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A REINTERPRETATION, AND NEW

DEMONSTRATIONS OF, THE BOREL NORMAL

NUMBER THEOREM

1. INTRODUCTION

When Émile Borel first postulated the Normal Number Theorem [1] did he

imagine that over 100 years later mathematicians would still be tinkering with his

novel concept? Regardless of what Borel imagined, mathematicians keep extending

the idea of a normal number to other objects and studying them. Mathematicians

have also worked hard to produce numbers that are normal to a base b. The author

of this paper thinks that É. Borel did have a vision of this future, a future that

exalts his Normal Number on high.

This paper will take the reader through a journey of sorts. The reader will

come to learn exactly what a normal number is and why it is so interesting and

special. We will explore the amazing properties of normal numbers and how they

have helped mathematicians better understand the real number system. The main

difficulty associated with normal numbers is determining whether or not a real

number x is normal or not.

The Normal Number Theorem states that almost all points in the unit interval

are normal to a base b. A real number is normal to the base b if the digits in the base

b expansion occur in a uniform way. These statements will be made more precise
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in the sections to come. A normal number can be thought of as a number that

has every pattern of digits occurring, and furthermore, the patterns occur with the

proper frequency in the expansion.

We will see how symbolic dynamical systems are a natural way to represent

the real numbers, as well as being able to represent many other spaces. This natural

representation, using symbolic dynamical systems, of the real numbers gives way to

a natural analogue of a normal number and the Normal Number Theorem. Given

the more general nature of symbolic dynamical systems, our analogue of a normal

number is extended. We will provide a unique proof of the Normal Number Theorem,

constructing a set that contains all of the normal numbers.

Finally, we will discuss how entropy is related to normality and how certain

systems with 0-entropy behave slightly differently under the normal number criteria.

We will examine the Fibonacci dynamical system in detail, providing a proof that

the Fibonacci system has every point being normal according to our new definition.
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2. NORMAL NUMBERS

2.1. Normal Numbers

The idea of a normal number comes from a curious and persistent result that

Borel proved in 1909[1]. What Borel’s paper showed was that the set of normal

numbers in the unit interval has Lebesgue measure 1. In other words, almost all

real numbers between 0 and 1 are normal.

Theorem 2.1.0.1. (Normal Number Theorem)

The set of normal numbers in the unit interval has Lebesgue measure 1.

What has proven to be continually intriguing about normal numbers is that,

though they are easily shown to exist in large quantities, it has proven difficult

to prove that a specific number has the normal number property. For instance, it

remains unknown if π, e, or
√

2 are normal numbers. Some might say that this type

of existence proof is the hallmark of 20th century mathematics. That is, being able

to show there is a large class of objects with a certain property but being unable to

prove that a specific object has the purported property. Before we talk too much

about normal numbers, we should first define what it means for a real number to

be normal.

Let α be a real number, and let b ≥ 2 be an integer. Then α has a unique

b-adic expansion called the base b expansion and is of the form

α = bαc+
∞∑
n=1

an
bn
.

Here the digits an are integers with the following constraints. For n ≥ 1 we have

0 ≤ an < b and an < b−1 for infinitely many n. Let a be a digit with respect to the
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base b and let N be a positive integer. Then define #N(a, b, α) to be the number

of n with 1 ≤ n ≤ N such that an = a. We can extend this definition to blocks

of digits Bj = b1b2...bj in the following way: let #N(Bj, b, α) be the number of k,

1 ≤ k ≤ N − j + 1, such that ak+j−1 = bk for 1 ≤ k ≤ j. We also refer to blocks as

words. If it is not clear we will say, B is a finite word, meaning a word with finite

length. The function #N(Bj, b, α) can be viewed as counting the number of distinct

occurrences (perhaps with overlap) of the block Bj in the first N digits of α’s b-adic

expansion.

Definition 2.1.0.1. The real number α is called simply normal to the base b if

lim
N→∞

#N(a, b, α)

N
=

1

b
for a ∈ {0, 1, 2, ..., b− 1}.

Definition 2.1.0.2. The real number α is called normal to the base b if

lim
N→∞

#N(Bj, b, α)

N
=

1

bj
for all j ≥ 1 and all Bj.

Definition 2.1.0.3. The real number α is called absolutely normal if α is normal

to every base b ≥ 2.

As we can see, the integer part of the real number α plays no role in whether

or not α is normal. In fact, changing or removing any finite number of digits will

maintain normality for the resulting sequence (See Appendix A). Therefore, we will

limit ourselves to the set of real numbers in the unit interval, [0, 1).

We will refer to the limit in definition 2.1.0.2 as the frequency of the block

Bj in α denoted FreqBj
(α) or more simply FreqB(α). We will usually suppress the

subscript on the block name and simply denote a block by B with the length inferred

from context. When needed we will use |B| to denote the length of the finite block

B.
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It is obvious that a number that is normal to the base b is also simply normal to

the base b, since 1 is a possible length of a block. The converse is not true, however.

Consider the one-sided infinite word (0, 1, 0, 1, 0, 1, 0, ...) that alternates 0’s and 1’s.

This number is clearly simply normal to base 2. However, it is not normal since

the block B = 11 never occurs. In fact, there are uncountably many real numbers

that are not normal. Consider a decimal expansion that has no 2’s in it. The set

of all of these decimals is uncountable and clearly contains only numbers that are

not normal. A real number that is normal to any base is necessarily irrational,

since rational numbers have finite or periodic expansions in any base. But it is not

the case that all irrationals are normal or simply normal. For example, think of

any irrational number in the base 3 Cantor set. It does not have a 1 in its base 3

expansion at all.

There are a few constructions of specific normal numbers that are known. The

first widely known example is due to Champernowne [3] and is now referred to as

Champernowne’s number. It is simply the concatenation of the natural numbers

in base 10, 0.123456789101112131415161718.... Champernowne [3] proved that this

number is normal to the base 10. This type of construction can create a number

normal to any integer base, b ≥ 2. For instance, if we concatenate the natural

numbers represented in base 2 we get 0.11011100101110... which is a real number

that is normal to the base 2.

Champernowne conjectured, and it has since been proven in [6], that the con-

catenation of the primes, 0.23571113171923293137..., also known as the Copeland-

Erdös constant, yields a normal number to the base 10. In a paper by Copeland and

Erdös they classify the types of subsets of the natural numbers that when concate-

nated in increasing order produce a normal number.[6] These subsets are dense in



6

the natural numbers. A set D ⊆ N is dense if, for every δ < 1 and for all sufficiently

large n, |D∩{1, 2, ..., n}| ≥ nδ. Their result states that taking the base b expansion

of the elements of a dense set D ⊆ N and concatenating them in increasing order

yields a number normal to the base b.

For a long time it was widely believed that there was not an example of an

absolutely normal number. Even to this day some people still think that such an

example does not exist. This is, however, untrue. In 1917 Sierpinski, see [2] and

[7], proposed a construction of a number that would be absolutely normal. This

construction does indeed provide a construction of an absolutely normal number.

Remark 2.1.0.1. If we forget that the sequences (an)∞n=1 can be viewed as b-adic

expansions of real numbers, then normality can simply be viewed as a property of

sequences of symbols from a finite set of size b. This is an extremely useful viewpoint

to have for the discussion in section 4.



7

3. ERGODIC THEORY

3.1. Probability basics

It was previously mentioned that the examination of normal numbers can be

restricted to real numbers in the unit interval. The unit interval can be equipped

with tools that make it a finite measure space. Moreover, the unit interval can easily

be seen as a probability measure space. It is because of this deep connection that

probability theory lends itself naturally to the ongoing study of normal numbers.

In this section we will introduce the basics of probability theory in a way that will

mesh with the theory we will use later in the paper. For a deeper discussion of

probability theory please refer to [15] or [16].

As we introduce the basics of probability theory we will try to keep the ter-

minology as general as possible to maintain a larger audience for this paper.

Definition 3.1.0.4. Given a set X equipped with a σ-algebra, Σ, of subsets of X

and a finite measure, µ, on X, (i.e. µ(X) < ∞), we call the triple (X,Σ, µ) a

finite measure space. Moreover, if we have that µ(X) = 1 then we call the triple,

(X,Σ, µ), a probability measure space or more simply a probability space and

µ a probability measure.

We can view any finite measure space as a probability measure space by simply

defining a new measure ν = 1
µ(X)

µ. The sets in the σ-algebra are called measurable

sets. Given a measurable set E we think of µ(E) as the probability of E.

Definition 3.1.0.5. Given two measurable sets E1 and E2, we say that E1 and E2

are independent if µ(E1∩E2) = µ(E1)µ(E2). For a finite collection of measurable
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sets E1, E2, ..., Ek we say they are independent if

µ(Ej1 ∩ Ej2 ∩ ... ∩ Ejm) = µ(Ej1)µ(Ej2)...µ(Ejm)

for all possible subsets {j1, j2, ..., jm} ⊆ {1, 2, ..., k}, of distinct elements and 1 ≤

m ≤ k.

Example 3.1.0.1. Suppose we had 3 sets, D,E, F . They would be independent if

and only if all of the following four conditions are met:

(i) µ(D ∩ E ∩ F ) = µ(D)µ(E)µ(F ), (ii) µ(D ∩ E) = µ(D)µ(E)

(iii) µ(E ∩ F ) = µ(E)µ(F ), (iv) µ(D ∩ F ) = µ(D)µ(F ).

In order to talk about the independence of an infinite collection of measurable

sets we must consider all possible sub-collections. We refer the reader to [16] (pg.

68) for a more thorough treatise of this delicate concept.

Definition 3.1.0.6. Given a finite measure space (X,Σ, µ), a function f : X → R

is measurable (with respect to µ) if for all measurable sets A ⊆ R then f−1(A) ∈ Σ.

Up to this point we have not discussed what the measurable sets of R are. In

most cases it is of little importance to us which type of measurable sets of R are

to be considered. We typically use one of two classical constructions for a measure

on R. The first is Borel measure and the Borel measurable sets. The second is

Lebesgue measure and Lebesgue measurable sets. These are both useful because

the measure of an interval is its length.

Definition 3.1.0.7. A real valued random variable, f , is a measurable function

from X into R. Given a measurable set A ⊆ R, we denote the set {x ∈ X | f(x) ∈

A} as {f ∈ A} for simplicity. For convenience we will use the following notation.
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µ(f ∈ A) = µ({x ∈ X | f(x) ∈ A})

We refer to µ(f ∈ A) as the probability that f is in A.

There are a few specific random variables that are of special significance in

probability theory, so much so that they have special names.

Definition 3.1.0.8. The indicator function or characteristic function of a

set A denoted 1A is defined by

1A(x) =


0 if, x 6∈ A

1 if, x ∈ A.

The indicator function is measurable, since a measurable set in R can either

contain both 0 and 1 or contain just one of 0 or 1 or contain neither. These three

different cases yield the measurable sets: X, A, Ac, and ∅. The indicator function

is an example of a discrete random variable taking the values 0 or 1. The indica-

tor function helps simplify notation for random variables that would otherwise be

cumbersome to work with as we will see later in our proof of the Normal Number

Theorem.

Definition 3.1.0.9. A discrete random variable, f : X → R, takes only finitely

many distinct values in R.

An example of a discrete random variable is a Bernoulli random variable.

Given 0 ≤ p ≤ 1 we define the Bernoulli random variable, f, such that µ(f ∈ {1}) =

p and µ(f ∈ {0}) = 1− p.

Definition 3.1.0.10. LetM be the set of measurable sets of R. Then given two ran-

dom variables f1 and f2. We say f1 and f2 are independent random variables

if for all E ∈M the sets f−11 (E) and f−12 (E) are independent.
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Similarly, we may extend this definition to finite collections of random variables

and infinite collections of random variables. This is done in such a way as to be

analogous to the definition of independent sets. We should also note that the σ-

algebra being used plays a key role in whether a collection of random variables are

independent or not.

Definition 3.1.0.11. Given a random variable f we define the distribution of f

by µ ◦ f−1.

Example 3.1.0.2. Let f be a discrete random variable taking values in a set

{a1, a2, ..., an}. Then f has a uniform distribution if µ(f ∈ {ai}) = 1
n

for all

1 ≤ i ≤ n. Or we could say, the probability that f = ai is 1
n

for all 1 ≤ i ≤ n.

The uniform distribution is very appealing since it lends itself to many real

world situations. For instance, the random variable that represents the outcome of a

fair coin flip is a uniform distribution on the set {−1, 1}, where −1 stands for heads

and 1 stands for tails. The uniform distribution can also be used for describing

picking a card out of a well shuffled deck of playing cards. There is a 1
52

chance of

picking a card with a specific suit and number.

