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The primary purpose of the AIDJEX Lead Experiment

(ALEX) of early 1974 was to measure the turbulent component

of the heat flux from Arctic leads in winter. This thesis

describes that experiment, summarizes the data taken on the

downwind side of the leads, and discusses the determination

of the sensible and latent heat and momentum fluxes over

Arctic leads.

Three methods are used to evaluate the sensible heat

flux. The basic estimate relies on an energy conservation

approach which requires upwind and downwind temperature

profiles and the downwind velocity profile. The second

method uses the empirically-determined flux-gradient

relationships, which are approximately valid very near the

surface of the lead. Thirdly, measurements of the correla-

tion between vertical velocity and temperature fluctuations

give the sensible heat flux directly. In addition, several
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low quality humidity profiles allow estimates of the

latent heat flux, again on the basis of energy conserva-

tion. Both the sensible and latent heat fluxes correlate

with bulk parameters and, hence, can be estimated with only

a few bulk measurements.

Though the primary emphasis of ALEX was on the heat

flux determination, the raw data alone -- the velocity and

temperature profiles -- are of considerable interest. Sel-

dom have internal thermal boundary layers of geophysical

scale been so extensively studied. Seventy-six pairs of

velocity and temperature profiles from withir the boundary

layer and more than 30 u and w spectra and uw cospectra

tell a great deal about thermal boundary layer processes.

The velocity profile, in particular, within the layer is

very complex. It is modified by the tremendous vertical

heat flux and affected near the surface by the roughness

transition between relatively smooth ice and the rougher

water of the lead. A comparison of upwind and downwind

temperature profiles yields the internal thermal boundary

layer height, , the height at which the downwind tempera-

ture profile rejoins the upwind profile. That height is

primarily a function of the stability parameter z0/L, where

is the surface roughness and L is the Monin-Obukhov

length, but also depends on the upwind stability and, of

course, the fetch across the lead.



Spectra and cospectra from over the lead and the con-

sequent integral statistics are unique for basically two

reasons. First, the spectral data was obtained very near

the surface; therefore, Reynolds numbers were small.

Secondly, the flows were fetch-limited. This horizontal

inhomogeneity apparently affects the uw cospectra most;

they contain more spectral energy at higher frequencies

than do cospectra characterizing horizontally homogeneous

conditions.
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OBSERVATIONS OF VELOCITY AND TEMPERATURE
AND ESTIMATES OF MOMENTUM AND HEAT
FLUXES IN THE INTERNAL BOUNDARY

LAYER OVER ARCTIC LEADS

1. INTRODUCTION

Honor the High North ever and ever
Robert W. Service
"Men of the High North"

1.1. THE ARCTIC HEAT BUDGET

The Earth is a heat engine, a thermodynamic system,

converting heat energy from the sun into the mechanical

energy of atmospheric and oceanic circulations. The goal

of meteorology and oceanography is to understand the

dynamics of the air and water realms and the interaction

of the two. Therefore, since solar heat is the sole source

of energy driving the global circulation, heat budget

studies are one avenue to this understanding. How much

heat arrives from the sun? How much is returned to space

and where? What portion is reflected at density interfaces?

Which surfacesabsorb how much? What is the rate of trans-

fer from here to there?

The Arctic region is a huge heat sink in the plane-

tary thermodynamic system. Because the sun's incoming

energy is concentrated around the equator, the poles re-

ceive much less energy than do lower latitudes. Hence,

the resulting temperature gradient between low and high



latitudes forces the oceans and atmosphere to answer the

polar call for warmth. Warm currents and warm air masses

transport heat into the Arctic while the region exports

'cold' in the form of cold air masses, cold currents, and

ice.

Because the Arctic is such a sink for the planet's

heat, its heat budget is of considerable consequence. And

the yearly variability of that budget is similarly impor-

tant: do variations in the Arctic heat budget have any

relation -- whether as cause or consequence -- to climatic

anomalies? What is the state of the Arctic Ocean during

continental glaciation? How would the heat budget and

particularly the pack ice cover respond to a prolonged

heating or cooling of the atmosphere?

Some have hypothesized that the Arctic Ocean has two

quasi-steady states -- an ice-covered and an ice-free

state -- which are intimately connected with the climate

over the entire planet (Ewing and Donn, 1956, 1958;

Fletcher, 1965; Donn and Ewing, 1966). When the Arctic

is ice-free, It provides a northern moisture source and

so fosters continental glaciation; when ice-covered there

is no moisture source and, consequently, an interglacial

perIod. But others refute this theory claiming the Arctic

Ocean has never been ice-free and so is not a controlling

factor in continental glaciation (Clark, 1971).
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Uncertainty in several terms of the Arctic heat bud-

get allows such antithetical views. Considering that even

year to year Arctic climatic anomalies are proving "diffi-

cult to unravel" (Oort, 1974), anomalies with periods of

10,000 years are yet well beyond the limits of our under-

standing. We must start with the basics first -- define

all the pieces of the Arctic heat budget puzzle. Observa-

tions in the Arctic are a necessity. Too often terms in

the heat budget are estimated using bulk formula which have

rarely been tested against ground truth in the Arctic.

This thesis will, thus, discuss an in situ investigation

of one term in the Arctic heat budget -- the turbulent

flux of heat from Arctic leads in winter.

Through the winter the Arctic Ocean is almost totally

covered by a rind of pack ice about three meters thick.

But due to the stress imposed by wind and water the ice

occasionally cracks and separates. This chink in the pack

ice which at first exposes open water but may, as time

passes and freezing occurs, contain ice in various stages

of formation, including a complete cover of new ice up to

several centimeters thickness, we shall refer to as a lead.

The origin of the term 'lead' to mean a crack in the

pack ice is obscure but may have come from the days of the

wooden-hulled sealing and whaling ships. Nansen (1897)

gives us a clue: throughout his book, 'channel' appears

where we infer 'lead'. That is, a lead provides an avenue



for shIps: sealers can take their fragile vessels only

where the channels lead.

Seemingly no study has yet been made to determine the

distribution of physical dimensions of leads: most pub-

lished information on size is simply of a descriptive

nature.: Zakhávov (1966) mentions leads which "stretch un-

broken for several hundred kilometers between the shore

ice and the floating ice in the Laptev Sea. Auferheide and

Pitzl (1970) encountered leads two miles wide and six to

seven miles long on their snowmobile ride to the North Pole

in 1968. When Nansen and Johansen left the Fram in early

1895 and tried to reach the North Pole by ski and dog sled,

they were thwarted, in part, by continually having to

negotiate channels from ten to fifty meters wide and

perhaps a kilometer in length (Nansen, 1897).

Most agree that leads have limited areal coverage.

Untersteiner (1964), Badgley (1966), and Coachman (1966)

each estimate that in winter there is one percent or less

open water in the Arctic Ocean; Wittman and Schule (1966)

say two percent is a realistic figure.

How can such small features in the pack ice be of any

significance in the Arctic heat budget? During the winter

the surface ocean water is at near freezing, -1.7°C, while

the lower atmosphere may be -20°C to -40°C; however, the

ubiquitous pack ice is a very good insulator and so general-

ly keeps the two thermally separated. But leads disrupt
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the integrity of the ice. Air and water are allowed inti-

mate contact, and the large temperature difference between

the two drives a tremendous outpouring of heat, sensible,

latent, and radiative, from the ocean to the atmosphere.

The magnitude of this exchange has been estimated to be two

orders of magnitude greater than the heat flux through

mature ice (Badgley, 1966). Consequently, even if leads

cover only one percent of the ocean area, they still

account for roughly one half of the turbulent heat exchange

between ocean and atmosphere during the Arctic winter.

Badgley (1966) provides two tables which give us a

more quantitative picture of the part leads play in the

surface heat budget of the Arctic Ocean. Table 1.1 is his

estimate of the surface heat budget for mature ice; Table

1.2 is the heat budget for a lead surrounded by pack ice.

The notation in the tables is:

the albedo of the surface

S incident solar radiation (direct and diffuse)

S(l-) solar radiation absorbed

O outgoing surface infrared radiation

I incoming infrared absorbed at the surface

0-I net infrared

R = O-I-S(l-o), the surface radiation balance

H sensible heat flux to air

HL latent heat flux to air

B = R+H+HL, the surface energy balance



Table 1.1. The estimated average heat flux during each month for mature ice at 80°N

(after Badgley, 1966). In R, H, HL, and B, the fluxes are upward if
positive.

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC YEAR

78 56
- - 83 81 82 78 to to 84 - - - -

54 78

mw/cm2

S - 1.26 6.46 10.74 11.55 8.90 5.02 1.22 - - - -

S(l-a) - .21 1.23 1.93 2.54 3.02 1.66 .20 - - - .90

0 6.88 6.64 6.64 7.12 8.92 11.91 12.24 11.78 11.08 9.78 8.38 7.11 9.04

I 6.08 5.71 5.52 5.76 8.01 10.98 11.14 11.39 10.41 9.11 7.18 5.99 8.11

0-I .80 .93 1.12 1.36 .91 .93 1.10 .39 .67 .67 1.20 1.12 .93

R .80 .93 .91 .13 -1.02 -1.61 -1.92 -1.27 .47 .67 1.20 1.12 .03

H -.43 -.35 -.37 0 .35 .37 0 .11 .19 -.06 -.16 -.24 -.05

HL 0 0 0 0 .27 .35 .19 .02 -.14 -.16 -.11 -.02 .03

B .37 .58 .54 .13 -.40 -.89 -1.73 -1.14 .52 .45 .93 .86 .02

L



Table 1.2.. The estimated average heat flux during each month for a lead at 80°N
surrounded by pack ice (after Badgley, 1966). In R and B, the fluxes
are, upward. if. positive..

JAN FEB MAR APR NAY JUN JUL AUG SEP OCT NOV DEC YEAR

a(%) - - 10 10 10 10 10 10 10 -

mw/cm2

S - - 1.26 6.46 10.74 11.55 8.90 5.02 1.22 - - -

S(1-a) - - 1.13 5.81 9.67 10.40 8.01 4.52 1.10 - - - 3,4

0 11.78 11.78 11.78 11.78 11.78 11.91 12.24 11.78 11.78 11.78 11.78 11.78 11.8

I 6.08 5.71 5.52 5.76 8.01 10.98 11.14 11.39 10,41 9.11 7.18 5.99 8.1

0-I 5.70 6.07 6.26 6.02 3.77 .93 1.10 .39 1.37 2.67 4.60 5,79 3.7

R 5.70 6.07 5.13 .21 -5.90 -9.47 -6.91 -4.13 .27 2.67 4.60 5.79 .3

H 22.5 25.2 25.2 22,4 12.6 .4 0 .1 2.8 8.4 15.4 22.5 13.1

HL 2.4 2.7 2.7 2.4 1.3 0 0 0 .3 .9 1.6 2.4 1.4

B 30.6 34.0 33.0 25.0 8.0 -9.1 -6.9 -4.0 3.4 12.0 21.6 30.7 14.8



In the tables, R, H, HLI and B are upward if positive.

On comparing the R, H, HL, and B components for both

mature ice and leads in winter, we see how the occurrence

of leads greatly increases the heat loss by the ocean. The

B term in winter is more than fifty times larger for leads

than for the pack ice; and most of this increase is contrib-

uted by the sensible heat flux, H. Doronin (1966) esti-

mates H and R only and these are consistent with Badgley's

values. Vowinckel and Taylor (1965) likewise predict simi-

lar magnitudes; they claim their estimate of the sensible

heat flux from the surface in the central Arctic would in-

crease by 40% per year if, instead of the total ice

cover they assumed, there was one percent open water.

Badgley (1966) based his estimates of H and HL in

Table 1.2 on actual velocity, temperature, and humidity

profiles recorded over a lead near Barrow, Alaska in 1962.

Miyake (1965) tried similar measurements in 1960, con-

structing an artificial lead in the shore-fast ice near

Barrow. These are apparently the only attempts at an

experimental investigation of the turbulent heat flux from

leads. And these results are limited. Each experiment

lasted only a couple of days at a single site; hence, few

environmental and physical parameters were sampled. Several

wind tunnel studies have attempted to measure the heat flux

from warm water to cooler air (Mangarella, et al., 1971,

1973; Coantic and Favre, 1974). But these could not



reproduce the large temperature difference and the very

cold and dry air of the Arctic. Clearly, a more thorough

investigation was desirable since we would ultimately like

to predict the heat flux by measuring only the width of a

lead and such bulk environmental parameters as the wind

velocity, air temperature, and water temperature.

The Arctic Ice Dynamics Joint Experiment (AIDJEX)

sponsored by the National Science Foundation (NSF) provided

an excellent opportunity for such research; consequently,

the AIDJEX Lead Experiment (ALEX) was organized for early

1974 (Paulson and Smith, 1974). The primary goal of our

participation in ALEX was to establish a method for esti-

mating the turbulent heat flux from Arctic leads by measur-

ing a few relevant, bulk parameters. Therefore, during

the six weeks of ALEX we made heat flux measurements over

real and artificial leads of various widths and under a

host of environmental conditions. This thesis discusses

those heat flux measurements

1.2. THE INTEPNAL BOUNDARY LAYER

There is another intriguing area to our research which

must flavor this thesis. That is ALEX as a turbulence

experiment on a geophysical scale. As will become evident

in Chapter 2, what we are doing during ALEX is studying

how an air flow -- originally in equilibrium with a sur-

face -- is modified by a change in surface conditions. In
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our case, the flow is initially in equilibrium with the up-

wind ice. When it impinges on the lead -- which has a much

warmer surface and probably a different surface rough-

ness -- its velocity and temperature profiles and, conse-

quently, the momentum and heat fluxes are altered. The

region which is disturbed by the new surface is called an

'internal' boundary layer (IBL) -- 'internal' because it

is imbedded in the planetary boundary layer.

Research into such turbulence problems began only

fairly recently because the thing is so difficult.

Elliott's (l958a, 1958b) pioneering work and much of the

subsequent experimental (e.g., Bradley, 1968; Plate, 1971)

and numerical (e.g., Peterson, 1969; Taylor, 1969; Shir,

1972) research have concentrated on flows encountering a

change in surface roughness. The boundary layer is, thus,

an internal 'momentum' boundary layer.

Taylor (1970) has tried to model an internal 'thermal'

boundary layer, which results when a flow feels a change in

surface temperature but no change in surface roughness.

Miyake (1965) has made an analytic attempt at understanding

the internal thermal boundary layer. And Shreffler (1975),

as part of the AIDJEX program, has constructed a numerical

model specifically of flow over an Arctic lead but had only

one set of Badgley's (1966) velocity and temperature pro-

files with which to test his results. In addition, the

thermal boundary layer has been investigated in wind
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tunnels (Mangarella, et al., 1973; Coantic and Favre, 1974).

But ALEX is one of the few times thermal boundary layers

of geophysical size have been observed (see Figure 1.1).

This is a rare opportunity to compare theory and laboratory

results with the real world.

It should be apparent from this discussion that there

are two regions of importance in the flow. To understand

the effects of the change in surface conditions, one must

look not only at the flow within the boundary layer but

also at the undisturbed, upwind regime. This thesis

focuses on what is happening in the boundary layer. The

thesis by Lindsay (1976) chronicles the upwind flow during

ALEX and should be considered a companion volume to this

one.

1.3. SIDELIGHTS

Leads are sites of intense processes. The large

temperature difference between water and air and the result-

ant heat flux drives most of these. Therefore, although

the principle motivation for our heat flux measurements was

to facilitate improved estimates of the Arctic heat budget,

our results are of consequence in several other areas of

study which will not be treated directly in this thesis.

Because of the rapid heat loss in winter, leads are

areas of prolific ice formation. Three things can happen

to ice: it is formed, melted in the Arctic, or transported
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south out of the ocean. The ice budget is, thus, a sub-

budget of the total Arctic heat budget. The heat flux

from leads is, therefore, critical in this budget, too.

Leads also have the potential for generating small

scale therrnohaljne circulation (Smith, 1973). When the

pack ice cracks and exposes warm ocean water to the dry and

very cold atmosphere, the combined effects of ice formation

and evaporation may increase the surface salinity by as

much as 2.5 o/ (zakharov, 1966). Because in seawater

at near freezing, salinity changes determine density

changes, this surface water becomes more dense than the

underlying water and so will sink as a plume until it

reaches water of equal density (Smith, 1974) -- probably in

the halocljne between 50 and 100 meters (Coachman and

Barnes, 1962). Here it spreads out as a layer. This sink-

ing water will likely be replaced by the vertical and

horizontal advection of water under the ice. But because

in the Arctic Ocean the water temperature generally in-

creases with depth from the surface down to the Atlantic

water between 200 and 900 meters (Worthington, 1953), this

advection could carry more heat to the surface (Doronin,

1963). To investigate this thermohaline circulation in the

vicinity of leads, a group headed by J. D. Smith of the

Department of Oceanography at the University of Washington

also participated in ALEX.
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Such thermohaline circulation has several important

implications. For example, mixing surface water into lower

layers allows for the aeration of these layers -- a conse-

quence which may have significant impact on the biological

activity in the Arctic. In fact, Zakharov (1966) states

that convection reaching 200 to 300 meters has been

observed. Of f the Eurasian coast where the continental

shelf is very broad and shallow, such convection may at

times reach the ocean floor. Secondly, the cooling of the

surface water in leads coupled with its downward transport

in plumes may account for the supercooled water which is

often observed in Arctic Ocean temperature profiles

(Coachman, 1966; Katsaros, 1973).
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2. THE AIDJEX LEAD EXPERIMENT

There always comes a time when one must choose
between contemplation and action. This is
called becoming a man.

Albert Camus
The Myth of Sisyphus

The scale of the Arctic Ice Dynamics Joint Experiment

made our lead research possible. Including ALEX in the

AIDJEX program gave us the opportunity to take advantage

of logistic and technical support gathered for the AIDJEX

assault. Consequently, four different research programs

were carried out as part of ALEX. The Air-Sea Interaction

Research Group from the School of Oceanography at Oregon

State University and a similar group from the Department

of Atmospheric Sciences of the University of Washington

(13W) made atmospheric observations over leads. J. D.

Smith led a group from the Department of Oceanography of

the University of Washington which made oceanic observa-

tions (Smith, 1974). Bjorn Holmgren of the Geophysical

Institute of the University of Alaska measured radiative

fluxes (Holingren and Weller, 1974). And John Kelley of

the Institute of Marine Science of the University of

Alaska investigated the CO2 exchange in leads (Kelley,

1974)

In late February of 1974 the ALEX participants

assembled at the Naval Arctic Research Laboratory (NARL)
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near Barrow, Alaska, and the experiment, thus, began.

Heiberg's (1974) log is a good day to day account of the

activities of all groups in the ALEX program. So, hence-

forth, we will concentrate on the atmospheric observations.

2.1. SITES

ALEX of necessity had three phases instead of the two

originally planned. We were to begin by first looking at

flows over artificial leads built on Elson Lagoon (see

Figure 2.1) then move onto the pack ice in the second

phase to sample real leads. However, the pack was most

uncooperative, presenting few real leads in the area

accessible to us; hence, we returned finally to Elson

Lagoon and built a larger artificial lead.

These artificial leads were constructed by pumping

sea water into long, polyethylene tubes and laying the

tubes out in a semicircle on the ice. They froze quickly

and we, thus, had a container which when filled with sea

water was a 'lead' 20 to 30 centimeters deep, The lagoon

itself was our sea water source. We pumped the water up

through a hole in the ice, injected it into the pond at

one corner, and let it drain back into the lagoon through

a hole in the opposite corner. In this way a pond was

held at constant temperature with only minimal freezing

around the edges. The ponds were semicircular so that with

our sensors at the center of the straight side, we could



71024'W

71022W

71020'W

7J018'W

POINT
BARROw).:..

0 1 2 3 4 5km N

ARCTIC OCEAN 4V
ARTIFICIAL

NARL LEAD SITE
AIRFIELD,"

f./
NARL% 0

A
0

BRowERvILLE/;

BARROW/S'

156°50'W 156°40'W l56°3OW (56°20'W

Figure 2.1 Point Barrow, Alaska, and vicinity. The ALEX artificial lead experiment
was conducted on Elson Lagoon.
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track the wind through almost 180° without much change in

water fetch. Ultimately we had to build three such ponds.

The first two were each of ten meter radius but facing dif-

ferent directions to follow a fickle wind. The third pond,

which became necessary in the absence of suitable real

leads, had a radius of 20 meters.

Sampling over these artificial leads let us debug

our instrumentation, better define our experimental pro-

cedure, control the all-important geometry of the air flow,

and proceed at a more relaxed pace; because when we got to

a real lead we would have little time for confusion and

hardly any control over the wind. As soon as leads open,

ice begins forming in them and within 24 hours the thick-

ness of new ice may be several centimeters.

When we finished our first series of artificial lead

experiments we regrouped at NARL and began looking for

real leads. Heiberg (1974) details the search and deploy-

ment procedure. Before we would commit ourselves to de-

ployment, a lead had to meet strict requirements. It had

to be fairly narrow -- 100 meters or less -- so the inter-

nal boundary layer would not be too high on the downwind

side. The wind had to be nearly perpendicular to its long

dimension for reasons which will be obvious later. The

lead had to be through mature ice to insure safe sites for

the camps on either side. Smooth ice nearby was necessary

on both sides so small planes could land. The upwind side
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had to be free of hummocks and pressure ridges, which would

void our assumptions of equilibrium flow upwind. And the

lead had to be within a 30 to 40 mile radius of NARL so

search and deployment could be accomplished in one day

(about ten hours of daylight).

The first satisfactory lead we found was a good one.

We camped on it for two days and got nine hours of useful

data on the downwind side of the lead before a wind shift

during the night of the first day stopped us. However, as

we turned our sensors with the wind, we eventually found

ourselves upwind of the lead with the UW group downwind.

So we recorded an additional six hours in this configura-

tion.

When we set down on our second real lead, it was

about a quarter of a mile across; but we were desperate

for a site as the pack ice was persistently uncooperative.

By the time we were operational (two hours), the lead had

closed to a hundred meters. Two hours later after one 90

minute data run, open water vanished and in its place a

rumbling pressure ridge began advancing on our camp. We

evacuated. The pack ice remained tight for a solid week.

And we returned to Elson Lagoon for the large artificial

lead experiment.
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2.2. THE INSTRUMENT HUT

As I have explained in Chapter 1, to properly inves-

tigate atmospheric processes over leads it is essential to

sample both the undisturbed upwind flow and the flow over

the lead. Hence, twin instrumentation packages were neces-

sary the one upwind usually manned by the University of

Washington group; the downwind, by the Oregon State con-

tingent.

The primary component of each of these setups was a

helicopter-transportable, army surplus instrument hut,

which provided shelter and quarters for two to three

people during the experiments on both Elson Lagoon and on

the pack ice and contained the electronics for obtaining,

conditioning, and recording our turbulence observations.

Each hut was accoutered with a 60 cycle, five kilowatt

generator for powering the requisite electronics; for heat-

ing, a propane stove, which could maintain a 40°C tempera-

ture difference between the hut floor and the ceiling

seven feet above; and bunks. In addition, each hut was

mounted on two large, wooden skids to prevent its freezing

onto the ice and to facilitate sliding if ice movements

threatened it.

2.3. THE TWO TOWERS

Two towers, which during transport were mounted to

the outside of the hut, held our sensor arrays during
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periods of observation. One tower we call the 'profile

tower'; the other is the 'flux tower'. The profile tower

was equipped to make velocity, temperature, and humidity

profiles over the lead. The flux tower had transducers for

making direct measurements of momentum and heat fluxes

using the eddy correlation technique. Tower sensors were

connected to the hut electronics with 100 meter, teflon-

coated cables.

Both towers were of modular design and built of

aluminum tubing. The principle feature of each was a four

meter arm which could rotate in the vertical and so lift

our sensors from within centimeters of the surface to a

height of about four meters. A small electric motor

mounted on each tower powered this up and down motion. The

arm also swiveled in a horizontal plane and therefore could

be manually oriented into the wind. Figure 2.2 is a draw-

ing of an ALEX instrument tower.

2.4. PROFILE TOWER TRANSDUCERS

The profile tower generated profiles by continually

cycling one set of sensors up and down through the boundary

layer, stopping at each of five predetermined, logarithmi-

cally-spaced heights for usually a minute. By using one

set of sensors thusly, we avoided some complications.

First, and most obvious, is the fact that this scheme did

not require the large battery of transducers which is



Figure 2.2w An ALEX instrument tower.
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typical in most profiling work. Secondly, and in the long

run more significant, was our eliminating the inter-calibra

tion problems inherent in using more than one sensor to

measure the same quantity. Admittedly, with only one sen-

sor per observable, there is always a question of conf i-

dence in the result. We were not, however, without a means

to judge the validity of our profile measurements: sensors

on the nearby flux tower were also measuring the same

average quantities but at fixed heights. Thus, the profil-

ing method we chose allowed us to make very precise deter-

minations of the shape of the velocity and temperature pro-

files in the internal boundary layer. For our work, that

shape the relative magnitudes of the observables between

different heights is as interesting as the absolute

values of the observables.

The velocity transducer on the profile tower was a

Thermo-Systems Inc. (TSI) 1210-20 hot-film probe: its

sensing element is a vertically-oriented, cylindrical hot-

film with diameter 0.051 mm and aspect ratio 20 (Figure

2.3)

All our temperature transducers were 0.5 mu Chromel-

Constantan thermocouples welded between wire supperts at

the end of a small diameter rod 15 cm long. The profiling

thermocouple was mounted next to the hot-film and ref er-

enced to a 0°C thermocouple reference stimulator, which

with the thermocouple amplifiers was incorporated into the
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a 1 mm sensing length.
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sensor arrays. Two other thermocouples, one mounted at the

lower array position with the hot-film and the aforemen-

tioned thermocouple and a second mounted 50 cm above, were

referenced to each other. We thus hoped to increase the

density of our profile temperature observations and get

estimates of temperature differences over 50 cm. But that

differencing pair was just another source of joy for the

Arctic gremlins: it never did give reasonable absolute

temperature differences though its variance agreed with

that measured by the lower thermocouple. Only by doing an

ad hoc calibration of the differencing pair for each run

using the lower thermocouple as the standard could we ex

tend our temperature profile upward an additional 50 cm.

Midway between the lower temperature and velocity

transducers and the upper differencing thermocouple we

mounted a carbon hygristor as a humidity sensor. The

resistance of the hygristor element is sensitive to mois-

ture; hence, when the hygristor is placed in an oscillat-

ing circuit, the frequency of oscillation is related to

the humidity. Unfortunately, the humidity circuit was

inoperative for the first three-quarters of ALEX and the

humidity values from the final quarter are suspicious;

therefore, we have little faith in our moisture observa-

tions.

A Thornwaite three-cup anemometer sat stationary

atop the profile tower and so gave us an additional point
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for velocity profiles and provided a fixed-height velocity

reference for making sampling corrections to the velocity

profiles. The cup anemometer seems to have been somewhat

affected by the cold -- it inhibited the frequency response

of the cups. Average velocities generally were consistent

with hot-film velocities, but the trace from the cups on

our strip chart recorder was often uneventful. The Arctic

cold had made the cups a low-pass velocity filter.

The arm on the profile tower cycled through five

levels starting iear the top of the boundary layer and

working downward until it reached the lowest height --

usually 10 to 20 centimeters. It would then return to the

upper level and begin again. A potentiometer on the gear

of the motor which moved the arm was a monitor for the

heights of these levels. Inside the hut, electronics

designed by the University of Washington group allowed in-

finite control of the tower heights and sampling interval.

Each height at which the tower arm would stop was set on

one of five potentiometers mounted together on a panel. A

sixth potentiometer set the sampling interval. The panel

electronics associated a continuous voltage with the

tower potentiometer and from that we knew the arm height.

In addition, the tower control panel assigned a discrete

voltage signal to each level and thereby told us which

potentiometer had positioned the arm. Hence, if necessary,

we could also determine the arm height from this incremental
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voltage knowing the potentiometer settings. Generally, this

system was very reliable in returning the sensing array to

the same heights as it made continuing passes through the

boundary layer.

Figure 2.4 is a typical strip chart record of the

more interesting profile tower signals (the x-fi],m veloci-

ties are flux tower signals), and so demonstrates the

essence of our profiling routines. Notice the sampling

interval for this run is about 90 seconds. The temperature

traces appear one-sided because the ambient upwind tempera-

ture is a lower bound while the presence of the much warmer

lead initiates positive excursions from this bounding value.

The fetch across the lead in this example is 8.1 m. Hence,

since the variability of the temperature trace suggests

that at 1.40 m or maybe even 0.93 m the lead is having

little influence on the profile, the thermal boundary layer

height here is roughly one-tenth of the fetch.

2.5. FLUX TOWER TRANSDUCERS

The velocity transducers on the flux tower were TSI

1241-20 crossed sensor hot-film probes. These have the

same sensing elements as our single-sensor hot-film probe,

but each contains two such sensors mounted at right angles

(Figure 2.5). We placed one crossed sensor probe at the

lower position of the transducer array and the second at

the upper array position, 50 cm above. The crossed sensor
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Figure 2.5. The sensor orientation of crossed hot-film
probes. Ideally O and 02 are 45°.
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pairs were oriented in a vertical plane parallel to the

mean wind. We thus could measure longitudinal and vertical

velocities at two heights.

Temperature transducers were like those on the profile

tower, 0.5 mu Chromel-Constantan thermocouples. We placed

the absolute temperature thermocouple and one of the dif-

ferencing thermocouples at the upper array position next to

the crossed hot-film probe there. The second thermocouple

of the differencing pair was mounted with the lower crossed

hot-film. With these temperature and vertical velocity

measurements, we hoped to make a direct determination of the

heat flux. However, again the differencing thermocouples

did strange things: the temperature difference they yielded

was never accurate though the signal variance was consistent

with that from both the absolute thermocouple and the pro-

filing array.

Both profile and flux tower thermocouples suffered

from another problem which we had anticipated. They

frosted over incredibly fast. By watching the strip chart

record of any of the temperature signals we could see the

frequency response decrease with time as rime formed around

the sensor. All our sensors were right above the lead and

the combination of evaporation and very cold temperatures

doomed the thermocouples. The hot-films, of course, were

in the same position but operated at temperatures in excess

of 2OOC and so could not frost over. In preparation for
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ALEX we had recognized the potential for such riming and,

therefore, designed the thermocouple electronics with a

heating circuit for thawing the rime on the sensors when

necessary. But that circuit itself was not too reliable;

consequently, about every half hour someone had to take an

electric heat gun out to the towers and defrost the thermo-

couples.

