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A two-channel data acquisition system for simultaneous detection and
discrimination of beta particles and gamma rays has been developed. Each channel
measures and analyzes the input pulses resulting from the absorption of radiation
in the layers of the detector. The detector is a triple-layer phoswich (phosphor
sandwich) scintillation detector followed by a photomultiplier tube (PMT). The
PMT amplifies the photons and converts them into an electric signal. The signal is
digitized and sent to the host computer for further processing. Two new digital
algorithms based on Fuzzy Logic and on the Continuous Wavelet Transform have

been developed and are discussed in this thesis.

In the first method, a de-noising algorithm based on the Wavelet Transform
is implemented to reduce the effect of noise introduced by the analog channel and

by the photomultiplier tube. Three new timing features are extracted and given as



input to a fuzzy interface system. The main goal of fuzziness in a data set is to
reduce the system complexity and to provide a model that allows for approximate
results. Compared to the method which was originally implemented for this
detector, the fuzzy algorithm shows a better performance in separating beta and
gamma spectra, especially at high energies. Also, absorption in multiple layers is

detected more efficiently.

The second algorithm is based on the Continuous Wavelet Transform. The
novelty of this method consists in using scale-domain features. Since the output
pulse shape of the photomultiplier tube is a non-stationary signal, conventional
Fourier methods are not efficient for analyzing these signals and most of the
existing pulse shape discrimination methods use time-domain features. Therefore,
a time-frequency space is better suited to analyze these non-stationary signals.
This method shows better performance over existing time-domain methods in

terms of robustness to noise and reliability.

The simultaneous detection of beta particles and gamma rays has several
applications (for instance detection of underground nuclear explosions). The
methods presented in this thesis could also be used in alpha/beta/neutron/gamma

discrimination systems for cancer diagnosis and treatment.
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Digital Pulse Shape Discrimination Methods for Triple-Layer
Phoswich Detectors Using Wavelets and Fuzzy Logic

1 Introduction

Scintillators are used to detect electromagnetic waves or particles by
converting the energy to light of a wavelength, which can be measured by
inexpensive or easy to handle devices such as photomultiplier tubes (PMTs) or
photodiodes. The photomultiplier tube amplifies the photon and converts the output
light to an electric signal which can be used to measure the energy of the absorbed
wave or particle in the scintillator. The intensity of the produced light in the

scintillator is proportional to the energy deposited in the crystal.

Spectroscopy is the study of the interaction between radiation and matter as
a function of energy (wavelength). It can be used to measure the energy spectra of a
radiation field to detect the radiation types present in the environment. There are
several methods for detecting different radiation particles and waves using
scintillators. One common method consists in using a scintillator crystal which
responds with different output pulse shapes for the radiation types of interest. This
difference in the light signal can be used to discriminate among radiation types.
Another technique to detect multiple radiation types consists in using several

scintillator crystals which are coupled together and viewed with a single PMT. Each



crystal is selected to interact with a specific radiation type. The pulse shape at the

output of the PMT determines in which layer(s) the interaction occurred.

The simultaneous detection of beta particles and gamma rays has broad
ranging applications in nuclear non-proliferation, radioactive waste management,
worker safety and homeland security. As a part of the Comprehensive Nuclear Test
Ban Treaty, the International Monitoring Systems (IMS) has been established for
monitoring xenon radio-isotope in the atmosphere to detect atmospheric or
underground nuclear explosions (Farsoni et al. 2007). A radio-xenon detection
system was designed by Farsoni and Hamby (Farsoni et al. 2007) at the Radiation
Center, Oregon State University. The detector consists of a thin hollow disk as the
xenon gas cell surrounded by two identical planar triple-layer phoswich detectors
which provided a 3.4mn solid angle for the gas. Fig. 1.1 shows the schematic of the
two-channel triple-layer phoswich detector. The output pulse of each channel can
belong to one out of seven possible cases, each of which indicates the interaction of

radiation in one, two, or three layers of the detector.
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Fig. 1.1. The schematic arrangement of the two-channel phoswich detector. All
dimensions are in mm. (Farsoni et al. 2007 ©)

In this thesis, a two-channel data acquisition board is designed and
implemented for this detector structure. The system is composed of several stages.
First, a signal conditioning and a digitizing board is designed and implemented on
printed circuit board (PCB). Then, the digitized signal is sent to an FPGA, and a digital
logic system triggers and records the input pulse and sends the data to a host
computer. Finally, a digital signal processing algorithm in the host computer
determines the origin of the interaction and measures the energy of the signal. Fig.

1.2 shows the schematic diagram of the designed data acquisition system.



Channel 1 Channel 2

Analog Signal Conditioning
and Digitizing Board (PCB)

Digital Logic
(FPGA)

Host Computer ( Digital Signal
Processing Algorithm)

Fig. 1.2. The schematic diagram of the designed data acquisition system.

In the host computer, two novel digital algorithms for a single channel
prototype are implemented in Matlab®. The first algorithm is based on the use of
fuzzy logic to discriminate among possible cases. This method shows that using

fuzziness in contrast to crispiness in data sets improves the discrimination results.

Most of the existing pulse shape discrimination (PSD) methods reported in the

literature use time-domain features of the signal (e. g. time of flight or rise-time



measurement). However, there are no contributions to date regarding PSD methods
operating in the frequency domain. Since the pulse shape at the output of the
photomultiplier tube is a non-stationary signal, the conventional Fourier transform
cannot capture relevant features for the discrimination process. The wavelet
transform is an efficient tool to analyze non-stationary signals on a time-frequency

scale.

The second method employs wavelet transform to extract important features
of the input signal to discriminate between different pulse shapes. The implemented
method using wavelet has superior performance over time-domain methods in terms
of reliability and robustness to noise. Also, the wavelet method for this detector
structure is more efficient than other time-domain methods in detecting multiple-
absorptions in the layers of the detector. It can also detect unusually shaped pulses

(mostly pile-up events).

A similar procedure based on the wavelet method for this detector structure
is applied to another scintillation detection system for neutron/gamma
discrimination. The system utilizes liquid scintillators to discriminate between gamma
rays and neutrons. One of the applications of a neutron/gamma discrimination

system is in cancer diagnosis and treatment.



2 Literature Review

2.1 Radiation Sources

There are four general types of radiation: fast electrons, heavy charged
particles, electromagnetic radiation and neutrons. Fast electrons include (positive or
negative) beta particles emitted in nuclear decay as well as energetic electrons
produced by any other process. Heavy charged particles denote a category that
encompasses all energetic ions with mass of one atomic mass unit or greater, such as
alpha particles, protons, fission products, or the other products of many nuclear
reactions. The electromagnetic radiations of interest include X-ray emitted in the
rearrangement of electron shells of atoms and gamma rays that originate from
transitions within the nucleus itself. Neutrons generated in various nuclear processes
are often further divided into slow neutron and fast neutron subcategories (Knoll

2000).

The radiation energy measurement unit is the electron-volt (eV), which is
defined as the kinetic energy gained by an electron by its acceleration through a

potential difference of 1 volt (Knoll 2000).

The most common sources of fast electrons are beta decay, internal
conversion, and auger electrons. Heavy charged particle sources include alpha decay
and spontaneous fission. The major sources of electromagnetic radiations are gamma

rays following beta decay, annihilation radiation, gamma-rays following nuclear



reactions, bremsstrahlung, characteristic X-rays and synchrotron radiation (Knoll

2000).

2.1.1 Interaction of Fast Electrons

Fast electrons lose their energy at a lower rate compared to heavy charged
particles. The specific energy loss due to ionization and excitation (the collisional

losses) for fast electrons given in equation [2.1] is derived by Bethe (Knoll 2000).

mgov?
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In Eg. [2.1] v is the velocity, N and Z are the density number and the atomic number

of the atoms of the absorber material, respectively, mq is the electron rest mass, e is

the electronic charge and § = 5

Fast electrons may also lose their energy by radiative processes as well as by
coulomb interactions (Knoll 2000). These radiative loses take the form of
bremsstrahlung or electromagnetic radiation. The linear specific energy loss through

this radiative process is

-(5) = M (42, [2.2]

dx 137m3c* moc2 3



The total linear stopping power for electrons is the sum of the collisional and

radiative losses:

2+ g
dx  \dx/, dx/ ;" (23]

The mechanism whereby a beta particle (charged particle) loses its energy or
is deflected from its original path, involves four principal types of interactions (Evans

1995):

1. Inelastic collision with atomic electrons. This is the predominant mechanism by which
a beta particle loses kinetic energy in an absorber. As a result of such collision, one or
more atomic electrons experience a transition to an excited state (excitation) or to
an unbound state (ionization).

2. Inelastic collision with a nucleus. In this case, the incident beta particle experiences a
deflection in the field of the nucleus. With this deflection, a quantum of radiation is
emitted (bremsstrahlung photons), and a corresponding amount of kinetic energy is
lost by the colliding particles.

3. Elastic collision with nucleus. The incident particle, in this case, is deflected but does
not radiate, nor does it excite the nucleus. The incident particle loses only the kinetic
energy required for conservation of momentum between the two particles.

4. Elastic collision with atomic electrons. An incident charged particle may be elastically
deflected in the field of the atomic electrons of an atom. Such collisions are

significant only for the case of very low-energy incident electrons (<100eV).



2.1.2 Interaction of Gamma Rays

There are three major mechanism types through which gamma rays may
interact with matter: photoelectric absorption, Compton scattering, and pair
production. In all mechanisms, the transfer of the gamma ray photon energy to

electron energy can be partial or complete (Knoll 2000).

In the photoelectric absorption process, the photon completely disappears
and an energetic photo-electron is rejected by the atom from one of its bound shells.
In addition, an ionized absorber atom with a vacancy in one of its bound shells is also
created. This vacancy is quickly filled through capture of a free electron from the
medium and/or re-arrangement of electrons from other shells of the atom and one

or more characteristic X-ray photons may also be generated.

The interaction process of Compton scattering takes place between the

incident gamma ray photon and an electron in the absorbing material.

If the gamma ray energy exceeds twice the rest mass energy of an electron
(1.02 MeV), practically several MeV, the process of pair production is possible. In the
interaction (which must take place in the coulomb field of a nucleus), the gamma ray

photon disappears and is replaced by an electron-positron pair. These pairs escape in
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exactly opposite directions. This phenomenon is used in biomedical imaging devices

like PET (positron emission tomography) scanners.

