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A MODEL OF WIND-FORCED VISCOUS CIRCULATION

NEAR COASTAL BOUNDARIES

I. INTRODUCTION

Studies of sealevel and current meter record spectra from

continental shelves show the existence of low frequency oscillations

with periods ranging from a few days to a few weeks. The fluctua-

tions are in many cases related to local atmospheric variables and,

like these fields, are often coherent over alongshore distances of

several hundred kilometers. Theoretical models demonstrate the

possibility of a variety of forced and wavelike motions of the

appropriate scales. Among these are barotropic continental shelf

waves, which are topographic Rossby waves, trapped near the coastal

boundary through the agency of vorticity. This mechanism is

clearly described by Longuet-Higgins (1968a, 1968b) both for the

discontinuous depth profiles with which the earlier models were

concerned and the later continuous profiles. The models themselves,

and the bulk of the observational evidence, are reviewed by LeBlond

and Mysak (1977), Mysak (1980) and Allen (1980).

Continental shelf waves can originate or be driven by processes

in the ocean interior, as considered for example by Kroll and Niiler

(1976) and Allen and Romea (1980). On the other hand the high cor-

relation often observed between currents or sealevel and local
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meteorological variables suggests that continental shelf motions may

be generated on the shelf by the passage of mesoscale atmospheric

disturbances. Early studies considered atmospheric pressure as the

driving force but, since these shelf motions involve vorticity, Adams

and Buchwald (1969) conclude that the alongshore component of wind

stress is a much more effective causal agent. Indeed those models

involving pressure forcing often invoked resonance arguments which,

because of the large length scales involved and the effects of fric-

tion, must be rather unlikely.

The models to date have often been inviscid and cannot account

for the observed phase relationships found in shelf measurements.

When diffusion is included it is most often parameterized through

a bottom friction coefficient, as for example in Mysak (1967) and

the diagnostic calculation of Hsueh and Peng (1978). Brink and

Allen (1978) have also used this parameterization in showing that

the effect of friction on shelf waves is to reduce the phase lag,

between the alongshore component of velocity and the forcing , from

the value predicted by frictionless models. Their results explain

the phase variation observed across continental shelves (Sobey, 1977;

Brink, Allen and Smith, 1978), where nearshore fluctuations lead

those farther offshore.

Turbulent boundary layers frequently occupy a considerable

portion of the water column, especially in shallow regions. This

is demonstrated by Smith and Long (1976) for the Washington continen-

tal shelf and by Kundu (1977) off Oregon-Washington and northwest
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Africa. It thus seems desirable to develop a model of time-dependent

forcing on the shelf in which friction can act throughout the water

column. It is to this problem that the present study is addressed.

Ekman friction with constant vertical eddy diffusivity is used to

parameterize the diffusion of vorticity into a homogeneous ocean

from the atmosphere, and from the ocean to the bottom. The water

depth is allowed to decrease to zero at the coast so that the surface

and bottom boundary layers merge.

With zero water depth at the coast the required boundary con-

dition is that all properties of the flow field be regular there.

This is in contrast to the nearshore boundary condition most fre-

quently imposed in the literature where no net onshore flow is

required at a vertical wall. The results of this study indicate

that such a coastal wall may lead to incorrect predictions of coastal

sealevel amplitude and currents in the nearshore zone, unless the

wall height is less that the boundary layer thickness necessary to

account for the effects of vertical eddy diffusion.

The approximate linear equations of motion are Fourier decomposed

over frequency and alongshore wavenumber and integrated vertically.

The result is a two-point boundary value problem for the transform

of adjusted sea surface elevation. The solution of this problem

allows a spectral representation of the response of coastal sea-

level and. the horizontal and vertical components of velocity over

the shelf to atmospheric forcing. The spectral representation takes

on a particularly convenient form when each component of the forcing



is treated separately and is assumed not to vary across the shelf.

The properties of the model may then be discussed, independently of

the spectral characteristics of the forcing field, through a set

of transfer (or admittance) functions. This study concentrates on

the shelf response to alongshore wind stress.

A further objective of the study is to compare the predictions

of the model with the observed behaviour of coastal sealevel and

horizontal currents over the shelf. Data for these variables and

for the forcing do not allow the estimation of joint wavenumber-

frequency spectra and as a result the spectral model must be inte-

grated, at least over wavenumber. This is done assuming spatial and

temporal stationarity of the wind when its wavenumber and frequency

dependencies are separable. With an assumed wavenumber dependence

of the wind, based on available information, and an Ekman depth of

ten meters the model predictions are found to be in excellent agree-

ment, both in amplitude and phase with observations from the Oregon

shelf. Thus the subinertial variability of this region may be largely

accounted for with simple linear barotropic dynamics in. response

to alongshore wind stress.











their transforms.

Equations (4) and (5) now become

jail - V = -z +pU
x zz

iaV + U -IAZ + pV
zz

These have a depth independent particular solution for U and V in

terms of Z

(1-a2)U = -ia(Z + Z)

(1-a2)V = + AaZ

The homogenous equations for both U and V take the form

21a 3a 1-a2

+
}U = 0

which on assuming a solution of the form exp(az) leads to the roots

i:3 where

(1+a)½
(1+1)

a = (i) (i-i)

The depth dependent part of the velocity components can be con-

veniently expressed in terms of the functions

sinh(z+H) sinha(z+H)-
coshH c coshaH

coshz coshctz

coshH 11c coshaH

as

U=A +B +C +Dp
a a

V = -i(A - B + CP - Dip )

8 a 8 a

The boundary conditions (6),(7) allow the coefficients A,B,C,D to
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be determined. When (6) is imposed at the undisturbed free surface

z 0 we obtain

A = (TX +

B
(1X

-

C = i(Z

D = i(Z +

so that

c

U = ( )T + (a)TY

1-a 1+(Y 'z +(1 1+a
(1

+ ---c ----p) Z} (8)

+4,

=
2 )T + (

8
)T +

p 2p

- + Xa(1 + - )Z} (9)1a2(1
1-a

2a 8

Note that the roots 8 and and their associated 4, and i functions

correspond to clockwise and counterclockwise components respectively

of the motion. This may be seen by forming the complex velocities

U + IV and U - IV.

We now integrate vertically the continuity equation (1). This

leads to

u dz + !_fhl v dz + Efl = 0
t

where is a dimensionless parameter that expresses the relative

importance of sUrface divergence.

fL2
= (Lire)2gH0

Here re is the external Rossby radius of deformation which for scale
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values typical of continental shelves is considerably greater than

the shelf width L.

In applying the integrated continuity equation to the model

we replace the upper limit of integration by zero in order that the

model remain linear. Then in Fourier space we have

L°u dz + +
+

= 0 (10)

The depth dependence of U and V is confined to the and t functions

and we define

1-H dz = (1-sech2H)/2

L°H
dz = (tanhH)/

with analogous expressions for and v Then substitution of
a a

expressions (8) and (9) for U and V into (10) leads to

where

(hZ) + - -

1-a2

{( - )(T - TX) - i( + )(TX + T)
a x y X \1

j( + ) + ( ) T + £(1_G2)Pa (11)cxx aX

2a 2a

HH- _±i

The forcing terms on the right hand side of (11) are associated

respectively with the effects of
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1) Wind stress curl

2) Wind stress divergence

3) Offshore wind stress acting on the topographic slope

4) Alongshore wind stress acting on the topographic slope

5) Atmospheric pressure

Equation (11), when combined with suitable boundary conditions

at the shoreline and at the slope-interior junction, describes

the viscous response of adjusted sea surface elevation to forcing

at wavenumber-frequency (A,). The associated horizontal circulation

can be obtained from equations (8) and (9) and the vertical component

of velocity derived as discussed later.