Perhaps here might be a good place to explain why we

took such small, fragile velocity and temperature sensors

into such a harsh environment. Two considerations are of

prime importance. First, we required sensors small enough

to accurately measure all scales that contribute to the

desired variances and covariances. These smallest scales

are of order one-tenth of the height of the measurement --

i.e., 1 cm or less. Secondly, the sensors had to have a

frequency response high enough to follow these small scale,

rapid motions. The spectra and cospectra presented by

Kaimal, Wyngaard, Izumi, and Cots (1972) suggest that to

accurately determine the variances and covariances, our

sensors had to respond to frequences of at least

f=5 1 2.1

where z is the measurement height and U is the average

longitudinal velocity there. In our application this fre-

quency is about
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f
5(lOOcIn/SeC) = 50 Hz. 2.2

We expect the limit of the thermocouples is 50 Hz; but the

hot-film sensors are capable of much higher frequency

response

At the top of the flux tower we mounted a Thorn-

thwaite wind vane. Because the crossed hot-films define a

vertical plane, it was especially important that we always

had them head-on into the wind; thus, mounting the wind vane

nearby for referencing was prudent. But despite our fore-

sight we could not always keep pace with the changing wind.

The nearness of the wind vane was then again important be-

cause if deflections from the mean wind direction are small

(less than 10°), the crossed hot-film velocities can be cor-

rected using the angle of deflection (Andreas, 1977a).

Sometimes the wind vane had the same problem as the cups --

the cold limited its frequency response. Hence, it usually

underestimated the variance in wind direction but seemed to

adequately sample the mean direction.

The array arm on the flux tower was motorized like

that on the profile tower but did not cycle up and down.

Rather we left it at a fixed height for the entire run,

usually with the lower sensors within 20 cm of the surface.

Figure 2.6 shows a strip chart record of flux tower

signals.



Figure 2.6. A typical strip chart recording of flux tower signals The lower sensors
are 12 cm above the water, the upper ones, 62 cm. The fetch is 8.1 meters.
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2.6. DATA ACQUISITION

The instrument hut contained in a large, shock-mounted

rack all the electronics for powering, monitoring, condi-

tioning, and recording the signals from the two towers.

Crossed sensor hot-films were used in conjunction

with TSI electronics (power supply, 1051-2; anemometer-

linearizer, l054A; 5:1 bridge, 1056) . A Disa anemometer

(main unit, 55M01; standard bridge, 55M10; linearizer,

55Db) operated the straight hot-film. Both these are

linearizing units: the signal from the anemometer bridge

is linearized so that the transducer voltage is a nearly

linear function of the wind speed. The velocity signal

from the profiling hot-film was used no only for velocity

information but was also electronically differentiated.

Hence, on appealing to Taylor's hypothesis and assuming

isotropy, we had a means for estimating dissipation.

A control box built specifically for ALEX by the

University of Washington group, as mentioned above,

housed the electronics for all the temperature and humidity

transducers as well as those for changing and monitoring

the profile arm heights.

The cup anemometer and wind vane had their own indi-

vidual power supplies.

Generally, before being recorded the signals were

passed through gain-offset devices (G/O's) which had been

built by the OStJ Technical Planning and Development Group.
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These gain-offsets removed the mean of the signal and

amplified its fluctuations to take advantage of the full

dynamic range of our recording equipment. In our log we

noted the individual gain and offset settings for each G/O

and, therefore, after calibration could reproduce the

original signal from the recorded signal.

Our recording unit was a Hewlett-Packard 3960 four-

channel, analog tape recorder, which we operated at 3 3/4

inches/sec. Three channels were used in the FM mode. On

these we recorded the two lower hot-film signals from the

flux tower and the differentiated profiling hot-film sig-

nal. We sent all the remaining signals to voltage-con-

trolled oscillators (VCO's), each operating in a different

frequency band. These VCO outputs were mixed and recorded

as one all-encompassing signal on the fourth tape recorder

channel, which was set up in a direct record mode. When it

came to digitizing, we reformed the indjvidual components

of this multiplexed signal by passing it through a bank of

Sonex discriminators.

These discriminators were mounted in the hut rack so

we could monitor any signal as it was being recorded.

There were two methods of visual monitoring. We could use

a small Tektronics oscilloscope or a six channel strip-

chart recorder (Gould Brush). In fact, the strip-chart

recorder ran continuously, monitoring the more important
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signals, and was invaluable in setting up the gain-offset

devices before we began a recording run.

Figure 2.7 is a flow chart of our signal processing

and recording scheme during ALEX.
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3. CALIBRATION, DIGITIZATION, AND
DATA CONDITIONING

To judge the direction of the wind it is enough
to look, at a single blade of grass.

Daisetz T. Suzuki
Zen and Japanese Culture

3.1 HOT-FILM CALIBRATION

Most of our efforts for the several months immediately

following ALEX were directed toward devising a method for

converting the hot-film signals we recorded back into velo-

cities. We tried to calibrate the hot-films before ALEX

and during the experiment as need dictated. And we made a

thorough calibration at the conclusion of ALEX of all sen-

sors which remained intact. But this calibration was un-

satisfactory: we did not have the means to produce air

flows for calibration purposes as cold as those observed

during the experiment. Hence, it was essential for us to

develop a basic understanding of the response of the hot-

films in cold temperatures before we could proceed with our

analysis.

Andreas (1977a, l977b) explains the hot-film calibra-

tion routine we ultimately defined. In summary, the

Nusselt number, N, a nondimensional rate of heat transfer

from the hot-film sensor, is an exponential function of

the Reynolds number, R:
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N = A + BR, 3.1.1

where A, B and n are dimensionless constants unique for

each sensor. The Nusselt number and Reynolds number are

and

E2 R
B S 3.1.2

7tR(TsTe)LK

R
Ud 3.1.3

Figure 3.1, which is a schematic diagram of our anemometer

bridges, may clarify the notation. In 3.1.2 and 3.1.3,

EB the bridge voltage

R5 the sensor resistance during operation

Rt = R5 + R3 + Rc + Rt + R5 (R, Rti and

R5 are cable resistance, internal probe

resistance, and probe support resistance,

respectively).

Te the environmental temperature

T5 the sensor temperature during operation

L the sensor length

K the thermal conductivity

U the wind speed

d the sensor diameter

V the kinematic viscosity



Rs+

Figure 3.1. A typical anemometer bridge.
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Both K and v are temperature-dependent parameters which we

evaluate at (T + T5).

At the end of ALEX we calibrated the anemometer

linearizers and modeled each linearizer setup with an equa-

tion of the form

E=P+QE. 3.1.4

EL is the linearizer output voltage and P, Q, and m are

constants associated with each setup. Letting

and

N HE

R = JU,

we combine 3.1.1 and 3.1.4 to form

3.1.5

3.1.6

= J 1B l/n[HP A + HQEI1 3.1.7

-- a relation between wind speed and the linearizer

voltage we recorded. Because n and m are nearly the same

and HP - A is small, U is almost linearly dependent on EL.

Equation 3.1.7 is, however, an oversimplification for

the crossed hot-films because, unlike the straight hot-

films, they were not operated perpendicular to the mean

wind. In other words, for crossed sensors, U is really a

smaller, effective velocity, Ueff F rather than the actual

wind speed. That wind speed can be gotten from Ueff (i.e.,
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from equation 3.1.7) by understanding how nonperpendicular

wind incidence affects the hot-film response. We investi-

gated that too and found we could relate U to Ueff knowing

two angles; one, the angle the sensor normal makes with

the probe axis (the 0's in Figure 2.4); and two, the wind

vane angle, which measures how far the mean wind wanders

from the vertical plane defined by the crossed sensors.

3.2 CUP ANEMOMETER CALIBRPJTION

Before leaving Corvallis for the Arctic we calibrated

several sets of cup anemometers in a wind tunnel on the OSU

campus. This calibration yielded a linear relation between

anemometer output voltage and wind speed. But on returning

to OSU and beginning our analysis we saw that cup veloci-

ties were systematically higher than hot-film velocities.

The cups were calibrated at 18°C but used in the Arctic at

-20°C to -35°C. Hence, we hypothesized that the concomi-

tant increase in air density enhanced momentum transfer,

causing the cups to rotate faster in the Arctic than they

did at the same air speed in warmer temperatures. There-

fore, we had to apply a density (temperature) correction to

our calibration.

Ramachandran (1968) presents a theory of the cup

anemometer in which the air density plays an essential role.

Applying his work to our particular cup assembly, we derived

a velocity correction based on absolute temperature,
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(1
O.235

(1

U2 = U1[1 2 + 0.588
3.2.1

Here U1 is the velocity we would predict after a calibra-

tion at temperature T1, and U2 is the true velocity when T2

is the ambient temperature. Equation 3.2.1 likewise cor-

rects standard deviations of cup velocities. The con

stants depend on cup size and response characteristics

and, conseuent1y, are appropriate only for our particu-

lar anemometer. This correction amounts to about a 4%

decrease when U1 is 3 rn/sec and about 6% if U1 is 1 rn/sec.

When we applied it to our cup speeds, results agreed much

better with the hot-films but at times were still somewhat

high.

3.3 THERMOCOUPLE CALIBRATION

The thermocouple calibration was a real nightmare. At

NARL we calibrated the thermocouples in the ethanol bath of

a Neslab Circulator (RTE-4). But back at OSU when we began

the data analysis, we found the average thermocouple tem-

peratures were seldom within 5°C of mercury thermometer

observations we made at the same time and location. The

thermocouples were for some unknown reason not adhering

to their own calibration. Hence, we began an odyssey in

search of temperature truth,
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Nobody's temperatures agreed with anybody else's. The

profile temperatures did not agree with the flux tower

temperatures, and neither agreed with our thermometer read-

ings. And when we tried to compare OSU and UW temperatures,

despair was rampant. Ultimately, we simply had to believe

our thermometer and base a corrected thermocouple calibra-

tion on the thermometer readings taken during the experi-

ment. This solution at least provided internal consistency

and improved the agreement between OSU and UW thermocouples

In the end, the absolute temperature is probably accurate

to within no better than a degree. But the shape of the

temperature profile itself is just as important: because

we used a single thermocouple to generate profiles, the

relative temperature difference between levels is good to

0.05°C.

The signal variances of the absolute thermocouples on

the profile and flux towers were consistent with each other

and with the variances of the differencing thermocouples.

Worry over the absolute temperature difference associated

with the differencing pair on the flux tower was unneces-

sary. We would use them only for correlation estimates of

the heat flux; so their correctly predicting temperature

fluctuations was all we asked.
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3.4. MISCELLANEOUS CALIBRATION

As explained in Chapter 2,we had two methods for deter

mining the height of the profiling arm. A calibration per-

formed at NARL shortly after our arrival gave us linear

calibration equations relating the arm height either to the

settings of the potentiometers on the height control panel

or to the voltage across the potentiometer on the tower it-

self. In contrast, someone had to measure the height of

the flux tower arm for each run.

The calibration of VCO'S and gain-offsets was checked

periodically during lulls in ALEX. We made a thorough

calibration of gain-offsets and rechecked the VCO's at the

conclusion of the experiment before shipping the equipment

home from NARL. Table 3.1 lists the center frequencies of

our VCO's and their high and low frequency bandedges.

Clearly, the associated discriminators must have the same

frequencies. The VCO output (a frequency) is linearly

related to the input voltage.

The wind vane was calibrated at OSU before we left for

the Arctic. Since it is merely a voltage divider, we could

easily check its calibration during the course of the

experiment.

3.5. DIGITIZATION

Our raw data from ALEX consisted primarily of 28 mag-

netic tapes, each the record of a 90 minute experimental
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Table 3.1. Center and bandedge frequencies of the VCO's
and Sonex discriminators.

Low Center High
Bandedge Frequency Bandedge

Channel (Hz) (Hz) (Hz)

1 370.0 400.0 430.0

2 518.0 560.0 602.0

3 675.2 730.0 784.8

4 888.0 960.0 1032.0

5 1202.5 1300.0 1397.5

6 1572.5 1700.0 .1827.5

7 2127.5 2300.0 2472.5

8 2775.0 3000.0 3225.0

9 3607.5 3900.0 4192.5

10 4995.0 5400.0 5805.0

11 6798.8 7350.0 7901.2

12 9712.5 10,500.0 11,287.5

Reference
Oscillator 13,412.5 14,500.0 15,587.5
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run. We digitized these data tapes in the School of

Oceanography on a PDP 11/05, storing the results on 2400

foot magnetic tapes. The PDP has a twelve bit word, a six

bit byte, and writes 800 bytes/inch on the magnetic tape.

Consequently, since we broke our data down into records of

1024 samples, the digital tape used 3.31 inches to store

one record of one signal, including an inter-record gap.

Our data fell into two logical groups, 'profile' sig-

nals and 'flux' signals. The profile signals were those

from which we would generate velocity, temperature, and

humidity profiles and so averaging would be our primary

analysis operation. From the flux signals we hoped to get

the heat and momentum fluxes directly: our method would

be spectral analysis. Therefore, the flux signals required

a higher digitization rate than the profile signals. Dur-

ing the digitization we constructed 'profile' files using

a digitization rate of 40 samples/sec and 'flux' files

with a rate of 250 samples/sec.

Because of the interruptions necessitated by our hay-

ing to thaw out the thermocouples, we rarely had more than

20 or 25 minutes of continuous, good data on an analog tape.

Therefore, in general, both flux and profile files con-

sisted of 15 to 25 minutes of real-time data. Because of

the different digitization rates, we could store about 15

profile files on a digital tape but only four or five flux

files. We finished the digitization with four profile



tapes containing 59 files and 17 flux tapes of 63 files.

The analog to digital hardware on the PDP 11 converts

an analog input signal between plus and minus ten volts

into an integer between -2048 and 2047. The output range

of the Sonex discriminators which were used to demodulate

the multiplexed signals is between plus and minus twelve

volts. And the FM tape recorder channels have a -2.5 volt

to 2.5 volt output range. Hence, to make full use of the

dynamic range of the A to D converter during the digitiza-

tion we amplified some signals and attenuated others. All

were low pass filtered. Both this amplitude conditioning

and the filtering were accomplished with electronic filters

having a -3 db point at the Nyquist frequency and a 40 db/

decade rolloff above that.

In Table 3.2 we list the particulars of our digitiza-

tion process. Sections Al, All, and Al2 of Appendix A make

a few more points relevant to digitization.

3.6. MOPE ON DATA CONDITIONING

We have already described the conditioning that pre-

liminary results indicated was necessary for cup speeds and

thermocouple temperatures. Our data preparation also in-

volved correcting the profiling hot-film velocities for

sampling errors.

In using one velocity sensor to establish wind pro-

files we could be misled by a gusty wind. For example, if
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Table 3.2. The 'profile' and 'flux' groupings, digitiza-
tion rates, and filter characteristics.

Digitization Filter
Rate Cut-off Filter

Signal (Hz) (Hz) Gain

PROFILE:

Velocity 40 20 0.75

Temperature 40 20 0.75

Temperature Difference 40 20 0.75

Humidity 40 20 0.75

Height 40 20 0.75

Cups 40 20 0.75

Wind Vane 40 20 0.75

FLUX:

Lower Ui 250 125 4

Lower tJ2 250 125 4

Temperature Difference 250 125 0.75

Upper Ui 250 125 0.75

Upper tJ2 250 125 0.75

Temperature 250 125 0.75
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after recording at one profile level for a minute, we moved

our velocity transducer to a lower level and the wind

decreased for that minute, we would see an artificially

steep gradient between the two levels. Paulson (1967)

suggests a method for reducng the error introduced by such

fluctuations using a fixed-level transducer to provide in-

formation for an entire experimental run. Our cup anemo-

meter was such a fixed transducer. The correction formula

we applied to the profile velocities was

a.

U. = U . - - (U - U .) 3.6.1
1 mi a c ci

C

Here Umi and are the measured roving probe velocity and

sample standard deviation at level i, respectively; U and

are the cup velocity and sample standard deviation for

the entire run; and U is the corrected velocity at level i

when is the average cup velocity while the profiling

probe is at level i.

Results from the wind vane also got some scrutiny. I

have discussed how the wind vane angle was a key to the

validity of crossed sensor velocities. For small angles,

these velocities should be reliable; but for deflections

larger than 10° they are doubtful. Therefore, when we

found a wind vane angle larger than 10°, we eliminated the

corresponding flux file from subsequent analysis. Thirteen

of the 63 flux files met this fate.
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Lastly, all profile temperature data was converted to

potential temperature by adding the adiabatic correction.

That is,

T =T + , 3.6.2
pot obs c

where z is the height; g is the acceleration of gravity,

982.7 cm/sec; and c is the specific heat of air, 1.006

joules gmboC'. This correction never amounted to more

than 0.03°C.
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4. THE INTEGRAL METHOD OF HEAT
FLUX ESTIMATION

The March wind is fretful, fretting the languid
waves into murmurs.

Rabindranath Tagore
Fruit-Gathering

4.1 MATHEMATICAL FOUNDATION

Our primary estimates of the heat flux from leads dur-

ing ALEX come from the 'integral' method. This is simply

an energy conservation approach. Upwind and downwind

temperature and velocity profiles are measured and the in-

crease in heat energy in the air downwind over that upwind

is calculated. That increase must be supplied by the lead

and so establishes its heat flux.

Assume we have a linear lead with the mean wind velo-

city perpendicular to its long dimension. The air flow

over the lead is thus two-dimensional. Suppose further

that the flow upwind is in equilibrium with the upwind ice

(horizontal homogeneity) and that both upwind and downwind

flows are in steady state. We let the positive x-axis be

in the direction of the mean wind: z is positive upward.

Define ó -- a function of x -- and F as the thermal boundary

layer height and fetch, respectively.

We can summarize upwind and downwind flows.



Upwind:

4. 0

x'

v,w= 0

is constant with height
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4.1.1

Here the t, x, and y subscripts indicate partial deriva-

tives with respect to time and x and z coordinates. Capi-

tals are time-averaged variables. Lower case u, w, and t

will be fluctuations from the average longitudinal and

vertical velocity and temperature, respectively.

Downwind:

+ 0

0

V = 0
4.1.2

T(ô) = T()

=

T(z) and T(z) are, respectively, the downwind and upwind

temperatures.

Over the lead but within the thermal boundary layer

the equations for continuity and temperature diffusion are,

thus,
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+ 3W = 0 , 4.1.3

UT + WaZT = (-ut + DXT) + + DZT)P 4.1.4

where D is the thermal diffusivity. We do not want

to work with all these remaining terms, so consider a scale

analysis to establish which are the most important. Clear-

ly, x and z scales should be F and , respectively. If U

and W are the horizontal and vertical velocity scales,

equation 4.1.3 predicts

4.1.5

We are not yet sure just how to scale t and t, though we

have the intuition that over the lead will be larger

than t. The temperature scale should be some fraction of

the water-ice temperature difference:

or

T c[T - T(0)] = AT . 4.1.6

Now summarize 4.1.4 in terms of these scales,

UAT Uô AT 1 - DAT 1 DAT
+ -. (ut + -p--) + .-(wt + ---) , 4.1.7

1 + 1 + R1P1 + + R1P1(-)2 . 4.1.8

Here is the length (fetch) Reynolds number and P is the

Prandtl number. For typical conditions we encountered
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during the experiment,

R
hF (100 cm/see) (1000 cm) io6 419

X ') 0.13 cm2/sec

V 0.13
D 0.18

0 4.1.10

We have already demonstrated in Chapter 2 that is of

order one-tenth of F. Therefore, the second and fourth

terms on the right side of 4.1.8 are negligible compared

to the terms on the left side.

From Badgley's (1966) and Shreffler's (1975) esti-

mates, we expect to be roughly 20 cm sec1°C1. Hence,

20
(100) (5)

= 0.04 . 4.1.11

Since this term is also multiplied by F/d, it is of the

same order as the terms on the left side of 4.1.8 and must

be retained. But /UT in 4.1.8 is 10 to 100 times

smaller than one and so we feel justified in neglecting

it. Equation 4.1.4 thus reduces for our prcblem to

UaT + WZT 0 4.1.12

Because the upwind temperature, T(z) is not a func-

tion of x, we can write 4.1.12 as

U3 CT T) + W (T T) + W T = wt , 4.1.13
x 1 Z 1 Zi Z

or



(T-T)U + [W(T-T1)) (T_T1)aW

+ W T. = - E . 4.1.14
z1_ z

Notice that the second and fourth term here add to zero by

virtue of 4.1.3; so

[tT(TT)] + [W(T_T)] + WZTi 4.1.15

The first two terms in 4.1.15 are of order

tThT (100) = 0 5 4.1.16
1000

The term on the right is about the same size,

wt 20
-r = 0.2. 4.1.17

WZTi is an order of magnitude smaller than these: Lindsay

(1976) shows that upwind temperature slopes were usually no

more than 0.2 °C/m. Therefore,

W T
U5

T
(100) (100) (0.2 0 02 4 18

z i F z 1 1000 100

Consequently, we may write 4.1.15 as

[U(T-T1)] + a[w(T_T1)] . 4.1.19

Let us integrate 4.1.19 over z from z = 0 to the top

of the thermal boundary layer, z
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(S (5 6

I [U(T-T)1dz + f [W(T-T)]dz = -f dz . 4.1.20
0 0 0

Again scale analysis suggests we can write the partial

derivatives in 4.1.20 as total differentials. And using

Leibnitz's rule we rearrange the first term. The result is

6 6

U(T-T1)dz [u(T-T±)I6(S+f d[W(T-T1)]

6=- d. 4.1.21

The boundary layer height, 6, is defined as the height

where the temperature flux, wt, returns to its (constant)

upwind value and where the temperature profile over the

lead merges back into the upwind temperature profile. Thus,

the second term on the left in 4.1.21 is zero. The dif-

ferentials integrate quickly and we get

fU(T-T)dz + [W(T-T= -: 4.1.22

Again T-T at z = 6 is zero and W at z = 0 must also be

zero: the second term on the left above has consequently

integrated to zero. We are left with

6

fU(T-T1)dz . 4.1.23

Lastly, integrate 4.1.23 over x from the upwind edge

of the lead to a fetch F,
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F F

f dx[f U(T-T)dz] = f E)dx . 4.1.24

0 0 0

In the lefthand term, the z integration removes the z

dependence of the bracketed quantity; hence, the x inte-

grand is a total differential,

F F
f d[/ U(T-T)dz] = f (E - E)dx . 4.1.25
0 0 0

This integrates immediately to

F

I U(F,z) [T(F,z) - T(z)]dz = 1 - )dx. 4.1.26

If we multiply both sides by p c evaluated at the surface

temperature of the lead, we arrive at the equation which is

the foundation of the integral method for heat flux esti-

mation;

cS(F) F
p cf U(F,z) [T(Fz)-T(z)]dz =f (H0 H1)dx , 4.1.27

where

H p ct . 4.1.28

Notice we are not quite rigorous in saying H P cWt Is

the upwind heat flux since p c is evaluated at the water

temperature rather than the upwind temperature. However,

this simplification makes negligible difference because wt1
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is small compared to and the difference between p

upwind and downwind is only a few percent.

The righthand side of 4.l27 is the principle goal o

this research -- it is the sensible heat transferred to the

atmosphere from the lead. We have related it to the verti-

cally-integrated product of downwind velocity and the dif-

ference between downwind and upwind temperatures -- hence,

the name 'integral method'. Appendix E contains an alterna-

tive derivation of 4.1.27 based on the energy and mass

budgets.

does not depend on x and Shreffler (1975) has

demonstrated that H0 depends only slightly cn x. Therefore,

from 4.1.27 we can approximate the average surface heat flux

(per unit area) by

cS

p cf U(T-T)dz H H . 4.1.29

Equations 41.27 and 4.1.29 should now make our experi-

mental procedure clear. By measuring velocity and tempera-

ture profiles through the internal thermal boundary layer

and knowing the upwind temperature profile, it is possible

to determine the heat energy a lead loses to the atmosphere.

These profile measurements must extend through the top of the

boundary layer since the IBL height, , is a limit of

integration.

While the profile sensors were cycling, up and down

through the boundary layer, sensors on our flux tower were

measuring velocity and temperature fluctuations at two



fixed heights for a direct determination of the sensible

heat fluxes at those heights. Therefore, let us recon-

sider 4.1.19 with the thought of comparing the integral

heat flux estimates with the direct measurementS of p cE

at height z'.

Integrate 4.1.19 from z = 0 to z =

Zx[U(T_Ti)]dz
+ = 1 4.1.30

Again the second and third terms are perfect differentials

and we apply Leibnitz' rule to the first term,

z' ZI

U(T-T1)dz [U(T-T1) + f d[W(T-T1)]

z,

=-f dE
0

4.1.31

z' is independent of x so the second term on the left here

is zero. Hence,

X10UTTidZ + [W(T-T1) 4.1.32

As before, integrate over x from 0 to F,

F z' F F

f d[f U(T_T)dz] + f [W(T-T) dx = -f (t - wt0)dx.
0 0 0 0 Z'

4.1.33

This yields
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F

f U(F,z) [T(F,z) - T(z)]dz + f [W(T-T) dx
0 0

F

-f ( 0)dx . 4.1.34
0 Z'

We can evaluate the first term in 4.1.34 from our pro-

file measurements. The integral method gives us wt0. And

is what our flux sensors are seeing. The second term
z,

on the left of 4.1.34 is beyond our capabilities however;

but we can say something of its behavior. T-T is always

positive that's essential in our definition of the

thermal boundary layer. Now what does W(X,Z) do?

The roughness parameter of sea ice, Z0, is usually

found to be in the range 0.01 cm to 0.02 cm (tJntersteiner

and Badgley, 1965; Ling and Untersteiner, 1974). Linday's

(1976) upwind values are also generally of this size. Our

estimates of over leads, on the other hand, are for the

most part larger than 0.02 cm. In fact, a run by run com-

parison of downwind and upwind z0's shows that the downwind

is almost always larger than z0 upwind (see Appendix C

for the tabulated values). We will say more about our

values in Chapter 5; but here we simply want to point out

that the flow is feeling a change in surface roughness.

Consequently, the thermal boundary layer is mixed with an

internal momentum boundary layer.

Because the flow undergoes a transition from a smooth

to a (relatively) rough surface, the horizontal velocity
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near the surface would decrease if there were no surface

temperature change (e.g., Bradley, l968) On the other

hand, if there were no roughness change, just the surface

temperature step, the flow would accelerate (Taylor, 1970;

Shreffler, 1975). Superimposing the two effects compli-

cates matters. But it appears that if the temperature step

is large enough and the roughness transition small enough,

the accelerative profile will ultimately develop at some

height above the surface.

Here, since the vertical velocity upwind is zero, W

must go negative to assure continuity (see quation 4.1.3);

it will, however, remain small in magnitude because of the

relative thinness of the IBL. Abcve the boundary layer,

the longitudinal velocity profile will rejoin the upwind

profile and W will return to zero. In summary, W essen-

tially remains negative -- or at least non-positive --

throughout the layer. It seems reasonable to conclude that

W 0 in the thermal boundary layer0

With this insight equation 4.134 becomes

-f - 0)dx , 4.1.35

or

0
1 fZU(TT)dz 4.1.36
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This expression finally relates our direct flux measure-

ments to the integral results and sets a lower bound for

comparisons.

4.2. THE BOUNDARY LAYER PROFILES

In Figures 4.1 to 4.4 we have plotted, in groups of

similar fetch, 76 velocity and temperature profiles made

during ALEX. Averaging time for these profiles is general-

ly 15 to 25 minutes. We have omitted plotting cup anemom-

eter data since. it seemed to give the velocity profiles an

unreal curvature. Figure 4.4 contains profiles taken over

a real lead: the others are from artificial leads. In

Appendix B we tabulate our profile measurements.

During ALEX the water temperature was always measured

to be between -2.0°C and -2.4°C; therefore, the air tem-

perature exerts primary control over the slope of the tem-

perature profile. The reader may remark that these water

temperatures are unusually cold. They indeed are. But

most of the ALEX runs were on Elson Lagoon, which is a

shallow, isolated body. Kelley (1974) reports that the

salinity of the water he sampled in the lagoon during ALEX

always exceeded 42°/ . The temperatu±es measured are com-

patible with this salinity. The -2.1°C surface tempera-

tures are associated with the natural lead we observed.

Considering that the accuracy of all our surface teTrpera-

ture measurements is ±0.2°C, this is not a surprisingly low
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temperature either when we recall the salt flux at the sur-

face of leads due to the evaporation and ice formation.

The wind speeds are generally low and the velocity

profiles occasionally erratic. However, in the mid-region

of the profiles, especially at the longer fetches, the in-

creased turbulent mixing driven by the heat flux is

apparently accelerating the flow from its upwind profile.

But often the lowest profile point turns to slower speeds.

This may be an indication that increased surface roughness

is, indeed, sloing the flow in the vicinity of the sur-

face, partially offsetting the tendency for the heat flux

to accelerate it.

Lindsay's (1976) upwind observations give us the

ambient stability. Upwind conditions are unstable for the

profiles in Figure 4.2 and mostly stable for the remaining

profiles pictured. If our profile observations are reach-

ing the top of the boundary layer, we should be able to

read these stabilities at the top of the temperature pro-

files. But at the longest fetches particularly, the upwind

stability is not showing up in the temperature profiles.

That is, we have not found the top of the boundary layer;

for these profiles the integral method of heat flux

estimation is inapplicable.

From studying these profiles it is apparent that the

thermal boundary layer height, 6, depends not only on

fetch but also on wind speed. At lower wind speeds the



boundary layer is higher or not apparent. When we try to

analyze the IBL height in Chapter 6, this effect will

manifest as a dependence of on local stability.