2.2 Scintillation Detection Principles

2.2.1 Scintillation Materials

Scintillators are materials that interact with radiation materials and produce a
signature visible or ultraviolet photon. This phenomenon has been used to detect
radiation sources for a long time. A good scintillator is transparent to its own light,
possesses fast light-emission times, has a degree of scintillation efficiency, and has a
linear light emission property and good optical qualities (Knoll 2000). There are
different types of scintillators: organic scintillators (crystals, thin films, liquids) and

inorganic scintillators (crystals like Nal, Csl, CaF2).

The excitation and de-excitation process in organic scintillators can be

described adequately by simple exponential rise and decay times:

t t

[= Iy(eT—e 71), [2.4]

where 1 is the decay time constant and 1, is the excitation time constant. Organic

scintillators are usually used for electron or beta spectroscopy (Knoll 2000).

The light emission from inorganic crystals is based on excitation and de-

excitation of energy states in the lattice structure. Excited states are all formed at
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once and then decay exponentially. Although inorganic scintillators have a better
energy linearity compared to organic ones, they have longer decay times. Since
inorganic materials have a higher Z than the organic ones, they are used in low-

energy gamma interface and cause backscatter with incident beta particles.

In order to detect the light output of scintillation materials, a photomultiplier
tube (PMT) or a photodiode is used to amplify and convert the light to an electrical
signal. The amplification in PMT is usually on the order of 10° to 10’. The charge
(voltage) at the anode of the PMT is related to the energy of input light which is

related to the energy of the radiation source.

The output pulse shape of PMT which is the result of a scintillation event
depends on the scintillation time constant and also on the time constant of the

anode circuit. The voltage pulse at the anode is given by (Knoll 2000):

1 _ —
V() = — x% (e RCt — g7ty [2.5]

where T is the scintillator decay time constant, RC is the anode circuit time constant,

and Q is the total charge collected over the entire pulse.

2.2.2 Phoswich Detectors

A Phoswich (phosphor sandwich) detector is a combination of two or three

different scintillators optically coupled together and viewed with a single
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photomultiplier tube (PMT). Each scintillator layer has a different light output
characteristic and is chosen to interact with a specific radiation type. The light output
of the PMT has to be subsequently processed to interpret the pulse information and
detect the radiation type.

The purpose of designing a phoswich detector is the simultaneous detection
of different radiation types or the detection of a desired radiation in a mixed field
containing other radiation types in the background (Farsoni 2007). Phoswich
detectors have a variety of applications. One of the recent uses is in radio-xenon

monitoring for underground nuclear explosions (Hennig et al. 2007).

One of the advantages of using phoswich detectors is independent
measurement of the energy deposited in each scintillator without the need for a

second PMT (Farsoni and Hamby 2005).

2.3 Pulse Shape Discrimination

Pulse shape discrimination (PSD) refers to the method differentiating between
different pulse shapes which may result in the absorption of different radiation types
in a single scintillator (single layer scintillator detectors) or different radiation types in
different layers of a phoswich detector. Most of the PSD methods in phoswich

detectors are based on the different decay time constants of each layer. Since each
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layer is chosen to interact with a specific radiation type, PSD determines which type

of radiation has been absorbed in the detector.

The performance of the PSD methods is usually measured by the FWHM (full
width at half of maximum which shows the percentage of the width of the spectrum
peak at half of its maximum divided by the peak energy) or the error rate which

shows the amount of misclassification of a radiation type as another type.

Traditionally, pulse shape discrimination and radiation spectroscopy was
carried out by analog modules. Several modules had to work together to derive the
energy spectrum of a radiation material. With the advance of fast digitizing
components and computer interface systems, digital signal processing techniques
have become popular in radiation detection. The use of digital techniques is more
efficient, cost-effective, and flexible compared to traditional analog methods. In a
digital pulse analyzing system, the output pulse of a PMT is first digitized using fast
digitizing components. Further processing is carried out online or offline in a digital

pulse processor. The data can also be stored in a memory for offline processing.

There exist different pulse shape discrimination methods for single-layer
scintillator detectors. Most of the existing methods use time-domain analysis for PSD.
The most popular methods are the constant fraction discrimination (CDF) method,
the rise-time discrimination (RTD) method, the constant-time discrimination (CTD)
method, and the charge comparison (CC) method (Chandrikamohan et al. 2007).

These methods are mostly designed for single layer detectors or double-layer
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phoswich detectors and they are not efficient for triple-layer phoswich detectors.
Based on the structure of the phoswich, the PSD method for each detector

configuration can be different from the other ones (Farsoni et al. 2007).

Several configurations of two or three layer phoswich detectors for different
applications have been implemented, tested, and analyzed in the literature. Usuda et
al. (1994, 1997) developed many phoswich detectors for simultaneous detection of
alpha, beta (gamma), thermal and fast neutrons. Pulse-height and rise-time of the
signal were used to discriminate between different pulse shapes. However, this
detector could not achieve good separation between beta and gamma interactions

and they were clustered in the same group.

White and Miller (1999) developed a three-crystal phoswich detector (then
analyzed by Childress and Miller (2002)) for simultaneous alpha/beta/gamma
spectroscopy. A two-step method was used to discriminate between pulse shapes.
First, the rise-time (representing the time from the beginning of the pulse to its peak)
of each pulse was used to discriminate between gamma rays and other radiation
types (beta and alpha). The separation of beta and alpha particles was carried out by
finding the correlation of the incoming pulse with a reference signal. The pulse was
classified as belonging to the category which had the largest correlation coefficient.
In this method, the radiation interaction is assumed to be in only one layer of the
detector. So other possible cases where interaction may occur in two or three layers

were ignored. Another disadvantage of this method is the sensitivity of the reference
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pulse shape to temperature changes because the scintillator’s decay time is a
function of temperature (Knoll 2000). Consequently, for the spectroscopy
applications where the environment temperature is not fixed during measurement
(e.g. stand-alone devices for radioactive xenon monitoring) the correlation method is

not efficient.

Bardelli et al. (2002) in the FIASCO experiment (Casini et al. 2000 and Piantelli
et al. 2002), used a digital technique for identification of fast charged particles with a
triple-layer phoswich detector. A digitizing board was designed and implemented and
two digital algorithms were used for particle identification on the sampled data. The
first pulse shape analysis was based on the integration of the anode signal over three
different time windows where each window was representative of energy absorption
in one layer. The second method was based on a linear fitting of the anode signal to a
combination of three signals, each showing the output waveform of a scintillator
layer. The digital algorithm was compared with the standard analog method, and the
digital algorithm outperformed the analog one. However, temperature variations
may degrade the fitting algorithm performance, and it is not an efficient way of
performing pulse shape discrimination in applications where the experiment

environment temperature is not fixed.

Farsoni and D. Hamby (2007) designed, and constructed a triple-layer phoswich
detector and electronic read-out system for simultaneous beta and gamma

spectroscopy. The structure of the triple-layer phoswich detector is shown in Fig. 2.1.
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The first layer is a plastic scintillator (BC-400) with a very fast decay constant (2.4 ns),
and the second layer is an inorganic crystal (CaF2 (Eu)) with a very slow decay time
(930 ns). Both materials are used for stopping beta particles with energies up to 3.2
MeV. The phoswich detector is designed such that an incident beta must deposit
energy in the first layer, or in both the first and second layers, for a pulse to be
recorded as a beta-induced pulse. The third layer is an inorganic scintillator (Nal(Tl))
with a 230ns light decay constant. A quartz layer separates the third layer from
second layer because plastic scintillators cannot be completely dried and would

gradually destroy the performance of the third layer (Farsoni et al. 2007).

Compton scattering is the prominent interaction mechanism from incident
gamma-rays in the first two layers. Since the second layer is thick enough to
accommodate electrons up to 3.2 MeV, the unwanted events (mostly Compton
scattering) in the beta-side of the detector are comparable to that of the gamma-
side, the third layer. However, since common beta particles have much shorter mean
free paths than gamma rays in scintillation materials, events in the first layers can be
used with the second layer, and so the Compton events can be distinguished quite

easily (Farsoni et al. 2007).
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Fig. 2.1. The structure of the triple-layer phoswich detector.

In order to discriminate between pulse shapes and extract the energy
spectrum, seven possible scenarios were studied. One of these scenarios is related to
the gamma-ray absorption and two other scenarios show beta absorption. The other
four scenarios were rejected because the signal information could not be extracted.
Fig. 2.2 shows the structure of the detector used by Farsoni et al. (2007) and the

possible scenarios.
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Scenario Scintillation Layers Total Probability (%:)* Pulse Recorded as:
BC-400 CaF2 Nal: Tl Gamma Beta

1 X 0.35 12,32 Beta
2 X X 0.07 81.70 Beta
3 X 1440 4.60 Rejected
4 X % 0.06 0.08 Rejected
5 v, % 265 0.03 Rejected
G X w % 0.01 0.57 Rejected
7 % 12.87 0.00 Gamma

Fig. 2.2. The possible interaction scenarios in the triple-layer phoswich detector.

After digitizing the signal and sending the waveform from the FPGA to the host
computer, two timing features of the signal, fast ratio and slow ratio, were extracted
and were used for pulse shape discrimination. First the fast ratio of the signal was
compared with a threshold, and if it was larger than that, it was classified as beta. If

the pulse was not classified as beta, the slow ratio was measured and compared to a
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threshold. If the ratio was larger than a threshold, it would be classified as gamma. If
none of the conditions was true, the pulse was rejected and classified as “unknown”.
One of the disadvantages of the method employed by (Farsoni et al. 2007) is that, if
the signal is the result of an absorption in the 1% and 3" layer, it would be
misclassified either as beta or as gamma. If this device is to be used in a mixed
radiation field, the algorithm is not efficient in discriminating between single-type
and multiple-type radiations. This method is not effective in detecting the
simultaneous absorption in the 1* and 2" layer and some of these pulses are

rejected because they cannot be analyzed.

However, there are no contributions to date regarding PSD methods operating in
the frequency-domain. Since the pulse shapes at the output of the photomultiplier
tube are non-stationary signals, their analysis using conventional Fourier transform
cannot capture relevant features. The wavelet transform (Mallat 1989 and
Daubechies 1988) is an efficient tool to analyze non-stationary signals on a time-
frequency scale (A. Kareem et al. 1993). The wavelet transform has gained great
popularity in digital signal processing and is widely used in different engineering and
medical applications (Fargo et al. 1992, Wahl et al. 1993). The time-frequency scale
of the wavelet transform is not uniform over the entire domain, thus allowing for
multi-scale characteristics with the scale being adjustable according to the signal

features.



