component of wind
stress is a much more effective causal agent. Indeed those models
involving pressure forcing often invoked resonance arguments which,
because of the large length scales involved and the effects of fric-
tion, must be rather unlikely.

The models todate have often been inviscid and cannot account
for the observed phase relationships found in shelf measurements.
When diffusion is included it is most often parameterized through
a bottom friction coefficient, as for example in Mysak (1967) and
the diagnostic calculation of Hsueh and Peng (1978). Brink and
Allen (1978) have also used this parameterization in showing that
the effect of friction on shelf waves is to reduce the phase lag,
between the alongshore Component of velocity and the forcing, from
the value predicted by frictionless models. Their results explain
the phase variation observed across continental shelves (Sobey, 1977;
Brink, Allen and Smith, 1978), where nearshore fluctuations lead
those farther offshore.

Turbulent boundary layers frequently occupy a considerable
portion of the water column, especially in shallow regions. This
is demonstrated by Smith and Long (1976) for the Washington continen-

tal shelf and by Kundu (1977) off Oregon-Washington and northwest



Africa. It thus seems desirable to develop a model of time-dependent
forcing on the shelf in which friction can act throughout the water
column. It is to this problem that the present study is addressed.
Ekman friction with constant vertical eddy diffusivity is used to
parameterize the diffusion of vorticity into a homogeneous ocean
from the atmosphere, and from the ocean to the bottom. The water
depth is allowed to decrease to zero at the coast so that the surface
and bottom boundary layers merge.

With zero water depth at the coast the required boundary con-
dition is that all properties of the flow field be regular there.
This is in contrast to the nearshore boundary condition most fre-
quently imposed in the literature where no net onshore flow is
required at a vertical wall. The results of this study indicate
that such a coastal wall may lead to incorrect predictions of coastal
sealevel amplitude and currents in the nearshore zone, unless the
wall height is less that the boundary layer thickness necessary to
account for the effects of vertical eddy diffusion.

The approximate linear equations of motion are Fourier decomposed
over frequency and alongshore wavenumber and integrated vertically.
The result is a two-point boundary value problem for the transform
of adjusted sea surface elevation. The solution of this problem
allows a spectral representation of the response of coastal sea-
Tevel and. the horizontal and vertical components of velocity over
the shelf to atmospheric forcing. The spectral representation takes

on a particularly convenient form when each component of the forcing



is treated separately and is assumed not to vary across the shelf.
The properties of the model may then be discussed, independently of
the spectral characteristics of the forcing field, through a set

of transfer (or admittance) functions. This study concentrates on
the shelf response to alongshore wind stress.

A further objective of the study is to compare the predictions
of the model with the observed behaviour of coastal sealevel and
horizontal currents over the shelf. Data for these variables and
for the forcing do not allow the estimation of joint wavenumber-
frequency spectra and as a result the spectral model must be inte-
grated, at least over wavenumber. This is done assuming spatial and
temporal stationarity of the wind when its wavenumber and frequency
dependencies are separable. With an assumed wavenumber dependence
of the wind, based on available information, and an Ekman depth of
ten meters the model predictions are found to be in excellent agree-
ment, both in amplitude and phase with observations from the Oregon
shelf. Thus the subinertial variability of this region may be largely
accounted for with simple linear barotropic dynamics in response

to alongshore wind stress.



IT. THE MODEL

Consider a homogeneous ocean of density e, in a semi-infinite
region, illustrated in figure 1. The water is of constant depth
except in the vicinity of the boundary. Here the continental shelf
and slope are represented by a topographic profile invariant in the
alongshore direction. In the fluid adjacent to the boundary the effect
of the topography on vorticity is assumed to be of far greater impor-
tance than the g-effect so that f-plane dynamics are used. Cartesian
coordinates are drawn with x offshore, y alongshore and z vertically
upward. The mean shoreline is at x = 0, the undisturbed free surface
at z = 0 and the bottom at z = -H(x).

In the absence of strong mean flows the linearized equations of

motion are
u +v +w =0 (1)
X y z
u - fv = -gr +xu__ (2)
Vi + fu = —ggy + <V (3)

Here subscripts denote partial differentiation, (u,v,w) are the
offshore, alongshore and vertical components of ve]gcity, f is the
constant Coriolis parameter and g the gravitational acceleration.
The effect of diffusion has been parameterized through a constant
vertical eddy coefficient «. The quantity z(x,y,t) is the adjusted
sea]evel,.

L =n - pa
where n is the actual sea surface elevation and Py the negative of

atmospheric pressure expressed in units of water height.
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Figure 1. Schematic representation of the shelf model.



We introduce the following scales
( X, y: Za t ) - ( La L, HOS f_l )
( Us V, W, T ) - ( uos uos UOHO/L’ UOfL/g )
where L is the shelf-slope width, H0 a depth characteristic of the
shelf region and u, @ characteristic horizontal velocity.
Then in non-dimensional terms, equations (2) and (3) become
ug - Vo= -p ot (4)
v tus= = v, (5)
where the friction parameter y is a vertical Ekman number

2
K
- K - h./H
n =2 s Chgly)
0

Here

1
2

g

is a depth characteristic of the frictional boundary layers and is

( «/f)

n

henceforth referred to as the Ekman depth.

The boundary conditions employed are
1) Horizontal shear stress due to the wind at the surface
2) No-slip at the bottom, z = -H(x).

If T is a scale characteristic of wind stress magnitude then

and the non-dimensionalized boundary conditions may be written
(+*,2Y)

(u,v) = 0 , at z = -H(x) (7)

U(Uzsvz) ’ at z = n(Xayst) (6)

The boundary conditions at the shoreline and at the slope-interior

junction will be discussed later.

-



Fourier Transform Representation

We now Fourier decompose the wind stress, the velocity components
and the adjusted sealevel over frequency and alongshore wavenumber.
For a general function the Fourier transform pairing is

f(x,y,z,t) < F(x,1,2z,0)

where
i(ay+ot)

f(X,y,2,t) (2n)-2f_: [_oF(x,2,z,0)e dado

and
F(xsxs250) = 7 f_:f(x,y,z,t)e'1(Ay+ct) dydt

Here ¢ and X are the frequency {(w), and the alongshore wavenumber (2)
nondimensionalized with the inertial frequency and the shelf-slope
width respectively
o=uw /f s A= 2L
It should be noted that when Fourier transformation is employed in
purely inviscid problems of continental shelf circulation, inversion
may lead to ambiguous results due to the presence of poles on the real
axis. However, as demonstrated by Adams and Buchwald (1969), such
ambiguity does not arise when frictional damping is present. 1In
effect the presence of damping imposes a radiation condition at
infinity in the alongshore direction that confines our attention to
outgoing waves.
Using upper case letters to denote Fourier transforms we write

(TX,Ty) > (TX,Ty)

(usvow) <= (U,V,W)

L:p, Z,Pa

Note that (rx,ry), and Py have no z-dependence, and so neither will



their transforms.
Equations (4) and (5) now become

icd -V = -2 +3U
X zZZ

ioV + U

H

-i17 +
1P VA UVZZ

These have a depth independent particuiar solution for U and V in
terms of Z

(1-02)U

. A
-'Ia(zx + 52)

(1-02)V = Z_ + 2oZ

The homogenous equations for both U and V take the form

( 3k 2ic 32 + 1-02
3z no 9z4 ue

Ww=20
which on assuming a solution of the form exp(uz) leads to the roots
tx , 8 where

= (5% (14)

s
o = (3% (1-1)

The depth dependent part of the velocity components can be con-

veniently expressed in terms of the functions

5 = Sinhs(z+H) . sinha(z+H)
8 B coshgH ¢a a coshaH
_ coshpz - coshaz
Vg = CosheH Y4 = CoshaH
as
U:

+ DN
Ag, + By + Cu, + Dy

V= -i(Ag, - Bs +Cy, - Dv )

The boundary conditions (6),(7) allow the coefficients A,B,C,D to
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be determined. Uhen (6) is imposed at the undisturbed free surface

z = 0 we gbtain

A= (T +iTY)/2
B = (T" - iTY)/2,
C= -1'(2x - 22}/ {1+g)
D= 4(Z, +22)/(1-0)
so that
e ) LI
- B Vo, x .o B Ty
Vs )T+ il T -
ig i-o 1+ A 1-0 . 1+ .
oot + 35 = bl T * 51 - g T (8)
o9 ¢ot+0
o i P Ty oX B a1y
V= =i + )T+
1 1-o 14+a l-0 1+o
Toor {1 = S5 = )L, + all + 5y - 5, ) T (9)

Note that the roots 8 and @ and their associated ¢ and ¥ functions
correspond to clockwise and counterclockwise components respectively
of the motion. This may be seen by forming the complex velocities
U+ iV and U - V.
We now integrate vertically the continuity equation {1). This
leads to
3

Bfn n = -
5§1_H u dz + 5§J_H vdz+en =0

where e is a dimensionless parameter that expresses the relative

importance of surface divergence.

