
Abstract approved:_

AN ABSTRACT OF THE THESIS OF

Heidi L. Wedin for the degree of Master of Science in Forest Resources presented

on March 12, 1999. Title: Stand Level Prescription Generation under Multiple

Objectives.
A

Signature redacted for privacy.

K. Norman'%hnson

A stand level model, PREscription generator under Multiple Objectives (PREMO)

was built to generate prescriptions that address multiple objectives for management

of the forests of the Applegate River Watershed. PREMO is a part of the landscape

model of the Applegate River Watershed Forest Simulation Project and generates

prescription choices for the landscape simulation. Possible goals at the stand level,

in addition to present net value, include limiting fire hazard, limiting insect hazard,

enhancing structural complexity, maintaining snags and down wood for wildlife

habitat, and enhancing fish habitat. PREMO finds good but not necessarily optimal

solutions using the RLS-PATH algorithm (Yoshimoto, 1990) with a multi-stage

look-ahead. The goal programming objective function maximizes the present net

worth minus the squared sum of deviations from the forest structure goals. Placing

scalar multipliers on desired goals and choosing target levels for goal

measurements creates a goal emphasis. At each stage, PREMO chooses the

prescription with the highest PNV from among the prescriptions that maximize the

objective function. Variables in PREMO are live trees, snags, and down woody

debris by species and diameter class. Growth is simulated with relationships from

the Forest Vegetation Simulator (Dixon et al., 1995). Several prescriptions were

generated for a young pine stand using different goal emphases. Using PREMO to

find prescriptions that come close to meeting all goals seems generally possible in

this example, while at the same time producing a positive PNV. Meeting the fire

behavior and effects targets proved to be the most difficult to meet in every period.

A conflict when achieving multiple goals exists between creating large snags and

maintaining large trees. A number of improvements in modeling could be made

including recognizing species composition as a goal, developing a more

sophisticated way of considering snags, and considering regeneration within the

RLS-PATH function.

© Copyright by Heidi L. Wedin
March 12, 1999

All Rights Reserved

Stand Level Prescription Generation under Multiple Objectives

by

Heidi L. Wedin

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Presented March 12, 1999
Commencement June 1999

Master of Science thesis of Heidi L. Wedin presented on March 12.1999.

APPROVED:

Signature redacted for privacy.

Maj or Professor, repre,dting Forest Resources

Signature redacted for privacy.

air of Department of Forest Resources

Signature redacted for privacy.

Dean of Gradu4chool

I understand that my thesis will become part of the permanent collection of Oregon
State University libraries. My signature below authorizes release of my thesis to
any reader upon request.

Signature redacted for privacy.

Heidi L. Wedin, Author

ACKNOWLEDGMENTS

Many people have been instrumental in the completion of this degree. I thank

Dr. Norm Johnson, my major professor, for the many hours spent helping me with

the structure of this project and help with the thesis. I thank Dr. John Sessions for

his expert advice and patience with the modeling efforts. I thank Dr. Jim Agee and

Dr. Chris Maguire for their contribution to the goal measurements and targets. I

also thank Don and Ellen Goheen for their contribution to the insect caused tree

mortality relationships.

This project was made possible through funding by an endowment to do policy

work on forests of Oregon provided by Boise Cascade. It was completed in

partnership with the Applegate Partnership, Siskiyou and Rogue River Districts of

the Forest Service, and the BLM Medford District.

Finally, there were many outside of the project team who assisted me during

the course of this project. I must thank my friends and colleagues of the Harris Lab

who made the hours spent working there very interesting. I am grateful to Patty

Duke, my mentor and friend, for her prayers, support, and wise council. I thank

Mark Kincaid for his unwavering support, loving consolation, and encouragement.

I thank my family for their unconditional love. Most of all, I thank the Lord Jesus

for giving me grace to finish, and strength in patience, perseverance, and wisdom.

To Him be the glory.

And He has said to me, "My grace is sufficient for you, for My power is perfected
in weakness." Most gladly, therefore, I will rather boast about my weaknesses, that

the power of Christ may dwell in me.
II Corinthians 12:9

TABLE OF CONTENTS

Page

Introduction 1

1.1 Introduction 1

1.2 The Applegate River Watershed 2

1.3 Current Conditions and Management Guidelines 2

1.4 Problem Definition 4

2 Stand Level Prescription Generation in Forestry 6

2.1 Generic Stand Problem 6

2.2 Dynamic Programming in Forestry 6

2.2.1 Introduction 6

2.2.2 Dynamic Programming Components 7

2.2.3 Dynamic Programming and the Two-State Variable Problem 8

2.2.4 An Algorithm with Three State Variables 9

2.2.5 Optimization with Different Thinning Types 9
2.2.6 PATH Algorithm 11

2.2.7 MS-PATH 11

2.2.8 RLS-PATH 12

2.3 Multiple Objective Scenarios 13

2.3.1 Goal Programming 13

2.3.2 Stand Projection Under Multiple Goals 13

2.4 Conclusion 14

3 Description of Stand Structure, Growth, and Mortality 16

3.1 Vegetation Classes 16

3.2 Growth Simulation 18

3.2.1 Comparison of diameter growth in FVS and PREMO 18

3.2.2 Comparison of Height and Crown Ratio 21

3.2.3 Growth Sequence 21

3.2.4 Regeneration 22

3.3 Mortality Functions 23

3.3.1 Tree Mortality Related to Insects 23
3.3.2 Wind Disturbance 24
3.3.3 Douglas-Fir Dwarf Mistletoe and Root Diseases 25

4 Quantifying Goals and Measures for Their Attainment 26

4.1 Introduction 26

TABLE OF CONTENTS (Continued)

Page

4.2 Potential Goals for the Stands 26

4.2.1 Limit Fire Hazard 27
4.2.2 Limit Insect Hazard 32
4.2.3 Wildlife Habitat 33
4.2.4 Fish Habitat 34
4.2.5 Positive Present Net Value 35

4.3 Other Potential Goals: Alter Flow and Timing of Water 36

5 The Prescription Generator: PREMO 38

5.1 RLS-PATH and Look-Ahead Components 38

5.2 Structure of the Prescription Generator: PREMO 38

6 A Sample Analysis 43

6.1 Goal Emphases 43

6.2 Goal Achievement 45

6.2.1 Fire Hazard 46
6.2.2 Goal Emphasis (#1): Fire Hazard Reduction 46
6.2.3 Goal Emphasis (#7): Stand Hazard Reduction 49
6.2.4 Goal Emphasis (#9): All Goal Measures 51

6.2.5 Wildlife Habitat 54
6.2.6 Insect Hazard 59
6.2.7 Fish Habitat 61

6.3 Summary 63

6.3.1 Present Net Value 63
6.3.2 Activities and Vegetation Class 64

7 Discussion 66

7.1 Prescription Generation 66

7.1.1 Goal Measures 66
7.1.2 PREMO Growth Component 67
7.1.3 RLS-PATH Based Model with a Look-ahead 68

7.2 Analysis 71

7.2.1 Ability to Meet Individual Goals 71

7.2.2 Multi-Goal Analysis 72

7.3 Summary of PREMO in the AWRFSP 72

TABLE OF CONTENTS (Continued)

Page

REFERENCES 74

APPENDICES 78

Appendix A: Growth Subroutines 79

Appendix B: Goal Measures for All Goal Emphases 172

Appendix C: Cubic Feet Harvested 176

Appendix D: Snags Created 177

Appendix E: Vertical Structure 178

LIST OF FIGURES

Figure Page

1-1 Applegate River Watershed in Oregon 1

3-1 Modules Used for Calculating Growth in FVS 22

5-I Flowchart of Prescription Generation 41

6-1 FBI by Period before Harvest for Goal Emphasis #1. 47

6-2 Cubic Feet Per Acre Harvested per Period for Goal Emphasis #1. 48

6-3 Fire Effects Index by Period before Harvest for Goal Emphasis #1 49

6-4 FBI by Period before Harvest for Goal Emphasis #6. 50

6-5 Cubic Feet harvested by Period for Goal Emphasis #7 50

6-6 FEI by Period before Harvest for Goal Emphasis #7 51

6-7 FBI by Period before Harvest for Goal Emphasis #9. 52

6-8 Cubic Feet Harvest per Period for Goal Emphasis #9. 53

6-9 FEI by Period before Harvest for Goal Emphasis #9 54

6-10 Vertical Structure before Harvest for Goal Emphases #4, #8, and #9. 55

6-11 Vertical Structure before Harvest for Goal Emphasis #5 56

6-12 Number of Snags before Harvest for Goal Emphases #4, #5, #8, and #9 57

6-13 Linear Feet of DWD by Periods for Goal Emphases #4, #5, #8, and #9. 58

6-14 Stand Basal Area before Harvest per Acre for Goal Emphasis #2. 59

6-15 Stand Basal Area before Harvest per Acre for Goal Emphasis #7. 60

6-16 Stand Basal Area before Harvest per Acre for Goal Emphasis #9. 61

6-17 Number of Large TPA before Harvest for Goal Emphases #3, #8, and #9. 62

6-18 Total Value for Each Goal Combination. 63

LIST OF TABLES

Table Page

3-1 Acres in Vegetation Classes 17

3-2 Comparison of Diameter Growth of a 10" DBH tree between FVS and
PREMO. 19

3-3 Comparison of Diameter Growth of a 16" DBH tree between FVS and
PREMO. 19

3-4 Comparison of Diameter Growth of an 18" DBH tree between FVS and
PREMO. 20

3-5 Comparison of Diameter Growth of a 24" DBH tree between FVS and
PREMO. 20

3-6 Comparison of Height and Crown Ratio 21

3-7 Wind Disturbance 24

4-1 Stand Goals 27

4-2 Minimum Average Tree DBH by Species and Flame Length to be Left by
Species and Flame Length, All Smaller Trees to be Cut, to Meet a Given
Target Level for FBI 31

4-3 Basal Area Thresholds for Insect Hazard 32

6-1 Goal Target Levels. 45

6-2 Vegetation Class by Period, for Each Goal Emphasis. 65

LIST OF APPENDIX FIGURES

Figure Page

1 Crown Distribution for a Complex Stand, Standard Deviation 14 178

2 Crown Distribution for a Complex Stand, Standard Deviation = 14 178

LIST OF APPENDIX TABLES

Table Page

1 FBI by Period for All Goal Emphases 172

2 FEI by Period for All Goal Emphases 172

3 Vertical Complexity by Period for All Goal Emphases 173

4 Snags by Period for All Goal Emphases 173

5 DWD by Period for All Goal Emphases 174

6 Stand Basal Area by Period for All Goal Emphases 174

7 Large Trees Per Acre by Period for All Goal Emphases 175

8 Cubic Feet Harvested by Period for All Goal Emphases 176

9 Snags Created by Period for All Goal Emphases 177

LIST OF ACRONYMS

AMA Adaptive Management Area

ARWFSP Applegate River Watershed Forest Simulation Project

BLM Bureau of Land Management

CFI Forest Inventory

CVS Current Vegetation Survey

DWD Down Woody Debris

FBI Fire Behavior Index

FEI Fire Effects Index

FVS Forest Vegetation Simulator

HLC Height to Live Crown

MCF Thousand Cubic Feet

MS-PATH Multi Stage Projection Alternative Technique

PAG Plant Association Group

PATH Projection Alternative Technique

PNV Present Net Value

PREMO Prescription generator under Multiple Objectives

PRIME Pacific Resource Inventory, Monitoring, and Evaluation Program

QMD Quadratic Mean Diameter

RLS Region Limited Strategy

TPA Trees per Acre

Stand Level Prescription Generation under Multiple Objectives

1 INTRODUCTION

1.1 Introduction

This work is a contribution to the Applegate River Watershed Forest Simulation

Project (ARWFSP). The goal of the ARWFSP is io develop a landscape simulation

model for the Applegate River Watershed in southwest Oregon (1.1). If successful,

the ARWFSP will provide a tool useful to the Applegate Partnership (a

collaborative planning group in the Applegate Valley), land management agencies,

and others in selecting polices and practices to achieve overall goals for the

watershed. The landscape simulator will cover all forest land in the watershed, but

choices for management will emphasize federal land.

Figure 1-1. Applegate River Watershed in Oregon

1.2 The Applegate River Watershed

The project area is the Applegate River Watershed, comprised of approximately

500,000 acres. It is located in southern Oregon (1-1), west of Medford and south of

Grants Pass. Federal land (Forest Service and Bureau of Land Management

{BLM]) covers about two-thirds of the watershed and contains almost 80 percent of

the forested land. Federal land in the watershed is designated an Adaptive

Management Area (AMA) (USDA Forest Service and USD1 Bureau of Land

Management, 1994). Private non-industrial land occupies much of the remainder

of the watershed, especially along streams and river bottoms.

1.3 Current Conditions and Management Guidelines

According to the Applegate AMA Ecosystem Health Assessment (USD1

Bureau of Land Management, Medford District, USDA Forest Service, Rogue

River National Forest, USDA Forest Service, Siskiyou National Forest, USDA

Forest Service, PNW Research Station, 1994), the hazard of insect attacks is high

across the entire watershed, with many pockets of extreme risk. Seral stage and

stand structure has changed dramatically since pre-European settlement, resulting

in younger, denser stands across the watershed. In these areas the stocking now

exceeds the carrying capacity of the site. In addition, Douglas-fir and white fir now

occupy areas that were traditionally more open-grown pine stands. These factors

add to an increased danger of bark beetle outbreaks, as well as attacks from western

pine beetle, mountain pine beetle, and pine engraver.

In the Applegate AMA Ecosystem Health Assessment (USD1 Bureau of Land

Management, Medford District, USDA Forest Service, Rogue River National

Forest, USDA Forest Service, Siskiyou National Forest, USDA Forest Service,

PNW Research Station, 1994), the BLM and the Forest Service created a joint

report in which management recommendations and goals are set forth at the stand

and at the landscape level. The general guidelines are to:

2

Reduce the density of trees (merchantable and non-merchantable) and shrubs

by thinning andlor prescribed fire.

Protect and restore riparian areas and late successional habitat.

Increase the number of larger, older trees.

Promote, maintain, and restore shade intolerant species (such as ponderosa

pine) in designated Plant Association Groups (PAG's).

The following suggested management strategies incorporate and build upon

these guidelines.

First, in thinnings focus, on the residual stand by leaving large trees and fire

resistant species, maintain a hardwood component, conserve and provide for

future recruitment of snags and down woody material, protect aquatic

resources, open the areas around pine trees, and leave non-host species in

areas of root disease and dwarf mistletoe infection.

Second, the management prescription should minimize disturbance, reduce

fuel ladders and ground fuels, treat slash, and develop a treatment plan that

maintains low basal areas to reduce the risk of high levels of insect activity.

Finally, in light of the generally high level of fire and insect risk, treat as

many stands as possible.

The Standards and Guidelines for Management Of Habitat For Late-

Successional And Old-Growth Forest Related Species Within The Range Of The

Northern Spotted Owl (USDA Forest Service and USD1 Bureau of Land

Management, 1994) also provides land management guidelines. "Adaptive

Management Areas were selected to provide opportunities for innovation, to

provide examples in major physiographic provinces, and to provide a range of

technical challenges, from an emphasis on restoration of late-successional forest

conditions and riparian zones to integration of commercial timber harvest with

ecological objectives" (USDA Forest Service and USD1 Bureau of Land

Management, 1994, p. D-2).

3

1.4 Problem Definition

The goal of the ARWFSP is to provide a tool useful to the Applegate

Partnership, land managers, and others of the Applegate Watershed community for

the purpose of guiding the selection of forest management polices and practices.

The project should help achieve the goals of AMAs, as set forth in the Standards

and Guidelines for Management Of Habitat For Late-Successional And Old-

Growth Forest Related Species Within The Range Of The Northern Spotted Owl

(USDA Forest Service and USD1 Bureau of Land Management, 1994).

AMAs are "designated to encourage the development and testing of technical

and social approaches to achieving desired ecological, economic, and other social

objectives" (USDA Forest Service and USD1 Bureau of Land Management, 1994,

p. D- 1). One of the key features of AMAs is to "provide for development and

demonstration of monitoring protocols and new approaches to land management

that integrate economic and ecological objectives based on credible development

programs and watershed and landscape analysis" (USDA Forest Service and USD1

Bureau of Land Management, 1994, p. D-2). The guiding technical objective of

AMAs is "scientific and technical innovation and experimentation" (USDA Forest

Service and USD1 Bureau of Land Management, 1994, p. D-2). Among the more

specific technical objectives is the "design and testing of effects of forest

management activities at the landscape level" (USDA Forest Service and USD1

Bureau of Land Management, 1994, p. D-4).

The landscape model developed in this project is a technical approach in which

the impacts of different management approaches can be tested at the landscape

level. It is innovative in that management decisions respond to natural

disturbances, and one can address different ecological objectives at the same time.

Simulations are guided by ecological objectives, while economic effects also are

considered. The landscape model has spatial orientation, thus disturbances, such as

fire, affect specifically located stands in the watershed. The scope of the project is

at the landscape level, while management decisions are made on a stand by stand

basis.

4

5

The landscape model contains four stages. In stage one, prescriptions, designed

to achieve overall landscape goals, are assigned to each "stand" recognized on the

landscape. In stage two, the landscape is projected forwards in time, and the

prescriptions are implemented. The landscape model simulates periodic natural

disturbances in stage three. As these disturbances occur, stage four is invoked

whereby the prescription for the stand is adjusted based on post-disturbance

structure and simulation goals.

This thesis develops the prescription generator, PREMO (scription

generator under Multiple Objectives), which is used in stages one and four of the

landscape model. In stage one, PREMO creates management regimes for all stands

over the entire planning horizon. In stage four it revises the prescriptions of

disturbed stands for the remaining periods post-disturbance. The prescription

generator selects a stand represented by a list of live trees, dead trees, and down

woody debris, organized by species and diameter class, and creates several

prescriptions for the stand in response to emphases on goals that might be used to

guide management of the stands. In effect, this process creates different types of

stands with varying abilities to respond to the stresses of natural disturbance,

provide different types of wildlife and fish habitat, and produce different kinds and

levels of outputs and amenities. The landscape simulator then uses the different

prescriptions as management choices for each stand to meet goals specified for the

entire landscape.

2 STAND LEVEL PRESCRIPTION GENERATION IN

FORESTRY

2.1 Generic Stand Problem

The stand level management problem is a reoccurring theme in forestry. The

problem is to identify the best strategy to reach a target state or stand structure.

Decisions must be made regarding activities that can be carried out in the forest,

specifically, how to alter the stand, by identifying which trees to remove, how to

maintain the stand in regards to growing stock and species composition, and in

which time period to undertake actions. Two tools, dynamic programming and

multi-objective programming, can be integrated to make these decisions and they

will be further described.

2.2 Dynamic Programming in Forestry

Dynamic programming (Dykstra, 1984) is a generalized approach for making a

sequence of inter-related decisions in order to maximize overall effectiveness.

Richard B. Bellman originally developed this method in the 1950s. It is useful in

forestry problems, as many decisions are time-oriented and they must be

sequentially implemented over time. The PATH algorithm, an adaptation of

dynamic programming, will be discussed.

2.2.1 Introduction

Dynamic programming is useful when a problem involves few state descriptors,

meaning there are few decision variables. However, when there are many decision

variables, time availability and computational capacity limit the ability to use

dynamic programming. Therefore, forest managers have developed short cuts,

simplifications, and heuristics to solve problems with many decision variables.

6

Some of these short-cuts are to assign solutions to neighborhood storage locations

(Brodie and Kao, 1979), to use a network approach by optimizing only to the next

period (Paredes and Brodie, 1987), to optimize the number of look-ahead periods

(Yoshimoto et al., 1988), to minimize infeasibilities (Yoshimoto et al., 1994), and

to use region limited strategy at a given stage to determine the optimal thinning

levels of each of the diameter classes (Yoshimoto et al., 1994).

2.2.2 Dynamic Programming Components

Dynamic programming is well suited to forestry problems, as decisions are

made at intervals in time that are easily represented by stages. State variables are

the measurements for the possible states of a stand at a given stage, reflecting that a

stand at one stage can have unique structural characteristics depending on the

actions taken previously. The state variables also contain all information necessary

for making decisions. Decision variables are the components of the management

action and are subject to change in order to find the optimal level. In the forest

management example, states usually represent a measure of the stocking and the

species composition of the stand. Sometimes the state variable is not the same as

the decision variable, but the decision variable is used to determine the value of the

state variable. For instance, Kao & Brodie (1979) used a three-state descriptor

model in which one state variable was basal area. The decision variables were trees

per acre and type of thinning, but the combinations of number of trees removed and

type of thinning produced the resulting basal area of the stand.

The number of conditions of a state variable depends on the node interval, the

increment of precision of the decision variable. For example, if the state variable is

trees per acre, then the node interval could be 20 trees, so that in the thinning

decision you could thin to 100, 80, 60... trees per acre.

In the solution process, "dynamic programming starts by considering only one

stage of the problem and finds the optimal solution for this stage. It then adds a

second stage, finding a new optimal solution from the previous one, and so on until

the problem is solved in its entirety" (Dykstra, 1984, p.291). The algorithm finds

7

8

the optimum by using a recursive relation. For a backward recursion, the optimal

solution is found for every state at a stage j, given that the optimal solution for each

state at stage j+1 is known. A forward recursion is similar, but the optimal is found

given that the stagej-1 is known. A backward recursion only yields the solution

for one final stage. By beginning the optimizing procedure from the beginning

stage (forward recursion), the optimal path to every stage of the network is known

(Dykstra, 1984).

2.2.3 Dynamic Programming and the Two-State Variable Problem

Brodie et al. (1978) developed a forward-recursion dynamic programming

algorithm to look at the impacts of adding variables reflecting various economic

and growth potential changes on thinnings and rotation schedules. The decision

variable was volume and the state variables were volume and age. This is a very

simple model because volume is solely a function of age. The objective function

was to maximize present net worth, which is a function of revenue from thinnings

and final harvest minus logging costs. The economic and growth potential changes

that they investigated were interest rates, regeneration costs, site potential, quality

premiums and variable logging costs. Increasing the interest rate resulted in shorter

rotation with earlier heavier thinnings. As regeneration costs increased, rotation

length increased as well. Regimes with higher entry costs had longer thinning

entries with heavier thinnings. Stands on higher site class lands had longer

rotations. Since the stand was only represented by volume and age, quality

premiums had to be a function of age. Quality premiums are increased revenues

received for logs with larger diameters. However, quality premiums are also a

function of diameter which is affected by stand density and, therefore, by thinning

intensities. The added benefit in diameter premiums caused by thinnings was not

realized in this model.

Brodie et al.'s (1978) model is guaranteed to find the optimal solution. In

addition, it can be used to investigate changes in thinning regimes and rotations

based on varying other factors in the problem. The negative side is that it is very

simplistic and does not consider differences in volume per acre of the stand,

thinning strategies or stand density.

2.2.4 An Algorithm with Three State Variables

Brodie and Kao (1979) developed another forward recursion dynamic

programming algorithm with three state variables: number of trees, basal area of

the stand, and stand age. The decision variable was trees per acre. The Quadratic

Mean Diameter (QMD) of the stand was determined from number of trees and

basal area. The benefit of this model is that with the addition of the QMD of the

stand, increases in diameter due to thinnings can affect the optimization. However,

the addition of a third state descriptor increases the computational burden of the

algorithm dramatically. Brodie and Kao's (1979) solution to this problem was to

set up neighborhood storage locations. The boundaries of the storage locations

were set at intervals of merchantable trees and merchantable basal area to form a

grid. As a result, there could be a range of solutions in one square of the grid,

however, for any path that reached a given storage location, only the one with the

highest present net worth was stored.

The potential problem with neighborhood storage locations is that a path which

maximizes present net worth might not be the maximum in its storage location at

every stage, and therefore the maximum could be missed. The benefit is that this

method can efficiently "represent the continuous production-surface with a limited

number of nodes" (Brodie and Kao, 1979, p.667).

2.2.5 Optimization with Different Thinning Types

Haight et al. (1985) introduced another state variable into the dynamic

programming algorithm, creating a four-descriptor dynamic programming

algorithm. The four state variables were stand age, residual number of trees,

residual basal area, and thinning type. The decision variables were number of trees

and thinning type. At each stage there were four possible types of thinning:

9

10

thinning from above, thinning from below, mechanical (proportional) thinning, and

no thinning. The type of thinning determines what proportion of the trees of each

diameter class are removed. For instance, in a thinning from below, a greater

proportion of the trees harvested will be from the smaller diameter classes, so that

the QMD of the stand after thinning will be higher than before the thinning. With a

mechanical thinning, the final QMD will be the same, and with a thinning from

above it will be lower. For a given number of trees harvested, the amount of basal

area would be different depending on the thinning type. At every stage all four

thinning types were projected and in each storage location the highest present net

worth was stored including which type of thinning resulted in that value. With the

addition of thinning type to the state variables, the algorithm can be used to

compare many different combinations of numbers of trees in each diameter class

that can be represented in the stand. This is useful when the management goal is to

have a widely spaced stand or to create large diameter trees quickly.

Haight et al. (1985) further reduced storage requirements by classifying the tree

list (plot-level per acre data for the stand) into 1-inch diameter classes. They used

the average of the trees in each diameter class (the average height, tree diameter,

and number of trees) to make a new list for the simulation. This reduces the

computational efforts, however it also reduces the variability of the stand and does

not reflect the true stand as accurately.

Haight et al. (1985) then used this model to determine harvest regimes guided

by vigor indices that would reduce the susceptibility of stands to insect attacks.

Goals of stocking control and tree diameters influenced the management regimes

and resulted in harvest schedules that had a high vigor index and the desired range

of diameters for the residual trees. They also looked at the effect of market

premiums for large diameter trees and found that this scenario produced a thinning

at age 30 that removed many small trees that actually had a negative present net

worth. However, increased diameter growth made up for this loss because of the

premium received for trees with larger diameters.

2.2.6 PATH Algorithm

Paredes and Brodie (1987) developed the Projection Alternative Technique

(PATH) algorithm. In dynamic programming the value of the standing trees is not

realized until the final stage, however the PATH algorithm maximizes the return

from the thinning plus the value of the standing trees at the next stage at every

node. The node that has the largest value becomes a part of the optimal path and

the algorithm moves to the next stage to determine the optimal thinning level for

that stage. Therefore the algorithm does not maximize over the entire planning

horizon but only over the next period.

The PATH algorithm seeks to reduce the 3torage space required to arrive at an

optimal solution. However, if the full effect of thinning is not captured by the next

stage, the final solution is not guaranteed to be the optimal one. In this case a good

solution is found which is not necessarily the optimal one. Two occasions where

this occurs are described in 2.2.7 MS-PATH. The benefit of using the PATH

algorithm is reduced computation time.

The PATH algorithm was compared to the three-state descriptor dynamic

programming algorithm from Brodie and Kao (1979) with neighborhood storage

locations. Paredes and Brodie (1987) presented two examples and compared the

solution times for these using the PATH algorithm and dynamic programming and

found that on a mainframe computer, the time savings ratio of using the PATH

algorithm was around 30 times. However, there were some differences in the

thinning regimes that could be a result of the neighborhood storage locations.

2.2.7 MS-PATH

11

Multi tagerojection Alternative TecHnique (MS-PATH) (Yoshimoto et al.,

1988) is an option to be used when a look-ahead of one period is not sufficient to

capture the effect of a decision. This can occur when there is no thinning at the

next stage based on a one period look-ahead or if the increased growth that results

from the thinning is not realized within the period. The MS-PATH first determines

12

the optimal look-ahead period at each stage then carries on with the regular PATH

algorithm.

In an example, the authors only found a 2% increase in the objective function

when using MS-PATH, which might not be worth the increased computational

time. However, the MS-PATH algorithm produced different thinning regimes with

fewer heavier thinnings.

2.2.8 RLS-PATH

Yoshirnoto et al. (1990) used the PATH algorithm to look at a more precise

break-down of the stand description into smaller diameter classes and species

groups. Optimizing each of the diameter/species classes instead of harvesting a

pre-specified proportion of the trees of the diameter classes of all species combined

would produce more precise solutions and could improve the optimal regime.

Since the computational burden with such precision was too great, even while using

the one-period look-ahead, the authors incorporated the Region Limited Strategy

(RLS). This strategy has two parts and seeks to produce a good solution at every

stage of the problem. In the first part, each diameter class is optimized

consecutively. Given a decision vector T = (t1, t2,. . ,t) where t1 represents the

number of trees harvested in the ith diameter class at the current stage, one variable

t1 is allowed to vary at a time. The variable that maximizes the objective function is

fixed. With this variable fixed at the level that maximizes the objective function,

the other variables are again allowed to change one at a time. A second diameter

class with the greatest improvement in the objective function is now fixed. The

second part of the RLS is to adjust the fixed thinning levels, given that a new

diameter class has been fixed. This is a recursive process that runs until all fixed

diameter classes reach a steady-state. It allows the first diameter class that was

fixed to vary, given that a certain number of trees for the second class will be

harvested. Then the first part begins again, finding a new diameter class to be

13

fixed. This process is repeated until harvesting trees from one more diameter class

does not improve the solution.

By performing a guided search over the solution space at a given stage, RLS

reduces the storage space needed, however, not all possible solutions are evaluated.

The difficulty caused by not looking at all possible combinations is that the optimal

thinning levels might not be found, but the authors hope to find them by

maximizing the return from thinning and looking ahead at the return from growth.

2.3 Multiple Objective Scenarios

2.3.1 Goal Programming

Goal programming (Dykstra, 1984) is a technique for solving multi-objective

problems. It was developed by Chames and Cooper in the early 1960s. Goal

programming is an extension of linear programming, with a modified objective

function and goal statement constraints. The objective function minimizes

deviations from multiple goals. The goal constraints are different from regular

constraints, in that the goal constraint is satisfied as closely as possible, however, it

is possible not to meet the goal completely. When this occurs, a deviation from the

goal is calculated. There is a penalty for not meeting the goal constraint, and these

penalties, or deviations, are minimized in the objective function. The goal

constraints can also be prioritized with scalar multipliers applied to the deviations.

Goal programming is often used in natural resource planning, as forest lands are

often managed under multiple objectives.

2.3.2 Stand Projection Under Multiple Goals

Two recent studies have used multiple-objective programming in stand

projection. In the Sierra Nevada Ecosystem Project (Cousar, 1996), a stand level

multi-objective optimization model was developed with a set of silvicultural and

14

ecological goals that guided the optimization. Activities of timber harvest,

prescribed burning, fuelbreak creation, and no activity were used to create a stand

structure that most closely met the goals, such as increasing late successional

structure andlor minimizing fire hazard. There were several simulations where

emphasis was shifted among the silvicultural and ecological goals. The

optimization process was performed with the PATH Algorithm and achievement of

goals were evaluated from 10 to 30 years in the future. The goal programming

objective function minimized deviations from the goals.

Haight et al. (1992) generated stand prescriptions for Rocky Mountain conifer

stands using the Hooke-Jeeves method. The goal was to meet stand density targets

that represented the visual quality and wildlife habitat of the stand. In this project,

the prescription was made for one species group with three unmerchantable

diameter classes and five merchantable diameter classes. The objective function,

which drove the prescription generation, was maximization of revenue (or of

volume production) minus the sum of the infeasibilities. Infeasibilities were

measured as a squared deviation from the stand density target. A scalar multiplier

was applied to the sum of the infeasibilities. In simulations, the authors set the

scalar multiplier equal to "0" to find the unconstrained optimum, and then they set

it to "1" to place equal weights on maximizing revenue or volume production and

meeting stand density targets. The results showed that stand density targets in

visually sensitive areas were attainable, while high stand densities for thermal

cover in the wildlife simulations resulted in infeasible solutions.

2.4 Conclusion

Goal programming appears to be an appropriate framework for expressing the

multiple objectives of the Applegate project. The quadratic penalty function used

by Cousar et al. (1996) and Haight et al. (1992) is an intuitively appealing way of

incorporating increasing marginal costs with increasing deviations from goals.

Anticipating a likely problem size for 10 species and 50 diameter classes, over 20

periods, the computational efficiency of the RLS-PATH algorithm makes it

attractive over traditional dynamic programming. Previous applications of RLS-

PATH algorithm support this approach. Based on the literature reviewed, it

appears that the use of goal programming with the RLS-PATH algorithm can be

used to generate efficient prescriptions to meet ecological goals.

15

16

3 DESCRIPTION OF STAND STRUCTURE, GROWTH, AND
MORTALITY

Each stand is characterized by a vegetation class. This describes the overstory

forest structure and dead material.

3.1 Vegetation Classes

The Applegate landscape was categorized into 99 potential vegetation classes,

(Table 3-1). These are defined as having the same dominant canopy, quadratic

mean diameter (QMD) of the stand, and total canopy closure. The dominant

canopy is determined by the percent crown canopy by species, resulting in the

following groups:

Redfir

Mixed conifer with elevation greater than 3000 feet

Mixed conifer with elevation less than 3000 feet

White fir

Pine

Closed cone pine

Deciduous hardwood

Conifer/Hardwood

Evergreen hardwood (evergreen hardwood species)

As time passes, activities, tree growth, and tree mortality from insects, fire,

strong wind events, and root disease change the character of the stand. As this

occurs, stands will move through the matrix of vegetation classes. The initial acres

in each vegetation class based on the interpretation of satellite imagery, are

displayed in Table 3-1. A tree list was created for each vegetation class by

classifying plot data from forest surveys (Forest Service Current Vegetation Survey

(CVS), Pacific Resource Inventory, Monitoring, and Evaluation program (PRIME),

Bureau of Land Management CVS and Forest Inventory (CFI)).

Table 3-1. Acres in Vegetation Classes

This table displays forested acres in the Applegate River Watershed in 1993.

Quad

Mean

Diam

range

%

Crown

Clos

ure

Red fir Mixed

Conifer

<3000'

Mixed

Conifer

>3000'

White

fir

Pine Closed

Cone

Pine

Decidu-

ous

Hard-

wood

Conifer/

Hard-

wood

Ever-

green

Hard-

wood

Total: % of

Total

0-4.9 <60 572.6 1085.9 1662.6 1951.6 904.0 4568.6 428.6 7806.1 18980 4.61

5- 8.9
<60 1074.5 3825.1 3709.5 372.5 5373.3 18561.4 1587.9 34504.2 8.38

> 60 437.8 368.8 806.6 0.20

9-
14.9

<60 779.9 350.9 1298.6 10352.9 20492.7 14253.8 883.0 48411.8 11.75

>60 8854.5 8009.1 15054.5 7122.6 50876.0 17772.1 107688.8 26.14

15-
20.9

<60 1714.3 13.0 1797.2 1070.1 4354.6 3685.2 2416.1 71.6 15122.1 3.67

>60 3196.0 30346.4 27909.6 4732.8 3401.2 39802.4 5523.5 114911.9 27.90

21 -

24.9

<60 848.6 660.9 643.3 2592.7 928.4 5673.9 1.38

>60 3199.1 319.4 3868.5 4776.2 310.9 12474.1 3.03

25-
31.9

0-100 1936.0 4022.5 27518.1 12492.5 1442.0 47411.1 11.51

32+ 0-100 21.8 5570.6 342.2 5934.6 1.44

Total: 11466.6 47178.8 81155 27305.1 38231.3 1645.3 44643.6 126649.2 33644.2 411919.1

% of Total: 2.78 11.45 19.70 6.63 9.28 0.40 10.84 30.75 8.17 100.0

18

The watershed is also subdivided into Plant Association Groups (PAG5).