Lemma 3.1.0.1. [16] The distribution of a random variable is a probability measure

on R.

Again, in this we are not specifying which sets are measurable. Usually the

context will make it clear which sets are measurable in R. In fact, it will be the

same sets that the random variable f is measurable with respect to. At the core of

the proof for Lemma 3.1.0.1 is the fact that µ is a probability measure. All of the

needed attributes are inherited from µ and are preserved by the measurable f .
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A common abbreviation used in probability theory when dealing with a col-

lection or sequence of independent and identically distributed random variables is

i.i.d. This means that all of the random variables in the collection have identical

distributions and the collection of random variables is independent.

Definition 3.1.0.12. Given a random variable f : X → R, then the expectation

of f is the integral of f with respect to the measure µ denoted

E(f) =

∫
X

fdµ.

Proposition 3.1.0.1. [19] Given independent random variables f and g,

E(fg) = E(f)E(g).

This proposition can be extended to finite and infinite collections of random

variables. This extension is analogous to the definition of independence for collec-

tions of random variables.

Theorem 3.1.0.2. (Markov’s Inequality)

Given a probability measure space (X,Σ, µ), let f be a random variable on X

then for all ε > 0,

µ(|f | > ε) ≤ E(|f |)
ε

.

Proof. Let A be the set where |f | > ε. Then 1A ≤
|f |
ε

. Taking expectations on

both sides yields

E(1A) ≤ E(|f |)
ε

.

Since E(1A) = µ(A) = µ(|f | > ε) the proof is complete.

Markov’s inequality can be used to prove Chebyshev’s inequality for even

integer values of p. Since |f |p ≥ εp if and only if |f | ≥ ε for p an even integer.
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Theorem 3.1.0.3. [19] (Chebyshev’s Inequality) For all p, ε > 0 and for all

random variables f ∈ Lp(µ), i.e. E(|f |p) <∞,

µ(|f | ≥ ε) ≤ 1

εp

∫
{|f |≥ε}

|f |pdµ ≤ (E(|f |p))
εp

.

Here LP (µ) is the set of all random variables such that
∫
|f |pdµ <∞. Instead

of providing a proof of Chebyshev’s inequality, we will provide a proof for a simi-

lar inequality that will be useful when we provide a proof of the Normal Number

Theorem.

Lemma 3.1.0.2. Given a probability measure space (X,Σ, µ) and a sequence of

i.i.d. random variables {fi}∞i=0, let SN = f0 + f1 + ...+ fN−1. Then for all ε > 0,

µ

({
x ∈ X

∣∣∣∣∣
∣∣∣∣SNN − E(f0)

∣∣∣∣ > ε

})
≤ E(S4

n)

N4ε4
.

Proof. Since |SN −NE(f0)|4 is a random variable we can apply Markov’s inequality

to obtain

µ

({
x ∈ X

∣∣∣∣∣ |SN −NE(f0)|4 > N4ε4

})
≤ E(S4

n)

N4ε4
.

This is equivalent to

µ

({
x ∈ X

∣∣∣∣∣
∣∣∣∣SNN − E(f0)

∣∣∣∣4 > ε4

})
≤ E(S4

n)

N4ε4
.

Then since
∣∣SN

N
− E(f0)

∣∣4 > ε4 if and only if
∣∣SN

N
− E(f0)

∣∣ > ε we have

µ

({
x ∈ X

∣∣∣∣∣
∣∣∣∣SNN − E(f0)

∣∣∣∣ > ε

})
= µ

({
x ∈ X

∣∣∣∣∣
∣∣∣∣SNN − E(f0)

∣∣∣∣4 > ε4

})
.

Therefore

µ

({
x ∈ X

∣∣∣∣∣
∣∣∣∣SNN − E(f0)

∣∣∣∣ > ε

})
≤ E(S4

N)

N4ε4
.

and the proof is complete.
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Lemma 3.1.0.3. Given the hypotheses of lemma 3.1.0.2 and fi ∈ L4(µ)

lim
N→∞

E(S4
N)

N4ε4
= 0.

Proof. We can assume, without loss of generality, that E(fi) = 0. Otherwise we

can replace the random variable fi with the random variable fi − E(fi). Con-

sider E(S4
N) = E((f0 + f1 + ... + fN−1)

4); the sum will have terms of the form

f 4
i , fif

3
j , f

2
i f

2
j , fifjf

2
k , and fifjfkfl with i, j, k, l all distinct. Since we have as-

sumed the fi’s are independent and have expectation 0, most of the terms are zero.

Terms of the form fif
3
j , fifjf

2
k , and fifjfkfl will have their expectation be zero.

For a distinct pair i, j there are 6, which is “4 choose 2”, terms of the form f 2
i f

2
j .

Thus we have

E
(
S4
N

)
= E

(N−1∑
i=0

fi

)4
 (3.1)

= E

(
N−1∑
i=0

f 4
i + 6

∑
i 6=j

f 2
i f

2
j

)
(3.2)

= NE
(
f 4
i

)
+ 6

N(N − 1)

2
E
(
f 2
i f

2
j

)
. (3.3)

Having fi ∈ L4(µ) implies that fi ∈ L2(µ). Also independence implies that E
(
f 2
i f

2
j

)
=

(E (f 2
i ))

2
. Therefore we have E (S4

N) = NE (f 4
i ) + 3N(N − 1) (E (f 2

i ))
2
< ∞. The

values E (f 4
i ) and (E (f 2

i ))
2

are constants. Let C be the maximum of the two values.

Then

lim
N→∞

E(S4
N)

N4ε4
= lim

N→∞

NC + 3N(N − 1)C

N4ε4
= 0.
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3.2. Ergodic Theory

The notion of probability has seeped so far into our language that it is not

uncommon to hear someone say, “What are the chances that was going to happen?”

or “What are the odds?”. A naive answer to the first question is 1
2
; it either was going

to happen or it wasn’t. Describing why this answer is naive can be cumbersome.

Sometimes the answer is correct. For example, if the question was referring to the

result of a fair coin flip, then the answer of 1
2

is completely correct. The probability

of the coin landing with the heads side up is 1
2
, with the only other option being

that the coin landed with the tails side up.

With great care, the naivety of the answer can be exposed and a deeper under-

standing of how randomness behaves can be found. There are quite a few different

ways to define randomness. At the core of these definitions is the belief that ran-

domness is a limitation of the ability to predict what is going to happen next or

predict what object will be chosen out of a set.

Fair coin flips are inherently independent of the past. Knowing all the results

of previous coin flips does not give a clue as to what the next coin flip will be.

However, if it is unknown to an observer that a coin is biased to show heads 95%

of the time and show tails the other 5% of the time, then the observer can infer,

over the course of many coin flips, that a better guess for the result of the coin

flip is heads. Since the observer will notice the disproportionate number of heads

occurring, this would be seen by the observer as less random than a fair coin flip.

It is this idea that the repetition of a random experiment will give us a global

understanding that is at the core of the ergodic theorem. In fact, it is often talked

about as showing that the time average is the same as the space average. We will
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make all of this more precise with the following definitions. As we will see, the

entropy of a system is a gauge as to how well we can predict the next outcome given

the results of all previous outcomes.

Definition 3.2.0.13. Given a finite measure space (X,Σ, µ) with µ(X) < ∞ and

a measurable transformation T : X → X, T is said to be measure preserving if

for all E ∈ Σ we have that µ(T−1(E)) = µ(E).

Notice that for a transformation to be measure preserving, it does not need

to send the points of a set E to a set with the same measure as E. What needs

to happen is that a set E needs to receive the proper amount of points under the

transformation T . Also, we can conclude that µ(T−n(E)) = µ(E) for all n by

repeatedly applying the definition.

Theorem 3.2.0.4. (Poincaré Recurrence)

Given a finite measure space (X,Σ, µ) and a measure preserving transforma-

tion T : X → X, for any E ∈ Σ with µ(E) > 0 then there exists some x ∈ X such

that T n(x) ∈ E for some n > 0.

Proof. Assume for a contradiction there is no point x ∈ E such that T n(x) ∈ E for

some n. Therefore T−n(E) ∩ E = ∅ for all n > 0. Also T−n(E) ∩ T−m(E) = ∅ for

all n 6= m. Therefore,

µ

(
∞⋃
n=1

T−n(E)

)
=
∞∑
n=1

µ(T−n(E)) =
∞∑
n=1

µ(E) =∞

since µ(E) > 0 and T is measure preserving. But we have that µ(X) < ∞ and⋃∞
n=1 T

−n(E) ⊆ X. Thus we have reached our contradiction. Therefore, the theorem

holds.
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Corollary 3.2.0.1. Assuming the hypotheses from theorem 3.2.0.4 then

µ({x ∈ E | T n(x) 6∈ E for all n > 0}) = 0.

Note that this corollary is trivially true if we have a set E with µ(E) = 0.

Thus the hypotheses for the corollary can be relaxed to all measurable sets E ∈ Σ.

Proof. Let N = {x ∈ E | T n(x) 6∈ E for all n > 0} with µ(E) > 0. Clearly

N ⊆ E and no point in N will ever return to N under the transformation T , since

the point never returns to E. Therefore, by the contrapositive of theorem 3.2.0.4

µ(N) = 0.

Definition 3.2.0.14. Given a probability measure space (X,Σ, µ) and a measure

preserving transformation T : X → X, then T is said to be ergodic if for any

E ∈ Σ with T−1(E) = E either µ(E) = 0 or µ(E) = 1.

Theorem 3.2.0.5. [21] The Ergodic Theorem

Let T be an ergodic transformation on the measure space (X,Σ, µ) and let f : X → R

be a real-valued measurable function. Then for almost all x ∈ X the following holds,

lim
N→∞

1

N

N∑
j=1

f(T−j(x)) =
1

µ(X)

∫
fdµ.

If we take the function f to be the characteristic, or indicator, function of

a subset A ⊂ X, then this theorem can be thought of as showing that the time

average equals the space average for an ergodic transformation.

Therefore, if we knew the results of an infinite number of coin flips, we could

accurately determine the probability of seeing heads or tails on the next coin flip.

If we are in the setting of a probability space, then it also allows us to obtain very

accurate estimates for the measure of a measurable set, A, by setting f equal to the

indicator function of A.
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4. SYMBOLIC DYNAMICAL SYSTEMS

4.1. Symbolic Dynamical Systems

In section 2.1. of this paper we introduced the idea of a normal number. In

symbolic dynamical systems there is a finite alphabet set, a set of one-sided (or two-

sided) infinite sequences of letters (called words). The alphabet set can be thought

of as the digits with respect to some base b. The set of one-sided infinite sequences

with entries from a finite set of size b could be thought of as the b-adic expansion.

One should notice that in the definition of a simply normal number, the limit

is equal to the probability of any single digit being rolled if a b-sided fair die is rolled;

in other words, using the uniform distribution on b elements. This holds true for

blocks of digits, since the probabilities are multiplicative due to the independence

of successive digits. But what if we did not use the uniform distribution to specify

the probabilities of occurrence for single digits and blocks of digits? How can we

define the “normality” of words that appear in a given symbolic dynamical system?

It is simple, really. We will use the same definition, but instead of setting it equal

to the probabilities given by the uniform distribution, we will use the probabilities

given by the dynamical system via the measure of cylinder sets. But first we should

define a few basic objects, including a symbolic dynamical system.

Definition 4.1.0.15. Given a measure preserving probability measure space (X,Σ, µ, T ),

(i.e. T is measure preserving), and a finite partition P = {P0, P1, ..., Pb−1} of X, we

will associate a unique symbol to each element of the partition. Usually we choose

the symbols {0, 1, 2, ..., b − 1} = A. This set of symbols is the alphabet of the
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symbolic dynamical system. Given a point x ∈ X we keep track of which partition

element of P the T -orbit of x visits by writing down the associated symbol. The

P-name of x is an infinite list of letters from our alphabet, namely {ak}∞k=0 such

that T k(x) ∈ Pak .

When working with a symbolic dynamical system, we want to keep the P-

names of distinct points distinct, at least up to a set of measure zero. The choice of

partition, given a measure preserving transformation T , enables us to maintain the

distinctness of distinct points in X.

Definition 4.1.0.16. A partition, P, is called a generator or generating par-

tition if there exists a set G ⊆ X with µ(G) = 1 so that for all x, y ∈ G with x 6= y

then x and y have distinct P-names.

We have the set X and the set of P-names of points x ∈ X. When T acts

on points in X it takes x to T (x). The map that takes the P-name of x to the

P-name for T (x) is called the shift map, σ. If x has the P-name x1x2x3... then

σ(x1x2x3...) = x2x3... is the P-name of T (x).

