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TIME DERIVATIVES OF OBSERVABLES AND APPLICATIONS

INTRODUCTION

The Born Interpretation

Let 9 be a normalized state function defining the state of a

quantum mechanical system. For a long time in the development of

quantum mechanics it was not clear how to interpret 9 physically.

2In the 1920's Max Born proposed that I 9 I should be regarded as

the probability distribution of the position of the particle in state cp.

Thus the probabilitTthat the particle is in region R is I912dx.

Suppose that H = Ho + V is the Hamiltonian of a particle in a

potential field V, then in the Schrodinger picture the fundamental

dynamical law of quantum mechanics is that if i(x, t) is the state

at time t, then 4(x, t) - iFhp(x, t). That is, Ox, t) satisfies theat

Schrodinger wave equation. Well known considerations connected

with Stone's theorem show that the solution in L2(R1) is

itHOx, t) -= e where may be thought of as the initial state at

t = 0. Thus, eitH co is the state at any time t.

For each t, eitH is unitary, and so if 11911 = 1 then

II itH ii 2 itHitH
1. The Born interpretation now says that

some self -adjoint operators can be interpreted as observable quanti-

ties. For such an operator A the quantity <AeitHco, eitHcp> is



the expected value of A when the system is in the state e1t2.

Indeed, if A is multiplication by x., which has a natural inter-

pretation as the j-coordinate of position (x = (x1" x ) E Rn),n
itH itHthen <x.e e yo> x. e itHyo I 2dx, which is exactly the

Rn j

expected value of the classicalposition function x x. when

leitH(pi
2 is viewed as the probability distribution of position at

time t.

If we set A(-o)(t) = <AeitHco, eitHcp> then A(yo) is a real

valued function of t. We may therefore ask a very general question:

What is the behavior of A(co)(t)? This paper provides some answers

to this general question.

Ehrenfest's Theorem

Consider a particle of mass 1. In classical mechanics

d2x

dt2
is the momentum and

dx
dt

is the force if x(t) is the position of

the particle.

In the quantum mechanics the expected value of momentum in

the jth coordinate direction is given by <i eitHcp, eitHcp>. The
a x.

question arises whether the derivative of the mean of x, (?.(49)(t)),
3 3

is the expected value of momentum. Moreover, is the second deriva-

tive of the mean of x., (x'((p)(t)), equal to the mean or expected
a V

e cp,e > ? PaulitHitHcvalue of the force which is given by <
Ox.

3

2



Ehrenfest [9, 455] asserted that the answer is yes! Note that in

bibliographic citations the first number locates the reference in the

bibliography and the second is the page number. Ehrenfest's justifi-

cation of his assertion was not rigorous, nor could it be, for he gave

no hypotheses. Here we shall give sufficient conditions under which

Ehrenfest s Theorem is true.

This will involve us in the question of the differentiability of

means to which the bulk of Chapter I is devoted. It is in Chapter II

that Ehrenfest's Theorem is taken up.

Bound and Unbound States

The theory of self -adjoint operators on a Hilbert space

recognizes both eigenstates and absolutely continuous states. We can

ask what the behavior of x.(99)(t) is when cp is an eigenstate or an
,absolutely continuous state. For an eigenstate, is x.(P)(t) bounded?

cpForan absolutely continuous state, does x.- ( )(t) converge to

as t converges to co? We address ourselves to these questions

in Chapter II.

In Chapter III we shall give some results on the differentiability

of the function A((p)(t) where A is assumed bounded. Under this

assumption we no longer require A to be self-adjoint.

3



Stone's Theorem for Real Hilbert Spaces

Let U(t) be a strongly continuous group of unitary operators

on a complex Hilbert space. Then Stone's theorem says that
itHU(t) = e , for some unique self-adjoint operator H, and

Ut(t) = iHeit . In Chapter IV we shall formulate and prove Stone's

theorem for real Hilbert spaces.

To some extent Chapter IV is independent of the preceding

chapters. On the other hand, it is quite reasonable to ask about the

differentiability of means on real Hilbert spaces. But then a Stone's

theorem in the real case becomes indispensable, and so the material

of Chapter IV is not as independent of the main theme of this paper

as it might at first appear.

4



I. TIME DERIVATIVES OF UNBOUNDED OBSERVABLES

Let A and H be self-adjoint operators on a Hilbert space
A((p)(t) <Ae-itHco, -itHco> defined. Consider the expression

for t E R. In this chapter we shall provide conditions on A, H and

9 such that dA(9)(t) A--,((p)(t,) exists and is equal todt
1 -itH -itH<i[HA-AHje 9, e co>. In particular we shall study the cases

where "S-1 = L (R ) and A is a polynomial in x = (x1, ..., xn), orn

a , a a ,

ax ax ° ax In these two casesA is a polynomial in

we shall assume that H =
H0

+ V where I-I is the self-adjoint
0

realization of the Laplacian = -

potential.

L2 and V is a suitable
ax.

We shall begin by considering any self -ad joint operators A

and H on a Hilbert space fi The first theorem gives a general

criterion for the differentiability of A(co)(t). If A is any operator

we shall use D(A) to denote the domain of A. We shall assume

all operators are densely defined, but not not necessarily bounded

unless it is so stated.