4.3. A DEMONSTRATION OF THE INTEGRAL METHOD

Chapter 5 contains a figure summarizing the heat

fluxes we calculate using the integral method and Appendix

C tabulates these results. Here we would like to take

four representative profile sets -- two with unstable up-

wind conditions and two with stable conditions -- and

demonstrate the use of the integral method. Figure 4.5

shows the profiles we will consider. Do not be misled

into thinking that the upwind and downwind temperature pro-

files agreed from the start as well as they do in Figure

4.5. In Chapter 3 we discussed thermocouple calibration

problems but also emphasized the importance of the profile

shapes. To join the temperature profiles in Figure 4.5,

we have matched upwind and downwind profile shapes above

the boundary layer, taking the downwind temperature as the

reference temperature. The goodness in fit at the top of

the profiles confirms the validity of this method.

The z integration in equation 4.1.27 is from zero to

the top of the boundary layer. Since operationally we per-

form the integration by connecting velocity and temperature

points with logarithmic arcs, z = o becomes z0, Condi-

tions at z0 are U = 0 and T = Tw (the water temperature).
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For purposes of the integration, we related z0 to the fric-

tion velocity, u, through

z ,
4.3.1

0

where is the kinematic viscosity. This gave roughness

lengths of about 0.02 cm. We will shcw in the next chapter

that 4.3.1 is really not the proper form forz0 though it

gives values of the correct order. Fortunately,Z0 does

not have much effect on the integration: z0 may range over

three orders of magnitude while the profile integral

changes by less than 10%.

For the specific heat, which 4.1.27 requires, we

consult National Bureau of Standards Circular 564 (Hilsen-

rath, et al., 1955). Its value at the water temperatures

we encountered is 1.006 joules gm1°C1. The air density,

p, at the surface of the lead is

p = 1.2929 x 103gm/cm3 (273.16) (.2.)
, 4.3.2

where p is the atmospheric pressure in millimeters of

mercury.

Table 4.1 is a tabulation of the results of the

integral method applied to the four data sets of Figure

4.5. We have separated the integration into segments to

show how different height regions contribute to the total.

The 'Total Flux' refers to equation 4.1.27. The 'Average
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Table 4.1. Integral heat flux estimates from the four pro-
file sets in Figure 4.5. The arrow shows the
50% point of the integration.

RUN 31.0 81.1 251.0 281.0

Fetch (m) 8.5 6.8 20.0 18.9

Upwind unstable stable stable unstable

6 (cm) 164 165 248 213

Height Integral Contribution
(cm) (w/cm)

0-5 8.63 7.34 6.06 6.06

5-10 4.86 4.05 3.78 4.00

10-20 5.41 3.72 4.13 4.18

20-40 5.76 4.62 5.86 4.73

40-80 4.93 4.00 8.20 4.68

80-150 1.78 1.72 7.15 2.73

150+ 0.10 0.11 2.56 0.74

Total Flux
(w/crn) 31.5 25.6 37.7 27.1

Average Flux
(mw/cm2) 37.0 37.6 18.9 14.4
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Flux' is the fetch-averaged quantity, equation 4.1.29.

It is important here to recognize how close to the

surface things happen in this transfer process. The arrow

in each tlntegral Contribution' column of Figure 4.5 marks

the 50% point of the integration. In other wcrds,

the portions of the profiles above and below the arrow con-

tribute equal amounts to the integration in 4.1.27. This

means then -- because of 4.1.36 -- that the average verti-

cal heat flux is reduced to one-half its surface value in

the height region denoted by the arrow. Compare these

heights with the boundary layer height, . They are typi-

cally . Most of the escaping heat is not rising very

far before it is carried away from the lead.

4.4. COMPARISON WITH THE DIRECT MEASUREMENTS

Here would be the perfect place to present our direct

measurements of pc, call on equation 4.1.36, and so com-

pare profile and direct estimates of the sensible heat flux.

Our original attempt at that comparison was an abject

failure: the direct estimates were 10% to 50%

what they should have been on the basis of 4.1.36.

On plotting temperature spectra and the cospectra of wt we

saw what was wrong. These spectra seldom contained much

energy beyond the peak frequency since riming of the thermo-

couples limited their frequency response. Thus, the direct

determination badly underestimated the value of wt.
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In an attempt to mathematically correct for the

attenuation of the high frequency temperature signals, we

appealed to the spectral and cospectral shapes reported by

Panofsky and Mares (1968) and Kaimal,Wyngaard, Izumi, and

Cot (1972). These suggest that the cospectra of uw and wt

have coincident peaks and that in the inertial subrange

COwt
2.9 , 4.4.1

Couw

where Co is the cospectra. Since our uw cospectra seem

very good and because we generally reach the peak of the wt

cospectrum, 4.4.1 gives us a method for correcting our

direct estimates of . Basically, we assume that at the

frequency of the peak

Cowt

wt=uwCo
4.4.2

In the inertial subrange Co is estimated from 4.4.1 using

the value of from 4.4.2. An interpolation establishes

between the peak and the presumed start of the

inertial subrange. Finally, we integrate Co and get a

revised estimate of .

Admittedly there's a lot of handwaving going on here.

But the original wt cospectra were so deficient in spectral

energy at the higher frequencies (Figure 4.6) that we gave

up hope of a confident comparison between direct and pro-

file heat flux estimates. Hence, any reasonable method of
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Figure 4.6. A measured and corrected wt cospectrum 11 cm
above the surface. The fetch is 7.2 m.
Measured value of P Cp is 5.0 mw/cm2;
corrected value is 11.9 mw/cm2; integral
estimate (equation 4.1.36) is 12.0 mw/cm2.



76

putting the spectral energy back is justifiable. We will

be satisfied with ballpark harmony. And this correction

method gave us that. In fact, the corrected estimates of

p agreed with the profile estimates in the sense of

equation 4.1.36 about as well as we could hope (for that

comparison, see Appendix D). We are, consequently,

reassured that the integral method is yielding proper

values of the sensible heat flux from Arctic leads.

4.5. LATENT HEAT FLUX

As explained earlier, the original plan for ALEX

included provisions for determining the latent heat flux

from leads in addition to the sensible heat flux. Elec-

tronics problems pretty much thwarted these plans. How-

ever, we did salvage five humidity profiles of questionable

quality (Figure 4.7) -- questionable because we have no

other humidity observations with which to compare them. We

compute the latent heat fluxes associated with these pro-

files here.

The integral method is again our approach. For our

purposes, humidity behaves just like temperature: we can,

thus, immediately reinterpret 4.1.27 and 4.1.29 in terms

of the latent heat flux. These become, respectively,
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and

F

p Lv! [Q(F,z)-Q(z)]dz f (HL HL)dx 4.5.1
0 0 0

p fQ(F,z)_Q(z)]dz HL HL. . 4.5.2

Here L is the latent heat of vaporization; the height

of the moisture boundary layer; Q, the average specific

humidity; HL0, the surface latent heat flux; and HL, the

upwind latent heat flux. Clearly,

HL p LWq , 4.5.3

where q is the fluctuating specific humidity.

We have not measured upwind humidity profiles and,

hence, will assume the upwind profile is constant with

height and has the value it has at the top of the boundary

layer. This assumption implies that HL is zero. These

necessities are not detrimental to our estimates because the

severe Arctic cold and the absence of upwind moisture

sources ensure that the upwind specific humidity will be an

order of magnitude smaller than the specific humidity at the

surface of the lead. Therefore, any upwind humidity struc-

ture will have no significant effect on the profile inte-

gration.

Our hygristor sensed relative humidity. To convert

these observations into the specific humidity which 4.5.2

requires is an involved algebraic process. It's clearer if

4
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we work backwards. The specific humidity, Q (units of gm/

grn),is related to the vapor pressure, e, thusly (Kraus,

1971)

m ewmp
a

, 4.5.4m -m e
a w
ma p

where m and ma are the molecular weights of water and air,

respectively, and p is the atmospheric pressure. The vapor

pressure, e, comes from the relative humidity, r, through

e = r esat

where esat is the saturation vapor pressure. This satura-

tion vapor pressure depends on the air temperature and is

tabulated in the Smithsonian Meteorological Tables (List,

1971)

We assume the air is saturated with vapor at the sur-

face of the lead and so assign a specific humidity at z0

dictated by the water temperature. However, Roll (1965)

points out that the saturation vapor pressure of air over

salt water, esw, is less than the saturation vapor pressure

over distilled water, He gives

esw = edW(l - 0.000537 S) , 4.5.6
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in which S is the salinity in parts per thousand. There-

fore, to assign a surface humidity, we require an estimate

of the salinity. Assuming the water in the lead is at its

freezing temperature, Tfl and that the salinity has defined

that freezing point, we find the surface salinity from the

measured water temperature with (Neumann and Pierson, 1966)

Tf = -0.003 - 0.0527 S - 0.00004 S2 . 4.5.7

Finally, we choose a latent heat of vaporization con-

sistent with the surface temperature using (Kraus, 1971)

L = 2500.3 - 2.344 T , 4.5.8

where is in joules/gm when T is in °C.

When all these conversions have been made, we apply

4.5.2 to calculate the latent heat flux. Table 4.2 compares

the latent heat fluxes for our five runs with the corre-

sponding sensible heat fluxes. The numbers seem to be of

the proper size: the latent heat flux accounts for 1/6 to

1/3 of the total turbulent heat flux from the leads we ob-

served. Shreffler (1975) suggests a value of 1/4 is typi-

cal. Badgley (1966) finds the latent heat flux to be more

like 1/10 of the total turbulent flux (see Table 1.2).
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Table 4.2. A comparison of sensible and latent heat f1uxes
All these leads are artificial.

T
Average Flux

Fetch ice (mw/cm2)
Run Cm) (C0) Sensible Latent

272.0 20.0 -29.2 15.42 3.25

273,1 20.0 -29.7 15.32 3.13

273.2 20.0 -29.8 15.49 2.84

282.0 18.9 -21.0 13.04 7.06

283.0 18.9 -20.8 13.17 7.08



5. THE FLUX-GRADIENT METHOD OF
FLUX ESTIMATION

But lo, a stir is in the air!
The wave -- there is a movement there!

Edgar Allan Poe
"The City in the Sea"

Because our.direct measurements of the heat flux

proved unreliable, we sought an alternative method of esti-

mating heat and momentum fluxes for the purposes of check-

ing the quality of the integral method. The empirical flux-

gradient equations (Businger, et al., 1971; Dyer, 1974) re-

late velocity and temperature profile gradients in a con-

stant flux layer to corresponding momentum and heat fluxes.

This restriction to a constant flux layer presents difficul-

ties, because, obviously, the region above a lead is not a

constant flux layer. But perhaps far enough downwind from

the leading edge of the lead or very near the surface, the

flow will be in approximate equilibrium with the new sur-

face (Bradley, 1968; Rao, et al., 1974). We proceed on this

assumption and try to keep it valid by using only the lowest

two profile points and the surface conditions. That is, we

apply the flux-gradient technique to three-point profiles in

which none of the points is ever more than 31 cm above the

surface. And these profiles are always at least 6.8 m from

the front edge of the lead.
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5.1. THE FLUX-GRADIENT EQUATIONS AND TECHNIQUE

There are two sets of flux-gradient relations: one

for unstable conditions, another for stable conditions.

Since the flow is always unstable over the lead we need not

bother discussing equations for a stable regime.

The essence of the flux-gradient approach is in the

definition of nondimensional velocity and temperature

gradients, m and
h'

respectively,

where

= U , 5.1.1
m u* z

= T , 5.1.2

k = 0.4, von Krmn's constant

u* (-.)2, the friction velocity

T the surface stress

wt
* ku

the surface temperature flux

For unstable conditions, m and are (Paulson, 1970; Dyer,

1974)

= (1 - 16 ,
5.1.3

= (1 - 16 , 5.1.4

where z is the height and L is the Monin-Obukhov length,
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3 2
- - I = I _*._ 5.1.5

gkE gkt

Here is a temperature representative of the layer and g

is the acceleration of gravity.

Paulson (1970) has demonstrated how 5.1.1 and 5.1.2

may be integrated since and are known. The integra-

tions yield

U(z) = [in -
1"m

5.1.6

T(z) = T + t[ln ' 5.1.7

with

= 2 1nI2] + ln[1] 2 arctan x + 5.1.8

1+x2
= 2 ln[

2

and

5.1.9

x = (1 - 16 . 5.1.10

In 5.1.7, ZH is the roughness length for temperature, which

is not necessarily equal to (Garratt and Hicks, 1975).

Having equations 5.1.6 to 5.1.10, the flux-gradient

2
technique for estimating the momentum and heat fluxes, u,

and kut, respectively, is an iterative procedure:

1. Take = 0. Fit the velocity data, U(z) and in z, and

the temperature data, T(z) and in z, with least



squares lines. From 5.1.6 and 5.1.7 get zeroth order

estimates of u and t.

2. Use u and t to calculate L. Find for each height

and subsequently i() and

3. According to 5.1.6 and 5.1.7, U and T are linear func-

tions of in z m and in z
h'

respectively. So

fit the data in this form with least squares 1ines.

4. This least squares linear regression yields new values

of us,, and t.

5. Use u* and t, in 5.1.6 and 5.1.7 to predict U(z) and

T(z) and check how these predictions differ from the

data by calculating the sums of squared deviations for

both data sets.

6. If these two sums are still larger than some desired

limits but smaller than for the previous iteration,

return to Step 2 and iterate again.

7a. If the sums of squared deviations have become accept-

ably small, the current u and t,, will predict the

fluxes.

7b. if the sums have begun increasing, the u and t from

the previous iteration best reflect the fluxes.

5.2. The z0 CONTENTION

Since our plan for using the flux-gradient technique

is to fit only two profile points and assign z0 (where U0)

and ZH (where T=T), this choice of and ZH is critical.



The simplest model would be to make and ZH constant and,

henceforth, forget about them. But there is compelling evi-

dence that over water z0, at least, depends on the wind

speed (e.g., Kitaiorodskii and Volkov, 1965; Smith and

Banke, 1975).

There are basically two parameterizations for the

dependence of z0 on wind speed. The first is for an

'aerodynamically smooth' flow (e.g., Tennekes and Lumley,

1972; Csanady, 1974)

-2 v
z =e -. 5.2.1
0

The second applies at higher wind speeds where the flow will

be 'aerodynamically rough'. This is the Charnock relation

(Charnock 1955, 1958; Wu, 1969)

zo = $ 9
5.2.2

where C is a supposed universal constant. The aerodynamic

character of the flow is usually determined by its rough-

ness Reynolds number,

u z0
R 5.2.3

There are three aerodynamic regions (Businger, 1973):

smooth: R 0.13

transition: 2.5 > R > 0.13 5.2.4

rough: R* 2.5



Relations 5.2.1 and 5.2.2 are distinctly different.

For the smooth case the roughness length decreases with in-

creasing wind speed: for Charnockts relation it increases.

Hence, a close examination of our data should make the

choice between 5.2.1 and 5.2.2 easy.

In Figure 5.1 we show the correlation between our flux
_1

tower measurements of (-uw)
2 and velocity -- that flux

tower average velocity logarithmically extrapolated to 50

cm. These measurements were always made within 42 cm of

the surface and usually within 20 cm. (See Appendix D for

a tabulation of the data.) The line in the figure is

(-) = 0.0643 U0.5 - 0.77 , 5.2.5

which gives (-i) in cm/sec for U05 in cm/sec.

Some might be concerned about the accuracy of a

logarithmic extrapolation in such an unstable layer. Brad-

ley's (1972) work implies that so near the surface it will

be valid even under pronounced instability. Nevertheless,

we desire further assurance since much of what we do later

is based on 5.2.5. From our profile data we can inter-

polate between velocity measurements above and below 50 cm

and so make a very confident estimate of U. When (-uw)2

is plotted against this profile velocity, U0
5

the
.p

resultant correlation is

= 0.0707 U05 - 1.59 . 5.2.6
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Figure 5.1. Flux tower measurements of uw and velocity. U0 is the velocity extrap-
olated to 50 cm. The line is equation 5.2.5.



There was more scatter in this plot than in Figure 5.1, but

the results of the two agree: the multiplicative constants

in 5.2.5 and 5.2.6 are close and the additive constants are

definitely negative. In other words, the extrapolation

which led to 5.2.5 seems to introduce no significant error

despite the instability of the layer. We prefer 5.2.5 to

5.2.6 because of the good correlation in Figure 5.1 and the

fact that the profile data was not always simultaneous with

the flux data.

From Taylor's (1970) and Shreffler's (1975) numerical

experiments we infer that in boundary layers developing over

heated surfaces, should be constant to within five per-

cent for heights of at least 20 cm. Therefore, we identify
_1

(-uw)2 with u and interpret 5.2.5 as a drag relation. By

assuming a logarithmic profile to 10 meters, we compute a

drag coefficient referenced to this height and compare it

with other reported coefficients. A mid-range value of 250

cm/sec for U05 converts 5.2.5 to

C10 (U*)2 = 1.76 x 10 , 5.2.7
10

which is roughly 30% higher than most observations

of an open water drag coefficient (of. Miyake,

et al., l970a; Sheppard, et al., 1972; Smith and Banke,

1975). This disparity is a very good indication of the in-

tense mixing in the IBL initiated by the vertical heat flux.

The multiplicative constant in 5.2.5 is, however, in



remarkable agreement with a result quoted by Hicks (1976)

for grassland,

u = 0.0632 U0.5 + 2.22 . 5.2.8

Consider what the result 5.2.5 implies concerning z0.

If -- as according to Bradley (1972) -- near the surface the

logarithmic velocity law,

5.2.9
k

is always approximately true, we have from 5.2.5

k U05 = (a U05 + b) in 5.2.10

z0(cm) = 50 ea0.5 . 5.2.11

Since b is non-zero, z0 must be a function of wind speed.

We can find out more by differentiating z0 with respect to

U0

-k

d Z = 50 ea/'U0.3 -bk
2

5.2.12
0.5 (a U05+b)

Because b is negative, the quantity in brackets is always

positive in the wind speed range for which 5.2.5 is valid.

Thus, our observations indicate that z0 increases with in-

creasing wind speed (increasing uk). The balance swings

toward Charnock's relation.



The obvious thing to do now is search the literature

for an acceptable value of the constant C in 5.2.2. Table

5.1 summarizes some of the charnock constants we find.

Seemingly our search has failed to uncover a universally

accepted value for C; the tabulated constants range over an

order of magnitude. Kitaigorodskii and Volkov (1965), in

fact, present a forceful exposition of how nonuniversal

the Charnock constant apparently is.

But let us experiment with two values.. .Panerican

investigators are fairly closely grouped about C = 0.012.

On the other hand, the Russians prefer C = 0.035 (Monin,

1970). The z0 values that each of these constants predict

in the u range of our observations are very small -- 0.01

cm is an upper limit with 0.002 cm a lower bound. But we

expect z0 to be around 0.02 cm since that is a typical

value for flows over water.

On calculating roughness Reynolds numbers using z0 =

0.02 cm we discover the problem. R is always smaller

than five and most often has values characteristic of flows

in the transition region between aerodynamically smooth and

rough. Phillips (1969) casts doubts on the validity, of the

Charnock relation in transitional flows and we recall that

most investigators have verified it only at high wind

speeds. In other words, our data seem to fall in the un-

explored area where neither the smooth flow parameteriza-

tion nor the Charnock relation correctly models z0 Hence,

ri



Table 5.1. Some reported values of Charnock's constant.

Source C Comments

Charnock (1955) 0.0067 Small reservoir and labora-
tory channel.

Charnock (1958) 0.0123

Kitaigorodskii and 0.035 Over 1000 observations from
Volkov (1965) several data sets ranging

from laboratory to open
ocean.

Hidy and Plate 0.011 Laboratory results.
(1966) u > 20 cm/sec.

Wu (1968) 0.0112 Laboratory study. Confirm
at high wind speeds.

Wu (1969) 0.0156 Compilation of laboratory
and oceanic observations.

Laykhtman and 0.074 Quoted by Kitaigorodskii
Snopkov (1969)

Hicks (1972) 0.016 Bass Strait (off Australia)
and Lake Michigan.

Hsu (1974) Dominant wave height and
gT period.

Smith and Banke 0.0144 Seaward of a sandspit.
(1975)
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with these two baselines and our data as a map, let us sur-

vey this area.

The integral method has given us an estimate of

and our eddy correlation measurements yield - u.

Hence, is it possible to select reasonable values for

and ZH which when plugged into the flux-gradient equations

result in momentum and heat flux estimates compatible with

these? We first tried a range of constant z0ts and ZH'5.

But no constant value for the two gave consistent estimates

over the entire velocity range of our data. Therefore, we

at last settled on the scheme

z0 = 0.00014 U0.5 - 0.005 ,

5.2.13

ZH 0.03 cm,

where z0 is in centimeters for U05 in cm/sec.

In the next section we will show graphically how well

these formulations of the roughness lengths worked in the

flux-gradient technique. But herewe still have a few

things to report concerning our trek in the transition

region.

Some might take exception with our choice of ZH = 0.03

cm. It has been suggested that ZH is inversely proportional

to u (Garratt and Hicks, 1973; Hicks, 1975),

z =k-- , 5.2.14
H u,
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where, as before, k is von Krmn's constant and D is the

thermal diffusivity. But there is nothing in our data

which implies this is a better model of temperature rough-

ness length than the one we have chosen. So we stay with

simplicity.

The relation between z0 and U05 in 5.2.13 is

admittedly not very aesthetic. Let us use 5.2.5, identify-

ing with ui,, to rewrite it:

z0 = 2.18 x l0 u* - 3.32 x l0 . 5.2.15

This is a little better: is a linear function of u.

However, we discover that in the u region for which 5.2.13

was originally confirmed, 5.2.15 is well-represented by

= 0.4
(V)l/3

u . 5.2.16

This is a new parameterization for z0 which we suggest is

valid for flows in or slightly beyond the transition region

where neither 5.2.1 nor 5.2.2 applies.

Figure 5.2 summarizes the various relations between

and u* we have been discussing and offers heuristic sup-

port for 5.2.16. For aerodynamically smooth flow, z0 is

proportional to v/ut: for fully rough flows it is propor-

tional to u/g. Thus, intuitively it seems there should be

a region between the two regimes in which z0 is constant or

where it depends linearly on u. The fact that (v/g2)3
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can give the linear dependence correct dimensions and the

proper order of magnitude supports this contention.

The smooth flow parameterization implies that the

surface presents no inherent roughness elements to the flow

and, therefore, the molecular viscosity must dictate a

length scale. On the other hand, Charnock's formulation is

interpreted to mean that gravity waves determine the rough-

ness length (Phillips, 1969). Wu (1968) suggests there

might also then be a wind speed region in which capillary

waves act as the rcughness elements. For such flows the

surface tension, a', would be important in parameterizing

z0. Because air flows we observed were always fetch-

limited, capillary waves, indeed, might be defining z0.

Therefore, we rewrite 5.2.16 in a form which contains a as

a parameter,

z0 = 0.12
a'

)4u* . 5.2.17

Here is the water density.

We conclude this section by emphasizing that

relations 5.2.13, 5.2.16, and 5.2.17 are as yet strictly

empirical results, though the parameters in 5.2.16 and

5.2.17 are physically suggestive. The parameter groupings

have been examined under no other conditions than the ones

described in this thesis; they may not prove universal when

tested at other temperatures.
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5.3. FLUX-GRADIENT RESULTS

A comparison of our flux-gradient estimates of heat

and momentum fluxes with our other measurements makes the

tedium of the last section satisfying.

In Figure 5.3 we have plotted the flux-gradient esti-

mates of surface heat flux against the integral estimates

of the same quantity. The results lie fairly uniformly

about the 1:1 line. There does seem to be a systematic

discrepancy at longer fetches; but the integral method is

as likely at fault as the flux-gradient method. For the

longer fetches upwind conditions were almost always stable.

Matching a stable upwind temperature profile with the down-

wind profile was much trickier than matching an unstable

one. And the fact that at longer fetches the thermal

boundary layer is higher adds further uncertainty to the

integral results. Therefore, we have no justification for

attributing the scatter in Figure 5.3 solely to the flux-

gradient technique. Rather, we are pleased how Figure 5.3

indicates that, on the average, flux-gradient and integral

estimates would predict the same flux.

Figure 5.4 compares the fluxgradient estimate of u

with our direct measurement of (-). The two generally

agree to within six percent though there is a systematic

difference at higher u. We have never intended to imply

that over a lead measured at a height of 20 cm should

equal u. We do expect it to be within a few percent
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though, since - was measured so near the surface. But

our observations are not detailed enough to judge the

effects of different fetches and wind speeds. Therefore,

it's not clear where responsibility for the systematic dif-

ferences in Figure 5.4 lies. (_)2 might not necessarily

be u; and U*F_G might not be u either, because the

appropriateness of the flux-gradient technique likely has

a fetch dependence or, equivalently, a velocity dependence.

The Monin-Obukhov lengths, L, which are incidental in

the flux-gradient estimation procedure, offer good insight

into the very unstable character of the flow over the lead.

The L's associated with our velocity and temperature profile

pairs range from a minuscule -9.5 cm to a maxiMum value of

-468 cm -- which is still small by normal standards. The

combination of large water-air temperature differences and

the light winds which prevailed during most of ALEX account

for such small lengths.

Of course, an interpretation of the Monin-Obukhov

length for our problem is not straightforward. The signi-

ficance and worth of L in surface layer meteorology is a

consequence of its being invariant with height through

constant flux layers. However, the internal boundary

layer is not a constant flux layer -- L may be a strong

function of height. In other words, what we call L as yet

has only the mathematical form of a Monin-Obukhov length

and not the attendant physical interpretation; it remains



101

to be established whether this L has a meaning for pro-

cesses other than those occurring near the surface.

In summary, the flux-gradient technique we have out-

lined in this chapter offers valuable support for our other

estimates of heat and momentum fluxes from Arctic leads.

Although the flux-gradient equations have proven validity

only in horizontally homogeneous conditions where the

fluxes are constant with height, we have used them here in

an internal boundary layer with surprising success. Our

precaution of selecting only the lowest two profile heights

and assigning surface conditions to give three-point pro-

files apparently minimizes the effects of the non-

equilibrium character of the flow.
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6. PREDICTIVE SCHEMES

We can be absolutely certain only about things we
do not understand.

Eric Hoffer
The True Believer

6.1. A SIMPLE, ILLUSTRATIVE MODEL

To introduce a few of the nondimensional parameters

which will be used in this chapter for characterizing the

heat flux from leads, let us consider a very rudimentary

model of the growth of the thermal boundary layer. We make

no pretense that this model is a realistic picture of

nature. Rather its recommendations are that it contains an

essence of the physics, is mathematically trivial, yet

yields the very parameters which we will later use to pre-

dict heat flux.

Consider a volume of Arctic air of height h, length L,

and width y moving along the surface of the ice with velo-

city U in the x direction. The temperature of the ice and

the air is T. At x=0 this mass encounters a lead of in-

finite extent in y and with surface heat flux H (per unit

area) and water temperature Tw Because the air parcel is

heated as it flows over the warm lead, it expands upward

and in the x direction: the flow is two-dimensional, so its

width does not change. Assume the air continues moving

with velocity U. Let1s look at the situation just as the

back end of the volume reaches the front edge of the lead.
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Suppose the air mass now has a height , the height of the

thermal boundary layer, and a length F. Figure 6.1 shows

the details of the model.

The first law of thermodynamics requires that the

change in internal energy of the air parcel, AE, be equal

to the heat added, Q, minus the work the parcel does in ex-

panding, AW,

By definition

AE = Q - AW 6.1.1

AE = M c AT 6.1.2

where M is the mass of the volume and AT is its temperature

change. Notice

M=pV 6.1.3

if V is the volume.

Because the work of expansion is done at constant

pressure, P1

AW = p AV 6.1.4

where AV is the volume change. But from the ideal gas law

V1 T1

V2 T2
6.1.5

the initial and final volumes and temperature. Hence,
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= V2 - V1 V2c
2 l) 6.1.6

In our model T1 is T. Letts say

T2 = + Ti). 6.1.7

Thus, from 6.1.2 and 6.1.3

And from 6.1.6

L.E = p c(T T1) F Ay . 6.1.8

6.1.9

One form of the equation of state for an ideal gas is

(Lumley and Panofsky, 1964)

p = p T , 6.1.10

where G is the universal gas constant and m is the molecular

weight of the gas. However, we prefer to write (Halliday

and Resnick, 1966, page 586)

so for our model

6.1.11m5 p

p = p c(T + T.) . 6.1.12
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Finally, we evaluate Q, which is simply the total heat

added to the air volume as it moves over the lead. The

time required for the mass to flow out entirely over the

lead is

Therefore,

ti = . 6.1.13

t

Q = f H Ay x dt
0

ti

=yHf Utdt
0

= ty H U t'2

F2 6.1.14

Now we can bring everything together as 6.1.1 requires.

From 6.1.8, 6.1.9, 6.1.12 and 6.1.14 we get

2

Cp(Tw_Ti) F = H - i Cp(Tw_Ti)tS F y

6.1.15
or

7 HF
p - T)6 = 6.1.16

Rearranging 6.1.16, we derive our first nondimensional

parameter of heat transfer, the Stanton nuither,

S
- H

t
p Cp(Tw_Ti)U

6.1.17
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The term on the right side is also of some interest -- it

contains the ratio of IBL height to fetch. Using the

identity

K D, 6.1.18
p c

where K is the thermal conductivity and D is again the

thermal diffusivity, 6.1.17 becomes

N
TW_ T1)

() R P . 6.1.19

The Nusselt number, N, is a second important dimensionless

parameter of heat transfer. Equation 6.1.19 relates it to

the length (fetch) Reynolds number,

and the Prandtl number,

R = , 6.1.20
x '

6.1.21

Notice that using 6.1.17 in 6.1.19 gives us a last rela-

tion -- which is true by definition, not just for this

problem:

N=StRP . 6.1.22

Hopefully, after this brief introduction to the

dimensionless groups which are most often used in heat

transfer studies, the next sections will go more easily.
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Though we do not expect our simple model to have any pre-

dictive value, the suggestion how to proceed is there.

6.2. SENSIBLE HEAT FLUX: INTEGRAL RESULTS

Because the integral method of heat flux estimation

is the more basic approach, whenever we write 'heat flux'

in this section, it will be an estimate made by that

method. The flux-gradient technique would probably yield

estimates easier to fit with bulk models because of the

smoothing inherent in the process. But that technique is

still not totally proven in our application; so we'll con-

centrate our analysis on the more physically founded esti-

mates of the integral method.