The set of symbolic names along with the shift map is the symbolic system.

It corresponds with the measure preserving probability measure space. As can be

seen, it is cumbersome to talk about the point x and the P-name of x. Therefore,

we will think of x = x1x2... as both the point in X and the associated P-name of

x. So we may also write and think T (x) = σ(x) interchangeably.

Definition 4.1.0.17. For any finite word a1a2...ak with ai ∈ A, we define a length

k cylinder set to be all the x ∈ X such that xi = ai for all 1 ≤ i ≤ k. Where

(xi)
∞
i=1 is the P-name of x, we will denote a length k cylinder set by [a1a2...ak].
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We will use the idea of a cylinder set when we define what it means for a

symbolic dynamical system to be normal. An example of a cylinder set is the set

of decimals that start with a 5 in base 10. These points are precisely the points in

the interval [5/10, 6/10). This is a cylinder set of length 1 using the appropriate

partition for base 10 decimals.

Proposition 4.1.0.2. Let (X,Σ, µ) = ([0, 1),Σ, µ) with Σ the Lebesgue measurable

sets and µ Lebesgue measure. Then the transformation T : [0, 1)→ [0, 1) defined by

T (x) = bx− bbxc for some 2 ≤ b ∈ N is measure preserving.

Proof. Given an arbitrary open interval (c, d) ∈ [0, 1) we want to show that

µ((c, d)) = µ(T−1(c, d)). Since the Lebesgue measure of an open interval is the

length of the interval, we have that µ((c, d)) = d − c. Since T could be viewed as

multiplication by b mod 1, the only points that get mapped into (c, d) must have

come from an interval of the form ( c
b
+ i

b
, d
b
+ i

b
) with i ∈ {0, 1, 2, ..., b−1}. Therefore,

T−1((c, d)) =
b−1⋃
i=0

( c
b

+ i
b
, d
b

+ i
b
). This is a union of disjoint open intervals. Thus

µ

(
b−1⋃
i=0

(
c

b
+
i

b
,
d

b
+
i

b

))
=

b−1∑
i=0

µ

((
c

b
+
i

b
,
d

b
+
i

b

))
=

b−1∑
i=0

(
d

b
− c

b

)
.

So that, finally, we have

µ(T−1((c, d))) = b

(
d

b
− c

b

)
= d− c = µ ((c, d)) .

The following example of a dynamical system is going to abstract the real

numbers and create a measure preserving transformation that will create the base

b expansion of a real number x as the P-name of x in our dynamical system.
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Example 4.1.0.3. Let X = [0, 1). Then define

P =

{
Pi =

[
i

b
,
i+ 1

b

) ∣∣∣∣∣ i ∈ {0, 1, 2, ..., b− 1}

}
.

The partition elements Pi =
[
i
b
, i+1

b

)
make the symbolic dynamical system corre-

spond to the base b expansion of x ∈ [0, 1). Let Σ be the set of Lebesgue measurable

sets and λ be Lebesgue measure. Let T (x) = bx− bbxc which is the fractional part

of bx. Therefore T : [0, 1)→ [0, 1) and, as we have seen in proposition 4.1.0.2, T is

measure preserving. So we have a measure preserving probability space (X,Σ, λ, T )

and a partition P . So we have a symbolic dynamical system.

Now let’s examine what T does to a point x ∈ [0, 1).

T (x) = bx− bbxc ⇔ bx = T (x) + bbxc ⇔ x =
T (x) + bbxc

b

Let bbxc = a1 ≤ b− 1. So we have x = (a1 + T (x))/b. We can iterate this and find

that

T 2(x) = T (T (x)) = bT (x)− b(bT (x))c ⇔ T (x) =
a2 + T 2(x)

b
.

Where a2 = bbT (x)c ≤ b− 1. Therefore, we have

x =
a1 + T (x)

b
=
a1 + (a2+T 2(x))

b

b
=
a1
b

+
a2
b2

+
T 2(x)

b2
.

So in general we have

x =

(
n∑
k=1

an
bn

)
+
T n(x)

bn
.

Where ak = bbT k−1(x)c ≤ b− 1. Since 1
bn
T n(x) ≤ 1

bn
→ 0 as n→∞ uniformly and

exponentially fast, we have that x =
∑∞

n=1
an
bn

with an ∈ {0, 1, ..., b− 1}.

Whenever an expansion of a real number x to a base b is defined, there is always

the worry that x will have more than one representation. The author assumes the
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reader is familiar with this caveat and understands that the set of x that have 2

representations has measure zero. Recall that the number 1 can be written two

different ways in base 10, i.e. 1 = .9999.... Example 4.1.0.3 is the motivation for

the following definitions.

Definition 4.1.0.18. Let #N([a], T, x) be the number of times T n(x) ∈ [a] for

1 ≤ n ≤ N and a ∈ A. Similarly let #N([a1a2...ak], T, x) be the number of times

T n(x) ∈ [a1a2...ak] for 0 ≤ n ≤ N − 1 and ai ∈ A.

This definition counts how many times the T -orbit of x visits a particular

cylinder set.

Definition 4.1.0.19. Given a symbolic dynamical system (X,Σ, µ, T,P), we say

that the P-name of x ∈ X is simply normal with respect to P if

lim
N→∞

#N([a], T, x)

N
= µ([a]) for all a ∈ A.

Definition 4.1.0.20. Given a symbolic dynamical system (X,Σ, µ, T,P),we say

that the P-name of x ∈ X is normal with respect to P if

lim
N→∞

#N([a1a2...ak], T, x)

N
= µ([a1a2...ak]) for all [a1a2...ak].

Using example 4.1.0.3 and definition 4.1.0.20 we can provide a basic proof of

the Normal Number Theorem similar to something Borel could have come up with.

4.2. A Proof of the Normal Number Theorem

Recall the symbolic dynamical system from Example 4.1.0.3, (X,Σ, λ, T,P).

We showed that this system corresponds with the base b expansion of x ∈ X = [0, 1).
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We also have that λ([a]) = b−1 for all a ∈ {0, 1, ..., b − 1}. This is easily seen by

the definition of the partition P . One can easily show that λ([a1a2...ak]) = b−k for

ai ∈ {0, 1, ..., b− 1} and 1 ≤ i ≤ k.

We can now state the Normal Number Theorem in the context of symbolic

dynamical systems using example 4.1.0.3 as our system.

Theorem 4.2.0.6. (Normal Number Theorem) Given the symbolic dynamical

system from Example 4.1.0.3, the set of x ∈ [0, 1) such that

lim
N→∞

#N(C, T, x)

N
= λ(C)

for all cylinder sets C has Lebesgue measure 1.

Proof. Let C = [a1a2...ak] be a cylinder set for any 1 ≤ k < ∞ and any ai ∈

{0, 1, 2, ..., b − 1}, 1 ≤ i ≤ k. Let x ∈ [0, 1) have P-name x1x2.... with xi ∈

{0, 1, ...b − 1}. Recall that #N(C, T, x) is the number of times T n(x) is in C for

0 ≤ n ≤ N − 1. Then for δ > 0 define

DN(C, T, δ) =

{
x ∈ [0, 1)

∣∣∣∣∣
∣∣∣∣#N(C, T, x)

N
− λ(C)

∣∣∣∣ ≥ δ

}
.

For x to be normal it cannot belong to infinitely many DN(C, T, δ). Note that Ac

denotes the set complement of A. So the elements of the set

∞⋃
N0=1

∞⋂
N=N0

(
DN

(
C, T,

1

j

))c
are the x that have |#N(C, T, x)− λ(C)| < 1

j
for all N ≥ N0. Therefore, if we

take the intersection over all of the j we would have the set of x ∈ [0, 1) for which

limN→∞
#N (C,T,x)

N
= λ(C) = b−k. This set is

∞⋂
j=1

∞⋃
N0=1

∞⋂
N=N0

(
DN

(
C, T,

1

j

))c
.
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The number of cylinder sets is countable so we can again take the intersection over

all possible cylinder sets C of any length 1 ≤ k < ∞. Let the collection of all

possible cylinder sets be denoted by C. Then we have⋂
C∈C

∞⋂
j=1

∞⋃
N0=1

∞⋂
N=N0

(
DN

(
C, T,

1

j

))c
is the set of x that are normal with respect to base b. Notice that this set contains

exactly all of the numbers normal to the base b with none missing. We can also take

the intersection over all bases b ≥ 2 and get the set of x that are absolutely normal

∞⋂
b=2

⋂
C∈C

∞⋂
j=1

∞⋃
N0=1

∞⋂
N=N0

(
DN

(
C, T,

1

j

))c
. (4.1)

To complete the proof we simply need to show that λ
(
DN

(
C, T, 1

j

))
→ 0. We have

that λ is a probability measure, so we can use results from probability theory. If we

define the random variables Xi : [0, 1)→ {0, 1, ..., b−1} where Xi(x) = Xi(x1x2...) =

xi with x1x2... being the P-name of x. So the random variable Xi returns the ith

symbol in the P-name of x. These random variables are independent and identically

distributed with the uniform distribution on {0, 1, ..., b − 1}. Therefore, x ∈ C =

[a1a2...ak] if and only if X1(x) = a1, X2(x) = a2, ..., Xk(x) = ak. For notational

convenience we will use 1C since it is equivalent to X1(x) = a1, X2(x) = a2, ...,

Xk(x) = ak.

Recall that λ(C) =
∫ 1

0
1C dλ = E(C). Noticing this will allow us to use

probability when examining whether or not λ
(
DN

(
C, T, 1

j

))
→ 0. Notice that

#N(C, T, x) =
∑N−1

n=0 1C(T n(x)) is the number of times that T n(x) is in C for

0 ≤ n ≤ N − 1. Let SN =
∑N−1

n=0 1C(T n(x)). Therefore, the set DN

(
C, T, 1

j

)
is the

set of x ∈ [0, 1) such that
∣∣∣SN (x)

N
− λ(C)

∣∣∣ ≥ 1
j
. Therefore, by lemma 3.1.0.2, we have

λ

(
DN

(
C, T,

1

j

))
≤ j4 E(S4

N(x))

N4
.
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Then lemma 3.1.0.3 gives us

lim
N→∞

λ

(
DN

(
C, T,

1

j

))
= 0 for all j > 0.

4.3. Entropy of a Partition

Entropy is a unitless quantity that tries to describe the amount of complexity

or randomness of a certain system. The thermodynamic version of entropy is mea-

suring the amount of energy in a system that cannot be used to do thermodynamic

work. As time passes, the thermodynamic system tends toward an equilibrium state

where the heat or energy is uniformly distributed. As we will see in our definitions,

the equilibrium state is when the entropy is maximized. For us, it will be because we

have minimized the certainty of seeing a particular outcome when the probabilities

of outcomes are all equal (i.e., a uniform distribution of probabilities over the state

space).

We will want to study the entropy of a symbolic dynamical system for a few

reasons. The main reason is that entropy has been proven to be an isomorphism

invariant for dynamical systems by Ornstein [13]. Another reason we want to study

entropy is that it tells us if the system we are examining is deterministic or not.

Determinism can be thought of as being able to predict the future given the past. A

non-deterministic system has some amount of randomness associated with predicting

the future knowing the past.

Definition 4.3.0.21. Given a probability space, (X,Σ, µ) and a partition of X,

P = {P1, P2, ..., Pn}, with µ(Pi) = pi ≥ 0 for 1 ≤ i ≤ n and
∑n

i=1 pi = 1. We define
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the entropy of the partition P to be

h(P) = −
n∑
i=1

pi log(pi).

We define 0 log(0) = 0 if that case should arise.

We will always use the logarithm base 2. It is fairly arbitrary which base

you pick for the logarithm. We chose base 2 so we can think of the entropy in

terms of bits of information. If we think of − log(pi) as the amount of “surprise” we

experience when a point x ∈ X is in Pi, then h(P) is the expected amount of surprise

the partition provides and can be viewed as the expectation of −log(pi)1(Pi).

Example 4.3.0.4. Let µ(Pi) = 1
n

for all Pi ∈ P with |P| = n. Then

h(P) = −
n∑
i=1

1

n
log

(
1

n

)
= log(n).

For this example the logarithm is increasing in n, so as the size of the partition

increases, the entropy increases. In addition, the maximum entropy for a partition

of size n is log(n). The heuristic reason for this is that when n outcomes are equally

likely then the expected amount of surprise is maximized.

Definition 4.3.0.22. Given two finite partitions P and Q of a space X, we define

the span of P and Q, denoted P ∨Q, to be the set of all non-empty intersections

of elements from P and Q,

P ∨Q = {P ∩Q | P ∈ P & Q ∈ Q} .