Theorem 1.1. Let A be a symmetric operator and H a self-

ad joint operator on a Hilbert space Suppose E

-it H -
e 0(p D(HA-AH), e-itHcp, D(A) , and hAe II is bounded

itH -itH
for all t in a neighborhood of to' and A((P)(t) = <Ae-c o, e ep>.

5



Then
-itoH -itoH

A1(9)(to) = <i[HA-AH]e 9, e 49> °

Proof. Without loss of generality set to = 0, for otherwise we can
-itoH

replace 9 by e p in the following argument.

itH -itH<e Ae 9,9> - <Acp, (p>(9)0) = lim
t

itH-itH itH-itH
e Ae -e e A9= lim < (P>

t 0

= lim <
t 0

= lim <
tø.0

lim <

t 0

Ae-itH49-A49 -itHurn < , e co> + <iHAV 49>to
We next show that

-itH
Ae 9 - A -urn < 9

, eitH(p> = .

t 0

We have

-itHco-e-itHA9 -itH,e 9>

e -itHco-Aco-fe - itHA9 -A9]
, e

- itH
>

e-itH49-A9 -itH e-itHAco -A9 -itH,e (p> - lim < ,e 9>
t 0

6



7

Ae-itHyo-Acp ,e -itH(p> <-iA1-1(p, co> I

-it
= I < e

Hcp -itH-
, Ae (p> - Ae-itH(p> + AeitH (p>

- < A(p>I

since A is symmetric, I-1(p E D(A), and by adding and subtracting

<-iHcp, Ae -itH(p> . Thus,

Ae-itH go - Acp - itH
< ,e (r>- (p>1

-itH
< II e t iffirdi II Ae-itH + AHT e - itH49-(P

II

But the right side of this inequality tends to zero as t converges

to zero since II Ae-itHcp II is bounded in a neighborhood of zero.

q. e. d.

Corollary 1.2. If A and H are bounded self-adjoint operators,

then 7511(ep)(t) exists for all t, and

:711 ((p) (t) = <i[HA-AH]e-itH(p,
- itHp>

Thus, we observe that to establish the differentiability of

X(v)(t) we must establish the following three things:

e-itH(p E D(A) for all t in a neighborhood of to

II Ae-itHcoll is bounded for t in a neighborhood of
-itr,H

and 3) e u E D(HA-AH).
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To this end we shall have need of the following general concepts

and lemmas.

Definition 1.3. Let X be a Banach space and B: (a, b] X be a

function on the interval [a, b] with values in X. Then we define

B(t)dt = lim B(t,')At.
a Ati II 0

i=1

if the limit exists in norm. This is the usual Riemann integral of a

function with values in a Banach space. This integral exists if B

is continuous.

Lemma 1.4. Let A be a closed operator on X, and suppose that

b
bB(t)dt and AB(t)dt exist. Then B(t)dt E D(A), and

a a a

AS bB(t)dt = bAB(t)dt .

a a

Proof.

Now

n2--1

B(t)At, =
1 1

n=1

B(t)dt,

AB(t)t.
I. 1

n=1



and

and

But,

B(t. )Lt.
1 1

1= 1

by Lemma 1.4. Thus,

i=1

B(t)dt = lirn bB(t)dt
boo a

Sc°AB(t)dt = lim bAB(t)dt.
a boo a

Bet)dt AB(t)dt
a a

AB(e)a. AB(t)dt .
a

9

b
But A is closed hence B(t)dt E D(A), and

a

B(t)dt = AB(t)dt . q.e.d.
a a

Corollary 1. 5. Let A be a closed operator on X, and suppose
L70

that the improper integrals B(t)dt and AB(t)dt exist. Then
a a

00 00

B(t)dt E D(A), and As B(t)dt = AB(t)dt .
a a a

Proof. We have



B(t)dt E D(A), and
a

oo

B(t)dt = AB(t)dt .

a
q. e. d.

In the sequel we shall often be concerned with integrals over

paths in the complex plane of the following type.

Definition 1.6. Let rc be the path defined by z (t) = c + it and

z (t) = -c + it where t E(-°0,()°).

If T is an operator and X a complex number we shall

-write R(X, T) =
(X-T)1 for the resolvent of T.

We say f().) is of order g(X) at X cc provided that

f(X) .is bounded for large values of X .
g(X)

Lemma 1.7. Let T(t) be a strongly continuous group of unitary

operators on the Hilbert space , and let T be the infinitesimal

generator. Let c be a positive real number, and a a complex

number with 0 < c < I R(0)1 , R(0-) the real part of a. Then, for

E D(Tn), with n an integer, n > 2,

10

lim A B(t)dt = AB(t)dt.

Again, A is closed, so



-cplane R(X) < .

on r

is well-defined.
1

Let cp E D(Tn) and let 13(t)(P = 2Tri

Now choose p. so that R(1j) > c, and assume t > 0, then

So°°

T (t )cp = --1- eXt R(X, T)(c-LI-T)n(p dX .
2Tri (a_mn

co
-X

Proof. First we note that R(X, T) = e tT(t)dt, (see [1, 622]),

for X E p(T). Moreover, R(X, T) II < K e((c/4)-R(X))tdt for

R(X) > -4 , so R(X, T )11 is uniformly bounded in the half-plane

R(X) >. Similarly II R(X, T)11 is uniformly bounded in the half-

Thus, the integrand is of order

and so the integral

SeXtR(X,
t)(0-I-T)ncp dX

j1- (a_mn

1
B(t)codt

2Tri
Fc

extR(X,T)(cLI-T)119 c°e(X-p.)tdt dX

a-x)(
0

11

replaced by integrals over two small negatively oriented circles about

1 R(X,T)(aI-T)nco dX
2Tri

(N.-X)(a-Mn

Because of the order of the integrand this last integral can be

eXtR(X, T)(aI-T)119
dX .