20

3 Materials and Methods

3.1 Data Acquisition System

3.1.1 Overview

The function of a spectrometry system is to convert the electrical (charge)
pulses originating at the output of the radiation detector into voltage pulses and
then, to obtain their energy distribution function as accurately as possible (Simoes et
al. 1999). Most scintillation detection systems use analog modules for radiation
spectroscopy. With the recent development of fast analog to digital converters and
digital processors, digital signal processing methods have gained popularity in
radiation spectroscopy. Compared to analog modules, digital devices are more
compact and cost-effective, and post-processing of data is much easier (Farsoni et al.

2007).

The data acquisition system designed in this project is composed of two parts:
an analog signal conditioning module and a digital logic system. The analog board
was designed and implemented in the Instrumentation Lab at Radiation Center,

Oregon State University, and the FPGA board is a commercial device.

The analog board was designed for a two-channel spectroscopy system. The
block diagram of the acquisition system is shown in Fig. 3.1. The output of each

detector (and PMT) is sent to the analog circuit board. After sampling and digitizing,
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the digital signal is sent to the FPGA. A digital logic system is designed and
implemented on FPGA which triggers and records the input. When a pulse is
completely recorded, the captured pulse is transmitted to the host computer for
further processing. In the host computer, a digital pulse shape discrimination
algorithm determines which class this pulse belongs to and measures its energy and

plots the histogram.

Channel 1 Analog Signal

Conditioning Digital Logic Host Computer

and Digitizing (FPGA)
Board (PCB)

Channel 2

Fig. 3.1. The block diagram of the data acquisition system.

The FPGA board used in this application was a commercial device from Opal

Kelly (Fig. 3.2), with a Xilinx Spartan3 FPGA, and USB interface to the host computer.
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., - Opal Kelly

Products

Fig. 3.2. The FPGA board from Opal Kelly®

The mechanical drawing of the top and bottom of the board is shown in Fig.
3.3. The connection between the analog part and the digital part was carried out by

two connection tags which were implemented on the PCB board (Fig. 3.4).
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Fig. 3.3. The mechanical drawing of the FPGA board.

Fig. 3.4. Connection tags.
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3.1.2 Analog Circuit Board Design

The schematic of the analog circuit board is shown in Fig. 3.5.

Single-Ended to
Differential
Converter

Quad Op-Amp Digital Logic (FPGA) <;> Host Computer

Single-Ended to
Differential
Converter

DC level
shift

Gain
Adjustment

Anti-Aliasing
filter

DC level Anti-Aliasing
shift j filter

Fig. 3.5. The block diagram of the analog board.

This board has different stages. The first stage performs base-line correction
and dc level shift using a simple op-amp structure. The second stage is a variable gain
amplifier which tunes the peak to peak amplitude of the input signal to the input
range of the analog to digital converter (ADC). The gain and the offset are controlled

in the FPGA by a digital to analog converter (DAC).
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After the dc-level shift and gain correction, a 3" order anti-aliasing filter is
implemented. In this application, a Bessel filter is chosen due to constant delay
compared to Butterworth and Chebychev filters. The 3-dB cut-off frequency edge of
the filter is chosen to sample the data at 250MSPS rate. For a higher performance the
input signal of and ADC is recommended to be differential rather than single-ended.
In order to change the single-ended signal to a differential signal, a buffer is used.
This stage improves the common mode rejection ratio and enhances the

performance of the ADC

The final stage is a 250 MSPS ADC which samples and sends the input signal to
the FPGA. The ADC which is used in this application is AD9230 (12-bit, 250 MSPS,
1.8V). This device is available in 56-pin LFCSP (Lead Frame Chip Scale Package). The
other components used on this board include voltage regulators and clock
translators. The schematic capture of the analog board is plotted in Fig. 3.6 and Fig.

3.7.
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The analog design was implemented on a 3in X 3in 6-layer printed circuit

board. The different layers of the board are shown in Fig. 3.8 to Fig. 3.13.

@ Pol:l“rEI ) Designed by : Siavash Yousefi
U115D11Ei R179 ~ _ Oregon State University
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Fig. 3.8. The top layer of the PCB.
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Fig. 3.12. The 3" inner layer (-VCC).
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209

Fig. 3.13. The 4th inner layer (1.8V analog and 1.8V digital).

Table 3.1 shows the detailed list of the materials used in this design.



Table 3.1. The list of materials and components which were used on the board.

Reference . o Part
Item . Device Package Description
Designator Number
SOIC_8
1 U1, U101 AD8045 Exposed Op Amp
Paddle
Variable Gain
2 U2, U102 AD8336 LFCSP_16 .
Amplifier
3 U3, U103 ADS8058 SOIC_8 Dual Op Amp
Differential Op
4 U4, U104 AD8138 SOIC_8
Amp
5 U5, U105 AD9230 LFCSP_56 250 MSPS ADC
R1, R3, R102, Chip
6 ) 0603 4990
R103 Resistor
Chip
7 R2, R113 ) 0603 560 Q
Resistor
Chip
8 R14,R114 ) 0603 5.6 KQ
Resistor
Chip
9 R4, R104 ) 0603 310Q
Resistor
Chip
10 R9, R109 ] 0603 931 Q
Resistor
Chip
11 R8, R108 ) 0603 887 Q
Resistor
Chip
12 R10, R110 ] 0603 3240
Resistor
Chip
13 R12, R112 ) 0603 1KQ
Resistor
Chi
14 | R16,R116, P 0603 499 Q
Resistor

R21, R121,

34



R20, R120
Chip
15 R18, R118 . 0603 330Q
Resistor
R44, R26, Chip
16 . 0603 33Q
R144, R126 Resistor
R54-R67, Chip
17 . 0603 100 Q
R154-R167 Resistor
R53, R153,
R45-R52, Chip
18 . 0603 10 kO
R184, R74, Resistor
R174, R185
Chip
19 R180, R182 . 0603 56 KQ
Resistor
Chip
20 R181, R183 . 0603 15 KQ
Resistor
R179, R217- Chip
21 . 0603 150 O
R224 Resistor
C1, C4, C101,
C104, C9,
C109, C14,
C114, C19,
C119, C25,
Tantalum
22 C26, C125, . ACASE 10 uF
Capacitor
C126, C155,
C157, C49,
C48, C149,
C148, C30,
C29, C150
C2, C3, C102,
C103, C7,
Chi
23 C10, €110, ? 0603 0.1 pF
C111, C107, Capacitor
C13, C16,

C113, C116,

35



C20, C21,
C120, C121,
C32-C47,
C132-C147,
C153, C158,
C156, C28,
C31
Chip
24 C17,C117 . 0603 1 pF
Capacitor
Chip
25 C18,C118 . 0603 1.8 pF
Capacitor
Chip
26 C19, C119 . 0603 1.5 pF
Capacitor
Tantalum
27 C151 . ACASE 33 uF
Capacitor
SMA
28 uU10, U110
Connector
Schottkey
29 U1z, U112 . SOT323 ZUMD70-40
Diode
MSOP (RM-
30 ue Quad DAC 10) AD5664R
uad O SOIC (R-14
31 u7 Quad Op (R-14) OP4g4
Amp Narrow Body
Clock
Translator SOIC-8 NB MC100EPT2
32 U131, U132
(LVPECLto | CASE 751-07 0
LVDS)
1.8V LDO
33 U13, U113 Voltage SOT 223-5 3.3Vto 1.8V LP3872

Regulator

36



1.2V LDO
4-Lead SOT-
34 uli4a Voltage 523 3.3Vto 1.2V FAN1112
Regulator
L1, L2, L101, ) BLM18BA75
35 Inductor Ferrite Bead
L102 OSN1D
Digi-key
L103, L104, 3.2mm X 2.5 )
36 Inductor Ferrite Bead P9811CT-
L105 mm X 1.6mm
ND
37 D117-D124 LED 0603 Green
38 D116 LED 0603 Red

3.2 Pulse Shape Discrimination Methods

37

3.2.1 Fuzzy Method

The digital pulse shape discrimination method we advance is composed of the
following steps. First, a de-noising algorithm is applied to the data. Then, important
features for pulse shape discrimination (PSD) are extracted. These features are inputs
to the fuzzy interface system. Finally, a decision-making unit decides whether the
signal can be sent for energy measurement and spectroscopy or should be rejected.

The block diagram of the system is shown in Fig.3.14.
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Input Pulse
(Digital)

Fuzzy Interface Decision Making

Wavelet De-noising Feature Extraction System Unit

Fig. 3.14. The block diagram of the fuzzy method.

3.2.1.1 Wavelet De-nosing

Since the PMT anode signal is very noisy and timing features highly depend on
the signal at specific times, a de-noising algorithm is required. There exist different
digital de-noising methods (e. g. moving average filters, median filters) depending on
the application. In this application, smoothing filters are not appropriate because the
signal contains a sharp portion associated with the absorption in the first layer (fast
component). In order to de-noise the signal and avoid loss of important information,

an approach based on the wavelet transform (Mallat 1989) is used.

The wavelet transform is an interesting signal processing method and is
widely used in different engineering and medical applications (Farge 1992 and Wahl
et al. 1993). The time-frequency scale of the wavelet transform is not uniform over
the entire domain, thus allowing for multi-scale characteristics with the scale being
adjustable according to the signal features. C. Shiguo et al. (2004) used wavelet de-
noising to process the sampled data obtained from a gas detector and improved its

SNR effectively.
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In our application, a 5-level de-noising algorithm based on ‘sym8’ wavelet
functions was used. Fig. 3.15 shows the noisy signal (a) and the de-noised signal (b) of
a typical pulse shape captured from %5r/Y which is the result of beta absorption in
the 1% and 2" layer of the detector. Note that the fast component of the signal,
which is due to the interaction in the first layer of the phoswich detector, is

preserved.

3800

Noisy Signal

3600 ' §
3400|- |
32001 |

3000 | | | | |
0 200 400 600 800 1000 1200

De-noised Signal
3800 ‘

3600 .
b 3400F i
3200 .

3000 1 1 1 1 1
0 200 400 600 800 1000 1200

Fig. 3.15. (a) Noisy signal. (b) De-noised signal using a 5-level de-noising algorithm
based on “sym8” wavelet functions.