Also given a family of finite partitions of X, (Pi)ni=1, we define

n∨
i=1

Pi = P1 ∨ P2 ∨ ... ∨ Pn.
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The entropy of a partition is only part of the story for a symbolic dynam-

ical system. Recall that we want the symbolic system to keep points distinct. A

generating partition was a partition that did exactly that, relative to what the trans-

formation T is. For very similar reasons, if we want to talk about the entropy of a

transformation T , we need to take into consideration the different partitions that

are possible so that the entropy of T will not depend on the choice of partition.

Definition 4.3.0.23. The entropy of a finite partition P relative to T is

h(P , T ) = lim sup
n→∞

1

n
h

(
n−1∨
k=0

T−k(P)

)
.

Now we can finally define the entropy of T .

Definition 4.3.0.24. The entropy of T is

h(T ) = sup
P
h(P , T )

where the supremum is taken over all possible finite partitions of X.

Definition 4.3.0.25. The conditional entropy of a partition P given a partition

Q is

h(P |Q) = h(P ∨Q)− h(Q).

The conditional entropy can be thought of as the amount of expected surprise

in seeing the next digit in a sequence if we have prior knowledge via the partition Q.

This heuristic is very helpful once we have the following proposition and theorem.

It will help us better understand how the entropy relates to determinism.

Proposition 4.3.0.3. Given a symbolic dynamical system (X,Σ, µ, T,P)

h(P , T ) = lim sup
N→∞

1

N

N∑
k=1

h

(
P

∣∣∣∣∣
k∨

n=1

T−n(P)

)
. (4.2)
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Proof. From the definition of conditional entropy we have

h

(
P

∣∣∣∣∣
k∨

n=1

T−n(P)

)
= h

(
k∨

n=0

T−n(P)

)
− h

(
k∨

n=1

T−n(P)

)
.

Therefore the sum in equation 4.2 is a telescoping sum. Thus

1

N

N∑
k=1

h

(
P

∣∣∣∣∣
k∨

n=1

T−n(P)

)
=

1

N
h

(
N∨
n=0

T−n(P)

)
− 1

N
h
(
P ∨ T−1(P)

)
,

since h (P ∨ T−1(P)) is some finite constant lim sup
N→∞

1

N
h
(
P ∨ T−1(P)

)
= 0.

Therefore,

lim sup
N→∞

1

N

N∑
k=1

h

(
P

∣∣∣∣∣
k∨

n=1

T−n(P)

)
= lim sup

N→∞

1

N
h

(
N∨
n=0

T−n(P)

)
= h(P , T ).

Theorem 4.3.0.7. [21] (Kolmogorov-Sinai)

Given a symbolic dynamical system (X,Σ, µ, T,P), if the partition P is a

generator, then

h(T ) = h(P , T ).

Thinking of
∞∨
k=1

T−k(P) as the infinite past, then proposition 4.3.0.3, combined

with the Kolmogorov-Sinai theorem, shows us that knowing the infinite past for a

generating partition gives us the entropy. In other words, if the entropy is zero,

knowing the past will tell us the future. This is determinism. If the entropy of a

system is zero we will say that it is a deterministic system. In contrast, if a system

has positive entropy, then it is not deterministic and must have some type of random

structure.
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4.4. Shift Spaces

Shift spaces are another way to describe symbolic dynamical systems. One

could think of the shift space as the set of symbolic names with a shift operator.

Just as before we have a finite set of states. Given some size for the alphabet, n, we

will always use the finite set A = {0, 1, ..., n−1} for convenience. But using this set

is not necessary; any finite set will work. An infinite word is a sequence x = (xk)k∈N

where xk ∈ A. A bi-infinite word is a doubly infinite sequence x = (xk)k∈Z where

xk ∈ A. We will talk about the bi-infinite shift spaces, but the ideas can easily be

applied to the infinite shift spaces.

Definition 4.4.0.26. Given a finite alphabet A, the full A-shift is the collection

of all bi-infinite sequences of symbols from A. If we are using the alphabet A =

{0, 1, ..., n− 1}, we call this the full n-shift.

We denote the full A-shift by

AZ = {x = (xk)k∈Z | xk ∈ A for all k ∈ Z}.

If A has size |A| = n then there is a natural correspondence between the full n-shift

and the full A-shift. We will always think in terms of the full n-shift.

Blocks of consecutive symbols are central to the ideas we explore in this paper.

A block or word over A is a finite sequence of symbols from A. We write the block

without any spaces in between the symbols; for example, a block over the alphabet

A = {0, 1} would look like 0101100111. This block would have a length of 10.

Much in the same way that the real number zero is important, we also need to

include the empty block or empty word , which is the word containing no symbols,
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denoted by ε. The length of a block B is the number of symbols it contains and is

denoted |B|. For example, if B = b1b2...bk is a non-empty block, then |B| = k and

we have that |ε| = 0.

Definition 4.4.0.27. The shift map σ on the full shift AZ maps a point x to a

point y such that yi = xi+1.

So the shift map shifts the symbols in the bi-infinite word to the left by one.

This can be viewed as follows:

x = ... x−2x−1 . x0x1x2 ...

and

σ(x) = ... x−1x0 . x1x2x3 ...

Notice the period that symbolizes an origin of sorts, without which we would be

lost in a sea of symbols with no compass or sextant. In a very similar manner σ−1

shifts all of the symbols of a bi-infinite word to the right by one.

Definition 4.4.0.28. A point x ∈ AZ is periodic if there exists some n ∈ N such

that σn(x) = x. The least such n is called the least period of x. If n = 1 for some x

we call x a fixed point of σ.

The iteration of the shift map creates the dynamics of symbolic dynamical

systems. Iterating the shift map k times will shift bi-infinite words to the left by k

places. Similarly iterating the inverse shift map, σ−1, k times will shift the bi-infinite

word to the right by k places. The symbolic part of symbolic dynamics refers to the

set of symbols used to form the sequences.

In some ways the full n-shift is boring because it contains no structure or

constraints on possible words. For instance, if we think of the English language, our
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alphabet set contains the basic 26 letters, the 26 capital letters, punctuation marks,

spaces, and perhaps some special characters. But we have a dictionary that tells us

the finite words that we can make with these symbols i.e., “mathematics” is a valid

“word” in the English language, but “Scramblepants” is not. So we see that being

able to describe certain subsets of the full shift could prove useful for applying shift

spaces to other more restrictive systems.

Instead of having a list of words that are allowed, it is easier to think of a list

of words that are forbidden. If x ∈ AZ and B is a word over A with |B| = k, then

the word B occurs in x if there exists an i such that B = xixi+1 ... xi+k−1. We will

call B a factor of x. Note that the empty word occurs as a factor in every x. Let

F be a collection of finite words over A which we will think of as forbidden words.

For any such F , define XF to be the subset of sequences from AZ, such that the

sequences in XF do not contain any word in F as a factor.

Definition 4.4.0.29. A shift space (or shift) is a subset X of a full AZ (or n-shift)

such that X = XF for some set F of forbidden words over A.

The collection of forbidden words F can be infinite or finite. If it is infinite it

is at most countable, since you can list the elements in order of their lengths. When

a shift space X is contained in a shift space Y we say that X is a subshift of Y .

All shift spaces are subshifts of the full shift. So we may refer to shift spaces as

subshifts. If the size of the forbidden word set is finite then we call that shift space

a subshift of finite type. [11]

Example 4.4.0.5. Let X be the set of all binary sequences with no two 1’s next to

each other. We have F = {11} and X = XF . This shift is called the golden mean

shift. This is a subshift of finite type.
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A different but equivalent definition of a shift space involves the product topol-

ogy. Sometimes it is convenient to look at the most basic structure underlying a

space. Topology is good for doing such examinations. This makes this alternate

definition useful for obtaining results that might have otherwise been obfuscated by

higher order structure.

Definition 4.4.0.30. A subset X of AZ is a shift space if it is closed with respect

to the natural product topology of AZ and invariant under the shift map σ.

Just as we defined the forbidden word set it is useful to define the set of words

that can occur in a subshift. This is analogous to the dictionary for the English

language.

Definition 4.4.0.31. Given a subshift X of AZ, let Ln(X) be the set of all n-words

that occur as factors in points in X. Then the language of X is

L(X) =
∞⋃
n=0

Ln(X).

The sizes of the sets Ln(X), |Ln(X)|, can classify certain properties that X

will have. For instance, given a binary system such that for all x ∈ X, x contains

n+1 factors of length n and Ln(X) = n+1. Then all x ∈ X are balanced, meaning

all factors of the same length have the property that the number of occurrences of

a letter differ by at most 1. One way to study the properties of shift spaces is to

look at the points and see what properties they possess.

Definition 4.4.0.32. Let X be a subshift of AZ. Then for n ≥ 1 and x ∈ X

the complexity function px(n) is the number of distinct words of length n in the

sequence x.
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There is nothing in the definition of the complexity function requiring the

factor to occur more than once. It only needs to occur once as a factor in x. Further

definitions are needed to establish a factor that occurs infinitely many times and

determine how long of a wait it is until the factor occurs as a factor of x again.

We clearly have px(n) ≤ |Ln(X)| since Ln(X) is the number of length n words

allowed in any x ∈ X. The complexity function can be defined for any sequence

made up of symbols from a finite set. We will discuss complexity more in section

5.2.

4.5. Entropy of Shift Spaces

Entropy can be viewed as a measure of order or disorder. For shifts it is a

measure of the variety of blocks that are possible. Given a shift spaceX, the number,

|Ln(X)|, of n-words that can appear as factors of points in X is an indicator of how

complex the space X is. Instead of looking at the numbers |Ln(X)| themselves we

can look at their growth rate to summarize their behavior.

Definition 4.5.0.33. Given a shift space X, the entropy of X is defined by

h(X) = lim
k→∞

1

k
log(|Lk(X)|).

The logarithm we will always use is base 2. If we let X be the full n-shift we

see that |Lk(X)| = nk. Thus h(X) = log(n). Then for all subshifts Y of X we have

that |Lk(X)| ≥ |Lk(Y )| for all k, therefore log(n) is an upper bound for the entropy

of a shift on a set of n symbols. The entropy of a shift is always non-negative since

for non-trivial shifts |Lk(X)| > 1 for all k.
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If the growth of |Lk(X)| is sub-exponential then the entropy will be zero.

In order to have positive entropy |Lk(X)| needs to grow exponentially. However,

the rate of growth could be very small, which would indicate a small value for the

entropy.

There is a connection between the entropy of a shift space and the entropy

of the shift map on the shift space. We refer the reader to [11] (chapter 6) for a

discussion of this.
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5. INFINITE WORDS

5.1. The Fibonacci System

The Fibonacci system can be built in a variety of ways. One such construction

is generated by the rotation T : [0, 1) → [0, 1) defined by T (x) = x + φ (mod 1)

with φ = −1+
√
5

2
and the partition of [0, 1) that consists of P1 = [0, 1 − φ) and

P0 = [1 − φ, 1). If we label the larger interval 0 and the smaller interval 1 we

can use T to generate binary sequences by looking at the orbit of any x ∈ [0, 1).

This process actually generates an uncountable number of distinct binary sequences.

This is due to the fact that T is non-periodic since φ is irrational. We call the P-

name of 0 the infinite Fibonacci word. This word is a fixed point of the following

substitution system. For a more detailed look at substitution systems including

precise definitions, see [4] or [14].

Another construction of the infinite Fibonacci word is given by the following

substitution system. Using the substitution ϕ =


0→ 01

1→ 0

, then we call F =

ϕω(0) = 010010100100101001010... the Fibonacci word. It is the fixed point of the

substitution ϕ.
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If we define F1 = 1 then the following sequence is built with ϕ.

ϕ0(1) = F1 = 1

ϕ1(1) = F2 = 0

ϕ2(1) = F3 = 01

ϕ3(1) = F4 = 010

ϕ4(1) = F5 = 01001

ϕ5(1) = F6 = 01001010

ϕ6(1) = F7 = 0100101001001

ϕ7(1) = F8 = 010010100100101001010

Theorem 5.1.0.8. If we define B1 = 1, B2 = 0, and Bn = Bn−1Bn−2 for n ≥ 3 then

Fn+1 = ϕn(1) = Bn+1 and Fn+2 = ϕn(0) = Bn+2 for n ≥ 0. Therefore, F = lim
n→∞

Bn

and for n ≥ 1 we have that the length of Bn, |Bn| = fn, the nth Fibonacci number.

We are showing that the infinite Fibonacci word can be constructed by con-

tinually concatenating successive finite Fibonacci blocks.