B 2
€ o, (L/re)

Here rg is the external Rossby radius of deformation which for scale
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values typical of continental shelves is ccnsiderably greater than
the shelf width L.

In applying the integrated continuity eguation to the model
we replace the upper Timit of integration by zero in order that the

model remain linear. Then in Fourier space we have

a_ ¢0 3 ¢0 . =
ox LyUdz + 5o [ Vdz + doe(Z + ) = 0 (10)

The depth dependence of U and V is confined to the ¢ and ¥ functions

and we define

(1-sech?gH)/g2

0
®8 = [_H (dez

(tanhgH)/g

. (0
vy = [ 9,42 |
with analogous expressions for e and ¥ . Then substitution of

expressions (8) and (9) for U and V into {10) leads to

AH
(th)x + {“C;-)-(- - 2%h - e(1-02)}Z

) %;gz age TS - Ty) - Hogro )Ty + Ty)
- i(¢5+¢a)xTx + (¢s—¢a)xTﬁ' +e(l-02)P, (11)
where
n=H+ ;;0?8 - ;;a?a
HeH - 1;-):0“"3 _ l*z'd.ya

The forcing terms on the right hand side of (11) are associated

respectively with the effects of
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1) Wind stress curl

2) Wind stress divergence

3} Offshore wind stress acting on the topographic slope

4) Alongshore wind stress acting on the topographic slope

5) Atmospheric pressure

Equation (11), when combined with suitable boundary conditions
at the shoreline and at the slope-interior junction, describes
the viscous response of adjusted sea surface elevation to forcing
at wavenumber-frequency (A,c). The associated horizontal circulation
can be obtained from equations (8) and (9) and the vertical component
¢f velocity derived as discussed later.

The homogeneous version of equation (11} is reminiscent of the
inviscid theory, for example equation (15) of Mysak (1979). In our
notation

(Hzx)x + {AHX/G < A2H - e(l-02)} 2 =0
However instead of H, equation (11) contains the frequency dependent
functions h and H which might be described as "equivalent depths"
for the viscous problem. In fact in the limit as uw -+ 0, when
diffusion is confined to infinitely thin boundary layers, equation

(11) reduces to

(HZ )+ {3H /o -A%H - ¢(1-g2)3Z =
x'x X
LR N S S S A )
ST - T+ (T + TY) + =(1-02)P,

which is - in exact agreement with the inviscid theory.
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The Nearshore Boundary Condtion

Two cases arise, depending on whether the undisturbed water
depth tends to zero at the coast, or to some finite non-zero value.
The latter situation of a vertical wall, though seemingly un-
realistic,except perhaps for motions with very large scales, occurs
frequently in the literature. This is particularly true in the
case of inviscid models where the rationale appears to be that one
thereby excludes an inner region where diffusive effects are to
be expected.

In the case of non-zero water depth at the coast the appro-
priate boundary condition is that of no net onshore flow . Vertical

integration of equation {8) at x = 0 leads to the condition

nz o+ My o l®i oy oL X \
Zx + 5 {(@B @u)T 1(¢B+@a)T } (12)

In our model horizontal eddy diffusivity has been ignored.
This is valid over shelves of gentle slope {Allen, 1980}, but is
inappropriate in the vicinity of a discontinuity of depth, where
horizontal eddy diffusion leads to a variety of boundary layers. We
will therefore implement our model for topographic'profiles with
zero depth at x = 0. 1In this case equation (11) has a singularity
at the origin. In ordér that Z and the velocity components be well
behaved we seek regular solutions onlv. The condition for regular
behaviour is that

IZX(x=O){ < M, a constant. (12a)
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Regular solutions allow a net onshore flow at the coast. This
represents the possible run-up on the sloping beach. We will see
however that our viscous model is insensitive to the choice of
nearshore boundary condition provided the wall height is less than

the Ekman depth.

The Offshore Boundary Condition

The ocean interior is modelled as being of uniform depth. Then

equation (11) reduces to

hZXX - {%h + £(1-02)}Z =

—

-2 Y Xy . X ¥ 2 \
uU{(¢B-¢u)(TX Ty) - 1(¢B+<1>u)(TX +Ty)} + efl-0 )P, (13)

[

where h,H and the ¢ functions are now independent of x. Solutions
to (11) and (13) are to be matched at the slope-interior junction

x = 1. This matching will in general force a shelf response due

to the circulation of the ocean interior. Our interest lies mainly
in the shelf response rather than in shelf-interior interactions

so we confine ourselves to solutions of {13) that decay with
increasing x. In the next section we introduce some simplifying
assumptions on the model that facilitate the identification of

such coastal-trapped solutions as well as allowing a simple spectral
representation of shelf response to forcing by the alongshore com-

ponent of windstress.
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Horizontal Non-Divergence and Simplified Forcing

In equations (11) and (13) the term £(1-62)Z represents the
effect of surface divergence. This may be important in laboratory
situations and the term is retained for example by Caldwell, Cutchin
and Longuet-Higgins (1972). We choose to eliminate it, thus restrict-
ing ourselves to horizontally non-divergent motions. Surface diver-
gence might be expected to play some part in the shallow regions.
nearshore. However, effects of comparable importance may already
have been excluded in our integration of the continuity equation,
where the upper 1imit of integration was replaced by zero in the
interests of Tinearization. The non-linear problem of finite
amplitude gravity waves on a sloping beach has been treated by
Carrier and Greenspan {1958). Such problems may be solved by
characteristics but our viscous model without the long wave approx-
imation does not Tend itself to such treatment.

The term s(l-cZ)Pa in equations (11) and (13) represents the
effect of atmospheric pressure in the generation of non-isostatic
sealevel fluctuations. In our linear model the effect may be
separatad from the forced response due to wind stress. The latter
is believed to be the more important. We further restrict our
attention to forcing due to alongshore wind stress, and ignore
any variation of this component across the shelf.

(<, @) = (0, Zly,t))
This eliminates forcing due to the wind stress curl and equation (13)

becomes, subject to the above restrictions
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where the subscript « denotes the value in the constant depth

intericr. The particular solution to this is

-.0-2 @ v
2ug ( h ) T

due to wind stress divergence in the open ocean. The homogeneous
equation has a solution

Z = exp(-

where the decaying form has been chosen to represent coastal trapping
in the semi-infinite region x > 0. The deep water boundary condition

at x = 1 can now be written as

+3
= _ . 1-g2 (bﬁ ay Y
Zx + |a|Z A% 5o { )T

where

sgnx = A/ ||

The Spectral Transfer Function and the Coherent Response

Assuming horizontal non-divergence and the simplified forcing

described above, the transform of adjusted sealevel must satisfy

1-g2 : \
- 32n17 = -
(hZ ), + (3s,/a - A*h}Z E;g“{(éa ° ) * A(®B+®a)}T (14)
with

My . Lo, g Y - 15

hZX+UZ '2?0—(@8 ‘I’u)T s X 0 ( )

or

Z (x=0) <« M , a constant (15a)

X
and
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- 1-g2 B oy oY
+ = - X Tk =
Zx Ix]Z sgni o { ] )T . x =1 (16)

These equations are linear in Ty(A,c). if vV is repiaced by
unity the solution of these eguation results in what might be termed
the Spectral Transfer Functions for sea surface elevation and the
various properties of the flow field derivable from it. If the
transfer function of any one of these variable is denoted by
R(Xsx,2,5) then the overall response of that variable to the actual
forcing is found by superimposing the wavenumber-frequency spectral
decomposition of the alongshore wind stress field.