To compare the wavelet de-noising performance with smoothing filters, the
de-noised signal using a 5-point moving average filter is shown in Fig. 3.16. It can be
noticed that the timing features of the signal related to the fast component are

smoothed by applying a moving average filter but are mostly preserved using wavelet
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de-noising. The signal is a typical *°Sr/Y waveform which is the result of beta

absorption in the 1°* and 2" layer of the detector.

De-noised signal using a 5-point moving average filter (solid line). Denoised signal using wavelets (dash-dotted line)

3800 ‘ \ \ \ \ -
3600 B
a 3400 .
w‘ —— Moving average
3200} | — -Wavelets B
\
3000 L L L L L
0 200 400 600 800 1000 1200
Zoomed version
3800 \ \ T

3600

b 3400

| — Moving average
3200 — -Wavelets B

3000 1 1 1 L 1 1 1 L L
100 110 120 130 140 150 160 170 180 190 200

Fig. 3.16. (a) “°Sr/Y Wavelet de-noising (dash-dotted line) and de-noising using a 5-
point moving average filter (solid line). (b) The bottom plot is a zoomed version of the
top plot.

3.2.1.2 Feature Extraction

The output waveform of the triple-layer phoswich detector, after the peak,

can be modeled as the linear combination of three exponential decays, each one
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showing the absorption in one layer of the detector (Knoll 2000 and Bardelli et al.
2002). Since the intensity of the fluorescence of the scintillator decays exponentially
(Birks 1964), a mathematical model of the principal components of the input signal,
which stem from the absorption in the three layers of the phoswich detector, can be

expressed as

s(t) = K; X Ay X e~/ + K, X A, X e~/ + K3 X A3 X e/t . [3.1]

Depending on the layer(s) in which the absorption occurred, constants K1, K2, and K3
can take on the value zero or one. Al, A2, and A3 are constants related to the energy
absorption in each scintillator layer. The 1 values are the decay constants of each

scintillator layer.

In order to discriminate among seven scenarios, at least three features are
chosen. According to the possible shapes of the signal and the different scenarios
which may arise, the features in the block diagram of Fig. 3.14 are extracted using the

following algorithm:

d, = abs ( ((S(tpeak)s‘(stizia)k+ 30n5)) ) ) [3.2]
peak,qtio = abs( %) [3.3]



if peakratio < peakthreshold and d1 < dthreshold then

d. = abs (s(tpeak+30ns)—s(tpeak+300ns)>
2 - y

1.4 % (5(tpear+307s))

do = abs s(tpeak+1200ns)—5(tpeqr+3500ns)
3 1.4 % (5(tpear+30ns)) ’

olce

s(tpeak+30ns)—s(tpear+300ns)
d, = abs ,
s(tpeak)

d; = abs (

s(tpeak+ 1200ns)—s(tpeak+3500ns))
S(tpeak) .
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[3.4]

[3.5]

[3.6]

[3.7]

First feature d1 determines if the input signal s(t) contains a fast component

(fast exponential decay in the first layer of the detector BC400). Feature d3

determines if the signal contains a slow component (slow exponential decay in the

second layer of the detector (CaF2)). Feature d2 is used to discriminate among other

possible cases and is mostly used to indicate the absorption in the 3™ layer. The

condition for the peak ratio is for the cases where the sharp point of the signal is

much larger than the rest of the signal. Thus it prevents the misclassification of the

slow portion of the signal. Fig. 3.17 shows the time features of the signal extracted

from a typical synthetic waveform which contains the absorption in all three layers.
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Fig. 3.17. Timing features of the input signal.

3.2.1.3 Fuzzy Interface System

Fuzziness in contrast with crispiness in data sets was introduced by L. Zadeh
(1965). The main goal of fuzziness is to reduce system complexity and to provide a
model that allows approximate results. Fuzzy logic has many applications in control
systems, data clustering (Radecki 1982), image processing (Franke et al. 2000 and
Wachs et al. 2003), robot control (Ghidary et al. 2001 and Shim et al. 1998),
temperature and pressure control (Magdelena et al. 1996 and Zhang et al. 1999) and
finance (Diao et al. 2000). In general it can be applied to all problems which contain

some sort of uncertainty (Nedjah 2005).
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Conventional mathematical system modeling (e. g. using differential
equations) is not efficient when the system has some uncertainty and is non-
deterministic, and most real world systems contain uncertainty. Fuzzy interface can
model qualitative aspects of human knowledge without using exact quantitative
analyses (Zhang 1993). The block diagram of a typical fuzzy interface system is shown
in Fig. 3.18. First the crisp input is mapped into a linguistic input membership space
(fuzzification). Then, according to the weight and strength, the output of each rule is
generated and all the outputs are aggregated to make a fuzzy output. Finally, the
fuzzy output is mapped into the crispy space using a defuzzification process (Zhang

1993).

Knowledge Base

Database Rule base

Decision Making
Unit

Fuzzification Defuzzification JOI{eIVi¥(®1(E¢)}

Fuzzy Interface System

Fig. 3.18. Block diagram of a typical fuzzy system employed.
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The fuzzy system employed in this paper has three inputs and three outputs.

Fig. 3.19 shows the block diagram of the fuzzy system. The inputs to the system are
features extracted in the previous part. The outputs are constant values K1, K2, and
K3 in equation [3.1] and indicate if the signal contains the corresponding kind of

exponential decay or not.

d1 — — {1

Fuzzy Interface
System

03 sl — f3

Fig. 3.19. Block Diagram of the fuzzy system employed.

For each input, a membership function with two linguistic values was
selected. The input membership functions are shown in Fig. 3.20. Input d1 has two
linguistic values, small and large. Input d2 is marked with two values, medium and

large, and input d3 is marked with values small and large.
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Fig. 3.20. Input membership functions. (a) Membership function of d1, (b)
membership function of d2, (c) membership function of d3.

The output membership functions for the output variables (K1, K2 and K3),
are shown in Fig. 3.21. Each output has two membership functions, negative and

positive, which are Gaussian shaped functions centered at 1 and -1.
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Membership function of K1
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Fig. 3.21. Output membership functions. (a) Membership function of K1, (b)
membership function of K2, (c) membership function of K3.

In order to discriminate between the seven possible cases suggested in
(Farsoni et al 2007), seven rules were used. The if-then rule data base is shown

below.

R1:Ifd1is large and d2 is medium and d3 is small then K1 is positive and K2 is

negative and K3 is negative.

R2:If d1is small and d2 is large and d3 is small then K1 is negative and K2 is positive

and K3 is negative.
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R3:Ifd1is large and d2 is large and d3 is small then K1 is positive and K2 is positive

and K3 is negative.

R4: If d1is small and d2 is medium and d3 is large then K1 is negative and K2 is

negative and K3 is positive.

R5:If d1is large and d2 is medium and d3 is large then K1 is positive and K2 is

negative and K3 is positive.

R6: If d1 is small and d2 is large and d3 is large then K1 is negative and K2 is positive

and K3 is positive.

R7:1fd1is large and d2 is large and d3 is large then K1 is positive and K2 is positive

and K3 is positive.

If the output (K1, K2, and K3) is negative, it indicates that the interaction did
not occur in that layer. If it is positive, it indicates that the interaction in that layer
has occurred. Negative outputs are set to zero and positive values are set to one to

validate equation [3.1].

3.2.1.4 Experimental Results for the Fuzzy Method

Pulses from the phoswich detector are captured using a digital pulse

processor and analyzed using Matlab®. Several cases were studied using pure beta,
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pure gamma, and mixed beta/gamma sources. Tc and ?°Sr/Y were used for beta,
B37Cs for gamma and the combination of the sources for the mixed case. Single
beta/gamma sources were not used for both beta and gamma components because

of a moderate amount of self-shielding already present in the check sources and the

inability to capture mono-energetic conversion electrons.

Gamma Sources

The features and the spectra of the pulses captured from a **’Cs source are
plotted in Fig. 3.22 and Fig. 3.33, respectively. This spectrum was obtained by
capturing 4945 pulses from a **’Cs source and processing them in a host computer.
The beta energy spectrum of **’Cs indicates that, at low energies, some gamma rays,
mostly Compton events, interact with the 1°* and 2" layer and cause the
misclassification of pulses as beta. This phenomenon is not observed at high energies

because high energy gamma rays usually do not interact with the 1* and 2" layer.

The algorithm performance can be measured by full width at half maximum
(FWHM) of the spectrum at the energy peak. The measured 662KeV photo-peak
resolution in this experiment was approximately 6.7%. It can be noticed that photo-
peak is almost symmetrical. Other spectral features such as the Backscatter peak, the

Compton continuum, and the Compton edge can also be observed.
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Some low-energy gamma rays (mostly Compton events) interact with the 1%
and/or 2™ layer and cause the pulse to be misclassified as beta. However, this
phenomenon is not observed at higher energies and these pulses pass so the spectra
of gamma-ray absorption in the 1°* and 2" layer should be observed only at low

energies.

Fig. 3.22. The fuzzy features of a **’Cs source.
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Fig. 3.23. The energy spectrum of the ~°’'Cs with the features plotted in Fig. 3.22.

The features and spectrum of the pulses recorded from a ®°Co source are

plotted in Fig. 3.24 and Fig. 3.25, respectively.
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Fig. 3.25. The energy spectrum of the ®°Co source with the features plotted in Fig.

3.24.
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Beta Sources

To evaluate the algorithm for the beta response, two sources were used. The
features and the spectra of the pulses from a **Tc source are plotted in Fig. 3.26 and
Fig. 3.27, respectively. In this experiment, 4989 pulses from the *°Tc source were
captured. At lower energies the detector works correctly in discriminating beta and
gamma signals. But some high energy pulses could escape from the 1* and 2" layer,
and interact with the 3" layer, which causes misclassification of these pulses as
gamma. Some of the pulses are misclassified as Compton-induced pulses which may
originate from interactions of gamma-rays in the second layer. This phenomenon is
more obvious when capturing signals from a higher energy beta source (e. g. 05r/Y).
High-energy beta particles have a better chance to escape from the 1* and 2" layer

and interact with the 3" layer and cause misclassification as gamma.