Proof. We will prove the theorem by induction on n. It is true that B1 = F1 and

B2 = F2. Thus the theorem holds for n = 0, 1. Assume that ϕk(1) = Bk+1 and

ϕk(0) = Bk+2 for all k < n. Consider ϕn(1) = ϕn−1(ϕ(1)) = ϕn−1(0) = Bn+1. Also

consider ϕn(0) = ϕn−1(ϕ(0)) = ϕn−1(01) = ϕn−1(0)ϕn−1(1) = Bn+1Bn = Bn+1.

Hence F = lim
n→∞

Fn = lim
n→∞

Bn. As for the claim about the lengths of the Bn

being the Fibonacci numbers, we can see that by observing that |B1| = |B2| = 1

and |Bn| = |Bn−1| + |Bn−2|, which is the recurrence formula that generates the

Fibonacci numbers.
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It should be noted that the theorem above proved that Fn = Bn. This will

be useful throughout the rest of the paper and Fn will be used in place of Bn for

the rest of the paper. The ability to think of the Fibonacci system in terms of

the substitution and symbolic dynamical system is very useful. It allows alternate

perspectives to give different intuitions and reasons as to why certain properties of

the system are the way they are.

Theorem 5.1.0.9. For any w ∈ {0, 1}N let the map s(w) interchange the last two

letters of w, given that ∞ > |w| ≥ 2. Then for all n ≥ 1 FnFn+1 = s(Fn+1Fn).

It is worth noting that s2(w) = w for all w. Therefore s(FnFn+1) = Fn+1Fn is

an alternate statement of the result of the theorem. Also s(wu) = ws(u) if |u| ≥ 2.

Therefore s(Fn−1Fn) = Fn−1s(Fn) for n ≥ 3.

Proof. We will use a proof by induction on n. For n = 1 we have that F1F2 = 10 =

s(01) = s(F2F1). for n = 2 we have that F2F3 = 001 = s(010) = s(F3F2). Assume

the theorem is true for all k < n with n ≥ 3. Then

FnFn+1 = FnFnFn−1 = Fns(Fn−1Fn) = FnFn−1s(Fn) = Fn+1s(Fn) = s(Fn+1Fn).

Lemma 5.1.0.4. The last three digits of Fn are 001 if n is odd and 010 if n is even.

This lemma is proven easily by induction and Theorem 5.1.0.8.

Lemma 5.1.0.5. If the last two letters of Fn are removed the resulting finite word

is a palindrome, i.e. it is the same if the order of the digits is reversed.

Proof. We will prove this lemma by induction on n. Let n ≥ 3. Then for n = 3 we

have that Fn = 010. Clearly if the last two letters are removed, the resulting word
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is a palindrome of length 1. Now assume that for all k ≤ n the lemma holds true.

Consider Fn+1 = FnFn−1 = wab for a finite word w and letters a, b ∈ {0, 1}. We

know from theorem 5.1.0.9 that Fn−1Fn = wba. Let Fn = uba and Fn−1 = vab. The

inductive hypothesis tells us that u and v are palindromes. Let r(?) be the map that

reverses the order of the digits of a finite word. For example, r(0100) = 0010. Then

we have that r(u) = u and r(v) = v. We want to show that r(w) = w. We have that

wab = FnFn−1 = ubavab, so w = ubav. But we also know that wba = Fn−1Fn =

vabuba, so w = vabu. Therefore, r(w) = r(ubav) = r(v)abr(u) = vabu = w. Thus

the lemma is proven by induction.

In a paper by Mignosi[23] they show that the forbidden words for the Fibonacci

system can be easily constructed from the palindromes that lemma 5.1.0.5 discusses.

This is done by adding a 1 or a 0 at the beginning, and end, of the palindromes.

Given a Fibonacci block Fk, we remove the last two digits to obtain a palindrome,

wk. If k is even, then 0wk0 is a forbidden word. If k is odd, then 1wk1 is a forbidden

word. This list of forbidden words is another way to characterize the Fibonacci

system. Knowing this list explicitly helps when working with the Fibonacci system.

Here are the first few forbidden words:

{11, 000, 10101, 00100100, ...}.

5.2. Sturmian Words

We will start by first defining what a characteristic word is and then define

what a Sturmian word is. This order has been chosen to start with the simplest

idea and then abstract to a more general class of infinite words.
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Definition 5.2.0.34. A characteristic word, w, has digits defined in the fol-

lowing way. Let 0 < α < 1 be a real number. For n ≥ 1, define a function

fα(n) := b(n+ 1)αc−bnαc. Then w = wα = fα(1)fα(2)fα(3).... We sometimes call

w the characteristic word with slope α.

The characteristic word is an infinite word over the alphabet {0, 1} since 0 <

α < 1. We could alternately define

fα(n) =


1 if {nα} ∈ [1− α, 1),

0 otherwise,

where {nα} denotes the fractional part of α or {nα} = nα (mod 1). To see that

these two definitions are equivalent, note that

b(n+ 1)αc = bnα + αc = bbnαc+ {nα}+ αc = bnαc+ b{nα}+ αc.

Thus fα(n) = b{nα} + αc. Therefore, fα(n) = 1 if and only if {nα} ∈ [1 − α, 1).

This shows that the two definitions are equivalent. Using the two definitions, we

see that the number of 1’s in the first n digits of a characteristic word, wα, is
n∑
k=1

fα(k) = b(n+ 1)αc. Notice that this is a telescoping sum. It is then easy to see

what the frequency of the digit 1 has in wα. It is

lim
n→∞

b(n+ 1)αc
n

= lim
n→∞

(n+ 1)α + {(n+ 1)α}
n

= α.

Since characteristic words are composed of only two distinct digits, we know that

the frequency of 0’s is 1−α. We now have a way to compute the frequency of single

digits for all characteristic words.

Theorem 5.2.0.10. The frequency of 1’s in a characteristic word with slope 0 <

α < 1 is α.
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Proof. The discussion above led us to this result.

Corollary 5.2.0.2. The frequency of 0’s in a characteristic word with slope 0 <

α < 1 is 1− α.

Proof. This corollary is an immediate result of theorem 5.2.0.10 since Sturmian

words are entirely composed of zeroes and ones.

The generalization of the characteristic words are called Sturmian words.

Definition 5.2.0.35. An infinite word, wα,ρ, is said to be Sturmian if it is of the

form w = gα,ρ(1)gα,ρ(2)gα,ρ(3)... with 0 < α < 1 and

gα,ρ(n) := b(n+ 1)α + ρc − bnα + ρc, for n ≥ 1.

We call wα,ρ the Sturmian word with slope α.

It is worth noting that Sturmian words are infinite words over the alphabet

{0, 1}. We see that the essential difference from a characteristic word is that it has

a “y-intercept” that is not zero. We will see later that a word, w, is Sturmian if and

only if the complexity function of w is n+1. We can again easily see the number of 1’s

in the first n digits of a Sturmian word, wα,ρ, is
n∑
k=1

gα,ρ(n) = b(n+1)α+ρc−bα+ρc.

Therefore, we can see that the frequency of the digit 1 in wα,ρ is

lim
n→∞

∑n
k=1 gα,ρ(n)

n
= lim

n→∞

b(n+ 1)α + ρc − bα + ρc
n

(5.1)

= lim
n→∞

(n+ 1)α + ρ− {(n+ 1)α + ρ} − (α + ρ− {α + ρ})
n

(5.2)

= lim
n→∞

nα− {(n+ 1)α + ρ} − {α + ρ}
n

(5.3)

= α. (5.4)
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In the next few lemmas we will prove a result that relates the characteris-

tic words wα and w1−α. What we find is that these two characteristic words are

essentially the same up to a coding.

Definition 5.2.0.36. Let C be defined by C(0) = 1 and C(1) = 0. We call C the

conjugate operation on infinite words over the alphabet consisting of two letters,

{0, 1}.

Lemma 5.2.0.6. Without loss of generality let x ≥ 0.

bxc+ b−xc =


0 if x ∈ Z,

−1 if x 6∈ Z.

Proof.

Case 1) Let x ∈ Z. Then bxc = x and b−xc = −x. So bxc+ b−xc = 0.

Case 2) Let x 6∈ Z. Thus {x} 6= 0. Then bxc = x − {x} and b−xc = −(x + 1) −

{−x} = −(x+ 1)− {x}. Therefore bxc+ b−xc = −1.

Hence the Lemma holds.

Lemma 5.2.0.7. Given 0 < α < 1such that α is an irrational number, then wα =

C(w1−α).

Proof. By definition we have that

fα(n) = b(n+ 1)αc − bnαc

and

f1−α(n) = b(n+ 1)(1− α)c − bn(1− α)c = b−(n+ 1)αc − b−nαc+ 1.

Therefore,

fα(n) + f1−α(n) = b(n+ 1)αc+ b−(n+ 1)αc − b−nαc − bnαc+ 1.
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With the result from the preceding lemma we have that

fα(n) + f1−α(n) = 1, for all n.

Since these infinite words are composed of zeroes and ones exclusively, we have that

the digits of fα(n) are exactly the opposite of the digits of f1−α(n), with 0 being the

opposite of 1 and vice versa.

5.2.1 Complexity

We have already given a definition of the complexity of a point in a shift space,

x ∈ AZ. For clarity we will define analogously the complexity for a point x ∈ AN.

Definition 5.2.1.1. Let A be a finite alphabet of size b. Let x ∈ AN. Then we

define pn(x) to be the number of distinct factors of length n in x.

It is clear that 1 ≤ pn(x) ≤ bn. For an example of an x such that pn(x) = 1,

consider x to be an infinite sequence of one symbol. An example of an x that

has pn(x) = bn is Champernowne’s number in base b. Constructing sequences that

have a certain complexity is not an easy task. For a general sequence x it may

be impossible with current techniques to determine the complexity function of x.

Sequences that are of great interest are those that have complexity function growing

less than any exponential but greater than any polynomial. A paper by Cassaigne

[22] constructs infinite words of what they call intermediate complexity, that is a

complexity function that grows faster than any polynomial, but slower than any

exponential.

Theorem 5.2.1.1. [4] Given a Sturmian word w, then pn(w) = n+ 1.

This theorem tells us that the Fibonacci word has complexity n+ 1 for all n.

If we recall the definition of Sturmian words it is clear that all the points in the
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Fibonacci system are Sturmian, since x+ φ can be seen as the Sturmian word wφ,x.

Furthermore, in [4] it is shown that the factors of a Sturmian word wα,ρ are exactly

the same as the factors of the characteristic word wα. Therefore, all of the points

in the Fibonacci system have complexity n + 1 and they all have the exact same

factors. Therefore, the language of the Fibonacci system has n+ 1 words of length

n for all n ≥ 0. Thus the entropy of of the Fibonacci system in terms of definition

4.5.0.33 is

lim
n→∞

1

n
log(n+ 1) = 0.

Theorem 5.2.1.2. [4] Almost all sequences w over a finite alphabet A, with |A| = b,

satisfy pn(w) = bn for all n ≥ 0.

The theorem above could be viewed as a weaker version of the Normal Number

Theorem. If we use A = {0, 1, ..., b − 1} and think of the elements of AN as the

base b expansion of a real number in the unit interval then theorem 5.2.1.2 asserts

that every finite factor occurs at least once in almost all real numbers in the unit

interval. In order for this correspondence to be valid we need to consider what

measures are being used in both cases. Theorem 5.2.1.2 uses a topological measure

that is defined on cylinder sets, while the Normal Number Theorem uses Lebesgue

measure. The topological measure gives the same measure to the cylinder sets as

Lebesgue measure gives to the corresponding cylinder sets in the unit interval. It is

in this way that the measures are comparable.

5.2.2 Geometric Interpretation of Characteristic Words

Consider the positive upper right quadrant of R2 with the lines x = n and

y = m for all n,m ∈ N = {1, 2, 3, 4, ...}. Let α > 0 be an irrational number. Let Lα

be the line y = αx. The line Lα goes through the origin and considering only x > 0
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we keep track of the order in which Lα intersects the various vertical and horizontal

lines. We will keep track of this in the following way.

wi =


0 if Lα intersects a vertical line,

1 if Lα intersects a horizontal line.

The word w = w1w2w3... we call the cutting sequence of α. This is a nice geometric

representation of Sturmian words as lines with an irrational slope.

5.3. Proof That the Fibonacci System is Normal

As we have previously seen for a given α, the choice of ρ in a Sturmian word

does not change the complexity of the word.[4] Furthermore, all Sturmian words

with slope α have exactly the same factors regardless of the ρ used.[4] Thus we may

consider only the characteristic word for Sturmian words, which in turn tells us that

we can examine the orbit of 0 under the map T (x) = x+φ (mod 1), since the orbits

of other points coincide with different choices of ρ. The orbit of 0 under T is the

Fibonacci word.