The bulk parameters used in defining the Nusselt,

Stanton, and length Reynolds numbers of the last section

will now have to be carefully assigned values. After a

lot of experimentation we choose to write

UI X
R 6.2.1
x V

N= Hx 6.2.2
K(Tw T05)

H
St p c U05(T T05) 6.2.3

In these, x is the fetch, T is the surface water tempera-

ture, and U05 and T05 are the velocity and temperature,

respectively, 50 cm above the lead at the fetch x. H is
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the average surface heat flux (equation 4.1.29); so Hx is

the total heat flux (equation 4.1.27). The remaining quan-

tities, V, K, p, and c, are all temperature dependent: we

evaluate them at T
w

The only debatable parameter choices here are U05

and T05. We have discussed earlier the complex shape of

the velocity profile over the lead. Within the boundary

layer that profile is a function of the surface roughness

transition, the heat flux, and the fetch, and above the

boundary layer is prescribed by the upwind stability. Con-

sequently, the specification of a reference height is criti-

cal. There is no externally imposed 10 meter (bridge of

the ship) reference -- which would be of questionable value

anyway, likely being above the IBL and, thus, necessitating

an accounting for upwind stability. Therefore, we are free

to select a velocity reference height within the boundary

layer where the complicating effects on the profile will be

minimal. In Chapter 5 we demonstrated that 50 cm was such

a height.

Why not then also measure the temperature at that

height? One might argue that the ambient air temperature

would be a better choice. But this isn't a wind tunnel

upwind stabilities are variable, so the upwind temperature

is a function of height. Clearly, then the only logical

upwind reference temperature is T(0) the temperature of

the ice. And, in fact, this is not a bad choice in place
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of T05. However, with T(0) instead of T05, the results

we will discuss would have been more scattered because of

the variety in upwind stability and the uncertainty of our

T (0) measurements.

Figure 6.2 presents our first relation between the

sensible heat flux from leads and bulk quantities. The

line is

N = 0.18 R71 . 6.2.4

This is in good agreement with wind tunnel results reported

by Coantic and Favre (1974) for latent heat fluxes,

= 0.08 . 6.2.5

Because of the different ways in which the bulk parameters

were selected, we would not expect the multiplicative ccn-

stants in 6.2.4 and 6.2.5 to agree; the exponents on Ri

however, are in happy accords

Kays (1966, page 239) presents a theoretical result

with which we might also compare 6.2.4.. He looks at a flow

encountering a constant-temperature, flat plate and predicts

St P°'4 = 0.0295 R°2 . 6.2.6

Using 6.1.22, we rewrite 6.2.4 as

or

St P R = 0.18 R°7' , 6.2.7

St = 0.18 P_i R29 6.2.8
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With a value for the Prandtl number of 0.714, this becomes

St = 0.204 R;°29 6.2.9

while the theoretical result, equation 6.2.6, is

St = .0338 R°2 . 6.2.10

This isn't superb agreement and is a first indication of

the difficulty we will hav in this section correlating

the Stanton number with th length Reynolds number.

Since log-log plots tend to make even scattered data

look good, Figure 6.3 shows a linear plot of N versus R.

Again the result is usefu1 as the data gather around the

line

N = 2.24 x l0 R 1120 . 6.2.11

Compare 6.2.11 with Schlichting's (1968, page 662)

theoretical prediction for, transfer from a heated, flat

plate,

= C R . 6.2.12
00

To get 6.2.12 he set the randt1 number equal to one and

based the drag coefficien., C, on the free stream velo-

city. Our Prandtl number, 0.71, is near enough to one to

justify continuing the coxttparison. In equation 5.2.7 we

showed that the empirical drag relation, 5.2.5, corresponds
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to a 10 meter drag coefficient of 1.76 x 1O3. If we use

this as the free stream drag coefficient, Schlichting's re-

suit applied to our problem predicts

N = l.76 x 10 R . 6.2.13

Considering the approximaions involved and the fact that

the C10 calculated in 5.2.7 does not reflect the non-zero

intercept of 5.2.5 (which is likely associated with the

additive constant in 6.2.1:1), this theoretical result is

remarkably close to our observational relation, 6.2.11.

That linear equation betwen N and R is apparently a good

one.

In an effort to proide a little something for every-

one, we lastly show a plot of the Stanton number versus

in Figure 6.4. As hintedbefore, the correlation is not

exceptional. The line we have drawn through the data is

St 4 0.56 R035 . 6.2.14

Again check this against the Kays (1966) relation of

equation 6.2.10. Mangarella, Chambers, Street, and Hsu

(1971, 1972, 1973) are also fond of the Stanton number.

Though they relate it to a Reynolds number defined dif-

ferently than R, we infe± from their work that the Stanton

number is proportional to (roughly) R;°25 (Mangarella,

et al., 1973). This is closer to Kay's theoretical pre-

diction (equation 6.2.10) than to our result, 6.2.14.
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However, let us also compare this R;0'25 dependence with

the Stanton number relation we deduced from our Nusselt

number correlation (equation 6.2.9). The Reynolds number

term here, R°29, agrees .ie1l with the suggested R°'25

dependence of Mangarella, Chambers, Street, and Hsu. And

the Coantic-Favre result (equation 6.2.5) also implies St

is proportional to R;°25 (using 6.1,22 to convert N to

St). The experimental evidence, thus, suggests that the

exponent of R in the theretica1 result 6.2.10 is too

large; instead a correlation of St with R;°'25 seems more

realistic.

Despite the apparent popularity of the Stanton num-

ber, our data correlate best when the heat flux is non-

dimensionaljzed in the form of a Nusselt number. This is

likely a consequence of hw the wind speed enters the non-

dimensionalization. The stanton number contains U05 while

the Nusselt number does nat. Thus, because the U05 and

T_T05 values have the 1rgest relative uncertainty of the

bulk quantities, St will be more scattered than N.

Hopefully, the equations we have presented in this

section make the procedure for predicting sensible heat

fluxes from leads obvious Equations 6.2.4, 6.2.11, and

6.2.14 relate the surfaceheat flux to certain bulk para-

meters. Hence, measuringthe bulk parameters is sufficient

to allow a prediction of the sensible heat flux.
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6.3. SENSIBLE HEAT FLUX: FLUX-GRADIENT RESULTS

Since we have made flux-gradient estimates of the

heat flux, it's interestin to also devise a procedure for

predicting the flux on the basis of these. Remember, the

flux-gradient surface heat flux is

H = -pc k u t . 6.3.1

Equation 5.2.5 already relates u to a bulk variable.

In Figure 6.5 we likewise estimate t from bulk quan-

tities. The line is

t = 0.195(T05 T)

Recalling our flux-gradieit method,

Figure 6.5 is not that surprising.

at 0.03 cm, equation 5.1.7 says

+ 0.475 . 6.3.2

the correlation in

Because ZH was constant

Tw - T05 = -t[ln(053) 6.3.3

Hence, though stability effects introduce a modicum of

scatter, t should be a nearly linear function of Tw

T05.

The quick result of this section is that on the basis

of 5.2.5 and 6.3.2 it is again possible to predict the

sensible heat flux from bijik measurements.
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6.4. LATENT HEAT FLUX

We do not have enough quality data to formulate an

empirical relation for latent heat flux as we have for

sensible heat flux. But consider. The diffusion equa-

tions of temperature and humidity are the same; so there is

a similarity between the turbulent transfer mechanisms for

heat and moisture (Brutsart, 1975) . Over water, the

spectra of temperature an humidity are alike (Phelps and

Pond, 1971). In laboratory experiments over water when

waves are not breaking and, consequently, generating vapor

mechanically, Stanton numbers for latent and sensible heat

fluxes are nearly the same (Mangarella, et al., 1973)

And lastly, the Coantic-Fàvre result (equation 6.2.5) for

latent heat is much like ur relation for sensible heat

(equation 6.2.4). The im1ications are that if we know

how to estimate the sensible heat flux, H, we also know

how to estimate the latent heat flux, HL.

From 6.2.4 we simply say

NL =O.18 R71 , 6.4.1

where NL is the Nusselt nbxnbr associated with the latent

heat flux: that is,

NL p
L,D(QQo

5)
6 4 2

In this, D is the molecular diffusivity of water vapor
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at the surface temperature Q
is the specific humidity at

the water surface, and Q05 is the humidity at 50 cm. From

6.1.18, 6.2.2, and 6.4.2 we write

HLx Hx
p LD(Q-Q0s) p cD(T-Tos)

' 6.4.3

or

L P (Q -Q0 5)
HL = H

cpD(Tw_T05)
. 6.4.4

There is nothing terrifically profound in this re-

sult. We have simply giveh the Bowen ratio,

c D(T -T )

B- W 645
LvD(Qw_Qo5)

a mathematical form. Had e chosen to equate Stanton num-

bers instead of Nusselt nunbers, B would have been essen-

tially the ratio derived by Roll (1965, page 253) for more

restrictive conditions.

Table 6.1 compares the values of HL predicted on the

basis of 6.4.4 with our integral estimates of it. Despite

the low quality of our hunidity profiles, the agreement is

encouraging. Notice that the Bowen ratio over leads is an

order of magnitude larger than usual values for the open

ocean.

Because the specifiq humidity is closely tied to the

temperature and because ir the Arctic is typically
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Table 6.1. Prediction of the latent heat flux from the
sensible. heat ..iux using. equation. 6.. 4.4.

HL

H
2

(mw/cm2)
RUN (mw/cm,) Predicted .

. Measured B

272.0 15.42 4.98 3.25 3.10

273.1 15.32 4.92 3.13 3.12

273.2 15.49 5.10 2.84 3.04

282.0 13.04 5.93 7.06 2.20

283.0 13.17 5.95 7.08 2.22
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10% of we can use 6.4.4 to estimate HL for all the pro-

filing runs although there fre humidity values for only

five of them. We simply asume the relative humidity at

50 cm is 100%. is usually about 3.10 gm/kg; but at

-25°C and 100% relative humidity, Q05 is 0.50 gm/kg; at

50% relative humidity it is;0.25 gm/kg. Therefore, any

error introduced by this asumption of saturation at 50

cm should be under 10%. Th results of these latent

heat flux calculations are .abulated in Appendix C.

6.5. MOMENTUM FLUX

Equation 5.2.5 is essentially our method for estimat-

ing the surface momentum flux (stress). Because it re-

quires U05 be measured 50 cm from the surface, it should

approximate u, to within fi'e percent despite the compli-

cations the large surface heat flux introduces (cf.

Bradley, 1972).

Our flux tower was eqtiipped to make direct measure-

ments of at two levels separated by 50 cm so we could

see how the stress profile changed with height. Spectral

analysis was used to deduce, from the lower measure-

ments -- the Nyquist frequency was 125 Hz. All upper

level flux tower values are the results of straightfor-

ward correlation calculatiobs: for example,
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(U - U) (W - W) . 6.5.1

J=1

Here, clearly, U and W are the average longitudinal and

vertical velocities arid tJ and are the individual

observations. The sampling rate for the data which went

into these calculations was 5 Hz Hence, the upper uw

value is not as statistically certain as the lower one:

nevertheless, a comparison of the values at the two

heights makes an unambiguous statement about the shape of

the stress profile.

We have 3 pairs of lower and upper uw measurements.

Nineteen of these are made over leads of short fetch --

7.2 to 8.5 meters. Thirteen pairs are from leads with

longer fetches -- five from a thirty-four meter lead and

the remaining eight in the 19.0 to 19.8 meter range. Over

the 34 m lead the lower measurement was made at 50 cm.

For virtually all the remaining runs it was within 20 cm

of the surface. In 15 of the 19 pairs at short fetch,

the lower value is greater than the upper - value.

On the other hand, for all 13 of the uw pairs at longer

fetch, the upper - is larger than the lower one.

Table 6.2 summarizes what we have just written.

This kind of stress profile behavior is just what

Taylor's (1970) and Shreffler's (1975) numerical models

have predicted. Figure 6.6, taken from Shreffler's (1975)

thesis, shows the stress profiles his model generated on
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Figure 6.6. Stress profiles predicted by Shreffler (1975)

from Badgley's (1966) lead data. The fetches
are, from left to right, 5, 10, 15 and 20 in.

The dashed lines interpret our observations.



125

Table 6.2. Comparison of lower and upper -uw measurements.

Fetch (m) 7.2 - 8.5 19.0 - 34

Pairs 19 13

Lower > Upper 15 0

Lower < Upper 4 13

the basis of Badgley's (1966) Arctic lead velocity and

temperature data. On it we have tried to suggest our

observed relationships at short and long fetches.

Because Shreffler's prediction is for only one

unique set of environmental conditions, we cannot make an

extensive quantitative comparison of our observations with

his model. However, for a couple of our runs the surface

heat flux and surface stress were near those he modeled.

A comparison of these few sets with the profiles in Figure

6.6 suggests Shreffler's model underestimates the

hi'110 ratio at longer fetches. For example, at a

fetch of 20 m, is measured at 20 cm and _uwh at

70 cm, the model yields

uw.
hi = 1.06 . 6.5.2
lo

In contrast, our observations would suggest the ratio is

more like 1.4, a value closer to what Taylor (1970)

predicts.
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The question must eventually arise, "Why does the

stress profile have the shape it does?" Look at the U

momentum equation,

U U + W U = (-) , 6.5.3
x z z

This dictates how the stress profile depends on the veloci-

ties. And we have a good qualitative idea of the velocity

profiles over the lead.

In Chapter 4 we explained that if the flow felt only

a smooth to rough surface transition, it would decelerate.

Both Shreffler (1975) and Taylor (1970) show the flow

accelerating near the surface when it encounters an in-

crease in surface temperature but no roughness change.

Thus, close to the surface the superposition of the two

effects makes things confusing. Higher up, the flow will

indeed accelerate as the positive heat flux fosters mechani-

cal mixing which ultimately increases the average horizon-

tal velocity. Here W must be negative to preserve con-

tinuity. Near the top of the boundary layer U returns to

its upwind value, so becomes vanishingly small; W

remains negative but small.

Understanding this, we examine 6.5.3. Near the sur-

face the first term on the left dominates; so will in-

crease with height if the heat flux influences the flow
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more than the roughness transition or will decrease with

height if the opposite is true. Slightly higher, the first

term is definitely positive: - must increase with

height. Throughout the layer the second term on the left

is non-positive but small because of its W dependence; the

first term, thus, continues to force a - increase with

height. Finally, near the top of the layer, U, becomes

so small that the second term on the left (which is nega-

tive) becomes dominant: therefore, decreases to its

upwind value. The stress profile is thus buxom.

6.6. THERMAL BOUNDARY LAYER HEIGHT

A discussion of the thermal boundary layer height, ó,

necessitates an unequivocal definition of it. Thermal and

momentum boundary layers are regions of disturbed tempera-

ture and velocity profiles. But fundamentally, it is the

altered heat and momentum fluxes within the layers that

support the profiles they are really the truer represent-

atives of the boundary layer. Ideally then, the thermal

or momentum boundary layer height should be defined as the

point where the heat or momentum flux within the layer

returns to its upwind value. But clearly, a determination

of on this basis is prohibitive except for well-instru-

mented, unhurried operations. Therefore, most still tradi-

tionally rely on the more available temperature or velocity

profiles for getting 5.
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We have adopted the standard procedure for defining

6. It is the height at which

- ,T, (6)

0.0005
T - T(0)

6.6.1

Here T(6) is the IBL temperature at 6; T(o), the upwind

temperature at 6; and Tw and T1(0), the water and ice

temperature, respectively. Because in the Arctic T-T(0)

was always roughly 20°C, equation 6.6.1 is approximately

0.01 T(6) - T1(6) , 6.6.2

which is consistent with the limits we ascribe to our

thermocouples.

As an alternative to this profile method and to the

aforementioned flux method, C. A. Paulson (personal com-

munication) has suggested the possibility of defining the

thermal boundary layer height on the basis of signal

variance. Rather than the well defined, steady-state,

easily knowable line we have been portraying it as, the top

of the thermal boundary layer is a billowing, oscillating

thing which summits to definition only in the statistical

sense. That is, a fixed height may sometimes be within the

layer and at other times outside. There is, in other

words, an intermittency in temperature observations near

the top of the layer. See, for example, the temperature

traces in Figure 2.4. By examining temperature records
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with regard to this intermittency it seems possible to

derive a boundary layer height with more statistical signi-

ficance than the based on 6.6.1. Though the analysis

this method would entail is beyond our scope, the idea is

good and may be of use to others.

Elliott's (1958) paper, which was the herald of

American internal boundary layer research, contains equa-

tions for predicting the heights of both internal momentum

and thermal boundary layers Apparently, only Miyake (1965)

has offered alternatives to these. But he finds neither

the relation he suggests nor Elliott's equation consistent-

ly predicts the thermal boundary heights he observed --

though the essentials of Elliott's momentum height predic-

tion have been verified elsewhere (e.g., Bradley, 1968;

Panofsky and Petersen, 1972). Therefore, we attempt to

deduce from our data an expression for calculating the

thermal boundary layer height.

Because Elliott's (1958) thermal boundary height

relation is so attractively simple, we consider it a

starting point. He writes

035(X)O8
, 6.6.3

0

where x is the fetch over the warmer (or colder) surface.

But we realize on contemplating our temperature profiles

that this is too simple. There must be a wind speed
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dependence stronger than that contained in z0; higher

speeds stretch the layer downwind rather than letting it

grow upward. Conversely, a large surface heat flux pro-

motes vertical growth. These two considerations imply that

the IBL height may be proportional to a local stability

parameter.

Niyake (1965) first suggested the use of -z0/L for

characterizing stability effects on boundary layer growth.

On embracing this parameterization, we discover it has more

influence on than the fetch does. The relation which

best describes our thermal boundary height measurements is

= 0)0.8 (.L)04 6.6.4
z0 L Z0

Here L is the Monin-Obukhov length which derives from our

flux-gradient estimations of Chapter 5.

Intuitively, we feel that upwind stability should

also have an effect on the boundary layer height. Stable

upwind conditions would suppress thermal boundary layer

growth while upwind instability would enhance it. Figure

6.7 supports this conjecture while demonstrating the strong

-z0/L dependence of. Therefore, in 6.6.4 is a con-

stant reflecting the dependence of boundary height on up-

wind stability. Table 6.3 summarizes our calculated values

of and contains the evidence to let us reject with

greater than 95% confidence the hypothesis that
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Figure 6.7. Dependence of boun48ry layer heights on -z0/L
and upwind stabil&ty. The ijnes are equation
6.6.4 with8 = 6.6 x 1O for a and = 5.5 x
1O4 for b.
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Table 6.3. Values of in equation 6.6.4.

Upwind Unstable Stable

Observations 27 22

6.6 x 5.5 x 1O'

Standard Deviation:

of Sample 0.9 x 0.7 x

of Mean 0.2 x 0.2 X 10
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upwind stability has no effect on boundary layer growth

(e.g., Brunk, 1965, page 258).

Figure 6.8 presents all our thermal boundary height

observations and compares these individually to the model

they collectively suggest (i.e., equation 6.6.4). The

scatter is an indication of the difficulty inherent in

determining . Nonetheless, this set is valuable, being

the largest collection of geophysical observations of

thermal boundary height we know of.

Equation 6.6.4 needs further confirmation before

being accepted as a trustworthy prognostic tool. Since

our data were primarily for low wind speeds (u < 30 cm/

sec) and fetches of 20 m and less, we would like to see

other results in stronger winds and for longer fetches.

If 6.6.4 withstands these tests, consider its implications.

Because L contains the surface heat flux, 6.6.4 would offer

another method for heat flux estimation on the basis of

bulk measurements.
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Figure 6.8. Observed thermal boundary heights compared to
the predictions of equation 6.6.4.
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7. SPECTRAL CHARACTERISTICS AND
INTEGRAL STATISTICS

And science is . . . nothing but the determina-
tion to establish differences.

Hermann Hesse
Narcissus and Goidmund

When we refer to 'spectra' or 'cospectra' in this

chapter we will mean spectral or cospectral density esti-

mates. Appendix A thoroughly details the procedure for

reducing time series to spectral density estimates; there-

fore, we will add only a few words of supplementary

information.

ALEX was designed to measure spectra of longitudinal

and vertical velocity and temperature fluctuations, 'u' w'

respectively, as well as cospectra and quadrature

spectra of uw and wt, Qdt. But as

explained, because of the limited response of the thermo-

couples, the temperature-related spectra are doubtful.

Hence, they are omitted from this discussion: we concen-

trate on
u' w' and COuw The integral statisticst of

the turbulence properties we will describe are gotten by

integrating the spectrum or cospectrum -- thus, the name.

7.1. FUNDAMENTALS

Both digital profile and flux tapes contained record

lengths of 1024 data points. Before performing the
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spectral analysis on the flux files, we grouped four such

records into a block of length 4096. In other words, the

N which appears throughout Appendix A is, for this analy-

sis, 4096. The number of blocks, B, per file was variable

but generally exceeded 55. Hence, the shortest spectral

files contained time series which usually ran at least

(55)(4096) = 15.0 minutes . 7.1.1
(250) (60)

The longest useable time series we collected over leads

were 29.8 minutes -- average length was about 22 minutes.

In addition, we made several runs over ice. Here, because

the riming problem was less severe, some of these files

were 35 minutes long.

To allay worries that only 15 minutes of turbulence

data may be insufficient to yield useful spectra and

spectral statistics, we investigated the effects of averag-

ing time on the statistics. Figure 7.1 summarizes our

results. In it, though the mean velocity is varying

throughout, the statistics reach fairly steady values at

about 17 minutes. u2 is the least steady of the statis-

tics, as we would expect; yet it changes by less than two

percent after seventeen minutes. Consequently, we feel

our time series are long enough to have meaningful spectra

and statistics.
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7.2. SPECTRA OVER ICE

The University of Washington group, which was usually

positioned upwind of the leads, was equipped as our down-

wind group was and, therefore, had the capability to deter-

mine upwind spectra. However, because that analysis has

not been done, we cannot compare simultaneous upwind and

downwind spectra. But while encamped at the real lead

site, we found ourselves for a time on its upwind side due

to the caprice of the wind. The nearest upwind pressure

ridge was about 1 km away and there was no open water for

at least several kilometers upwind. So we continued re-

cording over this smooth, snow-covered ice fetch. In the

absence of any upwind spectra from the University of

Washington group, for the purpose of checking our spectral

technique, and as a transitional step for getting into the

more complicated downwind spectra, we here present the

spectra of these runs.

To facilitate comparison of our spectra with those

reported elsewhere, in this chapter we plot only normalized

spectra and cospectra against the nondimensional frequency,

fz 7.2.1

Here f is the frequency (Hz) associated with the spectral

estimate, z is the height of observation, and U is the

average velocity at z. The goal of such normalization is
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to collapse diverse spectra into a presumably universal

shape. Customarily, u = - is used to normalize velocity

spectra and cospectra (e.g., Busch and Panofsky, 1968;

Kairnal, et al., 1972). But our spectra are more consistent

when w2 normalizes f& and and normalizes fCo (cf.

Miyake, et al., 1970b; Pond et al., 1971). In Figure 7.2

all our spectra cver ice are so normalized and do collapse

neatly into similar shapes at the higher frequencies.

A comparison of the low frequency end of the vertical

velocity spectra with the uw cospectra shows why w2 is a

better normalization for
u

and than is. The cc-

spectra contain significant energy in this range. And be-

cause there are few degrees of freedom in spectral esti-

mates at such low frequericies, the estimates are highly

variable. This combination of relatively large though

poorly known cospectral estimates at low frequency makes

a less statistically certain quantity than .

A review of nondimensional spectra and cospectra col-

lected in the atmospheric surface layer under homogeneous

conditions (e.g., Busch and Panofsky, 1968; Miyake, et al.,

1970b; Kaimal, et al., 1972) confirms the accuracy of the

results in Figure 7.2. Our spectra and cospectra have

peaks of the proper magnitude and in the usually reported

frequency range. The high frequency behavior of and

apparently follows Kolmogorov's -2/3 law (in these coor-

dinates) for the inertial subrange. And the cospectra
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suggest a -4/3 dependence at higher frequencies though are

not in total accord here. This postulated -4/3 dependence

of Co in the inertial subrange (e.g., Wyngaard and Cote,

1972) has not received the overwhelming experimental con-

firmation that the -2/3 dependence for individual velocity

spectra has. Other subrange behavior has been observed

(Panof sky and Mares, 1968; Miyake, et a1., 1970b).

Pointing out the Reynolds number range, which is

given in the upper left of each spectral plot, leads into

a short digression. The Xolmogorov (1941) inertial sub-

range hypotheses are valid only in the limit of large Rey-

nolds numbers. Tennekes and Lumley (1972, page 266) infer

an inertial subrange exists only for R of order 10 or

greater. Our over-ice spectra, for which z is 65 cm, have

an R this large. For tower-mounted instrumentation, which

is a usual source of spectra appearing in the literature,

z may be 50 in and more; therefore, R would be roughly

and the inertial subrange, consequently, extensive.

But whether R is large enough to support an inertial

subrange or not, its magnitude still affects the shape of

the spectrum. The dissipation range of the spectrum shows

the energy in the highest frequency (or smallest scale)

motions of the flow. These highest frequencies correspond

to the inverse of the Kolmogorov microscale for time,

= (.) . 7.2.2



Since the dissipation rate is approximately

we find
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C 7.2.3

k
(U*)3/2(UZ) 7.2.4

k
(U*)3/2 R2 . 7.2.5

That is, because ut/U is only a weak function of velocity

and height near the surface, the nondimensional frequency

of the spectral dissipation range increases with Reynolds

number. The spectrum is contracted or spread out depend-

ing on the magnitude of R.

The purpose of this discussion was twofold. First,

we wanted to review the often forgotten condition that R

must be large before an inertial subrange can develop.

Secondly, to prepare for the next section, which presents

spectra characterized by smaller Reynolds numbers, we have

shown how the magnitude of R affects the spectrum.

7.3 SPECTRA OVER LEADS

With the last section as background and the spectra

therein for comparison, Figures 7.3, 7.4, and 7.5 show

nondimensional spectra and cospectra made over leads with

fetches from 7.2 m to 34 iii. The spectra are grouped
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according to Reynolds number and largely without regard to

fetch. The highest Reynolds number plot in each figure

does, however, happen to contain only spectra made over

the 34 m lead since our sensors were higher above the

water here.

In each plot the line shows the inertial subrange

behavior we found in the spectra over ice. However, the

spectra of this section seldcm have that frequency depend-

ence the Reynolds number is not large enough. The

longitudinal velocity spectra come closest: as R increases,

an inertial subrange begins stretching out to approach the

-2/3 slope. But even for the highest Reynolds number

range, it's doubtful that w and COuw have inertial sub-

ranges.

A second motivation for the Reynolds number grouping

is the very high frequency behavior of the spectra. At

the lowest Reynolds numbers there is a recognizable dis-

sipation region. With increasing R this moves to higher

frequencies as 7.2.4 shows it must. Finally, for the

largest R range there is only the merest trace of a change

in spectral slope hinting at the presence of a dissipation

region.

The low frequency end of the spectra also appears to

be a function of Reynolds number. We are looking especial-

ly at and Co: energy levels tend to fall as R in-

creases. But consider the horizontal length scales
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represented by this frequency region. Because the non-

dimensional frequencies are less than 0.01, characteristic

eddy size is 10 in or more. Therefore, the lcw frequency

energy is likely not associated with the lead but instead

reflects larger scale atmospheric processes. Realizing

this, we can refer for guidance to published spectral

shapes for horizontally homogeneOus conditions (Kaimal,

et al., 1972Y. At the low frequency end, the spectra and

cospectra depend on z/L. There is more energy at large

-z/L and much less at large z/L. Of coincidence, our

smallest Reynolds number range corresponds primarily with

unstable upwind conditions while the largest R range

occurred during stable ambient conditions. Apparently,

the low frequency dependenceon R is accidental.

The frequencies of the spectral and cospectral peaks

do not change with Reynolds number nor do the heights of

the peaks. Both peak frequencies and magnitudes coincide

with thOse of the ice-fetch spectra.

After interpreting the somewhat unique shape of

these spectra as primarily a Reynolds number dependence,

we look for effects attributable to the nearby lead. For

example, we might expect a feature near the nondimensional

frequency corresponding to the fetch of the lead. This is

roughly

7.3.1
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-- about 0.01 for our observations. But clearly, nothing

is evident here. In a qualitative search of the spectra,

there appears to be no hint of the presence of the lead.

We need the quantitative results of the next section to

point out where the inhomogeneity is manifested.

7.4. INTEGRAL STATISTICS

As we've shown, the measurement of w2 is more certain

and thus easier than the measurement of -. But because

- is the more desirable quantity, trying to relate w2

and - is a valuable endeavor. Presumably the ratio

w2/u is a universal function of z/L. However, that func-

tion has been slow in emerging. For example, in neutral

conditions reported values of 2/u generally range from

0.9 (Monin, 1970) to 1.4 (McBean, 1971). Arid the ratio

seems to be different over land and water (Busch, 1973).

In unstable conditions there is a firm theoretical

basis in Monin-Obukhov similarity for the behavior of

2/u (e.g., Businger, 1973). As -z/L increases beyond

about 0.5 (Businger, 1973; Wyngaard, 1973) -- that is, in

an atmosphere approaching free convection /u is pre-

dicted to be proportional to (-z/L)"3. However, again

the proportionality constant is in question. Because in

the Arctic we measured w2 and for the stability para-

meter -z/L spanning almost three decades, we offer our re-

sults here for comparison.

Appendix D.

The data is also listed in
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Figure 7.6 is a plot of (w2/-)2 versus z/L. L is

the Monin-Obukhov length from our flux-gradient results;

is the stress measurement from the lower flux sensors,

which for all but eight of the points in Figure 7.6 were

within 23 cm of the surface; and the w2 come from both

lower and upper flux sensors.

Although both and L are presumably functions of

height, the data in Figure 7.6 show no systematic difference

between upper and lower levels. There are two regions in

the figure. For -z/L less than 0.4, the (w2/-uw)2 ratio is

constant with a value of 0.99 ± 0.05 (95% confidence).