F(Xs4s2,0) = R{x,2,2,0) TV(1,0) (17)

The various spectral transfer functions thus embody the pro-
perties of our simplified viscous forced model. In the next chapter
these functions are computed and examined in the Tight of their
dependence on the choice of vertical Ekman number, topographic
prcfile and the boundary condition imposed at the coast.

It should be noted that a similar set of transfer functions
could be derived for forcing due to either atmospheric pressure
or the onshore cpmponent of wind stress if these are assumed not
to vary across the shelf. The overall response would then be
given by a linear superposition of these effects. The wind stress
curl does not lend itself to this simple treatment insofar as it
contains the term Ti.

A further objective of this study is to compare model predic-
tions with actual field observations derived from tide gage and

current meter records. These data from fixed locations may be
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represented either in the time or the frequency domain. Wavenumber
information is rarely available so that equation (17) must be inverted
at least over wavenumber. This requires the knowiedge of the joint
wavenumber;frequenEy transform of alongshore windstress. Weather
stations on the.U,S. Pacific coast are typically separated by several
hundred kilometers, except during brief intensive studies, and are
strongly influenced by orographical effects (Halpern, 1974).
Syntheses of the wind field from atmospheric pressure data, such
as used in producing an Upwelling Index {Bakun, 1973) are also 1imited
in spatial resolution.

The application of standard spectral techniques to the available
data allows the identification of the wind coherent part of each
observed property of the coastal flow regime. For each such property

F we define a Coherent Response , RC and phase ec
23
¥

F
R (w) =
¢ S (18)
ec(m) = arg(SFT) (18a)
Here S_ , ST denote the frequency autospectra of F and the alongshore

wind stress respectively; SFT js their cross-spectrum and v2

their squared coherence

|Sprl?
Vo) = 55— (19)
Se2r
Inversion of equation (17) leads to

flxoy,z,t) = [T 7 R(x,6,2,6)7 (y-6,t-¢) dsdg (20)
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Here R(x,),z,0), the inverse transform of the Transfer function, is
the system function of a single input Tinear system relating f to
Y. The application of some further concepts of linear systems

analysis allows the definition of a Model Response , R,, and

M
phase Oy which, subject to some assumptions on the wind field, may
be compared with the quantities defined in (18), (18a).
Suppose Iy(y,t) is a stochastic random variable, stationary

both in space and time. The system function R in eguation (20)
is deterministic but the system output f(x,y,z,t) will also be
a random variable. Auto- and cross-correlation functions for
and f may be defined, which form Fourier transformpairs with the

wavenumber-frequency auto- and cross-spectra,

*
Se(hs0) <« <f(x:8,28) T (x,y46,2,t+5)>
‘yr >
Stlase) o <«?(s,8) 1 (y+s,t+e)>

*
SFT(A’G) - <f(x:5355) T (Xsy+aszst+€)>

*
Here <,,.> denotes averaging in both space and time and (...)

denotes complex conjugation. Explicit referenceto the x and z
and S

dependence of S has been suppressed for convenience.

F FT
The generalization of the systems treatment (for ekamp]e Bendat
and Piersol (1971)) applied to equation (20) leads to

Selasa) = [R(x,2,2,50) |2 Sq(nsa)

SFT(A;G) = R(.XS}(SZ‘G) ST(;\.QO')
At each point in wavenumber-frequency space the squared

coherence, defined 1in analogy with (19) is unity. The interaction
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of a range of wavenumber components may lead to decoherence when
frequency spectra are computed.

If ST(A,c) is known, or in practice modelled with some algebraic
representation, the model response and phase are formed by integra-

tion over wavenumber

YZSF(G) _
RM(c) = __§;C;T_ (21)
eM(o) = arg(SFT(a)) (21a)
with
SF(O’) = Ifw [R(X,)\,Z,G)IZ ST(AQG) dx
St(o) = [, S;(xs0) o
Seqlo) = [7_ R(x:1,250) So(hs0) da
and S (o)
I 2
YZ(G) = SF U)ST U) (22)

The model response RM (expressed in dimensional units) and

phase ©,, may be compared with the coherent response Rc and phase

M
ec derived from data. This comparison is attempted in Chapter IV.
There it is further assumed that the spectral density ST(A,c) may

be decomposed as

ST(A,O) = SI(A) 52(0) (23)
In this case the model response is given by
Rulo) = 1/, Rlx:2,2,0) S1(1) drf2 (24)

when Sl(x), the assumed wavenumber dependence of the wind, has
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been normalized

ffmsl(x) dr =1

The decemposition (23) may be justifiedin a number of ways.
It would result for example if the weather systems causing the
wind stress propagate at right angles to the coastline. This was
assumed by Brooks (1978) in a study of the coastal response off
North Carolina. If on the other hand there is no preferred
propagational characteristics for weather systems, so that varia-
tions in t and y are uncorrelated, this decomposition might also
be expected. Variability of the latter type was inferred by
Mysak (1967) for the low frequency behaviour of atmospheric pressure
fluctuations off Australia., More recently Willebrand (1978)
demonstrates that, in the open ocean at mid-latitudes, atmospheric
energy is essentially isotropic in north-south wavenumber at
subinertial frequencies, even for scales of several thousand

kilometers. This lends further support to the decomposition.

The Vertical Component of Velocity

The model also allows the vertical component pf velocity to be
determined. Here we consider only the case of horizontally non-
divergent motions with the simplified forcing. If the vertical
integraticn of the continuity equation, rather than extending from
z = -H(x) to the surface, is terminated at some intermediate depth

z, < 0 then
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Wz,) = 25 (n(2,)7,) + Cr (2.) - A%z )12}

- %%{-(¢8(zo)-®a(zo))x +ale (z )+ (z2)))1  (25)
Here
n(zg) = (Wz)) + 5% (2) - £ (2)
H(z) = (H+Zo) - lég-ws(zo) - IZU ,(25)

WB(ZO) = (smhszO + sinhgH)/8coshgH

- - 2
¢B(ZO) (coshs(zo+H) 1)/82coshgH

are generalizations of the earlier functions which were evaluated
at the mean free surface z = 0. The functions Wa(zo) and @a(zo)
are defined in an analogous fashion.

Equation (25) allows the vertical component of velocity to be
determined at any point in the water column whenever Z is known.
A transfer function forW can be formed and used to represent the
spectral characteristics of the vertical compaonent of velocity.

If in particularzo is chosen in the inviscid interior, and the
Ekman layers are thin in comparison to the local water depth,
equation (25) may be considerably simplified

- [o . 12 _ Y
W(ZO) W{TZO(ZXX AcZ) -AT }

Further for this situation .

I -2z
XX

I

1

oX A ix gy
1 (Zx + 27) + v T

and

I

-1 A
U(20>>hE) = T%(Z + =7)
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so that
Z H H+z

Wz,)) = 2 u(z,) - (2 £ T (26)

The transfer functions of W and U are thus linearly related at
points in the inviscid interior.

If now a model response is formed as in equation (24) and
the decomposed wind stress spectrum is taken to be even in X,
the second term on the right of (26) integrates to zero. Then the
model responses of W and U are identical except for a factor
dependent only on the local water depth, the bottom slope and the
location chosen within the inviscid interior.

To the extent that these assumptions are valid this re]atibnship
between the response of U and W can be used to estimate the
frequency spectrum of the vertical component of velocity at a

position where the onshore velocity spectrum is known.
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ITI. IMPLEMENTATION AND PROPERTIES OF THE MODEL

Finite Difference Soiution

Our task is the integration of the two-point boundary value
problem defined by equations (14), (15) or (15a) and (16). The
inviscid case y = 0 has analytic solutions for certain specific
topographic profiies, such as the exponential shelf treated by
Adams and Buchwald (1969). Indeed some general conclusions may be
drawn for classes of profile types in the inviscid case as shown by
Huthnance (1975) and Odulc (1975).