Geology, elevation, slope, aspect, andlor precipitation define a PAG. PAGs are

used to identif' the site quality of each part of the watershed, and also to help target

levels for the measurement of stand goals (see 4.2.2 Limit Insect Hazard).

In the Applegate River Watershed the PAGs are:

Jeffrey pine

Pine/oak

Douglas-fir/dry

Douglas-fir/wet

White fir/dry

White fir/wet

Red fir

In the results section of this thesis, several optional prescriptions are

demonstrated for a pine stand, QMD 9-15, canopy closure > 60, that is in the

pine/oak PAG.

3.2 Growth Simulation

In order to project tree growth, the routines for diameter and height growth,

change in crown ratio, and crown width calculations for nine species were taken

from the Forest Vegetation Simulator (FVS), Northern CaliforniafKlamath

Mountains Variant. FVS is written in FORTRAN. For the purpose of decreasing

computational time and adjusting mortality functions, these subroutines were

translated into the "C" programming language and directly incorporated into

PREMO. The results of these equations are close to those of the FVS subroutines.

3.2.1 Comparison of diameter growth in FVS and PREMO

The following tables compare the diameter growth between FVS and PREMO

for each species over 100 years for trees with an initial DBH of 10", 16", 18", and

24". The percentage difference ranged from 0.02% to 6.46%. The average percent

difference across all four tests was 2.37%. PREMO generally underestimates

diameter-growth for smaller trees, and overestimates for larger trees.

Table 3-2. Comparison of Diameter Growth of a 10" DBH tree between FVS and PREMO.

19

Table 3-3. Comparison of Diameter Growth of a 16" DBH tree between FVS and PREMO.

Species FVS PREMO Percent Difference

Black Oak 15.8 15.53 -1.71

Douglas-Fir 32.7 32.15 -1.69

Incense Cedar 26.7 26.02 -2.55

Pacific Madrone 27.6 27.15 -1.62

Ponderosa Pine 30.6 30.18 -1.37

Red Fir 29.8 28.68 -3.77

Sugar Pine 29.5 28.57 -3.16

Tanoak 23.3 22.78 -2.22

White Fir 26.1 25.41 -2.66

Species FVS PREMO Percent Difference

Black Oak 21.9 21.69 -0.95

Douglas-Fir 35.4 34.82 -1.64

Incense Cedar 30.9 31.10 0.65

Pacific Machone 33.2 32.8 -1.20

Ponderosa Pine 32.9 32.43 -1.43

RedFir 34.0 33.15 -2.50

SugarPine 32.0 31.46 -1.69

Tanoak 29.6 29.09 -1.72

White Fir 30.4 29.64 -2.51

Table 3-4. Comparison of Diameter Growth of an 18" DBH tree between FVS and
PREMO.

Table 3-5. Comparison of Diameter Growth ofa 24" DBH tree between FVS and PREMO.

3.2.2 Comparison of Height and Crown Ratio

Due to the difference in mortality functions of FVS and PREMO, direct

comparison of height growth and change in crown ratio is difficult. The following

20

Species FVS PREMO Percent Difference

Black Oak 25 25.05 0.21

Douglas-Fir 43.7 46.37 6.11

Incense Cedar 38.4 39.62 3.19

Pacific Madrone 36.8 36.69 -0.31

PonderosaPine 39.5 41.75 5.70

Red Fir 47.5 48.10 1.25

Sugar Pine 50.6 51.53 1.84

Tanoak 32.9 33.08 0.56

White Fir 34.5 36.73 6.46

Species FVS PREMO Percent Difference

Black Oak 30.7 30.72 0.07

Douglas-Fir 46.9 46.90 5.35

Incense Cedar 43.5 43.95 1.04

Pacific Madrone 40.2 40.00 -0.49

Ponderosa Pine 42.0 44.03 4.83

Red Fir 49.3 51.79 5.05

Sugar Pine 52.9 54.71 3.42

Tanoak 37.9 37.91 0.02

White Fir 39.2 40.93 4.40

21

table gives a rough comparison for a ponderosa pine stand after 100 years of

growth. The percent difference in PREMO from FVS for DBH ranges from 0.28%

to 3.69%, height ranges from 0.90% to 8.83%, and crown ratio ranges from 2.56%

to 50%.

Table 3-6. Comparison of Height and Crown Ratio

3.2.3 Growth Sequence

Growth is calculated for one period at a time, which is equal to five years. The

order in which growth is calculated is depicted in Figure 3-1. The code for the

programs for diameter growth can be found in Appendix A.

FVS PREMO

TPA DBH HT CR TPA DBH HT CR

4.90 34.3 126.8 17 2.82 35.45 115.6 21

7.60 39.4 126.9 12 6.57 40.33 116.3 13

10.16 42.4 126.9 10 8.75 42.90 120.6 13

4.19 43.6 126.9 10 3.65 45.21 125.3 15

9.80 50.1 126.9 38 8.40 49.43 115.7 36

2.30 54.4 126.9 39 1.93 54.25 115.7 40

1.80 56.6 144.0 15 1.58 56.03 145.3 17

Diameter Growth

V
Height Growth

Change in Crown Ratio

V
Crown Width Calculation

Figure 3-1. Modules Used for Calculating Growth in FVS

3.2.4 Regeneration

A natural regeneration model was developed by Kayser et al. (1998) which is

invoked every other period to introduce in-growth into the tree list. The tree list of

the regeneration is not introduced until 10 years after the disturbance occurred.

This is because of the poor ability of the model to handle trees without a DBH.

The species mix of the regeneration is dependent on the before-treatment stand,

with tolerant species responding in greater numbers under greater residual stand

basal areas. The number of trees added is given by Equation 3-1 (Kayser et al.

1998). The diameters for the regenerated trees were taken from the plot data for this

project, while the heights were calculated using FVS.

TPA added = 625 * e (-0.02 * stand basal area [square feet per acre])

Equation 3-1.

22

3.3 Mortality Functions

The ARWFSP scientists do not feel that empirical growth and yield models,

such as FVS, are able to fully represent the episodic nature of mortality in the

Applegate River Watershed, especially in large trees. Therefore, they developed

mortality functions to simulate tree death. These are organically driven equations,

meaning that tree death results from a natural disturbance. As a result, the

prescription generator does not have direct relationships between tree mortality and

suppression. The project scientists categorized mortality functions into 2 groups,

depending on whether mortality events are periodic or episodic in nature.

In the ARWFSP model, the mortality in the landscape is assumed to result from

fire, strong wind events, insects, and root disease in high elevation stands. The

prescription generator reflects the periodic (endemic) levels of mortality for insects,

wind and root diseases. The occurrence of mortality due to episodic natural

disturbance (fire, insect, and wind) events is applied at the landscape level, not in

PREMO, due to the spatial and probabilistic nature of the disturbances.

3.3.1 Tree Mortality Related to Insects

ARWFSP scientists split mortality resulting from insects into two categories,

periodic and episodic. They felt that scattered mortality resulting from insects

occurs in every period, regardless of the amount of precipitation. However,

episodic mortality is drought driven and occurs in addition to periodic mortality.

The episodic insect hazard is modeled at the landscape level, not in PREMO.

PREMO simulates periodic mortality in every period. The mortality

relationships, described in Agee and Goheen (1998), give the mortality as 0.05% of

the stand basal area every period. Mortality trees are selected in descending order

of tree diameter. However, the insects kill not only large trees, but smaller trees as

well. Therefore, if the stand has trees greater than 20 inches in diameter, the

mortality comes from two groups, the largest trees in the stand, and trees smaller

than 20 inches in diameter. The former incurs 67% of the mortality if possible,

23

Table 3-7. Wind Disturbance

PREMO simulates periodic mortality in every period. Trees succumbing to

windthrow are selected in descending height order until 0.25% of the stand basal

area is killed (Agee and Goheen, 1998).

24

with the rest coming from trees with a diameter less than 20 inches and ending with

8 inches. These insects do not generally kill trees with a DBH less than 8 inches.

3.3.2 Wind Disturbance

Project scientists split mortality resulting from wind events into two categories, periodic

and episodic. Wind disturbance, described in Agee and Goheen (1998), is significant in

stands that are high elevation, well-stocked, and tall. The wind disturbance team projected

that wind events in the Applegate River Watershed are limited to stands that meet the

following conditions: stand elevation is above 4000 feet, stand basal area per acre is greater

than 120 square feet, the tallest five trees per acre are greater than 50 feet, and the aspect is

from 45° to 3 15°.

Table 3-7 describes the probabilities and results of wind disturbance in four

wind strength categories. Only light wind disturbance is modeled in PREMO, the

others will be modeled in the landscape simulator.

Wind Category Frequency (years) Yearly

Probability

Loss of Stand (percent

of stand basal area)

Light(periodic) 1 1 0.25

Moderate 25 0.04 1.0

Severe 50 0.02 5.0

Catastrophic 200 0.005 10

3.3.3 Douglas-Fir Dwarf Mistletoe and Root Diseases

According to Agee and Goheen (1998), we lack data to quantify the percentage

of stands infected by the Douglas-fir dwarf mistletoe and the severity of it in the

Applegate Watershed. However, we believe that the mortality related to Douglas-

fir dwarf mistletoe will be accounted for in the Douglas-fir bark beetle mortality

predictions (see 4.2.2. Limit Insect Hazard).

The insect and disease natural disturbance group determined that tree mortality

as a result of root diseases would be modeled entirely as periodic natural

disturbance. Therefore, PREMO will simulate all of the root disease mortality in

this project; none will occur in the landscape simulator.

Mortality caused by root diseases in the lower elevations will be encompassed

by bark beetle mortality. However, it is assumed that at high elevations insect

mortality will not sufficiently portray mortality due to root diseases. The following

modeling guidelines were obtained from Agee and Goheen (1998) for mortality in

white fir/wet and red fir PAG's which correspond to higher elevations in the

watershed.

In the white fir/wet and red fir PAG's, root disease centers comprise

approximately 8% of the area. In a 100-year period the expected value for loss of

volume of susceptible species is 50%. The tree species in order of susceptibility to

root disease are white fir, red fir, then Douglas-fir. Stands are marked permanently

for having root disease centers, however, non-host species can be grown in these

areas. In the prescription generation 2.5% of the basal area is killed in each period.

Mortality is spread evenly among all susceptible species (Agee and Goheen, 1998).

25

4 QUANTIFYING GOALS AND MEASURES FOR THEIR
ATTAINMENT

4.1 Introduction

ARWFSP scientists developed potential stand goals by reviewing key issues of

interest to the people of the Applegate River Watershed and in working with

employees of agencies who manage land in the Watershed. Fire and insect

disturbances are influenced by drought periods, therefore the landscape simulation

will model weather streams, which will influence these disturbances.

4.2 Potential Goals for the Stands

The ARWFSP wishes to include a number of goals for the management of

forests in the landscape simulator. These goals are to achieve a landscape condition

that has a low fire and insect hazard, enhances fish and wildlife habitat, and

provides a positive PNV. The landscape is composed of stands of different initial

condition. Potential goals for individual stands are listed in Table 4-1 in a non-

ranked order. As can be seen, goals are based on different stand attributes.

26

Table 4-1. Stand Goals

Measurement of goals based on stand condition are calculated by investigating

the residual tree list (standing live and dead trees, and down wood), while

measurement of the goal based on stand output is calculated from the harvest tree

list. Tools available for manipulating stand condition to achieve goals are growth,

tree harvest, and snag creation.

4.2.1 Limit Fire Hazard

One stand level goal is to minimize the risk of severe fires. The method of

decreasing fire hazard in PREMO is by growing or harvesting trees. There are four

stand structural conditions that increase the risk for severe fire:

High fuel loadings that increase flame lengths.

Trees with small diameters, and therefore less resistant bark, which have

higher probability of mortality for a given flame length.

27

Goal Based on Measures of goal

attainment

Limit fire hazard Stand condition: structure Flame length, potential for

torching, crown bulk density,

percent of basal area that

would burn in a 90% fire

Limit insect hazard Stand condition: stocking Basal area thresholds

Enhance wildlife

habitat

Stand condition: structure Vertical structure, snag

number and size, linear feet of

Down Woody Debris (DWD)

Improve fish habitat Stand condition: distribution

and size

Number of large trees, canopy

closure in riparian areas

Positive Present Net

Value

Timber harvest PNV

28

Low effective Height to Live Crown (HLC) that allows fire to reach from the

forest floor to the canopy of the dominant trees (fuel ladders).

High crown bulk densities which represent crowns that would carry the fire

through the canopy if the fire were to reach it.

In PREMO, two fire indices are used to measure the risk of severe fire hazard.

The Fire Behavior Index (FBI) (Equation 4-1. Fire Behavior Index) describes what

kind of fire the stand will have and the Fire Effects Index (FEI) measures the result

of the fire on the stand.

Fire Behavior Index = 50/]5*flarne length(ft) +30*torching +20*absolute value of
(crown bulk density (kg/rn3) -0.]) / 0.2).

Equation 4-1. Fire Behavior hdex

Fire Effects Index = % basal area (sqft/acre) killed by 90% worst-case weather fire

Equation 4-2. Fire Effects Index

The FBI is a combination of the potential flame length (ft) of the stand, torch

potential, and the crown bulk density (kg/m3) of the canopy. The fire behavior

index can range from 0.33 to 100, where a higher number represents a more

dangerous fire hazard. An initial flame length is assigned to a stand depending on

its original vegetation class. Following that the flame length increases or decreases

according to the action taken in that stand in that period. The current numbers are

rough estimates of the actual changes and will be updated when the fire model is

complete. Currently, if no trees are harvested, the flame length increases by 0.33

feet. If there is a harvest, the d/D ratio is calculated. The d/D ratio divides the

average diameter of the pre-treatment stand by the average diameter of the harvest.

If the d/D ratio is less than 0.9, this signifies a thinning from below and the flame

length is decreased by 0.33 feet. Otherwise the flame length remains the same.

Torching occurs when a ground fire is carried into the canopy. The effective

stand height to live crown (HLC) is the lowest crown height that would result in a

29

crown fire. The fire disturbance group of the AWRFSP determined that the

effective stand height to live crown would be determined in the following manner:

The HLC is determined for every tree on an acre in a given stand.

These are placed into height classes of im.

The height class of the 50th tree or the 1110th tree, whichever is less, starting

from the lowest HLC, determines the stand HLC.

Then the HLCs in the next three higher height classes are tallied.

If they exceed 5% of the TPA of the stand, or five trees, whichever is less,

then the effective stand HLC is the stand HLC.

If not, the next higher height class is chosen as the stand HLC, and the

program determines if there are sufficient trees in the next three classes to

make that stand HLC the effective stand HLC.

This height is used to calculate a critical flame length, which is a combination

of stand flame length and heat of ignition. If the simulated flame length is greater

than the critical flame length, torching occurs, which could lead to a canopy fire if

the crown bulk density is high enough. The crown bulk density measures if a

canopy fire will occur given that torching occurs. The higher the crown bulk

density, the higher chance in the stand of a canopy fire.

For an example of FBI (Equation 4-3), a stand with flame length of 0.33 feet,

torching, and a crown bulk density of 0.15 kg/m3, would have a fire index of 36.1.

The target level for the FBI was set at 30. This means that a stand with structure

that results in an FBI less than 30 has minimal fire risk. Any stand that has an FBI

30 does not have a positive torch potential.

Fire index = 50/15*(O.33ft) +30*(1) +20*abs((O.15 kg/rn3 -0.1) /0.2= 36.1

Equation 4-3. Example of a Fire Behavior Index

The FBI Index (Equation 4-2) calculates the percent average basal area that

would be killed in the stand. PREMO calculates the basal area that would be killed

for each species, diameter-class and then averages them for the stand. Basal area

that would bum depends on the flame length and diameter of the tree. The target

30

level for the FEI was set at 30, to allow a stand of some magnitude to exist after

harvest. As the target level was set lower and lower, the model would cut larger

and larger trees, since even large trees have a percent of basal area that would burn

in a fire. As an example, if the FEI is less than 10 for a Ponderosa pine stand, the

average diameter of the stand after harvest would have to be greater than 28" to

meet the target level (Table 4-2

Table 4-2 shows which trees to harvest in a simple stand where all trees have

the same diameter. It describes the minimum tree DBH that would be left after

harvest to meet a certain FET target level.

Table 4-2. Minimum Average Tree DBH to be Left by Species and Flame Length, All
Smaller Trees to be Cut, to Meet a Given Target Level for FET.

Prescriptions can reduce the fire hazard of a stand by removing trees and

treating fuel, to either reduce ground fuels, remove the ladder fuels, or reduce

canopy closure to prevent crown fires from spreading in the stand. Such activities

result in a reduced flame length andlor probability of fire spreading through the

canopy should it crown.

31

Species Fire Effects Index

(FBI)

Cut all trees less than this DBH (in)

Flame Length 0-2 (It) Flame Length 2-4 (ft)

BO 21-30 20 36

11-20 30 Al!

0-10 All All

DF 21-30 14 14

11-20 16 16

0-10 26 26

HW 21-30 All All

11-20 All All

0-10 All All

PP 21-30 12 12

11-20 16 16

0-10 28 28

SP 21-30 28 28

11-20 36 36

0-10 All All

WF 21-30 18 18

11-20 24 24

0-10 38 38

4.2.2 Limit Insect Hazard

According to Goheen (1998) bark beetles and wood borers are a natural

component of the Applegate River Watershed, but their roles have changed with

fire exclusion. Severe mortality related to these insects is closely associated with

basal area thresholds.

Project scientists estimate that the losses to insect mortality increase once a

stand reaches a certain basal area (Agee and Goheen, 1998). These basal area

thresholds are shown in Table 4-3. The goal will be to thin the stands to a level

below the basal area threshold limit, so that the stand will not reach the limit before

the next thinning. The threshold limit is set as the most limiting basal area

threshold of the PAG, depending on the tree species composition of the stand.

32

Table 4-3. Basal Area Thresholds for Insect Hazard.

Tree mortality due to insects is classified into two levels: periodic and episodic.

Episodic levels will not be modeled at the stand level for this thesis, however, goals

to minimize such occurrences will. Losses to mortality due to episodic levels of

insect activity can be managed by maintaining the stocking of stands below a basal

area limit. In the landscape model, weather is simulated each period, with

corresponding droughts in dry periods; insect mortality is simulated in drought

years if a stand exceeds the basal area limits. The percentage of basal area of the

Plant Association

Group

Target tree species

Douglas-fir White fir Pines

Jeffrey pine 80 0 80

Pine/oak 80 0 80

Douglas-fir/dry 120 0 120

Douglas-fir/wet 250 0 120

White fir/dry 250 120 180

White fir/wet No Threshold 250 180

Red fir No Threshold 250 180

stand that is killed increases and decreases with the drought intensity. For each

insect, mortality only occurs in host-species.

4.2.3 Wildlife Habitat

The project uses three measurements of wildlife habitat quality: vertical

structure, number and diameter of snags, and linear feet and diameter of DWI).

Vertical structure measures the vertical distribution of crowns in the stands. The

measure is derived by looking at height classes of five foot intervals, and the

number of trees whose crowns intersect a given height class. Then the variance

among the height classes is calculated. A low variance represents a stand with high

complexity, while a high variance denotes a stand with a rather simple canopy

structure.

The idea for measuring vertical structure is similar to that described in

Dubrasich et al. (1997). Researchers calculated the crown area variance between

heights for several structurally complex and simple forest stands in southwest

Oregon and in the Willamette Valley. For this project, the standard deviation

among number of crowns in height classes is used to determine vertical structure.

Targets were set (standard deviation < 50 for complex stands, >100 for simple

stands), by looking at crown distributions of differing variances. Examples of

stands with complex (standard deviation = 14) and simple (standard deviation

160) vertical structures are located in Appendix E.

The decay of snags and down wood was also modeled, using relationships from

Mellen and Ager (1998). The initial snags and DWD per acre were taken from the

plot database. Snags come from periodic mortality (insects, root disease, and wind

events) or are created. Snags decay by period, in which some fall, and others lose

height. Both of these are the source for DWD, as long as the condition of the snag

was class I - IV. DWD decays in length and condition. The target for snags is five

per acre greater than 16 inches in diameter. These target levels represent "natural"

levels found by Ohmann et al. (1994).

33

34

Snag classes were originally defined by Cline et al. (1980). There are two

fashions in which snags decay. One form is from top to bottom, resulting in

decrease height and the loss of branches, needles, and bark. The other is wood

deterioration from sapwood to heartwood, causing "softer" snags. This

classification produces five classes, representing various degrees of deterioration of

the snag, where class one a tree that died recently. In class five, all of the limbs and

branches are gone, up to 20% of the bark is left and the sapwood is gone. This is

the only type of snag that will not be counted in this project.

The target for DWD is 120 linear feet per acre. In order to be counted as DWD,

the piece must have a large end diameter of at least 16 inches, a length of 16 inches

and a DWD class of one through four. Maser et al. (1979) developed a five class

classification system for DWD deterioration. All down logs are counted in this

project, unless they are class five. In this case bark and twigs are absent, the

texture is soft and powdery, and all of the log is in contact with the ground. DWD

counted in the project (classes one through four), is less decayed. The DWD

specifications were taken from the NW Forest Plan guidelines for matrix areas

(USDA Forest Service and USD1 Bureau of Land Management, 1994). The amount

of dead, as measured in the prescription generator, will under-represent the actual

amount of deadwood on the landscape, as more will result from episodic mortality,

which is not present in the prescription generator.

4.2.4 Fish Habitat

In this project, fish habitat can be enhanced in two ways in stands that are in or

near riparian areas. For stands located in riparian areas, one goal is to maintain

high canopy closure. Stands located in or near riparian areas carry a goal of

number of large trees per acre. These large trees would be present to create

potential down wood in the body of water to improve fish habitat, should they fall

and land in the water. The goal is tentatively to maintain five large trees per acre in

the stand. A large tree is defined as having a DBH 30 inches.

4.2.5 Positive Present Net Value

Present Net Value (PNV) is the sum of the present value of the cash proceeds

minus the sum of the present net value of the cash outlays required by an

investment (Bierman and Schmitt, 1984). With zero taxes, the present net value of

an investment may be described as the maximum amount a firm could pay for the

opportunity of making an investment without being financially worse off. PNV is a

valuable tool in the forest industry as well as in other industries. It provides a

straightforward measure of the financial worthiness of undertaking a business

venture, in the case of forestry, undertaking certain silvicultural prescriptions. PNV

is especially useful when deciding between several prescriptions. As Davis and

Johnson (1985) observe, the difficulty lies in doing it correctly. According to Davis

and Johnson (1985) concerns center on the following:

"Have the future physical events of the project been adequately
forecasted with respect to magnitude and timing?
Have the prices used to establish revenues and costs considered
conditions of future markets, including possible changes in supply,
demand, and inflation? Is the guiding rate adjusted correctly for
inflation?
Does the guiding interest rate correctly reflect the owner's
perception of the pure rate, inflation, and the riskiness of the
project?
Has the problem situation been properly identified in the sense that
the planning period is appropriate and the project chosen for the
analysis is, in fact, feasible?
Does the schedule of events, costs, and revenues associated with the
project include all those relevant to the decision maker, and in
amounts actually affected by the project in question?"

In forestry, this analysis is particularly tricky because of the long time periods

involved. Decisions may be very sensitive to the choice of the guiding interest rate

and the handling of risk. Although interest rates are often adjusted for risk, Foster

(1979) has effectively argued that if risk is best perceived as an accumulated

"lump" at some future time, then adjusting the expected value of the return is

preferable to including a premium in the interest rate for the purposes of comparing

investments of different lengths.

35

36

In this project, a Present Net Value was used as a measure of the financial

worthiness of a silvicultural prescription. Harvest volumes, harvest revenues and

costs are assumed constant over time and are assumed to be known with certainty.

For the purposes of the analysis, revenues and costs were taken from Cousar

(1996), who did a similar analysis on the Sierra Nevada forests. Log revenues are a

function of tree species and diameter. Timber harvesting costs include logging

costs, road costs, slash disposal, NEPA (environmental analysis) costs, sale

preparation and administrative costs. Logging costs are a function of MCF

removed from the stand, average diameter of the harvest, and logging method.

Equations for calculating tree cubic feet volumes were taken fromWalters et al.

(1985).

The guiding interest rate for this project was set at 6%. It is assumed to be net

of inflation and indicative of the long term "before tax" interest rate used in private

forest investments. Revenues and costs are also "before tax." These assumptions

can be compared to the 4% discount rate used in evaluating long term forest

investments by the USDA Forest Service.

4.3 Other Potential Goals: Alter Flow and Timing of Water

There are three direct physical hydrological effects that are affected by tree

removal from the stand: changes in low flows, peak flows, and water yield.

The difference in low flows between partial cuts and control is not very

distinguishable (Reiter and Beschta, 1995).

Peak flows depend on site-specific effects, elevation (water vs. snow), and

proportion harvested. Harvest generally increases peak flow (Reiter and

Beschta, 1995).

. In the South Umpqua National Forest changes in streamfiow were investigated

following shelterwood, patch cut and clearcut harvests. The authors found that

the increases in the size of peak flows appeared to be related to the proportion

of the watershed in which the soil was severely disturbed (Han et al., 1979).

37

They also found that the largest absolute increases in water yield were in the

winter, while the largest relative increases occurred in the fall and in the

summer. However, their conclusion was that sustained yield forest

management in southwestern Oregon does not have a sizable impact on

increasing water yield. They did project that a large parent watershed would

probably have yield increases of 4-6%. They stipulated that it appears that

large yield increases due to harvesting are overshadowed by variability in

normal flow from uncut and reforested stands.

These relationships suggest influences of harvesting on low flows, peak flows,

and water yield. However, due to the lack of information on significant changes

and clear relationships between thinnings and changes in waterfiow, the alteration

in flow and timing of water as a result of activities was not modeled.

5 THE PRESCRIPTION GENERATOR: PREMO

5.1 RLS-PATH and Look-Ahead Components

Several key elements of the RLS-PATH look-ahead algorithm are the length of

the look-ahead period, the number of species and diameter classes, and the node

interval. In order to use PREMO, the modeler must choose values for these

variables. For the analysis that follows, a look-ahead period of 50 years was

chosen. Since this is a young stand (see 3.1), a look-ahead of 50 years is important.

for realizing diameter growth. Four tree species are in the analysis: black oak

(Ouercus kelloggii), Douglas-fir (Pseudotsuga menzisii), Pacific machone (Arbutus

menzisii), and ponderosa pine (Pinus ponderosae). A two inch diameter class was

used; a larger diameter interval would increase the averaging of diameters. A node

interval of 50 TPA was chosen. Most classes have fewer than ten TPA, those with

many often over 200. Also, using a 50 TPA node interval produces quicker

solutions than a 1 TPA node interval.

5.2 Structure of the Prescription Generator: PREMO

Prescriptions for stand management are generated using the RLS-PATH

algorithm (Yoshimoto et al., 1990) with a multi-stage look-ahead (Yoshimoto et al.,

1988) of 10 periods. The goal programming objective function (Equation 5-1

displays the objective function for a given period) is to maximize the PNV minus

the squared sum of the deviations from goal measures j= 1,. . . ,6. A scalar multiplier

is applied to the PNV to regulate its influence on decisions. Goal measures are part

of the objective function expressed as individual deviations from targets of

measures 1 through 6. A goal emphasis defines the weights, targets, and which

measures are used. A deviation is calculated only if the target level for the goal

measure is not met.

38

39

ObjectiveFunction1 = M[* PNV - * (Target Achievement1
)2]

ObjectiveFunction1 = Decision Criterion for Goal Emphasis1 at Periods

PNVI = Present net value of activities at periods including value of

the inventory at the end of the look ahead period

Target1 = Target of goal measures for emphasis

Achievement = Achievement of goal measures for emphasis1 at period

= Goal emphasis

j = 1; Big trees for fish habitat (trees per acre)

j = 2; Vertical complexity

j = 3; Snags (trees per acre)

j = 4;Down woody debris (linear feet per acre)

j 5; Fire behavior index

j = 6;Fire effects index

j 7; Basal area threshold (square feet of basal area per acre)

= Scalar multiplier for individual goal measures for emphasis1

p = Scalar multiplier for PNV

t = Time period

Equation 5-1. Objective Function

The path used in the optimization procedure is described in Figure 5-1. The

prescription for each period defines which trees to remove and which to make into

snags, in order to achieve the highest goal attainment at the current period and at

the end of the look-ahead period. At the beginning of the flowchart, a starting tree

list is recorded and the set of target levels and scalar multipliers that correspond

with the first simulation (goal emphasis) are selected. Then the mortality from

insects and from wind and root disease, if applicable, is applied. If this simulation

includes the allowance to make snags, snags are created from trees with a DBH

15 inches, to meet the goal. Then the RLS-PATH algorithm is used to find the best

prescription for this goal combination.

The cycle begins with zero trees in the harvest tree list. The trees in the harvest

level are increased by the node interval until all of the trees in that diameter and

40

species class are harvested. This process is continued for each diameter and species

class. In this fashion, the cycle continues until adding one more diameter and

species class does not increase the objective function. The harvest tree list is saved,

and then the stand is grown for one period, mortality applied and the cycle begins

again. This cycle occurs for the number of periods in the simulation. This whole

process can be run for as many goal emphases as desired.

tree list coming
from stage 0 or

V
apply endemic
insect and wind
mortality,

is root
disease
present?

apply root disease
mortality kill trees

is snag
goal met

create
snags?

kill trees,
add to mortality

designate mortality
as dead trees

V
start with zero tpa
in the harvest tree

V
live tree list =

initial tree list -
harvest

PRESCRIPTION GENERATION

increment tpa in
harvest tree list by

node interval

41

select goal combination, set initialize tree list to
target levels and variable starting condition

have
harvest

tpa
possibil ite

s been

residual tree list =
intial tree list -

maxharvest tree

calculate goal
attainment

no

+

yes

yes

no

no

optimum prescription for this
goal combination is a

composite of the maxharvest
tree lists for each period

Continued

save harvest tree
/OS

]list as maxharvest
tree list for this

V
grow residual tree

list

Figure 5-1. Flowchart of Prescription Generation

end of simulation

42

6 A SAMPLE ANALYSIS

In the analysis that follows, we utilized nine goal emphases (simulations) to

create different prescriptions. The objective function varies depending on which

goal measures are included. These goal emphases produce prescriptions that create

different kinds of stand structure over time. PREMO is used to find efficient

solutions for the combination of goal measures.

The stand to be modeled is a pine stand, without root disease, located in the

pine/oak PAG, with a QMD between 9 and 15 inches and canopy closure above

60%. In the examples, PREMO finds the "best" prescription to achieve eaôhof the

nine goal emphases. A requirement was set on the harvest level, such that any

harvest must remove at least 0.5 thousand cubic feet (MCF) in order for it to occur.

The cost values will not be accurate for any harvest with a lower volume removal

than this requirement. In PREMO, the harvest regime for a given period is

determined. If this harvest does not exceed 0.5 MCF, then no harvest takes place in

that period. The costs and revenues do not currently reflect values in the Applegate

River Watershed and will need to be adjusted.

6.1 Goal Emphases

This thesis presents nine goal emphases that create at the most nine

prescriptions, i.e., it is possible for two or more goal emphases to produce the same

prescription. The first 6 goal emphases explore the stand potential for achieving

target levels of goal measures that correspond to only one goal. For example, in the

first goal emphasis, reduce fire risk, the only goal measures included in the

objective function are the FBI and the FET. The last three emphases begin to

explore the achievement of several goals at the same time. Goal emphasis seven

focuses on reducing risk from natural disturbances in the stand, while goal

emphasis eight concentrates on habitat structure. In goal emphases six through

nine a minimum harvest requirement of 0.5 MCF was set. Therefore, in a given

43

44

period, if PREMO determines that a harvest is necessary in order to improve the

achievement of goals, but the volume of that harvest does not exceed the MCF

minimum, no harvest occurs in that period. The target levels for the goal measures

in the emphases are listed in Table 6-1. The following list describes the focus of

each goal emphasis:

Reduce fire risk

Reduce insect risk

Enhance fish habitat

Enhance wildlife habitat - complex structure

Enhance wildlife habitat - simple structure

Maximize PNV

Reduce fire and insect risk, maximize PNV

Enhance fish and wildlife - complex structure- habitat, maximize PNV

All goals, maximize PNV

Table 6-1. Goal Target Levels.

"X" means that the goal was not used.

6.2 Goal Achievement

In the graphs that display the values for the goal measures by period, the values

are displayed as would be measured in the stand just before harvest at the end of

the 5-year growth period. Another possibility is to display the values after harvest.

This thesis displays the values at the end of the growth period, but before harvest,

because this usually shows the largest deviation from the goal over time that will

occur. If the values were displayed after harvest, the deviations from the goal

45

Goal

Measure

Goal Emphasis

1 2 3 4 5 6 7 8 9

Fire Insect Fish Wild

life -

comp

lex

Wild

life -

simple

PNV Fire,

Insect,

PNV

Fish,

Wild

life,

PNV

All,

PNV

Big trees for

fish

X X X X X X

Vertical

Structure

X X X X X

Snags X X X X X

Linear Feet

DWD

X X X 120 120 X X 120 120

Fire

Behavior

Index

X X X X X X

Fire Effects

Index

X X X X X X

Basal area

thresholds

X X X X X X

46

would usually be smaller since the action had just been taken to reduce the

deviations caused by growth in the previous growth period. This will be true in the

case of goal emphases which have a single goal measure, and will usually be true

for goal emphases that have multiple goal measures, but not always.

6.2.1 Fire Hazard

The minimization of fire hazard is a goal in emphases 1, 7, and 9. Therefore,

the two indices, FBI and FBI are included in these emphases as goal measures. The

target levels remained the same in each goal emphasis. The target level is to have

an FBI and FBI less than 30. An FBI 30 permits a lower flame length and higher

crown bulk density, or a higher flame length and lower crown bulk density, but no

torching. Any stand where torching would occur will have an FBI > 30. The FBI

is set at 30 because among some species, even large trees will have 20% basal area

mortality in a fire, however small trees have close to a 90% basal area mortality.

An FBI=0 or near zero would force the stand to have almost no trees at all.

6.2.2 Goal Emphasis (#1): Fire Hazard Reduction

The FBI before harvest by period is displayed in Figure 6-1. In periods 1, 2,

10, 12, 14, 18, and 20 the FBI is above the target level. In each of these instances

torching in the stand is possible. In the all of these instances, this exceeding of the

goal is due to regeneration from the previous harvest. Figure 6-2 shows when

harvest occurs. Regeneration is not put into the model until the optimum harvest

level has been chosen. As it is not a part of the look-ahead, the effect of

regeneration on the ability to meet goals is not considered. In all other periods the

prescription produced an FBI value below the target level. Future versions of this

model should perhaps reevaluate when the regeneration is considered.

For this goal emphasis only, the FBI after harvest is displayed for comparison

in Figure 6-1. After harvest it is possible to reduce the FBI below the target level

for all but two periods. The two times where the FBI remains above the target are

0

belore harvest U after harvest

Figure 6-1. FBI by Period before Harvest for Goal Emphasis #1.

47

due to the RLS-PATH process. Harvesting from one diameter class alone does not

improve the objective function enough to continue the process. In the "grow only"

scenario (not displayed), the FBI reaches 46.9 by the 5' period and increases to 85

by the l8' period, where it remains.

As can be seen in Figure 6-1, it is possible for the FBI to increase after harvest.

This is due to an increase in crown bulk density. Crown bulk density is assigned

based on vegetation class, therefore, if the harvest shifts the stand into a vegetation

class with a higher crown bulk density, the FBI can increase. This change in crown

bulk density is an artifact of our data set and could be changed in the future.

Fire Behavior Index by Period

U

.

maximum target level

. .
. .