Knowing that the Fibonacci word is Sturmian immediately tells us the fre-

quency of 0 and of 1. The following theorem and corollary state these results.

Theorem 5.3.0.1. The characteristic word with slope φ =

√
5− 1

2
≈ .618..., (i.e.

the conjugate of the Fibonacci word), has a frequency of 1’s equal to φ =

√
5− 1

2
.

Also the frequency of 0’s in the Fibonacci word is 1− φ = φ2 =
3−
√

5

2
.

Proof. Theorem 5.2.0.10 and its corollary have already proven this.
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Corollary 5.3.0.1. The Fibonacci word has the frequency of 1’s equal to φ2 and

frequency of 0’s equal to φ.

Proof. This is a result from the fact that wα = C(w1−α) for C the conjugate

operation.

We just showed what the frequency of single digits is in the Fibonacci word.

We can extend this to factors of any finite length using the structure of the infinite

word. Recall that a typical normal number used the idea of a symbolic dynamical

system in its definition. Instead of using the symbolic dynamical system to construct

the Fibonacci word we will use the substitution system. This will enable us to use

the self similarity that is present using the substitution system.

We should reiterate the various ways that the infinite Fibonacci word can be

constructed. The first is via the P-name or symbolic name for the orbit of 0 under

T . Second, is via the Sturmian word with slope φ2 =
3−
√

5

2
. Third, is via the

substitution system defined by ϕ as seen at the beginning of section 5.1. We can

show that certain blocks will occur in the same pattern and order that the 0’s and

1’s do. This is the self similarity we mentioned earlier. For instance, if we look at
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the Fibonacci factors of the infinite Fibonacci word:

ϕ0(1) = F1 = 1

ϕ1(1) = F2 = 0

ϕ2(1) = F3 = 01

ϕ3(1) = F4 = 010

ϕ4(1) = F5 = 01001

ϕ5(1) = F6 = 01001010

We can see that ϕk(1) = Fk+1 and ϕk(0) = Fk+2. Thus we can use successive

Fibonacci factors to pave the infinite Fibonacci word in the following way.

If we replace every 0 with a Fk+2 and every 1 with a Fk+1 for any k > 0, we will

again have the infinite Fibonacci word, since we have only applied the substitution

an additional k times and the Fibonacci word is the fixed point of the substitution.

So we can analyze the frequency with which these blocks will appear in the Fibonacci

word. We can use this fact to create a paving of the Fibonacci word using successive

Fibonacci blocks, Fk and Fk−1. A paving is a way to perfectly cover an infinite word

with some finite set of its factors. The ability to pave the Fibonacci word in this

way is extremely useful in our arguments.

We will now give a brief example of how our argument will work before we

start proving anything.

Definition 5.3.0.1. Let #n(w | [a1a2...ak]) denote the number of times that the

block [a1a2...ak] occurs in the first n digits of w and let

Freq[a1a2...ak](w) = lim
n→∞

1

n
#n(w | [a1a2...ak]).
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As always, we let φ =

√
5− 1

2
and let F be the infinite Fibonacci word. Then

in this new notation we have Freq[0](F ) = φ and Freq[1](F ) = 1− φ = φ2.

We can directly calculate the number of times that the finite Fibonacci words

will be seen in the first fn digits, where fn is the nth Fibonacci number. Let’s

consider F4 = 010. If we calculate the frequencies for the first few values of fn, we

get

#f4(F | [010]) = 1 = f2

#f5(F | [010]) = 1 = f3 − 1

#f6(F | [010]) = 3 = f4

#f7(F | [010]) = 4 = f5 − 1

#f8(F | [010]) = 8 = f6

#f9(F | [010]) = 12 = f7 − 1

#f10(F | [010]) = 21 = f8.

There is a boundary condition that changes the counting, since every other finite

Fibonacci word ends with a 01 and all finite Fibonacci numbers start with a 0. Also

|Fn| = fn and for n odd Fn ends with 01. Also if n is even then Fn ends with 10.

Therefore, when n is odd Fn = Fn−1Fn−2 has 10.0 at the concatenation point, where

the period is where the two factors were concatenated. The counting misses the next

occurrence of the factor by one digit. Given that Fn = Fn−1Fn−2, we find that the

recursion for calculating Fibonacci numbers drives the recursion we are finding. So

we have shown that for 010 the number of occurrences in the first f2n digits of F is
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#f2n(F | [010]) = f2n−2. If we analyze the frequency of this block we get:

Freq[010](F ) = lim
n→∞

1

f2n
#f2n(F | [010]) = lim

n→∞

f2n−2
f2n

= lim
n→∞

f2n−2
f2n−1

f2n−1
f2n

= φ2.

Recall that limn→∞
fn−1
fn

= φ.

We can perform similar observations with the other finite Fibonacci words.

We find that #fn(F | Fk) = fn−k+2 with k and n having the same parity. Therefore,

we can see that FreqFk
(F ) = φk−2 since n − (n − k + 2) = k − 2. The following

lemmas will lead to a proof of this.

Lemma 5.3.0.1. Given finite Fibonacci words Fk and Fk−1 the concatenation Fk−1Fk

contains two factors of Fk’s, i.e., the overlap produces a factor of Fk. On the other

hand, the concatenation FkFk−1 contains only one factor of Fk.

Proof. To prove the first statement we start with the basic equality,

Fk = Fk−1Fk−2 = Fk−2Fk−3Fk−2.

Then we have that Fk−1Fk = Fk−2Fk−3Fk−2Fk−3Fk−2 which has two and only two

Fk−2Fk−3Fk−2 factors, thus proving the first statement.

The second statement could be rephrased to say the overlap of FkFk−1 does

not produce an additional factor of Fk. To see this we examine

FkFk−1 = Fk−2Fk−3Fk−2Fk−2Fk−3.

Which as we see does not have a factor of Fk in the overlap. If it did, we would see

a second Fk−2Fk−3Fk−2 as a factor, and we do not. Therefore, the statements are

proven.

Lemma 5.3.0.2. Given k ≥ 2. The number of 0’s in Fk is fk−1 and the number of

1’s is fk−2.
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Proof. We will prove this lemma using induction on k. For the case k = 2 we have

F2 = 0. The statement clearly holds. Now assume that for all m ≤ k that the

number of 0’s in Fk is fk−1 and the number of 1’s is fk−2. Then Fk+1 = FkFk−1

and therefore the number of zeroes in Fk+1 is fk = fk−1 + fk−2, since those are the

number of zeroes in Fk and Fk−1, respectively. The same argument gives the result

for the number of 1’s in Fk+1.

Lemma 5.3.0.3. If k is even then the number of factors, 10, in Fk is fk−2. If k is

odd then the number of factors, 10, in Fk is fk−2 − 1. In other words, the number

of factors, 10, in Fk is equal to fk−2 − (k mod 2).

Proof. It is easily verified that for k even Fk ends in 10 and for j odd Fj ends in 01.

Let k ≥ 2 be an integer. Then for the case when k = 2 we have that F2 = 0 which

has 0 = f0, 10, factors. For the case k = 3 we have F3 = 01 which has 0 = f1 − 1,

10, factors. Now assume for all even m ≤ k that the number of factors 10 in Fm is

fm−2 and for all odd m ≤ k that the number of factors 10 in Fm is fm−2 − 1. Then

for k even Fk+2 = Fk+1Fk. Since k is even, Fk+1 ends in 01. So the overlap will

produce an additional factor of 10. Therefore, the number of 10 factors in Fk+2 is

fk−1 + fk−2 − 1 + 1, where the plus one is from the overlap.

Now for the case when k is odd. Then k + 1 is even. So the overlap in

Fk = Fk+1Fk does not produce an additional factor of 10 since Fk+1 would end in

10 and all finite Fibonacci words start with 0. Therefore the number of factors 10

in Fk+2 is fk−1 + fk−2 − 1 = fk − 1. This completes the proof of the lemma.

Lemma 5.3.0.4. For k ≥ 4, the number of factors, 00, in Fk is fk−3− 1 when k is

even and is fk−3 when k is odd. In other words, the number of factors, 00, in Fk is

fk−3 − (k + 1 mod 2). If k < 4 the number of, 00, factors is 0.
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Proof. The case when k < 4 is easily verified via direct observation. For k = 4 we

have that F4 = 010 which has 0 = f1 − 1 factors of, 00. For k = 5 we have that

F5 = 01001 which has 1 = f2 factors of, 00.

Now assume for all k ≤ n that the number of factors, 00, in Fk is fk−3 − (k +

1 mod 2). First let us consider n to be even. Then n+ 1 is odd. We know Fn+1 =

FnFn−1. When n is even Fn ends with 10 and all of the Fk’s begin with 0. So we gain

one 00 factor in the overlap of Fn and Fn−1. Thus there are fn−3−1+fn−4+1 = fn−2

factors of 00 in Fn+1 when n is even.

In the case that n is odd we have that n + 1 is even. Again we know that

Fn+1 = FnFn−1. We know that n is odd so Fn ends in 01, meaning there is no factor

of 00 gained in the overlap of Fn and Fn−1 when n is odd. Therefore, there are

fn−3 + fn−4 − 1 = fn−2 − 1 factors of 00 in Fn+1 when n is odd.

Theorem 5.3.0.2. Given n and k such that n ≥ k, then the structure of Fn being

viewed with factors Fk and Fk−1 as 0’s and 1’s is of the form Fn−k+2 where each

0 in Fn−k+2 is replaced with an Fk and each 1 replaced with a Fk−1. Also for

n ≥ k and n − k = 0 (mod 2) we have #fn(F | Fk) = fn−k+2 and for n ≥ k with

n−k = 1 (mod 2) we have #fn(F | Fk) = fn−k+2−1. In other words, #fn(F | Fk) =

fn−k+2 − (n− k mod 2).

Proof. We will prove this theorem by induction on n. Fix k ≥ 0. Then for the base

case n = k we have Fn−k+2 = Fk−k+2 = F2 = 0. So Fk has structure in terms of Fk

and Fk−1 of Fk. Now assume that for all k ≤ m ≤ n we have that the statement

holds true. Then Fn+1 = FnFn−1 and both of Fn and Fn−1 have structures of Fn−k+2

and Fn−k+1 when paved with factors of Fk and Fk−1. Therefore, the structure of Fn+1

when paved by Fk and Fk−1 is of the form Fn−k+2Fn−k+1 = Fn−k+3 = F(n+1)−k+2.
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Therefore, the structure of Fn being viewed with factors Fk and Fk−1 as 0’s and 1’s

is of the form Fn−k+2 where each 0 in Fn−k+2 is replaced with an Fk and each 1

replaced with a Fk−1 is proven by induction.

This allows us to use lemma 5.3.0.3. Next, we will prove the second statement

by induction. We have that for n = k that #fn(F | Fk) = #fk(F | Fk) = fk−k+2 =

f2 = 1. Now we assume for all m ≤ n that the second result holds. Since the second

statement needs n−k = 0 (mod 2), we will look at the n+2 case and show that the

statement holds. We know from the first statement that Fn+2 has the structure of

F(n+2)−k+2 = Fn−k+4 when paved by Fk and Fk−1. From lemmas 5.3.0.2 and 5.3.0.3

from above, we have that the number of 0’s in Fn−k+4 is fn−k+3 and the number

of 10’s is fn−k+2. So we have fn−k+2 occurrences of Fk−1Fk in Fn−k+4. Therefore

using lemma 5.3.0.1 there are fn−k+3 + fn−k+2 = f(n+2)−k+1 + f(n+2)−k = f(n+2)−k+2

occurrences of Fk as a factor in F(n+2)−k+2. The argument above can be used for

the case when n − k = 1 (mod 2) and the only difference is which part of lemma

5.3.0.3 is used. Therefore #fn(F | Fk) = fn−k+2 − 1. This completes the proof of

the second statement.

Corollary 5.3.0.2. The lim
n→∞

1

fn
#fn(F | Fk) = φk−2 for k ≥ 4.

Proof. We will consider two subsequences of the sequence {fn}∞n=1, the sequence of

the Fibonacci numbers. These two subsequences depend on the k we are considering.

The first subsequence consists of the fn such that n − k = 0 (mod 1). The second

subsequence consists of the fn such that n−k = 1 (mod 1). We will show that both

have the same limit.

Let n− k = 0 (mod 1). Then

lim
n→∞

#fn(F | Fk)
fn

= lim
n→∞

fn−k+2 − (n− k mod 2)

fn
= lim

n→∞

fn−k+2

fn
− (n− k mod 2)

fn
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= lim
n→∞

fn−k+2

fn−k+1

fn−k+1

fn−k
...
fn−1
fn

= φk−2.