The homogeneousversion of equation (11) is reminiscent of the

inviscid theory, for example equation (15) of Mysak (1979). In our

notation

(HZ) + AH/a A2H (1_a2)} Z = 0

However instead of H, equation (11) contains the frequency dependent

functions h and H which might be described as t1equivalent depths'

for the viscous problem. In fact in the limit as p 0, when

diffusion is confined to infinitelythin boundary layers, equation

(11) reduces to

(HZ) + xH/ -A2H c(1a2)}Z =

- T - T) (T + T) + E(1_a2)Pa

which is In exact agreement with the inviscid theory.



13

The Nearshore Boundary Condtion

Two cases arise, depending on whether the undisturbed water

depth tends to zero at the coast, or to some finite non-zero value.

The latter situation of a vertical wall , though seemingly Un-

realistic,except perhaps for motions with very large scales, occurs

frequently in the literature. This is particularly true in the

case of inviscid models where the rationale appears to be that one

thereby excludes an inner region where diffusive effects are to

be expected.

In the case of non-zero water depth at the coast the appro-

priate boundary condition is that of no net onshore flow . Vertical

integration of equation (8) at x = 0 leads to the condition

hZ + = - i(+)TX} (12)

In our model horizontal eddy diffusivity has been ignored.

This is valid over shelves of gentle slope (Allen, 1980), but is

inappropriate in the vicinity of a discontinuity of depth, where

horizontal eddy diffusion leads to a variety of boundary layers. We

will therefore implement our model for topographic profiles with

zero depth at x = 0. In this case equation (11) has a singularity

at the origin. In order that Z and the velocity components be well

behaved we seek regular solutions only. The condition for regular

behaviour is that

IZ(x=0fl < M , a constant. (12a)
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Regular solutions allow a net onshore flow at the coast. This

represents the possible run-up on the sloping beach. We will see

however that our viscous model is insensitive to the choice of

nearshore boundary condition provided the wall height is less than

the Ekman depth.

The Offshore Boundary Condition

The ocean interior is modelled as being of uniform depth. Then

equation (11) reduces to

hZ {)2h +

{(-)(T TX) - i(+)(T +T + c(1-2)P (13)

where hFI and the functions are now independent of x. Solutions

to (11) and (13) are to be matched at the slope-interior junction

x = 1. This matching will in general force a shelf response due

to the circulation 0f the ocean interior. Our interest lies mainly

in the shelf response rather than in shelf-interior interactions

so we confine ourselves to solutions of (13) that decay with

increasing x. In the next section we introduce some simplifying

assumptions on the model that facilitate the identification of

such coastal-trapped solutions as well as allowing a simple spectral

representation of shelf response to forcing by the alongshore com-

ponent of windstress.
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Horizontal Non-Divergence and Simplified Forcing

In equations (11) and (13) the term c(1-a2)Z represents the

effect of surface divergence. This may be important in laboratory

situations and the term is retained for example by Caidwell, Cutchin

and Longuet-Higgins (1972). We choose to eliminate it, thus restrict-

ing ourselves to horizontally non-divergent motions. Surface diver-

gence might be expected to play some part in the shallow regions

nearshore. However, effects of comparable importance may already

have been excluded in our integration of the continuity equation,

where the upper limit of integration was replaced by zero in the

interests of linearization. The non-linear problem of finite

amplitude gravity waves on a sloping beech has been treated by

Carrier and Greenspan (1958). Such problems may be solved by

characteristics but our viscous model without the long wave approx-

imation does not lend itself to such treatment.

The term 12)P in equations (11) and (13) represents the

effect of atmospheric pressure in the generation of non-isostatic

sealevel fluctuations. In our linear model the effect may be

separated from the forced response due to wind stress. The latter

is believed to be the more important. We further restrict our

attention to forcing due to alongshore wind stress, and ignore

any variation of this component across the shelf.

(TX
) = ( 0, (y,t))

This eliminates forcing due to the wind stress curl and equation (13)

becomes, subject to the above restrictions



z x2Z
12

) T'
xx

A2
h

where the subscript denotes the value in the constant depth

interior. The particular solution to this is

2
z =

' h 'co

due to wind stress divergence in the open ocean. The homogeneous

equation has a solution

where the decaying form has

in the semi-infinite region

at x = 1 can now be written

Z + HZ

where

16

exp(-xIx)

been chosen to represent coastal trapping

x > 0. The deep water boundary condition

as

- i- y
- sgnA

2 " h "cot

sgnx =

The Spectral Transfer Function and the Coherent Response

Assuming horizontal non-divergence and the simplified forcing

described above, the transform of adjusted sealevel must satisfy

(hZ) + {XH/a - A2h}Z + x(+)}T' (14)

with

hZ +
12(

- )T' , x = 0 (15)
X a 2pcj B

or

Z (x=0) < M , a constant (15a)
x

and
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2
z + = sgnx (

s T' , x = 1 (16)
x 2 h

These equations are linear in T'(x,). If T' is replaced by

unity the solution of these equation results in what might be termed

the Spectral Transfer Functions for sea surface elevation and the

various properties of the flow field derivable from it. If the

transfer function of any one of these variable is denoted by

R(x,,z) then the overall response of that variable to the actual

forcing is found by superimposing the wavenumber-frequency spectral

decomposition of the alongshore wind stress field.

F(x,X,zc) = R(x,X,z,a) T31,a) (17)

The various spectral transfer functions thus embody the pro-

perties of our simplified viscous forced model. In the next chapter

these functions are computed and examined in the light of their

dependence on the choice of vertical Ekman number, topographic

profile and the boundary condition imposed at the coast.

It should be noted that a similar set of transfer functions

could be derived for forcing due to either atmospheric pressure

or. the onshore component of wind stress if these are assumed not

to vary across the shelf. The overall response would then be

given by a linear superposition of these effects. The wind stress

curl does not lend itself to this simple treatment insofar as it

contains the term T''.
x

A further objective of this study is to compare model predic-

tions with actual field observations derived from tide gage and

current meter records. These data from fixed locations may be



represented either in the time or the frequency domain. Wavenumber

information is rarely available so that equation (17) must be inverted

at least over wavenumber. This requires the knowledge of the joint

wavenumber-frequency transform of alonghore windstress. Weather

stations on the U.S. Pacific coast are typically separated by several

hundred kilometers, except during brief intensive studies, arid are

strongly influenced by orographical effects (Halpern, 1974).

Syntheses of the wind field from atmospheric pressure data, such

as used in producing an Upwelling Index (Bakun, 1973) are also limited

in spatial resolution.

The application of standard spectral techniques to the available

data allows the identification of the wind coherent part of each

observed property of the coastal flow regime. For each such property

F we define a Coherent Response , and phase e

125F
R(c)

ST (18)

arg(S) (18a)

Here SF T
denote the frequency autospectra of F and the alongshore

wind stress respectively; SFT is their cross-spectrum and 2

their squared coherence

12

FT1

SFST (19)

Inversion of equation (17) leads to

f(x,y,z,t) = JJ dd (20)
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Here R(x,A,z,cy), the inverse transform of the Transfer function, is

the system function of a single input linear system relating f to

The application of some further concepts of linear systems

analysis allows the definition of a Model Response R and

phase
®M which, subject to some assumptions on the wind field, may

be compared with the quantities defined in (18), (18a).