The features and the spectra of the pulses recorded from a 90Sr/Y source are
plotted in Fig. 3.28 and Fig. 3.29, respectively. In this experiment, 10,000 pulses from

this source were captured.
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Mixed beta and gamma Sources

Simultaneous detection of beta and gamma was tested by using different
sources of beta and gamma together. The spectrums of the mixed fields are shown
below. The features and the spectra of the pulses captured from a mixed field of
137¢s and *°Sr/Y sources are plotted in Fig. 3.30 and Fig. 3.31, respectively. Also, the
features and the spectra of the mixed field of %Co and *°Tc are plotted in Fig. 3.32

and Fig. 3.33, respectively.

Fig. 3.30. The fuzzy features of a mixed radiation field of **’Cs and *°Sr/Y sources.
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Fig. 3.31. The energy spectrum of the mixed **’Cs and *°Sr/Y sources with the

features plotted in Fig. 3.30.
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Fig. 3.32. The fuzzy features of a mixed radiation field of ®*Co and *Tc source.
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Fig. 3.33. The energy spectrum of the mixed field of ®Co and **Tc sources with the
features plotted in Fig. 3.32.

3.2.2 Wavelet Method
3.2.2.1 The Wavelet Transform

The wavelet transform decomposes signals over dilated and translated
wavelets. The wavelet transform of a function f € L?(R), the space of square

integrable functions over R at scale a and shift b is defined as

Wia,b) = < fvbap >= |2, (O (e, [3.8]

where 1 € L2(R) is the wavelet function with zero average and unit L, norm||y]|| =

1. In this application, ‘Haar’ wavelets were used. It should be noted that each pulse is
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normalized to a unit peak to peak signal before computing the wavelet transform.
The normalization process removes the dependency of the wavelet transform on the

amplitude of the signal.

It should be noted that f(t) is a discrete signal and we use a piecewise
constant interpolation of the f(k) where k=1 to length(f). The algorithm can be

written as

Cap =< flap >= [ fOFY (Dt = S [ fFOEY (D B9

If f(t)=f[k] for t € [k, k + 1] then

k+1

= s [ (5 3.10]

A new function P(a) (called the ‘Scale function’) is defined as the energy of the
wavelet transform of the signal at a specific scale and with different shifts. Its

expression is
1 n
P(@) = =3 | Wia, b)I?, [3.11]
where Wj;(a, b;) is the wavelet transform of the normalized signal.

The experimental results show that the scale function allows for a good
separation between different signals having different decaying components. It was
observed that the pulses recorded from a mixed B37¢s and %°sr radiation field have

seven different pulse shapes which are the result of the absorption of beta particles
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and gamma rays in different layers. Each pulse shape represents one scenario from
seven possible cases (Farsoni et al. 2007). The seven possible normalized pulses and
their corresponding scale functions are plotted in Fig. 3.34 and Fig. 3.35, respectively.
It can be observed that the scale functions of the pulses with different decaying
components show different behaviors, and the scale function can be used as a
discrimination function between these pulses. It should be noted that the scenario
associated with the absorption in the 1% and 3™ layer and also the scenario
associated with the absorption in all three layers were, very rare and were observed

only a few times.
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Fig. 3.34. The normalized waveforms of the seven possible scenarios.
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Fig. 3.35. The corresponding scale functions of the seven possible waveforms of Fig.

3.34.

3.2.2.2 Feature Extraction

The scale functions of 250 pulses from a mixed field of 137¢s and ?%Sr are
plotted in Fig.3.36. It can be observed that the values of the scale function at scales

128 and 1024 can be used to discriminate between these pulses.
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Fig. 3.36. The scale functions of 250 pulses recorded from a mixed source of **’Cs

and 2°Sr/Y (black pulses). The scale function at scales 128 and 2024 are chosen as the
PSD features.

For simplicity, in the algorithm, the discrimination features are selected as
follows. First, a feature is selected as the value of the scale function at scale 128. The
second feature is selected as the ratio of the value of the scale function at scale 1024
to the value of scale function at scale 128. Scales 128 and 1024 are chosen as powers
of 2 in order use the discrete wavelet transform (DWT). The DWT can be easily
implemented in digital processors and FPGAs (Ballagh 2001). Features f; and f, are

selected using the following equations

fi =P (@)]g=128 [3.12]
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and

£ = P (a)la=1024 ] [3.13]

P (@)la=128

137CS and 99TC sources are

The features of 250 pulses taken separately from
plotted in Fig. 3.37 where the X axis is f; and the Y axis is f,. The blue dots represent
the features of the pulses taken from a 137¢s source and the red dots represent the
features of the pulses taken from a %Tc¢ source. It can be observed that the selected
features allow for a good separation between beta particles and gamma rays and can

be used to discriminate among pulses which are recorded from a mixed radiation

field.
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Fig. 3.37. The features of 250 captured pulses from B7cs and *T1c, separately. The
blue dots represent the 137Cs features and the red dots represent the PT¢ features.

In order to test the algorithm for different radiation sources, different beta
and gamma sources were used separately and simultaneously. In this experiment,
137 60 90 99

Cs and ""Co gamma sources and “-Sr/Y and ““Tc beta sources were used. After

performing the pulse shape discrimination, the energy of the signal is measured and

the beta spectrum and gamma spectrum are derived. The results are presented next.

The features and the spectra of the pulses captured from a **’Cs source are
plotted in Fig. 3.38 and Fig. 3.39, respectively. Also, the features and the spectra of
the pulses recorded from a ®°Co source are plotted in Fig. 3.40 and Fig. 3.41,

respectively.
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Fig. 3.38. The wavelet features of a *’Cs source.
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Fig. 3.39. The energy spectrum of the 17
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Cs source with the features plotted in Fig.
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Fig. 3.41. The energy spectrum of the ®°Co source with the features plotted in Fig.
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In order to test the algorithm for beta sources, 9sr/Y and *°Tc were used. The
features and the spectra of the pulses captured from a **Tc source are plotted in Fig.
3.42 and Fig. 3.43, respectively. The features and the spectra of the pulses recorded

from a ?Sr/Y source are plotted in Fig. 3.44 and Fig. 3.45, respectively.

0.3 0.4 0.5 0.6 0.7

f1

Fig. 3.42. The wavelet features of a *°Tc source.
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Fig. 3.44. The wavelet features of a *°Sr/Y source.
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Fig. 3.45. The energy spectrum of the %9Sr/Y source with the features plotted in Fig.
3.44.

The features and the spectra of the pulses captured from a mixed field of
B37¢s and 2°Sr/Y are plotted in Fig. 3.46 and Fig. 3.47, respectively. Also, the features
and the spectra of the mixed field of ®°Co and *°Tc are plotted in Fig. 3.48 and Fig.

3.49, respectively.
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Fig. 3.46. The wavelet features of a mixed radiation field of 137¢s and *°sr/Y sources.
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Fig. 3.47. The energy spectrum of the mixed "*’Cs and *°Sr/Y source with the features
plotted in Fig. 3.46.
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Fig. 3.48. The wavelet features of a mixed radiation field of ®°Co and *°Tc sources.
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Fig. 3.49. The energy spectrum of the mixed field of ®0Co and *°Tc sources with the

features plotted in Fig. 3.48.
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4 Discussion and Comparison

In this section, the discrimination performances of the two new methods
advanced in this thesis are compared with two referenced methods. The two
referenced methods are the Constant Time Discrimination (CTD) and the method of

137CS

Farsoni et al. (2007). The four methods were applied to six different data sets:
and *°Co gamma sources, 997C and *°Sr/Y beta sources, mixed 137¢cs and 9°Sr/Y, and

mixed ®°Co and *°Tc sources.

The Constant Time Discrimination method is based on taking one sample of the
normalized signal after a constant time with respect to the peak. In this experiment,
the constant time is 300ns. The value of the signal at the specified constant time is

used to discriminate between different pulse shapes (Fig. 4.1).

100

_____________

-
-
-

o
Q.

— Alpha pulse
----- Gamma pulse

I3
1 O

&

Neormalzed Integral Pulse (%)

(5]
o
1

e Fracticno——————
1 1 L I Il L 1 I L 'l 'l l L1 1 l L L1

L Ly

1 i 1 i "

"o 1000 2000 3000 4000
Time (ns)

Fig. 4.1. Constant-time discrimination features. (© Chandrikamohan 2007)
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The Farsoni’s method (2007) is based on using two features of the signal, the

fast ratio and the slow ratio, defined next. The feature extraction in this method
works as follows. Four quantities (baseline, P, M1 and M2) that describe the basic
shape of each pulse are measured (Fig. 4.2). The “Baseline” is defined as the average
of 100 samples before the trigger point is calculated. The peak of the pulse, P, is the
maximum value in the pulse. The value “M1” is the average over the five samples just
after the fast decay component, which is between samples 5 and 9 relatively to the
peak sample. “M2” is the average over the five samples between 30 and 34,
relatively to the peak sample (Fig. 4.2). The fast-ratio (FR) and the slow-ratio (SR) of
the captured signal are determined as FR= (P-M1)/P and SR= (M1-M2)/M1

respectively (Farsoni et al. 2007).
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Fig. 4.2. The four parameters, baseline, P, M1 and M2 used for analyzing the anode
pulses in Farsoni’s method. (© Farsoni 2007)



74

Figs 4.3 to 4.8 show the features extracted for pulse shape discrimination
using the four different methods: the constant time discrimination method, Farsoni’s
method, the time-domain fuzzy method, and the wavelet method. For each figure,
plot “a” shows the features extracted using the CTD method, plot “b” shows the
features extracted using the Farsoni’s method, plot “c” shows the features extracted
using the time-domain fuzzy method and plot “d” shows the features extracted using

the wavelet method.

The performances of these methods are compared with each other in Tables

4.1-4.4 for **'Cs, ©°Co, ?°Sr/Y and *°Tc sources, respectively.
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Fig. 4.3. The features of a *’Cs source extracted using four different methods. (a)
CTD, (b) Farsoni’s method, (c) time-domain fuzzy method, (d) wavelet method.
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Fig. 4.4. The features of a ®°Co source extracted using four different methods. (a)
CTD, (b) Farsoni’s method, (c) time-domain fuzzy method, (d) wavelet method.
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Fig. 4.5. The features of a *°Tc source extracted using four different methods. (a)
CTD, (b) Farsoni’s method, (c) time-domain fuzzy method, (d) wavelet method.
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Fig. 4.6. The features of a %Sy source extracted using four different methods. (a)
CTD, (b) Farsoni’s method, (c) time-domain fuzzy method, (d) wavelet method.
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Fig. 4.7. The features of a mixed field of *’Cs and *°Sr/Y sources extracted using four
different methods. (a) CTD, (b) Farsoni’s method, (c) time-domain fuzzy method, (d)
wavelet method.
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Fig. 4.8. The features of a mixed field of ®°Co and *°Tc sources extracted using four
different methods. (a) CTD, (b) Farsoni’s method, (c) time-domain fuzzy method, (d)
wavelet method.