Fc
(a_mn

!XI-n as



a and i. These integrals can then be evaluated by the residues at

a and L.

The Residue at Immediately we see that the residue at p, is

-R(11, T)(aI-T)nyo

The Residue at a: Consider

f(X) - It(X' T) (-1)n+1 R(X,

(11-)(a (h- con (X -p,)

We must compute the

dr1-1 (X-p.)R(X,T) =dxn-1

The residue at a is

m=0

n-1
n-1)(_1)(n-l-m) (n-l-m)! DmR(x,T)
rn n-m

m=0

where D = But DmR(X, T) = -1)mm ![R(X, T )1m+1,
dX

n-1d -1
(X-P4 R(X,T) -

R(X. , T)-1)-th derivative of - (X -la)-1R(X, T ).
0-[-L)

n-1 n-l-m)D (X-p.)-1DmR(X, T)

00

SO

[R(X., T )]m+1
1(n-1) ! (x_on-m

12



00 -1-(aI-T) m
9 (aI-T)cp

(a-P-)(al.on-m (a-02
rn

-cp (aI-T)R(p., T)(P
But we have the identity R(I, T)9 - +

have in general:

(
-1I-T)kk-1 (aI-T)R(p.,T)(ca-T)k-lcp

(a-p4(a-P-)k-1 (aOk

Making substitutions and telescoping we get

tB(tdt -)cp
R(11, T )( a I-T )n9 , R(11,T)(aI-T)n9e- + R (11, T )49 -

(a-.L)n (a-On

= T)cp

= e-iltT(t)cpdt .

0

Now apply linear functionals to both sides to see that B(t)cp = T(t)q'

for all t >0 and all E D(T).

Now T(-t) is a unitary group with generator -T. So we

have

T(t)_
X

1 et R(X, -T)(aI+T)ncpdX
ZITI

cp

'c (a-X)n

for t > 0 Substituting -X. for X and recalling that

0

(aI-T)n-1c9

so we

13



R(-), -T = -R(X,T) we see that

1 e-xtR(X,T)(aI+T)ricpT(4)9 - dX .

2Tri rc
(a-mn

If we put -a for a and -t for t, we get

eXtR(X,T)(aI-T)ncp
T(t) - 1 S dX , for t <0.

(a-mn

Thus, B(t)cp = T(t)9 for all t. q. e. d.

Lemma 1.8. Let A be a closed operator and H a self-adjoint

operator on a Hilbert space 1-1 . Let cp and suppose that for

an integer n > 2 and all X E rc, R(X,iH)(aI-iH)ncp E D(A), and

AR(X,iH)(aI-ill)n911 is of order ix.1n-(1+() as 1X1-"- on

for some E > 0, and AR()',iH)(aI-iH)ncp is continuous in X

on F. Then for each real t, eitH9 E D(A), and 11 AeitH911 is

bounded on any finite interval as a function of t. Here a is as in

Lemma 1.7.

Proof. Note that iH is the infinitesimal generator of the unitary

itHgroup e . From Lemma 1.7 we have

itH 1
dX

extR(X,iH)(aI-iH)11cp
e cp 27ri

(a- Mil

14



e AR(h, iH)(
But is continuous on rc, and its norm is

(a,-)on

of order I k I -(1+e) as I XI on rc. Thus,

1 eXtAR(k, iH)(0,I-iH)n9
dX

2Tri jrc (a-x)

exists. Consequently by Corollary 1.5 eitH9 E D(A) and

itH
2_,

1 S eXtAR(X, iH)(aI-iH)119
Ae (P- dX.

"1- r (a-cnm

But then

it 1 r
Ae 91 I e II AR(X, iH)(aI-iH)n9 II I dXI

and since eXt = e(±c+ib)t, where b E -co , 00) , we have

bounded on any finite interval of the real line. q. e. d.

Remark 1.9. Let V be a closed operator and H self -adjoint.

Suppose D(H) C D(V). Then VR(X,iH) is a bounded operator,

since it is closed and everywhere defined.

Lemma 1.10. Let H0
and H be self-adjoint operators and V

a symmetric operator with D(H0
) C D(V). Moreover, let H = H0 +V.

Let X E p(iHo) cm p(iH), the intersection of the resolvent sets of

iH and iH, then R(X., iH) - R(X, iH0 ) = R(X, iH0 )iVR(X, iH).

15



Proof. For v E D(H0) D(H) we have (X-iH0)(P - (X-iH)go = iVy9.

But yo = for some 4i, and so

- = iV(X.-iH)-111.)

for all LIJ E Ran(X =S4 Ran(X-iH0) is the range of (X-iF10).

But then we have

- (X-iH0)-14, = (X-iH0) 1iV(X-iH)-14)

for all E Here I-1 is the Hilbert space in question. q.e.d.