U U U

. .. U

U
U

0 10 12 14 16 18 20

Periods

50

45

40

35

3o

0
25

0
E 20

15

10

CF harvested

4000

.
3500

3000

2500

2000

1500

.
1000

.

500 .
. .

0 .
0 2 4 6 8 10 12 14 16 18 20

Period

Figure 6-2. Cubic Feet Per Acre Harvested per Period for Goal Emphasis #1.

The periods in which the FEI is above the target level (10 and 13) also

correspond to periods of regeneration (Figure 6-3). The basal area that would die

in a fire is higher for little trees. However, the FEI is not far above the target level.

In comparison, when no trees are harvested, the FEI reaches a value of 92.16 by the

l0t period and remains high.

48

Fire Effects Index by Period

49

maximum target level

.
..

. . .
.

0 2 4 6 8 10 12 14 16 18 20

Periods

Figure 6-3. Fire Effects Index by Period before Harvest for Goal Emphasis #1.

6.2.3 Goal Emphasis (#7): Stand Hazard Reduction

The FBI is greater than the target level for 7 of the 20 periods. In each of these

periods torching is possible in the stand. This prescription only schedules five

harvests over the planning horizon (Figure 6-5). The minimum harvest

requirement of 0.5 MCF, associated with the PNV goal, prevents the model from

removing the smaller trees which are acting as fuel ladders, causing torching. The

minimum harvest requirement prevents the removal of smaller trees, which have

little to know volume, unless there is enough volume in larger trees scheduled for

harvest to meet the requirement. The FBI per period for this goal emphasis is

shown in Figure 6-5. This goal emphasis has a much lower basal area per acre over

time than goal emphasis #1, due to the "limit insect hazard goal". As a result, there

is more regeneration in this open stand than in goal emphasis #1 and torching can

occur.

35

30

25

x
20

w
15

U.

10

5

0

40

35

30

25

20

15

10

5

0

Fire Behavior Index by Period

50

g . .
maximum target level

.
0 2 4 6 8 10 12 14 16 18 20

Periods

Figure 6-4. FBI by Period before Harvest for Goal Emphasis #6.

CF harvested

0 2 4 6 8 10 12 14 16 18 20

Period

Figure 6-5. Cubic Feet harvested by Period for Goal Emphasis #7.

HI

20M12 is

4000

3500

3000

2500

2000

1500

1000

500

0

The FBI is above the target level in 3 periods (Figure 6-6). None of these

periods were preceded by a harvest, which could have removed the smaller trees

and thus reduce the basal area mortality of the stand associated with fire.

Fire Effects Index by Period

51

U I

maximum target level
..

.
.

. .
.

.

2 4 6 8 10 12 14 16 18 20

Periods

Figure 6-6. FEI by Period before Harvest for Goal Emphasis #7.

6.2.4 Goal Emphasis (#9): All Goal Measures

The FBI is above the target level for periods 6, 10, 12, 16, and 18 (Figure 6-7).

In each of these periods torching occurs which is responsible for 30 points of the

FBI. Bach of these periods would have benefited from a removal of the trees

causing the torching in the period when the goal was not met, however, due to the

minimum harvest volume requirement this only happened in periods 12 and 18.

Torching results from the regeneration that is added from harvests in periods 1,

7, 9, 12, and 18 (Figure 6-5). It is possible to have no torch potential in the stand,

even when regeneration occurs, as long as the crowns of the overstory are much

35

30

25

x
w

c 20

15

10

5

0

52

higher than the regeneration so that the regeneration does not act as a fuel ladder.

This situation occurs after the harvest in period 1, resulting in a low FBI for a few

periods thereafter.

Fire Behavior Index by Period

45

40

35

.

30

.
& S

25

maximum target level

20w

w

15 0 0

10 0

5

. S

0

00
0

00
0

0 2 4 6 8 10 12 14 16 18 20

Periods

Figure 6-7. FBI by Period before Harvest for Goal Emphasis #9.

CF harvested

53

0 2 4 6 8 10 12 14 16 18 20

Period

Figure 6-8. Cubic Feet Harvest per Period for Goal Emphasis #9.

The FET is above the target level in only four periods (Figure 6-9). The first

two occurrences above the target level are due to regeneration from the first harvest

that is not removed until period 7. The last two occurrences above the target level

are a result of regeneration and low basal area, upon which smaller trees have

greater effect. The trend that can be seen in the FET differs from that of goal

emphasis #7. After the harvest in period 7, goal emphasis #9 has far more large

trees and fewer smaller trees, than does goal emphasis #7. As a result, the FET is

higher for goal emphasis #7, as the smaller trees have a larger effect on the FET.

Si

012 018

7

4000

3500

3000

2500

2000

1500

1000

500

0

maximum target level

54

45

Fire Effects Index by Period

40

35
I

30
I

-

25

I

20
I .

15
I I I

10

S

5

0
0 2 4 6 B 10 12 14 16 lB 20

Periods

Figure 6-9. FEI by Period before Harvest for Goal Emphasis #9.

6.2.5 Wildlife Habitat

There are three goal measures for wildlife habitat: vertical structure, snags, and

DWD. These goal measures were used in emphases 4, 5, 8, and 9. Goal Emphasis

#5 is the only one focusing on creating simple stand structure. All others have a

goal of complex stand structure.

There are two target levels for vertical structure, one corresponding to a

complex stand, and the other to a simple stand. Each of these targets for vertical

structure is a difficult one to achieve because the stand is not static and trees may

be simultaneously removed for snags. In Goal Emphasis #4, where the goal is

complex structure, the vertical structure in periods 8 of the 20 periods is not

complex, however, it is very close to the target level. In the even-numbered

periods, the complexity is disrupted by regeneration that comes in at the beginning

of the period following harvest. In Goal Emphases #8 the stand becomes more

simple in periods 9-13, 15-17, 19 and 20. The goal of creating snags also makes it

. 80

100
E

120

20

40

60

140

160

180

200

55

difficult to achieve this goal. This goal measure does not work very well when

there are height classes that have no trees at all, since the goal measure tries to keep

the same number of crowns in each height class. Because of the large trees for the

fish habitat goal, there are some larger diameter trees, however, there are several

diameter classes in the mid-diameter range, which causes a two cohort strata which

has simple stand structure. Because the large trees that were to enhance the

structure for fish habitat were being turned into snags, an upper limit of 30" DBH

was set for snag creation. This caused the two-cohort stand, because snags came

from the mid-diameter range of the stand. Finally, in goal emphasis #9 the stand

structure is complex in 12 of the 20 periods and the stand structure is simple in 8 of

the 20 periods where harvest and snag creation has created a two-cohort stand.

Vertical Structure

_IMIIPAk II
Structure F 'or Wq IU,' Simple

Structure Ceiling

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Periods

M-4wildlife, c +-8fish, c, PNV U-9a11, PNV

Figure 6-10. Vertical Structure before Harvest for Goal Emphases #4, #8, and #9.

56

The goal for Goal Emphasis #5 is to produce a stand that has simple structure.

The stand structure by period can be seen in Figure 6-11. The target level was

satisfied for almost all periods.

Vertical Structure

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Periods

Figure 6-11. Vertical Structure before Harvest for Goal Emphasis #5.

The number of snags per period is displayed in Figure 6-12. Snags are created

in the first period in order to reach the snag goal per acre. The graph is pre-harvest,

so it displays the number of snags in a period before any are created. Thus, when

snags are created, they do not appear until the next period. Snags decay and fall

over time. Snags which are created begin at Class I and move toward Class V.

Once a snag moves beyond Class V it is considered to be disintegrated. Snags

which reach Class V are not counted any more. If the snag goal is not met two

periods in a row, the stand does not have any trees from which to make snags. It is

possible to be below the snag goal for one period due to snags falling, but by the

20

40

60

Simple
Structure Ceiling

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Periods

-4--4wildlife, C -9--5wiIdIife, S -è-8fish, C, PNV -O-9a11, PNV

Figure 6-12. Number of Snags before Harvest for Goal Emphases #4, #5, #8, and #9.

The goal for 120 linear feet of DWD per acre is never reached. In PREMO

there is no mechanism available that allows the creation of DWD if it is short of the

target. However, this could be added in a way similar to the creation of snags. A

57

second period the program will have created the necessary snags to achieve the

snag goal IF there were available trees from which to create snags. In goal

emphases #5 and #8 more snags are created as trees grow to be large enough from

which to make snags. For instance, in the prescription for goal emphasis #8, a

group of trees reaches a DBH greater than 15 inches and more snags are created,

however in the prescription for goal emphasis #9, there are no more large trees in

the rest of the planning horizon.

Number of Snags per Acre

discrepancy arises because snags are accepted with a DBH of 15 inches, however,

DWD must have a large diameter of at least 16 inches. In this tree list, one group

of snags that is created in the first period has a DBH less than 16 inches, and as a

result any DWD coming from this tree record does not count as DWD. However,

there are larger snags created by period 11 and an increased presence of DWD can

be seen in some of the goal emphases after this period as a result of some of these

snags falling. In the snag model there is a decay lag and this plot for the sample

analysis did not have any DWD in the original plot data so the result is no DWD

for the first five periods.

Linear Feet of Down Woody Debris by Periods

-G--4wildlife, c --5wiIdIife, s -A-8fish, c, PNV --9aII, PNV

Figure 6-13. Linear Feet of DWD by Periods for Goal Emphases #4, #5, #8, and #9.

58

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Periods

6.2.6 Insect Hazard

For a stand with no white fir component in the pine/oak PAG, the basal area

threshold is 80 sqfliacre. In the landscape simulator, stands above this threshold

will experience Douglas-fir and pine mortality in drought years. Insect hazard was

a goal measure in emphases #2, #7, and #9. In Goal Emphasis #2, the basal area of

the stand was kept below the threshold for all periods (Figure 6-15). The basal area

is kept well below the target level so that even at the end of the look-ahead period

the basal area without harvest is below the target level.

Stand Basal Area per Acre by Periods

300

250

200

150

100

50

0

Insect
Basal
Area

Threshold

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Period

Dd!ba Upineba Dother

Figure 6-14. Stand Basal Area before Harvest per Acre for Goal Emphasis #2.

59

18 19 20

320

240

w

w

160

80

0

Insect
Basal
Area

Threshold
'

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Period

Ddfba Upineba Dother

Figure 6-15. Stand Basal Area before Harvest per Acre for Goal Emphasis #7.

60

The basal area in goal emphasis #7 only exceeds the basal area threshold in 4

periods after the initial harvest (Figure 6-15) because of a minimum harvest volume

requirement. Up to the l2' period goal emphasis #9 maintains a similar stand basal

area per acre as emphasis #8, however, later it maintains greater basal area due to

the wildlife and fish habitat goals and exceeds the threshold because of the

minimum harvest volume requirement.

Stand Basal Area per Acre by Periods

320

240

C

160

80

0 1234

Stand Basal Area by Periods for Goal Emphasis #9

5 6 7 8 9 10 11

Period

dfba pineba 0 other

Figure 6-16. Stand Basal Area before Harvest per Acre for Goal Emphasis #9.

6.2.7 Fish Habitat

61

16 17 18 19 20

As the stand chosen for simulation is not in, but near, a riparian area, the only

goal measure used for fish habitat is number of large trees per acre. If the stand had

been in a riparian area, there would be an additional goal measure of canopy

closure. The goal measure of large trees per acre was used in emphases #3, #8, and

#9. In the first few periods it is not possible to meet the goal, since the analysis

stand had a low original stand QMD and there are no trees with a DBH greater than

30 inches. In goal emphasis #3, as the trees grow, the goal is met. However, in the

other two goal emphases, trees that have the potential of being recruited for the

large tree component are removed before they reach that size, due to other goals.

Number of Large Trees per Acre

Goal

0* 4
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Periods

A 3fish -a-- Bfish, C, PNV -- 9a11, PNV

Figure 6-17. Number of Large TPA before Harvest for Goal Emphases #3, #8, and #9.

62

A A A

6.3 Summary

6.3.1 Present Net Value

The total value per goal emphasis is displayed in Figure 6-18. The largest value

is produced in the goal emphasis focusing on only PNV. However, all other goal

emphases also provide a positive PNV. The PNV is only shown for those four goal

emphases that included PNV as a goal. These values will likely change after

incorporation into the landscape model, as the PNV goal emphasis has higher fire

and insect risk and the returns from activities might not be realized. In the

landscape model, trees die because of periodic disturbance and occurrences thereof

will be higher in the PNV goal emphasis in goal emphases 8 and 9, which are more

resistant to fire and insect attacks, and thus the harvests in the PNV goal emphasis

will be reduced, lowering the PNV.

Total PNV for Each Goal Emphasis

63

6 8 9

Goaf Emphasis

Figure 6-18. Total Value for Each Goal Combination.

4000

3500

3000

2500

> 2000z
a-

1500

1000

500

0

6.3.2 Activities and Vegetation Class

The cubic feet harvested by period can be seen in Appendix C. The trees per

acre that were made into snags are displayed in Appendix D.

The different goal emphases influence the stand structure and the species

composition over time. As the stand grows and activities are carried out, the

stand's species composition and structure changes; therefore, the classification of

the stand changes as well. These stand dynamics can be seen in Table 6-2. The

first number of the three numbers is the cover type, the second is the QMD, and the

third is percent cover (0=<60% cover, 1=>60% cover.)

The cover type is determined according to the following rules, where

hardwood, conifer, and pine represent the percent composition of the included

species of the upper canopy:

Conifer/Hardwood: hardwood>30%, conifer>30%

Deciduous Hardwood: hardwood>30%, conifer<30%, deciduous

hardwood>5 0%

Evergreen Hardwood: hardwood>30%, conifer<30%, deciduous

hardwood<5 0%

5. Mixed Conifer: hardwood<30%, pine<50%

Pine: hardwood<30%, pine>50%

The QMD number is assigned according to the following distribution

depending on into which category the adjusted QMD fits:

1 5"-9"

2 9"-15"

3 15"-21"

4 21"-25"

25"-32"

32"+

64

Table 6-2. Vegetation Class by Period, for Each Goal Emphasis.

65

cd GBis
1

1 721 I 21 731 721 721 ii " 13

S ii 721 721 721 II S 74

721 7 f4I 74

12

731g 721 21 12

731 I 711 51

721

13

521 1 711 13

Ei1I sai 1 511 51S 13

I Al I S S tS '-I

J Al l I_I
12

E1i 7iS 121

13i

131

131 531 121 121 12

7 DISCUSSION

This thesis had two major objectives. The first was to develop a multi-goal

prescription generator for the forests of the Applegate River Watershed. Then the

ability of the model to meet goals was evaluated by a sample stand analysis.

7.1 Prescription Generation

A multi-goal prescription generator, PREMO, was developed to create

prescriptions for the forests of the Applegate River Watershed, to be used in the

ARWFSP landscape simulator. Following are the three subobjectives for the

creation of this model, how they were accomplished, and improvements that might

be made.

7.1.1 Goal Measures

66

A key part of this project was to develop goal measures from vague goal

statements. This was an enjoyable and challenging part of the project in working

with different project scientists to develop creative measures that would be able to

describe the stand in terms that were important for each goal measure. Target

levels were discovered in a similar manner, from scientists and their research and

findings. This process resulted in a successful development of goal measures and

targets.

A remaining issue lies in the measurement of the vertical structure for the

wildlife habitat goal. The vertical structure goal might not adequately produce

complex and simple stands. For instance, in stands that have an initial simple

structure, the model creates a complex stand by harvesting trees from each height

class until all height classes have the same number of crowns in them. The

problem with this method is that the height class with the fewest crowns determines

the stocking of the stand.

67

Two additional issues with the wildlife habitat goals stand out from the results.

The creation of snags is not an actual goal measure within the RLS-PATH section.

Currently, snags are either created, or not created. When they are created and if

possible, PREMO seeks to meet the target level for snags in every period. There is

no deviation from this goal if there are sufficient number of trees for snag

recruitment. In the emphases with multiple goals this will cause conflict in limiting

creation of large live trees.

Also, the most dynamic changes in the stand due to the prescriptions seem to be

in the changes in cover type. Species composition of the stand appears to be more

affecte4 than structure, at least in this analysis, and perhaps needs to be added as a

goal measure. Finally, the creation of DWD might also be considered as a goal.

7.1.2 PREMO Growth Component

Translating the FVS model and calibrating the growth component of PREMO

took a significant part of the time spent building the prescription generator. The

Klamath Mountains Variant has 312 subroutines, and the first challenge was to out

which are used for growth and which to translate. Furthermore, code that

somebody else has written is very difficult to decipher, due to unknown variables

and processes. As mentioned earlier, the code for PREMO is in Appendix A:

Growth Subroutines.

The assessment of the PREMO's ability to achieve results the same as those of

FVS is described in 3.2 above. However, whether PREMO represents how the

forests in the Applegate River Watershed grow is another question. The growth in

PREMO, when not affected by harvest, may not be realistic. The absence of

episodic mortality results in larger basal areas being carried in the stand in some

goal emphases that seem higher than experienced. As the landscape simulation is

performed, these basal areas will likely be reduced by mortality resulting from

insects and maybe other episodic disturbances. We cannot judge if the model is

realistic until the episodic disturbances are applied.

68

Tree mortality could be a problem, especially for smaller trees, as there is no

suppression mortality. Episodic mortality from insects will maintain reasonable

basal areas in the stand, however insects target larger trees, so the amount of

suppressed smaller trees dying is likely underestimated.

The regeneration model could be improved. Currently it only regenerates

species that were in the previous stand; however, in reality other species could

become established as well. The regeneration model could be updated to

regenerate additional species that were not in the stand at the time of harvest,

according to the PAG.

The need for snag creation will most likely be reduced as a result of stage three

in the ARWFSP. As episodic disturbances occur, there will be more snags and

DWD, thus, fewer snags will need to be created in order to meet the snag target

level.

7.1.3 RLS-PATH Based Model with a Look-ahead

An RLS -PATH based model with a look-ahead period was built for generating

prescriptions for the ARWFSP. The goal was to build a model, which runs quickly

and is able to be incorporated into the landscape simulator. The strength of the

PATH algorithm is that it requires less storage and fewer computations than

dynamic programming. One of the weaknesses is that the prescription leading to

the optimum objective function might not be found. The probability of this

occurring is greater when the benefits of an action are not realized within the next

period. Using a look-ahead period reduces this risk and is therefore used in

PREMO. The RLS increases the quickness of the model, by searching through a

limited combination of harvest prescriptions. This is also the limitation of this

strategy, because not all combinations are examined, therefore the best prescription

could be missed. Issues to be further investigated include further reducing the time

needed to solve these simulations, investigating the choice of variables and scalar

measures for individual goals, consideration of the regeneration, adding prescribed

burning, and updating costs, revenues, and flame length changes.

69

Currently, the prescription generation for the stand in the analysis takes

approximately from 22 seconds for goal emphasis #2 to 41 seconds for goal

emphasis #6. Effort has been made to reduce the computation time of a simulation,

however, there are still several possibilities for decreasing the computation time in

the model. Eliminating unnecessary calculations is an important step in reducing

the calculation time. Another way to reduce the computational burden is to reduce

the number and value of variables. This could be done by decreasing the look-

ahead period, increasing the node interval, and reducing the number of species and

diameter classes. Decreasing the look-ahead period often results in the harvest of

smaller trees that might have otherwise been kept, but did not reach the large tree

diameter by the end of the look-ahead period. Increasing the node interval reduces

the number of prescriptions evaluated and therefore also the chance of finding

better solutions. Reducing the number of species and diameter classes would not

only result in a less realistic representation of the stand, but would also create a

simpler stand structure.

One shortcoming of this model is that if the cutting from more than one

diameter class is needed to improve the objective function, the algorithm decides

that the objective function cannot be improved and continues to the next period.

This problem is evident in the FBI. If there are two species groups with significant

TPA in the lower diameter class, torching is possible. Harvesting the trees from

only one of these classes will not reduce the potential for torching, but removing

the trees from both classes will. Since the RLS-PATH algorithm only searches

class by class, this improvement will be skipped. In the application by Yoshimoto

et al. (1990), there were fewer species and larger diameter classes so this difficulty

was not as significant. Future work could focus on creating groups of diameter and

species classes. These groupings would solve the problem with finding harvest

from several classes which improve the solution, as well as reduce solution time.

Possible groupings are by diameter, relative height, or species.

Expanding the variables included in the RLS-PATH section could make a

significant improvement to this model. As mentioned earlier, the consideration of

70

snag recruitment within RLS-PATH could improve the achievement of goals.

Furthermore, the regeneration is also not included in the RLS. This affects the

ability to meet goals. In the case of the snags, the model currently searches through

the tree list in order of the records until it finds a tree that meets the diameter

requirement for a snag. For the sample analysis I had to restrict the model from

creating snags of trees with a DBH 30", because PREMO was creating snags

from the trees that were being reserved to meet the large tree goal. Therefore, it

was not possible to meet both goals over time. If the trees from which to make

snags could be optimized, then all diameters could be considered.

Regeneration greatly affects the FBI and the FEI, and by not including them in

the RLS the possibility of meeting this goal in every period is reduced. In the RLS

section a harvest prescription is evaluated at the present time and at the end of the

look-ahead period. In the sample analysis this corresponds to evaluating the ability

of a prescription to meet the goal measures of the emphasis at a given period and

50 years from that period. A harvest prescription is chosen without evaluating the

effects of regeneration as a result of that harvest. Therefore, sometimes a harvest

prescription is chosen which reduces the FBI and the FEI, however, once

implemented, regeneration occurs, which increases the FBI, and also then torching

might become possible, which increases the FBI.

PREMO does not include a simulation of prescribed burning. This needs to be

added as the project progresses. Refinements also need to be made to the costs and

revenues so that they reflect prices in the Applegate River Watershed. Finally, the

process for changing flame length over time needs to be further investigated.

Initial sensitivity analysis was performed in order to determine the weights for

individual goal measures within a simulation. However, choosing the weights for

each goal measure is a fine art and simultaneous achievement of goals could be

improved by refining their values.

7.2 Analysis

Another part of the project was to investigate the model's ability to meet the

possible goals over time. In order to accomplish this, I applied the model to a

sample analysis and assessed its performance.

7.2.1 Ability to Meet Individual Goals

The individual goal emphases were generally successful in meeting targets of

their respective measures. The insect hazard goal reduction goal is achievable in

every period after the harvest in the first period, and the large tree goal for

enhancing fish habitat is attainable in every period after the period in which it is

possible for large trees to exist for that stand.

In the stand of the sample analysis, the fire hazard goal was not achievable in

every period. This is most often a result of the regeneration increasing the

possibility of torching and increasing the amount of basal area that would burn in a

fire. As mentioned earlier, changing the evaluation of the effect of regeneration

could improve the ability to meet this goal.

For the most part, PREMO is able to create both simple and complex vertical

structure in this stand after the initial period. However, it is difficult to maintain

the number of snags per acre and the desired vertical structure at the same time. As

mentioned earlier, one way of attaining complex structure is to reduce the number

of trees per acre. Consequently, this could limit the presence of trees from which to

create snags. Optimization of snags might help this problem. As can be seen in the

goal emphases that do not focus on wildlife, the snag goal is not attainable through

periodic mortality alone. Finally, the DWD goal is never achieved. PREMO

simply monitors the amount of dead wood; it does not create any. The only way to

currently meet the DWD goal would be to create snags far in excess of the goal and

wait for them to fall and become DWD. Specific target levels for DWD could be

scaled for each PAG, so that drier sites would not have as high of a goal as wetter

sites, since historically these had less DWD.

71

7.2.2 Multi-Goal Analysis

The last three goal emphases considered multiple goals. The target levels of

these goals were met in many of the periods and a positive PNV was produced.

The ninth goal emphasis considered all goals. Based on the analysis, it appears

feasible to get close to the goals of reducing risk of fire hazard and insect hazard,

and enhancing wildlife and fish habitat, while producing a positive present net

value.

The most competitive goals were having a target of five large trees and five

large snags per acre in the stand. When the snags were created from any free 30"

DBH, the number of large trees per acre declined to zero over the planning horizon,

as they were turned into snags. Therefore, snag creation was restricted to the mid-

diameter range. The result of this was a creation of a two-cohort stand as there

were several large trees per acre, but then no mid-range diameter trees, as they were

all turned into snags. It is possible that five snags per acre will be too high of a

goal for this PAG.

Another potential competition among goals can be found between the PNV and

the ability to meet fire and insect risk goals. The ability to limit fire and insect

hazard was reduced when harvests of few cubic feet per acre were not allowed.

However, this minimum harvest volume requirement is important for achieving the

goal of maintaining a positive PNV.

The PNV goal was more complimentary to the fire and insect goals than the

wildlife and fish habitat goals. Goal emphasis #8, which focuses on habitat,

produces a lower PNV than does goal emphasis #7. Stand basal area is not

maintained below the insect hazard threshold in every period for goal emphases #7

and #9. This is also due to the minimum harvest requirement.

7.3 Summary of PREMO in the AWRFSP

The purpose of PREMO was to find prescriptions that would largely meet the

goals for the stands. The accomplishment of this objective by PREMO

72

73

demonstrates the power of its methodology. The project scientists originally

thought that the goals would be more conflicting than the results indicate.

PREMO will be called from stages one and four of the landscape simulator.

From the sample analysis, it appears that PREMO will be able to generate

prescriptions that will generally meet the goals of the simulation. These goals

include reducing the fire and insect hazard, enhancing wildlife and fish habitat, and

providing a positive PNV.

REFERENCES

Agee, J., and E. Goheen. 1998. Wind, insect, and disease inputs to the ARWFSP
Model, version 2.3. Unpublished.

Bierman, H. Jr., and S. Schmitt. 1984. The Capital Budgeting Decision, Economic
Analysis of Investment Projects. Sixth Edition. Macmillan Press. 545 p.

Brodie, J.D., D.M. Adams and C. Kao. 1978. Analysis of economic impacts on
thinning and rotation for Douglas-fir using dynamic programming. For. Sci.

24:513-522.

Brodie, J.D., and C. Kao. 1979. Optimizing thinning Douglas-fir with three-
descriptor dynamic programming to account for accelerated diameter
growth. For. Sci. 25:655-672.

Cline, S.P., A.B. Berg, and H.M. Wight. 1980. Snag characteristics and dynamics
in Douglas-fir forests, western Oregon. J. Wildl. Manage. 44(4):773-786.

Cousar, P.K., J. Sessions and K.N. Johnson. 1996. Methodology for estimating
stand projections under different goals in Siena Nevada Ecosystem Project:
Final Report to Congress. Addendum. Davis: University of California,
Centers for Water and Wildland Resources.

Davis, L.S. and K.N. Johnson. 1987. Forest Management. Third Edition. Mc-
Graw Hill. '79Op.

Dixon, Gary and Ralph Johnson. 1995. The Klamath Mountains geographic
variant of the Forest Vegetation Simulator Version 6.1. USDA Forest
Service, Washington Office, Forest Management Service Center, Fort
Collins, CO. l9p. FMSC Internal Report.

Dubrasich, M.E., D.W. Hann, and J.C. Tappeiner II. 1997. Methods for evaluating
crown area profiles of forest stands. Can. J. For. Res. 27:385-392.

74

Dykstra, D.P. 1984. Mathematical programming for natural resource management.
McGraw-Hill, Inc.: New York. 318p.

Foster, B.B. 1979. Adjusting discount rates for risk. Journal of For. 77(5):287-
288.

Goheen, D. 1998. Forest Service insect and disease. in Landscape Forestry -- With
a Slant on Forest Health and the Urban Interface. A symposium by the
Siskiyou Chapter Society of American Foresters and Southern Oregon
University. November 13, 1998, Medford, Or.

Haight, R.G., J.D. Brodie, and D.M. Adams. 1985. Optimizing the sequence of
diameter distributions and selection harvests for uneven-aged stand
management. For. Sci. 31:451-462.

Haight, R.G., J.D. Brodie, and W.G. Dahms. 1985. A dynamic programming
algorithm for optimization of lodgepole pine management. For. Sci.
31:321-330.

Haight, R.G., R.A. Monserud, and J.D. Chew. 1992. Optimal harvesting with
stand density targets: managing rocky mountain conifer stands for multiple
forest outputs. For. Sci. 38:554-573.

Han, R.D., R.L. Fredriksen, and J. Rothacher. 1979. Changes in streamfiow
following timber harvest in southwestern Oregon. USDA Forest Service.
Res. Pap. PNW-249. 22pp.

Hooke, R., and T.A. Jeeves. 1961. "Direct searcW solution of numerical and
statistical problems. Journal of the ACM, 8:212-229.

Kao, C., and J.D. Brodie. 1979. Determination of optimal thinning entry interval
using dynamic programming. For. Sci. 25:672-674.

Kayser, J., H.L. Wedin, and J. Agee. 1998. Naturally regenerating Applegate's
forests. Unpublished.

Maser, C., R.G. Anderson, K. Cromack, Jr., J.T. Williams, and R.E. Martin. 1979.
Dead and down woody material, in Wildlife habitats in managed forests: the
Blue Mountains of Oregon and Washington, Thomas, J.W., tech ed. Agric.
Handb. 553. Washington, D.C., U.S. Dept. Agriculture. p. 78-95.

Mellen, K., and A. Ager. 1998. Coarse Woody Debris Model - Version 1.2.
USDA Forest Service, Mt. Hood and Gifford Pinchot National Forest.

75

Ohmann, J.L., W.C. McComb and A.A. Zumrawi. 1994. Snag abundance for
primary cavity-nesting birds on nonfederal forest lands in Oregon and
Washington. Wildlife Society Bulletin 22:607-620.

Paredes V, G.L., and J.D. Brodie. 1987. Efficient specification and solution of the
even-aged rotation and thinning problem. For Sci. 33:14-29.

Reiter, M.L., and R.L. Beschta. 1995. Effects of forest practices on water. Pp:1-
185 in Cumulative Effects of Forest Practices in Oregon: Literature and
Synthesis, Beschta, RI., J.R. Boyle, C.C. Chambers, W.P. Gibson, S.V.
Gregory, J. Grizzel, J.C. Hagar, J.L. Li, W.C., McComb, T.W. Parzybok,
M.L. Reiter, G.H. Taylor and J.E. Warila. Oregon Department of Forestry,
Salem, OR.

USDA Forest Service and USD1 Bureau of Land Management. 1994. Record of
Decision for Amendments to Forest Service and Bureau of Land
Management Planning Documents Within the Range of the Northern
Spotted Owl; Standards and Guidelines for Management of Habitat for
Late-Successional and Old-Growth Forest Related Species Within the
Range of the Northern Spotted Owl. Washington, DC: U. S. Government
Printing Office.

USD1 Bureau of Land Management, Medford District, USDA Forest Service,
Rogue River National Forest, USDA Forest Service, Siskiyou National
Forest, USDA Forest Service, PNW Research Station. 1994. Applegate
Adaptive Management Area Ecosystem Health Assessment. Pp. 1-76.

Walters, D.K., D.W. Hann, and M.A. Clyde. 1985. Equations and tables for
predicting gross total stem volumes in cubic feet for six major conifers of
Southwest Oregon. Forest Research Laboratory, Oregon State University.
Research Bulletin 50. 36p.

Yoshimoto, A., J.D. Brodie, and J. Sessions. 1994. A new heuristic to solve
spatially constrained long-term harvest scheduling problems. For. Sci.
40:365-396.

Yoshimoto, A., R.G. Haight, and J.D. Brodie. 1990. A comparison of the pattern
search algorithm and the modified PATH algorithm for optimizing an
individual tree model. For. Sci. 36:394-4 12.

76

77

Yoshimoto, A., G.L. Paredes V, and J.D. Brodie. 1988. Efficient optimization of an
individual tree growth model USDA For. Serv. Gen. Tech. Rep. RM-161:
154- 162.

APPENDICES

78

Appendix A: Growth Subroutines

The code for PREMO is presented in this Appendix. It is written in the

programming language C++. It is divided into several functions that are called

from MAiN. The programs for diameter growth include GROWT, BRATIO, and

HTDBH. The programs for height growth are GROWT, ECOCLASS, HTCALC,

HTDBH, HTGR5, and SICHG. The program for crown ratio change is GROWT

and the calculations for crown width are in main. The subroutines for calculating

volume were also translated and they are BFVOL, FORMCL, and RXDIB.