The viscous model derived here, with u # 0 does not allow such
analytic treatment. Instead we resort to numerical means. A bar-
ticularly convenient method for our purposes is described by Lindzen
and Kuo (1969). Its implementation results in a complex valued
sea surface profile in response to forcing by unit alongshore
windstress, subject to the frictional effects imposed by the-
particular choice of the Ekman number u. From this profile we
may obtain the transfer functions for coastal sealevel and selected
properties of the velocity field over the shelf, at the wavenumber
frequency combination (x,os). The process is repeated at a sufficient
number of points to give an adequate representation over the Xi-o
plane.

In this study transfer functions were produced for coastal sea-
Tevel and the velocity field (U,V,N,Ux,vy) for mid-depths at the
50, 100 and 200 meter isobaths, with values of u equivalent to

Ekman depths of one and ten meters. The topographic profile chosen
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is representative of the Oregon shelfand is discussed below.

The Regularity Condition at the Coast

To allow friction to take its full effect in the nearshore
region we employ the regularity condition (15a}. In order to imple-
ment this numerically the various functions in (14) are expanded as
power series in x. The particular and homogeneous solutions are

written as regular series expressions

p a]x + a2x2 + .,

Z .
2

Z

H 1+ b1x + bzx

Collecting Tike powers of x in (14} allows the determination of the
coefficients ass bi’ for a sufficient number of terms to achieve

convergence. Matching the regular solution

l= ZP + CZH

to the general shelf solution for both Z and ZX at some nearshore
point x]<<1 and eliminating the constant C results in a boundary

condition of the form

Zx + AZ =B , at x = X3
where
B =

(ZPX + AZP) » at x = X
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Series expansion for the functions h, u and ¢ are developed in
Appendix A, as are the recurrence relations for a;s b that result,
for the particular case of topography linear in the nearshore region.
In principle recurrence relations could be derived for any nearshore
topography though the complexity of the algebra would be greatly
jncreased. Since the linear region need only extend to the position .
x]<<1 at which the boundary condition is imposed no great 1oss‘of

generality results from its use.

Model Topography

\For a finite difference solution the topography need only be
specified at the grid points. Hence we may use either an algebraic
representation of the profile, or the actual measured depths. The
former may in fact be more reasonable, since the coastal ocean will
"feel" an average profile over an alongshore scale related to that
of the forcing rather than the irregularities of some particular
transect.

A reasonable fit to the Oregon shelf is given by

mX , 0 < X < (2b)"1
H{x) = o2b% , (2b)'] <x <1
e2b x> 1
with
m = 2b exp(1)

The acean interior has constant depth, while the junction between the
Tinear and exponential sections at x = (Zb)'] is achieved without

discontinuity in depth or of slope. A value of b = 1.865 is found
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to best represent the average Oregon profile as iliustrated in
Figure 2. The Oregon average was computed as the mean of transects
at 15' intervals in the range 44° to 46°N. The dashed line offshore
represents the approximate location of the slope-interior junction.
The interior depth decreases somewhat from south to north and a
mean value of 2500 meters is chosen.

The corresponding dimensional values used are

L = Shelf-slope width = 100 km
L/2b = Width of 1inear section = 26.8 km
H0 = Depth scale of shelf = 60 m

H = Depth of ocean interior = 2500 m

Here H0 is the depth at which the exponential profile, if produced
shoreward, would have infersected the coast. This definition is
used to facilitate comparison with the simple exponential topography
that is frequently employed in the literature.

In the subsequent discussion the topographic profile defined

above will be referred to as "Standard".

The Transfer Functions

In Figures 3 and 4 are displayed the real and imaginary parts
of the transfer function for coastal sealevel, based on an Ekman
depth of 10 meters. The contours show that sealevel fluctuations
are efficiently generated in the vicinity of the dashed 1ines. These
are the dispersion curves for the first three inviscid shelf wave
modes for the Standard topography. For our choice of coordinate

system the sense of propagation of such waves is consistent with an
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ocean in the Northern hemisphere when wavenumber and frequency are
positive. As is normal for shelf profiles of this general shape each
inviscid mode has a high frequency cutoff at which the group velocity
vanishes. In the next section we will examine briefly the disperison
and attenuation properties of free shelf waves using our viscous

model.

Holding wavenumber constant, a transect in freguency through a
mode is reminiscent of the response of a damped harmonic oscillator,
of natural frequency Wy to forcing exp(iwt). The latter is illustra-
ted schematically in Figure 5. For a damped harmonic oscillator the
real part of the response is a modification of the discontinuous
undamped situation. In passing through resonance the phase reverses
sign. This behavior is observed in our model transfer function.
However since the inviscid response of sealevel is in quadrature with
the forcing, real and imaginary parts must be interchanged in drawing
the analogy with the damped harmonic oscillator.

In Figures 3 and 4 the efficiency of energy transfer from the
wind to sealevel fluctuations is seen to decrease in progressing to-
ward higher wavenumbers along each mode. It is greatest for the first
mode. It should also be noted that the width in wﬁvenumber of the
response ridge broadens as the high frequency cut-off is approached.
This effect will be of importance whenever the forcing is broadband
in wavenumber. The increased width of the ridge may more than
compenséte for the decreased amplitude whenever we invert (i.e.

integrate) over wavenumber. For such broadband forcing the frequency
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dependence of the response may be peaked near tha cutoff frequencies
of the various modes. Allen (1980) notes this feature of dispersive,
viscous shelf models. With the parameterization of friction u;ed by
Wunsch and Gill (1976) for equatorially trapped waves, the presence
of small amounts of dissipation leads to an enhanced efficiency of
shelf response to atmospheric forcing at points of zero group
velocity.

There are no resonances in the negative wavenumber region for
positive frequency. This region corresponds to wind systems travel-
Ting in opposition to the sense of free shelf wave propagation.

Again in this region the efficiency of energy transfer decreases as
the forcing tends to shorter scales.

Similar conclusions tg the above can be drawn for the transfer
functions of horizontal components of the ve]oéity which are not
depicted here. However, whereas the transfer efficiency for sealevel
decays above the first mode cutoff, in the case of the velocity
components the transfer functions show an increase as the inertial
frequency is approached.

The influence of Ekman depth on the transfer functions is
illustrated in Figure 6. Here the amplitude and phase are plotted,
in the positive wavenumber region, for a fixed value of the frequency
(here o = 0.2). The phase changes abruptly as each mode is crossed.
The amplitude of this bsci]]ation decreases as the Ekman depth is
increased. The efficiency of the transfer is generally reduced as

the frictional effect is increased. The peaks are broadened and
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their position altered somewhat. For coastal sealevel and the along-
shore component of velocity the first mode is dominant and the second
and third modes are further reduced in amplitude relative to the
first with increased friction. This trend is reversed in the case
of the offshore velocity component. Mid-depth at the 100 meter iso-
bath was used in this discussion, but the conclusions are not changed
substantially when other depths are considered.

As illustrated by Figures 3 and 4 the dispersion curves form,
as it were, the skeleton of the transfer functions. The shape of
these curves is modified by the choice of topographic profile or of
the nearshore boundary condition. Further, as noted above, the
friction parameter may alter the position of the resonances. Thus,
in order to examine the effect of such changes on the model, it is
not sufficient to draw comparisons at discrete points in the wave-
number-frequency plane. To avoid bias due to the shifting of the
dispersion curves the transfer function is integrated at several
frequencies over a range of wavenumbers. The resuits are essentially
the model response to a wind forcing that is white in wavenumber over
that range, and allow the desired comparisons. In the following
section the wavenumber integration extends over the range 0.0 to 3.0
in non-dimensional units, which is believed to encompass the most

important scales of the forcing, as will be discussed in Chapter IV.

"Parameter Dependence of the Transfer Function

The influence of the nearshore boundary condition is illustrated

in Figure 7. The standard topography with an Ekman depth of 10 meters
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is used. The velocity components at mid-depth over the 50 meter
isobath are considered since this nearshore location is expected to
be most influenced by the boundary condition. Curve (a) results when
the regularity condition is imposed at the coast. For curves (b),
(c) and (d) the no-flow conditicn is applied at increasing offshore
distances corresponding to "wall" heights of 12, 24 and 43 meters
respectively. For the offshore component, which is expected to be
the most sensitive, the changes in the response amount to only a
few percent until the wall height becomes considerably greater than
the Ekman depth. The alongshore response is less effected. For
coastal sealevel the response is merely shifted in amplitude. This
reflects the spatial separation between the positions at which sea-
level 1is evaluated. If all are computed at the same location there
is again Tittle variation from the response for the regular condition.
These results lead to an important conclusion. The viscous model
is insensitive to the nearshore boundary condition provided that the
no flow condition, if used, has a wall height less than the Ekman
layer thickness. The no-flow conditicn has been commonly used in
conjunction with the simple exponential topography (Adams and
Buchwald, 1969; Gill and Schumann, 1974) or other ﬁrofi?es with large
coastal walls. In light of the above finding this choice may not
give realistic results for an inviscid model or one employing a bot-
tom friction parameterization of the effect of diffusion.