Remark 1.11. Let A, B and H be self-adjoint operators on

and a and b any complex numbers. Suppose

X(49)(t) = <Ae -itHco> and B((p)(t) = <Be
- itH9>

Suppose each of these functions is differentiable at t. Then

(aA+bB)(V)(t) is differentiable and (aA+bB)I(9)(t) = L7iqco)(t)+bBli(9)(t).

Proof. We have

(aA+bB)(c)(t) = <(aA+bB)e-itHv,e-itHv>

= a<Ae-itH(p,e-itHv> + b<Be-itH , e-itHv>

= aA(9)(t) + b73(9)(t)

16

But each term on the right is differentiable. q. e. d.



Remark 1.12. We emphasize the fact shown in the proof of Lemma

1.7 that if H is self -adjo int then II RR, iH) II is uniformly bounded

on rc.
We generalize this fact as follows.

Lemma 1.13. Let H be a self-adjoint operator and V a closed

operator on with D(H) C D(V). Let q E D(H), then

vR(X, is bounded on rc.

Proof. For X E r we recall that X = c + ib with c > 0 and

. We assume first that X c + ib. But we have

R(X,iH)(p = Swe-Xteitlicp dt, (see Dunford and Schwartz [1, 622]).
0 oo

Now V is closed, so VR (X, iH)co = S e -":tVeitHcp dt by
0

Corollary 1.5 if the integral exists. But,

-Xt itH
e Ve co dt = e-XtV(c-iH)-leitH(c-iH)ca dt

17

since cp E D(H). But V(c-iH)-1 is bounded, and so the integrand

is continuous in t.

Moreover,

<e -ct
V(c-iH)-1.1111(c-iH)VII

< Me-ct
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But this is integrable. Thus <M
13

e-ctdt <

For X -c + ib we note that R(-X, -iH) = -R(X, iH). But then

11VR(X, ii-1)q)11 II -iH)II , and so the above argument now

applie s. q. e. d.

Polynomials P(x)

In this section we shall concern ourselves with the case of A

being the maximal multiplication operator determined by the poly-

nomial P(x) in the variable x =(x ,... , xn). Therefore we shall
,

assume throughout that the Hilbert space 1-1 is LZ(Rn). More -

over, will be the self -adjoint closure of the Laplacian -6
0

defined on A the space of rapidly decreasing functions on Rn.

Throughout, the potential V will be a symmetric operator whose

domain contains A such that (-A + V)I has a self -adjoint

closure H=H +VI with D(H ) = D(H). In consonance with the
0 A 0

physical considerations in the introduction we shall refer to H0 as

the free Hamiltonian, and H as the Hamiltonian.

We shall make repeated use of the Fourier transform of func-

tions (1, E L2(Rn) . We shall denote the transform by 1(0 or 0

We shall take as a definition of the transform restricted to A

1(9)(k) = e- k>,p(x)dx
Rn
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If x = (x , ) and a = (al, ... , an , where is a
al a

non-negative integer, then we define xa ,-- x1 ...xnn . Moreover, we

set I =

i=1
In view of the linearity described in Remark 1.11, we need only

study multiplication operators of the form xa. We set A = x

and interpret A as the self-adjoint closure of xa defined on A

We now set about establishing for A the three properties

listed on page 9. We begin with properties 1) and 2).

Remark 1.14. Let a = (a , , a ) where each a.
1

negative integer. Let Sa be the space of functions

ax

which is meant. Of course in this case

D(xa) = nE L2(Rn) I xaf E LZ(R)}, andxa

is a non-
nf E L2 (R )

such that for each p < a (i.e., p. < a.), f is in the domain of
1

aP aP aP
where is the closure of defined on A Here,

ax ' ax ax

8Pf 8'PIf ameans. Then S is a Banach space in the
ax P1 Pn

1ax' ..axn P

Sobolev norm given by 111.11 2a= 11 112 2 . The proof is
s Lp < a

standard and can be found with slight modification in [2,323].

Remark 1.15. If LIJ E D ( Xa ) then LIJ E D(x) for all 13 < a.

Note that we shall, from time to time, confuse the operators
a act

and with their closures. It will be clear from the context



Proof. Let Lji E D(Xa), then

and

X
I X I

1)CHI. 1

Proof. Note that the operator

4J12dx I xPI2,IqJI2dx+
Ix1 <1.

1131 13adjoint, and its closure has for its Fourier transform (27r) k .

Now let qi E D(xa), then there is a sequence {qin} c A , the

space of rapidly decreasing functions, such that

a a, xx x LIJ in L2 (Rn ), since ais closed. But,

II xallin-x% 2 =

;1131 al31
- ax

2dx

2dx + lxal2kPl2dx
lxl >1

12dx

20

xal21 ip 2dx <
>1

is essentially self-

and

ixa-i2Hin_Lidzdx

But for >1, < 1 xa1 so

So, E L2(Rn). q. e. d.

Lemma 1.16. If E D(xa) then R().,
iHo)tp

E D(XCL)



Thus, xPtiin --" x LP in L (R ) for each p< a.2 n But then for all
Ra Ad

8k 9' n
a

in S .

and

With this fact we have

1

4 [xaR(x., iHo)LPii] - )1 al a r ]
2Tri ak L k-472ilki 2 n

a-13
1

(a) a
x_-472iikl

2 ak2Tri 13 ak
p< a

But for fixed X. each

operator. Moreover

-1 I P1 P"
2Tri) (x

So if LP E D(xa)

8a-I3 1

ak X-4Tr2iiki2

aP.
ak ak

But Sa is a Banach space, so

then /L ES.