MAIN

#include "var.h"
mt fixO;
extem float abirth[linesor], ag;
float oldabirth[linesor];
I/double saveht[linesor],
double k;
float elev=45, slope=5, aspect=90;
double snagscost, snags, nusnags, snagsmorttemp, snagtrees;

I/taper
#include "windows.h"
#define TAPER DLL
#include "taper.h"
HINSTANCE DLL; II handle to the dll
diDIB pfdiDlB; II pointer to function in dll
/IMerch}{eight pfMerch}{eight; II pointer to function in dll

II goal combinations
float gc[goalcombos];
mt ksnag, kstree, kdwd, createsnags, mcflimit;
mt gcctr, origlines, a, b, c, zerosfiag, lastctr;
float fishtreesgoal, ccgoal;
double verticalvargoal, snagsgoal, snagsgoaltemp, dwdgoal, fbigoal, feigoal;
float ftg[goalcombos]={5,5,5,5,5,5,5,5,5},
ccg[goalcombos]= {60,60,60,60,80,60,60,60,60};
double vertg[goalcombos]={50,50,50,50,lOO,50,50,50,50};
double sg[goalcombos]={5,5,5,5,5,5,5,5,5};
double dwdg[goalcombos]={120,120,120,120,120,120,120,120,120};
double fbig[goalcombos]={30,30,30,30,30,30,30,30,30};
double feig[goalcombos]= {30,30,30,30,30,30,30,30,30};
double origcr[linesor], origdwdpa[linesor], origdwdld[linesor] ,origdwdln[linesor];
double origdwddensity[linesor], origmoi tlpa[linesor], dwdjunk;

79

80

double origtpa[linesor], origdbh[linesor], oright[linesor], origsdensity[linesor];
mt origld[linesor], origsp[linesor], origreportsp[linesor], origsnagage[linesor];
mt origdwdage[linesor], origdwdflag[linesor], dwdgrowsp, dwdreportsp;
mt origdwdsp[linesor];
double totalmctharvest;
double tinsectdev=O, tfishtreesdev=O, tccdev=O,tfei=O,tfbi=O,tverticaldev=O, tsnagsdev=O,
tdwddev=O;

II variables for mortality
double morttot, lpinemort, mpinemort, lpinekill, mpinekill, lpinetpa, mpinetpa;
mt htorder[linesor];
double plotba, windmortba, mortba, windmoi Ltpa, talitrees, heighttall5 trees;
mt snagflag[linesor] [periods], dwdage[linesor] [periods] [periods],
snagage[linesor] [periods];
mt dwdflag[linesori [periods] [periodsi [2], snagsp[linesor] [periods];
mt dwdsp[linesor] [periods] [periods];
double snagtpa[linesori [periods], snaght[linesor] [periods];
double snagdensity[linesor] [periods], snagdbh[linesorhl [periods];

double dwdln[linesori [periods] [periods] [2], dwdld[linesor] [periods] [periods] [2];
double dwdpa[linesor] [periods] [periods [2], dwddensity[linesor] [periods I

[periods];
double reportsnag[5] [5], reportdwd [2] [511 [5], createsnagsmoi Ltpa[linesor];
mt dctr, dper, actr, left;

//regen
double harvesttrees, totaltrees;
mt regenper, rsavelines, rsavesp[linesor];
double rsavetpa[linesor], rsaveba[linesor] ,rsavemaxhrvtpa[linesor];

II external variables
mt lines, oldlines;
double pba, futba[linesor];
double moi Ltpa[linesor];
double flameln, oldflameln;

II variables for output
FILE *growfp;
mt flagforperiod 1, flagforhtic=1;
FILE *editfp, *hsfp *davidfp;
double mcfvolharvest, baharvest, reportnusnags;

II variables for inputing data
mt plot[linesor], treeid[linesor];
double cr[linesor]
char *spec, *spec2;
double tpa[linesor], dbh[linesor], ht[linesor], sdensity[linesor];
mt ld[linesor], sp[linesor], reportsp[linesor];
mt ctr, fscanfint, dwdctr, dwdlines, deadlines;
FILE *ofp;

II variables for functions

mt vegclass;

II variables for standard deviation
mt sdctr=0;
double sumobj, meanobj, sqterm, sumsqterm, stdev;
mt minflag, ctrformaxhrvtemp, editfctr;

II variables for saving maximum objective function
mt maxctr, maxptr[linesor];
double maxobj [line son, minsumdev[lineson];
double maxhrvtpa[linesor], maxhrvtpatemp;
double goalattainment[periods] ,presenthetvalue [periods];
double totalvalue, totalsumdev;

II variables for stabilizing the objective function
//float
double stblhrvtpa[linesor];
double lastdev, lastobj;
mt stblctr, stblflag;

II variables for growth and value calculations
double rescr[linesor];
double hrvtpa[linesor], restpa[linesor], resdbh[linesor], resht[linesor];
double objtpa[linesor], objdbh[linesor];
double vol[linesor], resvol[linesor];
double obj, presentobj, futureobj, saveobj;
mt fixresctr, solctr, solfiag, hrvflag;
double ba[linesor], resba[linesor];
double x[linesor];
mt first, last, baptr[linesor], initialize=1;
double htg[linesor],dg[linesor];
double cw[linesor], rescw[linesor];
double
cwcol [totsp]=(2.4922,4.4215,4.0920,2.8541 ,7.5 183,2.8541,3.1146,3.2367,7

double
cwco2[totsp]= (0.8544,0.5329,0.4912,0.6400,0.4461,0.6400,0.5780,0.6247,0.

double
cwco3 [totsp]= (0.1400,0.5170,0.4120,0.4070,0.8150,0.4070,0.3450,0.4060,0.

double presentsumdev, futuresumdev, sumdev, savesumdev;
double olddbh[linesor], oldht[linesor], oldcr[linesor], growctr;
double presentpba;
double bfv[linesor], bfrev[linesor];

II variables for multiple periods
mt per;
char goalemphasisname[2];

81

.5183,3.8166}

4461,0.5229}

81 50,0.4520}

II species characters
char bochar[3]="BO", dfchar[3]="DF", icchar[3]="IC", kpchar[3]="KP";
char mchar[3]"M", ppchar[3]="PP", rfchar[3]="RF", spchar[3]="SP";
char tochar[3]="TO", wfchar[3]='WF";

/******************************** IMPORTANT
* *1

//#define DAVID RuN
#define HEIDI_RUN

#ifdef DAVID_RUN
void main(int argc, char *argv[]) II David

#endif

#ifdef HEIDI_RUN
void main(void)

#endif
/**
********************/

II beginning of main
(

I/SOME LOCAL VARIABLES USED BY HEIDI AND DAVID
mt GoalEmp, CurPer, TreeList;
FILE *jndex;
mt ScanStatus,IndexNo,Found;
char TreeFileName[l 001="";
char Temp[1001="";

#ifdef DAVID_RUN I/NEEDS to be defined when running
on David's computer
/* David G. added the following to allow the use of a .bat file to allow the program to be
called up
as a separate executable from the main Applesite program. The Applesite program will
create the .bat
file each time this Standopt needs to be run. For any run, the input arguments passed will
be:

-- The name of this .exe (standopt.exe which goes into argv[0])
-- Which goal # emphasis to use (a default value of 6 will be made by Applesite but will

change as needed)
-- What the current period is
-- What tree list to use.. .this will be a index number that can be cross referenced in the file

called
TREE1NDEX.txt which will be kept in the \Constant\ directory.

*1

82

GoalEmp = atoi(argv[1]);
CurPer = atoi(argv[2]);
TreeList = atoi(argv[3]);

if(TreeList = 209)
{

printf("\nReceived a Treelist value of 209, which is water,barren, G/F, or shrub
not optimizing!\n");

exit(1);
}

char TreelndexFile[90]= "G:\\applesite\\inputs\\Constant\\Mastertreeindex.txt";
char GrowoutDir[90]="g:\\applesite\\outputs\\Standopt\\growout";
char HtoutDir[90]="g:\\applesite\\outputs\\Standopt\\ht_";
char HsoutDir[90]="g:\\applesite\\outputs\\Standopt\\hs";
char DoutDIR[90]=hg:\\applesite\\outputs\\Standopt\\david_!;

#ifdef DEBUG_ON
printf("Goal Emphasis value is: %d\n",GoalEmp);
printf("Current Period is: %d\n ,CurPer);
printf("Tree List index number is: %d\n", TreeList);
printf("\ntreeindexfile=%s\n" ,TreelndexFile);

#endif

Temp[0] =
strcat(Temp, GrowoutDir);
strcat(Temp, argv[3]);
strcat(Temp, ".txt");
growfp = fopen(Temp,"w");

Temp[0] =
strcat(Temp, HtoutDir);
strcat(Temp, argv[3]);
strcat(Temp, 11.txt");
editfp=fopen(Temp,"w");

Temp[0] =
strcat(Temp, HsoutDir);
strcat(Temp, argv[3]);
strcat(Temp, ".txt");
hsfp=fopen(Temp,"w");

Temp[0] =
strcat(Temp, DoutDir);
strcat(Temp, goalemphasisname);
strcat(Temp, ".txt");
davidfp=fopen(Temp,'w");

#endif

83

#endif

84

#ifdef HEIDI RUN //NEEDS to be defined when running on
Heidi's computer
/1 Heidichange

GoalEmp=8;
CurPer=O;
TreeList=11;// 11 or 12

char goalemphasisname[2];
goalemphasisname[O]='8';
goalemphasisname[1]='\O';

char GrowoutDir[90]="c :\\apple\\vegtype\\output\\growout";
char HtoutDir[90]="c :\\apple\\vegtype\\output\\ht't;
char HsoutDir[90]="c :\\apple\\vegtype\\output\\hs";
char TreelndexFile[90]="C:\\apple\\vegtype\\input\\Mastertreeindex.txt";
char DoutDir[9O]="c:\\app1e\\vegtype\\output\\david";

Temp[O] =
strcat(Temp, GrowoutDir);
strcat(Temp, goalemphasisname);
strcat(Temp, ".txt");
growf = fopen(Temp,"w");

Temp[O] =
strcat(Temp, HtoutDir);
strcat(Temp, goalemphasisname);
strcat(Temp, ".txt");
editf=fopen(Temp,"w");

Temp[O] =
strcat(Temp, HsoutDir);
strcat(Temp, goalemphasisname);
strcat(Temp, ".txt");
hsf=fopen(Temp,"w");

Temp[O] =
strcat(Temp, DoutDir);
strcat(Temp, goalemphasisname);
strcat(Temp, ".txt");
davidf=fopen(Temp,'tw");

II This is really the beginning of the actual programming stuff

index = fopen(TreelndexFile,"r");

if (index = NTJLL)
frintf(stderr, "opening of treeindex.txt failed: %s\n", strerror(errno));

else
{

#ifdef DEBUG_ON
printf("File: INDEX.txt opened with no problems in mode READ!\n");

#endif
}

I/now start searching through the file till you find the TreeList variable and set the
FileName string

I/to the next parameter in the index.txt file which will be opened later by this program
as the

I/input treelist.

Found = 0;
while ((ScanStatus=fscanf(index,"%d %s" ,&IndexNo,TreeFileName)) EOF)
{

if (IndexNo == TreeList)
{

printf("I found the correct file for tree list %d
%s\n" ,IndexNo,TreeFileName);

Found= 1;
break;

}

}

if (Found 0)

{

printf("There appears to be no treelist available for IndexNo: %d - Bailing
out!\n",IndexNo);

exit(0);
}

fclose(index);

II End of what David has added so far

II flame length increase
double treestimesdbh, hrvtreestimesdbh,preavgdbh,hrvavgdbh,dtodratio;

II other

85

double standhtic;
mt a,b,c, snagdclass, state, stdevctr;//, snaglow, snaghigh, snaghid;
mt introsnagage [3

I
[5] {5, 15,30,50,70,

5,10,15,30,40,
0,5,10,20,25};

double introsnagden[3[5]={0.416,0.350,0.271,0.193,0. 138,
0.383,0.324,0.276,0.168,0.121,
0.452,0.347,0.266,0.157,0. 120};

mt introdwdage[3][5]={5,15,40,85,130,
5, 15,3 5,70, 105,
5,15,20,40,55};

double introdwdden[3I [5]= {0.426,0.378,0.280,0. 195,0.136,
0.419,0.361,0.274,0.193,0.136,
0.397,0.349,0.269,0.180,0.133 };

II diDIB pfdiDlB; II pointer to function in dli

//initialize

for (ctr=0; ctr<linesor; ctr++)
{ plot[ctr]=0;

spec="";
tpa[ctr]=0;
dbh[ctr]=0;
ht[ctr]=0;
cr[ctr]=0;
maxhrvtpa[ctr]=0;
minsumdev[ctr]= 1 .7*pow(10,308);
sdensity[ctr]=0;
createsnagsmoi ttpa[ctr]=0;

}

I/input data
** * ********* ** ** ******** **** ** ************* ****** *********** * ** * *

Temp[0] =
strcat(Temp, GrowoutDir);
strcat(Temp, argv[3]);
strcat(Temp, goalemphasisname);
strcat(Temp, ".txt");
growf = fopen(Temp,"w");

I/David added these

II David

86

Temp[0] = I/David added these
strcat(Temp, HtoutDir);

II strcat(Temp, argv[3]); II David

strcat(Temp, goalemphasisname);
strcat(Temp, ".txt");
editffopen(Temp,"w");

Temp[O] =
strcat(Temp, HsoutDir);

II strcat(Temp, argv[3]);
strcat(Temp, goalemphasisname);
strcat(Temp, ".txtt1);
hsf=fopen(Temp,"w');

//ofp=fopen("c:\\apple\\vegtype\\p0960 .txt","r");
of=fopen(TreeFileName,"r"); I/David did this to

comply with .bat stuff
if (ofp == NULL)

frintf(stderr, "opening of the treelist %s failed: %s\n", TreeFileName,
strerror(errno));

else
{

#ifdef DEBUG_ON
printf("File: %s opened with no problems in mode

READ !\n" ,TreeFileName);
#endif

}

II ofp=fopen("c:\\apple\\vegtype\\p0960.txt","r");

ctr=O;
dwdctr=O;

while ((fscanfint=fscanf(ofp,"%d %d" ,&plot[ctr] ,&ld[ctr])) =EOF)
{

if(ld[ctr]==O ld[ctr]==1)
{

fscanf(of'%lf %d %d %lf %lf
%lf' ,&tpa[ctr] ,&sp[ctr] ,&reportsp[ctr] ,&dbh[ctr],

&ht[ctr] ,&cr[ctr]);

origdbh[ctr]=dbh[ctr];
if (dbh[ctr]==O)

{

dbh[ctr]=O. 1;
origdbh[ctr]=O. 1;

}

oright[ctr]=ht[ctr];
origcr[ctr]=cr[ctr];
origsp[ctr]=sp [ctr];

I/David added these

II David

87

origreportsp[ctr]=reportsp[ctr];

if (ld[ctr]==O)

{

fscanf(ofp,"%d" ,&state);
morttpa[ctr]=tpa[ctr];
tpa[ctr]=O;
if (dbh[ctr]<1 5)

snagdclass=2;
else if (dbh[ctr]<25)

snagdclass=1;
else

snagdclass=O;

if (state==O)
statel;

else
state--;

snagage [ctr] [O]=introsnagage[snagdc1ass [state];
sdensity[ctr]=introsnagden[snagdclass] [state];
origsnagage[ctr]=introsnagage[snagdclass] [state];
origsdensity[ctr]=sdensity[ctr];

}

origtpa[ctr]=tpa[ctr];
origmorttpa{ctr]=morttpa[ctr];
origld[ctr]=ld[ctr];

restpa[ctr]=tpa[ctr];
ba[ctr]pow((dbh[ctr]/24),2)*pi;
baptr[ctr]=ctr;

if (ht[ctr]>4.5)
cw[ctr]=cwco 1 [sp[ctr]] *pow(dbh[c] ,cwco2 [sp[ctr]]);

else
cw[ctr]=cwco3 [sp[ctr]] *ht[clI];

ctr++;

}

else
{

fscanf(ofp,"%lf %d %d %lf %lf %lf %dt' ,&dwdpa[dwdctr] [0] [01 [0],
&dwdsp[dwdctr] [0] [0],

&dwdreportsp, &dwdld[dwdctr] [01 [OIl [0],
&dwdln[dwdctr] [Ol [0] [0], &dwdjunk, &state);

if (dwdld[dwdctri [0] [01 [O]<1 5)
snagdclass=2;

else if (dwdld[dwdctr] [0] [01 [01<25)

88

}

lines=ctr;
origlines=lines;
dwdlines=dwdctr;
if (dwdlines>lines)

deadlines=dwdlines;
else

deadlines=lines;

fprintf(growfp,"Plot Species TPA DBH HT CR CW at beginning of period
%d yr=%d\n",

per,per*5+1998);
for (ctr=0; ctr<lines; ctr++)
(

fprintf(growfp, "%4.Od%6d%9 .2f%7 .2W07.1 f%4.0f%7 .2f ctr=%d\n",
plot[ctr] ,sp[ctr] ,tpa[ctr] ,dbh[ctr] ,ht[ctr] ,cr[ctr] ,cw[ctr] ,ctr);

}

vegclass=vegclassification(dbh,tpa,cw,reportsp,ba);
fprintf(davidfp,Period\n%d %d %d\n" ,per,lines,vegclass);
for (ctr=0; ctr<lines; ctr++)

fprintf(davidfp,"%d %f %.2f %. if %.Of %.2f\n",
sp [ctr] ,tpa[ctr] ,dbh[ctr] ,ht[ctr] ,cr[ctr] ,cw[ctr]);

fprintf(growfp, "Thank you\n");

#ifdef DEBUG_ON

}

snagdclass= I;
else

snagdclass=O;

if (state=O)
statel;

else
state--;

origdwdpa[dwdctr]=dwdpa[dwdctr] [0] [0I [0];
origdwdld [dwdctr]=dwdld [dwdctr] [0] [0] [0];
origdwdln[dwdctr]=dwdln[dwdctr] [0] [0] [0];
origdwdsp[dwdctr]=dwdsp[dwdctr] [0] [0];
dwddensity[dwdctr] [0I [0]=introdwdden[snagdclass] [state];
origdwddensity[dwdctr]=introdwdden[snagdclass [state];
dwdage [dwdctrl [0I [0]=introdwdage [snagdclass] [state];
origdwdage[dwdctr]=introdwdage [snagdclass] [state];
origdwdflag[dwdctr]= 1;
dwdflag[dwdctr] [0] [0] [0]= 1;

dwdctr++;

89

90

#ifdef DAVID_RUN
I/create a check index file to put the treelist value and vegclass value into for checking
I/after all prescriptions are run - will be checked by the Applesite program

FILE *Checldndex;
char CheckFile[60] = "G:\\applesite\\outputs\\STANDOPT\\Checklndex.txt";

Checklndex = fopen(CheckFile,'ta");

fprintf(Checklndex,"%d\t%d\n" ,TreeList,vegclass);
fclose(Checklndex);

exit(1);
#endif
#endif

/ This section is to check the growth model */

if (fix 1)

{

for (perO; per<2/*periods*/; per-H-)
{

initialize 1;

standhtic=sumdevfn(sp,ba,pba,cw,dbh,restpa,morttpa,O,presentobj ,ht,cr,flameln,editfp)

presentpbascalef(12.8,41.8);
presentpba=formcl(sp [0] ,dbh[O]);
presentpba=objfunction(tpa,dbh,vol);
vegclass=vegclassification(dbh,tpa,cw,reportsp,ba);
presentpba=standhticfn(ht,tpa,cr,flameln,O, 1);

II regen(tpa,ba,sp,maxhrvtpa,lines);
volharvest(tpa,dbh,ht);
if(pag==5 II pag=6 II pag7)

rootdisease(vol,sp);
standhtichtdbh(sp[O] ,dbh[O],ht[O] ,0);
standhtichtgr5(sp[O] ,85 ,ba[0] ,O. 1 ,cr[0] ,ht[0]);
growtrees(tpa,dbh,ht);
vols(tpa, dbh, dg, sp, ht);
standhticverticalcomplexity(ht,cr,tpa);
flameln=flamelnfii(dbh,tpa,cw,reportsp,ba);
standhticstandhticth(resht,tpa,rescr,flameln,O, 1);

for (ctrO; ctr<lines; ctr++)
fprintf(growf,"vol=%4.2f\n" ,bfv[ctr]);

II fprintf(growf,"htg=%4.2f dg=%4.2f
vol=%4.2f\n" ,htg[ctr] ,dg[ctr] ,bfv[ctr]);

fprintf(growf,"P1ot Species TPA DBH HT CR CW at beginning of
period %d yr%d\n",

}

else II no fix, actual run
{

#ifdef DAVID_RUN
DLL = LoadLibrary(g:\\applesite\\standopt\\sourcefiles\\taper.dll");

#endif

#ifdef HEIDI_RUN
DLL = LoadLibrary("taper.dll");

#endif
if(!DLL)

printf("couldn't load taper dll\n");

II set the pointers to the functions' address
pfdiDlB = (diDIB)GetProcAddress(DLL,"diDIB");

II check to make sure you got it!
if(pfdiDlB)
{

fprintf(stdout, "found diDIB\n");
}

for (gcctr=GoalEmp;gcctr<(GoalEmp + 1);gcctr++) //David did this to
comply with .bat stuff

k=O.001; I/this is a multiplier for sumdev in objective
printf("Goal Combination %d\n",gcctr);
fishtreesgoalftg[gcctr];
ccgoal=ccg[gcctr];
verticalvargoal=vertg[gcctr];
snagsgoal=sg[gcctr];
dwdgoal=dwdg[gcctr];

}

per+1 ,(per+1)*5+1 998);
for (ctr=O; ctr<lines; ctr++)
{ frintf(growf,"%4 .Od%6d%9.2f%7 .3fY07.1 f/5.1 fY06.2f ctr=%d\n",

plot[ctr] ,sp[ctr],tpa[ctr] ,resdbh[ctr] ,resht[ctr] ,rescr[ctr] ,rescw[ctr] ,ctr);
dbh[ctr]=rresdbh[ctr];
ht[ctr]=resht[ctr];
cr[ctr]=rescr[ctr];
cw[ctr]=rescw[ctr];
ba[ctr]=futba[ctr];

}

frintf(growf,"htic=%6.2f\n" ,standhtic);

91

92

fbigoal=fbig[gcctrl;
feigoal=feig[gcctrlj;
lines=origlines;
tinsectdevO;
tfishtreesdev=O;
tccdev=O;
tfei=0;
tfbi=O;
tverticaldev=O;
tsnagsdevO;
tdwddevO;

if (gcctr<8)
{

for (ctr=O; ctr<goalcombos; ctr++)
gc[ctrl=O;

ksnag0;
kstreeO;
kdwdO;

}

else/I all gcchange
{

for (ctrO; ctr<goalcombos; ctr++)
gc[ctr=1;

ksnagl;
kstreel;
kdwdl;
mcflimit= 1;
createsnags 1;

gc[4]=100;II000;
gc[O]1 00;II00000;
gc[3]= 100000;

}

if (gcctrO) II fire

{

gc[O]=1;
mcflimitO;
createsnags0;

}

else if (gcctr==1) //insects
{

gc[3=1;
mcflimit=0;
createsnags=0;

}

else if (gcctr==2) II fish

{

gc[4=1;
mcflimit=O;

createsnagsO;
}

else if (gcctr3 gcctr=4) II wildlife

{

gc [11=1;
gc[2]1;
ksnagl;
kstree=1;
kdwdl;
mcflimit=O;
createsnags= 1;

}

else if (gcctr==5) II PNV

{
mcflimit=1;
createsnags=O;

}

else if (gcctr==6) II fire, insects, PNV

{
gc[01 100;
gc[3]1000;
mcflimit= 1;
createsnags=O;
k=0.000 1;

}

else if (gcctr==7) II fish, wildlife, PNV
{

gc [11=1;
gc[2]=1;
ksnag=1;
kstree=1;
kdwd=1;
gc[4]1;
mcflimit= 1;
createsnags= 1;

}

for (ctr=0; ctr<linesor; ctr++)
{

sdensity[ctr]=O;
tpa[ctr]=0;
morttpa[ctr]=O;
dbh[ctr]=O;
ht{ctr]=0;
cr[ctr]0;
ld[ctr]=4;
sp{ctr]=0;
for (a=0; a<periods; a++)
{

snagsp[ctr [a]=999;

93

}

for (a=0; a<5; a++)
for (b0; b<5; b++)
{

reportsnag[a] [b]=O;
for (c=O; c<2; c++)

reportdwd[c1 [a] [b]0;
}

for (ctr=0; ctr<lines; ctr++)
{

tpa[ctr]=origtpa[ctr];
morttpa[ctr]=origmorttpa[ctr];
id [ctr]=origld[ctr];
dbh[ctr]=origdbh[ctr];
ht[ctr]=oright[ctr];
cr[ctr]=origcr[ctr];
sp[ctr]=origsp[ctr];
sdensity[ctr]=origsdensity[ctr];
snagage[ctrl [0]=origsnagage[ctr];
reportsp{ctr]=origreportsp[ctr];
maxbrvtpa[ctr]=0;
minsumdev[ctr]=1.7*pow(10,308);

restpa[ctr]=tpa[ctr];
ba[ctr]=pow((dbh[ctr]/24),2) *pj;
baptr[ctr]=ctr;
if (ht[ctr]>4.5)

}

snag flag[ctr] [a]=O;
snagage[ctr] [a]0;
snagtpa[ctrl [a]=O;
snaght[ctr] [a]=O;
snagdensity[ctr] [a]=O;
snagdbh[ctr] [a]=O;

for (b=0; b<periods; b++)
{

dwdsp[ctr] [a] [b]=999;
dwdage[ctr] [a1 [b]0;
dwddensity[ctr] [aI [b] =0;
for (c=0; c<2; c++)
{

dwdln[ctri [a] [b11 [c]=0;
dwdld[ctr] [a] [b] [c]=O;
dwdpa[ctrl [aI [b] [c]=O;
dwdflag[ctr [a] [b] [c]=0;

}

}

94

else
cw[ctr]=cwco 1 [sp [ctr]] *pow(dbh[cfrl ,cwco2[sp[ctr]]);

cw[ctr]cwco3 [sp[ctr]] *ht[cfr];

}

for (ctr=0; ctr<dwdlines; ctr++)
{

dwdpa[ctr] [0] [OIl [O]=origdwdpa[ctr];
dwdld[ctrl [01 [0] [0]=origdwdld[ctr];
dwdln[ctr] [0] [0] [0]=origdwdln[ctr];
dwddensity[ctri [01 [O]=origdwddensity[ctr];
dwdflag[ctr] [01 [0] [0]=origdwdflag[ctr];
dwdage[ctr] [0] [0]=origdwdage[ctr];
dwdsp [ctr] [0I [0]=origdwdsp [ctr];

}

flameln=flamelnfh(dbh,tpa,cw,reportsp,ba);

for (per=0; per<periods; per++)
{

printf("period %d\n",per);
if (peF 14)

printf(");

brvtpa[ctr]=0;
hrvflag=0;
maxctr=0;

presentpba0;
for (fixresctr=0; fixresctr<lines; fixresctr++)
{

presentpba+ba[fixresctr] *tpa[fiescfr];
maxptr[fixresctr]=99999999;

}

solflag=l;

do
{

if (maxctr0)
{

lastdev=l .7*pow(l 0,308);
lastobj=-99999999999;

}

else

95

optimized

initialize restpa

initialize resba

{

lastobj=maxobj [maxctr- I];
lastdev=minsumdev[maxctr- 1];

}

zerosflag=O;
for (ctr=O; ctr<lines; ctr++)
{

for (solctr=O; solctr<maxctr; solctr++) // check to see if this tree
{ // has already been

if (ctr==maxptr[solctr])
solflag=O;

}

if (tpa[ctr]-brvtpa[ctr]==O)
solflag=O;

if (solflag=1)
{

do
{

if (zero sflag== I)
brvtpa[ctr]+=HARVESTNIJMBER;

if (maxctr==24 && ctr==22)
printf("');

if(brvtpa[ctr]>tpa[ctr] && hrvflag=O)
{

hrvtpa[ctr]=tpa[ctrj;
hrvflag=1;

}

if(zerosflag==O)

{

for (fixresctr=O; fixresctr<lines; fixresctr++) //

restpa[fixresctr]=tpa[fixresctr] -brvtpa[fixresctr];

for (fixresctr=O; fixresctr<lines; fixresctr++) //

{

resba[fixresctrj=ba[ctr];
if (restpa[fixresctr]==O)

resba[fixresctr]=O;
}

// oldflameln=flameln;
}

else

96

{

restpa[ctr]=tpa[ctr]-brvtpa[ctr];
resba[ctr]=ba[ctr];
if (restpa[ctr]=O)

resba[ctr]=O;

restpa[lastctr]=tpa[lastctr]-brvtpa[lastctr];
resba[lastctr]=ba{lastctr];
if (restpa[lastctr]==O)

resba[lastctr]=O;

}

if (solflag1)
printf(" II);

volharvest(brvtpa,dbh,ht);
vols(brvtpa, dbh, dg, sp, ht);
presentobj=objfunction(brvtpa,dbh,vol);
presentsumdev=sumdevfi-i(sp,ba,presentpba,cw,dbh,restpa,

morttpa,O,presentobj ,ht,cr,flame1n,editf);

harvesttrees=O;
totaltrees=O;
treestimesdbh=O;
hrvtreestimesdbh=O;
for (fixresctr=O; fixresctr<lines; fixresctr++)
{

harvesttrees+=brvtpa[fixresctr];
totaltrees+=restpa[fixresctr];
treestimesdbh+=restpa[fixresctr] *resdbh[fi.escfr];

hrvtreestimesdbh+=brvtpa[fixresctr] *resdbh[fixresc];

}

if (harvesttrees>O && preavgdbh>O)

{

preavgdbh=treestimesdbhltotaltrees;
hrvavgdbh=hrvtreestimesdbhlharvesttrees;
dtodratio=hrvavgdbhlpreavgdbh;

97

}

else
dtodratio=O;

if(dtodratio<O.9 && harvesttrees>O)
flameln-=1;

if (harvesttrees==O)
flameln+=O. 33;

if (flameln<O.33)
flameln=O.33;

else if (flameln>15)
flameln=15;

if (zero sflag=O)
{

for (fixresctr=O; fixresctr<lines; fixresctr++)
{

olddbh[fixresctr]=dbh[fixresctr];
oldht[fixresctr]=ht[fixresctr];
oldcr[fixresctr]=cr[fixresctr];
oldabirth[fixresctr]=abirth[fixresctr];

}

oldflameln=flameln;
}

for (growctr=O; growctr<growperiods; growctr++)
{

growtrees(restpa,dbh,ht);

for (fixresctr=O; fixresctr<lines; fixresctr++)
{

dbh[fixresctr]=resdbh[fixresctr];
ht[fixresctr]=resht[fixresctr];
cr[fixresctr]=rescr[fixresctr];

}

pba=O;
for (fixresctr=O; fixresctr<lines; fixresctr++)
{

pba+=futba[fixresctr] *restpa[fiescfr1;

if (ht[fixresctr]>4.5)

cw[fixresctr]cwco 1 [sp[fixresctr]] *pow(dbh[fixresci.] ,cwco2[sp[fixresctr] 1);

else
cw[fixresctr]=cwco3 [sp[fixresctr]] *ht[fiescfr];

}

vols(restpa, resdbh, dg, sp, resht);

futureobj=obj function(restpa,resdbh,vol)/(pow((1 +interestrate),(per+ 1) * 5));
obj=presentobj+futureobj;

futuresumdev=sumdevfn(sp,futba,pba,rescw,resdbh,restpa,
morttpa, 1 ,futureobj ,resht,rescr,flame1n,editf);

sumdev=futuresumdev+presentsumdev;

}

98

for (fixresctr=O; fixresctr<lines; fixresctr++)
{

dbh[fixresctr]=olddbh[fixresctr];
ht[fixresctr]=oldht[fixresctr];
cr[fixresctr]=oldcr[fixresctr];
abirth[fixresctr]=oldabirth[fixresctr];
if (ht[fixresctr]>4.5)

cw{fixresctr]=cwco I [sp[fixresctr]] *pow(dbh[fiescfrI ,cwco2[sp[fixresctr] 1);
else

cw[fixresctr]=cwco3 [sp[fixresctr]] *ht[fiçjescfr];

}

flameln=oldflameln;

if (obj>minobjvalue)
{

if (gcctr>5)
{

if ((sumdev..k*obj)<minsumdev[maxctr])
{

minsumdev[maxctr]=sumdevk*obj;
maxobj [maxctr]=obj;
maxptr[maxctr]ctr;
maxhrvtpatemp=hrvtpa[ctr];
saveobj=presentobj;

// for (fixresctr=O; fixresctr<Iines; fixresctr++)
// saveht[fixresctr]=resht[fixresctr];
}

else if ((sumdevk*obj)__minsumdev[maxctr])
{

if (obj>maxobj [maxctr])

{

maxobj [maxctr]=obj;
maxptr[maxctr]=ctr;
maxhrvtpatemp=hrvtpa[ctr];
saveobj=presentobj;
for (fixresctr=O; fixresctr<Iines;

fixresctr++)
// saveht[fixresctr]=resht[fixresctr];
}

}

}

else if (sumdev<minsumdev[maxctr])
{

minsumdev[maxctr]=sumdev;
maxobj [maxctr]=obj;
maxptr[maxctr]=ctr;
maxhrvtpatemp=hrvtpa[ctr];
saveobj=presentobj;

99

II for (fixresctr=O; fixresctr<lines; fixresctr++)
II saveht[fixresctr]=resht[fixresctr];
}

else if (sumdev=minsumdev[maxctr])
{

if (obj>maxobj [maxctr])
{

maxobj [maxctr]=obj;
maxptr[maxctr]=ctr;
maxhrvtpatemp=hrvtpa[ctr];
saveobj=presentobj;

II for (fixresctr=O; fixresctr<lines; fixresctr++)
II saveht[fixresctr]=resht[fixresctr];
}

}

if(per==6 && maxptr[1]==23)
fprintf(editfp,"");

}

zerosflag= 1;

} while (hrvtpa[ctr]<tpa[ctr]);

hrvtpa[ctr]=O;
hrvflag=O;
lastctr=ctr;

} II end of if statement, no max cli

solflag=1;

}

if (((minsumdev[maxctr- 1]>minsumdev[maxctri maxctrO)
I (minsumdev[maxctr- 11=0 && minsumdev[maxctr]==O &&

maxobj [maxctr]>maxobj [maxctr- 1]))
&& maxptr[maxctr] !=99999999)

{

maxhrvtpa[maxptr[maxctr]]maxhrvtpatemp;
hrvtpa[maxptr[maxctr]]=maxhrvtpatemp;

}

maxhrvtpatemp=O;

II stabilizing

for (solctr=0; solctr<lines; solctr++)
stblhrvtpa[solctr] =maxhrvtpa[solctr];

100

if (per==1 8)
printf(");

if (((minsumdev[maxctr- 1]>minsumdev[maxctr] II maxctr=0)
(minsumdev[maxctr- 11=0 && minsumdev[maxctr]0 &&

maxobj [maxctr]>maxobj [maxctr- 1]))
&& maxptr[maxctr]!=99999999)

{ do

{ for (stblctr=0; stblctr<maxctr+ 1; stblctr++)
{

stblhrvtpa[maxptr[stblctr]]=O;

do

{

for (fixresctr=0; fixresctr<lines; fixresctr++)
restpa[fixresctr]=tpa[fixresctr]-

stblhrvtpa[fixresctr];

for (fixresctr=O; fixresctr<Iines; fixresctr++)
{ resba[fixresctr]=ba[ctr];

if (restpa[fixresctr]=O)
resba[fixresctr]0;

}

if (stblflag== 1)

{ fprintf(editfp,");
}

volharvest(stblhrvtpa,dbh,ht);
vols(stblhrvtpa, dbh, dg, sp, ht);
presentobj=objfunction(stblhrvtpa,dbh,vol);

presentsumdev=sumdevfn(sp,ba,presentpba,cw,dbh,restpa,morttpa,
0,presentobj ,ht,cr,flameln,editfp);

harvesttrees=O;
totaltrees=0;
treestimesdbh=O;
hrvtreestimesdbh=0;
for (fixresctr=O; fixresctr<lines; fixresctr++)
{

harvesttrees+=stblhrvtpa[fixresctr];
totaltrees+=restpa[fixresctr];

treestimesdbh+=restpa[fixresctr] *resdbh[fiescfr1;

hrvtreestimesdbh+=stblhrvtpa[fixresctr] *resdbh[fiescfr1;

}

101

II oldflameln=flameln;

if (harvesttrees>O)

{

preavgdbh=treestimesdbh/totaltrees;
hrvavgdbh=hrvtreestimesdbb!harvesttrees;
dtodratio=hrvavgdbh/preavgdbh;

}

else
dtodratio=O;

if (dtodratio<O.9 && harvesttrees>O)
flameln-= 1;

if (harvesttrees==O)
flameln+=O.3 3;

if (flameln<O.33)
flameln=O.3 3;

else if (flameln>1 5)
flameln= 15;

for (fixresctr=O; fixresctr<lines; fixresctr++)
{ olddbh[fixresctr]=dbh[fixresctr];

oldht[fixresctr]=ht[fixresctr];
oldcr[fixresctr]=cr[fixresctr];
oldabirth[fixresctr]=abirth[fixresctr];

if (ht[fixresctr]>4.5)

cw[fixresctr]=cwco 1 [sp [fixresctr]] *pow(dbh[fixresc] ,cwco2[sp[fixresctr]]);
else

cw[fixresctr]=cwco3 [sp[fixresctr]] *ht[fiMesc];

}

oldflameln=flameln;

for (growctr=O; growctr<growperiods; growctr++)
{

growlrees(restpa,dbh,ht);

for (fixresctr=O; fixresctr<lines; fixresctr++)
{ dbh[fixresctr]=resdbh[fixresctr];

ht[fixresctr]=resht[fixresctr];
cr[fixresctr]=rescr[fixresctr];

}

}

pba=O;
for (fixresctr=O; fixresctr<ljnes; fixresctr++)

102

pba+=futba[fixresctr] *resa[fiesc];
if (ht[fixresctr]>4.5)

cw[fixresctr]=cwco I [sp [fixresctr]] *pow(dbh[fixrescfr] ,cwco2[sp[fixresctr]]);
else

cw[fixresctr]=cwco3 [sp[fixresctr]] *ht[fiescfr];
}

vols(restpa, resdbh, dg, sp, resht);

futureobj=obj function(restpa,resdbh,vol)/(pow((I +interestrate),(per+ 1) *5));
obj=presentobj+futureobj;

futuresumdev=sumdevfri(sp,futba,pba,rescw,resdbh,restpa,moi ltpa,
I ,futureobj ,resht,rescr,flameln,editfp);

sumdev=futuresumdev+presentsumdev;

for (fixresctr=O; fixresctr<lines; fixresctr++)
{

dbh[fixresctr]=olddbh[fixresctr];
ht[fixresctr]=oldht[fixresctr];
cr[fixresctr]=oldcr[fixresctr];
abirth[fixresctr]=oldabirth[fixresctr];

if (ht[fixresctr]>4.5)

cw[fixresctr]=cwco I [sp [fixresctr]] *pow(dbh[fixrescfr] ,cwco2[sp[fixresctr]]);
else

cw[fixresctr]=cwco3 [sp [fixresctr]] *ht[fiesc1j];