Above -z/L = 0.4, the points turn upward and approach the

(-z/L)1"3 dependence. The general shape of this plot is in

excellent agreement with similar ones given by Businger

(1973) and Wyngaard (1973), particularly with regard to the

break toward the +1/3 dependence.

The ratio, however, is lower than for most other find-

ings. We muse on possible reasons. Initial suspicion falls

on our use of (-) measured somewhere above the surface

rather than u. In fact, we have shown in Chapter 6 how

- increases with height in the presence of an upward heat

flux. Could (-) at 20 cm exceed u by 40 percent -- the

factor necessary to bring our results into agreement with

previous estimates? Probably not. Taylor's (1970) and

Shreffler's (1975) numerical experiments and Bradley's

(1972) field work all show that the stress profile should
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be virtually constant to heights greater than 20 cm.

Secondly, consider L: we have already expressed our

doubts concerning its meaning in the IBL, which is not a

constant flux layer. If anything, a systematic error in L

would affect the horizontal position of the data, not its

level. Yet we find the horizontal positioning in good

agreement with other results: the change in slope toward

the +1/3 dependence occurs in our plot at just the z/L

value where it does in others. This result and our finding

in Chapter 6 that is a prime determinant of boundary

layer height are indirect evidence of the worth of L de-

spite its dubious origin. Within 20 to 50 centimeters of

the surface it may not be as variable with height as we at

first thought it would.

The finger finally points at w2. About one-third of

the values plotted in Figure 7.6 are from measurements made

within 20 cm of the surface; and practically all the measure-

ments are within 70 cm of the surface. So near the surface

vertical velocity fluctuations should be reduced compared

to fluctuations higher up. Therefore, the smallness of our

ratio may be a boundary effect. Lumley and

Panofsky (1964) summarize measurements of the ratio in pipe

flow and within a boundary layer which support this explana-

tion. For these two flows, in which the boundary is impor-

tant by definition, (w2)/u* is 1.05.
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The cospectra of uw also contain evidence as to why

(w2/_) is smaller than the values usually reported. Com-

pare these cospectra with the uw cospectra for horizontal

homogeneity in Figure 7.2. The former contain much more

energy at high frequency than do the latter, which fall

rapidly above fz/U = 1. This too implies that the (w2/-)

ratio would be smaller over leads than for horizontally

homogeneous conditions.

Since /- is linked with z/L, again a method for

making an indirect estimate of sensible heat flux arises.

If w2 and - can be measured and the functional dependence

of their ratio on z/L is known, L and, consequently, wt can

be established.

The (/-) ratio is also an interesting statistic;

but there is considerable uncertainty over its value and,

indeed, doubt whether it should take universal form. This

is simply because contains energy due to large scale

atmospheric motions while the variables used in Monin-

Obukhov scaling reflect only local conditions (McBean,

1971)

In Figure 7.7 we plot our measurements ofu2 at the

lower flux tower level. The line drawn in by eye is

1(U)2 2.15 . 7.4.1
-uw

This concurs with the simple sum of the individual ratios,

2.19 ± 0.06 (95% confidence). Neither stability nor
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fetch influence this ratio: in the z/L range (-1.6, -0.02)

and for fetches from 7.2 m to 34 m, it shows no definable

trends with either.

As with (w2/_)2, our (u2/-) ratio is smaller

than values usually reported. Typical values in the litera-

ture for measurements over the ocean in unstable conditions

are in the range 2.6 to 2.8 (Miyake, et al., 1970b; Pond,

et al., 1971). We again infer that the smallness of our

ratio is due to the effects of the horizontal inhomogeneity

on as evidenced in the uw cospectra.
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8. SUMMARY

Only the ideas that we actually live are of any

value.
Hermann Hesse
Demian

The heat transferred through leads is a substantial

part of the total energy the Arctic Ocean loses to the at-

mosphere during the winter. This thesis recounts the

AIDJEX Lead Experiment whose main purpose was to measure

the turbulent component of that heat flux.

The sensible heat flux from leads was determined in

three different ways. The primary estimate derived from

an integral or energy conservation approach. The second

relied on published findings relating fluxes to temperature

and velocity profiles--the flux-gradient technique. Third-

ly, a direct measurement yielded the Reynolds flux, wt,

after necessary corrections. Each of these methods gave a

heat flux estimate consistent with the others, A typical

value of sensible heat flux at the surface of Arctic leads

in winter is 25 mw/cm2. In addition, we made five measure-

ments of latent heat flux and found it to account for 1/6

to 1/3 of the total turbulent heat flux from leads.

From the integral estimates of sensible heat flux we

devised several methods for predicting the surface flux by

measuring a few bulk parameters. On recognizing the simi-

larity between the turbulent transfer of heat and moisture,
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these were extended to include a latent heat flux predic-

tion. For both sensible and latent heat fluxes the prin-

cipal prediction equation is

N = 0.18 R07l 8.1

where N is the Nusselt number appropriate for either sen-

sible or latent heat transfer. From direct measurements

of the Reynolds stress, we correlated surface stress with

a bulk parameter,

u (_)2 = 0.0643 U5 - 0.77 , 8.2

Equations 8.1 and 8.2 now provide a means for making

estimates of heat and momentum fluxes over leads on the

basis of a few routine measurements0

We made the assumption that the flux-gradient rela-

tionships are valid near the surface of the lead. They

then yielded surface heat and momentum fluxes; the Monin-

Obukhov length, L, which we henceforth used as a stability

parameter; and, indirectly, z0, which is critical in the

IBL height relation. The value of all these results, in

part, justifies the original assumption0 Seldom have the

equations been used so near the surface or for such seem-

ingly inhomogeneous conditions as in our work. But we have

demonstrated that, with due caution, the flux-gradient

relationships can have a domain of applicability even in

flows which are largely inhomogeneous.
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The profiles and these flux-gradient results suggest

a new, linear relationship between z0 and u over water,

particularly in the transition region between aerodynami-

cally smooth and rough flow0 It is

z0 = 0.4
(v)1/3 8.3

From our many observations of thermal boundary layer

height, , we have developed an equation to predict that

height,

0.8 x 0.4
'( 8.4

where x is the fetch and is a constant which depends on

upwind stability. This expression does need further con-

firmation for longer fetches and stronger winds. In fact,

it might be good to reevaluate the whole concept of bound-

ary layer height. Which is the more useful definition of

that height; the point where the flux returns to its upwind

value, or the point where the profile returns to its upwind

value? Are these necessarily different heights? Maybe an

alternative criterion which recognizes the oscillating

nature of the top of the boundary layer is better than

either. An investigation of these options would be an

interesting turbulence problem.

The more than 70 pairs of velocity and temperature

profiles we collected are supplemented by simultaneous
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measurements of at two levels. Together these give a

picture of the internal thermal boundary layer0 The velo-

city profile within the IBL is accelerated in its mid-

region through a coupling with the large vertical heat

flux. Near the surface the profile is accelerated less--

or maybe even decelerated--by the roughness change. And

above the IBL, upwind and downwind velocities merge.

Therefore, the stress profile has an emphatic bulge some-

what below the top of the IBL.

We presented more than thirty sets of spectra, u' w'

and made over leads and plotted in normalized form.

On comparing these with reported spectra for horizontally

homogeneous conditions and also with the spectra from our

observations over ice, it seems that Co contains most of
uw

the effects of the horizontal inhomogeneity. Its energy

content above the peak frequency is much greater than that

observed in cospectra characterizing more homogeneous

conditions. The spectral velocity statistics are conse-

quently lower. (w2/_uw)½ has a value of 0.99 for z/L in

the interval (-0.4, 0.0) and is likely affected by the

nearness of the measurements to the surface. (u2/_uw)½ is

2.15 and depends on neither fetch nor stability.

Spectra of temperature and cospectra of wt are still

required over leads since our thermocouples failed at the

higher frequencies. The gap in our understanding of flow

over leads due to the absence of these spectra is hard to
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evaluate0 The wt cospectra would be very interesting be-

cause the velocity profile within the IBL is strongly in-

fluenced by the intense mixing, which is, in turn, driven

by the vertical heat flux0 And the measurement of t2 and

at different levels would have let us make a more con-

fident determination of thermal boundary layer heights.

Humidity measurements of high enough quality to permit

a calculation of the Reynolds flux are seldom routine any-

where0 Succeeding with them in the Arctic would require

exceptional skill and the determination of Charlie Finley.

Nevertheless, to properly measure the latent heat flux over

a lead and so verify our inferred relation, equation 6.4.1,

they will likely be necessary because the applicability of

the integral method is doubtful Temperatures are so cold

that vapor escaping from the lead may immediately condense

and freeze on the nearest salt partic1e Profile humidity

values would then always be systematically lower with pro-

file temperatures higher reflecting the latent heat lost by

the vapor. Its an ambiguous system to describe with only

bulk averages.

In closing, we want to emphasize for any contemplating

a polar experiment how difficult it is doing research in

the Arctic environment, The cold affects more than just

the dexterity of your hands and the color of your nose.

Coupled with the extreme dryness of the air, it causes

often subtle and always bothersome problems. We
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anticipated the riming of our thermocouples but not that it

would be too severe for even the built-in heating circuitry

to combat. When we strung our cables from the instrument

hut to the towers, the cold lowered their resistance so

much that our hot-film anemometers had to be modified. The

cup anemometer turned faster in the Arctic than it did at

the same wind speed in warmer Oregon. A portion of the

thermocouple electronics was mounted with the sensors on

the two towers. The effects of the cold on the character-

istics of this circuitry was likely responsible for the

inconsistency in thermocouple calibration.

So firstly, take infinite pains in the calibration of

transducers. Calibrate in conditions as nearly Arctic as

possible. Also plan for in situ calibration, preferably

using references with well-established temperature response.

Secondly, be prepared for a wide range of modifications to

the instrumentation and the experimental design. It's im-

possible to guess everything in the Arctic bag of

surprises.
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APPENDIX A

SPECTRAL ANALYSIS IN THE ATMOSPHERIC
SURFACE LAYER

Perilous to us all are the devices of an art
deeper than we possess ourselves.

J. R. R. Tolkien
The Two Towers

Al. INTRODUCTION

The numerous books on time series analysis (Jenkins and

Watts, 1968; Bendat and Piersol, 1972; Otnes and Enochson,

1972; Kanasewich, 1975) are often both too general and too

specific -- too general because they emphasize the mathemati-

cal formalism rather than the practical result, and too

specific because when they do get practical their solutions

are not usually applicable to your problem. Hence, after

studying these texts, each must write his own cookbook of

time series analysis. The Air-Sea Interaction Group at

Oregon State University has evolved a spectral analysis pro-

cedure for time series from the turbulent atmospheric sur-

face layer -- this is the first edition of our'cookbook.

The energy in surface layer turbulence is spread over

a wide frequency range: thus, the spectral window smooth-

ing techniques which might be applied, for example, in the

reduction of oceanic wave or velocity series are not really

appropriate -- there are no spectral peaks to isolate.

Rather in our turbulence research the overall shape of the
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spectrum and the total area under it (which, in general, is

not preserved by smoothing with most spectral windows) are

the two features of interest. Clearly, the analysis of

turbulence data has a different focus than that concerned

with more periodic processes.

Our problem is this: we record one or more simul

taneous time series of surface layer turbulence (e.g., velo-

city, velocity time derivative, temperature, temperature

derivative) as voltages in analog form on magnetic record-

ing tape. This analog tape is subsequently digitized at a

sampling rate of 1/A, where A may range from one second to

1/6000 second, with the digital results stored as integers

on a computer-compatible digital tape. The information on

this digital tape is broken down into 'files', 'b1ocks',

and 'records'. A recor is the smallest piece of informa-

tion which can be passed between tape and computer: for

example, one record could contain several hundred digital

values and require five inches of magnetic tape for storage.

Usually, however, this record length, L, is a power of two

such as 1024, 2048, or 4096. During the analysis of the

time series one or more records may constitute a block of

length N, where N is again a power of two. The file will,

thus, contain B blocks, each with N values, where BN is

typically of order one million for turbulence time series.
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A2.. THE FOURIER TRANSFORM

Given a time series {Xk} of length N, the Fourier

transform pair is defined as

kO
Xk
e21'N n=O,l,...,N-1 , A2.1

Xk = x e2
nk/N k=o,i,...,N-1 . A2.2

The X's are called the Fourier coefficients at frequency

Observe that

n
AN

A2. 3

N-i
X0- XkNXI A2.4

k= 0

where the overbar indicates a sample average.

Let us establish an orthogonality relation for Fourier

analysis. We require that A2.1 substituted into A2.2 yield

an identity. That is,

N-1
2iTink/N

N-1 -2irink'/N
Xk e e

n=O k'=O

N-i N-i 2irin(k-k')/N A2.5x,, e
N k'=O n=O

N-i
Look closely at e2h11 )/N If we define

n= 0
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But recall
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w

N-i
w"=iw+w2+... +w1". A2.6

n= 0

So A2.6 can be simplified to

T
- (1)

. A2.7

Consider the properties of A2.7. k-k' is always an integer

less than N; therefore, is always one. And since W is

less than one except for k=k', A2.7 is zero whenever kk'.

At k=k' we invoke L'Hospital's Rule,

N-1 2rimn
urn = lirn

2Trimn/NmO n=0 rnO l-e

2irimn-2'rin e
= urn

2rrin 2iiimn/NmO-
N

e

=N

In summary,
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1
N-i 2rrin(k-k')/N A2.8e kk'
n= 0

a relation which will be useful throughout our ensuing dis-
cussion.

Now returning to A2.5,

Xk Xk kk' =

which is the identity we sought; hence, our transform pair
is valid.

Notice finally a symmetry in the Fourier coefficients
when {xk} is a real time series:

N-i -2ri(N-n)k/N
XNn_ L xke

k= 0

N-i -2rrik 2iiirik/N
L xke e

k= 0

XN_fl = X A2.9

where * indicates complex conjugation.

A3. THE POWER SPECTRUM

The power spectrum of a time series {xk} is simply the

complex product of its Fourier coefficients,
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= XX n=O,l,...,N-l. A3.l

Because of A2.9, P also has a symmetry if the time series

is real:

x,N-N = 'xn n=1,2,...,N-1 . A3.2

That is, P, is symmetric about N/2 excluding n=O.

Let us investigate just what the power spectrum means.

Suppose we sum
xn

over n:

N-1 N-1
P = xx*

n=o n=O
n n

N-i N-i -2ink/N 2ink'/N- xke xk,e
n=O k=O k'=O

N- 1
r 2=N
2.

x)

k= 0

But remember X0 = N, so A3.3 yields

Or

N-1 N-1
P +N2x2=N x.

n=i k=0

A3.3

1
N-1 1N-1

n=l xn N
k=O

(xk)2 , A3.4
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where now the right side of A3.4 is the sample variance

(see Brunk, 1965). Consequently, we interpret P to be a

measure of what motions of frequency n/AN contribute to the

variance of our observable.

We can also define a power spectrum of two distinct

series Cxk} and This is the cross spectrum:

Pxyn = A3.5

Notice here again a symmetry about N/2,

P =X Y*
xy,N-n N-n N-n

= x*Ynn

= Py n=1,2,. .,N-l. A3.6

As before, sum P to see what interpretation we can

offer:

N-i N-i N-i 2 ink/N
N-i 2ink'/N

P = xk e e

n=O 1 n=O k0 k'O

Proceeding as above, we find

and

N-i N-i

n
+ N2x y = N Xkyk , A3.7

n=i k=O

iN-i 1N-i

N2 n=1 N
k=O

(xk_) 'k' A3.8
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the covariance between {xk} and Or in the perhaps

more familiar correlation notation

N-i
xtyt = ' A3.9

N n=O

the primes denoting fluctuations from the mean. Thus, the

cross power spectrum is a measure of what the frequencies

n/AN contribute to the correlation between Xk} and

Observe what A3.6 implies about A3.8. We could write

N-i N/2-1

n1
+

+ N/2

N/2-1
= (P p* )+P

n=i
xyn xy,N/2

But P + P is real as is P (see equation A2.1).
xyn xyn xy,N/2

Hence, though the P are, in general, complex, xtyl is

real since is antisymmetric about N/2 in its imaginary

part. We, thus, could simplify things by writing

N/2-1
X'Y' =

nl
R[P 1 +

N2
xy,N/2

' A3.lO

where R[ I indicates the real part.

A4. THE SPECTRAL DENSITY

Equations A3.2, A3.4, A3.6, and A3.8 and our anticipa-

tion of some method of smoothing the raw spectral estimates
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lead us to the consideration of spectral density estimates.

In the smoothing process we will in some way combine

spectral estimates over a frequency band to produce a

single estimate. Therefore, to preserve the variance and

covariance relations of A3.4 and A3.8 we need an altered

definition of the spectrum to account for the length of the

frequency band: this is the spectral density -- the con-

tribution to the total variance or covariance per unit of

frequency.

To get the feeling of spectral densities, we will

first neglect the complications of smoothing. In A3.4 each

is appropriate to a frequency band of length

1
df

LN
A4.l

We also know that for a real time series is symmetric

about N/2. So A3. 4 rewritten in terms of the spectral den-

sity
xn and the frequency interval dfn would be

N/2-1
x'x'= df +

n=l xn n x,N/2"N/2 A4.2

Clearly, the spectral density in this case is related to the

power spectrum by

n=1,2,...,N/2-1 A4.3

x,N/2 x,N/2



We can likewise rewrite A3.8 in terms of a cross

spectral ,

where
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N-I
xtyI xynn ' A4.4

n 1

xyn 'xyn
n=1,2,...,N-1 A4.5

However, the interpretation of this cross spectral den-

sity, is obscure because is complex. So we

choose to write as the sum of its real and imaginary

parts -- the cospectral and quadrature spectral densities --

= Co i Qd n=l,2,...N/2 . A4.6
xyn xyn xyn

To understand the origin of these look at

R[ I = + c1*
I n=l,2,.. .,N-1

xyn xyn xyn

1=
xyn

+ xy,N-n

where R[ I again indicates the real part. Now rather than

summing. everything twice, we recognize the symmetry about

N/2 and define the cospectral density

COxyn = [P + xyNn1 n=l,2,...,N/2-1

A4.7
COxy,N/2 = xy,N/2
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-i I[ I = - *
I n1,2,...,N-1

xyn xyn xyn

=L[p -p
2N xyn xy,N-n

where I[ ] indicates the imaginary part. Again because of

the symmetry the quadrature spectral density is

N xyn xy,N-n
n=1,2,.. .,N/2-1

Qd = 0 . A4.8
xy,N/2

Henceforth, when we write tspectruml we will mean the

spectral density or these cross spectral densities.

As wetve explained in Section A3, the imaginary part of

the cross spectrum cannot contribute to the covariance of x

and y; thus, a summation from one to N/2 of does not

have a ready interpretation (a summation from one to N-1 of

I[Pxyn] is zero). The summation of Co is, on the other

hand, the covariance:

N/2 N/2-1

nl COxyndfn = N nl xynxy,N-n + xy,M/2

N-i
= -

: xynN rti

N/2
Co df = x'y' . A4.9

n=i xyn n
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We could choose an alternative formulation to 4.6,

representing as a length and an angle in a complex

polar plane. That is,

xyn = JGxynJe° n=l,2,...,N/2 , A4.10

where the vertical bars indicate magnitude. Here is

related to the coherence spectrum and is the phase

spectrum. Obviously,

Co =IG Icos®xyn xyn xyn

A4.11
Qd 1G Isinexyn xyn xyn

Therefore, the phase spectrum is

Qd
= arctan xyn

, A4.12
xyn

and the length IG
J

isxyn

2
IG

I
= (Co + Qd ) 2 A4.13

xyn xyn xyn

By squaring A4.13 and normalizing with the spectral densi-

ties of x and y we define the coherence spectrum,

G2 Co2 +Qd2
Ch xyn xyn xyn

xyn
A4.14

xnyn xnyn



'Coherence' is an appropriate term because on looking back

at A4.6 we realize Ch is also

yn A4.15Ch =xyn

which may be interpreted as the square of the spectral cor-

relation coefficient.

Notice if Qdxyni and are simple

multiples of the power and cross power spectra (i.e., if no

smoothing has been done), then

[(P +P )2-i-(P

Ch
(1_½fl,N/2)2 xyn xy,N-n xyn

xyn
(2_flN/2)2P P

xfl yn

4P P*
xyn xyn

4P P
xn yn

(X y*) (x*Y
nfl nfl

(X x*) (y y*)nn nn

Ch =1.
xyn

A4.16

Thus, the coherence of raw spectral densities is always one

regardless of the physical process.

Just for fun letts try to give equations A4.lO to

A4.13 a more solid geometric interpretation. Consider two

vectors in a complex plane; their decomposition is



182

± R I
x = x + 1X

A4 .17

+ jy'

where the superscripts indicate real and imaginary parts.

Figure A4.1 defines our notation. Suppose e seek the

angle between the vectors, a. That's easy to find if we

rotate to a new coordinate system X', Y' in which X' coin-

cides with 5. The matrix of this transformation is

and

Hence,

cos y sin y
A4.18

-sin y COS y

x'cosY=
(XR2 +

A4.19

XI

(XR + X12)½

s xRyI IyR
a = arctan = arctan [ ,.

. A4.20
r + xy

Now can we draw an analogy between A4.20 and A4.12?

Using A3.5, A3.6, A4.7, and A4.8 write

Qd i(X Y* - X"Yxyn_ nn nn A421
Co XY*+X*Y

xyn nn nfl



Imaginary

Y

\:

Real
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Figure A4.l. The decomposition of two vectors in a complex
plane.
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Recognizing Xn and Y are complex we expand to

Qd i(XR + ix')
(R

y1) - - ix') (YR + jy')

COfl
(X + jX) (Y - iY) + (X iX) (Y + iY')

xRyI - xIyR
nn nn

xRy1 + IyInn nfl

A4.22

So
- xIyR

ox n
= arctan [

fl A4.23
y xY +xYnn nn

which has exactly the same form as A42O. The lesson is

that if we interpret the Fourier coefficients X and Y as

complex vectors, is the angle between these in the

complex p1ane

Next look at equation A40l3. We can again substitute

A407 and A48 to get

I
= (l-½ ) [(p +p* )(p* +p )xyn n,N/2 xyn xyn xyn xyn

+(P -P* )(p* _p )J½
xyn xyn xyn xyn

= i. (2_5flN/2)[XflYXYfl]½

I = (2-s ) Jx
J

A4.24
xyn N n,N/2 n n
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Excellent! This result gives the cospectrum and quad-

rature spectrum as defined by A4,ll ready geometric signi-

ficance, We rewrite,

Co = (2 ) X cos 0
xyn N n,N/2 n n xyn

Qdxyn = (2 n,N/2 lXnI n1 0xyn

Now Co looks in
xyn

of the lengths of

the angle between

the cross product

A4.25

ich like a scalar product -- the product

twovectors multiplied by the cosine of

them. In turn, evokes memories of

between the two vectors. And these two

vectors are the Fourier coefficients of the two time series

of interest.

AS. BAND AND BLOCK AVERAGING

In the last section a one point estimate defined the

raw spectral density. But band and block averaging reduce

computer storage requirements and improve confidence in the

estimates. Therefore, we combine the N/2 raw spectral den-

sity estimates per block into b band-averaged estimates and

further average together the estimates for each of the B

blocks.

The band averaging is really a smoothing process; how-

ever, because of the nature of turbulence spectra we need

not consider the more sophisticated smoothing windows.
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Rather our window will be (in the vernacular) non-overlap-

ping boxcars of unit height. Generally, the high frequency

limit of each boxcar is an exponential function of the band

index; thus, on a logarithm of frequency plot the smoothed

spectral densities will be evenly spaced. Table A5,l is an

example of exponentially spaced frequency bands for N =

4096.

If we let BEn be the upper bandedge of the nth fre-

quency band (the high frequency limit of the nth boxcar)

and define

BE0 = 0

our smoothed spectral density is

1
B BEn

B(BE -BE )

nl,2,.. .,b , A5.1
n n-1 j=l k=BE +1

n- 1

where is the raw spectral density, A4.3, or the raw

cross spectral density, A4.6, at frequency

kkN A5.2

in the jth block. We associate this smoothed estimate with

the center frequency of the band

BE +BE +1
n n-1 A2N
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Table A5.1. Example of exponentially spaced spectral bands
for a block length of 40.96.

Upp
Center

Band Frequency
Frequency
BE +BE +1

Index Index Count n n-i
(n) (BEn) .(BE.-BE_1) 2N

(xt)

1 1 1 2.44x104
2 2 1 4.88x104
3 3 1 7.32x104
4 4 1 9.77x104
5 6 2 1.34 x 10

6 9 3 1.95x103
7 12 3 2.69 x 10

8 17 5 3.66 x

9 23 6 5.00 x i0

iO 32 9 6.84 x

11 45 13 9.52 x

12 62 17 1.32 x io2

13 85 23 1.81 x io2
14 117 32 2.48 x io2

15 161 44 3.41 x io2

16 221 60 4.68 x io2

17 304 83 6.42 x io2

18 418 114 8.83 x i02

19 574 156 1.21 x 10_i

20 789 2i5 1.67 x 10_i

21 i084 295 2.29 x 10_i

22 1490 406 3.14 x 101

23 = b 2043 558 4.32 x 10_i
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As mentioned earlier, one motive for choosing the

simple smoothing procedure of A5.i is to preserve the

variance and covariance. In analogy with A4.2 and A4.4 we

can compute the variance or covariance from the smoothed

spectral densities thusly,

where

b

= df , A5.4
xn n

n= 1

df
BE

A5.5

is the frequency interval over which is defined. If,

to continue, we substitute A5.i in for in A5.4,

b BE_BE1 1

n=l
tB(BE_BE1)

j1 kBE_1+1 xkj

B b BE
= df A5.6

j=l n1 k=BE +1n-i

But the sum at each frequency within band n and then over

the b bands is equivalent to summing over the N/2 raw esti-

mates. That is,

b BE N/2

n=1 k=BE +1 n=in-i
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Equation A5.6 obviously includes a summation over the B

blocks which we were not yet considering in A4.2 or A4.4;

otherwise, in all respects A5.6 is mathematically equiva-

lent to A4.2. In other words, the smoothing operation,

A5.1, does not alter the sample variance or covariance if

we pair the smoothed estimate with its appropriate frequency

interval, A5.5.

A6. EXTENDING THE SPECTRUM

The zeroth Fourier coefficient, A2.4, cannot contain

any information pertaining to frequencies of l/N or higher,

and the higher order coefficients contain no information

about frequencies lower than 1/tN. However, the series of

averages {} we generate when Fourier transforming B con-

secutive blocks most likely contains information at fre-

quencies lower than l/N. In essence, applying the Fourier

transform to B blocks each of length N is a low pass f ii-

ter with the time series {} the output of the filter.

Since we derive one for each time step of N, the

sampling frequency of this new series is l/N. Hence, we

see the possibility of extending the spectrum to lower fre-

quencies by working our Fourier magic on this series of

averages.

This concept of extending the spectrum is easier to

see mathematically if we return to A3.7
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1N-1 N-i

N k0
XkYk =

n=1
A6.l

Or changing to the more familiar notation of the spectral

density

1N-1 N-i

N
k=0

XkYk = x
+ n=l

df . A6.2

Now consider what happens when we sum over consecutive

blocks. We get from A6.2

1
B N-i B B N-i

N'
j=l k=0

Xk] = + j1 n=1 xynjn A6.3

As promised we'll transform the series of the averages. But

first suppose B isn't a power of two -- we transform only

series with lengths a power of two. For such a series,

somehow choose Ne consecutive values from the B averages,

where Ne is the iargest power of two less than B, and work

with these Ne samples. That is, in A6.3 we make the

approximation

B
e

1 -- 1
N-l__

x.y.
mO

XY . A6.4

As usual, the transform pairs of {j} and {} are

Ne_l - _2fl/Na
A6.5X = xe

j=0



and

where

e

Y
N1 e2nj'1?
j=O

- i
Ne_i 2fl,Ne

N n=O

= n

= N

Ne

191.

A6.6

A6.7

(new averages, not to be confused with the and of

A6.1)

Substituting A6.& into A6.4 and usiig the ubiquitous

A2.8 we continue,

e e e e
N -i N -1 N 1 2rrjnm/Ne N -1 _2inhm/Ne

e XmYm e3 L L e
L.

N m=O N m=O n=O n'O

Nel
_L.
e2 nn

N n=O

This result in A6.3 yields

1
B N-i Ne_l B N-i

j1 kO
Xki kj + n=1

XnYn +
j1

A6.9



Not surprisingly, we again find the covariance:

1
B N-i

=

jl k=O
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A6.l0e,
i

N-.j.
k ±

N-
.df

Ne2 n=l
n n B

i n=1
xynj n

Clearly, we can get the variance through the same routine

by substituting x for y.

We've seen how to band average the spectra -- we do

likewise with the extended spectra. In açt, to preserve

the same logarithmic spacing the be extended spectral

averaging bands can be those of the regular spectra -- only

the frequencies and perhaps the highest bandedge are

altered. Table A6.l is an example of extended spectral

ebands for N = 128 and N = 4096.

In analogy with the band-averaged spectral density

estimates, A5.l, we define the smoothed extended spectral

density. This is

where

1

n BE-BE
n n-i

BE

k=BE +1
n-i

= (2 k,Ne/2)XkXk

for spectral density estimates, and

A6.11

A6.12
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Table A6.1. Example of averaging bands of an extended
spectrum for Ne = 128 blocks, each of length
N = 4096.

Upper
nte

Band Frequency BE
eue Y1

Index Index Count n n-i
(n) (BEn) (BEnBEn_1) 2tN Ne

(xL)

1 1 1 1.91 x l06

2 2 1 3.81x106
3 3 1 5.72 x l06

4 4 1 7.63 x io6

5 6 2 1.05 x 10

6 9 3 1.53 x l0

7 12 3 2.10 x 10

8 17 5 2.86 x 10

9 23 6 3.91 x 10

10 32 9 5.34 x l0

11 45 13 7.44

12 = be 64 19 1.05 x 10
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= Co] Qd:Yk A6.13

for cross spectral density estimates. Obviously, in the

second case

CO - iQd . A6.14

We associate these with the frequency

BE +BE +1
n n-i A6.15

n 2ANNe

and the frequency interval

BE - BE
dfe n-1 A6.16

n ANNe

Hence, A6.lO finally becomes

and

be B b
= e dfe + I .df A6.17

n=l
xn n B jl n1. xni n

B b
xty' = 0e dfe + .1 C .d . A6.18

n=1 xn n B j=i. nl YflJ

A7. CONFIDENCE INTERVAL FOR

Because assigning confidence limits to the results of

a process requires knowing or assumthg the probability
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distribution of that process, we should spend a few moments

reviewing the notation of probabi.jty and statistics before

moving on to a discussion of confidence thtrva1s.