21

is a bounded multiplication

in L2(Rn), so

4 r.aR(x., iH0)4in] converges. But R(X, iHo)4in converges to

R(X,
a

Since x is closed, R(X, iHo)tp E D(xa). Indeed we

have the useful formula

a-13

1 a
xaR(X,iH0 )4J] - (a) ap ak1 1X-4Tr2ilk2 8kip < a

-a 13

xaR
iH0

= (
-1 )1 al ( -1 Ipi(a)s-ira

27ri 27i ak 2, , 2
Scx

p < a

q. e. d.

_

).



Remark 1.17.
X-4Tr2iik12

ak

al a
f(k) = C k . k n (X. -4TrZi I k 2)m where al < m anda,m 1 n

I al 5.H.

Proof. We proceed by induction on yj. If = 0 then the

assertion is clearly true. Now suppose the assertion is true for

IYI = n, and

1

is one term in the sum. Then

a a;
n

-1 a a a+1 a
1 n

a.k ..k.' ...k k1 i

..ki ...knaf(k) i 1 nc +
1C'

ak. - am 2 , 12 m am 2 1 12 m+1
(X.-4Tr ilkl ) (X-4Tr ilkl )

Hence the assertion is true for M= n+1. q. e.d.

a
We regard ) - where al < 2m, as a

(X -4Tr2i I k I 2)m

multiplication operator. Since X. will be on Fc, f (k) is con-

tinuous in k, and so the norm of this operator is the supremum of

Ifx(k)I We set g(X) = Sup Ifk(k)l . The next lemmas show how

g(X) behaves as a function of X. on rc.

a a

k1 kn
f(k) = C

is a sum of terms of the form

am (X-4TrZi I k) 2)m

a
Lemma 1.18. Let g(X) = Sup

k (X-4Trijk2

22

with X E Fc , and



I al < 2m. Then there is a constant K > 0 such that

g(k) < KI XI I al /2 on F.

Proof. If E rc then X = c + ib, and so

I f(k) - 2 2 , 2 2 m/2
(c +(b-4Tr lki ) )

To find the supremum we may as well use the square of this

expression,

2 1k2aI
I fX(k)

-
21 12 2 m

(c2+(b-47r ) )

Consider k on a sphere of radius r, then

Therefore,

Differentiating we get

al
(k)j 2

[c +(b-4Tr2r2)21m

We shall find the supremum of

rzlh(r) =
[c2+(b-4tr2r2)21m

r2

i=1

2
k. , so

23



16n-4() a -2m

I -1(c2+(b-4Tr2r2)2)m[al al r 2

+16n- mr(c2+(b-4Tr2r2)2)rn-1(b-41T2r2)r2lal
ht(r) =

[c2+(b-4-72r2)212m

Setting hi (r) we get

4
+ 82(m- I al )br + la! (c2+b2)r 7

Now if I al = 2m and b < 0 then h (r) < 1 and is asymptotic
X

161T4

2(c2+b 2)to this value. If b > 0 then r - . For this r then
4n-2b22 1 1

h (r) <K( c ' u ' a'
b

for some constant K. If b > Ic) then

b > ILI
, soh(r) < 2KIX.I . If b < Icl then the computation

2 X

z+b2) I al

4Trbh (r)
[c2+(b...(c2+b2) 2]m

< K (c2+b2)2m

< K2

for some positive constants K1 andK2, shows that for all

0 < b < I cl the supremum of h(r) is less than or equal to K2
1or the asymptotic value In any of the above cases then

(16Tr4)m

h (r) < KI XI I al for some K.
X

24



=
-82(m- I a )b± 64Tr4(m - I al )2b2-64Tr4(1 al -2m)1 (c2+b2)t

Now with lal < 2m, h(r) ---' 0 as r and hk(0) = 0, so

one of these values of t determines a value of r at which h(r)

is maximum. Let r0 be one of these values, then

g(X) <

l al
ro rOal

c +(b-4Tr2r2)m/2 cI

[1x1 m-

-
I al /2

<KI

Lemma 1.19. For lal < 2rn the function g(X) is continuous

on rc.

IklaProof. We have I fX(k)I
where

(c2+(b-47r2Ik I 2)2)m
/2

X = c + ib. We shall show that
IfX

I converges to

formily in k E Rn. Indeed,

32Tr4(lal -2m)

a -4(m- a)2 X -

47211a1 -2m1

for some K >0. q. e. d.

uni-

25

Now if < 2m, and hi (r) = 0, and we set t = r2, then

/2
a a -2m)



rO,

2
Ifk(k) - Ifx (k)

20.1

Ik2ai

(c2+(b-4721k

c2+

1

21

1

c2+(b-427 2)2)m (c+(b0-4721 Id 2)2)m

(c2+(b -4Tr21k12)2)m-(c2+(b-427 Ikl2 )2 )
m

0

(c2+(b -4271-
2

)2 )

m
0

2Ial
Now since I al < 2

kthe quantity 2 is bounded
1(c +(b-4 ITr kl2 ) )

by say C1 for all k E Rn and all b such that lb-b0 I < 1.