}

flameln=oldflameln;

if (obj>minobj value)
{

if (gcctr>=5)
II if(gcctr<7) I/use PNV for all runs
{

if ((sumdevk*obj)<minsumdev[stblctr])
{

minsumdev[stblctr]sumdevk*obj;
maxobj [stblctr]=obj;

103

savesumdev=sumdev;

maxbrvtpatemp=stblbrvtpa[maxptr[stblctr]];
minflag= 1;
ctrformaxhrvtempmaxptr[stblctr];
saveobj=presentobj;

II for (fixresctr=O; fixresctr<lines;
fixresctr++)

II saveht[fixresctr]=resht[fixresctr];
}

II else if ((sumdev-
k*obj)>=(minsumdev[stblctr]O.001) && II no longer works for large numbers

II (sumdev
k*obj)<=(minsumdev[stblctr]+O.00 1)) II use .0001% instead

else if (fabs(sumdev-
k*obj)>=fabs(minsumdev[stblctr]0.000 I *minsumdev[stb1c]) &&

fabs(sumdev-
k*obj)<=fabs(minsumdev[stblctr]+0.000 I *minsumdev[stblcfrl))

{

if (obj>=(maxobj [stblctr]-0.0 I))

{

maxobj [stblctr]=obj;
savesumdev=sumdev;

maxbrvtpatempstblbrvtpa[maxptr[stblctr]];
minflag= I;
ctrformaxhrvtempmaxptr[stblctr];
saveobj=presentobj;
for (fixresctr=0; fixresctr<lines;

fixresctr++)
II saveht[fixresctr]=resht[fixresctr];
}

}

}

else if (sumdev<minsumdev[stblctr])
{ minsumdev[stblctr]=sumdev;

maxobj [stblctr]=obj;
savesumdev=sumdev;
maxbrvtpatemp=stblhrvtpa[maxptr[stblctr]];
minflag=1;
ctrformaxhrvtemp=maxptr[stblctr];
saveobj=presentobj;

II for (fixresctr=0; fixresctr<lines; fixresctr++)
II saveht[fixresctr]=resht[fixresctr];
}

else if (sumdev>=(minsumdev[stblctr]-0.001) &&
sumdev<=(minsumdev[stblctr]+0.00 1))

{ if (obj>=(maxobj[stblctr]-0.01))
(maxobj [stblctr]=obj;

savesumdev=sumdev;

104

maxhrvtpatemp=stblhrvtpa[maxptr[stblctr] 1;

minflag=1;
ctrformaxhrvtemp=maxptr[stblctr];
saveobj=presentobj;

II for (fixresctr=O; fixresctr<lines;
fixresctr++)

II saveht[fixresctr]resht[fixresctr];
}

}

}

stblhrvtpa[maxptr[stblctr]] +=HARVESTNTJMBER;
I/David defined in var.h/15;

if (stblhrvtpa[maxptr[stblctr]]>tpa[maxptr[stblctr]]
&& stblflag=O)

{ stblhrvtpa[maxptr[stblctr]]=tpa[maxptr[stblctr]];
stblflag=1;

}

}while
(stblhrvtpa[maxptr[stblctr]]<=tpa[maxptr[stblctr]]);//- 1)

stblflagO;

stblhrvtpa[maxptr[stblctr]]=maxhrvtpatemp;

}

maxhrvtpatemp=O;
for (fixresctr=O; fixresctr<lines; fixresctr++)

maxhrvtpa[fixresctr]=stblhrvtpa[fixresctr];

fprintf(growfp,"stabilizing: stblctr=%d mindev=%f' ,stblctr-
1 ,minsumdev[stblctr- 1]);

II minflag=O;

II }

II standard deviation to see if the harvest tpa have stabilized

sumobj=O;
sumsqterm=O;

for(sdctr=O; sdctr<maxctr+1; sdctr++)
sumobj +=minsumdev[sdctr];

meanobj=sumobjl(maxctr+ 1);

for(sdctr=O; sdctr<maxctr+ 1; sdctr++)

105

106

{ sqterm=pow((minsumdev[sdctr]-meanobj),2);
sumsqterm+=sqterm;

stdev=pow(sumsqterml(maxctr),O.5);
fprintf(growf," stdev=%f\n" ,stdev);
if (stdev>0.5)

stdevctr++;

II if (maxctr=O)
II stdev=O;

if (stdevctr>6)
printf("might want to check\n");

if (stdev<O)
stdev=O;

) while (stdev>0.5);
stdevctr=O;

for (stblctr=O; stblctr<lines; stblctr++)
{

maxhrvtpa[sth1ctr]=stblhrrtpa[stblctr];
hrvtpa[stblctr]=sthlhrvtpa[sthlctr];

maxctr+= 1;
if (maxctr>=24)

printf("found");

fprintf(growf,"\n");
} while (minsumdev[maxctr- 1]<lastdev

II (minsumdev[maxctr- 11=0 && lastdev==0 && maxobj [maxctr-
1 j>lastobj));

II grow with best prescription

if (mcflimit==1)
{

totalmctharvest=O;
volharvest(maxhrvtpa,dbh,ht);
for (fixresctr=O; fixresctr<lines; fixresctr++)

totalmctharvest+=vol [fixresctr] *maxvtpa[fixrescfr];

if (totalmctharvestl 1000<0.5) II change mcflimit
{

}

for (fixresctr=O; fixresctr<lines; fixresctr++)
restpa[fixresctr]=tpa[fixresctr]-maxhrvtpa[fixresctr];

growtrees(restpa,dbh,ht);

volharvest(maxhrvtpa,dbh,ht);
presentobj=objfunction(maxhrvtpa,dbh,vol);

II ntf(hsf,"%4.2f ",mcfvolharvest,baharvest);

if(per==15)
printf("t);

vegclass=vegclassification(dbh,tpa,cw,reportsp,ba);
presentsumdev=sumdevfi-i(sp,ba,presentpba,cw,dbh,tpa,

moi ttpa,2,presentobj ,ht,cr,flameln,editf);
if (GoalEmp=9)

presentsumdev=sumdevfi-i(sp,resba,presentpba,rescw,resdbh,restpa,
moi tlpa,2,presentobj ,resht,rescr,flame1n,editf);

I/this next part on changing flamein needs to be checked with Bernie <>
I/it also occurs in hrvtpa, stblhrvtpa

harvesttrees=O;
totaltrees=O;
treestimesdbh=O;
hrvtreestimesdbh=O;
mcfvolharvest=O;
baharvest=O;
for (fixresctr=O; fixresctr<lines; fixresctr++)
{

harvesttrees+=maxhrvtpa[fixresctr];
if (maxhrvtpa[fixresctr]>O)

mcfvolharvest+=maxhrvtpa[fixresctr] *vol [fixresctr];
baharvest+=maxhrvtpa[fixresctr] *ba[fiescfr];
totaltrees+=tpa[fixresctrj;
treestimesdbh+tpa[fixresctr] *dbh[fiescfr];
hrvtreestimesdbh+=maxhrvtpa[fixresctr] *dbh[fixrescfr];

}

frintf(hsfp,'%4.2f %4.2f ,mcfvolharvest,baharvest);

if (harvesttrees>O)
{

}

for (fixresctr=O; fixresctr<lines; fixresctr++)
maxhrvtpa[fixresctr]=O;

107

preavgdbh=treestimesdbh!totaltrees;
hrvavgdbh=brvtreestimesdbb!harvesttrees;
dtodratio=hrvavgdbh!preavgdbh;

}

else
dtodratio=O;

if (dtodratio<O.9 && harvesttrees>O)
flameln-=l;

if (harvesttrees==O)
flameln+=O .33;

if (flameln<O.33)
flameln=O.33;

else if (flameln>l 5)
flameln=l 5;

II print harvest
trees***

for (ctr=O; ctr<lines; ctr++)

{

if (maxbrvtpa[ctr]>O)
fprintf(growf, "tpa harvested %8 .21f from

%2d\n" ,maxhrvtpa[ctr] ,ctr);

}

II new cycle

plotba=O;
snagscostO;
goalattainment[per]=minsumdev[O];
presentnetvalue [per] =maxobj [0];
totalsumdev+=savesumdev;
savesumdev=O;
totalvalue+=saveobj/(pow((I +interestrate) ,@er*5)));
fprintf(hsf,"%4.2ft',saveobj/(pow((I +interestrate),(per*5))));
saveobj=0;
flagforperiod=1; I/this allows sort in growtrees once per period
flagforhtic=l;

I/if regen, enter new trees here and reset lines

for (ctr=O; ctr<lines; ctr++)
{

if (perO)
morttpa[ctr]=origmorttpa[ctr];

else

108

plus

moi Llpa[ctr]=O;
tpa[ctr]=tpa[ctr] -maxhrvtpa[ctr];
if (tpa[ctr]<O)

tpa[ctr]=tpa[ctr];
ba[ctr]=pow((resdbh[ctr]/24),2)*pi;
baptr[ctr]=ctr;
if (ld[ctr]==O && per==O)

{

ht[ctr]=ht[ctr];
dbh[ctr]=dbh[ctr];

}

else

{

dbh[ctr]=resdbh[ctr];
ht[ctr]=resht[ctr];

}

htorder[ctr]=ctr;
cr[ctr]=rescr[ctr];

maxobj [ctr]=O;
maxhrvtpa[ctr]=O;
stblhrvtpa[ctr]=O;
maxptr[ctr]=99999999;
hrvtpa[ctr]=O;
minsumdev[ctr]=1.7*pow(1O,308);
plotba+=ba[ctr] *tpa[ctrl;
if (dbh[ctr]==O)

dbh[ctr]=O;

if (ht[ctr]>4.5)
cw[ctr]=cwco 1 [sp[ctr] I *pow(dbh[cfr] ,cwco2 [sp[ctr]]);

else
cw[ctr]=cwco3 [sp[ctr]] *ht[cfr];

}

lastdev=1 7*pow(1 0,308);

vegclass=vegclassification(dbh,tpa,cw,reportsp,ba);
fprintf(hsfp," %d ",vegclass);

if (createsnags)
{

for(ctr=O; ctr<lines; ctr++)
{

morttpa[ctr]+=createsnagsmoitlpa[ctr]; II change added a

createsnagsmoi Upa[ctr]=0;

109

I/this section for mortality

if(elev>4000 && plotba>120 && aspect>=45 && aspect<=315)
{ I/if this is possible for

windthrow

quicksort3(htorder,O,lines-1 ,ht);

ctr=O;
talltrees=O;
while (talltrees<5 && ctr<lines)
{

talltrees+=tpa[htorder[ctr]];
heighttall5trees+=ht[htorder[ctr]] *tpa[htorder[cfrl];
if (talltrees>5)

heighttall5trees-=ht[htorder[ctr]] *(talllj-ees_5);
ctr++;

}

if (talltrees>O)
heighttall5trees/=talltrees;

else
heighttall5trees=O;

if (heighttall5trees>50)
{

mortba=O;
windmortba=plotba*O.0025;
ctr=O;

do

{
mortba+=ba[htorder[ctr]] *tpa[htorder[c.ç]];
if (mortba<windmortba)

windmorttpa=tpa[htorder[ctr]];
else

{ windmorttpa=tpa[htorder[ctr]]-(mortba-
windmortha)/ba[htorder[ctr]];

II mortba-=mortba-windmortba;
mortba=windmortba;

}

morttpa[htorder[ctr]]+=windmorttpa;
tpa[htorder[ctr]]-=windmorttpa;
ctr++;
if (ctr==lines)

mortba=windmortha;
} while (mortba<windmortba);

}

quicksort(baptr,O,lines- 1 ,ba);

}

110

if (plotba>O)

{
morttot=plotba*O.0005;
lpinemoi t_iilorttot*O .67;
mpinemort=morttot-lpinemort;

lpinekill=O;
mpinekill=O;
lpinetpaO;
mpinetpa=O;
ctr=O;

while (dbh[baptr[ctr]]>8 && ctr<lines)
{

if (sp[baptr[ctr]]=3 II sp[baptr{ctr]]==5 II sp[baptr[ctr]]==7)
{

if (dbh[baptr[ctr]]>20)
{

if (lpinekill <lpinemort)
{

lpinekill+=tpa[baptr[ctr]] *ba[bapfr[cfrII;
lpinetpa+=tpa[baptr[ctr]];
moi ttpa[baptr[ctr]]+=tpa[baptr[ctr]];
tpa[baptr[ctr]]-=tpa[baptr[ctr] 1;

if (lpinekill>lpinemort)
{ lpinetpa=(lpinekill-lpinemort)/ba[baptr[ctr] 1;

moi ttpa[baptr[ctr]]-=lpinetpa;
tpa[baptr[ctr]]+lpinetpa;

}

}

}

else if (mpinekill <mpinemort)
{

mpinekill+=tpa[baptr[ctr]] *ba[baptr[cfrII;
mpinetpa+=tpa[baptr[ctr] 1;

moi ttpa[baptr[ctr]]+=tpa[baptr[ctr]];
tpa[baptr[ctr]] -=tpa [baptr[ctr] 1;

if (mpinekill>mpinemort)
{ mpinetpa=(mpinekill-mpinemort)/ba[baptr[ctr]];

moi ttpa[baptr[ctr]]-=mpinetpa;
tpa[baptr[ctr]] +=mpinetpa;

}

}

}

ctr++;

}

111

if((pag==5 pag==6 pag=7)&& rootdiseasetriggerl)
rootdisease(vol,sp);

if (plotba>O)

{

snagsO;
snagtreesO;
for (a=O; a<lines; a++)

{

if(dbh[a]>=16 && dbh[a]<30)
snagtrees+=tpa[a];

}

for (a=2; a<5; a++)
for (b0; b<4; b++)

snags+=reportsnag[a [b];

frintf(growf," snags=%4.2f\n",snags);

if (snags<snagsgoal)
{

snagsgoaltemp=snagsgoal+O.3;
if (createsnags && (snags+snagtrees>snagsgoaltemp))
{

nusnags=snagsgoaltemp-snags;
snagscost=34.75 *nusnags;
reportnusnags=O;

ctr=O;
while (snags<snagsgoaltemp)
{

if(dbh[ctr]>=16 && dbh[ctr]<30)
{

snags+=tpa[ctr];
if (snags<snagsgoaltemp)

snagsmorttemp=tpa[ctr];
else
{

snagsmorttemp=tpa[ctr] -(snags-snagsgoaltemp);

112

for (ctrO; ctr<lines; ctr++)
{

if (morttpa[ctr]>O)
fprintf(growf,"morttpa[%d]=r%4.2f\n" ,ctr,morttpa[ctr]);

}

}

deadwood(morttpa,ht,dbh);

%d\n" ,per+ 1);

}

II deadwood(morttpa,ht,dbh);
II presentsumdev=sumdevfn(sp,ba,presentpba,cw,dbh,tpa,
II morttpa,2,presentobj ,ht,cr,flame1n,editf);

oldlines=lines;
if(per>1 && per%2==0)

regen(rsavetpa,rsaveba,rsavesp,rsavemaxhrvtpa,rsavelines);
if (lines>oldlines)
{

for (ctr=0; ctr<lines; ctr++)
baptr[ctr]=ctr;

}

if (per%2==0)//((totaltrees-harvesttrees)/totaltrees > 0.20 &&
regenper! r=per+ 1)

{

regenper=per+2;
rsavelines=lines;
for (fixresctr=0; fixresctr<lines; fixresctr++)
{

rsavetpa[fixresctr]=tpa[fixresctr];
rsavesp[fixresctr]=sp[fixresctr];
rsaveba[fixresctr]=ba[fixresctr];
rsavemaxhrvtpa[fixresctr]=maxhrvtpa[fixresctr];

fprintf(growf,"tota1 deviations %7 .2f, total value
%9.2f\n" ,totalsumdev,totalvalue);

fprintf(growf,"Plot Species TPA DBH HT CR CW beg of per

}

}

snags=snagsgoaltemp;
}

tpa[ctr]-=snagsmorttemp;
createsnagsmorttpa[ctr]=snagsmorttemp;
reportnusnags+snagsmorttemp;
frintf(growf,"snags created

[%d]=%6.2f\n" ,ctr,snagsmorttemp);

}

ctr++;
if (ctr==lines)

snags=snagsgoaltemp;
}

fprintf(hsfp," %4.2f',reporthusnags);

113

for (ctr=O; ctr<lines; ctr++)
frintf(growf,"%d%d%6d%9.2f%7.2Wo7. 1 fY04.Of %8.2f

%d\n" ,per+ 1 ,plot[ctr] ,sp[ctr] ,tpa[ctr],
dbh[ctr] ,ht[ctr] ,cr[ctr] ,cw[ctr] ,ctr);

fprintf(growfp, "\n");
fprintf(hsf,"\n");

frintf(davidf,"Period\n%d %d %d\n",per+ 1 ,lines,vegclass);
for (ctr=O; ctr<lines; ctr++)

fprintf(davidfp,"%d %f %.2f %. if %.Of %.2f\n",sp[ctr],tpa[ctr],
dbh[ctr] ,ht[ctr] ,cr[ctr] ,cw[ctr]);

} II end of periods

frintf(growfp,"tota1 deviations %7.2f total value
%9 .2f ,totalsumdev,totalvalue);

frintf(growfp," %4.2f %4.2f %4.2f %4.2f %4.2f %4.2f %4.2f',tinsectdev,
tverticaldev, tsnagsdev, tdwddev, tfbi, tfei, tfishtreesdev);

} II end of goal combos

}
/* end of section for Path algorithm*/

I/if the dll is loaded, unload it
if(DLL)
{

FreeLibrary(DLL);
}

} I/end of void main(void)

BFVOL
tinclude "var.h"
mt numlog;
double f nicls[totsp], smdia[20], glogln[20], bfrevenue;
double bfrnind[totsp]={9,9,9,9,9,9,9,9,9,9};
double bftopd[totspj={6,6,6,6,6,6,6,6,6,6};

double bfvol(int sp, double dbh, double ht, double brat)
{

mt bfctr, diam;
double bbfv, td, dib, fc, tlog, factor;

double logprice[5 11[iO]=

114

{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0,317,361,344, 0,344,330,360, 0,330,

bbfv0;
bfrevenue0;

115

0, 331, 358, 345,
0, 343, 357, 348,
0, 356, 357, 352,
0, 366, 357, 355,
0, 375, 361, 357,
0,381,365,360,

0, 345, 328, 360,
0, 348, 318, 363,
0, 352, 307, 366,
0, 355, 297, 368,
0, 357, 287, 370,
0,360,281,373,

0, 328,
0, 318,
0, 307,
0, 297,
0, 287,
0,281,

0, 388, 369, 363, 0, 363, 275, 375, 0, 275,
0, 392, 373, 366, 0, 366, 273, 378, 0, 273,
0, 396, 378, 370, 0, 370, 271, 382, 0, 271,
0, 396, 383, 374, 0, 374, 261, 385, 0, 261,
0, 396, 388, 378, 0, 378, 252, 389, 0, 252,
0, 393, 394, 382, 0, 382, 255, 393, 0, 255,
0, 391, 399, 386, 0, 386, 257, 397, 0, 257,
0, 385, 404, 390, 0, 390, 252, 400, 0, 252,
0, 378, 409, 394, 0, 394, 248, 404, 0, 248,
0, 368, 414, 398, 0, 398, 247, 409, 0, 247,
0, 357, 419, 402, 0, 402, 246, 413, 0, 246,
0, 343, 422, 406, 0, 406, 246, 417, 0, 246,
0, 330, 422, 410, 0, 410, 246, 421, 0, 246,
0,312,422,415, 0,415,246,426, 0,246,
0, 293, 422, 421, 0,421,246,432, 0, 246,
0, 293, 422, 428, 0, 428, 245, 439, 0, 245,
0, 293, 422, 435, 0, 435, 245, 447, 0, 245,
0, 293, 422, 444, 0, 444, 245, 456, 0, 245,
0, 293, 422, 453, 0, 453, 245, 465, 0, 245,
0, 293, 422, 463, 0, 463, 245, 475, 0, 245,
0, 293, 422, 472, 0, 472, 245, 485, 0, 245,
0, 293, 422, 482, 0, 482, 245, 495, 0, 245,
0, 293, 422, 492, 0, 492, 245, 405, 0, 245,
0,293,422,501, 0,501,245, 515, 0,245,
0, 293, 422, 510, 0, 510, 245, 525, 0, 245,
0, 293, 422, 520, 0, 520, 245, 535, 0, 245,
0, 293, 422, 530, 0, 530, 245, 545, 0, 245,
0, 293, 422, 540, 0, 540, 245, 555, 0, 245,
0, 293, 422, 550, 0, 550, 245, 565, 0, 245);

0,
0,
0,

0,
0,

269,

0, 0, 0,
0, 0, 0,
500, 345,

0,
0,
0,

0,
0,

345,

0, 0, 0,
0, 0, 0,
329, 363, 0, 329,

0, 269, 477, 345, 0, 345, 329, 363, 0, 329,
0, 269, 454, 345, 0, 345, 329, 363, 0, 329,
0, 269, 431, 345, 0, 345, 329, 363, 0, 329,
0, 269, 408, 345, 0, 345, 329, 363, 0, 329,
0, 269, 385, 345, 0, 345, 329, 363, 0, 329,
0, 269, 379, 345, 0, 345, 329, 363, 0, 329,
0, 284, 373, 345, 0, 345, 331, 361, 0, 331,
0, 302, 367, 344, 0, 344, 333, 360, 0, 333,

if (dbh>bftnind[sp])
{

td=bftopd[sp] *brat;
dib=dbh*brat;
fc=formcl(sp,dbh);
rxdibs(dbh,fc,ht,td);

tlog=0;
for (bfctr=0; bfctr<=numlog; bfctr++)
{

factor=scalef(smdia[bfctr] ,glogln[bfctr]);
tlog+=glogln[bfctr];
bbfv+=glogln[bfctr] *factor;

diam=int(smdia[bfctr]+0.5);
if (diam>50)

diam50;
bfrevenue+=(logprice[diam] [sp]/1 000*glogln[bfctr] *factor);

}

return (bbfv);

}

BRATIO
#include "var.h"

double bratio(int sp, double dbh)
{ double brat, bark, dib;

double bratcol [totsp]= (-0.3386,0.1045,-
0.0549,0.4448,0.1429,0.4448,0.1593,1.9064,2.0754,0.1593);

double
bratco2[totsp]=(0.0438,O. 1161,0.1626,0.1033,0.1137,0.1033,0.1089,0.0172,0.0204,0.1089

double bratco3 [totsp]= {2.5626,0,0,0,0,0,0,-8.43 12,- 14.0088,0);

II equation not good for trees <3.9 in DBH
if (dbh<3 .9)

dbh=3.9;
bark=bratco 1 [sp] +bratco2 [sp] *dbh +bratco3 [sp]/dbh;
if (bark<0. 1)

bark=0. 1;

dibdbh-bark;
bratdib/dbh;
if (brat > 1

H brat <=0)
brat0.99;

}

116

return (brat);

}

DEADWOOD
#include "var.h"

#include "windows.h"
#define TAPER_DLL
#include "taper.h"
extern diDIB pfdiDlB;

extern mt lines, per, deadlines;
extem mt snagsp [linesor] [periods] ,dwdsp [linesor] [periods] [periods];
extem mt snagflag[linesori [periods], dwdage[linesor] [periods] [periods],
snagage[linesorl [periods];
extem mt dwdflag[linesor] [periods] [periods] [2], sp[linesor];
extern double snagtpa[linesor [periods], snaght[linesor] [periods];
extem double snagdensity[linesor] [periods], snagdbh[linesorI [periods], sdensity[linesor];
extem double dwdln[linesor] [periods] [periods] [2], dwdld [linesor] [periods] [periods] [2];
extern double dwdpa[linesor] [periods] [periodsl [2], dwddensity[linesor] [periodsl [periods];
extem double reportsnag[5] [5], reportdwd[2] [5] [5];
extern double cr[linesor];

extem FILE *hsfp;
void deadwood(double morttpa[], double ht[], double dbh[])
{

mt dctr, dper, actr, lctr, diam, cls, ln;
mt tooshort=0, toosmall=0, toodead=0;
mt snagdclass, state, snagagetemp, sptemp;
mt dwdclass, dwdstate;
double snaghtl, snaghttemp, snagfall, snagfalltemp, snagdensitytemp;
double snagupperd, snagstumpd, snagmaxagetemp, dwdmaxagetemp;

mt dwdmaxage[3]={320,195,75};
double snagdensityrate[3]= {0.0 17,0.033,0.053 };
double snagfallco[3] [3]= {0.008, 0.008, 0.008,

0.0 13, 0.022, 0.027,
0.021, 0.043, 0.054};

double snaght1ossco[3[3]={0.019, 0.019, 0.019,
0.032, 0.03 8, 0.042,
0.0421,0.056, 0.063};

double snagfalllag[3]= { 15, 10,0};
double snagdecaylag[3]= {0.9, 1.4,1.25 };
double logdecayrate[2][3]={0.012, 0.015, 0.026,

0.008, 0.01, 0.02};
double snagmindensity[3]= {0.007,0.0 13,0.021 };
double snagmaxage[3]={260,135,80};
double dwdldred[3]= {0.003 1 ,0.0037,0.004};
double dwdlnred[3]= {0.0026,0.003,0.004};
double dwdiv[3]= {70,60,35 };

117

double sphtl[totsp] ,spsnagfall [totsp] ,spsnagdecay[totsp] ,spsnagmaxage [totsp];
double spldred[totsp] ,spinred [totsp] ,spdwddecay[totsp] ,spdwdmaxage[totsp];
I/FILE *snagfp, *dwdfp;

//snagf=fopen("c :\\apple\\vegtype\\snag.txt","w");
//snagf=fopen("c:\\appe\\vegtype\\dwd.txt' ,"w");

II pfdiDlB = (diDIB)GetProcAddress(DLL,"diDIB");

for(dctr=0; dctr<totsp; dctr++)
{

spht [dctr]=1;
spsnagfall[dctr]=1;
spsnagdecay[dctr] 1;

spsnagmaxage[dctr]= 1;
spldred[dctr]=1;
spinred[dctr]=1;
spdwddecay[dclr]= 1;
spdwdmaxage[dctr]= 1;

}

for(dctr=O; dctriines; dctr++)
{

if(moittpa[dctr]>0 && ht[dctr]>=30)
{

snagtpa[dclri [per]=moi ttpa[dctr];
snagflag[dctr] [per]=1;
snaght[dctr] [per] =ht[dclr];
if (sdensity[dctr]>0 && per==O)

snagdensity[dctr [per]=sdensity[dctr];
else

snagdensity[dctrl [per]=0.452;
if (perO)

snagage [dctrl [per] =snagage[dctr] [0];
else

snagage[dclr] [per] =0;
snagdbh[dctr] [per]=dbh[dctr];
snagsp[dctr] [per]=sp[dctr];

for(dper=0; dper<5; dper-H-)
for (actr=0; actr<5; actr++)
{

reportsnag[dper] [actr]=O;
for (lctr=0; lctr<2; lctr++)

reportdwd[ktr] [dper] [actr]=O;
}

118

for(dctr=0; dctr<deadlines; dctr++)

{

for(dper=0; dper<per+1; dper++)
{

if (snagflag[dctr] [dper]== 1)

{

if (snagdbh[dctri [dper]< 15)
snagdclass=2;

else if (snagdbh[dctrl [dper]<25)
snagdclass=l;

else
snagdclass=0;

if (snagdensity[dctrl [dper]>=0.284)
state=0;

else if (snagdensity[dctri [dper]>0. 197)
state=1;

else
state=2;

if (snagage[dctr] [dper]>snagfalllag[snagdclass])

{ II htl is actually ht remaining, temp is part that was lost
snaghtl=snaght[dctrl [dper] *pow((1-

snaghtlossco[snagdclassl [state]),5);
snaghtl*=sphtl[snagsp[dctr] [dper]];
snaghttemp=snaght[dctrl [dper] -snaghtl;
snaght[dctrl [dper]=snaghtl;

II snagfall is actually amount standing, temp is # that fell
snagfall=snagtpa[dctrl [dper] *exp(snagfallco[snagdclassl [state] *5);
snagfall*=spsnagfall[snagsp[dctr][dper]];
snagfalltemp=snagtpa[dctr] [dper] -snagfall;
snagtpa[dctr] [dper]=snagfall;

if(snagdbh[dctr] [dper]>0)
{

snagupperd = //snagdbh[dctr] [dper] *0.3;
pfdiDlB(WALTERS_HANN, II walters hann (organon)

taper functions
0, II species, see taper.h

snagdbh[dctr][dperj, II dbh
ht[dctr], I/total height
cr[dctr], II crown ratio
snaghtl); II h

snagupperd=snagupperdlbratio(snagsp [dctr] [dper] ,snagdbh[dctr] [dper]);

snagstumpd = //snagdbh[dctrl [dper];

119

pfdiDlB(WALTERS_HANN,
0,
snagdbh[dctr] [dper],
ht[dctr],
cr[dctr],
1.0);

snagstumpd=snagstumpdlbratio(snagsp [dctr] [dper] ,snagdbh[dctrl [dper]);
II snagstumpd=snagdbh[dctr] [dper];
I

snagdensitytemp=snagdensity[dctr] [dper];
I

if (snagage[dctrl [dper]>snagdecaylag[snagdclass])
{

snagdensity[dctr [dper]=snagdensity[dctr
1

[dper] *

exp(snagdensityrate[snagdc lass] *5);
snagdensity[dctr [dper] *spsnagdecay[snagsp [dctr] [dper]];

I

snagagetempsnagage[dctr] [dper];
snagmaxagetemp=snagmaxage[snagdc lass];
snagmaxagetemp*=spsnagmaxage[snagsp[dctr] [dper]];
sptemp=snagsp [dctr] [dper];

II snagage[dctr] [dper]+=5;
if (snagdensity[dctrl [dper]<snagmindensity[snagdclass]

snagage[dctr] [dper]>snagmaxagetemp)
snagflag[dctri [dper]=0;

1

if (snagdensitytemp>0. 14)

{

dwdage[dctrl [per
I
[dper]=snagagetemp;

dwddensity[dctr] [per] [dper]=snagdensitytemp;
dwdsp[dctr] [per] [dper]=sptemp;

if (snaghttemp>O)

{

dwdln[dctrl [per] [dper [1]=snaghttemp;
dwdpa[dctri [perIl [dperll [1]=snagtpa[dctri [dper];
dwdld[dctrl [per] [dperl [1]=snagupperd;
dwdflag[dctr] [per] [dperI [0]1;

}

if (snagfalltemp>0)
{

120

121

dwdln[dctri [per I [dper] [O]=snaght[dctr] [dper]+snaghttemp- 1; II does it
break off about 1 foot?

dwdpa[dctrl [perIl [dper] [O]=snagfalltemp;
dwdld[dctr] [per] [dper] [O]=snagstumpd;
dwdflag[dctr [per I [dper] [01=1;

}

II fprintf(hsfp,"per %d tops %4.2f logs %4.2f diam %4.2f
h',per,snaghttemp*snagtpa[dctr] [dper],

II (snaght[dctr] [dper]+snaghttemp-
1)*snagfa11temp,dwd1d[dctf [per] [dperl [0]);

II fprintf(hsfp,"dctr %d per %d dper %d\n",dctr,per,dper);
}

II redo dwdclass and state?
for (actr=0; actr<per+1; actr I

{
if (dwddensity[dctfl [actr] [dper]>=0.284)

dwdstate=0;
else

dwdstate= 1;

for (lctr=0; lctr<2; lctr++)
{

if (dwdflag[dctri [actri [dperi [lctr]= 1)
{

if (dwdld[dctfl [actri [dper] [lctr]>=l 5)
dwdclass=0;

else if (dwdld[dctr] [actr] [dperi [lctr]>=6)
dwdclass= 1;

else
dwdclass=2;

dwdmaxagetemp=dwdmaxage[dwdclass];
dwdmaxagetemp*=spdwdmaxage[dwdsp [dctrl [actr] [dper] 1;

if (dwdage[dctr] [actri [dper]<dwdmaxagetemp)
{

dwdln[dctr] [actr] [dperi [lctr]=dwdln[dctr] [actr] [dperi [lctr] *
exp(dwdlnred[dwdclass] *(dwdage[dcfr [actr [dper] -

dwdiv[dwdclass]));

dwdln[dctr] [actr] [dper] [lctr] *=splped[dwdsp[dcfrI [actr] [dper]];
dwdld[dctr] [actr] [dper] [lctr]=dwdld[dctr] [actr] [dpefl [lctr] *

exp(dwdldred[dwdclass] *(dwdage[dcfr [actr] [dper]-
dwdiv[dwdclass]));

dwdld[dctr] [actr] [dperi [lctr] *rrspldred[dwdsp[dcfri [actri [dper]];

}

else

}

snaghtlO;
snaghttemp=O;
snagfallO;
snagfalltempO;
snagdensitytemp=O;
snagupperdO;
snagstumpd=O;
snagagetempO;

for(dctr=O; dctr<deadlines; dctr++)
{

for(dperO; dper<=per+ 1; dper++)
{

if (snagflag[dctri [dper]== 1)

{

snagage[dctr] [dper]+=5;

if (snagdbh[dctrl [dper]>=25)
diam=4;

else if (snagdbh[dctr] [dper]>20)
diam3;

else if (snagdbh[dctr][dper]>=16)
diam=2;

else if (snagdbh[dctrl[dper]>=l 1)
diam=1;

else if (snagdbh[dctrl[dper]>=7)
diam=O;

else toosmall=1;

if (snagdensity[dctr [dper]>=O.3 8)
cls=O;

else if (snagdensity[dctf [dper]>=O.284)
cls=1;

}

dwdflag[dctr] [actr] [dperi [lctr]=O;

//dwdage[dctri [dper] [actr]+=5;
if (dwdflag[dctr [actri [dper] [O]== 1 II dwdflag[dctr] [actr] [dper] [11=1)
{

dwddensity[dctrl [actrll [dper]=dwddensity[dctri [actri [dper] *
exp(logdecayrate[dwdstate] [dwdclass] *5);

dwddensity[dctr [actri [dper] *=spdwddecay[dwdsp [dctr] [actr] [dper]];

122

123

else if (snagdensity[dctr] [dper]>=O. 197)
cls=2;

else if (snagdensity[dctr] [dper]>=O. 14)
cls=3;

else if (snagdensity[dctr] [dper]>O .021 && snagdbh[dctri [dper]< 15)
cls=4;

else if(snagdensity[dctr][dper]>0.13 && snagdbh[dctr][dper]>15 &&
snagdbh[dctr] [dper]<25)
cls=4;

else if (snagdensity[dctr] [dper]>0.02 1 && snagdbh[dctrl [dper]>=25)
cls=4;

else
toodead=l;

if(toosmall==0 && toodead=0)
reportsnag[diarn] [cls]+=snagtpa[dctri [dper];

II fprintf(editf"%4.2f %4.2f
%4.2f\n" ,snagdbh[dctr [dper] ,snagtpa[dctr] [dper],