Now.consider the effect of topographic profile on the integrated

transfer function. Figure 8 illustrates the standard topography
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together with two others used for comparison. Also indicated in

the figure are the wall positions employed in the above discussion
of the nearshore boundary condition. For the alternate profiles the
ratio of shelf to slope width has been altered. For the wide sﬁe]f
the linear region of the standard has been extended, thereby requir-
ing a steeper slope region to attain the constant depth of the in-

terior. The narrow shelf has the form

H s X > 1]

Clexp(Dx) - 1] , x <1
H(x) = { -
where C and D are chosen to give the same bottom slope at the shore
and interior depth as for the wide and standard profiles.

The resulting integrated transfer functions are displayed in
Figure 9. The regularity condition is applied at the coast and the
Ekman depth is 10 meters. At Jow frequencies, where the response
is dominated by the longer wavelengths of the first mode resonance,
the effect of profile modification is stight. At higher frequencies
the response becomes highly profile dependent, though the overall
range is not much altered. The shifting peaks reflect the changing
Jocation of the cut-off frequencies where, for the white wavenumber
forcing of this treatment, the integrated transfer function receives
a large contribution.

Finally 1in Figure 10 is displayed the effect of the friction
parameter on the integrated transfer function. Increased Ekman layer
thickness results in a general decrease of response across the sub-

jnertial frequency range. In particular, the peaks associated with
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the cut-off frequencies are greatly reduced. For the velocity com-
ponents, the reduction in the background level is less marked than
for coastal sealevel, particularly when one compares the one and

ten meter tkman depths. For an actual shelf region the background
response might be expected to contribute most to an observed response.
The alongshore variations in topography would tend to smear out the

peaks whose location is no longer fixed by a particular profile.

The Free Wave Solution

Before proceeding with the discussion of the forced response 1t'
is interesting to consider the homogeneous version of equations (14),
(15), (15a) and (16). These represent free but viscous damped
motions. If the frequency is constrained to be real and specified
the result is an ejgenvalue problem for a complex wavenumber A.

The real part of X taken with o gives the dispersion relation of
the damped free waves. The imaginary bart of A is assdciated with
the attenuation due to bottom friction.

The eigenvalue problem described above results in an attenuation
’!ength rather than a decay time. The latter formulation would
require that complex frequency 1 be the eigenvalue, corresponding
to an initial value problem. Since the equations have o implicit
in the argument of the complex hyperbolic functions this approach
is precluded.

A related problem of barotropic Keivin waves over a flat bottom
has been discussed by Mofjeld (1980). In this case'the dispersion

and attenuation relations can be obtained in explicit algebraic form.
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Again, for the viscous free shelf wave problem we must resort to
numerical means.

A simple but rather tedious method for the solution of the
eigenvalue problem employs the Lindzen and Kuo {1969) method in what
might be termed a Resonance Search. For a selected frequency and
arbitrary forcing terms, the complex wavenumber i is varied. Some
convenient measure of the response, such as the absolute value of
the sea level averaged across the shelf, is monitored and indicates
the approach to resonance. This method was used by Wang (1976) to
locate the eigenmodes of an inviscid shelf model with stratification.
It is of limited use for our problem since the "search" must be
conducted over two parameters, the real and imaginary parts of A.

7 A more efficient approach is possible when the eigenvalue pro-
blem can be cast in Sturm-Liouville form. The finite difference

form of the equations are expressed as
AZ = ki

where Z is the solution vector, A the coefficient matrix and k the
required eigenvalue. The eigenvalues are particularly easy to
determine when A has a tridiagonal form.

For the homogeneous version of equations (14), (15), (15a) and
(16) no simple eigenvalue can be identified. Indeed when the re-
gu]arity‘condition (15a) is chosen to represent the nearshore
situation, and is implemented with series expansions as described

earlier, the problem does not lend itself to the matrix method. If
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however the no-flow condition (15) is imposed a higher order eigen-
value probiem in the wavenumber A results.

AZ = ABZ + A2IZ (25)
Here I is the identity matrix. This equation may be converted to a

simple eigenvalue problem

where
1y e

The matrix A composed of the submatrices A, B and Ilis not tri-
diagonal. Nonetheless, its complex eigenvalues A may be found.

In practice a combination of the two methods was used. Because
of the sparse non-tridiagonal nature of A the finite difference grid
was of necessity rather coarse. The use of the less desirable no-
flow condition is justified, provided the wall Height is less than
the Ekman depth under consideration. In any event, the initial
estimates for complex A provided by the matrix method may be refined
using the resonance search method on a‘fiQEr grid with the regular
nearshore boundary condition.

Figures 11 and 12 il1lustrate the results. The dispersion dia-
gram is in approximate‘agreement with that arising from the inviscid
theory, disp]ayed with the transfer function in Figure 3. The_invis-
cid model has a high frequency cut-off for each mode where the group

velocity tends to zero. The viscous dispersion curves exhibit an
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unusual behavior in the vicinity of these cut-off frequencies. This
is due to the assumption that frequency be real and wave number com-
plex. What is thereby implied is a situation where waves forced in
some region are emerging into another where they exist as free waves.
This interpretation is invalid, as is the idea of attenuation length,
when the group velocity approaches zero. Indeed, as shown in Figure
12, the attenuation length becomes very short in the vicinity of

the high frequency cut-off and free waves cease to exist in any real
sense.

Figure 12 has been drawn in dimensional units, The attenuation
length (defined as the reciprocal of the imaginary part of 1) de-
creases as the Ekman depth is increased. The attenuation lenaths
are not shown for points on the dispersion diagram beyond the modal
peak. These values were found to essentially retrace the path lead-
ing to the high frequency cut-off, but with a sign change consistent
with the reversed direction of energy propagation. The numbers
indicated at discrete points on each curve are the ratio of the
attenuation length to the wavelength. For each curve this begins low
at the long wave - low frequency end, increases to a maximum, then
decreases sharply in approaching the high frequency cut-off.

A commonly observed feature of continental shelf studies is that
the coherence of the coastal response to atmospheric parameters
has a banded structure. Peaks of coherence often coincide with the
cut-off frequencies of the lower few shelf modes. This behavior was

noted by Brooks (1978) for sealevel off the North Carolina coast.
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The explanation often tendered for this phencmenon is that, with zero
group velocity, the forced energy is dispersed only by mean advection
and dissipation and thereby tends to persist in these frequency bands.
The results of this section suggest another explanation. The co-
herence between locally forced fluctuations, such as sealevel or
current, and their forcing agency is reduced in the presence of free
waves. The latter owé their origin to forcing distant in space and
time. Since attenuation reduces the contribution of free waves an
enhanced coherence is to be expected whenever such attenuation is
particularly severe. Thus, based on Figure 12, free wave contamina-
tion of the Tocally forced signal is expected to be at a minimum near
the cut-off frequencies. Further, free wave activity should decrease

with increasing mode number.
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IV. DATA ANALYSIS AND MODEL INTERCOMPARISON

In this chapter we analyze the available data for the Oregon
shelf with a view to forming a comparison with the predictions of
the viscous forced model. The Pacific coast of the northwest United
States is a suitable region for this comparison. The coastline is
approximately straight and the submarine topography approximateiy
uniform in the alongshore direction. A substantial data base exists
for the region from a variety of field studies during the past decade
or so. Kundu, Allen and Smith (1975) have shown using empirical
eigenmode analysis that, at subinertial frequencies, barotropic
disturbances are the major response to the alongshore component of
windstress, as indeed theory predicts for this mid-latitude location

(Romea and Allen, 1980).