Moreover (c2 +(b0-4 I k I 2)2)m - (c2+(b-4Tr2Ik I 2)2)m is a poly-2 1

n.omial of degree at most 4m-1 with coefficients a (b) such that

2
a (b) 0 as bo . So for all k with I k I ro, for some

Ik12)2)m-(c2+(b-4Tr2Ikl 2)2)m

(c+(b0-4.721k I 2)2)m
a (b)I

But this is as small as we please for b close enought to lac Now

observe that I f x(k) I is continuous on [b0-1, bo+I] x Bn-1, where

B'B is the r0 -ball in Rn. This is a compact set, so I fx(k) I is

uniformly continuous there. But the square root function is uniformly

continuous on the non-negative real axis, SO 1 fk(k) I = X(k)I

converges uniformly in k to I fx (k) I as h X. on rc.
0

Now g(X) = Sup I fx(k) I = II I fxIlloo But II 1100

k

2

26
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a
x R(X,

m be an integer such that m -

aoperator x is closed. We must show that if

> 1 E where E > 0. Let

9 E D(Hm+1) and (aI-iH)mco E D(xa), where a is fixed and

Re(a) O. Let V be such that for all (3 < a,
D(Ho)

C D(xPv).
a

Then, eitHco E D(x ) for each real t, and 11xa eitHco II is

bounded for all t in any finite interval.

Proof. We shall employ Lemma 1.8. As a maximal multiplication

= (ai-iFI)mcp, then

is defined, and is continuous in X on rc. Moreover,

27

so is continuous since g is a composition of the continuous

maps X I fx(k) I , and 11 11 oo: F sup I F(k) . q. e. d.

The reader is reminded that H
H0

+ V where
H0

is the

closure of -A on A the space of rapidly decreasing functions,

and V is a symmetric operator such that H is the self -adjoint

closure of -A + V on A We assume D(H) =
D(H0

), or

equivalently D(H ) C D(V),

a a

Theorem 1.20. L
aet x x11... xn be a monomial on Rn, and let

I al
2

we must show that II xaR(X, is of order Xim
- (1+E )

as

Ix'

We have R(X,iH)4J R(X, iElo)tP R(X,iHo)iVR(X,iH)4-' But Lp

13and VR(X,iH)L1) D(xa), and hence both are in D(x ) for 13 < a.

Then by Lemma 1.16, R(X, E D(xa), and



a
x R(X., = xaR(X,

0
+ xa R(X, iHo)iVR(X, iH))

a -1
p)(-2Tri

p < a

ad -01 ;-1[ a-P 1

ak x.-4Tr2ilki2
]4.

01
1

But each B (X) -= ak
is continuous in\4k2

X. on rc, and 11B ()11 < M 1\1 /2 by Remark 1.17 and
N

Lemmas 1.18 and 1.19. Here

B (X)q is continuous on rc, anda-p
1 /2

11B _p()xPLP11 < M ala_p 11xPt-P11.

In addition each term x VR(X, iH)L1J

rc, since by the resolvent equation for X., p. E

xPVR(X, - VR(, iH)4. ([-L-))xPVR(X, iH)1(N-, iH)tli

Now R(p., iH)4, E D(H)C D(xPV), so by Lemma 1.13

x vR(x., a-14 is uniformly bounded for X. E r and p.

fixed. So xPVR(X, iH)11i is continuous. Moreover since E D(H)

so each of the terms

is continuous in on

xPVR(X, iH)1.1) is uniformly bounded on rc by Lemma 1.13 and the

fact that xP V is closable. Thus, the terms B (X)xP iVR(X, iH)L1)a- P

are continuous and bounded by some lx.11 al /2 asa-p

is continuous, and 11xaR(X., iH)14)11on F. B ut then xa R(X, iF)LP

iXi

28



is of order lxi I al /2. However,

a itH 1x e

ILL1
> 1 E SOm 2

X-t'R(x, iH)(aI-iH)mx
co dX

r
c

(a-x)1n

29

x R(X,iH)t.iII is at most of order IX1111-(1+E) . Thus the theorem

follows from Lemma 1.8. q. e. d.

In order to apply Theorem 1.1 we must show that
CL aeco E D[Hx H] . But if Hco E D(Hm+1) and

(aI-iH)m(Hco) E D(ca) then from Theorem 1.20 we have
a

e H2 E D(x ). Thus e-itHcp E

D(xa

H). Therefore, it remains to

find conditions such that e-itHyo E D(Hxa ).

ITheorem 1.21. Let m be an integer such that m - 2 > 2 + E

for some f > 0 . Let co E D(Hm+1) arid (aI-iH)mv E D(Xa ).

Suppose that D(Ho) C D(x13V) for all p < a. Then xaeitH E D(H)

for all t E R.