II snagdensity[dctr] [dper]);

toosmall=0;
toodead=0;

}

for (actr=0; actr<per+l; actr++)
{

if (dwdflag[dctr] [dperl [actrl [0]-- 1 dwdflag[dctrl [dperi [actrll [1] 1)

dwdage[dctr] [dperi [actr]+=5;

for (lctrO; lctr<2; lctr++)
{

if (dwdflag[dctr[dper][actr][lctr]=l)
{

if (dwdld[dctr] [dper] [actri [lctr]>=25)
diam=4;

else if (dwdld[dctrl [dper] [actr] [lctr]>=20)
diam=3;

else if (dwdld[dctrl [dperI [actr] [lctr]> 16)
diam2;

else if (dwdld [dctr] [dper1l [actr] [lctr]> 11)

diam=l;
else if (dwdld[dctr] [dper] [actr] [lctr]>=7)

diam=0;
else

toosmall=l;

if (dwddensity[dctrl [dper] [actr]>=0.38)
cls=0;

else if (dwddensity[dctrl [dper] [actr]>0.284)

}

}

ECOCLASS
#include "var.h"
extern mt retpag[linesor];

void ecoclass(int retpag[], mt pagindex)

}

}

}

}

124

clsl;
else if (dwddensity[dctr] [dperl [actr]>=0. 197)

cls=2;
else if (dwddensity[dctr] [dper] [actr]>=0. 14)

cls=3;
else if (dwddensity[dctr] [dperi [actr]>0.02 1 &&

dwdld[dctr] [dper] [actr] [lctr]< 15)
cls=4;

else if (dwddensity[dctr] [dperi [actr]>O.13 &&
dwdld[d tn [dper1l [actr] [lctr]>= 15 &&

dwdld[dctr] [dperi [actri [lctr]<25)
cls=4;

else if (dwddensity[dctr] [dper] [actr]>O .021 &&
dwdld[dctri [dperi [actri [lctr]>=25)

cls=4;
else

toodeadl;

if (dwdln[dctr] [dper] [actr] [lctr]>= 16)
ln=O;

else if ((dwdln[dctrl [dper] [actrj [lctrj< 16 &&
dwdln[dctr] [dper] [actr] [lctr]>=8))

ln= 1;
else

too short= 1;

if (toosmall==O && toodeadO && tooshort==O)
reportdwd[lni [diam] [cls]+=dwdln[dctr] [dper] [actr] [lctr]

*dwdpa[dctfp [dper] [actr] [lctr];

II fprintf(editfj, "%4.2f %4.2f %4.2f
%4.2f' ,dwdld[dctr [dper] [actr[1ctr],

II dwdln[dctr] [dperi [actri [lctr] ,dwdpa[dctr] [dpefl [actri [lctr],
II dwddensity[dctr] [dperi [actri [lctr]);

toosmall=O;
toodead=O;
tooshort=O;

{

mt pagctr;
! for the purpose of checking verses FVS I changed the first line where pag==1
The true value is 340, the FVS value for checking is 899*!
mt pagvai[8][5]={340,57,1,5,1,

57 1,67,1,5,1,
803,78,1,1,1,
977,92,1,1,1,
1096,87,1,1,1,
1414,77,1,9,2,
12 17,95,0,1,2,
1303,76,1,6,1);

!* mt pagval[8I[5]={899,85,1,1,1, !! this line for checking FVS
57 1,67,1,5,1,
803,78,1,1,1,
977,92,1,1,1,
1096,87,1,1,1,
14 14,77,1,9,2,
12 17,95,0,1,2,
1303,76,1,6,1);

!* O=PIJE, lpine!oak, 2=PSME-DRY, 3PSME-WET, 4=ABCO-DRY
5=ABCO-WET (WF, site species), 6-ABCO-WET (DF, non-site species)
7=ABMA-- [8]
O=SDI, 1=SI, 2=FLAG (is this the site species?), 3=SP CODE, 4=NTJM OF SP IN

PAG *!

for (pagctr=0; pagctr<5; pagctr++)
retpag[pagctr]=pagval[pagindex] [pagctr];

)
FLAMELNFN
#include "var.h"
extem mt lines;

double flamelnth(double dbh[], double tpa[], double cw[], mt reportsp[], double ba[])
{

mt vegclass, covertype, qmdint, coverint;
double flame[9] [711 [2]={

7.3,0,7.3,3.4,7.3,3.4,7.3,3.4,7.3,3.4,3.4,3.4,3.4,3.4,

double flameln;

125

6.6, 0, 6.6, 1.2, 5.8, 1.2, 5.8, 1.2, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8,
24, 0, 24, 6.6, 6.6, 3.4, 6.6, 3.4, 6.6, 3.4, 3.4, 3.4, 3.4, 3.4,

6.6, 0, 6.6, 3.4, 5.8, 3.4, 5.8, 3.4, 5.8, 3.4, 5.8, 5.8, 5.8, 5.8,
7.3, 0, 6.6, 3.4, 6.6, 3.4, 6.6, 3.4, 6.6, 3.4, 3.4, 3.4, 3.4, 3.4,
6.6, 0, 6.6, 1.2, 5.8, 1.2, 5.8, 1.2, 5.8, 5.8, 5.8, 5.8, 5.8, 5.8,
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,

7.0, 0, 7.0, 1.2, 5.8, 1.2, 5.8, 1.2, 5.8, 1.2, 1.2, 1.2, 1.2, 1.2,
7.0, 0, 7.0, 1.2, 5.8, 1.2, 5.8, 1.2, 5.8, 1.2, 1.2, 1.2, 1.2, 1.2);

vegclass=vegclassification(dbh,tpa,cw,reportsp,ba);
covertype=(int)vegclass/ 100;
qmdint=(int)(vegclasscovertype* 100)/10;
coverint=(int)(vegclasscovertype* 1 00qmdint* 10);
covertype-=1;

flameln=flame[covertypel [qmdintl [coverint];

return flameln;
}

FORMCL
#include "var.h"
extern double fiuiicls[totsp];

double formcl(int sp, double dbh)
{

double ifcdbh, fc;
double siskfc[5][totsp]={

if (fiuiicls[sp]<=0)

{

ifcdbh=(dbh- 1.0)/i 0.0;
if (ifcdbh<0)

ifcdbh=0;
if (dbh>40.9)

ifcdbh=4;

fc=siskfc[(int)ifcdbh] [sp];

}

else
{

fc=fi iiicls [sp];
if (fc<=0)

fc=80;

}

return (fc);
}

GROWT
#include "varh"
extern mt lines, per;
extern mt flagforperiod, initialize, baptr[iinesor], sp[linesor];

126

72, 76, 66, 76, 72, 76, 75, 78, 74, 80,
72, 76, 70, 76, 72, 76, 75, 78, 74, 80,
72, 74, 70, 76, 72, 76, 75, 78, 74, 78,
72, 74, 68, 74, 72, 74, 74, 75, 74, 76,
72, 72, 66, 72, 72, 72, 74, 74, 74, 75};

extern double tpa[linesor], dbh[linesor], restpa[linesor], dg[linesor], resdbh[linesor],
htg[linesor], resht[linesor];
extern double rescr[linesor], cr[linesor];
extern double ba[linesor], pba, vol [linesor], futba[linesor];
extern double cwcol[totsp], cwco2[totsp], cwco3[totsp], rescw[linesor];
extern FILE *growfp;
float abirth[linesor], ag;
extern float elev, slope, aspect;

// extern vars for ecoclass
mt retpag[linesor];
double si[totsp], siage[linesor];
double sitecomp[totsp], sdi [totsp];
double *dbhfull [linesor];

II calibration and regent
double hcor[totsp], cortem[totsp] ,snp[totsp] ,snx[totsp] ,sny[totsp] ,hk,dk,dkk;
double cornew, xba, xhtgr, edh, term, xrhgro, xwt, con, dds;
mt numcal [linesor];
float fint=5.0;

// coefficients
double lat[totsp]= {0,0,0.054,0,0,0,0. 1434,-0.4297,0,0);
double dico 1 [totsp]= {0,0,0,0,0,0,-0.007,0,0,0);
double dl co2 [totsp]= {0,0,0,0,0,0,-0.834,0,0,0);
double dl co3 [totsp]= {0,0,0.0 12,0,0,0,0.00734,0.01401 ,0,0};
double dlco4[totsp]={0,0, 1.41389,0,0,0,1.53339,1 .26883,0,0};
double dl co5 [totsp]={0,0,-0.4893 8,0,0,0,-0.47442,-0.35325,0,0};
double dl co6[totsp]= {0,0,0.3266,0,0,0,0.35 739,0.27986,0,0);
double dl co7[totsp]= {-0. 1 6,0,-0. 1 6,-0.32497,-0.79922,-0.32497,-0.44256,-0.79922,0,-
0.44256};
double dlco8[totsp]={-0.25287,-0.24596,-0.25287,-0.20902,0,-0.20902,-0.12359,0,-
0.35579,-0. 12359);
double dl co9[totsp]= {0,0,0,0.80370,0,0.80370,0,0,0,0};
double d2co 1 [totsp]= {-0. 11 954,-0.040708,0,0,-0. 1 0656,0,0,0,-0.03587,-0.0 156);
double d2co2[totsp]={0.08632,-0.16836,0,0,-0. 19174,0,0,0,-0.19935,-0.1563);
double d2co3 [totsp]= {0.85 815,0.46468,0,0,-i .29627,0,0,0,0.73530,0.58937);
double d2co4[totsp]= {- 1.1 7209,-0.87 145,0,0,0.87335 ,0,0,0,-0.99561 ,- 1.05045 };
double d2co5 [totsp]= {0.32093,0.56356,0, 1.10842,0.20189,1.10842,0,0,0.00659,0.47360);
double d2co6[totsp]= { 1.23911,0.8699,0,0.96865,1.14082,0.96865,0,0,0.99531,1.01718 };
double d2co7[totsp]= {- 1.20841,2.9604,0,1.5466,2.82796,1.5466,0,0,2.08524,3.01884);
double d2co8[totsp]= {2.3 1782,-i .08219,0,0.071 52,-2. 14739,0.071 52,0,0,-0.98396,-
1.12464);
double d2co9[totsp]= {-0.000338,-0.0003 1 3,0,-0.000728,-0.000875 ,-0.000728,0,0,-
0.000373,-0.000356);
double d2co 1 0[totsp]= {-0.00 1 99,-0.00443,0,-0.00408,-0.00 1 26,-0.00408,0,0,-0.00 147,-
0.00257);
double d2coi 1 [totsp]= {0,0,0,-0.00002,0,-0.00002,0,0,-0.000 1 8,0};
double d2col 2[totsp]= {0,0,0,0,0.56348,0,0,0,0.50 155,0);
double d2coi 3 [totsp]= {0,0,0,0,0,0,-0.007,0,0,0);

127

128

double d2co 1 4[totsp] {0,-0.0 1 744,0,0,0,0,0,0,0,-0. 1 6596};
double
volabhco 1 [totsp]= {0.000887,0.00 1168,0.000887,0.000887,0.000887,0.001265,0.000887,0.
000866,0.000887,0.00 108};
double
volabhco2[totsp]={0.367622,0.265430,0.367622,0.367622,0.367622,0. 172813,0.367622,0.
38394,0.367622,0.35831;
double dib 1 co 1 [totsp] {0,0,0,0,0,0,0,0,0,0.287414};
double
diblco2[totsp]={0.9898 19,0.989819,0.989819,0.989819,0.989819,1,0.989819,1.03908,0.9
898 19,0.828652};
double diblco3[totsp]={1,1,l,1,1,1,l,1,1,1.082631};
double
dibcol [totsp]={0.903563,0.903563,0.903563,0.903563,0.903563,0.809427,0.903563,0.859
045,0.903563,0.9049731;
double
dibco2[totsp]= {0.989388,0.989388,0.989388,0.989388,0.989388, 1.016866,0.989388,0.837
291,0.989388,l};
double htabh,volabh,volbbh,dib, dib 1, r;
double ki ,k2,k3=0.000 1 62,k4,kS,k6,k7;
double
pccfco I [totsp]= {0.0204,0.0388,0.0 194,0.0219,0.0212,0.0219,0.0172,0.0392,0.0356,0.0691

double
pccfco2[totsp] {0.0 123,0.0269,0.0142,0.0169,0.0084,0.0169,0.00876,0.0 18,0.0136,0.0225
1;
double
pccfco3 [totsp]= {0.0074,0.00466,0.0026 1,0.00325,0.0033,0.00325,0.00112,0.00207,0.0052
4,0.00 183 1;
double
pccfco4[totsp]={0.009187,0.017299,0.008915,0.007813,0.01 1109,0.007813,0.011402,0.00
7244,0.007875,0.0152481;
double pccfco5[totsp]={1 .76,1.5571,1.78,1.778,1.725,1.778,1.756,1.8182,1.736,1 .7333};
double loc[totsp]= {-2.68349,-2.4 1 928,0,-4.6744,- 1 .6995,-4.6744,0,0,-0.94563 ,-2.06853 1;
double
sdco 1 [totsp]= {4.8042,4.7873 7,4.89619,4.23251,4.73881,4.23251,4.83642,4.74961,4.6618
1,4.802681;
double sdco2[totsp]={-9.92422,-7.3 1698,-12.55873,-8.3 1711 ,-9.44913,-8.3 171 1,-7.04795,-
7.19103,-8.331 17,-8.40657};
double dhtco 1 [totsp]= {4.80758,0,0,0,4.4666,0,0,0,4.9684,0};
double dhtco2[totsp]= {-0.00224,0,0,0,0.00 1 79,0,0,0,-0.004057,0};
double dhtco3 [totsp]= {-0.0005 13,0,0,0,0.002048,0,0,0,0.000924,0);
double dhtco4[totsp]= {-7.729644,0,0,0,-7.9428,0,0,0,- 10.45158,0);
double dshtco 1 [totsp]= {3 .817,0,0,0,3.56,0,0,0,3.385,0);
double dshtco2[totsp]= {-0.78296,0,0,0,-0.54648,0,0,0,-0.58984,0};
double spsdi[totsp]={382,547,706,57l,588,571,800,647,759,759);
double

CSCO 1 [totsp]= {6.82 187,7.48846,5.12357,6.04928,3.64292,6.04928,6.14578,6.92893,5 .95
9 12,7.44422);

129

double mcsco2[totsp] {-0.02247,-0.02899,-0.0 1 042,-0.0 1091 ,-0.003 1 7,-0.0 1091,-
0.02781 ,-0.04053,-0.0 18 12,-0.04779};
double
wbcol [totsp]= {0.06607,0.52909,0.29964,0.03 685,0.08402,0.03685,0.16601,0.25115,0.256
67,0.48464};
double
wbco2[totsp]= { 1.10705,1.00677,1.05398,1.09499,1.10297,1.09499,1.08150,1 .05987,1.064
74,1.01272};
double wcco 1 [totsp]= {2.047 14,-3 .48211,-
1.0927,4.0134,0.91078,4.01340,0.91420,0.33383,0.11 729,-2.78353};
double
wcco2[totsp]= {0. 15070,1.38780,0.80687,0.04946,0.45819,0.04946,0.45768,0.63833 ,0.6 16
81,1.27283 };
double waco[totsp]={0,0,0,0,0,0,0,0,0,0};
double
htl [totsp] {4.80420,4.78737,4.8961 9,4.23251,4.73881,4.23251,4.83642,4.74961,4.66:1 81,
4.80268};
double ht2[totsp]={-9.92422,-7.3 1698,-12.55873,-8.3 1711 ,-9.44913,-8.3 171 1,-7.04795,-
7.19103,-8.33 1 17,-8.40657};

void growtrees(double restpa[],double dbh[],double ht[])
{

mt gtctr, pbalctr, crctr, rankctr, erfiag;
float elev=45, slope=5, aspect=0;
intsite[totsp]={63,110,84,110,63,110,110,99,63,110};
double oldht, newht;
double bal, pccf, hoavh, srelht, ldds, large4o, large40tpa, tccf;
double gtsumdbhtpa, gtsumtpa, gtsdi, relsdi, meanerstand, Wa, wb, we, scale;
mt dbhfullctr;
double pct, pcthat, diff, pdiff, crin, crmax, dgdib, dgdibsq;
float totlines=(float)lines;

II vars for sichg, height
double xmod=1, relht, cr10;
intjsisp, isisp, enteco, pagindex=pag, retctr, agmaxflag, ipassflag;
mt ismall=0, toler=2, ipass=0, htmax=300, agmax=200;
double hguess, htdiff, hold, brat, dbhbrat;
float scale3,regyr,finth=5, yr=5, scale2;

II sort array of dbh or ba
dbhfullctr=0;
for (gtctr=0; gtctr<lines; gtctr++)

if (restpa[gtctr]>0)
{ dbhfull [dbhfullctr]=&dbh[gtctr];

dbhfullctr++;
}

quicksort2(dbhfull,0,dbhfullctr- 1);

gtsumdbhtpa=0;

130

gtsumtpa=O;
for (crctr=O; crctr<lines; crctr++)
{ gtsumdbhtpa+=pow(dbh[crctr] ,2)*restpa[crctr];

gtsumtpa+=restpa[crctr];
}

gtsdi=gtsumtpa*pow((pow(gtsumdbhtpalgtsumtpa,O.5)/1 0), 1.605);

II inititalizing arrays for calibrating small tree height section
if (initialize== 1)
{

for (gtctr=0; gtctr<totsp; gtctr++)
{ hcor[gtctr]=0;

cortem[gtctr]=0;
numcal[gtctr]=0;
snp[gtctr]r=0;
snx[gtctr]=0;
sny[gtctr]=0;

}

scale3=rregyr/finth;
cornew=1;

jsisp=0;
isisp=-1;
cnteco=0;

for (retctr=0; retctr<totsp; retctr)
{ sitecomp[retctr]=0;

sdi[retctr]=0;
}

retch pag;

do

{ ecoclass(retpag,retctr); II sets SDI AND SI
II for site species

cnteco+=1;

if(jsisp==0 && retpag[2]==1)
jsispr=retpag[3];

if(isisp<0 && retpag[2]==1)
isisp=retpag[3];

if (sitecomp[retpag[3]]<=0)
sitecomp[retpag[3]]=retpag[1];

if (sdi[retpag[3]]<=0)
sdi[retpag[3]]=retpag[0];

if(retpag[4]>=1 && cnteco<retpag[4]) II for ABCO wet there are two species:
DF & WF

retctr+= 1;
} while (cnteco<retpag[4]);

sichg(isisp,sitecomp[isisp] ,siage); II sets siage

for (retctr=O; retctr<totsp; retctr++)
si[retctr]=htcalc(sitecomp[isisp],isisp,siage[retctr]); II caic site for all species

for (retctr=O; retctr<totsp; retctr++) II only use si where we
{ if (sitecomp[retctr]=O) II don't already have a site

sitecomp[retctr]=si[retctr]; II sitecomp is final site array
}

for (retctr=O; retctr<totsp; retctr++)

{ if (sdi[retctr]=O)
sdi[retctr]=sdi [isisp] *spsdi[retcfrl/spsdi [isisp];

}

}

if (per==3)
printf("");

if(flagforperiod 1)

{

quicksort(baptr,O,lines- 1 ,ba);
flagforperiod=O;

}

pbalctr=O;
pba=O;
pccfO;
large4OO;
large4Otpa=O;
for(pbalctr=O; pbalctr<lines; pbalctr++)
{

pba+=ba[baptr[pbalctr]] *restpa[loapfr[pbalcfrll;

if (large4Otpa<40)
{ large4O+ht[baptr[pbalctr]] *restpa[bap+a.[pbalcfr]];

large4Otpa+restpa[baptr[pbalctr]];
if (large4Otpa>40)

{

large4O-=ht[baptr[pbalctr]] *(large4otpa4o);
large4Otpa-=(large4Otpa-40);

}

if (dbh[pbalctr]>= 1)
tccf=pccfcoi [sp [pbalctr]] +pccfco2 [sp[pbalctr]] *dbh[pbalcfr]
+pccfco3 [sp [pbalctr]] *pow(dbh[pbalcfrj ,2);

else if(dbh[pbalctrj>O. 1)
tccf=pccfco4 [sp [pbalctr]] *pow(dbh[pbalc+dI ,pccfco5 [sp[pbalctrj 1);

else
tccf=O.00 1;

}

131

pccf+=tccfrestpa[pba1cfr];
}

large4O=large4O/large4Otpa;

II grow
for (gtctro; gtctr<lines; gtctr++)
(

if (restpa[gtctr]>O)

(
bal=0;
pbalctr=0;
while (ba[baptr[pbalctrfl>ba[gtctr])
(

bal+=ba[baptr[pbalctr]j*restpa[baptr[pbalctr]];
pbalctr++;

}

hoavh=ht[gtctr]/large4O;
if (hoavh> 1.5)

srelht=1 .5;
else

srelht=hoavh;

II diameter growth trees DBH >= 3"

if(dbh[gtctr]>=O)//3)

(
if(sp[gtctr]=2 sp[gtctr]==6 sp[gtctr]==7) II dbh
{ ldds=lat[sp [gtctr]]

+dl co 1 [sp[gtctr]] *elev
+dl co9[sp[gtctr]] *(slope/1 00)
+dlco2[sp[gtctr]]*pow((slope/1 00),2)
+d 1 co3 [sp[gtctr]] *sitecomp [sp[gtctr]];

ldds+= dl co4[sp[gtctr]j*1og(dbhgtctr])
+d 1 co5 [sp[gtctr]] *pow(dbh[gtc] ,2)/ 1000
+d 1 co6[sp[gtctr]] * (pow((cr[gtctr]),2)/log(dbh[gtctr]+ 1))/1 000
+d 1 co7 [sp[gtctr]] *bal/(log(dbh[gtc]+ 1)* 100)
+d 1 co8[sp[gtctr]] *log(pba);

ldds=log(exp(ldds)/2);
}

else

{

lddsloc [sp[gtctr]] +d2co 1 [sp[gtctr]] *sin(aspect)* (slope/i 00)
+d2co 13 [sp[gtctr]] *(pow(elev,2))
+d2co2 [sp[gtctr]] *cos(aspect)*(slope/ 100)
+d2co3 [sp[gtctr]] * (slope/i 00)

+d2co4[sp[gtctr]] *pow((slope/i 00),2)
+d2cos[sp[gtctr]] *log(sitecomp[1]);

132

133

ldds+=d2co6[sp[gtctr]] *log(dbh[gtcfrl)
+d2co7[sp[gtctr]] *(cr[gtcfr]/1 00)

+d2co8[sp[gtctr]] *pow((cr[gtcfrl/loo),2)
+d2co9[sp[gtctr]] *pow(dbh[gcfr],2)
+d2co 1 O[sp[gtctr]] *balllog(dbh[gtcfrl+ 1) +d2co 11 [sp [gtctr]] *pccf
+d2co 1 2[sp[gtctr]] *srelht
+d2co 14[sp[gtctr]] *log(pba);

if (sp[gtctr]=9)
ldds-=0. 15032;

if (ldds<-9.2 1)
1dds=9.2 1;

dgdib=dbh[gtctr] *bratio(sp[gtcfrl ,dbh[gtctr]);
ldds=exp(ldds);
dgdibsq=pow(dgdib,2);
dg[gtctr]=(pow((dgdibsq+ldds),0.5)-dgdib);
brat=bratio(sp[gtctr] ,dbh[gtctr]);

}

II beginning of htgf
if (sp[gtctr]= fl Isp [gtctr]==2 Isp[gtctr]=3 sp [gtctr]==5 I sp[gtctr]=6

sp[gtctr]==7sp[gtctr]=9) II conifer
{

if (ht[gtctr]<htmax)
{

if (ipasso)
{

ipass=1;
ag=abirth[gtctr];

if (ag=0)
ag=2;

agmaxflag=0;
ipassflag=0;

do

{

hguess=htcalc(sitecomp[sp[gtctr]] ,sp[gtctr] ,ag);

if(agmaxflag==1 ipassflag==1)
ipass=2;

htdiff=fabs(hguess-ht[gtctr]);
if((htdiff<=toler ht[gtctr]<hguess) && ipass!=2)
{

abirth[gtctr]=ag;
hold=hguess;
ag+=5;

134

ipassflagl;
}

else if ((htdifftoler II ht[gtctr]>=hguess) && ipass!=2)

{

ag+2;
if (ag>agmax)
{

hold=hguess;
abirth[gtctr]=ag;
ag-=5;
agmaxflag=1;

}

}

} while (ipass<2);

} ipass=O;

htdiff=hguess-hold;
if (pccf=5O)
{

relht=ht[gtctr]/large4o;
if(pccf<100)

relht(relht+ 1)12;
if (relht> 1)

relht=1;
cr1 0=cr[gtctr]/ 10;
xmod=-0.02647 +0.7133 8*pow(relht,2) +0.06851 *crlo;

}

else
xmod=1;

htg[gtcfr]=htdiff"xmod;
if (htg[gtctr]<=0)

htg[gtctrj=0.00 1;

}

else
htg[gtctr]=0;

}

else if(sp[gtctr]==0 sp[gtctr]==4 sp[gtctr]==8)
{

brat=bratio(sp[gtctrj ,dbh[gtctr]);
dbhbrat=dbh[gtctr]+dg[gtctr]/brat;
oldht=exp((dhtco 1 [sp [gtctrjj +dhtco2[sp[gtctr]] *cr[gtcfr]

+dhtco3 [sp[gtctr]] *sitecomp[sp[gtcfrll)
+dhtco4[sp[gtctr]]/(db h[gtctr]+ 1)) +4.5;

newht=exp((dhtco 1 [sp[gtctr]] +dhtco2[sp[gtctr]] *cr[gtcfrl
+dhtco3 [sp[gtctr]] *sitecomp[sp[gtcfrll)

+dhtco4 [sp[gtctr]]/(dbhbrat+1)) +4.5;

htg[gtctr]=newht-oldht;
}

I/this section is for initializing and only needs to be done once or at the start of each
period.

III don't know which
if (initialize== 1)

{

initialize=0;
scale3=1;
for (crctr=O; crctr<lines; crctr++)

numca.I.[crctr]=O;
for (crctr=O; crctr<lines; crctr++)

if (dbh[crctr]<5)II && ht[crctr]>0 .01 && htg[crctr]>0 .001)
{

cr1 0=cr[crctr]/1 0;
relht=ht[crctr]/large4o;
if (relht>1 .5)

relhtl .5;
xba=ba[crctr];
if (xba<0)

xba0.1;
xhtgr=htgr5(sp[crctr] ,sitecomp[sp[crctr]] ,xba,relht,crl 0,ht[crctr]);

edh=xhtgr;
term=htg[crctr] * scale3;
snp[sp[crctr]]=restpa[crctr];
snx[sp [crctr]]restpa[crctr] * edh;
sny[sp [crctr]]restpa[crctr] * term;
numcal[sp[crctr]]+= 1;

}

for (crctr=0; crctr<totsp; crctr++)
{

cornew=1;
if (numcal[crctr]>=5)
{

snx[crctr]=snx[crctr]/snp[crctr];
sny[crctr]=sny[crctr]/snp[crctr];
cornew=sny[crctr]/snx[crctr];
if (cornew<=0)

cornew0.000 1;
}

cortem[crctr]=cornew;
hcor[crctr]=log(cornew);

}

} I/end of if statement for initialize
/1 end of initializing section

135

136

if (dbh[gtctr]<=5)
{

scale=yr/fint;
scale2=fintl5;
xrhgro=scale2;
con=exp(hcor[sp[gtctr]]);

xba=ba[gtctr];
if (xba<0)

xbaO.1;
cr1 0=cr[gtctr]/ 10;
relht=ht[gtctr]/large4o;
if (pccf<=75)

relht= 1 -((relht- 1)/75)*pccf
if (relht>1 .5)

relht=1 .5;
xhtgr=htgr5 (sp[gtctr] ,sitecomp[sp[gtctr]] ,xba,relht,crl 0,ht[gtctr]);
xhtgr*=con*xrhgro;

// weights for trees with DBH <5

xwt=0;
if(dbh[gtctr]>2)

xwt=(dbh[gtctr] -2)/3;
htg[gtctr]=xhtgr*(1 xwt)+xwt*htg[gtctr];

// calculate dbh growth for trees less than 3" DBH
if (dbh[gtctr]<3)
{

hk=ht[gtctr]+htg[gtctr];
if (hk<4.5)
{ dbh[gtctr]+=hk*0.00 1;

dg[gtctr]=0;
}

else
{ dk=ht2[sp[gtctr]]/(log(hk-4.5)-ht 1 [sp[gtctr]])- 1;

if (ht[gtctr]<4.5)
dkk=dbh[gtctr];

else
dkk=ht2 [sp[gtctr]]/(log(ht[gtctr] -4. 5)-ht 1 [sp [gtctr]])-i;

}

dk=htdbh(sp[gtctr] ,dk,hk, 1);

if (ht[gtctr]<=4.5)
dkkdbh[gtctr];

else
dkkhtdbh(sp[gtctr],dkk,ht[gtctr], 1);

}

resht[gtctr]=ht[gtctr]+htg[gtctr];
resdbh[gtctr]=dbh[gtctr]+dg[gtctr]/brat;
futba[gtctr]=pow((resdbh[gtctr]/24),2)*pi;

if (ht[gtctr]>4.5)
rescw[gtctr]=cwco 1 [sp[gtctr]] *pow(resdbh[gtcfrl ,cwco2 [sp [gtctr]1);

else
rescw[gtctr]=cwco3 [sp[gtctr]] *resht[gtcfr];

htabh=resht[gtctr] -4.5;
if (htabh>O)

volabh=volabhco 1 [sp [gtctr]] *(pow(htabwresdbh[gtcfr] ,volabhco2 [sp[gtctr]]))
* (pow(resdbh[gtctr] ,2)) *htabh;

else
volabh=O;

dib=dibco 1 [sp [gtctr]] *(pow(resdbh[gtCfr] ,dibco2 [sp[gtctr]]));

dib 1 =dib 1 co 1 [sp [gtctr]]+dib 1 co2[sp[gtctr]] *(pow(resdbh[gtcfrl ,dib 1 co3 [sp[gtctr]]));
r=pow((dib/dib 1),2/3);

k10.25*3. 14156*pow(dibl,2);
k2=(1/43 904)*(729+8 1 *r +297*pow(r,2) +265 *pow(r,3));

II k31/6174;
k4=pow((4.5-r),3);
k51 .5 *pow((4.5_r),2)*(1_r);
k6=(4.5r)*pow((1-r),2);
k7=pow((1-r),3);

volbbh=kl *(k3 *(k4k5+k6k7));
if (volbbh<O)

volbbh=O;
vol [gtctr]=volbbh+volabh;

}

bratbratio(sp[gtctr] ,dbh[gtctr]);
if(dk<O dkk<O)

{ dg[gtctr]=htg[gtctr] *02*brat;
dk=dbh[gtctr]+dg[gtctr];

}

else
dg[gtctr]=(dkdkk)*brat;

if (dg[gtctr]<O)
dg[gtctr]=O;

ddsdg[gtcfr] *(2 *brat*dk +dg[gtctr])*scale;
dg[gtctr]=pow((pow(dk*brat,2)+dds),O.5)brat*dk;

137

II change the crown ratio

crctr=gtctr;
relsdi=gtsdilsdi[sp[crctr}];// spsdi
if(relsdi>1 .5)

relsdi=1 .5;

meancrstand= mcsco 1 [sp[crctr}] +mcsco2 [sp[crctr]] *relsdi* 100;
wa=waco [sp[crctr]];
wb=wbco 1 [sp[crctr]] +wbco2 [sp[crctr]] *meancrstand;
wc=wcco 1 [sp[crctr]} +wcco2[sp[crctr]] *meancrstand;
if(wb<3)

wb=3;
if(wc<2)

wc=2;

scale=1 .5-reisdi;
if(sc ale> 1)

scalel;
if(scale<0.3)

scale0.3;

rankctr=0;
while (dbh[crctr]>*dbhfull[rankctr])

rankctr++;
pct=(rankctr+ 1)/totlines* scale;
if (pct<0.05)

pct=0.05;
if (pct'0.95)

pct0.95;

crflag=0;
diffl;

pcthat= 1 -exp(-(pow((meancrstand-wa)/wb,wc)));
diff=pct-pcthat;

while (diffl0)
{ if(diff<0)

{ if(crflagl)
{ diff=0;

meancrstand-=O.1;
}

else
{ meancrstand=0. 1;

crflag=- 1;
pcthat= 1 -exp(-(pow((meancrstand-wa)/wb,wc)));
diff=pct-pcthat;

138

if(diff50)
{ if (crflag==- 1)

{ diffo;
meancrstand+=0. 1;

}

else

{ meancrstand+=0. 1;
crflag=l;
pcthat= 1 -exp(-(pow((meancrstand-wa)/wb,wc)));
diff=pct-pcthat;

}

}

} II end of while, adjusting meancrstand

meancrstand*= 10;
diff=meancrstand-cr[gtctr];
pdiff=diff/cr[gtctr];
if(pdiff<=0.1 && pdiff=-0.1)

meancrstand=cr[gtctr]+diff;
else if(pdiff<-0.1)

meancrstand=cr[gtctr]+cr[gtctr] *.O. 1;
else

meancrstand=cr[gtctr]+cr[gtctr] *0.1;

crin=ht[gtctr]*cr[gtctr]/1 00;
crmax=(crin+htg[gtctr])/resht[gtctr] * 100;
if (meancrstand>crmax)

meancrstand=crmax;
if (meancrstand>95)

meancrstand=95;
if (meancrstand<1 0)

meancrstand= 10;

rescr[gtctr]=meancrstand;

} I/end of if growtrees
else

vol[gtctr]=0;
}

}

HTCALC
#include "var.h"

double htcalc(double sindx, mt ispc, double ag)
{ double hguess-0, a-0, b-0, c-0, d=0;

double htccoo[totsp]= {0,2500,69.9 1,0,0.375,0,69.91,0,0.204,69.91 };
double htccol[totsp]={6.413,-

0.95038,38.0202,1.88,31.233,1.88,38.0202,1 .88,39.787,38.0202};
double htcco2[totsp]={0.322,0. 109757,-1 .05213,7.178,0,7. 178,-I .05213,7.178,0,-

1.05213};

139

double htcco3 [totsp]= {0,0.055 81 8,0.009557,-0.025,0,-0.025 ,0.00955 7,-
0.025,0,0.009557};

double
htcco4[totsp]= {0,0 .0079224,101.842894,1.64,0,1.64,101.842894,1.64,0,101.8428941;

double htcco5 [totsp]= {0,-0.000733 8,-0.00 1 442,-0.000733 8,0,-0.000733 8,-
0.00 1442,0,0,-0.00 1 442};

double
htcco6[totsp]= {0,0.000 1977,1.67259,0.0001977,0,0.0001977,1.679259,0,0,1.6792591;

double htcco7[totsp]= {0,0,3 8.020235,0,0,0,38.020235,0,0,38.0202351;
double htcco8[totsp]= {0,0, 1.052133,0,0,0,-i .052133,0,0,-i .0521331;
double htcco9[totsp]= {0,0,0.00955 7,0,0,0,0.009577,0,0,0.00955 7};

if (ispc==0)
{ a=pow(ag,0.5)-pow(50,0.5);

hguess=sindx*(1 +htcco2 [ispe] *a)..htcco 1 [ispc] *a;

I
else if(ispc==l)
{ d=htccoO[ispc]/(sindx-4.5);

a=htccol [ispe] +htcco2[ispc]*d;
b=htcco3 [ispe] +htcco4[ispc] *d;
c=htcco5 [ispe] +htcco6[ispc] *d;
hguess=pow(ag,2)/(a+b*ag+c*pow(ag,2)) +4.5;