Data Description

The data utilized in this study are summarized in Table 1 and
Figure 13. A continuous record of wind speed and direction exists

for Newport, Oregon for the ten year period 1969-78. The location

and characteristics of the wind recorder are described by Frye (1972).

Wind stress is computed from the speed and direction using the
quadratic drag law

(<%, ) = o CyIW] (U, V)

Pa“D W' 'w

where pa-is the density of air, W= (Uw, Vw) the wind velocity and
Ch = 1.5 x 1073 is the drag coefficient. For the Oregon coast the

north-south component of wind stress is identified as alongshore,



Table 1. Summary of Oregon shelt data used in the computation of the wind-coherent response

Variable Measured at Record Duration Comments
Sealevel Newport, Oregon Jan., 1969 - Dec, 1978 Measured within Yaquina Bay
Wind Newport, Oregon Jan, 1969 - Dec, 1978
Atmospheric Newport, Oregon Jan. 1973 - Dec. 1978
Pressure
Horizontal
Currents NH - 15 Aug, 8 - Oct. 29, 1972 60 meter instrument
Poinsettia D Jun, 28 - Aug. 4, 1973 60 meter instrument
Carnation Jun. 30 - Aug. 28, 1973 60 meter instrument
Forget-me-not Jul, 22 - Aug, 27, 1973 60 meter instrument
Sunflower A Jan, 28 - Apr. 26, 1975 75 meter instrument
Sunflower B Apr. 28 - Jul. 28, 1975 75 meter instrument
Sunflower C Jul. 29 - Sep. 12, 1975 75 meter instrument

0g
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Figure 13. Location of the current meter moorings used in this study.
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since this is the basic orientation of the topography.

A record of sea level at Newport covers this same period. The
tide gage is located within the Yagquina Bay, approximately one nauti-
cal mile from the open ocean. The atmospheric pressure data required
to form the adjusted sea level only exists for the Tatter six years
of the period covered by the wind and tide gage records.

Current recording instruments have been deployed off the Oregon
coast in a number of field experiments. The instruments were placed
at a variety of positions and depths as described in the data reports
of Pillsbury et al. (1974a, 197§b) and Gilbert et al. (1976) for the
CUE I, CUE II and WISP/UP75 experiments respectively.

In dimensional terms the viscous model was implemented in the
frequency range 0.02 - 1.13 cpd. No single current meter installation
is of sufficient duration to provide reliable cross spectral estimates
over this entire range., Instead, we combine all available records
of mid-depth current meters at the 100 meter isobath. This combina-
tion has the greatest coverage. The resulting ensemble, with data
from three separate years, is only one fifth the length of the sea
level record and will, as a result, provide a Tess'reliable compari-
son with the model.

A11 of the data described above were available as hourly time

series.

Data Analysis

The inertial period at these latitudes is approximately 17 hours

(1.4 cpd}. Thus, the subinertial frequency range overlaps the
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diurnal tidal band, which may contain considerable energy for some
variables. In particular, the sea level data has strong diurnal
(O], K1) and semi-diurnal (MZ’ 52) tidal peaks. We seek to reduce
these peaks, since in the spectral analysis their energy may leak
into adjacent frequency estimates.

It is not feasible to eliminate the tidal peaks by band-pass
filtering. Instead, using the method of Munk and Cartwright (1966},
a fit is made to the tides. The residual series from this fit has
a much reduced contribution from the diurnal and semidiurnal tides.
This isseen in Figure 14, where the ten year ensemble average of
winter autospectral estimates is shown for the original data and the
residuals from the Munk-Cartwright fit, The sea level data is
filtered and decimated to a three-hourly series prior to the tidal
removal. The low-pass filter used has a half-power point at 3.6 cpd
and rolls off over a 1.44 cpd interval. This filtering and decimation
is applied to all other data.

Leakage of the remaining energy in tidal peaks is further mini-
mized in the subsequent spectral analysis by applying the Finite
Fourier Transform to data segments of 29 day duration. For this
series length Fourier frequencies 1ie close to all major tidal peaks.

The sea level residuals and the atmospheric pressure data are
combined to form the adjusted sea level for the six years 1973-78,
Each millibar of pressuke change results in a one centimeter adjust-

ment of sea level.
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The time series of sea level and of the meteorological variables
display a marked seasonal cycle. The amplitude of low frequency
fluctuations is far greater in the winter months than in the summer.
This may be seen in Figure 15 where, for a typical year 1975, the
seasonal cycle in the behavior of adjusted sea level and the wind
stress is evident. The figure also shows a visual correlation be-
tween events in the wind and those in sea level and the :alongshore
velocity at the Sunflower mooring.

The seasonal cycle is also seen in the autospectral estimates
computed from each 29 day segment. For each variable these have a
bimodal distribution. The degree of non-stationarity is quantified
with a test developed in Appendix B. Figure 16 displays the results
of the test for the six years of adjusted sealevel. Based on the
hypothesis that the spectral estimates are drawn from a stationary
population, the Type I error represents the probable error incurred
if this hypothesis is rejected. Small Type I errors thus correspond
to a high degree of non-stationarity in the data. The gdjusted sea-
level is seen to be highly non-stationary in much of the subinertial
frequency range. The situation is improved when the spectral esti-
mates are divided between "winter" and "summer" seasons. Based on
the stationarity test the best definition of summer is found to be
May through October, winter being the remaining months. This
subdivision of the year is consistent with the seasonal transitions

commented on by Sobey (1977).
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Figure 15. Time series of alongshore windstress, adjusted sealevel

and current from the Sunflower site for the year 1975.
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The ensemble averaged autospectra for uncorrected sea level,
adjusted sea level, alongshore wind stress and atmospheric pressure
are displayed in Figure 17. The necessity for separate treatment of
winter and summer data is evident.

As seen in Table 1, the current meter data is drawn primarily
from the summer months. In view of the sparseness of this data, no
attempt was made to form separate ensembles by season. Nor is it
possible to use any form of orthogonal mode analysis to extract the
barotropic component without further depleting the record length.
Instead, the longest mid-depth record was selected for each mooring.
Whenever adjacent records in the vertical exist, a visual inspection
of the data reports confirms the approximate barotrapic nature of the
fluctuations.

At each Tocation the local alongshore axis is chosen from the
progressive vector diagram and the local bathymetry. Each set of
current meter observations is rotated into its appropriate frame.

The co-ordinate rotations used are listed in Table 2.

The Coherent Response of Sea Level to the Wind

We now compute, from the spectral estimates of the adjusted sea
Tevel and wind stress, the coherent response defined in equation (18).
Separate ensembles are formed for the winter and summer data. In
view of the marked seasonal differences in the autospectra, as well
as in thé meteorological and hydrographic regimes that exist, the

close agreement of the estimates of coherent response for both seasons



a) Un—corrected Seoleve! 1969~7

10 i
f I
107 g
< £
Q. =4
[&] Q
o -z -~
g 0% I E
= =
> - ; >
£ 1w’y LM -
§ Summaer N, IJ\ \ ;:‘j
a » hY; | /| %
10 Wi i
[
i
-5 4
10 ' : ;
™ 10 °
FREQUENCY (cpd)
c) Alongshore Windstress 1969-78
10 = -t +
"‘g- P
-
X 7 g
AR I >
E L
E £
et 3
-
2 M =
E 10 -3 Summv f_}fl “\ % 5
S \ &
w : 7]
% i
‘H
1g”" ” —
10 10

Figure 17.

FREQUENCY (cpd)

59

q

b) Adjusted Sealevel 1973-78

10 ¥
i
107 I
. Winter
10 7% 3
10 %% Y ﬁ T
Summer \_‘ \A\N\Af 1
vy ﬂii
-4 . - 4
T o [‘V
I -\,1-,. \ i
f +
-5 | L
107" ‘ ‘
10 w0’
FREQUENCY (cnd)
d} Atmospheric Pressure 1973-78
15 3? N \ f
+
1a -4 Winter 1;' +
N
19 1.:'\\\_\ H
NN
18 ~ L H
1 t
107 tf‘ +
| ¥
2] !
B -1 l o -
13 13

FREQUENCY {cpd)

Ensemble averaged autospectra for summer and winter

seasons. The 95% confidence ranges are shown in the

upper right hand corners.