Proof. By Theorem 1.20 we have eitH(p D(xa
) We have the

general assumption that D(H) = D(H0 ), so we need only show that

aitHx e cp E D(H0 ). Therefore, we need only show that

4 (xa eitHco)
E D(K2), whereK 2 , 12

= k I co, this being a constant

times the Fourier transform of Ho'

We have seen that



30

by the hypotheses and the proof of Lemma 1.8. Now S is unitary,

so

-Pa itH 1 e "3" ixa R(X , iH)(aI-iH)mco]
(x e 9) = 2177

clX

F (a-X)
C

As in the proof of Theorem 1.20 we see that if

= (aI-iH)mcp then

But each

kr1

4 (xaR(),

(X-472ijk I 2)P

a'P

by 1k12 we get

where

ak
X-4Tr2i

2lki

with

I (xaR(X, iH)) =

<

a)(--7--1)1 al
[

&a-13 1

2Tri ak k
2

a A PP AX { + ak 1ak cvR(x,

D(a ).We observe that since VR(X, iH)4i E D(xP ), (VR(X, iH)i)A Eak
is a sum of terms of the form

< p by Remark 1.17. So if we multiply

a -1 I al
p)( 2Tri

< p +1 < 2P . But the operators

a13 A
X [

--ak
+ ivR(x, ,



P
(X-47r2i1k1-)

B ()'.) -
\I

are bounded and continuous in norm on Fc. Moreover,

II(X)II <1\A lx1IN112, where IN1 < lad + 2, (see Remark 1.17 and

Lemma 1.18). Thus 111k12 4 (xaR(X, iH)J11 < c 1 X1(1a1
/2)+1 But,

12±.m - 2 - 1 > 1 + E) so the integral

eXt 2 -P
kaR(X, iH)(ai-iH)m(P1

clX

r
c (a-)'.)na

exists. Consequently Corollary 1.5 implies that -P7 (xaeitHcp) E D(K2),

a itHand so x e go E D(H). q. e. d.

Theorem 1.22. Let P(x) be a polynomial of degree r. Let m

be an integer such that for some E >0, m - > 2 + E Let
2

H =
H0

+ V, and co be a state such that co E D(Hm+1), and

(aI-iH)m+lcp E D(xa) for all 1 al < r. Let the potential V be such_

that D(H0) C D(xaV) for all 1a1 < r. Then,

itH itH
P(x)(cP)(t) = <P(x)e go,e co>

is differentiable and

PI(x)((p)(t) = <i[HP(x)-P(x)FlieitH cp,eitHcp> .

aProof. By Theorems 1.1, 1.20 and 1.21 the result is true for

31



with al < r. So by Remark 1.11 the result follows for P(x).

q. e d.

Potentials and States

In the above theorem it is clear that the hypotheses can be

satisfied for a, large class of potentials and states. Moreover, the

choice of V restricts the choice of co to some extent, and vice

versa.. However, from a physical point of view it is more likely that

the potential would be determined a-priori, and so we take the point

of view that the states are to be determined after a potential is given.

The time is ripe to give sufficient conditions under which our

blanket hypotheses on H H0
+ V hold. Recall that we have

assumed that H is self -adjoint and D(H) = D(H0 ).

Definition 1.23. Let T and V be operators on some Hilbert

space V is relatively T-bounded if an only if D(T) C D(V)

and there are non-negative numbers a and b such that for every

E D(T)

1114'11 al19911 b II TC°11

The relative T -bound of V is the infimum of all such b.

Theorem 1.24. Let T be essentially self-adjoint. If V is

symmetric and relatively T -bounded with bound less than 1, then

T + V is essentially self-adjoint and the closure (T+V) T + V.
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The proof may be found in [3,288].

In the case H =
Ho

+ V where Ho

is a multiplication operator it is enough if
oo 3

V1 E L2(R3) and V2 E L (R ) [3,302]. In this case the fact that

D(H0
) C D(V) depends on the fact that in dimension three the ele-

ments of D(H0
) are bounded and continuous. Again this may be

found in [3,302].

Corollary 1.25. Let P(x) be a polynomial of degree r in

x E R Let m be the least integer strictly greater than 2 +

Let H = H + V where H0
-A I a and V is a real C func-

tion on Rn

Moreover, suppose that

on R3 and V

V = V1 + V2 with

a
with x V bounded for all a such that al < r.

k< C (1+1x12)a for
2m,

where Ca and ka are constants. Let c9 E the space of

rapidly decreasing functions. Then P(x)1(co)(t) exists, and--
P(x)1(42)(t) ;_- < i[Hp(x) _p(x)Hie - itHgo, e-itHco>

Proof. V is a bounded operator so Theorem 1.24 applies. Now if

cp E A then cp E D(Hm+1) and (at-iH)mco E . But A c D(xa)

< r. But D(H0 -

) C D(xaV), and m - 27- > 2+ E for
2

some E >0. Hence the result follows by Theorem 1.22. q. e.d.

33
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The Polynomials P(a lax)

In this section we study the constant coefficient partial
adifferential operator P( ) where P is a polynomial. The

investigation follows similar lines as the foregoing. We therefore

lconsider the operators i on A and their self -adjoint
8x

closures A.

We set H H + V where H = -A I and V is a closed
0 0 A

symmetric operator such that H is self -ad joint and D(H) D(H0).

Theorem 1.26. Suppose D(H0) C D(AaV). Let

and 9 D(3). Then eitH E D(A ) for each real t and
a

H

hA
a itH 11

e di is bounded for all real t in a finite interval.

Proof. Let qi = (aI-iH)2cp then qi E D(H). Observe that Aa

permutes with R(X, iH0
). But then we have

a
AaR(k, iFIN) = R(k, iH0 )A + R(k , iHo)iAa VR(X., iH)iP, since

E D(Aa) and R(k,iH)kii E D(H). Now since AaV is closable

and qi D(H), AaVR(X., iH)ti) is continuous and bounded in norm on

rc by Lemma 1.13. But R(X, iHo)
is bounded in norm and con-

tinuous on rc. Thus, we can apply Lemma 1.8. q. e. d.