I
else if (ispc==2 ispc=6 ispc==9)
{ a=(htcco 1 [ispe] *pow(ag,htcco2[ispc]) *exp(htcco3 [ispe] *ag));

b=htcco4[ispc] *(1 -exp(htcco5 [ispe] *pow(ag,htcco6[ispc])));
hguess=(sindx-htccoO[ispc] +a*b)/a +4.5;

I
else if (ispc==3 ispc=5 ispc==7)

hguess=(htcco 1 [ispc] *sindx_htcco2[ispc])
*pow((1 -exp(htcco3 [ispe] *ag)),(o.00 1 *sinth+htcco4[ispc]));

else if (ispc==4)
hguess=sindxl(htccoO[ispc]+htcco I [ispc]/ag);

else if (ispc==8)
hguess=sindxl(htccoo[ispc]+htcco 1 [ispc]/ag);

return (hguess);
I
HTDBH
#include "var.h"

double htdbh(int sp, double dbh, double ht, mt mode)
{ double hat3;

double
htdbhco:I. [totsp]= {48.6795,523.0987, 1530.33,1348.0419,160.6821,1348.0419,202.886,819.
869,679.1972,604.8451;

double
htdbhco2[totsp]= {8.9420,5.7243,7.08 11,7.0463,4.1677,7.0463,8.7469,6.4531,5.5698,5.983
SI;

140

141

double htdbhco3 [totsp]= {- 1 .4832,-O.4 1 09,-O.2544,-O.3076,-O.4954,-O.3076,-O.83 17,-
O.3434,-O.3074,-O.3789};

sp=O;
dbh=2;
htO;
if (mode==O)

ht=O;
else

dbhO;

if(mode==O)
{ if(dbh>=3)

ht=4.5 +htdbhco 1 [sp] *exp(1 *htdbhco2 [sp] *pow(dbh,htdbhco3 [sp]));
else

ht=((4 .5 +htdbhco 1 [sp] *exp(. 1 *htdbhco2 [sp] *pow(3 ,htdbhco3 [sp]))-
4.5 1)*(dbh3)/2.7)+4.5 1;

}

else
{ hat3=4.5 +htdbhco 1 [sp] *exp(1 *htdbhco2[spl *pow(3 ,htdbhco3 [sp]));

if (ht>=hat3)
dbh=exp(log((log(ht-4.5)-log(htdbhco 1 [sp]))/(-

1 *htdbhco2[sp]))* 1 /htdbhco3 [sp]);
else

dbh=(((ht-4.5 1)*2.7)/(4.5+htdbhco 1 [sp] *exp(
1 *htdbhco2 [sp] *pow(3 ,htdbhco3 [sp]))-4.5 1))+O.3;

}

if (mode==O)
return (ht);

else
return (dbh);

}

HTGR5
#include "var.h"

double htgr5(int sp, double site, double ba, double relht, double Cr, double ht)
{ double yhtg;

double hrelht=4.292, hcrsq=O.0566, hht=O.1699, hsite=O.00768;
double htgrco 1 [totsp]= {-O.78296,-OOO828,-O.00828,-O.00828,-O.54648,-OOO828,-

O.00828,-O.00828,-O.58984,-O.00828};
double htgrco2[totsp]={3.817,-2.193,-2. 193,-2. 193,3.56,-2.193,-2. 193,-2.1 93,3.385,-

2.193);

sp=O;
ba=O.1;

if (sp=OIIsp==411sp=8)
{ if(ba<5)

ba=5;

yhtg=exp(htgrco2[sp]+htgrco 1 [sp] *log(ba));

}

else
yhtg=htgrco2[sp] +relht*hrelht +hcrsq*pow(cr,2) +hht*ht +htgrcoi[sp]*ba

+hsjte*sjte;

if (yhtg<=0)
yhtg=0.01;

return (yhtg);
}

OBJ
#include "var.h"
extern mt lines;
extern float slope;
extern double snagscost, bfrev[linesor], bfv[linesor];

double objfunction(double objtpa[],double objdbh[], double vol[])
{ double sumdbhtpa=0, sumtpa=0, meandbh, sumvol=0, modmcf; II sumvol is mcf

double rev, cost, bfvol;
double slopeofvalue;
mt ofctr, mdbh=0, mcf=0;

double groundlc[25] [6]=
{ 2829, 2624, 2468, 2346, 2296, 2228,
2829, 2624, 2468, 2346, 2296, 2228,
2829, 2624, 2468, 2346, 2296, 2228,
2829, 2624, 2468, 2346, 2296, 2228,
1880, 1718, 1606, 1527, 1494, 1452,
1542, 1395, 1298, 1235, 1208, 1175,
1406, 1265, 1175, 1117, 1093, 1064,
1331, 1194, 1107, 1053, 1030, 1003,
1284, 1149, 1064, 1012, 990, 964,
1250, 1116, 1033, 983, 961, 936,
1224, 1092, 1010, 960, 940, 915,
1204, 1072, 991, 943, 922, 898,
1187, 1056, 976, 928, 908, 885,
1172, 1042, 963, 916, 896, 873,
1160, 1031, 951, 905, 885, 863,
1149, 1020, 941, 895, 876, 853,
1139, 1010, 932, 887, 867, 845,
1135, 1007, 929, 883, 864, 842,
1133, 1005, 927, 882, 862, 840,
1130, 1002, 924, 879, 860, 838,
1128, 1000, 922, 877, 858, 836,
1127, 999, 921, 877, 857, 836,
1127, 999, 921, 877, 857, 836,
1126, 999, 921, 876, 857, 835,

142

1127, 999, 921, 876, 857, 836);

double cablelc[25] [61=

double logprice[57 [101=

143

{ 2180,
2180,

1904,
1904,

1757,
1757,

1669,
1669,

1639,
1639,

1602,
1602,

2180, 1904, 1757, 1669, 1639, 1602,
2180, 1904, 1757, 1669, 1639, 1602,
2180, 1904, 1757, 1669, 1639, 1602,
2180, 1904, 1757, 1669, 1639, 1602,
2180, 1904, 1757, 1669, 1639, 1602,
2073, 1799, 1655, 1572, 1542, 1507,
1983, 1711, 1568, 1489, 1460, 1428,
1905, 1635, 1493, 1418, 1390, 1359,
1837, 1568, 1428, 1356, 1328, 1299,
1777, 1509, 1370, 1301, 1274, 1247,
1723, 1457, 1319, 1253, 1226, 1200,
1675, 1410, 1274, 1209, 1183, 1158,
1633, 1369, 1233, 1171, 1145, 1121,
1596, 1332, 1197, 1137, 1111, 1088,
1563, 1300, 1166, 1107, 1082, 1060,
1534, 1272, 1138, 1081, 1056, 1035,
1510, 1248, 1115, 1059, 1034, 1013,
1489, 1228, 1096, 1040, 1015, 995,
1473, 1212, 1080, 1025, 1001, 981,
1460, 1200, 1067, 1013, 989, 970,
1451, 1191, 1059, 1005, 981, 961,
1446, 1185, 1053, 1000, 976, 957,
1444, 1184, 1051, 998, 974, 955);

{ 0,
0,
0,
0,
0,
0,
0,

0, 0,
0,
0,
0,
0,
0,

269,

0, 0,
0, 0, 0,
0, 0, 0,
0, 0, 0,
0, 0, 0,
0, 0, 0,
500, 345,

0,
0,
0,
0,
0,
0,
0,

0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,

345, 329, 363, 0, 329,
0, 269, 477, 345, 0, 345, 329, 363, 0, 329,
0, 269, 454, 345, 0, 345, 329, 363, 0, 329,
0, 269, 431, 345, 0, 345, 329, 363, 0, 329,
0, 269, 408, 345, 0, 345, 329, 363, 0, 329,
0, 269, 385, 345, 0, 345, 329, 363, 0, 329,
0, 269, 379, 345, 0, 345, 329, 363, 0, 329,
0,284,373,345, 0,345,331,361, 0,331,
0, 302, 367, 344, 0, 344, 333, 360, 0, 333,
0, 317, 361, 344, 0, 344, 330, 360, 0, 330,
0, 331, 358, 345, 0, 345, 328, 360, 0, 328,
0, 343, 357, 348, 0, 348, 318, 363, 0, 318,
0, 356, 357, 352, 0, 352, 307, 366, 0, 307,
0, 366, 357, 355, 0, 355, 297, 368, 0, 297,

rev=0;
bfvol0;

for (ofctr=0; ofctr<lines; ofctr++)
{ sumdbhtpa+=objdbh[ofctr] *objtpa[ofcfr];

sumvol+=vol[ofctr] *objtpa[ofc];
sumtpa+=objtpa[ofctr];

// fprintf(growf,ttobjtpa=%.2f vol=%.2f
sumvol=%.2f\n" ,objtpa[ofctr] ,vol [ofctr] ,sumvol);

rev+=bfrev[ofctr] *objtpa[ofc];
bfvol+=bfv[ofctr] *obftpa[ofcfr];

}

if (sumtpa==0 && sumvol==0)
rev=0;

else

{

mdbh=0;

144

0, 375, 361, 357, 0, 357, 287, 370, 0, 287,
0,381,365,360,
0, 388, 369, 363,

0, 360, 281, 373,
0, 363, 275, 375,

0,
0,

281,
275,

0, 392, 373, 366, 0, 366, 273, 378, 0, 273,
0, 396, 378, 370, 0, 370, 271, 382, 0, 271,
0, 396, 383, 374, 0,374,261,385, 0, 261,
0, 396, 388, 378, 0, 378, 252, 389, 0, 252,
0, 393, 394, 382, 0, 382, 255, 393, 0, 255,
0, 391, 399, 386, 0, 386, 257, 397, 0, 257,
0, 385, 404, 390, 0, 390, 252, 400, 0, 252,
0, 378, 409, 394, 0, 394, 248, 404, 0, 248,
0, 368, 414, 398, 0, 398, 247, 409, 0, 247,
0,357,419,402,
0, 343, 422, 406,

0, 402, 246, 413,
0, 406, 246, 417,

0,
0,

246,
246,

0, 330, 422, 410, 0,410,246,421, 0, 246,
0, 312, 422, 415, 0,415. 246, 426, 0, 246,
0, 293, 422, 421, 0,421,246,432, 0, 246,
0, 293, 422, 428, 0, 428, 245, 439, 0, 245,
0, 293, 422, 435, 0, 435, 245, 447, 0, 245,
0, 293, 422, 444, 0, 444, 245, 456, 0, 245,
0, 293, 422, 453, 0, 453, 245, 465, 0, 245,
0, 293, 422, 463, 0, 463, 245, 475, 0, 245,
0, 293, 422, 472, 0, 472, 245, 485, 0, 245,
0, 293, 422, 482, 0, 482, 245, 495, 0, 245,
0, 293, 422, 492, 0, 492, 245, 405, 0, 245,
0, 293, 422, 501, 0, 501, 245, 515, 0, 245,
0, 293, 422, 510, 0,510,245,525, 0, 245,
0, 293, 422, 520, 0, 520, 245, 535, 0, 245,
0, 293, 422, 530, 0, 530, 245, 545, 0, 245,
0, 293, 422, 540, 0, 540, 245, 555, 0, 245,
0, 293, 422, 550, 0, 550, 245, 565, 0, 245};

meandbh=sumdbhtpalsumtpa;
II moddbh=firtod(meandbh,(int)meandbh);
II if(moddbh>0.5)
II mdbh=1;

mdbh=(int)(meandbh+0.5);
if (mdbh>24)

mdbh=24;

sumvol=sumvolll 000;
modmcf=fiiod(sumvol,(int)sumvol);
if (modmcf0.5)

mcf=1;
mcf+=(int)sumvol;
if(mcf5)

mcf=5;

II fprintf(growfp,"\nmeandbh=% .2f tpa*dbh=% .2f sumtpa=%.2f
sumvol=% .2f\n" ,meandbh,sumdbhtpa,sumtpa,sumvol);

if (slope<40)
cost=sumvol*groundlc[mdbh [mcf];

else
cost=sumvol*cablelc[mdbhl [mcf];

II cost=sumvol/1000*(costcol*pow(sumvol,costco2));

slopeofvalue=70.8 1;
II rev=sumvol*(9.9 1+slopeofvalue*meandbh)costsnagscost;

rev=rev-cost-snagscost;

II fprintf(growfp," cost=%.2f rev=%.2f\n" ,cost,rev);
}

return (rev);
}

PART
#include "var.h"

mt partition(int x[] ,int first, mt last, double ba[])
{ mt pivot, i, temp;

double pivotvalue;

pivot=first;
pivotvalue=ba[x[first]];

for (i=first; i<=last; ++i)
{ if (ba[x[i]]>pivotvalue)

{ ++pivot;
if(i !=pivot)

{ temp=x [pivot];

145

146

x[pivot]=x[i];
x[i]temp;

}

}

}

temp=x[pivot];
x[pivot]=rx[first];
x[first]=temp;

return (pivot);

}

mt partition4(int x[] [linesor] ,int first, mt last, double ba[], mt pf)
{

mt pivot, i, temp;
double pivotvalue;

pivot=first;
pivotvalue=ba[x[pf] [first]];

for (i=first; i<=last; ++i)
{ if (ba[x[pfj[i]]<pivotvalue)

{ ++pivot;
if(i ! =pivot)

{ temp=x[pf] [pivot];
x[pfl [pivot]=x[pf] [i];
x[pfl [i]=temp;

}

}

}

temp=x[pf] [pivot];
x[pf] [pivot]=x[pf] [first];
x[pf] [first] =rtemp;

return (pivot);

}

PART2
#include "var.h"

mt partition2(double *x[],jflt first, mt last)
{ mt pivot, i;

I/float
double pivotvalue, *temp;

pivot=first;
pivotvalue=*x[first];

for (i=first; i<=last; ++i)
{ jf (*x[j]<pjvotyalue)

{ ++pivot;
if(i!=pivot)
{ temp=x[pivot];

x[pivot]=x[i];
x[i]=temp;

}

}

temp=x[pivot];
x[pivot]x[first];
x[first]temp;

return (pivot);

}

PART3
#include "var.h"

mt partition3(int x[],int first, mt last, double ht[])
{ mt pivot, i, temp;

//float
double pivotvalue;

pivot=first;
pivotvalue=ht[x[first]];

for (i=first; i<=last; ++i)
{ if (ht[x[i]]>pivotvalue)

{ ++pivot;
if(i ! =pivot)

{ temp=x[pivot];
x[pivot]=x[i];
x[i]=temp;

}

}

}

temp=x[pivot];
x[pivot]=x[first];
x[first]temp;

return (pivot);

}

QS
#include "var.h"

}

147

extern mt baptr[linesor];
extern mt hticptr[linesor];

void quicksort(int baptr[], mt first, mt last, double ba[])
{ mt pivot;

if (first<last)
{ pivot=partition(baptr,first,last,ba);

quicksort(baptr,first,pivot-1 ,ba);
quicksort(baptr,pivot+ 1 ,last,ba);

}

void quicksort4(int hticptr[I[linesor], mt first, mt last, double htic[], mt pIE)
{

mt pivot;

if (first<last)
{

pivot=partition4(hticptr,first,last,htic,pf);

quicksort4(hticptr,first,pivot- 1 ,htic,pf);
quicksort4(hticptr,pivot+ 1 ,last,htic,pf);

}

}

QS2
#include "var.h"
extern float *dbhful] [linesor];

void quicksort2(double *dbhfulll] mt first, mt last)
{ mt pivot;

if (first<last)
{ pivot=partition2(dbhfull,first,last);

quicksort2(dbhfull,first,pivot- 1);
quicksort2(dbhfull,pivot+ 1 ,last);

}

}

QS3
#include "var.h"
extern mt htorder[linesor];

void quicksort3(int htorder[], mt first, mt last, double ht[])
{ mt pivot;

}

148

if (first<last)
{ pivot=partition3(htorder,first,last,ht);

quicksort3 (htorder,first,pivot- 1 ,ht);
quicksort3 (htorder,pivot+ 1 ,last,ht);

)

}

#include "var.h"
extern mt lines, sp[linesor], reportsp[linesor];
extern double ht[linesor], dbh[linesor], cr[linesor], cw[linesor], tpa[linesor];
extern double maxhrvtpa[linesor], ba[linesor];

REGEN
void regen(double rsavetpa[],double rsaveba[], mt rsavesp[], double rsavemaxhrvtpa[],

mt rsavelines)
{

mt tolerance[totsp] [totpags]= {
3, 3,3, 3, 3, 3, 3,
0,0,0,0, 1,2,2,
0,0,0,0,0, 1, 1,
2,2,2,2,2,2,2,
3, 3, 3, 3, 3, 3, 3,
2,2,2,2,2,2,2,
0,0,0,0,0,0,0,

0,0,0,0,0,0,0);

double regdbh[totsp]={2.0,0.1,0.1,0.1,1.8,O.l,O.1,0.1,1.3,0.l};
double reght[totsp]= { 10.0,3.3,3.3,3.4,12.2,3.4,3.3,3.4,9.4,3.3);
double regcr[totsp]= {80,80,80,80,80,80,80,80,80,80);
double regcw[totsp]={4.6,1.7,1.4,1.4,9.7,1.4,l.1,1.3,8.6,1.5};

mt ctr, placectr, newtreeflag=0;
mt empty[linesor];
double pbao, tpaadd, sprouters=0, preptpa=0, modtpa=0;
double prespeciestpa[totsp], toltpa[4]= {0,0,0,0 }, totaltoltpa[4], pct[totsp];

for (ctr=0; ctr<totsp; ctr++)
prespeciestpa[ctr]=0;

for (ctr=0; ctr<lines; ctr++)
{

empty[ctr]=0;
if (tpa[ctr]-maxhrvtpa[ctr]==O)

empty[ctr]=l;
}

for (ctr=0; ctr<rsavelines; ctr++)

II 0=tolerant
II 1=moderates
II 2=intolerant
II 3=sprouters

149

1, 1, 1, 1, 1, 1, 1,
3, 3, 3, 3, 3, 3, 3,

{

pba+=rsaveba[ctr] *(rsavetpa[cfrl -rsavemaxhrvtpa[ctr]);
preptpa+(rsavetpa[ctr]);
prespeciestpa[rsavesp [ctr]]+=rsavetpa[ctr];
toltpa[tolerance[rsavesp[ctr]I [pag]]+=rsavetpa[ctr];

if (tolerance[rsavesp[ctr]I [pag]==3)
sprouters+rsavemaxhrvtpa[ctr];

else if (tolerance[rsavesp[ctr]] [pag]= 1)
modtpa+=rsavetpa[ctr];

}

tpaadd=625 * exp(.O2*pba);

if (tpaadd>=1)
{

placectr=O;
while (empty{placectr]==O && placectr<lines)

placectr++;

for (ctr=O; ctr<totsp; ctr++)
{

if (toltpa[tolerance[ctr [pag]]>O)
pct[ctr]=prespeciestpa[ctr]/toltpa[tolerance[ctrl [pag]];

else
pct{ctr]0;

}

if (sprouters>tpaadd)
{

sprouters=tpaadd;

for (ctr=O; ctr<totsp; ctr++)
{

if(ctr==O ctr==4 ctr8)
{

if (prespeciestpa[ctr]>O)

{

tpa[placectr]=sprouters*pct[ctr];
maxhrvtpa[placectr]=O;

II restpa?
sp [placectr]=ctr;
reportsp [placectr]=ctr;
dbh[placectr]=rregdbh[ctr];
ht[placectr]=reght[ctr];
cr[placectr]=regcr[ctr];
cw[placectr]=regcw[ctr];
ba[placectr]=pow(dbh[placectr]/2,2)*pi;

150

}

}

ROOTDISEASE
#include var.h
extern mt lines;
extern double tpa[linesor], moittpa[linesor];

}

}

}

else
{

totaltoltpa[3]=sprouters;
if (preptpa>0)

totaltoltpa[I]=(tpaaddsprouters)*modtpa/preptpa;
else

totaltoltpa[11=0;
totaltoltpa[O]=(O.000004*pow(pba,3) O.0034*pow(pba,2) +0.9667*pba

+8.9377)/100;
if (totaltoltpa[O]>1)

totaltoltpa[0]1;
totaltoltpa[O] *z(tpaadd.sprouters.4otaltoltpa[1]);
totaltoltpa[2]=tpaadd-totaltoltpa[O]-totaltoltpa[1]-totaltoltpa[3];

for (ctr=0; ctr<totsp; ctr++)
{

if (prespeciestpa[ctr]>0)
{

tpa[placectr]=totaltoltpa{tolerance[ctr] [pag]] *PCt{Cf];
maxhrvtpa[placectr]=0;
sp[placectr]=ctr;
reportsp[placectr]=ctr;
dbh[placectr]=regdbh[ctr];
ht[placectr]=reght[ctr];
cr[placectr]=regcr[ctr];
cw[placectr]=regcw[ctr];
ba[placectr]=pow(dbh[placectr]/2,2)*pi;

placectr++;
while (empty[placectr]==0 && placectr<lines)

placectr++;

if (placectr>lines)
lines=placectr;

}

}

placectr++;
while (empty[placectr]0 && placectr<lines)

placectr++;

151

I/this is only called if pag==4 II 5 1

6

void rootdisease(double vol[}, mt sp[})

{

intctr;
double standvol=O, mortvol;
double dfvol=0, rfvol=0, wfvol=O, dfmort, rfmortO, wfmort, dfctO, rfctO,

wfctO;

for (ctr=O; ctr<lines; ctr++)
{

if (vol[ctr}>O)

{

standvol+=voi[ctr] *tpa[cfrl;
if(sp[ctr]==1)

dfvol+=vol [ctr] *tpa[cfr];
else if (sp[ctr]==6)

rfvol+=vol[ctr] *tpa[cfrl;
else if (sp[ctr]==9)

wfvol+=vol [ctr] *tpa[cfrl;

}

}

mortvol=standvol*O.025;

if(pag=4 II pag=5)
{

wfmoi t_iiiortvol* 0.65;
dfmoi tiiiortvol-wfmort;

}

else if (pag==6)
{

wfmort=mortvol*O.5;
rfrnort__mortvol*0.3;
dfmoi tiiiortvol-wfmort-rfmort;

}

if (dfrnort>dfvol)
dfmort=dfvol;

if (dfvol>O)
dfpct=dfmortldfvol;

if (rfrnort>rfvol)
rfmort=rfvol;

if (rfvol>O)
rfpct=rfmortlrfvol;

if (wfmort>wfvol)
wfmort=wfvol;

152

if (wfvol>O)
wfct=wfmortJwfvo1;

for (ctrO; ctr<lines; ctr-l-+)
{

if (vol[ctr]>O)

{

if(sp[ctr]=1)
{

tpa[ctr]-=tpa[ctr] *dfpct;
morttpa[ctr]+=tpa[ctr] *dfpct;

}

else if (sp[ctr]==6)
{

tpa[ctr]-=tpa[ctr] *rfpct;
morttpa[ctr]+=tpa[ctr] *i.fpct;

else if (sp[ctr]==9)
{

tpa[ctr]-=tpa[ctr] *WfpCt;
morttpa[ctr]+=tpa[ctr] *wfpct;

}

RXDIBS
#include "var.h"
extem double smdia[20], glogln[20];
extem mt numlog;

void rxdibs(double dbh, double fc, double ht, double topd)
{

double d16, usht, stmfhd, stmcal, stmrat, xd, xm;

for (numlog=O; numlog<20; numlog++)
{

smdia[numlog]=O;
glogln[numlog]=O;

}

numlogO;
dl 6=dbh*(fc/1 00);

if (dl 6<=topd)
{

numlogO;
smdia[O]topd;
g1ogln[O](((dbh*dbhtopd*topd)/(dbh*dbhd1 6*d 1 6))* 12. 3)+4.O;
if(glogln[O]<O. 1)

glogln[O]=O. 1;

}

}

153

}

else
{

smdia[numlog]=d 16;
glogln[numlog]= 16.3;
usht=ht-16.3;

do

{

numlog++;
stmfnd= 16.3 *numlog;
stmcal=usht-stmfnd;

if (stmcal>=0)
{

stmrat=stmcal/usht;
smdia[numlog]=(stmratl(0 .49 1))*dl 6;
glogln[numlog]=1 6.3;

}

} while (stmcal>=0 && smdia[numlog]>topd);

smdia[numlog]=topd;
usht=ht- 16.3;
xd=topdlsmdia[0];
xm=(xd*0.5 1 *usht)/(1 .0-(0.49 *xd));
glogln[numlog]=(usht-xm)-((numlog- 1)* 16.3);
if (glogln[numlog]<=0)

glogln[numlog]=0. 1;
}

}

SCALEF
#include "var.h"

double scalef(double smd, double xlog)
{

mt ismd;
double modsmd;
double factor;
double factb[120]={

0,0.143,0.39,0.676,1.07,0,0,
0,0,0,0,4.9,6.043,7.14,
8.88,10,11.528,13.29,14.99,17.499,18.99,
20.88,23.51,25.218,28.677,31.249,34.22,36.376,
38.04,41.06,44.376,45.975,48.99,50,54.688,57.66,
64.319,66.731,70,75.24,79.48,83.91,87.19,92.501,94.99,
99.075,103.501,107.97,112.292,116.99,121.65,126.525,
131.51,136.51,141.61,146.912,152.21,157.71,163.288,
168.99,174.85,180.749,186.623, 193. 17, 199. 12,205 .685,
211.81,218.501,225.685,232.499,239.317,246.615,254.04,
261.525,269.04,276.63,284.26,292.501,300.655,308.97,

154

317.36,325.79,334.217,343.29,350.785,359.12,368.38,
376.61,385.135,393.38,402.499,410.834,419.166,428.38,
437.499,446.565,455.01,464.15,473.43,482.49,491.7,
501.7,511.7,521.7,531.7,541.7,552.499,562.501,
573.35,583.35,594.15,604.17,615.01,625.89,636.66,
648.38,660,671.7,683.33,695.011);

double factbl[6]=r{1.16,l.4,1.501,2.084,3.126,3.749};
double factb2[61=={1 .249,1.608,1.854,2.41,3.542,4.167);
double factb3[6]=r{ 1.57,1.8,2.2,2.9,3.815,4.499);

ismd=0;
modsmd=fmod(smd,(int)smd);
if (modsmd>0.5)

ismd=1;
ismd+=(int)smd;
if (ismd<1)

ismd=1;
if (ismd> 120)

ismd 120;
if (xlog>40)

xlogz4O;

if(ismd>=6 && ismd <=11)
{

ismd-=5;
if (xlog<=1 5)

factor=factb 1 [ismd];
else if(xlog<=31)

factor=factb2 [ismd];
else

factor=factb3 [ismd];

)
else

factor=factb[ismdl;

return (factor);

}

SICHG
#include "var.h"
extern double siage[linesorl;

void sichg(int currsp, double ssite, double siage[])
{

mt pnotp[totsp]={0,0,0,1,0,l,0,l,0,0); I/is the tree a pine?
mt sichgctr, sichdiff;
mt simin[totsp]={30,50,30,40,50,40,30,40,50,30);
mt sima.x[totsp]={70,150,130,120,100,120,130,120,90,130);
double agecoi[totsp}={6.0,10.0,1O.0,12.0,3.O,12.O,1O.0,12.0,4.O,10.0};
double ageco2[totsp]= {-0.05,-0.08,-0.05,-0.05,-0.02,-0.05,-0.06,-0.05,-0.03,-0.07};

155

double spread, age2dbh;

for (sichgctr=O; sichgctr<totsp; sichgctr++)
{ if (pnotp[currsp]== 1 && pnotp[sichgctr]==O)

sichdiff=- 1;
else if (pnotp[currsp]=pnotp[sichgctr])

sichdiff=0;
else if (pnotp[currsp]=O && pnotp[sichgctr]== 1)

sichdiff=1;

age2dbh=0;

if (sichdiff! =0)

{ if (ssite<simin[currsp])
ssite=simin[currsp];

else if (ssite>simax[currsp])
ssite=simax[currsp];

spread=simax[currsp] -simin[currsp];
spread= 1 00*(ssitesimin[currsp])/spread;
age2dbh=ageco 1 [sichgctr] +ageco2[sichgctr] * spread;

}

siage[sichgctr]=50 +age2dbh* sichdiff;

}

}

STANDHTLC
#include "var.h"
extern mt lines, flagforhtic;
mt hticptr[2] [linesor];

double standhticth(double ht[], double tpa[], double cr[], double flamein, mt pf, mt
signaltoprint)
{

mt sctr, tpa50, hticflag=0, htictree;
mt hticgroup [1001 ;//hticptr[linesor],
double htic[linesor], cfl;
double standhtic, sumtpa=0, standtpa=0, threshold50, midstorythreshold, midstorytpa;
double group, groupint, standhticmeters, torching=0;

for (sctr=0; sctr<lines; sctr++)
{

htic[sctr]=ht[sctr]-ht[sctr] *cr[scfrlIl 00;
standtpa+=tpa[sctr];

}

if (flagforhtic== 1 signaltopnnt== 1)
{

156

I/if one of the trees
I/is a pine and the other isn't

for (sctrO; sctr<lines; sctr++)
hticptr[pf] [sctr]=sctr;

quicksort4(hticptr,O,lines- 1 ,htic,pf);

if(pf=1)
flagforhtic=O;

}

threshold5O=standtpa*O. 1;
if (threshold5O>50)

threshold5O=50;
midstorythreshold=standtpa*O.05;
if (midstorythreshold>5)

midstorythreshold=5;

for (sctr=O; sctr<lines; sctr++)
{

hticgroup[sctr]=O;
grouphtic[sctrj *7.62/25;
groupint=fmod(group,(int)group);
if (groupint>O.5)

hticgroup[sctr]=1;
hticgroup [sctr]+=(int)group;

}

sctr=O;
while (sumtpa<threshold5O)
{

sumtpa+=tpa[hticptr[pf] [sctr]];
if (sumtpa<threshold5O)

sctr++;

}

tpa5O=hticgroup[hticptr[pf] [sctr]];
htictree=hticptr[pf] [sctrj;

while (hticflag==O)
{

midstorytpa=O;
for (sctr=O; sctr<lines; sctr++)
{

if (hticgroup[sctr]==tpa5O+ 1 hticgroup[sctr]==tpa5O+2 II

hticgroup[sctr]--tpa5 0+3)
midstorytpa+=tpa[sctr];

}

if (midstorytpa>midstorythreshold)
{

hticflag= 1;

157

}

standhticmeters=standhtic*7.62125;
cfl=O.45 *pow(0 289*pow(28 *standhticmeters, i .5),0 .46)/3 .3;

// if flameln comes in feet, don't use meters here.

if (flamein<cfl)
torching=0;

else
torching=1 .0;

return (torching);
}

SLTMDEV
#include "var.h"
extem mt iines, per, dwdlines, gcctr;
extem float fishtreesgoal, ccgoai;
extem double verticalvargoal, snagsgoai, dwdgoal, fbigoal, feigoai;
extem double reportsnag[5] [5], reportdwd[2] [5] [5], sdensity[linesor];
extem double dwddensity[linesorl [periods] [periods] ,dwdld[linesor] [periods] [periods I [2];
extem double dwdln[linesorl [periods] [periods] [2], dwdpa[linesor] [periods

1 [pen ods 1 [2];

extem double cover;
extem double tinsectdev, tfishtreesdev, tccdev, tfbi, tfei, tverticaldev, tsnagsdev, tdwddev;
extern float gc[goalcombos];
extem mt ksnag, kstree, kdwd;

}

else
{

}

standhtic=htic [htictree];

sctr=0;
tpa5o++;
while (htic[hticptr[pfl [sctr]]<tpa5 0*25/7.62 && sctr<(lines- 1))

sctr++;
II or if sctr<lines
I/if (sctr=4ines)
II htictree=lines- 1;
II set standhtic=i00?
htictree=hticptr[pf] [sctr];

}

if (tpa5o>hticgroup[hticptr[pfl [lines-i]])
{

hticflag= 1;
standhtic=htic[htictree];

158

159

II note: eventhough same names are used (ba, dbh...), these are internal variables and can
represent
II either present of future, depending on which variable is passed
double sumdevfn(int sp[], double ba[], double pba, double cw[], double dbh[], double
restpa[],

double moiltpa[],int pf,double objective, double ht[], double cr[], double
flameln,

FILE *editfp)

{

mt sdctr, dftrigger=0, wftrigger=0, ptrigger=0, a, b;

mt covertype,qmdint,coverint, signaltoprint=0;
mt vegclass, diam, basp, bafi;
double dfbadev=0, wfbadev=0, pbadev=0, sumdev=0, insectdev;//, pnvdev=0;
double dfba=0, wfba=0, ppba=0, otpba=0;
double dfbat[7]= {80,80, 1 20,250,250,999999,999999};
double wfbat[7]={0,0,0,0,0,250,250};
double pbat[7]={80,80,120,180,120,180,180};
double fishtrees, fishtreesdev=0, ccdev=0, snags, snagsdev=0, firedev=0;// pnvdev==0;
double fbi, fei;
double snagtrees=0, snagtreesdev=0;
double verticalvar, wildlifedev=0, dwdlinear, dwddev=0;
double torching, bamortpct=0, totaltrees=0;

double
cbd[9][7][2]={0. 12,0.00,0.12,0.20,0.12,0.21,0. 13,0.25,0.17,0.25,0.25,0.00,0.25,0.00,