Suppose r'(y,t) is a stochastic random variable, stationary

both in space and time. The system function R in equation (20)

is deterministic but the system output f(x,y,z,t) will also be

a random variable. Auto- and cross-correlation functions for

and f may be defined, which form Fourier transformpairs with the

wavenumber-frequency auto- and cross-spectra,

SF(Xa) <f(x,6,) f*(Xy+Zt+)>

ST(x) ++ T(y+t+)>

SFT(x) +.+ <f(x,,z,) T(Xy+Zt)>

*
Here <....> denotes averaging in both space and time and (...)

denotes compex conjugation. Explicit reference to the x and z

dependence of SF and SFT has been suppressed for convenience.

The generalization of the systems treatment (for example Bendat

and Piersol (1971)) applied to equation (20) leads to

SF(x,a) = R(x,A,z,a)12

= R(x,,z.) ST(Ao)

At each point in wavenumber-frequency space the squared

coherence, defined in analogy with (19) is unity. The interaction
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of a range of wavenumber components may lead to decoherence when

frequency spectra are computed.

If ST(7..,a) is known, or in practice modelled with some algebraic

representation, the model response and phase are formed by integra-

tion over wavenumber

with

and

YSg)
ST()

(21)

= arg(SFT(o)) (21a)

SF() f IR(x,x,z,y)I2 ST(x,a) dA

ST(a) i: sT(x) dx

SFT() c: R(x,x,z,c) ST(x,a) dA

SFT()

SF(ST(G)
(22)

The model response RM (expressed in dimensional units) and

phase ®M may be compared with the coherent response R and phase

derived from data. This comparison is attempted in Chapter IV.

There it is further assumed that the spectral density ST(x,d may

be decomposed as

ST(.x) = S1() S2(cy) (23)

In this case the model response is given by

= R(x,A,z,a) S1(x) dx2 (24)

when S1(x), the assumed wavenumber dependence of the wind, has



been normalized

d = 1

21

The decomposition (23) may be justified in a number of ways.

It would result for example if the weather systems causing the

wind stress propagate at right angles to the coastline. This was

assumed by Brooks (1978) in a study of the coastal response off

North Carolina. If on the other hand there is no preferred

propagational characteristics for weather systems, so that varia-

tions in t and y are uncorrelated, this decomposition might also

be expected. Variability of the latter type was inferred by

Mysak (1967) for the low frequency behaviour of atmospheric pressure

fluctuations off Australia. More recently Willebrand (1978)

demonstrates that, in the open ocean at mid-latitudes, atmospheric

energy is essentially isotropic in north-south wavenumber at

subinertial frequencies, even for scales of several thousand

kilometers. This lends further support to the decomposition.

The Vertical Component of Velocity

The model also allows the vertical component of velocity to be

determined. Here we consider only the case of horizontally non-

divergent motions with the simplified forcing. If the vertical

integration of the continuity equation, rather than extending from

z = -H(x) to the surface, is terminated at some intermediate depth

z < 0 then



Here
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W(z ) = 1[(h(z)Z) (i (z ) - 2h(z ))Z}0 1 x 0 0

T'- {((Z)-(z)) + x(8(z0)+(z0))Ij. (25)

----(z)
o o 2i o o

- 'i' (z )o o 2 2 o

v (z ) = (sinhz + sinhF4)/coshH
0

(z ) (cosh(z 4-H) 1)/2coshH
0

are generalizations of the earlier functions which were evaluated

at the mean free surface z = 0. The functions (z ) and c' (z )a 0 a 0

are defined in an analogous fashion.

Equation (25) allows the vertical component of velocity to be

determined at any point in the water column whenever Z is known.

A transfer function forW can be formed and used to represent the

spectral characteristics of the vertical component of velocity.

If in particular z is chosen in the inviscid interior, and the

Ekman layers are thin in comparison to the local water depth,

equation (25) may be considerably simplified

W(z ) (Z -x2Z) -XT'}

Further for this situation
H

Z - x2Z=----(Z +Z)+
xx H x HT

and
-ia

, +Z)U(zo>>hE) 1_c2x
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so that
zH H+z

T1 (26)W(z ) =
X

ij(z)
H 1-a20

The transfer functions of W and U are thus linearly related at

points in the inviscjd interior.

If now a model response is formed as in equation (24) and

the decomposed wind stress spectrum is taken to be even in X,

the second term on the right of (26) integrates to zero. Then the

model responses of W and U are identical except for a factor

dependent only on the local water depth, the bottom slope and the

location chosen within the inviscid interior.

To the extent that these assumptions are valid this relationship

between the response of U and W can be used to estimate the

frequency spectrum of the vertical component of velocity at a

position where the onshore velocity spectrum is known.
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III. IMPLEMENTATION AND PROPERTIES OF THE MODEL

Finite Difference Solution

Our task is the integration of the two-point boundary value

problem defined by equations (14), (15) or (15a) arid (16). The

tnviscid case p = 0 has analytic solutions for certain specific

topographic profiles, such as the exponential shelf treated by

Adams and Buchwald (1969). Indeed some general conclusions may be

drawn for classes of profile types in the inviscid case as shown by

Huthnance (1975) and Odulo (1975).

The viscous model derived here, with 0 does not allow such

analytic treatment. Instead we resort to numerical means. A par-

ticularly convenient method for our purposes is described by Lindzen

and Kuo (1969). Its implementation results in a complex valued

sea surface profile in response to forcing by unit alongshore

windstress, subject to the frictional effects imposed by the

particular choice of the Ekman number p. From this profile we

may obtain the transfer functions for coastal sealevel and selected

properties of the velocity field over the shelf, at the wavenumber

frequency combination (A'a). The process is repeated at a sufficient

number of points to give an adequate representation over the A-a

plane.

In this study transfer functions were produced for coastal sea-

level arid the velocity field for mid-depths at the

50, 100 and 200 meter isobaths, with values of equivalent to

Ekman depths of one and ten meters. The topographic profile chosen
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is representative of the Oregon shelfand is discussed below.

The Regularity Condition at the Coast

To allow friction to take its full effect in the nearshore

region we employ the regularity condition (15a). in order to imple-

ment this numerically the various functions in (14) are expanded as

power series in x. The particular and homogeneous solutions are

written as regular series expressions

Z= a1x+a2x2+.

= 1 + b1x + b2x2

Collecting like powers of x in (14) allows the determination of the

coefficients a. for a sufficient number of terms to achieve

convergence. Matching the regular solution

Z = Z + CZH

to the general shelf solution for both Z and at some nearshore

point x1<<l and eliminating the constant C results in a boundary

condition of the form

where

Z+AZ=B , atx*x1

A = .-(ZHX/ZH) at x = x1

B= (Zp+AZp) atx=
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Series expansion for the functions h, -i and are developed in

Appendix A, as are the recurrence relations for b that result,

for the particular case of topography linear in the nearshore region.

In principle recurrence relations could be derived for any nearshore

topography though the complexity of the algebra would be greatly

increased. Since the linear region need only extend to the position

at which the boundary condition is imposed no great loss of

generality results from its use.

Model Topography

For a finite difference solution the topography need only be

specified at the grid

representation of the

former may in fact be

"feel an average pro

of the forcing rather

transect.

with

points.

profile,

more rea

file over

than the

Hence we may use either an algebraic

or the actual measured depths. The

;onable, since thecoastal ocean will

an alongshore scale related to that

irregularities of some particular

A reasonable fit to the Oregon shelf is given by

H(x) = e2

Le2 b

O < x (2b)

(2bY1 < < 1

,x>l

in 2b exp(.l)

The ocean interior has constant depth, while the junction between the

linear and exponential sections at x = (2b) is achieved without

discontinuity in depth or of slope. A value of b = 1.865 is found
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Figure 2. Standard niodel fit to the Oregon shelf, averaged over

the region shown in the inset map.



to best represent the average Oregon profile as illustrated in

Figure 2. The Oregon average was computed as the mean of transects

at 15' intervals in the range 440 to 46°N. The dashed line offshore

represents the approximate location of the slope-interior junction.