Table 4.1. The comparison between different methods for a **’Cs source.

Method Gamma Rate (%) Beta Rate (%) Pulse Reject (%)

Farsoni’s Method 69 1.7 29.3

Time-domain Fuzzy
88.6 2.8 8.6
Method

Constant-Time
96.6 0.9 2.5
Discrimination

Wavelet Method 85.2 0.7 14.1
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Table 4.2. The comparison between different methods for a ®°Co source.

Method Gamma Rate (%) Beta Rate (%) Pulse Reject (%)
Farsoni’s Method 65.8 1.9 31.3
Time-domain Fuzzy Method 79.3 2.6 18.1
Constant-Time
96.8 1.7 1.5
Discrimination
Wavelet Method 79.2 1.6 19.2

Table 4.3. The comparison of different methods for a *°Tc source.

Method Beta Rate (%) Gamma Rate (%) Pulse Reject (%)
Farsoni’s Method 95.5 0.8 3.7
Time-domain Fuzzy
94.3 0.8 4.9
Method
Constant-Time
96.2 1.4 2.4
Discrimination
Wavelet Method 98.6 0.8 0.6
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Table 4.4. The comparison between different methods for a *°Sr/Y source.

Method Beta Rate (%) Gamma Rate (%) Pulse Reject (%)

Farsoni’s Method 53.1 1.8 449

Time-domain Fuzzy

56.8 3.8 394
Method
Constant-Time
53 38 9
Discrimination
Wavelet Method 59.7 1.8 38.5

Although the CTD method seems to have good performance for the B7¢s and
PT¢ sources, it misclassifies some of the pulses from the Co and 90Sr/Y sources. The
feature plots of the Co and “sr/yY (Fig. 4.4 and Fig. 4.6) prove that the absorption in
the 2" layer of the detector is a common scenario (the pulses from this scenario
must be rejected (Farsoni et al. 2007)). However, the CTD method does not reject
these pulses. In general, this method classifies the pulses as the fast decay or slow
decay and does not discriminate between the absorption in the 2" layer and the
absorption in the 3" layer. This method does not detect the multiple layer

absorptions either. Therefore, the CTD method is not able to discriminate between
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seven possible cases which may occur using this triple-layer phoswich detector.
Another disadvantage of this method consists in using the timing features, which
result in an algorithm very sensitive to noise and to abrupt changes in the signal at

specific points. The use of a de-noising algorithm is therefore necessary.

Some low-energy gamma rays (mostly Compton events) interact with the 1%
and/or 2™ layer and cause the pulse to be misclassified as beta. However, this
phenomenon is not observed at higher energies because the 1* and 2" layers do not
interact with these pulses and they pass so that the spectra of gamma absorption in
the 2™ layer should be observed only at low energies. Using the time-domain fuzzy

method, the beta energy spectrum (error) of a 137

Cs is spread only at low energies.
However, beta spectrum using Farsoni’s method was spread from low energies to

high energies and some high energy pulses, which were absorbed in the 3™ layer,

were misclassified as the absorption in the 1 and 2" layer.

Table 4.5 shows the comparison between Farsoni’s method and the time-
domain fuzzy method we proposed for a B37¢s source. Although the error rate has
increased in this algorithm, fewer pulses were rejected and the FWHM has been
improved. The reason that the error rate has increased is that Farsoni’s method
(2007) is not efficient in detecting pulses with double-decay in the 1*" and 2" layer,
and they are mostly rejected. Using the fuzzy algorithm, these pulses are detected

effectively and are classified as beta.
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Table 4.5. Comparison between Farsoni’s method and our fuzzy method

137 Gamma Count Beta Count Pulse Reject FWHM
s

(%) (%) (%) (%)
Farsoni’s Method 69.0 1.7 29.3 7.5
Fuzzy Algorithm 88.6 2.8 8.6 6.7

For a **Tc source, both of the methods show a similar performance but for
%0Co and P°Sr/Y sources, Farsoni’s method rejects more pulses. This phenomenon is a
result of the specific cases which arise for these sources. It can be observed that
multiple-layer absorption is very common for these sources and Farsoni’s method is
not effective in detecting these pulses. In general, the time-domain fuzzy method
shows better performance than Farsoni’s method in detecting multiple-layer

absorption.

The time-domain fuzzy method, compared to the wavelet method, has almost
equal performance, but is computationally more complex because it uses a wavelet
based de-noising algorithm. Both Farsoni’s method and the time-domain fuzzy
method are sensitive to noise and variations in the pulse shape. Although the time-
domain fuzzy method employs a wavelet based de-noising algorithm, it is

computationally more complex than the wavelet method and Farsoni’s method.

One of the advantages of the wavelet method consists in using the frequency-

domain features of the signal which are less sensitive to noise and abrupt changes in
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the signal. Therefore, it can be considered a robust algorithm for pulse shape

discrimination among pulses with different decaying characteristics.

Another advantage of the wavelet-method consists in detecting the bizarre
pulse shapes which represent the pile-up events in the data set and were not

137¢s source, five

detected by the time-domain methods. In the feature plot of the
major clusters were observed in the data set: the absorption in the 3" layer, the
absorption in the 2" layer, the absorption in both the 2" and 3™ layer, the
absorption in the 1* layer and the absorption in the 1°* and 2" layer. However, some
samples did not belong to any of these clusters. Fig. 4.9 to 4.12 show some of these

samples and their corresponding pulse shapes. These pulses represent pile-up events

and should be rejected.
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5 Application of the Wavelet method in
neutron/gamma discrimination in liquid
scintillators

5.1 Introduction

Neutron spectroscopy has several applications in international safeguard,
nuclear material control, and national security. More recently, neutron spectroscopy
utilizing organic scintillators has been used for tomographical imaging. Since organic
scintillators are also sensitive to y-ray photons, a pulse shape discrimination (PSD)

method between neutrons and y-rays is necessary.

Liquid scintillators are one of the most popular radiation detection materials
because they can be shaped into the desired size for a specific application (D’Mellow
et al. 2007). Another advantage of using liquid scintillators is their excellent pulse

shape discrimination properties and fast timing performance.

The light produced in organic scintillators can be the result of different decay
paths (e. g. fluorescence, phosphorescence, and delayed fluorescence). During the
scintillation process, heavier particles show greater energy loss rate and produce
delayed fluorescence yielding output pulses that decay more slowly than of those
from lighter particles. The difference between the pulse shapes arising from the

interaction of heavy particles in scintillation and those stemming from the interaction
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of light particles and photons has been exploited in pulse shape discrimination and

allows the determination of the radiation type.

Aspinall et al. (2007) verified the discrimination of neutron and y-ray events in
an organic scintillator with the PGA method by comparing the results of the PGA
method with those of the Time of Flight (TOF) measurement. Both of the algorithms
were implemented in digital logic. The discrimination performance of the PGA

algorithm was observed to be consistent with that achieved by the digital TOF.

In this section, we propose a new pulse shape discrimination method based
on the wavelet transform which is able to detect neutrons and y-rays in liquid
scintillators. The performance of the wavelet method is compared with PGA. The
experimental results show that the wavelet-based pulse shape discrimination

method has better performance compared to the PGA algorithm.

5.2 Experimental Set-up

The experimental setup of the scintillator and source is shown in Fig. 5.1. An
americium-beryllium (Am/Be) source was exposed to a small-volume (4.5 ml) liquid
scintillator (John Caunt Scientific LtD., Oxon, UK) filled with EJ-301, optically-coupled
to a fast photomultiplier tube (PMT). The output signal of the PMT was sampled

using a fast digitizing oscilloscope (Agilent Technologies Inc.) at a sampling rate of 4
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GSPS with a 16-bit amplitude resolution. Data were collected using four different
experimental configurations as described in Table 5.1 and were transmitted to the
host computer for further processing. A lead shield with a thickness of 50mm was
used to attenuate the y-ray component of the field. The neutron flux was attenuated
by moving the source to the back of the tank or through the use of a polyethylene
sphere with an external diameter of 208 mm and an internal diameter of 63 mm
(D’Mellow et al. 2007). The main use of Am/Be sources is usually in the production of
neutrons. However, a gamma-ray can be produced after the alpha-decay of the
americium component or as the result of inelastic neutron scattering in the
surroundings. Therefore, the Am-Be source can be used as a mixed field of neutrons

and gamma rays.

B
. Cadmium

! - . AmiBe source
= bl = o
~ el e

_ Fﬁ.”‘;

g Eae e 4::::':-'
Water tank Cretector” T

Fig. 5.1. The experimental setup used to record the Am—Be data.
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Table 5.1. Neutron and y-ray moderator configurations investigated with an Am/Be
neutron source to achieve data sets of varied neutron/y ratio.

Source Position in

Configurations Shield Desired field
tank
1 Front None Neutron/y
y with reduced
2 Front Polyethylene
neutron

Neutron with reduced

3 Front Lead
Y

Reduced neutron and

4 Front Polyethylene and lead

Y

5.3 Feature Extraction

The same procedure used in the wavelet method (chapter 3.2.2) is applied
here to extract relevant features for pulse shape discrimination. First, the continuous
wavelet transform is applied to the signal (equation 3.8). Then the scale function of

the signal is computed using the equation 3.9.

Typical neutron and y waveform with their corresponding scale functions are
plotted in Fig. 5.2. It can be observed that the scale function provides a good
separation between neutron and gamma pulses. The scale functions of 50 normalized
pulses captured from a mixed neutron/y field are plotted in Fig. 5.3. For
implementation simplicity, the values of the scale function at scales 512 and 1024 are

selected as the discrimination parameters. These scales are chosen as powers of 2 in
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order to use the discrete wavelet transform (DWT). The DWT can be easily

implemented in digital processors and FPGAs (Ballagh 2001). The optimum features

are selected using the following equations

fi = P(@)]a=s12/

and
f2 = P(a)|a=1024/P(@)]a=512-
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Fig. 5.2. Typical neutron and gamma normalized pulse shapes with their

corresponding scale functions.
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Fig. 5.3. The feature selection diagram for 50 normalized pulses.