0.15,0.00,0.15,0.25,0.15,0.25,0.11,0.20,o.1 3,0.20,0.20,0.00,0.20,0.00,

0.15,0.00,0. 15,0.25,0.15,0.25,0.11,0.20,0.13,0.20,0.20,0.00,0.20,0.00,

0.09,0.00,0.09,0.15,0.09,0.17,0.1 1,0.20,0.13,0.20,0.20,0.00,0.20,0.00,

0.10,0.00,0. 10,0.20,O.10,0.25,0.15,0.25,o.15,0.25,0.25,0.00,0.25,0.00,

0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,

0.09,O.00,0.09,0.15,0.09,0.17,0.1 1,0.20,0.13,0.20,0.20,0.00,0.20,0.00,

0.15,0.00,0.15,0.25,0.15,0.25,0.1 5,0.30,0.20,0.30,0.30,0.00,0.30,0.00,

0.15,0.00,0.15,0.25,0.15,0.25,0. 15,0.30,0.20,0.30,0.30,0.00,0.30,0.00};

double bamort[6] [211 [8]= {
/*BO*/ .9,1.0,1.0,1.0,1.0,1.0,1.0,1.0,

.9,1.0,1.0,1.0,1.0,1.0,1.0,1.0,

.8,1.0,1.0,1.0,1.0,1.0,1.0,1.0,

.7, .9,1.0,1.0,1.0,1.0,1.0,1.0,

.5, .8,1.0,1.0,1.0,1.0,1.0,1.0,

.4, .7, .9,1.0,1.0,1.0,1.0,1.0,

.4, .7, .8,1.0,1.0,1.0,1.0,1.0,

.3, .6, .8,1.0,1.0,1.0,1.0,1.0,

.3, .6, .8,1.0,1.0,1.0,1.0,1.0,

.2, .5, .7, .9,1.0,1.0,1.0,1.0,

.2, .5, .7, .9,1.0,1.0,1.0,1.0,

.2, .4, .6, .9,1.0,1.0,1.0,1.0,

.2, .4, .6, .8,1.0,1.0,1.0,1.0,

.2, .3, .5, .8,1.0,1.0,1.0,1.0,

.1 ,.3,.5,.8,. 9,1.0,1.0,1.0,

.1 ,.3,.5,.8,.9,1.0,1.0,1.0,

.1 ,.3,.5,.7,.9,1.0,1.0,1.0,

.1 ,.2,.4,.7,. 8,1.0,1.0,1.0,

.1 ,.2,.4,.6,. 8,1.0,1.0,1.0,

.1 ,.2,.4,.6,.8,. 9,1.0,1.0,

/*DF*/ 1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,

1.0,1.0,1.0,1.0,1.0, 1.0, 1.0, 1.0,

.6,1.0,1.0,1.0,1.0,1.0,1.0,1.0,

.5, .9,1.0,1.0,1.0,1.0,1.0,1.0,

.3, .6,1.0,1.0,1.0,1.0,1.0,1.0,

.3, .3, .9,1.0,1.0,1.0,1.0,1.0,

.2, .2, .8,1.0,1.0,1.0,1.0,1.0,

.1, .1, .6,1.0,1.0,1.0,1.0,1.0,

.1, .1, .4, .9,1.0,1.0,1.0,1.0,

.1 ,.1,.2,.9,.9,.9,.9,.9,

.1 ,.1,.2,.7,.9,.9,.9,. 9,

.1 ,.1,.1,.6,.9,.9,.9,. 9,

.0,.0,.1,.5,.9,.9,.9,. 9,

.0,.0,.1,.4,.8,.9,.9,. 9,

.0,.0,.0,.2,.7,.9,.9,. 9,

.0 ,.0,.0,.1,.6,.9,.9,. 9,

.0,.0,.0,.1,.6,.8,.8,. 8,

.0,.0,.0,.1,.5,.8,.8,. 8,

.0,.0,.0,.1,.4,.8,.8,. 8,

.0,.0,.0,.1,.3,.7,.8,. 8,

/*HW*/ 1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,

1.0,1.0,1.0,1.0,1.0, 1.0, 1.0, 1.0,

.8,1.0,1.0,1.0,1.0,1.0,1.0,1.0,

.8,1.0,1.0,1.0,1.0,1.0,1.0,1.0,

.8, .9,1.0,1.0,1.0,1.0,1.0,1.0,

.7, .9,1.0,1.0,1.0,1.0,1.0,1.0,

.7, .8,1.0,1.0, .9,1.0,1.0,1.0,

.6, .8,1.0,1.0, .9,1.0,1.0,1.0,

.6, .7, .9,1.0, .9,1.0,1.0,1.0,

.6, .7, .9,1.0, .8,1.0,1.0,1.0,

.5, .7, .9,1.0, .8,1.0,1.0,1.0,

.5, .7, .9,1.0, .8,1.0,1.0,1.0,

160

.5, .7, .9,1.0, .8,1.0,1.0,1.0,

.4, .7, .9,1.0, .8,1.0,1.0,1.0,

.4, .7, .9,1.0, .8,1.0,1.0,1.0,

.3, .4, .6,1.0, .5,L0,1.0,1.0,

.3 ,.4,.6,.9,.5,1.0,1.0,1.0,

.3 ,.4,.6,.9,.5,1.0,1.0,1.0,

.3 ,.3,.5,.8,.4,1.0,l.O,l.O,

.3 ,.3,.5,.7,.4,1.0,1.0,1.0,

/**/ 1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,

.7,1.0,1.0,1.0,1.0,1.0,1.0,1.0,

.6, .6,1.0,1.0,1.0,1.0,1.0,1.0,

.4, .4,1.0,1.0,1.0,1.0,1.0,1.0,

.3, .3, .7,1.0,1.0,1.0,1.0,1.0,

.2, .2, .3,1.0,1.0,1.0,1.0,1.0,

.2, .2, .2,1.0,1.0,1.0,1.0,1.0,

.1, .1, .1, .8,1.0,1.0,1.0,1.0,

.1, .1, .1, .5,1.0,1.0,1.0,1.0,

.1, .1, .1, .3,1.0,1.0,1.0,1.0,

.1 ,.1,.1,.1,.9,.9,.9,.9,

.1 ,.1,.1,.1,.9,.9,.9,.9,

.1 ,.1,.1,.1,.7,.9,.9,. 9,

.0 ,.0,.0,.0,.5,.9,.9,. 9,

.0 ,.0,.0,.0,.4,.9,.9,.9,

.0,.0,.0,.0,.1,.7,.8,. 8,

.0,.0,.0,.0,.0,.6,.8,. 8,

/*SP*/ 1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,

1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,

.7,1.0,1.0,1.0,1.0,1.0,1.0,1.0,

.7, .7,1.0,1.0,1.0,1.0,1.0,1.0,

.6, .6, .9,1.0,1.0,1.0,1.0,1.0,

.6, .6, .7,1.0,1.0,1.0,1.0,1.0,

.5, .5, .5,1.0,1.0,1.0,1.0,1.0,

.5, .5, .5, .9,1.0,1.0,1.0,1.0,

.4, .4, .4, .7,1.0,1.0,1.0,1.0,

.4, .4, .4, .5,1.0,1.0,1.0,1.0,

.3 ,.3,.3,.3,. 9,1.0,1.0,1.0,

.3 ,.3,.3,.3,. 8,1.0,1.0,1.0,

.3 ,.3,.3,.3,. 6,1.0,1.0,1.0,

.2 ,.2,.2,.2,.4,. 9,1.0,1.0,

.2 ,.2,.2,.2,.3,. 9,1.0,1.0,

.2 ,.2,.2,.2,.2,. 8,1.0,1.0,

.2 ,.2,.2,.2,.2,. 7,1.0,1.0,

.1 ,.1,.1,.1,.1,.5,. 9,1.0,

.1 ,.1,.1,.1,.1,.4,.9,1.0,

.1 ,.1,.1,.1,.1,.3,. 8,1.0,

161

.1 ,.1,.1,.1,.1,.2,. 8,1.0,

/*WF*/ 1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,

1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,

.7,1.0,1.0,1.0,1.0,1.O,1.0,1.0,
.6, .9,1.0,1.0,1.0,1.0,1.0,1.0,
.5, .6,1.0,1.0,1.0,1.0,1.0,1.0,
.4, .4, .9,1.0,1.0,1.0,1.0,1.0,
.4, .4, .7,1.0,1.0,1.0,1.0,1.0,
.3, .3, .5, .9,1.0,1.0,1.0,1.0,
.2, .2, .3, .8,1.0,1.0,1.0,1.0,
.2, .2, .2, .7,1.0,1.0,1.0,1.0,
.2 ,.2,.2,.5,. 9,1.0,1.0,1.0,
.1 ,.1,.1,.4,.8,1.0,1.0,1.0,
.1 ,.1,.1,.3,.7,.9,1.0,1.0,
.1 ,.1,.1,.2,.6,.9,1.0,1.0,
.1 ,.1,.1,.1,.5,.9,.9,.9,
.1 ,.1,.1,.1,.4,.8,.9,.9,
.1 ,.1,.1,.1,.3,.7,.9,.9,
.1 ,.1,.1,.1,.2,.6,.9,. 9,
.0,.0,.0,.1,.2,.5,.8,. 9,
.0 ,.0,.0,.0,.1,.4,.8,. 9,
.0 ,.0,.0,.0,.1,.3,.7,. 9);

if (pf2)
{

pf=0;
signaltoprint= 1;

}

// for (sdctr=0; sdctr<goalcombos; sdctr++)
// gc[sdctr]=1;

// gc[gcctr]=1.5;

I/insects
pbao;
for (sdctr=0; sdctr<lines; sdctr++)
{

pba+=ba[sdctr] *restpa[sdc];
if (sp[sdctr]==1)

dfpba+=ba[sdctr] *restpa[sdct];
else if (sp[sdctr]=9)

wfpba+=ba[sdctr] *restpa[sdctrl;
else if (sp{sdctr]==3

1

sp[sdctr]==5 sp[sdctr]==7)
ppba+=ba[sdctr] *restpa[sdc];

}

if (pba>wfbat[pag])

162

{

wfbadev=pba-wfbat[pag];
if (wthadev>wfba)

wthadev=wfba;
}

if ((pba-wfbadev)>dfbat[pag])
{

dfbadev=pba-wfbadev-dfbat[pag];
if (dthadev>dfba)

dthadev=dfba;
}

if ((pba-wfbadev-dfbadev)>pbat[pag])
{

pbadev=pba-wfbadev-dfbadev-pbat[pag];
if (pbadev>ppba)

pbadevppha;
}

if (signaltoprint)
{

frintf(editfp,"%4.2f %4.2f %4.2f ",pba,dfpba,ppba);
tinsectdev+=dfba+ppba+wfpba;

}

wfbadev=pow(wfbadev,4); I/just squared each of the basal area deviations, not
the total

dfbadev=pow(dfbadev,4);
pbadev=pow(pbadev,4);

if(pba>0)
insectdev=(wfbadev+dfbadev+pbadev)/pba* 100;

II wildlife
verticalvar=verticalcomplexity(ht,cr,restpa);

if (gcctr==4)
{

if (verticalvar<verticalvargoal)
wildlifedev=fabs((verticalvargoal-verticalvar)/verticalvargoal * 100);

}

else

{

if (verticalvar>verticalvargoal)
wildlifedev=fabs((verticalvargoal-verticalvar)/ 1 881*verticalvargoal*/* 100);

}

if (signaltoprint)
{

frintf(editfp,"%4.2f ",verticalvar);

163

tverticaldev+=wildlifedev;
}

wildlifedev=pow(wildlifedev,2);

if (pf=O)
{

snags=O;
for (a=2; a<5; a++)

for (b=O; b<4; b++)
snags+=reportsnag[a [b];

if (per=O)
{

for (sdctr=O; sdctr<lines; sdctr
{

if (sdensity[sdctr]>O.14 && dbh[sdctr]> 15)
snags+=morttpa[sdctr];

}

if (snags<snagsgoal)
snagsdev=(snagsgoa1snags)*2O;

snagsdev=pow(snagsdev,2);

if (signaltoprint)
{

fprintf(editf'%4.2f ",snags);
tsnagsdev+=snagsdev;

}

dwdlinear=O;
for (a=2; a<5; a++)

for (b=O; b<4; b++)
for (sdctr=O; sdctr<1; sdctr-H-)

dwdlinear+=reportdwd[sdctrl [a] [b];

if (per==O)

{

for (sdctr=O; sdctr<dwdlines; sdctr-H-)
{

if (dwddensity[sdctrl [0] [O]>O.14 && dwdld[sdctri [0] [0] [0]> 11 &&
dwdln[sdctr] [0] [0] [0]>6)
dwdlinear+=dwdln[sdctr] [0] [0] [0] *dwdpa[sdcfrj [0] [0] [0];

}

}

if (dwdlinear<dwdgoal)
dwddev=(dwdgoal-dwdlinear)/1 0;

dwddev=pow(dwddev,2);

}

164

if (signaltoprint)
{

fprintf(editfp,"%4.2f ",dwdlinear);
tdwddev+=dwddev;

}

}

II fire
for (sdctr=O; sdctr<lines; sdctr-1l-)

{

diam(int)((dblh[sdctr]+O.5)/2);
if (diam>20)

diam=20;

baff=int((flame1n+O5)/2);
if (bafl>7)

bafl=7;

if (sp[sdctr]0)
baspO;

else if(sp[sdctr]== 1 II sp[sdctr]==2)
baspl;

else if(sp[sdctr]==3I sp[sdctr]==5)
basp=3;

else if(sp[sdctr]411 sp[sdctr]==8)
basp=2;

else if(sp[sdctr]=611 sp[sdctr]==9)
basp=5;

else
basp=4;

bamortpct+=bamort[baspl [diami [bafi] *restpa[sdc] *ba[sdcfr];
tota1trees+rrestpa[sdctr] *ba[sdc];

}

if (totaltrees>O)
bamortpct=bamortpctltotaltrees;

else
bamortpct=O;

vegclass=vegclassification(dbh,restpa,cw,sp,ba);
covertype=(int)vegclass/l 00;
qmdint=(int)(vegclasscovertype* 100)/10;
coverint=(int)(vegclasscovertype* 1 00qmdint* 10);
covertype-=l;

165

torching=standhticfii(ht,restpa,cr,flameln,pf,signaltoprint);

fbi=50/ 15 *flameln +30*torching +20*fabs((cbd[covertype [qmdinti [coverint]-
0.1)/0.2);

fei=bamortpct* 100;

if (signaltoprint)
{

frintf(editf1'%4.2f %4.2f ",fbi,fei);
// flrintf(editf1,"\n%4.2f %4.2f

%4.2f\nt1,flameln,torching,cbd[covertype] [qmdint] [coverint]);

}

if (signaltoprint)
{

tfei+=fei;
tfbi+r=fbi;

}

if (fbi<=fbigoal)
fbi=0;

if (fei<=fbigoal)
fei0;

fbi=pow(fbi,2);
fei=pow(fei,2);

// fish
fishtrees=O;
snagtrees=0;
for (sdctr=O; sdctr<lines; sdctr-H-)
{

if(dbh[sdctr]>16 && dbh[sdctr]<30)
snagtrees+=restpa[sdctr];

if (dbh[sdctr]>=30)
fishtrees+=restpa[sdctr];

}

if (snagtrees<snagsdev)
snagtreesdev=snagsdev-snagtrees;

if (fishtrees<=fishtreesgoal)
fishtreesdev=(fishtreesgoa1fishtrees)*2O;

if (signaltoprint)
{

frintf(editf, %4.2f" ,fishtrees);
tfishtreesdev+=fishtreesdev;

}

fishtreesdev=pow(fishtreesdev,2);// try to make fishtrees more important <> raised to
the 4

166

II doesn't work

if (rma)
{ if (cover<ccgoal)

ccdev=ccgoal-cover;
ccdev=pow(ccdev,2);

}

II if (objective<l 0)
II pnvdev=pow(1 O-obj ective,4);

II final
sumdev=gc[3] *insectdev +gc[4] *fishfteesdev +gc [4] *ccdev

+ksnag*gc[1] *gc[2] *snagsdev
+gc[0] 'fbi +gc[0] *fei +gc[1] *gc[2] *wjldljfedev
+kdwd*gc[11 *gc[2] *dwddev +kstree*gc[1] *gc[2] *snagfteesdev;

if (signaltoprint)
{

1* frintf(editf'\nIn per %d, mode %d\n",per,pf);
ffrmntf(editfp,"dfbadev %4.2f wfbadev %4.2f pbadev %4.2f insectdev %4.2f \n",

dfbadev, wfbadev, pbadev, insectdev);
ffrmntf(editf,"fishtrees %4.2f ccdev %4.2f\n" ,fishtreesdev,ccdev);
fprintf(editf,"vertcomp1ex %4.2f snagsdev %4.2f dwddev

%4.2f\n" ,wildlifedev,snagsdev,dwddev);
frintf(editf,"bamortpct %4.2f cbd %4.2f

",bamortpct,cbd[covertype [qmdint [covennt]);
frintf(editf,"torching %d firedev %4.2f\n'T ,torching,firedev);
fpiintf(editf,"sumdev %4.2f\n\n",sumdev);

*1

frintf(editf,"%4.2f %4.2f %4.2f %4.2f %4.2f %4.2f %4.2f %4.2f
%d",fishtreesdev,

ccdev,wildlifedev,
snagsdev,dwddev, fbi, fei, insectdev,per+ 1);

frintf(editf," fi %4.2f torch %4.2f cbd %4.2f
fl,flameln,torching,cbd[coverype [qmdint [coverint]);

frintf(editfp,"\n");
}

/1 gc[gcctr]1;

return sumdev;
}

VEGCLASS
#include "var.h'
extem mt lines;
double cover;

167

II make sure the report species is passed

mt vegclassification(double dbh[], double tpa[], double cwl], mt sp[], double ba[])
{

double standba=O, adjstandba=O, standtpa=O, adjstandtpa=O, qmd, adjqmd;
double spcover[totsp];
mt vctr, speovertype, coverint, qmdint, vegclass;

for (vctr=O; vctr<totsp; vctr++)
spcover[vctr]0;

for (vctr=O; vctr<lines; vctr++)

{

if (dbh[vctr]>1);
{

standba+=ba[vctr] *tpa[vct];
standtpa+=4pa[vctr];

}

}

qmd=pow((standbal(O.005454 1 54*standtpa)),O.5);
coverO;

for (vctr=O; vctr<lines; vctr++)
{

if (dbh[vctr]>=qmd)
{

adj standba+=ba[vctr] *tpa[vctr];
adjstandtpa+=tpa[vctr];
cover+=pow((cw[vctr]/2),2)*pi*tpa[vctr];

spcover[sp[vctr]]+=pow((cw[vctr]/2),2)*pi*tpa[vctr];
}

}

adjqmd=pow((adjstandbal(O.005454 1 54*adjstandtpa)),O.5);

for (vctr=O; vctr<totsp; vctr++)
spcover[vctr]=spcover[vctr]/cover* 1 OO;//43 5.6;

covercover/43 5.6;

if((spcover[O] +spcover[1] +spcover[2] +spcover[3] +spcover[4] +spcover[5]
+spcover[6]

+spcover[7] +spcover[8] +spcover[9])<20)
spcovertype=6; I/open

else if ((spcover[O] +spcover[4] +spcover[8])>30)
{

if((spcover[7] +spcover[1] +spcover[2] +spcover[3] +spcover[9] +spcover[5]
+spcover[6])

>30)
spcovertype=1; II CH

else if ((spcover[4] +spcover[8])>50)
spcovertype=3; II EH

168

else
spcovertype=2; II DH

}

else if ((spcover[6] +spcover[9])>50)
{

if (spcover[6]>spcover[9])
spcovertype=8; II RF

else
spcovertype=9; //WF

}

else if ((spcover[3] +spcover[5] +spcover[7])<50)
spcovertype=5; II MC

else if ((spcover[5] +spcover[7])>spcover[3])
spcovertype=7; II pine

else
spcovertype=4; II KP

if (cover<=60)
coverint=0;

else
coverint 1;

if (adjqmd<5)
qmdintr=0;

else if (adjqmd<9)
qmdint=1;

else if (adjqmd<15)
qmdint=2;

else if (adjqmd<2 1)
qmdint=3;

else if (adjqmd<25)
qmdint=4;

else if (adjqmd<32)
qmdintr=5;

else
qmdint=6;

if(qmdint=0 qmdint==6 qmdint==5)
coverint=0;

vegclass=spcovertype* 100 +qmdint* 10 + coverint;

return (vegclass);
}

VOLHRV
#include "var.h"
extem mt lines;
extern mt sp[linesor];
extern double vo I[linesor];

169

extem double volabhco :i [totsp], volabhco2 [totsp], dib 1 co 1 [totsp], dib 1 co2 [totsp],
dib 1 CO3 [totsp];

extem double dibco I [totsp], dibco2[totsp];

void volharvest(double tpa[],double dbh[], double ht[])
{

mt vhctr;
double htabh,volabh,volbbh,dib, dibi, r;
double k 1 ,k2,k3=O.000 1 62,k4,k5 ,k6,k7;

for (vhctr=O; vhctr<lines; vhctr++)

{ htabh=ht[vhctr] -4.5;

if (vhctr==40)
volbbh=O;

if (ht[vhctr]>4.5)
II

volabh=volabhco 1 *(pow(htabWdbh[vhcfrl ,volabhco2))*(pow(dbh[vhctr] ,2))*htabh;
volabh=volabhco 1 [sp [vhctr]] *(pow(htab hldbh[vhctr] ,volabhco2 [sp [vhctr] 1))
*(pow(dbh[vhCfr] ,2))*htabh;

else
volabh=O;

II dib=dibcol *(pow(dbh[vhcfr],dibco2));
II dib 1 =dib 1 co 1 +dib 1 CO2*(pOW(dbh[vhctr] ,dib 1 co3));

dib=dibco I [sp{vhctr]] *(pow(dbh[vhcfr] ,dibco2{sp[vhctr]]));

dib 1 =dib 1 Co 1 [sp [vhctr]]+dib 1 co2 [sp [vhctr]] *(pow(dbh[vhcfr] ,dib 1 co3 [sp [vhctr] 1));
if(dibl>O)
{

r=pow((dib/dib 1),2/3);

k10.25*3. 141 56*pow(dibl ,2);
k2=(1 /43904)*(729+8 1 r +297*pow(r,2) +265 *pow(r,3));
k30.;
k4pow((4.5-r),3);
k5=1 .5*pow((4.5_r),2)*(1 -r);
k6(4.5r)*pow((1 -r),2);
k7=pow((1 -r),3);

volbbh=kl *(k3*(k4k5+k6k7));
if (volbbh<O)

volbbh=O;

170

}

VOLS
#incude "var.h"
extern mt lines;
extern double bfmind[totsp];
extern double bftopd[totsp];
extern double bfv[linesor], bfrevenue, bfrev[linesor];

void vos(doub1e vostpa[], doub'e volsdbh[], double vosdg[], mt sp[], double volsht[])
{

mt vctr;
double brat, d;

for (vctF=O; vctr<hnes; vctr++)
{

bfv[vctr]=O;
bfrev[vctr]0;

if (volstpa[vctr]>O)
{

brat=bratio(sp [vctr] ,vosdbh[vctr]);
II d=volsdbh[vctr]+vosdg[vctr]/brat;

d=volsdbh[vctr];

if(d>bfmind[sp[vctr]] && d>bftopd[sp[vctr]])
{

bfv[vctr]=bfvo(sp[vctrJ,d,volsht[vctr] ,brat);
bfrev[vctr]=bfrevenue;

}

}

vol [vhctr]=volbbh+volabh;

}

e'se
vol[vhctr]0;

//rintf(growf,"\nvol=%f',vo1 [vhctr]);

}

171

Appendix B: Goal Measures for All Goal Emphases

Table 1. FBI by Period for All Goal Emphases.

Table 2. FBI by Period for All Goal Emphases.

172

Per 1 2 3 4 5 6 7 8 9
1 47.2 7.99 7.99 7.99 40.18 7.99 7.99 7.99 7.99
2 44.2 3.99 7.99 11.98 7.99 7.99 3.99 4.96 4.98
3 11.2 5.97 9.97 14.95 9.97 10.96 6.96 7.93 7.95
4 11.2 2.99 11.95 37.93 11.95 5.94 2.99 3.91 9.92
5 5.2 9.97 16.93 39.91 7.99 38.91 4.96 6.88 9.89
6 6.2 5.99 18.91 41.89 9.97 56.88 31.99 37.86 39.86
7 4.2 5.96 50.89 43.87 5.95 48.86 0.99 41.82 10.99
8 6.2 32.99 57.87 45.85 21.93 50.83 34.97 41.79 2.99
9 6.2 34.97 59.85 51.83 23.91 52.81 2.99 44.76 2.99

10 34.2 32.99 61.83 53.81 55.89 49.79 32.99 48.74 33.99
11 1.2 4.96 63.81 53.79 57.87 51.76 0.99 51.71 0.99
12 32.19 2.99 53.79 52.77 44.85 59.73 30.99 46.68 30.99
13 15.99 3.97 51.76 59.75 61.83 61.71 3.98 16.65 15.99
14 40.99 1.99 64.73 58.73 60.8 50.69 2.99 32.99 2.99
15 15.99 3.97 56.71 61.71 67.77 53.66 4.96 35.96 2.99
16 0.99 31.99 52.69 62.69 63.75 65.63 31.99 38.93 32.99
17 1.98 34.96 51.67 64.67 60.72 68.6 1.99 2.99 0.99
18 31.98 31.99 44.65 69.65 57.69 74.58 31.99 32.98 30.99
19 2.98 4.96 43.63 68.63 24.66 64.55 5.99 3.99 15.99
20 31.98 1.99 48.6 70.61 21.63 75.52 31.99 35.96 3.99

Per 1 2 3 4 5 6 7 8 9

1 16.85 16.85 16.85 16.85 16.85 16.85 16.85 16.85 16.85
2 14.09 18.36 17.47 14.86 16.74 18.38 18.36 11.92 18.52
3 13.59 11.73 16.32 19.43 15.98 18.67 16.88 13.95 25.71
4 16.54 13.73 21.6 21.42 21.71 40.95 16.52 14.0 27.74
5 15.02 9.51 22.93 21.61 17.66 34.37 20.25 17.15 31.65
6 22.36 30.24 22.76 28.14 17.02 48.4 24.38 24.82 36.99
7 28.5 24.16 34.99 32.38 21.79 46.64 20.84 33.82 22.7
8 l7.83 33.11 37.75 35.13 23.09 43.45 29.27 39.93 11.98
9 21.38 21.14 44.29 63.04 23.64 44.54 29.44 41,89 14.58

10 30.45 28.5 78.82 64.72 48.61 45.31 32.19 60.91 17.91
11 23.95 20 82.89 62.6 48.09 64.85 29.47 68.53 20.35
12 27.83 24.71 74.94 87.65 51.07 60.51 29.93 25.23 24.36
13 31.64 14.05 81.33 82.29 86.68 99.5 25.98 25.19 15.21
14 26.69 28.46 89.66 82.81 84.72 99.29 26.32 21.51 16.47
15 22.87 13.1 81.03 95.8 99.44 98.92 10.84 21.68 18.04
16 25.84 44.21 71.08 94.96 81.87 100 18.97 25.53 19.82
17 21.83 21.15 72.86 96.73 43.43 100 24.24 21.36 20.23
18 27.86 31.84 64.34 97.63 38.1 100 30.1 27.9 24.12
19 23.42 20.88 62.84 83.21 20.91 100 24.38 38.67 40.36
20 16.89 27.2 57.79 97.34 20.98 100 32.73 37.62 39.63

Table 3. Vertical Complexity by Period for All Goal Emphases.

Table 4. Snags by Period for All Goal Emphases.

173

Per 1 2 3 4 5 6 7 8 9

1 133.3 133.3 133.3 133.3 133.3 133.3 133.3 133.3 133.3
2 77.94 13.3 113.12 47.18 148.47 161.08 13.3 49.58 14.31

3 65.92 6.54 97.75 48.36 96.35 166.21 13.43 50.48 18.55
4 71.01 9.85 104.61 45.4 107.68 178.33 15.06 34.13 19.71

5 65.08 11.09 93.56 47.45 98.76 202.17 88.24 38.69 87.02
6 42.61 9.51 108.87 47.4 110.61 182.02 115.18 32.2 119.15
7 47.11 18.74 108.31 57.32 104.4 185.64 183.76 39.47 184.83
8 49.29 19.17 103.99 44.3 115.4 172.81 21.48 46.68 8.11

9 29.47 18 103.49 47.18 108.74 183.33 38.25 73.4 30.01

10 20.44 23.27 107.74 53.24 119.78 166.3 44.48 63.59 40.9
11 22.18 20.43 109.62 48.52 110.01 98.83 149.44 81.37 105.92
12 23.56 23.39 94.91 57.26 120.44 102.85 185.38 86.95 129.52
13 175.17 16.42 85.99 45.47 120.05 58.07 25.63 125.24 19.16
14 158.12 15.77 89.36 55.18 124.62 52.23 26.91 50 20.11
15 249.15 18.72 27.8 51.99 116.87 48.93 12.39 61.91 26.13
16 321.32 0 32.37 43.9 114.47 51.89 10.69 69.59 31.15
17 321.76 4.07 31.68 48.32 113.77 60.8 108.71 90.06 102.3
18 299.74 18.78 30.76 58.5 109.53 69.26 128.49 50.69 128.9
19 293.57 22.26 30.29 52.61 107.84 88.32 252.02 58.02 16.01
20 296.49 24.92 18.34 59.02 105.16 106.3 12.27 65.13 16.76

Per 1 2 3 4 5 6 7 8 9

1 0 0 0 0 0 0 0 0 0

2 0.04 0.01 0.04 0.03 0.05 0.05 0.01 0.03 0.01

3 0.1 0.01 0.09 5.33 5.35 0.1 0.01 5.33 5.3
4 0.16 0.02 0.14 5.37 5.37 0.12 0.02 5.34 5.31

5 0.19 0.02 0.17 5.41 5.38 0.14 0.03 5.35 5.31

6 0.19 0.02 0.19 5.12 5.06 0.17 0.04 5.02 4.98
7 0.18 0.02 0.2 4.64 4.57 0.16 0.05 4.51 4.79
8 0.18 0.02 0.2 4.87 4.86 0.15 0.05 4.84 4.84
9 0.16 0.02 0.21 4.89 4.9 0.14 0.04 4.89 4.89

10 0.14 0.01 0.2 4.84 4.85 0.11 0.04 4.84 4.83
11 0.09 0.01 0.19 2.14 2.16 0.09 0.03 1.69 2.14
12 0.05 0 0.18 5.2 5.21 0.07 0.02 1.63 5.24
13 0.03 0 0.17 5.04 5.12 0.05 0.02 1.55 5.16
14 0.02 0 0.18 4.86 4.99 0.03 0.01 1.47 5.04
15 0.02 0 0.18 4.91 4.84 0.03 0 1.38 4.58
16 0 0 0.16 4.47 4.18 0.02 0 0.95 4.04
17 0 0 0.15 4.68 3.74 0 0 0.91 3.72
18 0 0 0.14 4.74 3.56 0 0 0.88 3.43
19 0 0 0.13 4.7 3.4 0 0 0.84 2.88
20 0 0 0.12 3.32 5.2 0 0 5.27 1.31

Table 5. DWD by Period for All Goal Emphases.

Table 6. Stand Basal Area Per Acre by Period for All Goal Emphases.

174

Per 1 2 3 4 5 6 7 8 9

1 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0

5 0.11 0.05 0.12 0.08 0.12 0.12 0.05 0.08 0.02
6 0.51 0.12 0.35 4.05 4.12 0.38 0.12 4.05 3.9
7 1.25 0.19 0.73 5.57 5.63 0.78 0.2 5.49 5.21

8 1.59 0.22 0.93 4.56 4.4 1.04 0.25 4.22 3.91
9 1.51 0.23 1.05 4.04 3.56 1.34 0.33 3.31 2.96

10 1.7 0.21 1.4 4.33 3.63 1.51 0.47 3.12 3.55
11 1.41 0.16 1.4 3.89 3.53 1.4 0.55 2.36 2.17
12 0.85 0.12 1.38 6.57 6.79 1.33 0.56 3.34 2.78
13 0.63 0.07 1.51 8.38 8.97 1.06 0.45 4.47 4.12
14 0.47 0.03 1.64 10.01 11.54 0.89 0.31 6.6 9.6
15 0.26 0.02 1.77 24.53 14.26 0.81 0.25 9.64 28.61

16 0.24 0 2 26.34 23.58 0.7 0.13 10.02 50
17 0.27 0 2.23 19.63 31.5 0.67 0.09 10.06 62.23
18 0.29 0 2.47 30.48 36.77 0.68 0. 11.22 59.33
19 0.28 0 2.59 25.95 41.31 0.65 0 11.38 52.53
20 0.29 0 2.8 22.1 39.23 0.7 0 11.64 48.54

Per 1 2 3 4 5 6 7 8 9

1 257.7 257.7 257.7 257.7 257.7 257.7 257.7 257.7 257.7
2 252.45 37.64 276.7 188.6 282.96 298.21 37.64 189.87 39.38
3 263.87 37.83 296.63 206.43 287.55 328.53 40.92 206.79 42.11
4 273.42 36.36 291.76 194.52 259.91 146.42 46.63 111.47 47.13
5 282.1 37 242.74 204.87 242.34 171.14 59.44 123.02 58.92
6 134.57 12.95 246.88 204.1 256.09 197.71 92.01 75.03 89.21
7 98.58 13.58 261.24 188.61 241.53 181.11 124.29 84.31 118.51

8 110.38 23.39 251.62 184.99 223.27 210.12 27.44 99.5 48.8
9 59.81 21.64 221.88 156.13 202.69 216.15 33.91 117.54 52.74

10 21.16 23.8 212.88 141.56 195.07 205.73 49.31 64.06 65.34
11 25.69 25.63 223.38 137.61 195.4 130.09 72.41 82.7 73.38
12 34.77 33.7 192.02 144.4 204.37 148.83 118.9 108.69 106.49
13 50.06 27.88 165.24 135.61 221.02 102.16 35.71 137.68 39.05
14 79.8 16.31 182.79 134.74 243.92 72.9 40.21 90.19 42.88
15 116.16 18.19 106.88 138.8 268.04 82.37 14.11 106.29 48.45
16 134.53 9.85 114.27 116.08 290.74 95.41 19.4 127.84 60.42
17 177.88 10.13 124.47 121.43 312.83 112.08 31.07 150.32 77.86
18 221.69 18.58 134.35 130.09 336.89 75.11 63.12 99.79 112.46
19 266.95 19.05 145.83 141.75 354.76 94.34 100.79 109.97 43.66
20 313.29 27.04 112.98 142.63 378.83 120.81 11.92 130.13 47.65

Table 7. Large Trees Per Acre by Period for All Goal Emphases.

175

Per 1 2 3 4 5 6 7 8 9
1 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0

6 0 0 1.63 1.63 1.63 0 0 1.63 0
7 0 0 2.91 1.63 1.63 0 1.24 4.21 2.62
8 0 0 4.14 2.87 2.87 0 0 4.21 2.61

9 0 0 4.13 2.87 2.87 0 0 4.2 2.61
10 0 0 4.11 2.87 2.87 0 1.56 4.75 3.1

11 0 0 4.1 4.43 1.24 0 1.56 4.74 3.09
12 0 0 5.64 2.8 1.24 0 1.56 4.74 3.09
13 0 0 5.63 2.8 0 0 0 4.73 3.09
14 0 0 5.62 2.8 0 0 0 4.73 3.08
15 0 0 5.62 2.8 0 0 0 4.72 3.08
16 0 0 5.61 2.8 0 0 0 4.71 3.08
17 0 0 5.6 1.24 0 0 0 4.7 3.07
18 0 0 5.6 0 0 0 0 4.7 3.07
19 0 0 5.59 0 0 0 0 4.69 3.06
20 0 0 5.58 0 0 0 0 4.69 3.06

Appendix C: Cubic Feet Harvested

Table 8. Cubic Feet Harvested by Period for All Goal Emphases

176

as
1 2 2 4 5 7

1 7U3i 71i 17E

2 1 3V37 162 12)72

195f2 47481 &5 4X2 1 4134Z

i 837 1258 16I24 718E

5 ic elalE 4442 15 151Q1

15E 2l677
c2 84 737AE

7 213E 7158 1e 7731 1337.E 1.O

E 938 icw 7E 514

55E 47 1E 12 B1Z 517.

t &6E 74E 1 1t1 1291
11 115 219

7Q 452 131.71 1O?5 81& 8331

1 472c2 34 41Q9 e157.53

14 151iX tF&
1 163 1Th1 437 2E 34

avff 212?

17 12tB3 67 12 167.1 7B3AE

1E 2t6 22 V. 73
1 2112
2: 94 18t 001 81i. 8742

Appendix D: Snags Created

Table 9. Snags Created by Period for All Goal Emphases

177

Fiai GBrpJu
1 2 3 4 5 7 8

1 52? 5F 52? 52

I
4

5 03
Q 072 077 05

7 043 041 Q 04
E 041 04 Q' 04

04 045 04
31 314 31

11

12

13 044

14

15

17

1 0 1.

1 1.

23

150

135

120

105

- 90

I 75
0
0

60

45

30

15

0

150

135

120

105

90

0I 75
0

60

45

30

15

0

Appendix E: Vertical Structure

Crown DistributIon for a Complex Stand

Figure 1. Crown Distribution for a Complex Stand, Standard Deviation = 14

Crown Distribution for a Simple Stand

TPA

Figure 2. Crown Distribution for a Simple Stand, Standard Deviation = 160

178

0 5 10 15 20 25 30 35 40 45 50

TPA

0 100 200 300 400 500 600 700