The interior depth decreases somewhat from south to north and a

mean value of 2500 meters is chosen.

The corresponding dimensional values used are

L = Shelf-slope width 100 km

L/2b = Width of linear section = 26.8 km

H0 = Depth scale of shelf = 60 m

H = Depth of ocean interior 2500 m

Here H0 is the depth at which the exponential profile, if produced

shoreward, would have intersected the coast. This definition is

used to facilitate comparison with the simple exponential topography

that is frequently employed in the literature.

In the subsequent discussion the topographic profile defined

above will be referred to as "Standard".

The Transfer Functions

In Figures 3 and 4 are displayed the real and imaginary parts

of the transfer function for coastal sealevel, based on an Ekman

depth of 10 meters. The contours show that sealevel fluctuations

are efficiently generated in the vicinity of the dashed lines. These

are the dispersion curves for the first three inviscid shelf wave

modes for the Standard topography. For our choice of coordinate

system the sense of propagation of such waves is consistent with an
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ocean in the Northern hemisphere when wavenumber and frequency are

positive. As is normal for shelf profiles of this general shape each

inviscid mode has a high frequency cutoff at which the group velocity

vanishes. In the next section we will examine briefly the disperison

and attenuation properties of free shelf waves using our viscous

model.

Holding wavenumber constant, a transect in frequency through a

mode is reminiscent of the response of a damped harmonic oscillator,

of natural frequency w, to forcing exp(iwt). The latter is illustra-

ted schematically in Figure 5. For a damped harmonic oscillator the

real part of the response is a modification of the discontinuous

undamped situation. In passing through resonance the phase reverses

sign. This behavior is observed in our model transfer function.

However since the inviscid response of sealevel is in quadrature with

the forcing, real and imaginary parts must be interchanged in drawing

the analogy with the damped harmonic oscillator.

In Figures 3 and 4 the efficiency of energy transfer from the

wind to sealevel fluctuations is seen to decrease in progressing to-

ward higher wavenumbers along each mode. It is greatest for the first

mode. It should also be noted that the width in wavenumber of the

response ridge broadens as the high frequency cut-off is approached.

This effect will be of importance whenever the forcing is broadband

in wavenumber. The increased width of the ridge may more than

compensate for the decreased amplitude whenever we invert (i.e.

integrate) over wavenumber. For such broadband forcing the frequency
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dependence of the response may be peaked near the cutoff frequencies

of the various modes. Allen (1980) notes this feature of dispersive,

viscous shelf models. With the parameterization of friction used by

Wunsch and Gill (1976) for equatorially trapped waves, the presence

of small amounts of dissipation leads to an enhanced efficiency of

shelf response to atmospheric forcing at points of zero group

v el o city.

There are no resonances in the negative wavenumber region for

positive frequency. This region corresponds to wind systems travel-

ling in opposition to the sense of free shelf wave propagation.

Again in this region the efficiency of energy transfer decreases as

the forcing tends to shorter scales.

Similar conclusions to the above can be drawn for the transfer

functions of horizontal components of the velocity which are not

depicted here. However, whereas the transfer efficiency for sealevel

decays above the first mode cutoff, in the case of the velocity

components the transfer functions show an increase as the inertial

frequency is approached.

The influence of Ekman depth on the transfer functions is

illustrated in Figure 6. Here the amplitude and phase are plotted,

in the positive wavenumber region, for a fixed value of the frequency

(here a = 0.2). The phase changes abruptly as each mode is crossed.

The amplitude of this oscillation decreases as the Ekman depth is

increased. The efficiency of the transfer is generally reduced as

the frictional effect is increased. The peaks are broadened and
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their position altered somewhat. For coastal sealevel and the along-

shore component of velocity the first mode is dominant and the second

and third modes are further reduced in amplitude relative to the

first with increased friction. This trend is reversed in the case

of the offshore velocity component. Mid-depth at the 100 meter iso-

bath was used in this discussion, but the conclusions are not changed

substantially when other depths are considered.

As illustrated by Figures 3 and 4 the dispersion curves form,

as it were, the skeleton of the transfer functions. The shape of

these curves is modified by the choice of topographic profile or of

the nearshore boundary condition. Further, as noted above, the

friction parameter may alter the position of the resonances. Thus,

in order to examine the effect of such changes on the model, it is

not sufficient to draw comparisons at discrete points in the wave-

number-frequency plane. To avoid bias due to the shifting of the

dispersion curves the transfer function is integrated at several

frequencies over a range of waventimbers. The results are essentially

the model response to a wind forcing that is white in wavenuniber over

that range, and allow the desired comparisons. In. the following

section th.e wavenumber integration extends over the range 0.0 to 3.0

in non-dimensional units, which is believed to encompass the most

important scales of the forcing, as will be discussed in Chapter IV.

Parameter Dependence of the Transfer Function

The influence of the nearshore boundary condition is illustrated

in Figure 7. The standard topography with an Ekman depth of 10 meters
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is used. The velocity components at mid-depth over the 50 meter

isobath are considered since this nearshore location is expected to

be most influenced by the boundary condition. Curve (a) results when

the regularity condition is imposed at the coast. For curves (b),

(c) and (d) the no-flow condition is applied at increasing offshore

distances corresponding to 'wall" heights of 12, 24 and 43 meters

respectively. For the offshore component, which is expected to be

the most sensitive, the changes in the response amount to only a

few percent until the wall height becomes considerably greater than

the Ekman depth. The alongshore response is less effected. For

coastal sealevel the response is merely shifted in amplitude. This

reflects the spatial separation between the positions at which sea-

level is evaluated. If all are computed at the same location there

is again little variation from the response for the regular condition.

These results lead to an important conclusion. The viscous model

is insensitive to the nearshore boundary condition provided that the

no flow condition, if used, has a wall height less than the Ekman

layer thickness. Th.e no-flow condition has been commonly used in

conjunction with the simple exponential topography (Adams and

Buchwald, 1969; Gill and Schumann, 1974) or other profiles with large

coastal walls. In light of the above finding this choice may not

give realistic results for an inviscid model or one employing a bot-

tom friction parameterization of the effect of diffusion.

Now consider the effect of topographic profile on the integrated

transfer function. Figure 8 illustrates the standard topography
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together with two others used for comparison. Also indicated in

the figure are the wall positions employed in the above discussion

of the nearshore boundary condition. For the alternate profiles the

ratio of shelf to slope width has been altered. For the wide shelf

the linear region of the standard has been extended, thereby requir-

ing a steeper slope region to attain the constant depth of the in-

terior. The narrow shelf has the form

rC[exp(Dx) - 1] , x < 1

H(x)
,x>l

L

where C and D are chosen to give the same bottom slope at the shore

and interior depth as for the wide and standard profiles.

The resulting integrated transfer functions are displayed in

Figure 9. The regularity condition is applied at the coast and the

Ekman depth is 10 meters. At low frequencies, where the response

is dominated by the longer wavelengths of the first mode resonance,

the effect of profile modification is slight. At higher frequencies

the response becomes highly profile dependent, though the overall

range is not much altered. The shifting peaks reflect the changing

location of the cut-off frequencies where, for the white wavenumber

forcing of this treatment, the integrated transfer function receives

a large contribution.