5.4 Experimental Results

To verify the performance of the algorithm, the wavelet method was applied
to the data from the four configurations reported in Table 5.1, where gamma and
neutron events are counted. For each configuration, the scatter plot and the
probability histogram are plotted. For the probability histogram plots, the X axis
(discrimination value) is the 2" feature (f,). Although this feature is not the only
discrimination value in the wavelet method, it can be used as a good parameter to

visualize the estimated distribution of neutrons and gamma rays and provides a very
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good separation of the two sets. The sum of two Gaussian functions is fitted to the

histogram, representing the probabilities of neutron and gamma events.

Fig. 5.4 and Fig. 5.5 show the scatter plot and the probability histogram of the
first configuration with no additional shielding, respectively. In this experiment, the
expected event consisted in observing mostly gamma rays and some neutrons.
During this experiment, 734 pulses were captured: 228 pulses were classified as
neutrons and 506 pulses as gamma rays and the resulting neutron/gamma ratio was
0.45. Fig. 5.6 and Fig. 5.7 show the scatter plot and the probability distribution of the
second configuration, respectively. The expected event in this experiment consisted
in observing mostly gamma rays and even fewer neutrons compared to the first
configuration. 1050 pulses were captured: 172 pulses were classified as neutrons,
and 878 pulses were classified as gamma rays with a corresponding 0.196

neutron/gamma ratio.
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Fig. 5.6. The scatter plot of configuration 2.
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Fig. 5.7. The probability distribution of configuration 2.
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Fig. 5.8 and Fig. 5.9 show the scatter plot and the probability distribution of

the third configuration in table 5.1, respectively. In this case, the expected event
consisted in the observation of equal amounts of neutrons and gamma rays. 2437
pulses were captured: 1242 pulses were classified as gamma rays, and 1195 pulses
were classified as neutrons yielding a neutron/gamma ratio of 0.96. Fig. 5.10 and Fig.
5.11 show the scatter plot and the probability distribution of the fourth configuration
in table 5.1, respectively. In this case, the event consisted in observing reduced
neutrons and gamma rays. 2132 pulses were recorded: 1669 pulses were classified as
gamma rays and 463 pulses were classified as neutrons, leading to a 0.277

neutron/gamma ratio.
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Fig. 5.8. The scatter plot of configuration 3.
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Fig. 5.9. The probability distribution of configuration 3.
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Fig. 5.10. The scatter plot of configuration 4.
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Fig. 5.11. The probability distribution of configuration 4.
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The overall results are compared with those obtained with the PGA algorithm.

Table 5.2 shows the neutron and y-ray counts and estimated neutron/y ratios
derived from the scatter plots for the PGA algorithm and for the wavelet method.
Also, Table 5.3 shows the fractional areas bounded by the Gaussian fits to the
neutron and gamma-ray peaks and estimated neutron/gamma ratios for the

probability distribution histograms.

Table 5.2. Neutron and gamma-ray counts and estimated neutron/gamma ratio
derived from the scatter plot for PGA algorithm and Wavelet method.

Method PGA Algorithm Wavelet Method

Configuration Gamma Neutron Total Neutron/y Gamma Neutron Total Neutron/y

1 490 237 727 0.4837 506 228 734 0.4506
2 859 190 1049 0.2212 172 878 1050 0.1959
3 1202 1234 2436 1.0266 1242 1195 2437 0.9622

4 1612 520 2132 0.3226 1669 463 2132 0.2774
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Table 5.3. Fractional areas bounded by the Gaussian fits to the neutron and gamma-
ray peaks and estimated neutron/gamma ratio for the probability distribution
histograms.

Method PGA Algorithm Wavelet Method

Configuration Gamma Neutron Overlap Neutron/y Gamma Neutron Overlap Neutron/y

1 0.7031 0.3035 0.0112 0.4225 0.7236  0.2764  0.0085 0.3746
2 0.8359 0.1682  0.0156 0.1860 0.8454  0.1546  0.0006 0.1822
3 0.4984 0.4541  0.0099 0.9093 0.5055 0.4945 0.0012 0.9782
4 0.5008 0.2444 0.0175 0.3018 0.7739  0.2261  0.0023 0.2899

5.5 Discussion

The results obtained in Table 5.2 with the wavelet method and the PGA
algorithm applied to the data from the configurations in Table 5.1 show similar
performance. However, the fractional areas in Table 5.3 show that the wavelet
method has superior performance compared to the PGA algorithm and that the
overlap areas between the neutron and gamma events have dramatically been
decreased. Compared to the PGA algorithm, the overlap between neutron and

gamma events has decreased 76.8% on average.
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Another advantage of the wavelet method over the PGA algorithm consists in

using two features which allow a better separation between the possible cases. The
discrimination between gamma and neutron events in the wavelet method is
obtained by defining simple boundaries, which makes the separation easier

compared to the nonlinear discriminator line of the PGA method.

Most of the time-domain methods use samples of the signal at a specific time
or ratio with respect to the peak time and amplitude. Therefore, feature selection is
very sensitive to noise and variations of the light intensity. The frequency domain
analysis allows for removal of the high-frequency noise present in the pulse shape

and the extraction of the most important features of the signal.

A comparison between our technique and the PGA algorithm can be
performed using the Figure of Merit for the neutron/gamma discrimination defined

as

FoM = S/(FWHM, + FWHM,), [5.3]

where S is the separation between the peaks of the two events, FWHM, is the full
width half maximum (FWHM) of the spread of events classified as y-rays and FWHM,
is the FWHM of the spread in the neutron peak (D’Mellow et al. 2007). The
comparison between the FoM of the wavelet method and the PGA algorithm is

reported in Table 5.4. It can be observed that the FoM has increased noticeably.
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Table 5.4. Comparison between the FoM of the PGA algorithm and wavelet method.

Method PGA Algorithm Wavelet Method
Configuration FOM FOM
1 0.94861 1.7269
2 0.81773 1.6774
3 0.98306 1.6409

4 0.83117 1.4881
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6 Conclusions and Future Work

6.1 Conclusions

In this thesis, a two-channel electronic read-out system for simultaneous
detection and discrimination of beta particles and gamma rays has been developed.
The system utilizes a two-channel phoswich detector followed by two
photomultiplier tubes. The output signal of the photomultiplier tube is digitized and
sent to the host computer for further processing. Two new digital algorithms based
on Fuzzy Logic and Wavelet Transform for one channel of the detector has been

developed.

The overall results are compared with two different methods: the method
based on using fast-ratio and slow-ratio (which was originally designed for this
detector structure) and the constant time discrimination method. The results
presented in Chapter 4 indicate that the constant time discrimination method is not
efficient for this detector structure and should not be used in this application.
Moreover, this method (fast-ratio/slow-ratio) is not efficient in detecting multiple-
layer absorption scenarios. The fuzzy algorithm advanced in this thesis improves the
performance of the system in the separation of beta and gamma spectra, especially

at high energies. Also, absorption in multiple-layer is detected more efficiently.

The second algorithm is based on the use of the wavelet transform to extract

relevant features of the signal in the scale domain (frequency domain) for pulse



103
shape discrimination. One of the advantages of the wavelet method over time-
domain methods consists in using the frequency-domain features of the signal which
are less sensitive to noise and abrupt changes in the signal. Another advantage of the
wavelet-method consists in detecting the odd pulse shapes which represent the pile-
up events in the data set and were not detected by the time-domain methods.
Therefore, it can be considered as a robust algorithm for pulse shape discrimination

among pulses with different decay characteristics.

The same procedure used in the wavelet method is applied to another
scintillation detection structure for neutron/gamma discrimination. The overall
results are compared with the PGA method. The fractional areas in Table 5.3 show
that the wavelet method has a superior performance compared to the PGA algorithm
and that the overlap areas between the neutron and gamma events have
dramatically been decreased. Compared to the PGA algorithm, the overlap between
neutron and gamma events has decreased 76.8% on average. Also the FoM of the

wavelet method has noticeably increased compared with that of the PGA algorithm.

6.2 Future Work

The fuzzy algorithm advanced in this thesis can be optimized using ANFIS
(Adaptive Neuro-Fuzzy Interface Systems). In this case, new training data sets should

be given to the system to tune the membership functions and increase the
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performance of the fuzzy interface system. Also, a new fuzzy interface system can be

designed using the wavelet features.

The wavelet method presented in this thesis can be generalized for other
scintillation detection systems. The feature selection may vary for different
scintillators. However, the scales should be chosen powers of 2 in order use the
discrete wavelet transform. The algorithm can be optimized and implemented on

FPGA and the device can work as a stand-alone system without the use of PC.
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Appendices

Appendix A Fuzzy Method Matlab Code

clear all
close all
clc

%%%%%%%% Building a fuzzy Interface system for pulse shape
discrimination

%%%%%%%%% Fuzzy model test %%%%%%5
clc

a=newfis("npsd"); %%%%
-input(1).name="d1";
-input(l).range=[0 200];
-input(l) .mf(1).name="small";
-input(1) .mf(1).type="zmf";
-input(1) .mF(1) .params=[30 40];
-input(1) .mF(2).name="large";
-input(1) .mF(2) . type="smf";
-input(1) .mf(2).params=[30 40];

DO

-input(2).name="d2";
-input(2).range=[0 100];
-input(2).mF(1) .name="medium”;
-input(2).mF(1).type="zmF";
-input(2).mf(1).params=[30 50];
-input(2).mF(2).name="large";
-input(2) .mf(2).type="smf";
-input(2).mf(2).params=[30 50];

DO DYDY

-input(3).name="d3";
-input(3).range=[0 60];
-input(3).mF(1) .name="small";
-input(3).mF(1) .type="zmF";
-input(3).mF(1).params=[8 20];
-input(3).mf(2).name="large";
-input(3).mF(2).type="smf";
-input(3).mF(2).params=[8 20];

DO DYDY DYDY

sigma = .95 ;

a=addvar(a, "output”,"kl1",[-3 3]D);

a=addmf(a, “output®,1, "negative”, "gaussmf”,[sigma -1]);
a=addmf(a, "output®,l, “"positive”, "gaussmf”,[sigma 1]);



a=addvar(a, "output”,"k2",[-3 3]);
a=addmf(a, "output”,2, "negative”, "gaussmf",[sigma -1]);
a=addmf(a, "output®,2, "positive”, "gaussmf”,[sigma 1]);
a=addvar(a, "output®,*k3",[-3 3]);
a=addmf(a, "output”,3, "negative”, "gaussmf”,[sigma -1]);
a=addmf(a, "output”,3, “positive”, "gaussmf”,[sigma 1]);

c
NFEFNFENMNEFENO

I\)NI—‘I—‘I\)I\)H;