Table 2. Rotation angles (positive clockwise) of

Tocal topographic axes for each current

meter mooring, and spatial separations

from Newport, Oregon.

Station Angle Separation(km.)
NH- 15 15° 30
Poinsettia 15° 25
Carnation 0° 75
Forget-me-not 0° 110
Sunflower g° 45

60
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shown in Figure 18 are remarkable. For contrast the coherent response
for the uncorrected sealevei is shown in Figure 19. Here sea level
has not been adjusted for the effect of atmospheric pressure as an
inverse barometer and the seasonal differences seen in the autospectra
carry over into the squared coherence, the coherent response and the
phase. It would appear that while atmospheric pressure can cause

a substantial response in sea level, its effect is basically iso-
static in the case of the Oregon shelf.

In view of the above result, it seems that the simplified
forcing assumed for the model is justifiable at least in the case of
coastal sea level response. Later we shall attempt to compare model
predictions of response and phase with those produced above for the

adjusted sea level.

The Coherent Response of Horizontal Currents

The cross-spectral analysis is next applied between the aiong-
shore and onshore components of velocity (from which the tidal
constituents have not been removed)} and the alongshore wind stress.
The alongshore component yields reasonably stable estimates for the
coherence, even though the data records are drawn from points with
varying spatial separations from the wind recorder (see Table 2).
The coherence between the onshore component and the wind is much
poorer. Only for a few frequencies are the coherences in excess of
the 90% éignificance level, even when bandaveraging is added to the
usual ensemble average. In Figure 15 the onshore velocity fluctua-

tions were seen to be almost an order of magnitude Tess than those
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in the alongshore direction and only for the largest wind events is
any visual correlation evident.

The autaspectra of the horizontal velocity components are shown
in Figure 20. Their coherent responses are discussed in the next

section where a comparison with the model response is attempted.

Intercomparison of Model and Experiment

The model response to alongshore wind stress is now computed_
using the transfer functions defined in Chapter II. With the
assumption that the wave number-frequency spectrum of the wind may
be decomposed as in Equation (23) the model response may be computed
from Equation (24). The phase is determined as the argument of the»
complex integral in (24).

The wave number dependence of the wind is modelled by the basic

power law form

A .

A

KIAI/AO s A< g

S-].(}‘) - o
KCA /2™ 5 2

Ao

IR

Here o is the exponent of the power law and A, 8 wave number below
which the spectrum falls off to zero. ’The'scale factor K is chosen
to normalize the integral of the wave number spectrum to unity as
assumed in (24) and is thus not a free parameter.

Values of o in the'range -2 to -3 are indicated by the available
wave number information on wind spectra, for example Julian and
Cline (1974), and by theories of two-dimensional, quasi-geostrophic
turbulence (Kraichnan, 1967). Such power laws have been employed

by Frankignoul and Muller (1978) to represent windstress forcing in
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mid-ocean. Kinetic energy in the atmosphere is found to peak at
scales of the order of 5,000 kilometers, thereby suggesting a
suitable value for Ao

The transfer functions computed in Chapter III span the
" non-dimensional wave number range 0.02 to 10.0. These correspond
to scales of approximately 8000 and 15 kilometers, respectively.
For the latter scale, the assumption of no across shelf variation
in the windstress is unlikely to be valid. However, with an inverse
square to inverse cube power law, the high wave number regions make
lTittle contribution to the numerically evaluated response integrals.

The model responses discussed below are based on an inverse
square power law with A = 0.02 (8000 km scale). The complete trans-
fer functions were only evaluated for Ekman depths of one and ten
meters. In general, the model response is more sensitive to changes
in the friction parameter than to the « and A, Parameters when these
are held in the ranges suggested above. In view of the length of the
data record available and the resulting stability of the spectral
estimates, the model fit should likely be biassed toward agreement
with the adjusted sealevel response. For this purpose the summer
and winter results in Figure 18 have been combined in a single
ensembla. In Figure 21 we see that for an Ekman depth of one meter
the model response is in close agreement with the coherent response
from data. With increased friction (ten meter Ekman depth) the
coherent response. is considerably underestimated, though the shape

is well reproduced. For the phase the ten meter Ekman depth model
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ijs in closer agreement with the data than is the one meter case.

Figure 22 shows the fit to the coherent response of the hori-
zontal currents. For the onshore component, only those estimates
based on coherence significant at the 30% level are displayed. The
ten meter Ekman depth appears to give a better fit for both response
and phase than the one meter Ekman depth case. However the data,
particularly the onshore component, have broad uncertainty ranges.
Those indicated have been estimated at the 90% level. The spectral
estimates for the onshore and alongshore components have 52 and 26
degrees of freedom respectively. In the case of the onshore compo-
nent, bandaveraging by two was used in addition to the ensemble
average over the thirteen available 29 day segments. It appears
that the model is in reasonable agreement with field data for Ekman
depths of between one and ten meters.

In the next sections we examine some further properties of the
model, using the above representation of the wave number dependence

of the wind field.

Cross-Shelf Phase Differences

A feature of some field studies is that phaseldifferences exist
between flow variables measured at points separated in off-shore
position. Fluctuations nearshore lead those farther offshore, as
observed by Sobey (1977) for the Oregon shelf and by Brink, Allen
and Smith (1978) off Peru.

Phase differences of the correct sign are predicted by the vis-

cous long-wave model of Brink and Allen (1978). Here viscosity is
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parameterized through a bottom friction coefficient. Ekman layer
dynamics are used by Mofjeld (1980), in a study of barotropic Kelvin
waves in a coastal zone of constant depth, and cross-shelf phase
differences also arise.

Such phése differences are evident in the model responses of
horizontal wvelocity components produced in this study, as illustrated
in Figure 23. Here the response functions, based on the wavenumber
structure for the wind assumed in the previous section, are computed
for mid-depths at the 25, 50, 75, 100, 150, 200 and 500 meter iso-
baths. Curves (a) and (b} correspond to a non-dimensional frequency
of 0.20 {3.5 day period) while curves (c) and (d) are for 0.55 (1.3
day period). The response for the former frequency is dominated by
the Tong wave, non-dispersive portions of the modes while the latter
frequency s chosen to represent the cut-off freguency of the first
mode. For curves (a) and (c) a ten meter Ekman depth is used while
for curves (b) and (d) the Ekman depth is one meter. The results
have been converted to the coordinate system commonly used for the
Oregon situation; U is onshore and ¥ is to the north.

For the alongshore component the phase lag of. current to the
wind is seen to increase offshore. The range of variation is far
greater in the case of the ten meter Ekman depth than for the one
meter case, which departs only slightly from the 90° phase lag
predicted by the inviscid theory.

In the case of the onshore component the phase lag increases

with offshore distance for the one meter Ekman depth. With a ten
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meter Ekman depth the phase lag is at a minimum at an offshore
distance of approximately 16 kilometers and increases both inshore
and offshore of this position.

Also shown in Figure 23 are the amplitudes of the model response.
When the water depth is sufficient that the water column be largely
inviscid, the alongshore velocity response is insensitive to Ekman
layer thickness. However, in the nearshore region increased fric-
tion causes a reduction of the response of the alongshore velocity.

For the onshore velocity component the response amplitude is
more sensitive to the Ekman depth. For the ten meter case the cur-
rent peaks at an offshore position close to that at which the phase
lag to the wind was minimized. A similar behaviour occurs with the
one meter Ekman depth inshore of the shallowest (25 meter) location

shown in Figure Z23.

Balances in the Continuity and Horizontal Momentum Equations

Again using the power law wavenumber dependence of the wind,
the mass and momentum balances may be discpssed in terms of the
appropriate model response functions..

In Figure 24 the responses of UX and Vy are shown for mid-depths
at the 50, 100 and 200 meter isobaths. Ekman depths of one and ten
meters are used. The importance of Vy relative to UX in the balance
generally decreases as frequency increases and drops rapidly beyond
the cut-off frequency of the first mode (0.75 cpd). As the shoreline
is approached, the balance becomes increasingly confined to the x-z

plane, particularly for the case of the ten meter Ekman Tayer
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thickness. This simple mass balance is commonly assumed in upwelling
models and is suggested in velocity measurements from the Oregon
shelf, studied by Allen and Kundu (1978). At the 200 meter isobath
the balance is essentially the same at mid-depths for both the one
and ten meter cases.