Finally in Figure 10 is displayed the effect of the friction

parameter on the integrated transfer function. Increased Ekman layer

thickness results in a general decrease of response across the sub-

inertial frequency range. In particular, the peaks associated with
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the cut-off frequencies are greatly reduced. For the velocity com-

ponents, the reduction in the background level is less marked than

for coastal sealevel, particularly when one compares the one and

ten meter Ekman depths. For an actual shelf region the background

response might be expected to contribute most to an observed response..

The alongshore variations in topography would tend to smear out the

peaks whose location is no longer fixed by a particular profile.

The Free Wave Solution

Before proceeding with the discussion of the forced response it

is interesting to consider the homogeneous version of equations (14),

(15), (15a) and (16). These represent free but viscous damped

motions. If the frequency is constrained to be real and specified

the result is an eigenvalue problem for a complex wavenumber A.

The real part of A taken with o gives the dispersion relation of

the damped free waves. The imaginary part of A is associated with

the attenuation due to bottom friction.

The eigenvalue problem described above results in an attenuation

length rather than a decay time. The latter formulation would

require that complex frequency A be the eigenvalue, corresponding

to an initial value problem. Since the equations have a implicit

in the argument of the complex hyperbolic functions this approach

is precluded.

A related problem of barotropic Kelvin waves over a flat bottom

has been discussed by Moijeld (1980). In this case the dispersion

and attenuation relations can be obtained in explicit algebraic form.
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Again, for the viscous free shelf wave problem we must resort to

numerical means.

A simple but rather tedious method for the solution of the

eigenvalue problem employs the Lindzen and Kuo (1969) method in what

might be termed a Resonance Search. For a selected frequency and

arbitrary forcing terms, the complex wavenumber x is varied. Some

convenient measure of the response, such as the absolute value of

the sea level averaged across the shelf, is monitored and indicates

the approach to resonance. This method was used by Wang (1976) to

locate the eigenmodes of an inviscid shelf model with stratification.

it is of limited use for our problem since the 'search" must be

conducted over two parameters, the real and imaginary parts of x.

A more efficient approach is possible when the eigenvalue pro-

blem can be cast in Sturm-Liouville form. The finite difference

form of the equations are expressed as

AZ = kZ

where Z is the solution vector, A the coefficient matrix and k the

required elgenvalue. The elgenvalues are particularly easy to

determine when A has a tridiagonal form.

For the homogeneous version of equations (14), (15), (iSa) and

(16) no simple elgenvalue can be identified. Indeed when the re-

gularity condition (l5a) is chosen to represent the nearshore

situation, and is implemented with series expansions as described

earlier, the problem does not lend itself to the matrix method. If
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however the no-flow condition (15) is imposed a higher order eigen-

value problem in the wavenumber A results.

AZ ABZ + A2IZ (25)

Here I is the identity matrix. This equation may be converted to a

simple eigenvalue problem

where

AZ AZ

A- 1-B A

4I 0

The matrix A composed of the submatrices A, B and I is not tn-

diagonal. Nonetheless, its complex eigenvalues A may be found.

In practice a combination of the two methods was used. Because

of the sparse non-tridiagonal nature of A the finite difference grid

was of necessity rather coarse. The use of the less desirable no-

flow condition is justified, provided the wall height is less than

the £kman depth under consideration. In any event, the initial

estimates for complex A provided by the matrix method may be refined

using the resonance search method on a finer grid withthe regular

nearshore boundary condition.

Figures 11 and 12 illustrate the results. The dispersion dia-

gram is in approximate agreement with that arising from the inviscid

theory, displayed with the transfer function in Figure 3. The invis-

cid model has a high frequency cut-off for each mode where the group

velocity tends to zero. The viscous dispersion curves exhibit an
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unusual behavior in the vicinity of these cut-off frequencies. This

is due to the assumption that frequency be real and wave number com-

plex. What is thereby implied is a situation where waves forced in

some region are emerging into another where they exist as free waves.

This interpretation is invalid, as is the idea of attenuation lengths

when the group velocity approaches zero. Indeed, as shown in Figure

12, the attenuation length becomes very short in the vicinity of

the high frequency cut-off and free waves cease to exist in any real

sense.

Figure 12 has been drawn in dimensional units. The attenuation

length (defined as the reciprocal of the imaginary part of x) de-

creases as the Ekman depth is increased. The attenuation lengths

are not shown for points on the dispersion diagram beyond the modal

peak. These values were found to essentially retrace the path lead-

ing to the high frequency cut-off, but with a sign change consistent

with the reversed direction of energy propagation. The numbers

indicated at discrete points on each curve are the ratio of the

attenuation length to the wavelength. For each curve this begins low

at the long wave - low frequency end, increases to, a maximum, then

decreases sharply in approaching the high frequency cut-off.

A commonly observed feature of continental shelf studies is that

the coherence of the coastal response to atmospheric parameters

has a banded structure. Peaks of coherence often coincide with the

cut-off frequencies of the lower few shelf modes. This behavior was

noted by Brooks (1978) for sealevel off the North Carolina coast.



The explanation often tendered for this phenomenon is that, with zero

group velocity, the forced energy is dispersed only by mean advection

and dissipation and thereby tends to persist in these frequency bands.

The results of this section suggest another explanation. The co-

herence between locally forced fluctuations, such as sealevel or

current, and their forcing agency is reduced in the presence of free

waves. The latter owe their origin to forcing distant in space and

time. Since attenuation reduces the contribution of free waves an

enhanced coherence is to be expected whenever such attenuation is

particularly severe. Thus, based on Figure 12, free wave contamina-

tion of the locally forced signal is expected to be at a minimum near

the cut-off frequencies. Further, free wave activity should decrease

with increasing mode number.
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IV. DATA ANALYSIS AND MODEL INTEP.COMPARISON

In this chapter we analyze the available data for the Oregon

shelf with a view to forming a comparison with the predictions of

the viscous forced model. The Pacific coast of the northwest United

States is a suitable region for this comparison. The coastline is

approximately straight and the submarine topography approximately

uniform in the alongshore direction. A substantial data base exists

for the region from a variety of field studies during the past decade

or so. Kundu, Allen and Smith (1975) have shown using empirical

eigenmode analysis that, at subinertial frequencies, barotropic

disturbances are the major response to the alongshore component of

windstress, as indeed theory predicts for this mid-latitude location

(Romea and Allen, 1980).

Data Description

The data utilized in this study are summarized in Table I and

Figure 13. A continuous record of wind speed and direction exists

for Newport, Oregon for the ten year period 1969-78. The location

and characteristics of the wind recorder are described by Frye (1972).

Wind stress is computed from the speed and direction using the

quadratic drag law

(TX TY)
PaCD (u, Vw

where PaS the density of air, = (U, V) the wind velocity and

CD 1.5 x lO is the drag coefficient. For the Oregon coast the

north-south component of wind stress is identified as alongshore,



Table 1. Summary of Oregon shelf data used in the computation of the wind-coherent response

Variable

Sea level

Wind

Atmospheric

Pressure

Hon zontal

Currents

Measured at

Newport, Oregon

Newport, Oregon

Newport, Oregon

NH - 15

Poinsettia D

Carnation

Forget-me - not

Sunflower A

Sunflower B

Sunflower C

Record Duration

Jan. 1969 - Dec. 1978

Jan. 1969 - Dec. 1978

Jan, 1973 - Dec. 1978

Aug. 8 - Oct. 29, 1972

Jun. 28 Aug. 4, 1973

Jun. 30 - Aug. 28, 1973

Jul. 22 - Aug. 27, 1973

Jan. 28 - Apr. 26, 1975

Apr. 28 - Jul 28, 1975

Jul. 29 Sep. 12, 1975

Comments

Measured within Yaquina Bay

60 meter instrument

60 meter instrument

60 meter instrument

60 meter instrument

75 meter instrument

75 meter instrument

75 meter instrument

010
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since this is the basic orientation of the topography.