—NRPNRNRNS
NNNNR R R
[
NNRRNN R
—
NN R R
RPRRRRRRE
RPRRRRRR

a=addrule(a,ruleList);

%%%%%%%% loading the data set %%%%%%%
load (°Sr_90%)

% load ("Co60%);

% load ("sr_90%);

% load ("Tc99 Co60")

% load ("Sr90 Cs137")

% data=double(data);
data=double(pulses);

% load("cs137%)

% load("csl1l37_bigT);

% data=double(Pulses Csl137);

fuzzy model test;

dis = 1;

[r,c]=size(data);
maxg=150000;

maxb=150000;
gbin=0:maxg/500:maxg;
bbin=0:maxb/500:maxb;
gspec=zeros(1, length(gbin));
bspec=zeros(1, length(bbin));

bc=0;
gc=0;
gbc =0;
bbc=0;

lev = 5;
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for n=1:1:r

100*n/r

datas(n,:) = wden(data(n,:), "minimaxi®,"s","mIn",lev,"sym8");
base(n)=mean(data(n,700:1024));

[mn, i]=min(datas(n,:));

if i<200 & mn > 0

peak _1(n,l1)=(base(n)-datas(n,i));

peakl(n,1l)=peak_1(n,1);

peak_2(n,1)=(base(n)-mean(datas(n, i+3:1+8)));
peak ratio(n,1l)=abs(peak 2(n,1)/peak 1(n,1));
new_1(n,1) = base(n)-mean(datas(n,i+4:i+8));

if (peak_ratio(n,1)< 1/2.4) & (peak 2(n,1l) >0) &
(new_1(n,1)/peakl(n,1) >.1) &((datas(n,i+3)-datas(n,i))/peak 1(n,1) <
.8)
peak2(n,1) = base(n)-mean(datas(n,i+2:i+3));
else
peak2(n,1) = peak 1(n,1);
end

d1(1,n)=100*abs((datas(n,i))-(datas(n,i+3)))/peakl(n,l);
d2(1,n)=100*abs((((datas(n,i+3))) -

(datas(n, i+30)))/peak2(n,1));
d3(1,n)=100*abs(((datas(n,i+120)) -

(datas(n, i+350)))/peak2(n,1));
d(n,:)=[d1(1,n),d2(1,n),d3(1,n)];

out(n, :)=evalfis(d(n,:),a);
layer(n, :)=sign(out(n,:));

mmm(n)=mn;
it (layer(n,2)==-1) && (layer(n,1)~=-1)

bc =bc+1;

beta_index(bc)=n;

sum_A=(base(n)*11)-sum(datas(n, i-5:i+5));

sum_B=(base(n)*394)-sum(datas(n, i+6:i1+400));

sum_C=(base(n)*405)-sum(datas(n, i-5:i1+400));

slow_area(bc)=sum B * 1.176;

fast_area(bc)=sum_ A - (sum B * 0.16);

if sum_B>0
eb(bc)=slow_area(bc) + (fast_area(bc) * 1.92);

else
eb(bc)=sum_A *1.92;

end

bspec = hist(eb(bc),bbin) + bspec;

if dis ==

subplot(2,1,1)

plot(bbin,bspec,"r", "LineWidth",2),xlabel("Energy

channel®),ylabel ("Counts*®)
title("Beta Energy Spectrum®)



axis([0 maxb 0 600])
grid on
end

else
it (layer(n,:)==[-1,1,-1]D

gc=gc+1;

eg(gc)=(base(n)*411) - sum(datas(n,i-10:i+400));

gspec = hist(eg(gc),gbin) + gspec;

if dis ==1

subplot(2,1,2)

plot(gbin,gspec, "k", "LineWidth",2),xlabel("Energy
channel®),ylabel ("Counts*®)

title("Gamma Energy Spectrum®)

axis([0 maxg O 80])

grid on
end
else
bbc =bbc+1;
end
end
end

end

total = [gc , 100*gc/r ; bc , 100*bc/r; bbc , 100*bbc/r ]
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Appendix B Wavelet Method Matlab Code

clear all
close all
clc

load("cs137 bigT);
data=double(Pulses Csl137);
% load("sr907);

% load ("Co607)

% load("TC99 big");

% data=double(Pulses _TC99);
% data=double(data);

% datal=double(Pulses Cs137);
% data2=double(Pulses TC99);
% data=[datal;dataZ?];

% load ("Co607)

% load ("Tc99 Co60")

% load ("Sr90_Cs137%)

% load ("Sr_90%)

% data=double(pulses);

dis = 1;

[r,c]=size(data);
maxg=150000;

maxb=150000;
gbin=0:maxg/500:maxg;
bbin=0:maxb/500:maxb;
gspec=zeros(1, length(gbin));
bspec=zeros(1, length(bbin));

bc=0;
gc=0;
gbc =0;
bbc=0;

scale =1024;
for n=1:1:r

100*n/r
base(n)=mean(data(n,700:1024));
[mn, i]=min(data(n,:));

peak 1(n,1)=(base(n)-data(n,i));
peakl(n,1)=peak 1(n,1);

datal(n, :)=(data(n, :)-base(n))/peakl(n,1);

COEFS1 = cwt(datal(n,:),128:128:scale, "haar");

[mm,nn]=size(COEFS1);
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mw=zeros(1,mm) ;

for ii=1:1:mm
for j=1:1:nn
mwl({1,11)=(1/nn)*(COEFS1(ii,j)-"2);
mw(l, 1)=mwl(d,i1)+mw(l,i1);
end
amghezil(n,:)=mw(1,:);
end
slope_1(n,1)=amghezil(n,6)/amghezil(n,1);

if i <200 && 1 >70
if amghezil(n,1) < .2

bc =bc+1;
beta_index(bc)=n;
sum_A=(base(n)*11)-sum(data(n,i-5:i+5));
sum_B=(base(n)*394)-sum(data(n, i+6:1+400));
sum_C=(base(n)*405)-sum(data(n, i-5:1+400));
slow_area(bc)=sum B * 1.176;
fast_area(bc)=sum_A - (sum B * 0.16);
if sum_B>0

eb(bc)=slow_area(bc) + (fast_area(bc) * 1.92);

else
eb(bc)=sum_A *1.92;
end
bspec = hist(eb(bc),bbin) + bspec;
if dis ==

subplot(2,1,1)

plot(bbin,bspec, "r*, “LineWidth®,2),xlabel("Energy

channel®),ylabel ("Counts™)
title("Beta Energy Spectrum®)
axis([0 maxb 0 600])
grid on
end
else

if (amghezil(n,1l) > .25) && (slope 1(n,1) < 2.5)

gc=gc+1;

eg(gc)=(base(n)*411) - sum(data(n,i-10:i+400));

gspec = hist(eg(gc),gbin) + gspec;
it dis ==
subplot(2,1,2)
plot(gbin,gspec, "k",

"LineWidth",2),xlabel("Energy channel™),ylabel("Counts"®)

title("Gamma Energy Spectrum®)
axis([0 maxg 0 80])
grid on
end
else
bbc =bbc+1;
end
end
end
end

total = [gc , 100*gc/r ; bc , 100*bc/r; bbc , 100*bbc/r ]
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Appendix C Wavelet Method for Neutron/Gamma Discrimination
Matlab Code

clear all

close all

clc

tic

load("2433 mixed_neutron_gamma pulses®);
% load("AmBe_no_moderator®);

% load("AmBe_no_lead_moderator®);

% load("AmBe_no_poly moderator®);

% load("AmBe_no_lead&poly moderator®);
data=double(voltsCHl);

scale =1200;
nc=0;

gc=0;
[r,c]=size(data);
MM=1;

NN=r;

for n=MM:1:NN

100*n/NN
base(n)=mean(data(n,1:400));
[mn, i]=min(data(n,:));
peak 1(n,1)=(base(n)-data(n,i));
peakl(n,1)=peak 1(n,1);
datal(n, :)=(data(n, :)-base(n))/peakl(n,1);
COEFS1 = cwt(datal(n,:),512:512:scale, "haar");
[mm,nn]=size(COEFS1);
mw=zeros(l,mm);
for 1=1:1:mm
for j=1:1:nn
mwl(1, 1)=(1/nn)*(COEFS1(i,j)-"2 );
mw(1, 1)=mwl(l, D)+mw(l,1);
end
end
amghezil(n, :)=mw(1,:);
slope_1(n,1)=(Camghezil(n,2)/amghezil(n,1));
feature_1(n,1)=amghezil(n,l);
feature_1(n,2)=slope_1(n,1);
end

%%%%%%%%%%%%%%%%%% gamma nuetron Counting %%%%%%%%%%
for n=1:1:r
if (((feature_1(n,1)>0.5) && (feature_1(n,1)<2) && (

feature_1(n,2))>1.15) ) || ((Ffeature_1(n,1)> 2) && (feature_1(n,2)
> 1.2)) |l (amghezil(n,1)<0.5)

nc=nc+1;

neutron(nc,1)=feature_1(n,1);

neutron(nc,2)=feature_1(n,2);



neutron_peak(nc,1)=(1/10000) .*peakl(n,1);
else gc=gc+1;
gamma(gc,l)=feature_1(n,1);
gamma(gc,2)=feature_1(n,2);
gamma_peak(gc,1)=(1/10000) .*peakl(n,1);
end

end

plot(neutron(:,1),neutron(:,2),".k")

grid on

hold on

plot(gamma(:,1),gamma(:,2),".r")

grid on

total=[gc nc]

nc/gc

bin=0.9:0.002:1.5;

N=hist(feature_1(:,2),bin);

N=100*N/r;

N2=N";

bin2=bin~;

opts = fitoptions(“"gauss2T);

opts.Lower = [0 1 0 0 1.2 0];

opts.upper = [inf 1.15 inf inf 1.4 inf];

ftype = Fittype(“gauss2”);

gfit = fit(bin2,N2,ftype,opts);

figure(2)

plot(bin,N)

hold on

plot(gfit,"r-)

grid on

toc

00/ 0AVAVAVAVAOAOAAYAOAAOAD O 0AVAYAVAVAYAVAVAYAVAVADAVAD
0%0%%%%%%%%%%%%% The End %%%%%%%%%%%%%%%

Appendix D The schematic of the analog circuit board
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