Since n− (k− 2) = n− k+ 2 and n− (n− (k− 2)) = k− 2, that is how many

fractions of the form fm−1

fm
will be in the limit. We know limm→∞

fm−1

fm
= φ. We also

know that limn→∞
(n−k mod 2)

fn
= 0.

Therefore limn→∞
1
fn

#fn(F | Fk) = φk−2.

Theorem 5.3.0.3. FreqFk
(F ) = limn→∞

1
n
#n(F | Fk) = φk−2 for k ≥ 4.

Proof.

Given k let n > 2k. Let M > f10n. Consider the first M digits of F denote this

finite block MF . We can pave MF with the blocks Fn and Fn−1 almost perfectly.

There may be some leftover digits at the end. Let M0 be such that the first M0 blocks

are paved perfectly by the blocks Fn and Fn−1 and is maximal. Then M −M0 < fn.

Therefore

0 ≤ lim
M→∞

M −M0

M
≤ lim

M→∞

fn
M

= 0 (5.5)

and

lim
M→∞

M0

M
= lim

M→∞

M

M
− M −M0

M
= 1. (5.6)

It is easy to see that

lim
M→∞

#M0(F | Fk)
M

≤ lim
M→∞

#M(F | Fk)
M

≤ lim
M→∞

#M0(F | Fk)
M

+
fn
M
. (5.7)

The right inequality in equation 5.7 can be seen by observing that the number of

Fk blocks in the digits from M0 to M is less than fn, since fn is the upper bound

for the number of digits that are outside of the paving. Multiplying by M0

M0
gives the

following:

lim
M→∞

M0

M

#M0(F | Fk)
M0

≤ lim
M→∞

#M(F | Fk)
M

≤ lim
M→∞

M0

M

#M0(F | Fk)
M0

+
fn
M
.
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Now using equations 5.5 and 5.6 we obtain the following:

lim
M→∞

#M0(F | Fk)
M0

≤ lim
M→∞

#M(F | Fk)
M

≤ lim
M→∞

#M0(F | Fk)
M0

.

Therefore

lim
M→∞

#M(F | Fk)
M

= lim
M→∞

#M0(F | Fk)
M0

. (5.8)

Let A0 be the number of Fn blocks in the paving and let A1 be the number of

Fn−1 blocks in the paving. Thus

A0fn + A1fn−1 = M0 and
A0fn + A1fn−1

M0

= 1.

Let α =
A0fn
M0

then 1− α =
A1fn−1
M0

.

We need to count how many blocks Fk occur in the first M0 digits of F .

Recall that there are fn−k+2 blocks Fk in Fn and fn−k+1 blocks Fk in Fn−1. Thus

the number of Fk blocks that lie inside the Fn and Fn−1 blocks in our paving is

A0fn−k+2 + A1fn−k+1. Now we need to count the number of Fk blocks that occur

in the overlaps of the paving. For a similar reason as to why lemma 5.3.0.1 is true,

the only time a Fk block occurs is in an overlap of the form Fn−1Fn. Since the Fn−1

block is analogous to the 1 in F we know that every Fn−1 block is followed by a Fn

block in our paving. Hence we have either A1 or A1− 1 as the number of Fk blocks

that occur in the overlaps of Fn and Fn−1. Let δM ∈ {0,−1}. Then

#M0(F | Fk) = A0fn−k+2 +A1fn−k+1 +A1 + δM = A0fn−k+2 +A1(fn−k+1 + 1) + δM .

(5.9)

Therefore

#M0(F | Fk)
M0

=
A0fn−k+2 + A1(fn−k+1 + 1) + δM

M0

(5.10)

= α
fn−k+2

fn
+ (1− α)

fn−k+1 + 1

fn−1
+
δM
M0

. (5.11)
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When δM = 0 we have that
#M0(F | Fk)

M0

is a convex combination of
fn−k+2

fn
and

fn−k+1 + 1

fn−1
. Therefore

#M0(F | Fk)
M0

is in between the two values. When δM = −1

we have an extra
−1

M0

that prevents equation 5.11 from being a perfect convex

combination. However, we have that lim
M→∞

−1

M0

= 0. Thus as M → ∞ equation

5.11 approaches a convex combination of the two values. Thus we again have that

#M0(F | Fk)
M0

is in between the two values for sufficiently large M .

Therefore

lim
M→∞

#M0(F | Fk)
M0

is trapped between

lim
n→∞

fn−k+2

fn
= φk−2

and

lim
n→∞

fn−k+1 + 1

fn−1
= φk−2.

We can let n go to infinity as M goes to infinity. Thus

lim
M→∞

#M0(F | Fk)
M0

= lim
M→∞

#M(F | Fk)
M

= φk−2.

Now we need to consider factors of the infinite Fibonacci word, F , that are

not equal to Fk for all k. We want to eventually prove

FreqB(F ) = lim
n→∞

1

n
#n(F | B) = φj

for every finite word that exists as a factor of F . The j depends on what the

smallest k is such that Fk has B as a factor, and how B fits inside of Fk. First we

will discuss the two different ways that B can be a factor in Fk that yield different
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values for FreqB(F ). Then we will examine the two different cases using arguments

very similar to theorem 5.3.0.3 to find the values of FreqB(F ).

Lemma 5.3.0.5. Let Vk = {B | B is a factor ofFk andB is not a factor ofFj

for all j < k}, then for all B ∈ Vk, B can only occur once in Fk.

Proof. We will prove this lemma by induction. For k = 1, 2, and 3 the lemma is

trivially true. Assume, for all m ≤ k − 1 the lemma holds. Let B ∈ Vk, then B is

a factor of Fk = Fk−1Fk−2 such that B has the form B′B′′ = B with B′ a factor of

Fk−1 and B′′ a factor of Fk−2. Therefore, B′ ∈ Vi for some i ≤ k − 1 and B′′ ∈ Vj

for some j ≤ k − 2. The following arguments are examining if a factor of FiFj can

exist in Fk−1.

If i = k − 1, the lemma holds for any j, since there is only one occurrence of

Fk−1 as a factor of Fk−1Fk−2 by lemma 5.3.0.1. If j = k − 2, the lemma holds for

any i, since the only other occurrence of Fk−2 in Fk−1Fk−2 = Fk−2Fk−3Fk−2 is as a

prefix.

Let i < k − 1 and j < k − 2, then given that B′ is a suffix of Fk−1, we can

see that i must be equal to k − l with l being odd. This puts constraints on the

values j. In particular, j 6= k− l−1 for all l, because B would be a factor of Fk−l+1,

contradicting that B ∈ Vk. Also, j 6= i for i ≤ k− 3, since Fk−1 contains a factor of

FiFi for i ≤ k − 3.

Claim: If i < k − 1 then j = k − 2.

Proof of claim: Let i = k − 3 and j = k − 5, this is the largest value j can

take when i = k − 3, that is not k − 2. However, there is a factor of Fk−3Fk−5 in

Fk−1 = Fk−3Fk−5Fk−6Fk−3. This contradicts that B ∈ Vk or that B′′ ∈ Vj. If the we

consider smaller values for i and j, we will be inside the case above. Hence j = k−2
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if i < k − 1.

Therefore, B can only occur once in Fk.

Lemma 5.3.0.6. Let Vk = {B | B is a factor ofFk andB is not a factor ofFj

for all j < k}, then the number of times B occurs in Fn is either fn−k+2 + δ or

fn−k+3 + γ for δ ∈ {0,−1} and γ ∈ {0,−1,−2,−3} depending on k and for n > k.

Proof. Fix k. Let B ∈ Vk. We already know how many times B occurs in Fn if

it does not occur in the overlaps of blocks of the form FkFk−1 (thus B will also

not occur in the overlap of blocks of the form FkFk), since the counting will work

exactly the same as it did in the proof of theorem 5.3.0.2. Recall that the block

FkFk−1 contains only one factor of Fk. Therefore, we need to classify when B can

and cannot occur in the overlap of a block FkFk−1. The following argument works

for both block types, FkFk and FkFk−1. We will only examine the FkFk−1 case.

We claim that B cannot occur in the overlap of a block FkFk−1 if Fk = XBa

or Fk = Y B for X and Y finite factors of Fk and a ∈ {0, 1}. Before we show this we

should state some obvious, but important, facts. Recall that Fk = Fk−1Fk−2. For

B to exist in Vk it must overlap the blocks Fk−1Fk−2, since otherwise it would be

contained in some Fj with j < k. Let F ′k−2 be such that Fk−2 = F ′k−2ab for some

a, b ∈ {0, 1} then s(Fk−2) = F ′k−2ba by theorem 5.1.0.9. We will use parentheses

only to help illustrate groupings from one line to the next. They do not have any
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special significance. Then

FkFk−1 = (Fk−1Fk−2)(Fk−2Fk−3) (5.12)

= Fk−1Fk−2(Fk−3Fk−4)Fk−3 (5.13)

= Fk−1(Fk−2Fk−3)(Fk−4Fk−3) (5.14)

= Fk−1Fk−1s(Fk−3Fk−4) (5.15)

= Fk−1Fk−1s(Fk−2) (5.16)

= Fk−1Fk−1F
′
k−2ba. (5.17)

So we can see that B can occur in the overlap of FkFk−1 if it exists such that

Fk = LBK for factors L,B,K of Fk with |K| ≥ 2. Otherwise B cannot occur in

the overlap of FkFk−1.

Thus for B such that Fk = LBK for factors L,B,K of Fk with |K| ≥ 2, we

have that B occurs fn−k+2 + δ times as a factor of Fn for n > k. For the case when

B exists such that Fk = XBa or Fk = Y B for X and Y finite factors of Fk and

a ∈ {0, 1}, we have that the number of times B occurs as a factor of Fn is equal to

the Fn−k+2 + δ plus the number of times FkFk−1 occurs in Fn plus the number of

times FkFk occurs in Fn. The number of times FkFk−1 occurs in Fn is fn−k+1 + δ.

The number of times FkFk occurs in Fn is fn−k + δ. Therefore the number of times

B occurs as a factor of Fn is fn−k+2 + δ + fn−k+1 + δ + fn−k + δ = fn−k+3 + γ for

γ ∈ {0,−1,−2,−3}. We are abusing notation a little bit since the three δ’s may be

different. But this will not affect our argument as they will disappear when we take

limits to obtain frequencies.

We are now ready to prove that all factors of the infinite Fibonacci word F

have the appropriate frequency of occurrence.

Theorem 5.3.0.4. Let Vk = {B | B is a factor ofFk andB is not a factor ofFj
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for all j < k}, then for all k ≥ 4 and for all B ∈ Vk we have

FreqB(F ) = lim
n→∞

1

n
#n(F | B) = φk−2

or

FreqB(F ) = lim
n→∞

1

n
#n(F | B) = φk−1.

Proof. We will use nearly the exact same argument that was used in theorem

5.3.0.3. The crux of that argument was putting finite Fibonacci blocks inside of

bigger Fibonacci blocks that could be used to pave the first M digits of F with M

very large.

Given k, let B ∈ Vk and n > 2k. Let M > f10n. Using the same notation used

in theorem 5.3.0.3 and for the same reasons we immediately get

lim
M→∞

#M(F | B)

M
= lim

M→∞

#M0(F | B)

M0

. (5.18)

The case where B occurs fn−k+2 times as a factor of Fn uses the exact same

argument as theorem 5.3.0.3. Giving the result FreqB(F ) = φk−2.

The case where B occurs fn−k+3 times as a factor of Fn uses a similar argument.

But it is worth going over since it is not exactly the same nor is it perfectly obvious.

Recall that we have a perfect paving by the blocks Fn and Fn−1 covering the first

M0 digits of F .

We need to redefine what the Ai’s are in comparison to the previous theorem.

Let A0 be the number of Fn−1FnFn−1 blocks in the paving up to M0. Let A1 be the

number of Fn−1 blocks in the paving and let A2 be the number of FnFn blocks in

the paving. Thus

M0 = A0fn + A1fn−1 + A22fn and 1 =
(A0 + 2A2)fn + A1fn−1

M0

.
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Let α =
(A0 + 2A2)fn

M0

then 1− α =
A1fn−1
M0

.

We will pick up extra occurrences ofB in the overlaps of FnFn and Fn−1FnFn−1,

getting one extra in the first overlap and two extra in the second overlap. So in the

paving there will be A2 occurrences of B in the first overlap type and A0 occurrences

of B in the second overlap type. Therefore,

#M0(F | B) = A0fn−k+3 + A1fn−k+2 + 2A2fn−k+3 + A0 + A2 + δM (5.19)

= (A0 + 2A2)(fn−k+3 + 1) + A1fn−k+2 + δM , (5.20)

where |δM | < 10 is a term that takes into account the M0 boundary where we might

have over-counted by a small amount, since we do not know exactly how our paving

ends.