We will denote a 'random variable' by x: x. and x.- J
are observations of the random variable at tims i and j,

respectively, with and the resu.ts of these observa-

tions. Assume x is normally distributed with mean zero and

variance one: that is, x is normal(O,1.). f a random

variable is instead normal with n'ean ii and variance a2,

we can make it normal(O,1) with the transfonation

xz__P
a

Let us generate a series of observations of
' k'

containing N samp1es. The 'sample average' of this series

is

N-1
x=± x.- N0_1

and the 'sample variance' is

N- 121
i=O

= 2

The true distribution mean of a quantity of i.ntrest is the

'ensemble average' (Lumley and Panofskyq 1964) or the
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'expected value' (Brunk, 1965) and is denoted by E[ ]. For

the expected value of th variance of the distribution we

write V[ ]. Hence,

E[x] = 0

N'- 1

E[] = E[ cj)

E(x) = 0

V(x] = E[x - E[xJ)2

= E[x2J Erx}2 1

E[1] = ii

2 2 2
VIZ] = E[ 1 =

Finally, we define the correlation coeUiient,

Ef( T.1)(1.

p. . = . A7.1
2

Clearly, this is an even function,

pij P_

Ipi .
1

since for i=j the numerator of ALl a2,
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The crux of defining the prqbability distribution of

and thereby establishing a mathematical basis for

assigning a confidence interval to the jue spectrum,

is proving the independence of any two members and of

the time series 1xk}. The masterworks in the fiei,d of

spectral analysis either beg the question or do ot treat

confidence intervals at all. Foz example, Jenkins and

Watts (1968) assume their time series is white noise and so

by definition uncQrrelated. Iowever, most time series are

not as trivial as this. In turbulence. research we might

study a time series of the horizontal wind speed,

Everyone knows this series is correlated: the cprrelation

coefficient

ENu- i) ii)]

pi-j

is not always zero but rather depends on the time separa-

tion, k = i-j, between observations. The smaller k is, the

better the correlation. For 1age k the correlation co-

efficient becomes zero -- the series eventually tforgetst

what has happened before. After such reflection there

seems little hope of showing any two and x o a geo-

physical time series are uncorrelated. We can, however,

design our experiment to approximate this condition as

closely as we like.

Consider the sample correlation between x. and x.
-'P1 3

That is
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N-i N-i

? io j=O

'the expected value of this is

N-i N-I,.

E[x..] - pi_. A7.2
N i=Oj=O

since the standard deviation of x is i. To strictly estab-

lish the independence of any twq observations in the time

series, A7.2 must be zero. .s we've explained, this is

obviously not true for most geophysical time series. How-

ever, let us continue on to investigate just how close to

zero A7.2 is.

Write A7.2 as

N-i i N-i
E[xx.] =

[ p. + p_ .1 - I A7.3
N i=O jO J N

In the second summatjon on the right make the substitutions

Then

nN- 1-i

mN- 1-j.

N-i N-i N-i N-i
pi_,. =

i0 ji n=O j=N-l-n

N-i n
=

n=O m=O
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Thus, because p_ is even,

E[xx1
:: L

. A7.4

Next let k = j-i. We get from A7.4

k=0
'k

A75

Suppose now for illustrative purposes that is a

correlation coefficient linearly decreasing with time

separation:

for0 JkJ <r,
A7.6

=0 forIkIr.

Tennekes and Lumley (1972, p. 210) explain that the inte-

gral scale

T=
k=O

A7.7

is a measure of the time over which x remains correlated

with itself. For the correlation coefficient modeled by

A7.6 the integral scale is about r/2. Keep this in mind.

On substituting A7.6 into A7.5 we can at last approximate
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2 r i
k

= (111J' Ni=0k0

2 j(±+l)[1- 2r
N i=O

(r+l) l{r (r+1) (2r+1) r (r+l)]]
N

2(r+l) (r-l)
-) . A7.8

3NL

The result A7.8 demonstrates what is important in

determining the correlation of a process: the longer the

sampling time or the poorer the 'memory' of the signal, the

smaller the expected value of the correlation. For example,

if r is of order ten seconds and our sampling time N is

five minutes, then

E[x.xik] (.9&2 0.001

that is, the expected value of the correlation is 0.1%

of the samplevariance. Our conclusion is that given

a finite integral scale, we can choose a sampling time for

any process which forces the expected value of the correla-

tion to be approximately zero. In other words, the assump-

tion that any two observations in our sample are independent

is well justified.
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Now we can go on to establish the probability distribu-

tion of the spectral density estimates. Wetli assume our

observable is the defined earlier which was normal(P,a2).

As always

N-i
=

.k
e21u'N

k= 0

And since by proper sampling we can force the k'S to be

approximately independent,

of

E[Z) = p2 . A7.9

Our first step is to determine the mean and variance

N-i
-2'rrink/NEEY ] = E[] en

k=0

= A7.lO

from A2.8. The correlation between any two Yri'S IS

E[YY]
N-i

e2 nk/N
N1

e2
mkt/N

E{kyk,J
k=0 k'=O

= N a2
6mn N2

2

6n0 6rnO
A7.11

on the basis of A7.9 and A2.8. That is,

E[Y0Y] = N a2 N2p2

E (YY] = N a2 n 0 A7. 12
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E[Y)=O nm.

V[YJ = N n=0,1,. ..,N-1 A7.13

Therefore, since the are normally distributed, the Y's

are also normally distributed such that

normal(Np,Nc2)

normal(0,NY2)

Our development will continue along smoothly if we

write Y1 as

:: 1Zk
2rnk +

2rrnk1

+ i Yln n A7. 14

With little trouble we can show that and are uncor-

related for all n and m and that each is uncorrelated with

itself unless n = m. For example, look at

E[YY] *N(e2hhj1k1N e21e2imkhh/'N
k=0 k'=O

2 imk' /N)
E k1k )+e

Substituting A7,9 and summing, this is
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E(YY]

+ e2 +m)k/N +

- N2
2

ônOSmQ A7.15

which reduces to

E[YY] =
nm + 6n,-m N21J2ÔnOtSmO . A7.16

But notice

e2+in/'N = e2+in_k1't

Hence, A7.15 is also

E[YY)
nm + n,N-rn1 N2p2ôot5o . A7.17

Therefore, if we insist on our frequency index ranging be-

tween zero and N-i, 6ri,m is non-zerQ only at n = in = 0, and

n,N-m is non-zero only when n = in = N/2. Thus, A7.16 and

A7.17 are in summary

= Nci2 - N2ji2

E[YY] 6nm 0,N/2

= N2

The remaining statistical properties of and follow

similarly. These are
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- normal (Nii,Na2)

normal(0, -) n0,N/2

+ normal(0,Na2) A7.18

2

normal(0, n0,N/2

I I
and N/2 + identically zero

Recall that

.yn + x_1 A7 . 19

Since, Pyri is, thus, a random variable found by summing the

squares of two independent, normally distributed random

variables, 2 P/N2 for n0,N/2 is a chi-square random

variable with two degrees of freedom (see Brunk, 1965, p.

230) . That is,

2Pyn 2 n0,N/2
2

y,N/2 2

N2

A7 .20

And we've arrivedL Having established the probability dis-

tribution of p, we at last reach the firm footing of prob-

ability theory and should find the going easier. But be-

fore trekking on let us review the fundamentals of a chi-
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variable has degrees of freedom, then

consequently,
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E[2] =

A7.21
V[X1 = 2'j

2E [x212
v= A7.22

vt.xV]

Rather than working with the power spectrum in A7.20, we

prefer to use the spectral density

= (2 '5n,N/2yn n=l,2,...,N/2. A7.23

By substituting A7.23 into A7.20, we show that

yn 2

!y,N/2

fl=l,2,....N/2r4

A7.24

However, Sections A4 and A5 explained that we are seldom

concerned with the raw spectral density, but instead

will average raw densities (note: C = BEn BEn_i) to

get the nth band average and further average each band over

B blocks (refer to equation A5.l). Hence, the smoothed

spectral density estimate, is the result of adding the

squares of 2CnB independent, normally distributed random
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variables. It will, thus, have approximately 2cB degrees

of freedom.

Therefore, we wish to fcrm a random variable from

such that

+ 2cB A7.25

From A7.21 we can find a. That requires

B BEn
2CB = -.- [_1__ E[kj]]

Aa n j=1 k=BE_1+l

Using A7.23 and A7.19 we get

2CnB 2 cB
(2

6n,N/2) j1 k
E[YkY;k +

which from A7.18 reduces to

or

a Na22cB = - (2
n,N/2 + T n,N/23

a2N

a = CnB

With more algebra than we care to mess with here it

can be shown that !yn is an unbiased estimator of rynl the

true spectral density: that is,

E[ ]=ryn yrl
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Hence, recalling A5.l and using A7.23 and A7.19,

2
Et!] = ryn = 2tcr . A7.27

Substituting A7.26 and A7.27 into A7.25, we finally demon-

strate that

2c B
A7.28

Because of the fact that the Fourier coefficients are

only approximately independent for a non-trival time series,

we prefer to estimate the degrees of freedom rather than

assume v is simply 2cB. To do that we appeal to A7.22

using the sample mean and the variance of the sample mean.

So note that if for a series of observables {xk} we calcu-

late

then

N kl
Xk

N
V[J = - V[xk) = Vfxk)

N k=l

Likewise we relate the sample standard deviation, s, to

the sample standard deviation of the mean, S:

=
i S2 . A7.29
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In our problem is the sample mean. The sample standard

deviation, s, is consequently

=

jl k=BE1+l ykj n
A7.30

2Hence, from A7.29 the sample variance of the mean, Syfli 15

Then finally

l2 A7.3l
yn cB yn

2
yn A7.32

n
yn

and we, consequently, modify A7.28 to read

n yn
. A7.33

r
yn

In general, considering A7.31, we expect will be roughly

2cB.

Everything is now ready for our placing confidence

limits of ry. Because of A7.33we can make the probability

statements

v
Pr{ < x2 }

yn

v
Pr{ X,l_a} = 1 a

yn

A7.34
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where a is an arbitrary, small number and Xa is the lOOa

percentage point of a chi-square distribution with v

degrees of freedom. Rearranging A7.34 we have expressions

for the confidence limits of I'

Pr{b < = a

a
A7 .35

Pr{a
2

r} = 1 - a

Xl_a

[a,b] is, thus, a 100(1 - 2a)% confidence interval for

ryn.

An an exercise, suppose we find v = 30 and desire a

95% confidence interval on F : in other words, a
yn

0.025. From readily available tables

1.]

= 16.79

2
= 46.98

30
yn

a
46.98

30 yn
16.79

That was pretty easy. But many time series will con-

tain so many blocks and/or such long records that a smoothed

spectral density estimate could have anywhere from 100 to
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20,000 degrees of freedom. Few tables tabulate the chi-

square distribution beyond 100 degrees of freedom. However,

for large degrees of freedom a normal approximation is well-

founded: the C.R.C. handbook of probability and statistics

(Beyer, 1966) gives the following approximation for the

l00c percentage point of a chi-square distribution with more

than thirty degrees of freedom:

= tz + (2v - 1)2)2 A7.36

where za is the lOOa percentage point of a cumulative nor-

mal distribution.

A8. CONFIDENCE INTERVAL FOR 1'xyn

We have yet to find a proof which establishes the prob-

ability distribution of xyn' the cross spectral density

estimate; therefore, we appeal to the Central Limit Theorem

as a basis for assigning confidence limits to rxyn. That

theorem states that the distribution of the sample mean

approaches a normal distribution as the size of the sample

gets large. Because our block and band averages may be com-

prised of from 50 to 10,000 raw spectral estimates,

assuming
2-xyn

is normal seems reasonable. Hence, drawing

on the volumes written about the normal distribution we can

easily place rough confidence limits on rxyn.

If we again define the sample variance of the

sample mean, as in A7.30 and A7.3l, we can form an
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approximately normal(O,l) random variable, thusly,

-rxyn xyn A8.1
xyn

The reader might argue that because we must use the sample

variance, a t-statistic would be more appropriate. But re-

call, the t-distribution approaches a normal distribution

as the sample size grows.

Probability statements about A8.1 follow immediately.

< -z} = a

A8.2
-rxyn z} = 1 - a,

xyn

where za is the lOOa percentage point of the normal distri-

bution. A few manipulations of A8.2 yield

Pr{b + z S < F } = axyn axyn xyn

Pr{a = - z $ F } = 1 - a.xyn axyn xyn

Obviously, fa,bj is a 100(1 - 2a)% confidence inter-

val for Fxyn If, for example, we desire a 95% con-

fidence interval for then = 1.960. So

a - 1.960 Sxyn

b + 1.960 Sxyn
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A9. THE FAST FOURIER TPANSFORM

Most of the spectral analysis we do is economically

possible (with respect to both money and tirre) only because

of the fast Fourier transform (FFT). That algorithm is

roughly N times faster than the direct transform of equa-

tio A2.1. Therefore, since, weve spent most of our energy

describing the mathematics of spectral analysis given the

Fourier coefficients, it might be worthwhile to at last add

a few words about the mechanics of generating those coeffi-

cients.

Let us look again at the series used in A2.1. Write

the Fourier transform as

Xk
e_2hhhJh/N A9.l

where we introduce the superscript N to indicate the number

of samples in the data series. Suppose we divide the series

{xk} into two unique series {y} and {zk} each of length

N/2, thusly,

= X2k

k=O,l, . . . ,N/2-1

Zk = X2k+l

Then the Fourier coefficients of these new series are
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N/2-1

k

n=O,1,...,N-1 A9.2
N/2-1

z
-4irink/N

kO
ke

Or we could write X in terms of the new series

N N/2-1
x = y e2 n(2k)/N

+ Zk
k=O

k

which yields

1N/2 + e21'N z/2 149.3

Now let's go another step farther - divide each of

our new series in two again. Set

As before

'2k

Zl: '2k+l

k=O,1, . . . ,N/4-1

= Z2k

zj = Z2k+l

N/4-1 e8/'N

n=O,l,....,N/2-1 A9.4

-Biiink/N

k=O
ke
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and so forth. In terms of the new series

Or

N/2
N/-i

-4rrin(2k)/N , -4iiin(2k+l)/N
L Lyke zke

k= 0

N/2 ,N/4 + e4'N zh11'4
n n n

ri=0,1,...,N/2-1 A9.5

,,N/4
+ zuN,'4

n n n

It's now possible generalize from A9.3 and A9.5.

If we've divided our original N samples into N/rn series of

rn samples each, then

where

m
+ n

m A9.6
n n

W A9.7

But from A9.2 and A9.4 we can show that

And from A9.7

m _rn
"n+rn n

rn

Zn+rn_LJn

n+m _n A9.9

Thus, the computation of Xrn is further simplified because

2m rn
- m A9.l0

n+m n n
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Equations A9.6 and A9.1O, thus, constitute the fast Fourier

transform algorithm:

2m = +
n

2m _mnm
n+m n n

n=O,1,. ..,m-1.

A9.l1

By now the scheme for use of the FFT should be glim-

mering, at least faintly. If the number of samples, N, in

our original series is a power of two, we can continually

divide it in two until we have formed N new series of one

sample each. But the direct Fourier transforms of these

one-sample series are the sample values themselves. We

then climb back up the ladder generating progressively

higher order Fourier coefficients using the algorithm of

A9.11 until we reach the ultimate coefficient, X. If N

is not a power of two, we divide it by two until reaching

an odd number, p, split our N samples into N/p series of p

samples each, compute the direct Fourier transform of these

N/p series, and again apply the FFT algorithm, A9.11, to

compute higher order Fourier coefficients.

It might facilitate our understanding the FFT to look

at an example. Take a time series {Xk} for which N8.

Figure A9.l is a signal flow graph (after Cochran, et al.,

1967) which demonstrates the workings of the FFT in this

case. On a signal flow graph the dots (or nodes) represent
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Figure A9.1. A signal flow graph demonstrating the fast
Fourier transform for N = 8.
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variables and the arrow heads specify transmissions. Each

node is the sum of the nodes pointing into it with weight

factors noted near the arrow heads. So, for example in

Figure A9.1, in the upper right is

= Y + W° Z

In this FFT signal flow graph the variables down the left

side are the original eight one-sample time series and are

themselves the Fourier coefficients contributing to the

next level of nodes. On the right are the final Fourier

coefficients. The arrows lead from the time series to its

Fourier transform specifying the summations and multip1ica-

ions required by A9.11.

AlO. FFT PECULIARITIES

Because the time series {xk} used in A2.]. need not be

real, it's economical for any FFT computer software to

always process a complex time series. Hence, most FFT

packages yield the transform of the complex series {xk},

where

xk 'k
+ I Zk , AlO.l

and {zk} being real series. Consequently, if we have

only real data, it's feasible and, in fact, prudent to

transform two time series simultaneously by entering them

in the form of A1O.1.



We may, for example, have a horizontal and a vertical

velocity series, {Uk} ana {wk}, respectively, and so could

call for the Fourier transform of chere

This is simply

Xk_Uk+lWk. AlO,2

N-i -2rink/N AlO.3X = xke
k=O

On substituting A1O.2 into A1O.3 we get the individual

transforms of the u and w series,

As usual

[Uk + i Wk e_2/]

=U +iW AlO..4
n n

N-i
-2irink/NU- L uke

k=O

AlO . 5

N-i
-2irink/NWn= wke

k= 0

Because and W are, in general, complex -- that is,

u = + i
n n n

AlO 6

w = + ± WI
n Ii fl
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they will not be as easy to retrieve as A1O.4 might

imply. To enter the data in the form A1O.2 we stored {uk}

in a real array and {wk} in an imaginary array. The trans-

form coefficients are likewise returned with the real part

in the real array and the imaginary part in the imaginary

array. So it would be more appropriate to write A1O.4 as

X=X+iX AlO.7

where now X and X are the real and imaginary parts,

respectively, and so both real numbers. Clearly,

x=U-w
AlO.8

XI = U1 +
n n n

To deduce the four quantities u, u, wR, and from

the two stored terms X and X will require some algebra.

From AlO.5 we show that since Uk and Wk are real

= U
n N-n

w*=w
n N-n

Thus, if

Xn = Un + i Wn

then

AlO.9



Hence,

x_n = Un - i Wn

Un [X +

= _i/2[x - X]
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AlO . 1!)

Or using Al0.7 and rearranging, we finally get expressions

for the real and imaginary parts of the Fourier coefficients

and W:

U = + + i(X - X)]

W = + x) + i(X -

Usually the software sets

n=0,l,...,N-l.

XN - XO

Al0.11

so for n=0 and n=N/2 both U and W are real as expected.

In performing the FFT a computer must sometimes scale

the results to keep the numbers in a range it can accommo-

date. This scaling is simply multiple divisions by two of

every coefficient. When the FFT is completed, the computer

notes the scale factor, c, which is the number of such divi-

sions. The true Fourier coefficients are, thus, related to

the stored coefficients by
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true 2c
u

n n

AlO . 12

wrue 2c

A.11 CALIBRATION COMPLICATIONS

Our introduction explained that we record turbulence

data transducer voltage signals -- in analog form on

magnetic tape, digitize this analog data, and store the

digital results as integers on a computer-compatible magnet-

ic tape. All the spectral analysis is done using this

digitized data. Thus, there are several processing steps

between the physical observable and its spectral density:

a calibration equation for each of these will likely be

necessary.

Suppose we are fortunate -- suppose every step in our

data handling involves only a linear calibration. If x is

the observable, t the corresponding transducer voltage, v

the analog tape voltage, and m the digital tape integer, a

typical set of calibration equations might include the fol-

lowing:

1. Calibration of the transducer--

x = a1t + b1 All.l
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2. Signal processing and analog tape conversion--

t = a2v + b2 All.2

3. Analog to digital conversion--

V = am + b3 . All.3

Obviously, with these happy circumstances the observable is

a linear function of the mag tape integer,

x = a1a2a3m + a1a2b3 + a1b2 + b1 , All.4

x = am + All.5

Next look at what A2.l says about the Fourier coeffi-

cients of the integers,

where as usual

(aXmk + b) e2fh

Xn = aN + b nO
' All.6

mk
e2 ink,'N

. A1l.7

The result Ali.6 is extraordinarily convenient. It

suggests the possibility of doing the FFT on the integer

series rather than converting the integers back to
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observables before the FFT. Because integer variables re-

quire half the computer memory that floating point varia-

bles do, such a routine has a lot to recommend it. If, for

example, as in Section AlO we have time series of horizon-

tal and vertical velocities which obey All.5, we would

write

and

Uk = aUmk + b Al1.8

Wk = ag + b

= auMn + bucSnO

All.9

W = aQ + bS0

The averages of u and w are by All.9 simply

N U = U0 = aM0 +

All .10

N w = = aQ0 + b

From A3.1 and A4.3 the raw spectral density estimates are

un (2 6n,N/2 au MM*

All. 11

(2 cSfl,N/2) a2 Q Q*
w nfl

The import here is that since the multiplicative constants

can be factored out of each of these spectral estimates and
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because our smoothing operation, A5.l, is such a simple

process, we save a lot of computing time by doing the FFT

on the series of the integers, block and band averaging

the raw spectral densities formed from the integer trans-

forms, and then applying the calibration as the very last

step instead of converting each individual integer to an

observable by All.8.

Al2. DIGITIZING CONSIDERATIONS

In the introduction we simply assumed we had a time

series sampled at l/ and containing B blocks, each of

block length N. Now the reader has the background to

understand how to select these three parameters, , B, and

N.

is the most fundamental of the three because as A5.2

implies, the spectral analysis cannot provide information

about frequencies higher than l/2A
Ny'

the Nyquist fre-

quency of the sampling process. If disturbances with fre-

quencies above the Nyquist frequency occur in the original

signal, their contributions to the variance or covariance

will be 'folded back' or 'aliased' in the spectral esti-

mates at frequencies lower than l/2A and so must alter the

true shape and variance of the spectrum.

To demonstrate this let us suppose {xk} contains fre-

quencies higher than l/2; represent these by
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in r
f = + = '

Ny +
' Al2.1

where in is an integer greater than zero and r is an integer

such that 0 < r < N/2. Then {xk} will have components of

the form

Xk = a e2]C = a e2(in/l'2 + r/N)k Al2.2

If m is an even number

N-i
x = a
n

=aNnr Al2.3

That is, frequencies of

6f +ff = 2f + f
' Ny + r ' NyNy r

all contribute to the Fourier coefficient

If in is odd

N-i
= a e2 (m/2'2-l/2+r/N)k e_2h1ku/N

k=0

= a

= a N 6n,N/2-r

So each of the frequencies

Al2.4
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f f + I 3Ny + r'
fNy rNy r

are aliased in the Fourier coefficient Figure

Al2.. tries to show why we call this aliasing process 'fold-

ing': the frequency axis is apparently folded accordian

fashion at multiples of

The moral of this exhibition is to choose A so that

the Nyquist frequency is higher than any frequency in the

signal. Or if we're unsure a priori just how high fre-

quencies in the signal can be, filtering the data to remove

all frequencies above the Nyquist would be a plausible

alternative.

The selection of N is fairly straightforward. We

wrote in the introduction that N was a power of two: Sec-

tion A9, where we described the mechanics of the FFT,

emphasized the reasons for this choice. Though some larger

computers may have software to accommodate an arbitrary N,

don't be surprised if most FFT packages categorically

refuse to handle any N not a power of two. In general, N

should be as large as computer storage limitations allow:

the FFT is more economical and more accurate for large N.

The choice of the number of blocks, B, may, in the

end, be a matter of convenience since ANB is the elapsed

time of the experimental run. However, equation A6.15

indicates that B does play a crucial role in the shape of

the spectrum. Because Ne is less than or equal to B, the

lowest frequency the extended spectral etimates can
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y

N/2 N 3N/2 2N
Figure Al2.l. Aliasing of frequencies at fNy + r/N and

2Ny + r/LN. The scale on the frequency
axis is the frequency index. Notice the
'folding' about N/2 and N.

n
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resolve is
fe 1 A125low NB

Thus, our first thought might be to make ANB longer than

the longest period oscillation we expect to encounter in

our observable. But if that period is too long, synoptic

changes may affect our signal and so ruin assumptions about

stationarity. Consequently, to compromise let NB be some

small fraction of the synoptic period (say 1/10 or less)

yet long enough to adequately sample the more energetic

frequencies at the low frequency end of the spectrum. This

isn't double talk because if we extend the spectrum to low

enough frequencies we'll likely find df approaches zero

and so no longer contributes to the variance or covariance

in A6.17 and A6.18.
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IJ'JIflES

THE ALEX PROFILE DATA

Data! data! data! I can't make bricks without
clay.

Arthur Conan Doyle
"The Adventure of the Copper Beeches"

On the following pages we list what we consider the

highest quality downwind velocity and temperature profile

data from the AIDJEX Lead Experiment. Lindsay (1976) makes

a similar listing of the corresponding upwind profiles.

Our run number is referenced to the sequence number of

the analog tape on which the raw data was recorded. The

hundreds and tens digits of the run number give that analog

tape number. The units digit specifies a section of

selected data on an individual analog tape. And a number

after the decimal point indicates that such a section

was broken down into shorter intervals which are, thus,

consecutive. For example, Run 121.1 and Run 121.2 are

consecutive 21 minute runs from the first section of good

data on analog tape 12.

The bulk Richardson number characterizes the flow over

the lead. It is

(T - T ) (50 cm)

RiB =
0.5

w5 , Bl

where T05 and are the temperature and velocity,
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respectively, each at a height of 50 cm; T is the water

temperature; and g is the appropriate acceleration of

gravity, 982.7 cm/sec2.

There are six profile levels. The velocity at the

highest level was measured with a cup anemometer and

averaged over the entire run. The velocities at the lower

five levels are from the straight hot-film sensor, which

spent one-fifth of the run at each of the five levels.

The lowest five temperature points were generated by

the profiling thermocouple, which was also at each height

for one-fifth of the run. The sixth point of the tempera-

ture profile comes from the differencing thermocouples.

All are potential temperatures.

The occasional zeroes which appear in the profiles

show where bad data points have been removed.
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RUN: ii. 0 DFTE: PitRC ii ±974

TINE: 1633 FIST

DURiTiOP4: ±4. 93 IIINUTES

FETCH T-MRTER T-ICE EUP1ETER RI-BULK
(H) (C) (C) (IIHHG)
8 5 -2 8 -21 0 774 0 -0 8±60

ZU U Zr T
(Cli) (CPI/SEC) (CM> tC)
2.0. 393. is. -i9. 65
26 436 -20 46
56 4 56 -20 82
9. 5i4. 94, -28. 94

3.40 54± ±40 -21 04
235 626 i9 -21 09

RUN 12 0 DITE MPRCI' ii, i97'
TINE; 1657 pT

DURRTION: 14.89 MINUTES

FETCH 1-URTER 1-ICE 9RRUMETER PI-GULK
(H) (C) (C> (MM-HG)
$ 5 -2 0 -20 8 774 8 -'8 @153

ZU U ZT I
<CM) (CM/SEC) (Cli> (C)
10. 372. 10. -19. 55
26. 427. 26. -20. 31
56. 477. 56. -28. 66
92. 502. 92. -28.. 76

139. 524. ±39. -20. 84
233. 622. 199. -29. 88

RUN: 31. 0 DRTE: MRRC ±1? i974
TiME: 2260 1451

DURTl0N 15 36 IINUIE5

FETCH T-WRTER 1-ICE 8RRONETEi RI-OULK
th) <C) (C) (NM-HG)
8. 5 -2. x -2±. 5 771. 6 -0. 0265

ZU U ZI I
(CM) (CM/SEC) (CM) (C)
10. 309. 10. -19. 93
26. 3.3. 2. -28. 95
56. . 56, -2±. 4±
93. 39, 93. -2±. 62

140. 4i. ±40. -2t 68
232. 469. ±90. -2±, 7±

RUN; 32.1 DRTE: NRRC ii ±974
TIPi6 22 RS"

CURiTI0N; ±Z. 3 P1INLJ1E

FETCH T-WRTER T-ICE BAROMETER RI-BULK
(H> (C) (C> (MM-HG)
8. 5 -2. t -22.. 6 77±. 0 --0. 0226

2JJ U ZT T
<C) CN.'SEC) (CM) (C)
±0. 338. ±0. -19. 92
26. 39. 26. -20. 9.
56. 398. 56. -2±. 36
91 42.9. ' 93. -21. 53

3.40. 3. ±40, -21. 62
232. .497 190. -2±. 68
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U4: 32.2 TE: MtRCfl ii, 1974

TI}IE: 2237 RS1
DURHTIUN i 3b MINUTES

FETCH T-WHTER T-ICE BROI1ETER Ri-GUL?
(H) (C) (C)
8 5 -2 1 -2± 7 771 6 - 02&

U' ZT T
<CM> (CM/SEC) (CM) C)
18 292 ±6 -19 82
2b 323 26 -26 89
56 367 56 -21 44
93 386 93 -2i 6

399 146 -21 67
232 458 i96 -2 7

RUN 32 3 DATE MPRCH ii, 1974
TitlE 225' AS

DURATION ±5 IlIt'IJTES

FETCH T-IffiTER T-ZCE MRUMETfR RZ-ULK
(H) (C) (C) (MM-HG)
8 5 -2 1 -21 8 771 8 - 0Sff

21) U 21 T
(CM) (CH/SC) 'CM) (C)
18. 307. 10. -19. 89
26. 326. 26. -21. 14
56. 369. 56. -21. 59
93. 402. 93. -21. 73

423. 140. -21. 77
232. 465. 190. -21.31

32,4 DATE: MARCH ii, i9?4
TIME: 2308 AST

DURATiON: 14.51 P1INUTE

FETCH T-WATER T-ICE SAROIIETER RI-'OUUC
(11) (C) (C) (hK-G)
6 5 -2 1 -21 8 771. $ - 3?