A record of sea level at Newport covers this same period. The

tide gage is located within the Yaquina Bay, approximately one nauti-

cal mile from the open ocean. The atmospheric pressure data required

to form the adjusted sea level only exists for the latter six years

of the period covered by the wind and tide gage records.

Current recording instruments have been deployed off the Oregon

coast in a number of field experiments. The instruments were placed

at a variety of positions and depths as described in the data reports

of Pillsbury et al. (l974a, 19Thb) and Gilbert et al. (1976) for the

CUE I, CUE II and WISP/UP75 experiments respectively.

In dimensional terms the viscous model was implemented in the

frequency range 0.02 - 1.13 cpd. Mo single current meter installation

is of sufficient duration to provide reliable cross spectral estimates

over this entire range. Instead, we combine all available records

of mid-depth current meters at the 100 meter isobath. This combina-

tion has the greatest coverage. The resulting ensemble, with data

from three separate years, is only one fifth the length of the sea

level record and will, as a result, provide a less reliable compari-

son with the model.

All of the data described above were available as hourly time

series.

Data Analysis

The inertial period at these latitudes is approximately 17 hours

(1.4 cpd). Thus, the subinertial frequency range overlaps the
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diurnal tidal band, which may contain considerable energy for some

variables. In particular, the sea level data has strong diurnal

(Oi' K1) and semi-diurnal (M2, S2) tidal peaks. We seek to reduce

these peaks, since in the spectral analysis their energy may leak

into adjacent frequency estimates.

It is not feasible to eliminate the tidal peaks by band-pass

filtering. Instead, using the method of Murik and Cartwright (1966),

a fit is made to the tides. The residual series from this fit has

a much reduced contribution from the diurnal and semidiurnal tides.

This is seen in Figure 14, where the ten year ensemble average of

winter autospectral estimates is shown for the original data and the

residuals from the Munk-Cartwright fit. The sea level data is

filtered and decimated to a three-hourly series prior to the tidal

removal. The low-pass filter used has a half-power point at 3.6 cpd

and rolls off over a 1.44 cpd interval. This filtering and decimation

is applied to all other data.

Leakage of the remaining energy in tidal peaks is further mini-

mized in the subsequent spectral analysis by applying the Finite

Fourier Transfonl1 to data segments of 29 day durati-on. For this

series length Fourier frequencies lie close to all major tidal peaks.

The sea level residuals and the atmospheric pressure data are

combined to form the adjusted sea level for the six years 1973-78.

Each mill.ibar of pressure change results in a one centimeter adjust-

ment of sea level.
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The time series of sea level and of the meteorological variables

display a marked seasonal cycle. The amplitude of low frequency

fluctuations is far greater in the winter months than in the summer.

This may be seen in Figure 15 where, for a typical year 1975, the

seasonal cycle in the behavior of adjusted sea level and the wind

stress is evident. The figure also shows a visual correlation be-

tween events in the wind and those in sea level and the alongshore

velocity at the Sunflower mooring.

The seasonal cycle is also seen in the autospectral estimates

computed from each 29 day segment. For each variable these have a

bimodal distribution. The degree of non-stationarity is quantified

with a test developed in Appendix B. Figure 16 displays the results

of the test for the six years of adjusted sealevel. Based on the

hypothesis that the spectral estimates are drawn from a stationary

population, the Type I error represents the probable error incurred

if this hypothesis is rejected. Small Type I errors thus correspond

to a high degree of non-stationarity in the data. The adjusted sea-

level is seen to be highly non-stationary in much of the subinertial

frequency range. The situation is improved when the spectral esti-

mates are divided between 'twinter" and hsummeru seasons. Based on

the stationarity test the best definition of summer is found to be

May through October, winter being the remaining months. This

subdivision of the year is consistent with the seasonal transitions

commented on by Sobey (1977).
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The ensemble averaged autospectra for uncorrected sea level,

adjusted sea level, alongshore wind stress and atmospheric pressure

are displayed in Figure 17. The necessity for separate treatment of

winter and summer data is evident.

As seen in Table 1, the current meter data is drawn primarily

from the summer months. In view of the sparseness of this data, no

attempt was made to form separate ensembles by season. Nor is it

possible to use any form of orthogonal mode analysis to extract the

barotropic component without further depleting the record length.

Instead, the longest mid-depth record was selected for each mooring.

Whenever adjacent records in the vertical exist, a visual inspection

of the data reports confirms the approximate barotropic nature of. the

fluctuations.

At each location the local alongshore axis is chosen from the

progressive vector diagram and the local bathynietry. Each set of

current meter observations is rotated into its appropriate frame.

The co-ordinate rotations used are listed in Table 2.

The Coherent Reponse of Sea Level to the Wind

We now compute, from the spectral estimates of the adjusted sea

level and wind stress, the coherent response defined in equation (18).

Separate ensembles are formed for the winter and summer data. In

view of the marked seasonal differences in the autospectra, as well

as in the meteorological and hydrographic regimes that exist, the

close agreement of the estimates of coherent response for both seasons
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Table 2. Rotation angles (positive clockwise) of

local topographic axes for each current

meter mooring, and spatial separations

from Newport, Oregon.

Station Angle Separation(km.)

NH-15 15° 30

Poinsettia 15° 25

Carnation 00 75

Forget-me-not 00 110

Sunflower 8° 45
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shown in Figure 18 are remarkable. For contrast the coherent response

for the uncorrected sealevei is shown in Figure 19. Here sea level

has not been adjusted for the effect of atmospheric pressure as an

inverse barometer and the seasonal differences seen in the autospectra

carry over into the squared coherence, the coherent response and the

phase. It would appear that while atmospheric pressure can cause

a substantial response in sea level, its effect is basically iso-

static in the case of the Oregon shelf.

In view of the above result, it seems that the simplified

forcing assumed for the model is justifiable at least in the case of

coastal sea level response. Later we shall attempt to compare model

predictions of response and phase with those produced above for the

adjusted sea level.

The Coherent Response of Horizontal Currents

The cross-spectral analysis is next applied between the along-

shore and onshore components of velocity (from which the tidal

constituents have not been removed) and the alongshore wind stress.

The alongshore component yields reasonably stable estimates for the

coherence, even though the data records are drawn from points with

varying spatial separations from the wind recorder (see Table 2).

Th.e coherence between the onshore component and the wind is much

poorer. Only for a few frequencies are the coherences in excess of

the 90% significance level, even when bandaveraging is added to the

usual ensemble average. In Figure 15 the onshore velocity fluctua-

tions were seen to be almost an order of magnitude less than those
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in the alongshore direction and only for the largest wind events is

any visual correlation evident.

The autospectra of the horizontal velocity components are shown

in Figure 20. Their coherent responses are discussed in the next

section where a comparison with the model response is attempted.

Intercornparison of Model and Experiment

The model response to alongshore wind stress is now computed

using the transfer functions defined in Chapter II. With the

assumption that the wave number-frequency spectrum of the wind may

be decomposed as in Equation (23) the model response may be computed

from Equation (24). The phase is determined as the argument of the

complex integral in (24).