In long wave models of continental shelf response the term Ut
in the momentum equation {2) is frequently neglected based on scale
arguments (Allen, 1980). Measurements confirm that for the inviscid
interior the alongshore velocity is indeed in approximate geostrophic
balance (Allen and Kundu, 1978). The alongshore momentum equation
(3), on the other hand, is ageostrophic with V, and fU having
comparable magnitudes,

In this viscous model the long wave approximation is not made
and the offshore and alongshore directions are assigned the same
length scales. It is interesting then to compare the terms in the
momentum balances, as measured by their responses, In Figure 25 the
ratio of Ut to fVY and of Vt to fU are drawn for mid-depths at the
30, 100 and 200 meter isobaths.

For the onshore momentum equation the neglect. of Uy relative to
TV is seen to be justified over much of the subinertial frequency
range. The local acceleration becomes important only for time scales
close to one day. The result is essentially the same for both Ekman
depths of one and of ten meters and applies across the range of shelf
depths.

Figure 25 also shows that in the alongshore momentum balance the
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terms Vt and fU are indeed of comparable magnitude. At low frequen-
cies for the ten meter Ekman layer thickness Vt is smallest relative
to fU. 1Its importance increases at the higher subinertial frequen-
cies, particularly inshore where it exceeds fU for time scales

shorter than about three days. With an Ekman depth of one meter the

terms are in approximate balance for the entire subinertial band.
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V. SUMMARY AND CONCLUSIONS

This study has examined the role of eddy diffusion in a non-
stratified model of forced shelf circulation. Using linear Ekman
dynamics the results of the previous chapter indicate that the mode]
can account for a major part of the subinertial variance of the
Oregon shelf response. With ten meter Ekman layers,.which are of the
expected thickness (Kundu, 1977), reasonable predictions result, both
in amplitude and phase, for the coherent responses of coastal sea-
level and horizontal currents to alongshore wind stress forcing.

For the adjusted coastal sealevel the winter and summer responses are
the same, despite the reversal of the wind stress curl (Nelson, 1976)
and the seasonal cycle in atmospheric pressure fluctuations. The
alongshore component of wind stress is apparently the dominant
forcing agent and the response to atmospheric pressure is isostatic,
at Teast on the Oregcn shelf.

That the observed response amplitudes are consistently higher
than model predictions may be partially due to the wind stress,
measured at the coast, underestimating the open shelf value, as is
suggested in the historical data compiled by Melson (1976). The
discrepancy is greatest for coastal sealevel, measured within Yaquina
Bay. The response of sea surface elevation would perhaps be better
represented by bottom pressure sensors over the shelf. Harbor
effects, such as the wave set-up discussed by Thompson (1980) may
have caused an over-response. The model prediction of coastal sea-

level amplitude is also sensitive to the details of the nearshore
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topography. The agreement of observed and model predicted phase
relations is well within observational uncertainties.

The success of the model lends credence to its other features.
The transfer functions that may be defined when the forcing is
assumed invariant across the shelf allow a useful and convenient
discussion of the properties of the model, independent of the
wavenumber-frequency characteristics of a particular forcing field.
Diffusion is parameterized with surface and bottom boundary layers
of finite thickness, which may interact in a shallow nearshore region.
The model response is found to be insensitive to the choice of
nearshore boundary condition (regularity or no-flow), provided the
coastal wall height, if employed, is less than the Ekman depth
necessary to parameterize the effect of diffusion. This requirement
has not often been imposed in the literature where topographic
profiles with large coastal walls are commonly used.

The model provides an explanation for the banded structure
that the coherence, between wind stress and the coastal response,
is often found to exhibit (Brooks, 1978). Free waves, whose presence
is expected to reduce such coherence, suffer increased attenuation
in the vicinity of the cut-off frequencies of the various shelf wave
modes, with a consequent enhancement of coherence for the locally
forced response at such freguencies,

The balances of the continuity and momentum equations, predicted
by the model, are in agreement with observation (Allen and Kundu,

1978). The mass baiance becomes jncreasingly two dimensional as the
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coast is approached, as is commonly assumed in theories of coastal
upwelling. Ths alongshore velocity component is in geostrophic
balance over most of the subinertial frequency band, while the aiong-
shore momentum equation is ageostrophic. Across shelf phase var-
iations, with fluctuations nearshore leading those offshore, as seen
in shelf measurements also appear in the model. Another feature

of the model {which could not be implemented with the present data
base) is that it predicts a relationship between the wind coherent
spectra of the vertical and onshore components of velocity. If the
spectrum of the latter could be extricated from the noise which

often contaminates it, this model result would allow the upwelling
spectrum to be estimated.

Future applications of the model should include the computation
of the trajectories of water parcels in response to the passage of
a sequence of storm systems. The variance of alongshore wind stress
has an alongshore structure, presumably the result of the distribu-
tion of storm tracks, and the influence of such spatial non-
stationarity should also be considered. Another useful extension
would be the inclusion of baroclinic effects. The Oregon hydro-
graphic regime has a marked seasonal cycle (Huyer, 1977) and while
the long term response appears largely barotropic, a consideration
of the influence of such features as the upwelling front would be
useful. An extension of the model to the two-layer case was con-
sidered but a realistic treatment, with the interface surfacing as

a front or intersecting a sloping bottom, cannot be easily
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encampassed with the present numerical scheme. The author hopes to

consider these problems further in the future.
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APPENDICES



Appendix A:

The Regularity Condition

Suppgase the nearshore topography is linear

H

where m is the bottom siope.

(x) =

Using the series expansions for the

hyperbolic tangent and secant {Abramowitz and Stegun, 1965) the

complex functions of equation

Here

with

and

(14) are written as

© J
= . %_h. X
h(x) i=3 ]
o= J
H(x) = j§5 Hj X
%;Ei (o -0 ) +a{e +0 )} =T r, xJ
uo g8 a X B o i=2 ]
0 , J even
hy = {
w2 e -2 -y 5 odd
J o o)
¢ @ , J even
HJ = 1
- ts {1 g -1 120 L5 odd
{ Kamd s, (8) 2 aJ_Z) , j even
r. =
K(3+1)m L 5541 (6771 - o371y, 5 oad
_1-02
K = 2uo
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2n
on-1 (277 - 1) B, / (2n)!

= - |
E n / (2n)!
an and E2n are the Bernoulli and Euler numbers respectively.
If we now define

c .= 2%n

A .
- - 2(n-j+
nj n-j+1 O(n j+2)m

3(m+2)h 543 n-j+2

the coefficients (an,bn) of the series expansions necessary for
the evaluation of the regular boundary condition obey the following

recurrernce relations

n-1
a = {rn+1 + jgl cnj aj} / n(n+2)h3
N n~1
= 2 - \
bn {) LN 0(n+2) Ho 4o + j£1 an bj} /n(n+2)§3

with

ay = ry/3my by =0.
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Appendix B: The Stationarity Test

Estimates of spectral density are computed frem

s, = % T (a2 + b2)

where T is the record duration. The raw Fourier components (an’bn)
at each frequency are assumed to have independent normal distributions
with mean zero and population variance ¢2. Hence , the quantity

2
(520 S, (B1)

should be distributed as x%. Likewise, if we ensemble average aver

N segments of equal duration, the quantity

2§ (82)
o2 i1 5p);
should have a X%n distribution. The ratio of (B1l) to (B2) will then

be distributed as F2 on' This ratio is simply

s, /3,

where Sn is the sample mean of the spectral density drawn from the N

estimates. For each frequency the spectral estimates normalized

by their sample mean are tested for goodness of fit to the F2,2n
distribution. '

This is done with a y2 test. The N values are divided intom
equiprobable categories. If the observed and expected frequencies
are denoted by 0j and Ej’ then

» m
X2 = .1y (0,-E5)¥/E;

is evaluated and compared to the X;—l distribution.

-
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The degree of stationarity may be expressed in terms of the
Type [ error. This is the probability of error if the hypothesis
of stationarity is rejected. A Tow value of Type I error is

associated with a high degree of non-stationarity.