2U U 21 1
(CH) (CIi/SEC) (CM (C)

257. 18. -19. 9.
26. 276. 26. -21. 89

312 55 -21 £
93. 334. 93. -21. )8

32. 140. -21. 84
232. 395. 196. -2±. 88

RUH 41.1 DATE: MARCH ii, £974
TiME: 2333 AST

DURATION 14 9 11UTES

FETCH T-WRTER T-ICE 8AROMETER RT-(ULK
(14) (C) (C) (1HG
8.1 -2.1 -21.6 771.0

U ZT I
(C1'/SEC) (Cli) (C)

10. 260. 10. -±9. 80
26. 294. 26. -21. 02
56. 322. 56. -'21. 6'

346. 93. -21. 2
3-40. 359. - 140. -21. 80
233. 400. ±90. -21. 77
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Rl)H: 42 DATE: P1ARCH ii 1974
TIhE: 234$ AST

DURATION: 14.93 MINUTES

FETCH T-WFTER 1-ICE EsRROiETER RI-ULK
<P1) (C) (C)
8 2. -2 1. -21 5 771 k -8 3i3

211 U Zr 1
(CM) (CPf/SEC) (UI) (C)
2.8 251. 10 -1363
26. 30?. 6. -28.
56 339 56 -21 58
93 356 93 -21 66
140 366 ±4 -21 64
233 41± i9 -21 64

RUN 42. 3 DATE NrPCH £2, ±974
TIrE: 80C3 ASI

DURITZON 14 93 MINUTES

FETCH T-WHTER 1-ICE 8IIROMETER
(P1) (C) (C) (tIM-NC)
$ 1 -2 ± -22. 4 772. 0 -O ft202

20 U Zr I
(CM) (CNSEC) (CM) (C>
tO. 29±. 18. -±9. 63
26. 3±5. 26. -20. 80
56. 358: 56. -2±. 42
93. 383. 93. -2±. 5?

140. 395. 140. -21.. 5?

233. 438. 198. -21. 5?

RUN: 41.4 DATE: MARCH 12. ±974
TZP1: 881$ AST

URATIC.N ±4 93 P1INUTE

FETCH 1-WATER . T-10E BAROMETER RI-OULK
(C) (C> (ht-HC

8 2. -2 1 -21 2 77± 8 8 838.s

211 U 21 T
(CII) (CPVSEC> (CM) <C)
10. 278. ±8. -19. 43
26. 308. 26. -28. 67
56. 343. 56. -2±. 23
93. . 37& 93. -21. 48

2.40. 384. 148. -21. 44

233. 431. 198. -2±. 43

RUN: 41.5 DATE: HARCH ±2, i974
TIME: 883 AST

DURATION: ±4. 33 P1NUTE

FETCH T-URTER T-ICE EARONETER R-OLiLK
(P1) (C) (C> (i-H)
8. 1 -2. 1 --2±. 2 77±. 0 -8. e35

211 U 27 1
(CM) (CPVSEC) (CM> (C>
3.0. 241. ±0. -i9. 25
26 274. 26. . -20. 48
56. 303. 56. -21. j3
93. 32?. 93. -22.. 31

2.48. 331. 148. -21. 38
233. 372. ±90. -2±. 3S
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RUN: 4j DATE: HRCH 12, 1.974

TiME: 8848 AST
DURATION: 1.4. 93 MINUTES

FETCH T-WRTER 1-iCE BAROMETER RI-BULK
(H) (C) (C) (1*1-HG)

8. 1 -2. ± -21.. 771. $ - -0. 0515

zu U
(CM) (CM.'SEC) (CM) CC)
3.0. 26±. 18. -19. 04
26. 239. 26. -2$. 32
56. 261.. 56. -21. 08
93. 277. 93. -21. 2?

140. 292. 1.48. -21. 32
233. 324. 1.90. -21.. 33

RUN: 51. 1. DATE: $ACH i2, 1.974
TIME: 01.1.8 AST

DURATiON: 1.5.36 MINUTES

FETCH 1-WATER 1-ICE BAROHEThR RI-BULK
(H) (C) (C) (Hi1-H8)
8. . -2. i. -21. 1. 771.. 8 -0. 1.546

20 U ZT I
(CM) (CPI/SEC) (CM) (C)

8. 127. 8. -19. 49
24. 139. 24. -26. 44
54. 1.49. 54. -28. 83
91. 171.. 91.. -2i. 26

1.39. 1.76. 139. -21. 38
228. 201. i89. -21. 40

RUN: 51.2 DATE: MARCH i2 ±974
TIME: 0133 AST

DURATiON: 14. 93 MINUTES

FETCH T-WATER 1-ICE BAROMETER Ri-BULK
(P1) (C) () (P111-14(i)

0. 1. -2. i -21.. 9 771. 8 -. 09C2

20 U - zr I
(Ctl) (CPI/SEC) (CII) (C)

8. 1.51... 8. -1.9. 44

24. ±67. 24. -26. 34
±88. 54. -20. 9*3

91. 280. 91. -2i. 1.6

1.39. 269. ±39. -21. 28
228. 248. 189. -21. 32

RUN: 52.1 DATE: MARCPI 12, 1974
TiME: 8±55 AST

- DURATION: 1.6.21. MINUTES

FETCH T-WATER 1-ICE BAROMETER RI-SULK
(H) (C) (C) (MM-HG>
8 1. -2. 1 -21. 1. 771.. 6 -9. 1.184

20 0 21 1
(Cli) CII/SEC> (CII) (C)

8. 1.46. 8. -19. 40
24. 1.62. 24. -20. 46
54. 1.77. 54. -20. 91
91. 19k.). 91. -21. 2±

138. 196. i3. -21.. 32

228. 238. 188. -21.. 36
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RUN: 52.2 DATE: MRRCH £2, 1974

TItlE: 02±2 AST
DURATION £6 2i MINUTES

FETCH T-WATER 1-ICE 6hROMETER RI-OULK
(Pt) (C) (C) (MM-HG>
8 1 -2 1. -21 7fl. e -e 2567

U 21 1
(CPt) (CH/SEC) (CM) (C>
a 10.5 8 -i9Eo
24 i9 24 20 27
5+ 1.15 54 -28 68
91 ±27 91 -2i 04

138 128 ±38 2i 23
228 169 188 -21 27

RUN $2 3 DATE MARCH ±2, ±974
TIME: 0228 AST

DURPTION £6 21 MINUTES

FETCH T-t.dATER T-ICE OMROMETER RI-OULK
(Pt) (C) (C) (MM-HG)
8 1 -2 1 -2d 9 771 0 -8 2646

ZU U 21 T
(CM) (CM,'SEC) (CM> (C>

8. 103. 8. -19.42
24 ii? 24 -28 35
54. 112. 54. -20. 59

91. ±25. 91. -20. 98

138 133 138 -21 Ii
228 16+. ±88. -21. i.6

RUN 61 1 OT IiMRCH 12, 1974
TitlE: 0325 AST

=
DURATION: 15.36 MINUTES

FETCH 1-WATER 1-ICE 8POMETER RI-RULI(

(H) (C) (C) (MM-HG)
8 1. -2 1 -20 8 77± 0 -8 45.12

20 U 21 1

(CM) (CPt/SEC) (CM)
182. 8. -19. 3

24. 110. 24. -19. 84
54. 1±5. 54. -20. 40

91. 117. 91. -20. 8

138. ±24. 138. -28. 94

229. 1.63. 1.88. -2C.

RUN: 61.2 DATE: MARCH 12, ±974
TIME: 034C AST

DURATION: ±4.93 MINU1E

FETCH T-WATE TiC SARO$ETER RI-RULK
(Pt) (C) (C) (MM-HG)
8. 1 -2. 1. -20. 7 771. 0 -0. 2587

21) U 21 1
(CN) (Ctl/SC) (CM) (C>

8. 95. 8. -19.33
24. ±06. 24. -19. 90
54. 116. 54. -20. 46

9±. 118. 9±. -20. 75

±38. 1±6. 138. -28. 88

229. 16±. 18.9. -20, 95
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RUN: 62.1 DATE: MARCH 12, 1974
TIME: 0418 AST

DURATION: 20.05 MINUTES

FETCH T-WRTER T-ICE BAROMETER RI-BU.K
(H) (C) (C) (KM-HG>
8. 1 -2. 1 -2$. 9 771. 8 " -8. i054

ZU . U ZT T
(CM) (CM/SEC) (CM) (C)

8. i.8 8. -±9. 22
4. 14?. 24. -za. ±5

18$. 54. -20. 74
91. 19?. 91. -21. 88

138. 200. ±38. -2i. ±0
229. 238. 188. -21. 14

RUN: 62. 2 DATE: MARCH i2, i974
TIME: 6430 AST

DURATiON: 20.05 MINUTES

FETCH T-IiATER T-ICE BAROMETER RI-BULK
(H) (C) (C) (MM-HG)
8. 1 -2. 1 -2i. 8 771. 0 -8. ii44

20 U ZT T
(CM) (CPi/SEC) (CM) (C)

8. ±36. 8. -±9. 23
2'+. 152. 24. -20. i6
54. t7. 54. -28. Oi
91. 189. 91. -2i. 04

a.38. 196. 138. -21. 13
229. 22? ±88. -2±. 1?

RUN: 71.0 DATE: MARCH i2 i974
T1ME: 2±24 AST

DURATiON: i4. 93 MINUTES

FETCH 1-WATER 1-ICE &AROMETR RI-SULK
(Pi) (C> (C) (KM-HG)
6. 8 -2. 2 -18. 7 772. 0 -0. 0239

20 U ZT T
(CM) (CM/SEC) (CM) (C)
12. 298. i2. -±7. 49
22. 31. 22. -1?. 63
43. 33?. 43. -17. 93
86. 381. 86. -18. 48

176. 407, ±76. -±8. 49
228. 0. 226. 0. 00

RUN: 72.8 DATE: MRCH i2, ±974
TIME: 2237 AST

DURATtON: i5.3 MINUTES

FETCH T-kATER T-!CE BAROMETER RI-BULK
(H) (C) (C) (MM-HG)
6. 8 -2. 2 -22. 1 772. 8 -0. 0384

2U U ZT T
(CM) (CPi/EC) (CM> (C)
12. 269. 12. -20. 93
22. 284. 22. -21.40
43. 297. 43. -21. 72
86.. 329. . 86. -21. 87

i?6. 375. 176. 8. 80
228. 8. 226. 0. 88
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RUN: 81.1. DPTE: MARCH 12, 1974

TIME: 231.3 AST
DURATION: 1.4. 93 MINUTES

FETCH T-WF4TER 1-iCE OAROMETER RI-BULK
(H) (C) C (MM-HG)
6. 8 -2. 2 -23. 8 772. 0 -0. 8568

zu ; u zr
(CM) (CM/SEC) (CM) (C)
12. 238. 12. -22. 38
22. 258. 22. -22. 59
43. 256. 43. -22. 96
86. 273. 86. -23. 22

2.76. 330. 176. -23. 22
228. 8. 226. -23. 14

RUN: 81.2 DATE: MARCH i2 i9?4
TIME: 2328 FIST

DURATION: 14.93 NINUTE

FETCH 1-WATER T-ICE BAROMETER RI-BULK
(N) (C) . (C) (MM-HG)
6. 8 -2. 2 -24. 2 772. 8 -0. 8?i?

'ZU ZI T
(CM) (CM/SEC) (CM) (C)
12. 199. 12. -22. 66

22. 202. 22. -23. 02
43. 227. 43. -23. 32
86. 248. 86. -23. 65

t76. 285. 176. -23. 60
228. 0. 226. -23. 53

RUN; 82.1 DATE: MARCH 12, 1.974
TiME: 2358 FIST

DURATiON: 15. ? MINUTES

FETCH 1-WATER 1-ICE BAROMETER RI-OULK
(N) (C) (C) (MM-HG)
6. 8 -2. 2 -24. 6 772. 0 -8. 0703

2U U 21 1
(CM) (CM/SEC) (CM) (C)

12. 215. 12. -22. 91
22. 220. 22. -23. 38
43. 229. 43. -23. 8
87. 263. 87. -24. 05

i76. 383. 176. -24. 03
229. 8. 226. -24. 80

RUN: 82.2 DATE: MARCH 1.3 1974
TIME: 8886 ST

DURATION: iS. 79 MINUTES

FETCH 1-WATER 1-ICE BAROMETER Ri-BULK
(H) (C) (C> (MM-MU)
6. 8 -2. 2 -25. 8 772. 8 -8. 0940

2$) U 2T I
(CM) (CM/SEC) (CM) (C)
12. 182. 12. -23. 85
22. 194. 22. -23. 53
43. 198. 43, -23. 93
8?. 231. 8?. -24. 22

i76. 264. 176. -24. 25
229. 0. 226. -24. 22
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RUN: 82. 3 DATE: MARCH ±3, 1974

TINE: $022 AST
DURATION: iS. 36 MINUTES

FETCH T-WATER 1-ICE BAROMETER RI-BULK
CM) (C) (C) (MM-HG>
6. 8 -2. 2 -25. 3 772. 0 -0. 1064

ZU U Zr T
(CM) (Ch/SEC) . (CM) (C)
2.2. 172. 12. -23. 5?
22. 183. 22. -23. 82
43. 188. 43. -24. 23
87. 216. . 8?. -24. 48

176. 256. ±76. -24. 49
22g. 0. 226. -24. 4?

RUN: 92..i. DATE: MARCH i3 j?4
TIME: 1±49 AST

DURATiON: 14.93 MINUTES

FETCH T-WATER T-10E BAROMETER RI-BULK
(II) (C) CC) (MM-HG>
6. 8 -2. 4 -25. 6 778. 9 -0. 3195

ZU U Zr T
(CM) (CM/SEC) (CII) (C)
12. 107. ±2. -23.76
23. 103. 23. -24. 31
44. ±10. 44. -24. 68
87. 125. 8?. -25. 35

277. 136. 177. -25.49
238. 183. 22?. -25. 44

RUN: 91.2 DATE: MARCH IL i9?4
TIME: 1204 AST

DURATION: i4.5i MINUTES

FETCH T-ATER 1-ICE BAROMETER RI-BULK
(N) (C) (C) (MM-HG)
6. 8 -2. 4 -25. 4 778. 9 -8. 2332

zu u Zr T
(CM) (CM/SEC) (CM) (C)
12. ±2±. 12. -23. 48
23. 132. 23. -24. i2
44. 128. . 44. -24. 42
87. 145. 87. -24. 93

i77. 155. 177. -25. 15
238. 200. 227. -25. 18

RUN: 92.1 DATE; MARVH j3, 1974
TIME: i22 (T

L'URTION: 15.36 MINUTES

FETCH T-ATER T-C &AROMETEf RI-BULK
UI> (C) (C) (MM-HG)
6. 8 -2. -24.? 778. 9 -0. 4852

ZU U 21 1
(CM) (CN/SEC) (CM> (C)
12. 93. ±2. -22. 92
22. 97. 22. -23. 45
43. 96. 43. -23. 79
87. 106. . 87. -24. 32

276. 1±1. 176. -24. 64
230. 161. 226. -24. 68
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RUN: 92.2 DATE: PIiRCH 13. 1974
TiME: ±241. A5T

DURATION: ±4.93 MiNUTES

FETCH T-WtTER T-IC BAROMETER RI-8ULK
(P$) (C) (C) (MM-HG)
6. 8 -2. 4 -24. 3 778. -8. 3393

ZU U ZI T
(CM) (CM/SEC) (Cii) (C)
32. 96. 1.2. -22. 68

22. 97. 22. -23, 29
43. 43. -23. 50
87. 1±6. 87. -23, 86
316. 12?. 176. -24. ±8
239 167. 226. -24. 23

RUN: 10±, 9 DATE: PIFRCH i 1974
TIME: 1497 AST

DURATION: 1.5.36 MINUTES

FETCH 1-WATER 1-ICE BAROMETER RI-BUL.X
(H) (C) (C) (1111-HG)

6. 8 -2. 3 -23. 9 779. 9 -8. 8738

ZU U ZT 1'

(CII) (Cfl/SEC) (CM) (C)
i2. 193. 12. -21. 60

21. 215. 21. -22. 23
42. 2±6. 42. -22. 68
66. 230. 86. -22. 99

315. 282. 175. -23. 01.

229. 394. 225. -23. 88

RUN: 102. 0 DATE: MARCH ±3, 1974
TIME: ±430 FIST

DURATION: 22.61. MINUTES

- FETCH 1-WATER T-ICE BAROMETER Ri-BULK
(11) CC) (C) (MM-HG)
6. 8 -2. 3 -22. 8 779. 8 -8. 1.364

ZU U 21 T
(CII) (CM/SEC) CCII) CC)
±2. 133. ±2. -21. 43
22. 138. 22. -2±. 82

1.62. 43. -22. 43

86. ±7±. 86. -22. 76

315. 185. 175. -22, 83
229. 21.8. 223. -22. 85

RUN: 103.1 DATE: MARCH 1.3, 1.974
TIME: 1398 AST

DURATiON: ±4.93 MINUTES

FETCH T-RTER T-10E LAROMETER Ri-BULK
(11) (C) (C) (MM-HG)
6. 8 -2. 3 -21. 8 779. 8 -0. 384±

71! U 21 1
(CM) (Ch/SEC) (CM) (C)
t2. 9+. 12. -20. 33

22. 100. 22. -29. 80
43. 194. 43. -21.. ±6

87. 11.5. 6?. -2±. 63
316. ±1.8. ±76. -2±. 79
230. 169. 226. -2-1. Si
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RUN: 103.2 DATE: MARCH IL 1974

TIME: ±5±5 RST
DURATION: 14.93 MINUTES

FETCH 1-MATER 1-ICE t3AROMETER RI-BULK
(Pt) (C) (C) (MN-HG)
6. 8 -2. 3 -21. 8 779. 0 -0. ±458

2U U 2 T
(CM) (CMd'SEC) cat> (C)
12. i3.. 12. -20. 5

22. 143. 22. -21.82
43. i5j. 4. -21. 41
87. . ±6?. 8?. -21. 68

3.76. 178. ±76. -2±. 75
230. 23.8. 226. -2i. 74

RUN: 111.3. DAlE: MARCH i3 1974
TIME: 1555 RST

DURATION: 15.36 MINUTES

fTCH 1-MATER 1-ICE 8NROtiETER Ri-BULK
(N> (C) (C) (MM-HG)
6. 8 -2. 3 -24. 'a 779. 4 -8. 3285

ZU U 21 T
(CM) (CM/SEC) (CM) (C)
3.2. 94. ±2. -21.45
22. 99, 22. -2i. 93
43. 3.03. 43. -22. 49

86. ±1.6. 86. -22. 90

3.76. ±46. 3.76. -23. 85

229. 3.75. 226. -23. 87

RUN: 111.2 DATE: MARCH 13, 1974
TIME: 16±0 AST

DURATION: 14. 93 MINUTES

FETCH 1-MATER 1-ICE BRROETER RI-BULK
'(H) (C) (C) (MN-HG)
6. 8 -2. 3 -23. 5 779. 4 -0. 6303

ZU U ZT T
(CM) (CM/SEC) (CM) CC)
3.2. 71. ±2. -2k. ±3

- 22. 70. 22. -2i. 38
43. 72. 4. -21. 86
86. 8?. 86. -22. 42

3.76. ±85. 3.76. -22. 60
229, ±41. 226. -'22. 6±

RUN: 121. ± DATE: MARCH 19, 1974
TIs4E i5'J AI

DURATION: 28. 91 MINUTES

FETCH T-WRTER T-ICE BAOP1ETER .RL-ULK
(H) (C) (C) (t4MHG)

33.? -2. 1 -24. 8 ??5. 7 -0. 839C

ZU U ZI T

(CM) (CM/SEC> (CM) (C)
3.1. 238. ii. -28. 95

15. 268. 15. -21. 9
44. -22. 45

85. 324. . 85. -23. 06

52. 352. 152. -23. 55
290. 416. 202. -23. 74



RUN: 12±, 2 DATE: MARCH 19, 1974
TiME: ±7±1 FIST

DURATiON: 28.48 MINUTES

FETCH T-4ATER F-ICE ROMETER RI-SULK
(P1) (C) (C) (MM-HG)

33. 7 -2. 1 -24. 2 775. 7 -8. 034$

20 U ZT I
(Cr4) (CM/SEC) (CM) (C)
3.3.. 253. ii. -2±. 14
±5. 265. 15. -2±. 58
44. 322. -22. 53
85. 349. 85. -23. 29

±52. 362. ±52. -23. 71
298. 450. 202. -23. 92

RUN: ±22.1 DATE: MARCH i9 3.974
*4*4*4*4*4* TIME: 1735 FIST

DURATION: 21.33 MINUTES

FETCH T-kATER T-ICE. BAROMETER RI-BULIC
(M) (C) (C) (MM-HG)

33.7 -2. 1. -24. 4 775.? -0. 0453

20 U ZT I
(CM) (CPI/SEC) (CM) (C)
2.1. 225. ii. -2±. 35
15. 23.8. 15. -21. 58
44. 284. 44. -22. 92
85. 302. 85. -23. 54

153. 334. 153. -24. 85
298. 398. 203. -24. 2.1

RUN: 122'. 2 DATE: MARCH 19, i9?4
*4*4*4*4*4* TIME: 1756 FIST

DURATiON: 21.33 MINUTES

FETCH I-WATER T-10E ORROMETER RI-6UL
(N) (C) (C) (4iM-HG)

33. 7 -2. 1 -24. 8 775.? -0. O52

ZU U ZT I
(CM) (Cr,/SEC) (CM) (C)
13.. 214. 11. -21. 70
15. 233. 15. -21. 95
44. 264. 44. -23. 16
85. 297. 85. -23. 83

153. 336. ±53. -24. 36
298. 396. 283. -24. 56

RUN: ±31. 8. DATE: ARCH 19 1974
*44*4*4*4*4 TiME: 1947 AST

DURATION: 20.9± P1INUTES

FETCH I-WATER T-ICE AROPETER RI-BULK
(N) (C) (C) (MM-HG)

34. 0 -2. 1. -27. i 776. 0 -0. 0697

ZU U ZT I
(CM) (CP1/SEC> (CM) (C)
2.3.. 288. Ii. -23. 64
26. 236. 26. -24. 43
68. 246. 60. -25. ii

3.15. 271. . 115. -25. 56
235. . 313. 235. -25. 94
292. 285. -25. 9?

242



RUN: 132.9 DATE: MARCH 19, 1974
TIME: 201? AST

DURATION: 21. 76 MINUTES

FETCH T-WATER 1-ICE RROMETER RI-8UtK
(Pt) (C) (C) (MN-HG)

34. 0 -2. 3. -2?. 3 776. 0 ., -0. 0843

ZU U 21 1
<CM) (CPt/SEC) (CM) (C)
11. ±80. it. -24. 8?
26. 288. 26. -24. 64
68. 227. 60. -25. 38

3.15: . 253. 115. 25. 7o
234. 285. 234. -26. 3.5
292. 329. 284. -26. 1$

RUN: 133.0 DATE: MARCH 19, 1974
TIME: 249 AST

DURATiON: 26. 88 MINUTES

FETCH 1-WATER 1-ICE OARONETER R1-OULK
(Pt) (C) (C) (MM-HG)

3. 0 -2. 1. -2?. 6 776. 8 -8. 8991

ZU U 21
(CM) (CN/SEC) (CM) (C)
3.1. 180. ii. -24.73
26. 195. 26. -25. i9
61. 212. 61. -25. 92

115. 242. 115. -26. 34
234. 289. 234. -26. 4?
293. 314. 284. -26. 4?

RUN: 141.1. DATE: MARCH 19.. i974
TIME: 2212 AST

DURATION: 20.91 MINUTES

FETCH T-WATER T-ZCE ORRONETER RI-BUL.K
(C) CC) (MM-HG)

33. 9 -2. 1 -28. 1 ?7. 7 -8. 072?

U 21 T
(Ctl) (C$,SEC) (CM> (C)
14. 281. 3.4. -24. 85
29, 230. 29. -25. 48
63. 258. 63. -26. 22
ii8 269. 3.18. -26. 56
237. 300. 237. -26. 96
296. 28?. -2784

RUN: 141.2

FETCH T- WATER
(It) (C)

33.0 -2.1

ZU
(C1)

.4.

29.
63.

118.
237.
23'.

DATE: MARCH i9, 1974
TIME: 2233 AST

DURATION: 20.91 MINUTES

T-ICE LAROMETER RI-SULK
(C) (NM-HG)

-28. 4 776. 7 -8. 0685

U ZT T

(CM) CC)
201. 14. -24. 93
23?. 29. -25. 66
259. 63. -24. 48
287. 118. -26. 84
33.1. 237. -27. 28
344. 287. -27. 40
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RUN: 142.0 DATE: jiRRCH i9 i9?4
TINE: 2i3 4ST

DURATION: 21.33 IIINUTES

FETCH T-ATE 1-ICE AROi.TER RL-BULK
(N) (C) CC) (NH-HG)

33. 0 -2. t -29. 4 776. 7 -0. 166$

ZU . U Zr I
(Ch) (Ch/SEC) CCII) (C)
14. 136. ±4. -26. 10
29. 158. 29. -26. 66
63. ±67. 63. -2?. 8?

2.18. 188. 118. -27. 45
237. 224. 23?. -27. 84
296. 260. 28?. -2?. 93

RUN: 151.8 DATE: NARCH 20, 1974
TiNE: 8111 AST

DURATiON: 26.88 t1INUTES

FETCH T-ATER I-ICE £RROMETER RI-8UU(
<H) (C> (C) (NH-HG)

52. 0 -2. 1. -30. 9 77?. 0 -0. 18

ZU U ZT I
(CII) (CN/SEC) (CII) (C)
14. 12?. 14. -27. 37
28. 2.46. 28. -28. '39

62. 163. 62. -28. 49
12.?. 175. . ii?. -28 86
236. 216. 236. -29. ±9
296. 238. 286. -29. 26

RUN: 161..$ DATE: MARCH 20, 1974
TiNE: 0221 AST

DURATION: 21. 33 PtINUTES

FETCH 1-MATER I-ICE ORROIIETER RZ-8ULX
th) (C) (C (NH-HG)

68. & -2. 1 -32.0 777.? -0. i547

ZU U 21 1
(Ci) (CN/SEC) (Cu) (C>

141. ±4. -28. 26
28. 164. 28. -28. 82
63. - 182. 63. -29. 0

12.7. 190. Ii?. -29. 46
236. 21±. 236. -29. 9±
296. 23t. 2.6. -29. 93

RUN: 162.2. !>ATIZ: HARCH 28, 1974
TINE: 031w E5T

DURATiON: 18. ?7 PUNUTES

FETCH I-WATER 1-ICE $ARONTER RI-CULK
(P1) (C) (C) thII-H13)

68. 0 2. 1. -32. 6 777.? -8. 1±65

Z,J U ZT I
(CN/EC) (Cr) (C>

2.4. 2.80. 14. -28. 73
2. 194. 29. -29. 3±
63. 2j3 63. -29. 98

118. 22.9. 118. -38. 05
237. 245. 23?. -30. 5?
295. 258. 28?. -30. 7±
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RUN: 162.2 DATE: MARCH 26, 1974

TIME: 8332
DURATION: iS. 35 MINUTES

FTCI4 T-ATEfr T-ICE AARUIIETER RI-SULK
(M) (C)

68. 0 - -2. 1 -32. 8 777. 7 -0. 282±

20 U 21 1
(Cri) (C?r/SEC) (CM) (C)
14. 122. 14. -29. 38
29. 151. 29. . -38. 88
63. 162. 63. -38. 26

118. 173 1±8. -38. 52
23?. 184. 237. -36.89
295. 201. 28?. -36. 98

RUN: 171.1 - DATE: MARCH 20, 1974
TIME: 6414 AST

DURATION: i6.2± MINUTES

FETCH 1-WATER 1-iCE SAROMETER RI-SULK
CM) (C) (C> (MM-HG?

85. 8 -2. i -31. $ 778. 6 -8. ±776

ZU U ZT T
(CM) (CM/SEC) (CM) (C)
3.4. 143. ±4. -29. 74
29. 159. 29. -30. 18
64. ±75. 64. -36. 53

3.18. 179 118. -38. 75
238. 281. 238. -31. 15
296. 217. 288. -31. 25

RtJN: ili.2 DATE: MARCH 28, 1974
TIME: 8438 RST

DURATION: 16.2± MINUTES

FETCH T-WATER T-ZCE BAOP1ETER RI-0UL
(II) (C) (C) (MM-I-Ui?