The wave number dependence of the wind, is modelled by the basic

power law form

KIl/A , A<X
S1(x)=

'O

K(JxIIA0) '

Here c is the exponent of the power law and a wave number below

which the spectrum falls off to zero. The scale factor K is chosen

to normalize the integral of the wave number spectrum to unity as

assumed in (24) and is thus not a free parameter.

Values of in the range -2 to -3 are indicated by the available

wave number information on wind spectra, for example Julian and

Cline (1974), and by theories of two-dimensional, quasi-geostrophic

turbulence (Kraichnan, 1967). Such power laws have been employed

by Frankignoul and Muller (1978) to represent windstress forcing in



Onshore Velocity
10_I

2-10
6

-3- LU
C)
LU
a-
(I)

10

AI1/H

10_i 10

1.0 r

::
!

.40

0
C.) I

.o f

9CZ Sifk', Iv

0.0
101

10

FREQUENCY (cpd)

Alongshore Velocity
10

10
-i

102

10

10

1.0

.80

.60

.40

.20

0.0

10

10

FREQUENCY (cpd)

Figure 20. Ensemble averaged autospectra and coherences with

the alongshore wind stress for the horizontal

components of velocity.



mid-ocean. Kinetic energy in the atmosphere is found to peak at

scales of the order of 5,000 kilometers, thereby suggesting a

suitable value for x0.

The transfer functions computed in Chapter III span the

non-dimensional wave number range 0.02 to 10.0. These correspond

to scales of approximately 8000 and 15 kilometers, respectively.

For the latter scale, the assumption of no across shelf variation

in the windstress is unlikely to be valid. However, with an inverse

square to inverse cube power law, the high wave number regions make

little contribution to the numerically evaluated response integrals..

The model responses discussed below are based on an inverse

square power law with = 0.02 (8000 km scale). The complete trans-

fer functions were only evaluated for Ekman depths of one and ten

meters. In general, the model response is more sensitive to changes

in the friction parameter than to the c and parameters when these

are held in the ranges suggested above. In view of the length of the

data record available and the resulting stability of the spectral

estimates, the model fit should likely be biassed toward agreement

with the adjusted sealevel response. For this purpose the summer

and winter results in Figure 18 have been combined in a single

ensemble. In Figure 21 we see that for an Ekman depth of one meter

the model response is in close agreement with the coherent response

from data. 4ith increased friction (ten meter Ekman depth) the

coherent response. 'is considerably underestimated, though the shape

is well reproduced. For the phase the ten meter Ekman depth model
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is in closer agreement with the data than is the one meter case.

Figure 22 shows the fit to the coherent response of the hori-

zontal currents. For the onshore component, only those estimates

based on coherence significant at the 90% level are displayed. The

ten meter Eknian depth appears to give a better fit for both response

and phase than the one meter Ekman depth case. However the data,

particularly the onshore component, have broad uncertainty ranges.

Those indicated have been estimated at the 90% level. The spectral

estimates for the onshore and alongshore components have 52 and 26

degrees of freedom respectively. In the case of the onshore compo-

nent, bandaveraging by two was used in addition to the ensemble

average over the thirteen available 29 day segments. It appears

that the model is in reasonable agreement with field data for Ekman

depths of between one and ten meters.

In the next sections we examine some further properties of the

model, using the above representation of the wave number dependence

of the wind field.

Cross-Shelf Phase Differences

A feature of some field studies is that phase differences exist

between flow variables measured at points separated in off-shore

position. Fluctuations nearshore lead those farther offshore, as

observed by Sobey (1977) for the Oregon shelf and by Brink, Allen

and Smith (1978) off Peru.

Phase differences of the correct sign are predicted by the vis-

cous long-wave model of Brink and Allen (1978). Here viscosity is



RESPONSE OF ALONGSI-IORE VELOCT'
2

10
E

z

10

E

LJ -I
&) 10z
0
0
(I)

Li -2
10

10 2.0

380i

270

Li
U)

180

90

0

Dt
Ek,,o,, .pth 1

_.___4o.l ekn,O, D.pth 10

S

RESPONSE OF ONSHORE VELOCITY

10
1

10

10

10
2

10

3B0

270

180

90

0

Dft
Ek,, Deprn rn

_Od.1 ekrn.,,, 0.pth POrn.

i01 10

S0ot

Ek,,,,, 0pt, 2 rn.

A4odI Ekrn,, Depth 70 rn.

10_I 10 10

FREQUENCY (cpd) FREQUENCY (cpd)

Figure 22. Model fit to the coherent response of horizontal

currents at mid-depth over the 100 meter isobath.

The estimated 90% confidence ranges are indicated.

For the onshore component only estimates based on

coherences significant at the 90% level are

displayed.

S



70

parameterized through a bottom friction coefficient. Ekrnan layer

dynamics are used by Mofjeld (1980), in a study of barotropic Kelvin

waves in a coastal zone of constant depth, and cross-shelf phase

differences also arise.

Such phase differences are evident in the model responses of

horizontal velocity components produced in this study, as illustrated

in Figure 23. Here the response functions, based on the wavenumber

structure for the wind assumed in the previous section, are computed

for mid-depths at the 25, 50, 75, 100. 150, 200 and 500 meter iso-

baths. Curves (a) and (b) correspond to a non-dimensional frequency

of 0.20 (3.5 day period) while curves (c) and (d) are for 0.55 (1.3

day period). The response for the former frequency is dominated by

the long wave, non-dispersive portions of the modes while the latter

frequency is chosen to represent the cut-off frequency of the first

mode. For curves (a) and (c) a ten meter Ekman depth is used while

for curves (b) and (d) the Ekman depth is one meter. The results

have been converted to the coordinate system commonly used for the

Oregon situation; U is onshore and V is to the north.

For the alongshore càmponent the phase lag of current to the

wind is seen to increase offshore. The range of variation is far

greater in the case of the ten meter Ekman depth than for the one

meter case, which departs only slightly from the 90° phase lag

predicted by the inviscid theory.

In the case of the onshore component the phase lag increases

with offshore distance for the one meter Ekman depth. With a ten
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meter Ekman depth the phase lag is at a minimum at an offshore

distance of approximately 16 kilometers and increasesboth inshore

and offshore of this position.

Also shown in Figure 23 are the amplitudes of the model response.

When the water depth is sufficient that the water column be largely

inviscid, the alongshore velocity response is insensitive to Ekman

layer thickness. However, in the nearshore region increased fric-

tion causes a reduction of the response of the alongshore velocity.

For the onshore velocity component the response amplitude is

more sensitive to the Ekman depth. For the ten meter case the cur-

rent peaks at an offshore position close to that at which the phase

lag to the wind was minimized. A similar behaviour occurs with the

one meter Ekman depth inshore of the shallowest (25 meter) location

shown in Figure 23.

Balances in the Continuity and Horizontal Momentum Equations

Again using the power law waveriumber dependence of the wind,

the mass and momentum balances may be discussed in terms of the

appropriate model response functions.

In Figure 24 the responses of U and are shown for mid-depths

at the 50, 100 and 200 meter isobaths. Ekman depths of one and ten

meters are used. The importance of V relative to U in the balance
y x

generally decreases as frequency increases and drops rapidly beyond

the cut-off frequency of the first mode (0.75 cpd). As the shoreline

is approached, the balance becomes increasingly confined to the x-z

plane, particularly 'for the case of the ten meter Ekman layer
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thickness. This simple mass balance is commonly assumed in upwelling

models and is suggested in velocity measurements from the Oregon

shelf, studied by Allen and Kundu (1978). At the 200 meter isobath

the balance is essentially the same at mid-depths for both the one

and ten meter cases.