Therefore,

#M0(F | B)

M0

= (A0 + 2A2)(fn−k+3 + 1) + A1fn−k+2 + δM (5.21)

= α
fn−k+3 + 1

fn
+ (1− α)

fn−k+2

fn−1
+
δM
M0

. (5.22)

We can again use the same convex combination argument used earlier to show that

#M0(F | B)

M0

is between the two values
fn−k+3 + 1

fn
and

fn−k+2

fn−1
for large enough M .

Also

lim
n→∞

fn−k+2

fn−1
= lim

n→∞

fn−k+3 + 1

fn
= φk−1.

We can let n go to infinity as M goes to infinity. Therefore in this case

lim
M→∞

#M0(F | B)

M0

= φk−1.

This completes the proof.
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Now we have that all factors of the infinite Fibonacci word, F, have a frequency

of occurrence equal to a power of φ =
√
5−1
2

. The finite Fibonacci blocks Fn occur

with frequency φn−2 for n ≥ 4. We already have the frequencies for F1 = 1 and

F2 = 0. The frequencies of F3 = 01 and 10 are the same as for the digit 1, since

two 1’s cannot appear next to each other.[23] The only other factor that may have

not been covered by the theorems and lemmas is 00. However, 00 exists for the first

time in F5. Thus we have determined the frequency of occurrence of all factors of

F.

The infinite Fibonacci word has n + 1 factors of length n. This applies to

the dynamical system having n+ 1 distinct cylinder sets of size n. It is easily seen

that the length 1 cylinder sets of F have measures that are powers of φ. Also,

the measures match with the frequencies of the digits. Since we have the relation

φn = φn+1 + φn+2, or equivalently φn − φn+1 = φn+2, we can show that all cylinder

sets have measures equal to powers of φ.

Viewing the Fibonacci system from the symbolic dynamical system perspec-

tive, we can use the fact that irrational rotations are ergodic[21] to apply the ergodic

theorem to the Fibonacci system. The ergodic theorem yields the following: for al-

most all x ∈ [0, 1)

lim
n→∞

1

n

n−1∑
j=0

1C(T j(x)) = µ(C).

Theorem 5.3.0.5. The Fibonacci system, ([0, 1),Σ, µ, T,P), has every point being

normal.

Proof. Let x ∈ [0, 1), then there exists a k ≥ 0 such that x and T k(0) are as close

as we want, since the orbit of 0 is dense in [0, 1).[17] Furthermore, let y = T k(0)

then T j(x) and T j(y) are as close as we want for all j ≥ 0. This can be seen by
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observing that T is simply a translation on the unit circle. Therefore, the closeness

we speak of is in terms of the distance between points on the circle i.e., |x − y| =

min{|x− y|, |x− y + 1|}.

It would be sufficient to show that x and y differ at a relatively small number

of places so that the number of differences would not affect the frequencies of fac-

tors. The closer x and y are to each other the less often their P-names will differ.

Let {xi}∞i=1 and {yi}∞i=1 be the P-names of x and y, respectively. If xl 6= yl then

1[x,y](T
−l(0))+1[x,y](T

−l(φ2)) = 1. If xm = ym then 1[x,y](T
−l(0))+1[x,y](T

−l(φ2)) =

0. Let Dn(x, y) =
∑n−1

j=0 1[x,y](T
−j(0)) + 1[x,y](T

−j(φ2)). The function, Dn(x, y),

counts the number of differences in the first n symbols of the P-names of x and

y. By making x and y very close i.e., µ([x, y]) = ε, we can make Dn(x, y) small

enough so that limn→∞
1
n
Dn(x, y) = 0. Therefore the frequencies of factors in x

are the same as the frequencies of factors in y, which has the same frequencies of

factors as the Fibonacci word. Therefore, all of the points in the Fibonacci system

have frequencies of factors equal to the frequencies of factors in the Fibonacci word.

The ergodic theorem gave us that these frequencies are equal to the measure of the

cylinder sets. Hence the Fibonacci system has every point normal.

5.3.1 Connection to Certain Sturmian Words

The argument used to show that the Fibonacci word is normal can be applied

to a specific subset of Sturmian words. There is a connection between the regular

continued fraction expansion of a real number α and the Sturmian word with slope

α. This connection is stated in the theorem below.

Theorem 5.3.1.1. [4] Let 0 < α < 1 be an irrational number and let its regular
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continued fraction expansion be [0; 1 + a1, a2, ...]. Define X0 = 1, X1 = 0, and

Xn = X
an−1

n−1 Xn−2 for n ≥ 2. Then the Sturmian word with slope α, wα, is equal to

limn→∞Xn.

If we take α = [0; 2, 1] we will have exactly the Fibonacci word, since φ2 =

3−
√
5

2
= [0; 2, 1]. Recall the recurrence we had for the Fibonacci word was Fn =

Fn−1Fn−2 for n ≥ 2. This recurrence matches what the theorem tells us it should

be. The fact that this recurrence is the same for all n was an important part of the

arguments used in proving what the frequencies of factors in the Fibonacci word

are.

We can then generalize this argument to work with irrational numbers that

have regular continued fraction expansions of the form α = [0; k + 1, k]. Continued

fractions of this form will have the same recursion Xn = Xk
n−1Xn−2 for all n ≥ 2.

Therefore, the techniques we used can be modified slightly to take into account the

slight variation in the recursion. Therefore, we can show that all Sturmian words

with slopes having continued fraction expansions of the form [0; k + 1, k] will be

normal with respect to the symbolic dynamical system the represent.



62

6. CONCLUSION AND FUTURE WORK

In this paper, we have taken the traditional approach to normal numbers and

reinterpreted it to fit with the mechanics of measure preserving transformations.

This allowed us to change the way we think about how a normal number behaves.

Instead of having to walk along the base b expansion of a number, looking for certain

blocks to appear, we bring the expansion to us. More formally, we look for numbers

that visit cylinder sets the appropriate amount of time.

This change in view of a normal number led us to a novel proof of the Normal

Number Theorem. Previous proofs can only claim that the set of full measure they

produce will contain only absolutely normal numbers. Meaning, it is likely that there

are some absolutely normal numbers that aren’t captured. On the other hand, our

proof constructs a set that contains all of the absolutely normal numbers. While

this changes nothing in reference to the result of the Normal Number Theorem, it

may prove useful to those studying the set of absolutely normal numbers, giving

them a precise construction of the set.

We have also organically extended the idea of a normal number to be a prop-

erty of any point in a symbolic dynamical system. Our reinterpretation allowed this

extension to be a very natural one, where the definition does not need to change for

different partitions and measure preserving transformations.

Currently there are many unanswered questions surrounding normal numbers.

The looming question about how to show that a specific real number is normal, for

instance π, may never be solved. There is, however, a conjecture mentioned in [20]

that all irrational algebraic numbers are absolutely normal. There is still no known
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counterexample, so the conjecture remains valid. But approaching the problem from

a dynamical system viewpoint may prove to be fruitful for number theorists.

The fact that the Fibonacci system has every point being normal shows there

is a difference between systems with positive entropy and systems with 0-entropy. In

general, the ergodic theorem can be used to show that ergodic systems have almost

all points being normal.

As questions about dynamical systems get answered, these answers may help

with our understanding of normal numbers, giving us deeper insight to which specific

numbers are normal, perhaps answering the 100-year-old questions, is π normal to

any base b? absolutely normal? The answers to these questions will undoubtably

help some mathematicians sleep better at night, including the author of this paper.
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A APPENDIX Some Results on Normal Numbers

A1 Finite Variations

Any set of normal numbers, whether they are absolutely normal, simply nor-

mal, or normal to some base b, are closed under finite variations. This means that

adding, removing, or changing any finite number of digits in the b-adic expansion

leaves the property it started with intact.

Therefore, the first N digits of the b-adic expansion of some α has no impact

on whether or not α is normal to the base b. Properties that do not depend on

any finite number of beginning digits we call tail properties. In other words, being

normal to the base b, or absolutely normal, or simply normal, is a tail property.

A2 Equidistribution of Sequences

For a more thorough treatise we refer the reader to [5].

A sequence of real numbers, ω, is uniformly distributed modulo 1 if for every

pair of a, b of real numbers with 0 ≤ a < b ≤ 1 we have

lim
N→∞

C([a, b);N ;ω)

N
= b− a

where C([a, b);N ;ω) counts the number of terms of the sequence ω up to the N th

element of the sequence that has its floor in [a, b).

A classical result involving normal numbers and equidistribution of sequences

modulo 1 is that the sequence of real numbers (bkx)∞k=0 is uniformly distributed

modulo 1 if and only if x is normal to the base b. This can be stated in a beautiful

way using Weyl’s criterion

lim
n→∞

1

n

n−1∑
k=0

e2πimb
kx = 0 for all integers m ≥ 1.
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Being able to work with uniformly distributed sequences to prove things about

normal numbers has led to some great results, including the following two theorems

in the next section of this appendix.

A3 Normality from Simple Normality

The results we will discuss in this section are fully proven in [5].

Theorem A3.1. Let k ≥ 2 be an integer. A real number α is normal to the base b

if and only if α is normal to the base bk.

If α is normal to the base b then all blocks of length k have the proper frequency

of b−k. If we view these blocks as the digits of the bk-adic expansion of α, it is clear

that α is simply normal to the base bk. We can make the same assertions about

blocks of length bnk for all n ≥ 0, which gives us that α is normal to the base bk.

Theorem A3.2. The real number α is normal to the base b if and only if it is

simple normal to all of the bases b, b2, b3, b4, ....

If α is normal then it is clearly simply normal to b, b2, ... by the theorem above,

since that theorem would guarantee that α is actually normal to the bases b, b2, ... a

stronger result than needed. Now consider that α is simply normal to all the bases

b, b2, ..., then if we view the digits in base bk as being blocks of length k in the base

b, we see that we have that α is normal to the base b.

The discussion after each of these proofs was meant to be very brief and give

a general idea of how one can think about why these theorems are true.

A4 Closed Under Multiplication by a Rational

A result due to Wall [8] (1949) states that given a normal number α and for

all non-zero rational numbers x, we have that αx is normal.
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B APPENDIX Fibonacci Numbers

This appendix will provide definitions for the Fibonacci numbers that this

paper uses, to avoid confusion with definitions that may differ.

Let f0 = 0 and f1 = 1. Then the rest of the sequence {fn}∞n=0 via the recurrence

fn = fn + fn−1.

The sequence is called the Fibonacci sequence and the entries are Fibonacci numbers.

For the reader’s benefit here is a list of the first few Fibonacci numbers.

f0 0

f1 1

f2 1

f3 2

f4 3

f5 5

f6 8

f7 13

f8 21

f9 34

f10 55

f11 89

f12 144

f13 233
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C APPENDIX Fibonacci Blocks

This appendix is provided as a reference for what the blocks Fn are defined to

be.

Let F0 = 1 and F1 = 0. Define Fn = Fn−1Fn−2. The Fn’s are referred to as

Fibonacci blocks. The limit as n goes to infinity is known as the infinite Fibonacci

word or more simply the Fibonacci word.

Below is a list of the first eleven Fibonacci blocks.

F1 1

F2 0

F3 01

F4 010

F5 01001

F6 01001010

F7 0100101001001

F8 010010100100101001010

F9 0100101001001010010100100101001001

F10 0100101001001010010100100101001001010010100100101001010

F11 0100101001001010010100100101001001010010100100101001010010..

..0101001001010010100100101001001



71

INDEX

P-name, 18

Alphabet, 17

Champernowne’s Number, 5

Complexity Function, 31

Copeland-Erdös Constant, 5

Cylinder Set, 17, 18

Dense Set of Natural Numbers, 6

Distribution, 10

Entropy

Conditional, 26

of finite partition, 26

Ergodic Theorem, 16

Expectation, 11

Finite Measure Space, 7

Fixed Point, 29

Forbidden Words, 30

Generating Partition, 18

Golden Mean Shift, 30

Indicator Function, 9

Language, 31

Length, of a Word, 29

Measurable Function, 8

Measure Preserving Transformation, 15

Normal Number, 3, 4

Absolutely, 4

Simply, 4

Periodic Sequence, 29

Probability Measure Space, 7

Random Variable, 8

Bernoulli, 9

Discrete, 9

Independent, 9

Shift Map, 18, 29

Shift Spaces, 28

Subshift, 30

Subshift of Finite Type, 30

Symbolic Dynamical System, 17

Word

Bi-Infinite, 28



72

Empty, 28

Finite, 28

Infinite, 28