85. 0 -2. 1. -31. 6 778. 6 -6. 1983

ZU U 21
(CM) (CH/SEC) CCII) (C)
3.4. 135. 14. -'29. 82
29. 152. - 29. -38. 42
64. 171. 64. -38. 83

3.18. ±79. ±18. -38. 99
238. 198. 238. -31. 32
296. 288. 288. -31. 43

RUM: 171.3 DATC: MARCH 20, 1974
TiME: 8446 RST

DURATION: ±5. 36 MINUTES

FETCH 1-WATER 1-ICE I-$RONETE Ri-SULK
<II) (C) (C) (AM-HG)

85. 8 -2. 1 -31. 8 778. 0 -0. i343

ZU U- 21 1
(CM) (CM/SEC) (CM) (C)
14. 166. ±4. -29. 7i
29. 141. 29. -38. 38
64. 198. 64.. -30. 61

118. 217. 118. -36. 95
238. 229. 238. -31. 2.9
296. 237. 288. -31. 40
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RUN: 231. 8 OFIIE; FIPRIL 2 1374
TIME: i92 ST

DURRTLON: 20. 91 PUNUTES

FETCH T-4TER T-ICE E4PRCIMETER RI-BULK
(N) (C) (C) (MM-HG)

20. 5 -2. -25. 0 76?. 2 - 2406

ZU . U Zr 1
(CM) (CH/SEC) (CM) (C)
18. i28. ' 1,8. -22. 79
31. 123. 31. -23.0?
56. 126. 56. -23. 38

104. ±43. 1.04. -23. 56
202. 184. 282. -23. 62
244. 284, 252. -23. 6

RUN: 232.8 DTE: PR!L 2 ±974
TIME: 2i9 PST

)URFfFI0N: 26.88 MINUTES

FETCH T-WATER 1-ICE BAROMETER RI-BULK
(Pt) (C) (C) (MN-HG)

20. 5 -2. 4 -26. 3 76?. 2 -8. 45±3

vi u zr I
(CM) (CPt/SEC) (CM) (C)

3.8. 89. 18. -23. 85
31. 91. 3i. 23. 9?
56. 94. 56. -24. 14

3.04. 1.07. 104. -24. 4
202. i.0. 202. -24. 7±
244. 168. 252. 0. 08

RUN: 233.0. DATE: APRIL 2 1974
TIME: 2850 RST

DURATiON: 26. 45 MINUTES

FETCH T-WATkR T-ICE BAROMETER Ri-BULK
(N) <C) (C) (HG)

20. 5 -2.4 -26. 1 76?. 2 0. 2693

ZU U Zr I
(CM) (CNI'SEC) (CII) (C)
18. 115. 18. -24. 19
31. 119. 31. -24. 35
56. 123. 56. -24. 62

104. 3.39. ±84. -24. 90
202. 189. 282. -25. 08
244. 282. 252. -24. 99

RUH: 241.0 DATE: APRIL 2 1974
TIME: 2224 AST

C'URATIW: 2?. 31 IILNUTES

FETCH T-RTER T--10E SRROMTER RI-8LK
(II> (C) (C) (tiM-HG)

28. 5 -2. 3 -2?, 766. 5 -0. 3745

vi U ZT T
(Ci) .C/SEC) (C)
11. 99. 11. -25. 1.3
22. 186. 22. -25. 59.
52. 107. 52. -25. 93
99. 110. . 99. -26. 24

202. 140. 282. -26.48
250. 173. 252. -26. 57
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RUN: 242.6 DATE: APRIL 2 1974
TIhE: 230? AST

DURATION: 21.33 IIINUTES

FETCH 1-WATER 1-ICE BARONETER RI-BULK
(N) (C) (C) Cii-HQ)

20. 5 -2. 3 -28. 0 766. 5 ' -6. 3284

Zu U 21 T
(Cii) (CN/SEC) (Cii) (C)
3.2.. 104. ii. -25. 70
23. 2.08. 23. -26. 66
53. 116. 53. -26. 45

3.09. 128. ±80. -26. 78
204. 164. 264. -27. 13
248. 172. 254. -2?.

RUN: 251.0 DATE: APRIL 3, ±974
TIME: 8115 AST

DUPATION: iS.36 MINUTES

FETCH T-j,iATER 1-ICE BRROl1ETER RI-BULK
(Ii) (C) (C) (MM-HG)

20. 0 -2. 3 -28. 6 766. 8 -0. ±623

ZU U ZT I
(CM> (CH/SEC) Ccii) (C)
12. 151. ±2. -26. 12.

23. 160. 23. -26. 74
53. 16?. 53. -2?. ±4

100. 186. 160. -27. 59
204. 223. 204. -2?. 8?
248. 238. 254. -2?. 85

RUN: 252.0 DATE: APRIL 3, 1974
TIME: 8±46 AS?

DURATION: 28. 9± MINUTES

FETCH T-WATER 1-ICE BAROMETER RI-BULK
(N) (C) (C) (MM-HG)

28. 0 -2. 3 -28. 5 766. 8 -6. ±35±

ZU U ZT I
(Cii) (CP/SEC) (Cli) . (C)
12. 162. 12. -26. ±5
23. 173.. 23. -26. 70
53. i. 53. -2?. 38

3S18. 199. 2.68. -2?. 13
24. 243. 284. -28. 02
248. 24?. 254. -2$. 01.

RUN: 253. 2. DATE: APRIL 3 1?4
TiME: 286

DURRTION: ±5. 79 MINUTES

FETCH 1-wATER 1-ICE ORRONETER RI-BULK
(N) (C) (C> (lili-f-'G)

29. 0 -2. 3 -2 6 766. 8 -0. 1095

2U U ZT I
(Cii) (CN/SEC) (Cl'i> (C)
±2. 189. ±2. -26. 21
2. 188. 24. -26. 73
53. 205. 53. -2?. 46

3.91. 229. 101. -27. 88
204. 271. 284. -28. 18
24. 2?8. 254. -28. ±2
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RUN: 253.2 OATE: APR1L 3, 1974
T!1E: 9222 AST

DURATION: 15.36 MINIJTE

FETCH T-ATER T-ZCE SARCIrIETER R!-8LtL

(1) (C) (C thH-NO)
29. 9 -2. 3 -26.,? 766. 8

'

1351.

ZU U ZI T

(Cf) (CI'SEC) Cal) (C)
12. 1.59. 12. -26. 31.

24. 172. 24. -26. 93
53. 1.84. 53. -27. 43

211. 8i. -2?. 92
204. 245. 284. -29. ±4
249. 245. 254. -29. 17

RUN: 261.. DATE: APRIL 3, 1974
H TIHE: 83±2 AS1

DURATION: 26.45 MINUTES

FETCH 1-WATER T-ICE BAROIETER RI-SULK
(4) (C) (C)

29.0 -2.3 -29.1 767.8 -8.2.286

ZU U 21 T
(Cgi) CC91/SEC) Cal) (C)
12. 131. 12. -26. 6i

23. 138. 23. -2?. 1?
53. 145. 53. -27. 7

100. 159. -29. 1.3

294. 191. 284. -22. 43
249. 212. 254. -23. 45

RUN: 262.1 DATE: APRIL 3, 1974
TI: 0417 AST

DURATION:. 16.2i I'1INUtES.

FETCH T-RTER T-ICE 8AROETER RI-BULK
(H) (C) (C) (Iiti-Hi3)

23. 8 -2. 3 -29. 4 76?. 9 -9. 1798

ZU U Zr 1
(C?) (Ca/SEC) Cal) (C)
12. ±35. 12. -26. 4?
23. 15i 23. -2,7. 42

53. 1.67. 53. -29. 13
190. 186. ±80. -29. 62
24. 221. 204. -2$. 69
249. 232. 254. -28. 9±

RUM: 262.2 DATE: APRIL 3, 1974
TthE: 0433 AT

DURATION: 16. 21. 1NUTE

FETCN 1-WATER T-ZC ROiETER RI-BULK
Oi C) (C)
20.9 -2.3 -29.2 767.0 -9.2±13

ZU U 21 T
(Cii) (fSC) (U1) (C)
12. 122. 12. .. -26. 43
23. 143. 23. -2?. 55
53. 149. 53. -28. 05

iO9. 161. 190. -28. 48
204. o0. 23. -28. 7?
2-9. 213. 254. --28.. 81
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RUN: 262.3 DATE: APRIL 3, 1974

TIME: 0449 FiST

DURATION: 16.21 MINUTES

FETCH T-WATER 1-ICE BAROMETER RI-SULK
(II) (C) (C) (MM-HG)

28. 0 -2. 3 -29. 3 767. 0 ' -0. 1852

ZU U 21 T
(CP) (CMSEC) ccli> (C)
i2. ±36. 12. -26. 71
23. i.5.. 23. -27. 57
53: ±5'. 53. -28. 03

100. 182. 180. -28. 68
284. 211. 284. -28. 83
249. 225. 254. -28. 89

HUN: 271. 8 DATE: APRIL 3, ±974
TIME: $52? FiST

DURATION: 26.45 MINUTES

FETCH T-ATER T-ICE BAROMETER RI-BULK
(Ii) (C) (C) (MM-HG)

28. 0 -2. 3 -29. 5 767. 8 -0. ±62?

ZU. U 21 1
(CM) (CM/SEC> (CM) <C)
12. 136. ±2. -26. 74
23. ±58. 23. -27. 79
53. ±71. 53. -28. 29

iOi. 191. 18±. -28. 79
204. 225. 204. - -29. 05
250. 230. 254. -29. 0?

RUN: 272.8 DATE: APRIL 3, ±974
TIME: $558 FiST

DURRTION: 21.33 MiNUTES

FETCH T-WRTER 1-ICE BFiROETER RI-0U1.K
(II) (C) (C> (MM-HG)

20. 0 -2. 3 -29. 2 767. 8 -8. 2956

ZU U ZT I
<CM) (CH/SEC) (CM) (C,
12. 105. ±2. -26. 69
23. ±28. 23. -27. 64
53. 126. 53. -28.03

3.80. 135. ±88. -28. 32
283. ±67 203. -28. 71
250. t86. 253. -28. 72

RUN: 273.1 DATE: APRIL 3 ±974
T1iiE $625 AST

DURATION: ±5.79 MINUTES

FETCH T-ATER T-ICE BAROMETER Ri-BULK
UI) (C) (C) (MM-HG)

28. 0 -2. 3 -29.7 767. 0 -0. 3836

ZU U 21 1
(CM/SEC) (1) (C)

12. ±2. -26. 81
23. 114. 23. -2?. 88
3. 126. 53. -20. 57

3.88. 127. 100. -28. Si
2'33. xS$. 283. -29. 20
258. 3.76. 253. -29. 24
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RUN: 273. 2
*4*4*44*44*

FETCH
(h)

213. 13

ZU
(C$)
12.
23.
53.

2133.

250.

T-wcimR
(C)

-2. 3

DATE: APRIL 3, ±974
T1E: 0641. AST

DURATION: ±5. ?9 .lNUTES

1-ICE AROETER RI-BULK
(C) (ii1-HG

-29. 8 767. 0 -, -& 3462

U ZT T
(CH/SEC) (Ca) (C)

98. . ±2. -27. ii
1139. 23. -28. ±6
11.8. 53. -22. 62
125. iOO. -28. 86
152. 2133. -29. 24
168. 253. -29. 313

:RUN: 281.0 DATE: APFIL 3, ±974
*4*4*4*4*4* TIHE: 1245 AST

DURATION: 21. 33 HINUTES

FETCH T-wAThR 1-ICE 8AROETER RI-BULK
(N) (C) (C) (Pni-HG)

18. 9 -2. 2 -21. 2 767. 13 -8. 864*

ZU _U 21 1
(CII) (Cli/SEC) . (C11) CC)
15. 218. 15. -213. 37

26. 225. 26. -20. 90
56. 233. 56. -21. 50

±133. 257. 1133. -2±. 8?
20?. 273. 207. -22. 09
25. 291.. 257. :

-22. 15

RUN: 282.0 DATE: APRIL 3 1914
TIHE: 1311 ASI

DURATION: 21. 33 IIINUTES

FTCH T-WATER 1-ICE SARONETER RI-BULK
(H) (C) (C)

2.8. 9 -2. 2 -21. 13 767. 13 -6. 05*I

ZU U 21 T
(CPs) (CH/$EC) (CII) (C)
iS. 22±. 15. -20. 3
27. 233. 27. -20. 77
57. 245, 57. -21. 33

2.04. 25?. 1134. -21. 73
2137. 2813. 207. -2±. *1
254. 3133. 25?. -2±. 93

RUN: 283.13 DATE: APRIL 3, ±974
*4*4*4*44*4 TIHE: 1339 AST

I)UPATZDN: 2C,03 IIII4UTES

FETCH 1-WATER 1-ICE BAROHETER -RI-BULK
(H) (C) (C) (Fth-HG)

±8.9 -2.2 -20.2 767,13 -0.13729

ZU U ZT I
(CN) (Ct/SEC) (Cli) (C)
iS. 20w. ±5. -20. 139

26. 199. 26. -20. 54
56. 219. 56. -2±. 03

1133. 233. 1133. -21. 45
2136. 252. 2136. -21. 68
252. 272. 256. -21. 68
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APPENDIX C

SUMMARY OF RESULTS FOR PROFILE FILES

Table C lists results derived from the ALEX velocity

and temperature profiles. The columns designated 'Upwindt

contain values taken from Lindsay's (1976) thesis; his

analysis was based on the flux-gradient relationships. The

'Down' column is then clearly our downwind results.

The remaining column headings are:

Run The profile run or file desig:ation. See

Appendix B for the actual data.

Flux Run The flux file best corresponding o the pro-

file file. See Appendix D for tabulated re-

sults from these flux files.

Upwind Run The run designation of Lindsay's (1976) up-

wind profile set which best corresponds to

our downwind run.

Fetch The fetch across the lead.

The thermal boundary layer height.

The surface roughness. The downwind z0 comes

from equation 5.2.13.

L The Monin-Obukhov length. The downwind L

results from our flux-gradient estimation

procedure.

u The friction velocity. The downwind u* also

derives from the flux-gradient technique.
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is the direct measurement of the stress

from the lower hot-film anemometers on the

flux tower. The height of the measurement

is given in Appendix D and is usually less

than 20 cm.

F-G The flux-gradient estimate of surface heat

flux.

Integral The integral estimate of average surface

heat flux; i.e., equation 4.1.29.

Latent An estimate of surface latent heat flux

based on equation 6.4.4 and the integral

estimate of sensible heat flux. When the

value is enclosed in parentheses an integral

estimate was not available so the flux-

gradient estimate was used instead.



Table C. A summary of results for profile files.

Flux Upwind Fetch
(cm) L (m) u (cm/sec) Heat Flux (mw/cm2)

Run Run Run (m) (cm) Upwind Down Upwind Down Upwind Down (cm/sec) F-G Integral Latent

11.0 11 3 8.5 175 .010 .060 -406.4 -4.68 23.8 30.1 24.4 53.7 44.6 17.0

12.0 3 8.5 174 .010 .061 -406.4 -4.43 23.8 29.3 52.1 39.6 15.2

31.0 31 7 8.5 164 .007 .046 -150.1 -2.62 18.0 22.5 24.0 39.9 37.0 13.8

32.1 32 7 8.5 163 .007 .050 -150.1 -3.00 18.0 24.1 26.2 42.9 43.4 16.2

32.2 8.5 171 .046 -2.43 21.7 38.3 38.5 13.4

32.3 8.5 150 .046 -2.48 22.0 39.2 35.9 13.4

32.4 33 8 8.5 163 .007 .038 -732.1 -1.75 16.4 18.4 20.0 32.4 32.6 12.2

41.1 41 8 8.1 84 .007 .040 -732.1 -1.93 16.4 19.2 20.8 33.8 30.5 11,5

41,2 8.1 88 .042 -2.02 19.7 34.7 29.6 11.1

41.3 9 8.1 88 .007 .044 -l1l.0 -2.36 16.6 21.2 37.2 33.2 12.5

41.4 42 9 8.1 91 .007 .042 -111.0 -2.17 16.6 20.2 22.1 35.1 31.7 11.9

41.5 9 8.1 120 .007 .037 -111.0 -1.70 16.6 17.8 30.2 32.2 12.2

41.6 43 8.1 123 .031 -1.24 15.0 16.9 25.0 28.9 11.1

51.1 51 10 8.1 136 .006 .016 -25.7 -0.41 10 2 8.7 6.4 14.7 18.0 6.9

51.2 10 8.1 168 .006 .021 -25.7 -0.61 10.2 10.6 18.1 20.8 7,9

52.1 52 11 8.1 166 .017 .020 -17.2 -0.57 8.8 10.2 12.0 17.3 19.8 7.5

52.2 11 8.1 166 .017 .011 -17.2 -0.25 8.8 6.8 11.4 14.9 5.7

52.3 8.1 173 .011 -0.27 7.0 11.4 14.7 5.6

61.1 6]. 12 8.1 174 ,008 011 -8,9 -0,25 6.1 6.7 6.2 11.1 14.8 5.7

61.2 13 8.1 179 .006 .011 -18.3 -0,23 7,7 6.5 10.7 14.0 5.4



Table C (continued)

Flux Upwind Fetch
(cm) L (m) u(cm/sec) Heat Flux (mw/cm2)

Run Run Run (in) (cm) Upwind Down Upwind Down Upwind Down (cm/see) F-G Integral Latent

62.1 62 13 8.1 170 .006 .020 -18.3 -0.60 7.7 10.5 13.5 17.5 20.7 7.9

62.2 8.1 170 .019 -0.50 9.6 16.2 18.7 7.1

71.0 6.8 137 .044 -2.84 21.3 31.2 44.2 18.0

72.0 72 16 6.8 .003 .038 63.2 -1.84 13.1 19.0 21.0 34.4 (12.6)

81.1 81 17 6.8 165 .003 .031 18.8 -1.30 10.5 16.5 19.7 31.6 37.6 13.4

81.2 17 6.8 154 .003 .027 18.8 -0.84 10.5 13.5 26.7 30.7 10.6

82.1 82 6.8 176 .028 -0.98 14.6 17.1 29.0 35.7 12.4

82.2 83 6.8 176 .024 -0.72 12.5 16.4 25.0 40.2 13.9

82.3 18 6.8 176 .005 .022 11.2 -0.62 9.1 11,7 24.0 36.1 12.4

91.1 91 6.8 170 .011 -0.20 6.6 11.4 13.8 24.8 8.2

91.2 21 6.8 215 .013 4.6 -0.30 23.9 8,1 16.4 31.6 10.4

92.1 92 21 6.8 226 .009 4.6 -0.16 23.9 5.9 7.5 11.8 25.8 8.7

92,2 22 6.8 226 .008 .009 348.0 -0.17 6.3 6.1 11.9 25.0 8.5

101.0 101 23 6.8 137 .015 .026 -164.1 -0.93 10.6 13.7 14.2 25.6 27.3 9.6

102.0 102 24 6.8 198 .002 .018 -209.8 -0.40 5.2 8.9 12.8 16.7 23.0 8.2

103.1 103 24 6.8 201 .002 .010 -209.8 -0.20 5.2 6.1 11.3 10.5 18.6 6.8

103.2 24 6.8 162 .002 .017 -209.8 -0.42 5.2 8.9 15.7 19.1 7.0

111.1 111 6.8 217 .010 -0.18 6.1 14.4 11.2 27.0 9.6

111.2 6.8 215 .006 -0.10 4.3 7.8 20.6 7.4

121.1 121 33.7 .038 -1.55 17.9 20.3 33.9 (9.7)



Table C (continued)

(cm) L Cm) u(cm/sec) Heat Flux (mw/cm2)Flux Upwind Fetch
Run Run Run (m) (cm) Upwind Down Upwind Down Upwin. Down, cm/sec). ntegri Latent

121.2 33.7 .041 -1.82 19.5 37.5 (10.1)

122.1 122 33.7 .035 -1.19 15.8 17.5 30.6 (9.2)

122.2 33.7 .033 -1.18 15.8 30.9 (9.4)

131.0 131 34 292 .029 -0.96 14.8 17.2 31.1 24.0 8.1

132.0 132 34 292 .026 -0.73 13.1 17.8 28.2 21.1 7.1

133.0 133 27 34 293 .020 .024 15.8 -0.66 13.7 12.5 19.8 27.5 15.2 5.0

141.1 28 33 .010 .029 28.6 -0.87 14.6 14.4 31.6 (10.2)

141.2 28 33 .010 .030 28.6 -0.90 14.6 14.7 32.6 (10.3)

142.0 29 33 .019 .018 11.4 -0.36 9.6 9.6 22.4 (9.2)

151.0 30 52 .088 .017 16.7 -0.29 14.4 9.0 22.5 (9.3)

161.0 31 68 .177 .020 8.9 -0.36 13.3 10.1 26.2 (9.8)

162.1 68 .024 -0.54 12.4 32.3 (10.5)

162.2 68 .017 -0.28 9.0 24.6 (9.7)

171.1 85 .019 -0.33 9.9 27.2 (10.0)

171.2 85 .018 -0.30 9.5 26.2 (9.9)

171.3 85 .022 -0.48 11.8 32.0 (10.6)

231.0 20.5 244 .013 -0.27 7.5 14.2 19.1 6.7

232.0 231 52 20.5 .040 .008 3.9 -0.14 5.5 5.5 5. 11.1 (7.2)

233.0 232 20.5 244 .012 -0.24 7.3 6.9 14.8 14.8 5.0

241.0 241 55 20.5 250 .005 .010 4.7 -0.18 5.2 6.5 6.5 14.3 13.2 4.4



Table C (continued)

z0 (cm) L (m) u(cm/sec) Heat Flux (mw/cm )Flux Upwind Fetch '5

Run Run Run (m) (cm) Upwind Down Upwind Down Upwind Down (cm/sec) F-G Integral Latent

242.0 242 20.5 248 .011 -0.19 6.8 6.2 15.5 15.4 5.0

251.0 251 58 20 248 .005 .018 11.2 -0.41 8.4 10.2 9.8 23.5 18.9 6.0

252.0 252 20 .021 -0.48 11.0 10.5 25.5 (9.5)

253.1 253 59 20 .014 .024 23.8 -0.62 11.2 12.5 12.0 28.7 (9.9)

253.2 59 20 .014 .021 23.8 -0.49 11.2 11.2 25.8 (9.6)

261.0 261 60 20 249 .003 .015 9.6 -0.30 7.1 8.8 9.4 20.7 17.7 5.6

262.1 262 61 20 249 .002 .018 13.5 -0.34 8.0 9.5 10.1 22.7 19.4 6.0

262.2 20 249 .016 -0.29 8.7 20.8 16.9 5.3

262.3 62 20 249 .014 .017 23.5 -0.35 9.9 9.5 22.8 18.0 56
271.0 63 20 250 .016 .019 21.5 -0.36 8.8 9.8 23,8 19.3 6.0

272.0 63 20 250 .016 .013 21.5 -0.20 8.8 7.3 17.7 15.4 4.8

273.1 20 250 .012 -0.18 7.0 17.3 15.3 4.7

273.2 20 250 .011 -0.17 6.7 16.7 15.5 4.7

281.0 18.9 213 .028 -1.12 14.4 24.2 14.4 5.4

282.0 64 18.9 233 .018 .029 -8.2 -1.19 10.9 14.8 24.9 130 4.9

283.0 18.9 230 .025 -0.91 12.9 21.4 13.2 5.0

Ui
0
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APPENDIX D

SUMMARY OF RESULTS FOR FLUX FILES

Table D lists the results of our analysis of ALEX flux

files. The column headings are:

Run The flux data run or file designation. The

coding is the same as for profile runs and

is explained in Appendix B. However, none of

the flux files were broken into shorter sec-

tions as the profile files were; so there is

no need for the decimal point notation.

Lower Height The height of the lower flux sensors. The

upper sensors are 50 cm above this.

Lower Denotes measurements from the lower sensors.

Upper Denotes measurements from the upper sensors.

Fetch The fetch across the lead.

-z/L A stability parameter based on sensor height

and the Monin-Obukhov length. Moniri-Obukhov

lengths are tabulated in Appendix C.

U The average longitudinal velocity measured by

the flux sensors.
1

(-uw)2 uw is the stress measurement.

Direct The spectral estimate of the heat flux at the

lower height after the correction procedure

described in Section 4.4.
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Est. The integral estimate of heat flux at the

lower height on the basis of equation 4.1.36.

(w2/-uw) The integral statistic for the variance of

vertical velocity fluctuations. For both

lower and upper 2 values, the lower (-)

value was used.

(u2/_uw) The integral statistic for the variance of

longitudinal velocity f1uctuations For

both lower and upper u2 values, the lower

value was used.



Table D. A suxmnary of results for flux files.

Lower - (-uw) Heat Flux W2
-=Height Fetch

L U (cm/sec)
(cin/sec) (mw/cm

-)

)

( -uw ) ( -uw )

Run (cm) (m) Lower Upper Lower Upper Lower Upper Direct Est. Lower Upper Lower Upper

11 10 7.5 .02 .13 367 462 24.4 25.2 5.2 26.2 1.10 1.23 2.63 2.87

12 10 7.5 271 435 30.1 21.7 .81 .97 1.77 2.29

23 10 7.5 241 388 25.2 20.4 .82 .92 1.75 2.18

31 12.8 7.5 .05 .24 303 360 24.0 19.2 12.3 18.9 .95 .87 2.18 2.24

32 12.8 7.5 .04 .21 321 381 26.2 18.8 16.3 23.8 .91 .89 2.18 2.17

33 12.8 7.5 .07 .36 259 312 20.0 12.0 16.1 16.2 .94 .88 2.09 2.08

41 12 7.2 .06 .32 258 311 20.8 12.1 7.8 13.9 .91 .83 2.20 2.09

42 12 7.2 .06 .29 284 340 22.1 15.4 13.3 14.9 .90 .86 2.16 2.08

43 12 7.2 .10 .50 215 261 16.9 13.0 17.8 15.3 .92 .90 2.19 2.34

51 11 7.2 .27 1.49 132 152 6.4 9.6 11.3 1.96 2.09 5.45 5.75

52 11 7.2 .20 1.08 122 139 12.0 11.9 12.0 .84 .87 2.52 3.79

61 9.3 7.2 .37 2.33 101 105 6.2 7.6 10.2 1.29 1.34 3.39 4.16

62 9.3 7.2 .15 .98 157 177 13.5 11.6 13.4 .79 .74 2.25 3.06

72 17 8.5 .09 .36 277 318 21.0 20.9 12.3 1.08 1.12 1.96 2.27

81 17 8.0 .13 .51 238 266 19.7 18.8 11.1 16.7 .99 1.08 2.02 2.46

82 17 8.0 .17 .68 222 246 17.1 17.8 14.3 15.3 .99 1.24 1.97 2.10

83 17 8.0 .24 .94 207 256 16.4 54.5 8.9 21.3 1.02 3.96 2.02 3.45

91 12 8.2 .61 3.16 90 102 11.4 3.4 11.1 148 1.08 1.10 2.35 2.68

92 12 8.2 .73 3.76 98 98 7.5 7.4 8.9 17.3 1.09 1.18 1.91 1.90

101 14 8.2 .15 .69 185 207 14.2 15.0 10.8 11.3 1.01 1.08 2.21 2.60



Table D (continued)

Lower z (uw)* Heat Flux w2 U2

Height Fetch L U (cm/sec) (cm/sec) (mw/cm2) /

Run (cm) (m) Lower Upper Lower Upper Lower Upper Direct Est. Lower Upper Lower Upper

102 14 8.2 .35 1.62 162 181 12.8 10.9 8.7 11.6 .95 .96 2.84 3.21

103 14 8.2 .71 3.23 74 99 11.3 4.8 11.6 10.8 1.15 .83 2.33 2.16

111 14.5 8.4 .78 3.49 100 125 14.4 6.8 10.3 17.0 .93 .68 2.49 2.85

112 16.5 8.4 86 85 8.4 10.4 6.7 13.1 1.11 1.21 2.09 2.94

121 50 33.7 .32 .64 308 391 20.3 31.7 12.7 1.16 1.55 2.50 2.96

122 42 33.7 .35 .78 292 362 17.5 27.9 15.2 1.38 1.67 2.54 2.93

131 50 34 .52 1.04 263 297 17.2 21.4 10.8 12.5 1.31 1.45 2.28 2.48

132 50 34 .68 1.37 250 287 17.8 21.5 14.0 11.4 1.19 1.33 2.10 2.33

133 50 34 .76 1.52 226 266 19.8 22.1 13.9 6.6 1.06 1.11 2.08 2.24

231 23 19.8 1.68 5.34 88 106 5.9 7.8 1.49 1.90 2.30 2.62

232 23 19.8 .98 3.09 110 135 6.9 8.6 2.8 9.2 1.40 1.68 2.10 3.30

241 19 19.8 1.08 3.90 93 116 6.5 8.6 7.3 9.2 1.27 1.90 2.08 2.40

242 19 19,8 1.02 3.96 96 6.2 7.4 11.1 1.28 2.24

243 19 19.8 109 7.8 8.3 1.10 2.02

251 15 19 .36 1.57 142 158 9.8 11.5 4.1 12.7 1.18 1.47 2.04 2.16

252 15 19 .31 1.35 151 168 10.5 12.2 9.7 1.17 1.40 1.99 2.11

253 15 19 .24 1.05 166 189 12.0 13.3 9.3 1.02 1.30 2.18 2.18

261 15 19 .50 2.19 117 145 9.4 15.2 5.4 12.2 1.07 1.62 2.15 3.82

262 15 19 .44 1.89 137 167 10.1 12.7 6.2 13.2 1.23 1.52 207 2.27
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APPENDIX E

ENERGY AND MASS BUDGET APPROACH

Equation 4.1.27 can be derived by considering the

energy and mass budgets in a control volume over the lead.

Let one end of this volume be at the upwind edge of the

lead, x = 0; its other end is over the lead at x = F. The

height of the volume, h, is greater than (x) for all x be-

tween zero and F. U(z) and T(z) are upwind velocity and

temperature profiles. U(F,z) and T(F,z) are the velocity

and temperature profiles at the downwind end of the control

volume. W is the vertical velocity; wt the upwind verti-

cal temperature flux; and the flux at the surface of

the lead.

If conditions are steady-state, the energy content of

the volume will not change. Its energy budget is thus

h F
p c f U(z)T(z)dz p c f [W(x,h)T1(h) +

h F
p c f U(F,z)T(F,z)dz + p c f wt0 dx = 0 , El

or
F h

I (H0 H)dx = p c f U(F,z)T(F,z)dz

h F
p cf U1(z)T(z)dz + p cf W(x,h)T(h)dx . E2
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The third integral on the right above can be rewritten

using the continuity equation,

h h
dz = -f W dz = -W(x,h) . E3

Therefore,

F F

f W(xh)T(h)cx = -f
0 0

h

= -f
0

h
T(h)dx f dz

F
T1(h)dz f dx

h

= -f [U(F,z) - tJ(z)}T1(h)dz E4

Equation E2 now becomes

F h

f (H0 - H)dx = p c f U(F,z) [T(F,z) T(z)1 dz

+ p c f [U(F,z) U(z)] [T(z) - T(h)] dz E5

Because the two integrals on the right have the same

limits of integration, let us compare them by estimating

the magnitudes of their integrands:

U[T - T] -. (100) (5) = 500 , E6
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[U U] [T - T(h)] (10) (0.2) = 2 . E7

Hence, on the right side of E5, the second integral is

negligible in comparison to the first. We are left with

F 6(F)

f (H0 - H)dx = p c f U(F,z)[T(F,z) - T(z)Jdz , E8
0 0

since [T(F,z) - T(z)J is zero above 6(F) by definition.

E8 is exactly 4.1.27: the budget approach leads to the

same result that the differential equations do. Apparently

condition 4.1.18, the smallness of the product of the

vertical velocity and the upwind temperature gradient, is

equivalent to E7.