In long wave models of continental shelf response the term Ut

in the momentum equation (2) is frequently neglected based on scale

arguments (Allen, 1980). Measurements confirm that for the inviscid

interior the alongshore velocity is indeed in approximate geostrophic

balance (Allen and Kundu, 1978). The alongshore momentum equation

(3), on the other hand, is ageostrophic with
Vt

and fU having

comparable magnitudes.

In this viscous model the long wave approximation is not made

and the offshore and alongshore directions are assigned the same

length scales. It is interesting then to compare the terms in the

momentum balances, as measured by their responses. In Figure 25 the

ratio of U. to fV and of Vt to fU are drawn for mid-depths at the

50, 100 and 200 meter isobaths.

For the onshore momentum equation the neglect. of U. relative to

fV is seen to be justified over much of the subinertial frequency

range. The local acceleration becomes important only for time scales

close to one day. The result is essentially the same for both Ekman

depths of one and of ten meters and applies across the range of shelf

depths.

Figure 25 also shows that in the alongshore momentum balance the
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terms Vt and fU are indeed of comparable magnitude. At low frequen-

cies for the ten meter Ekman layer thickness V. is smallest relative

to fU. Its importance increases at the higher subinertial frequen

cies, particularly inshore where it exceeds fU for time scales

shorter than about three days. With an Ekman depth of one meter the

terms are in approximate balance for the entire subinertial band.
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V. SUMMARY AND CONCLUSIONS

This study has examined the role of eddy diffusion in a non-

stratified model of forced shelf circulation. Using linear Ekman

dynamics the results of the previous chapter indicate that the model

can account for a major part of the subinertial variance of the

Oregon shelf response. With ten meter Ekrnan layers,which are of the

expected thickness (Kundu, 1977), reasonable predictions result, both

in amplitude and phase, for the coherent responses of coastal sea-

level and horizontal currents to alongshore wind stress forcing.

For the adjusted coastal sealevel the winter and summer responses are

the same, despite the reversal of the wind stress curl (Nelson, 1976)

and the seasonal cycle in atmospheric pressure fluctuations. The

alongshore component of wind stress is apparently the dominant

forcing agent and the response to atmospheric pressure is isostatic,

at least on the Oregon shelf.

That the observed response amplitudes are consistently higher

than model predictions may be partially due to the wind stress,

measured at the coast, underestimating the open shelf value, as is

suggested in the historical data compiled by Nelson (1976). The

discrepancy is greatest for coastal sealevel, measured within Yaquina

Bay. The response of sea surface elevation would perhaps be better

represented by bottom pressure sensors over the shelf. Harbor

effects, such as the wave set-up discussed by Thompson (1980) may

have caused an over-response. The model prediction of coastal sea-

level amplitude is also sensitive to the details of the nearshore



topography. The agreement of observed and model predicted phase

relations is well within observational uncertainties.

The success of the model lends credence to its other features.

The transfer functions that may be defined when the forcing is

assumed invariant across the shelf allow a useful and convenient

discussion of the properties of the model, independent of the

wavenumber-frequency characteristics of a particular forcing field.

Diffusion is pararneterized with surface and bottom boundary layers

of finite thickness, which may interact in a shallow nearshore region.

The model response is found to be insensitive to the choice of

nearshore boundary condition (regularity or no-flow), provided the

coastal wall height, if employed, is less than the Ekman depth

necessary to paranieterize the effect of diffusion. This requirement

has not often been imposed in the literature where topographic

profiles with large coastal walls are comonly used.

The model provides an explanation for the banded structure

that the coherence, between wind stress and the coastal response,

is often found to exhibit (Brooks, 1978). Free waves, whose presence

is expected to reduce such coherence, suffer increased attenuation

in the vicinity of the cut-off frequencies of the various shelf wave

modes, with a consequent enhancement of coherence for the locally

forced response at such frequencies.

The .balances of the continuity and momentum equations, predicted

by the model, are in agreement with observation (Allen and Kundu,

1978). The mass balance becomes increasingly two dimensional as the
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coast is approached, as is commonly assumed in theories of coastal

upweiling. Ths alongshore velocity component is in geostrophic

balance over most of the subinertial frequency band, while the along-

shore momentum equation is ageostrophic. Across shelf phase var-

iations, with fluctuations nearshore leading those offshore,. as seen

in shelf measurements also appear in the model. Another feature

of the model (which could not be implemented with the present data

base) is that it predicts a relationship between the wind coherent

spectra of the vertical and onshore components of velocity. If the

spectrum of the latter could be extricated from the noise which

often contaminates it, this model result would allow the upwelling

spectrum to be estimated.

Futu.re applications of the model should include the computation

of the trajectories of water parcels in response to the passage of

a sequence of storm systems. The variance of alongshore wind stress

has an alongshore structure, presumably the result of the distribu-

tion of storm tracks, and the influence of such spatial non-

stationarity should also be considered. Another useful extension

would be the inclusion of baroclinic effects. The Oregon hydro-

graphic regime has a marked seasonal cycle (Huyer, 1977) and while

the long term response appears largely barotropic, a consideration

of the influence of such features as the upwelling front would be

useful. An extension of the model to the two-layer case was con-

sidered but a realistic treatment, with the interface surfacing as

a front or intersecting a sloping bottom, cannot be easily



encompassed with the present numerical scheme. The author hopes to

consider these problems further in the future.
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Appendix A: The Regularity Condition

Suppose the nearshore topography js linear

H(x) = mx

where ni is the bottom slope. Using the series expansions for the

hyperbolic tangent and secant (Abramowitz and Stegun, 1965) the

complex functions of equation (14) are written as

j
h(x) j3 h. X

3
H(X) j5 H X
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and
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[1.

2n (22fl
1) B2 / (2n)!

s2 = -E / (2n)!

and E2 are the Bernoulli and Euler numbers respectively.

If we now define

C = - j(n+2)h . - (n-j+2)H
nj n-j-4-1 n-j+3 a

the coefficients (an,b) of the series expansions necessary for

the evaluation of the regular boundary condition obey the following

recurrence relations

with

n-i

an = {r + E c a.} / n(n+2)h3
n+1 j=1 nj 3

b = {X2h+i - (n+2) H2 + c b.} /n(ri+2)h3

a1 = r2/3h3 , b1 = 0.
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Appendix B: The Stationarity Test

Estimates of spectral density are computed from

Sn = ½ T (a + b)

where T is the record duration. The raw Fourier components (ab)

at each frequency are assumed to have independent normal distributions

with mean zero and population variance a2. Hence , the quantity

2

Ta2) Sn
(B].)

should be distributed as
4.

Likewise, if we ensemble average over

N segments of equal durations the quantity

2
N

(S) (82)

should have a distribution. The ratio of (Bi) to (B2) will then

be distributed as F22. This ratio is simply

Sn /

where S is the sample mean of the spectral density drawn from the N

estimates. For each frequency the spectral estimates normalized

by their sample mean are tested for goodness of fit to the F22

distribution.

This is done with a x2 test. The N values are divided into m

equiprobable categories. If the observed and expected frequencies

are denoted by 0. and E., then
3 3

m
= z -E.)2/E.

j=1 j 3 3

is evaluated and compared to the distribution.
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The degree of stationarity may be expressed in terms of the

Type I error. This is the probabiflty of error if the hypothesis

of stationarity is rejected. A low value of Type I error is

associated with a high degree of non-stationarity.