Recall again that H permutes with eitH, so if Hyo E D(H3)

or dE D(H4) and (aI-iH)2I-1(p E D(Aa) then

itH itH ae Hcp = He 9 E D(A). So in order to show that

(aI-iH)2 99 E D(Aa )

34



a
eitH

aE D[HA -A H] it remains to show when AaeitHyo E D(H).

a
Theorem 1.27. Let H =

H0
+ V, and suppose D(H0

)C D(A V).

Let cp E D(H3) and (aI-iH)2co E D(Aa). Then, AaeitHc0 E D(H).

Proof. We set IP = (aI-iH)z(p, and as before

AaR(X, iH)4) = R(X, iHo)Aa + R(k, iHo)iAaVR(X, iH)LP. ButHo is a

closed operator and it is easy to see that H0R(X,iH0) is bounded

for all X on rc. Indeed,

R(X, n
4n-2iki2

-02X-4Tr2ilki

and so by Lemma 1.19 HoR(X, iH0) is also continuous in X on

I. Hence H0AaR(X, is defined and is a continuous and

bounded function of X on F
C.

But then

a
xt HoA

R(X,iH)(aI-iH)2(p
dX

(a-X)2

exists, and so a
e

itH E D(H0 ) = D(H) by Corollary 1.5. q. e. d.

Theorem 1.28. Let P be a polynomial of degree r on Rn.

Let co be a state such that (p E D(H4) and (aI-iH)zyo E D(Aa) for

all a such that a < r. For all al let D(Ho) c D(Aav).

35
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a a -itH -itH
P( r(9)(t) = <i[HP( ) - P( )Hje ,e >.

ax ax ax

Here

a aP( ) = CA.
ax a

I
al < r

Proof. This result is an immediate corollary of Theorems 1. 1, 1.26

and 1.27. q. e. d.

It should be noted that the hypotheses here have little chance of

being satisfied if I al > 2 and V is a multiplication operator since

we require
D(H()

)C D(Aa V). So even if V is smooth we are ask-

ing for twice differentiable functions to be differentiable to a higher

order. But if V is say an integral operator whose effect is to

smooth L2 functions then the hypotheses can be satisfied. We shall
atreat the case where Aa - in Chapter II.ax.
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II. APPLICATIONS

In this chapter we shall give sufficient conditions under which

Ehrenfect's theorem holds. In addition we shall examine the

(Pbehavior
of the mean of position x.( )(t) as it relates to the choice

of initial state p.

Ehrenfest's Theorem

We have seen in the introduction that the classical formulas,
dx. d2x.

m - momentum and m - force, have, according to
dt dt2

Ehrenfest, an analog in the quantum setting. Indeed, Ehrenfest's

theorem in physics [9, 455] asserts that the same formulas hold if

is replaced by its mean value as a function of time, and the

momentum and force are replaced by their mean values.

Just as in Chapter I we shall assume that H
1-I0

+ V where

H0
is the free Hamiltonian on L2(R) and V is a potential such

that H is self-adjoint and D(I-I ) = D(H).
0

Theorem 2.-1. Let x. be the j-th coordinate operator on

Let H
H0

+ V, with V a multiplication operator, and let co

4be such that E ) and (aI-iH)4 E D(x.). Let D(x.V) D D(H )

Then x!(,(P)(t) exists and

itHx!(co)(t) = <i[H x -x H e-itH co> .
j j 0

37



Proof. In Theorem 1.22 set r = 1 and m = 3. Observe that

x.V Vx. on the intersection of their domains. q. e. d.
3

The Coulomb Potential on L2(R3)

In the Coulomb potential V is given by V(x) = 1

Observe that V E L2(R3), and so V satisfies our blanket require-

ments that H = H0 + V be self -adjoint with D(H) = D(H0
) so that

Ix.
D(H ) C D(V). Moreover, Ix V I = < 1, so x.V is bounded

and D(H0 ) C D(x.V).

Let A be the subspace of A consisting in all those
0

functions co E that vanish in a neighborhood of the origin.

Definition 2.2. Let A be an operator on a Hilbert space 14 .

Then cp E is said to be an analytic vector for A if and only if

there is a t > 0 such that

00

II An9 II tn <00.
n!

n=

Theorem 2.3 (Nelson [4, 572]). If A is a symmetric operator on

D(A), and if D(A) contains a dense set of analytic vectors then

A is essentially self-adjoint.

aLemma 2.4. Consider . as the self -adjoint realization ofax.
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. a
on A . Then i(Hx.-x.H)C 2iax.

J 3 ax.

Proof. One easily calculates that i(Hx.-x.H) is symmetric on
3 J

D[Hx.-x.HJ. Also, for 9 E -9) , i(Hx.-x.H)co = i(H x.-x.H )9 = 2i-.33 J J 0 J J 0 8x.
J

a
Now let = i(lix.-x.H) and B = i(Hx.-x.14)1 = 21 then both

3 3 3 3 A
ax

are symmetric operators with BC AC A. Now B (hence A)

a
contains a dense set of analytic vectors. Indeed, consider in8x.

oo
the Fourier transform representation. Let 9 E Cc with support

in a ball of radius R. Then

1/2
lik71/011 = Ikr.n121°M2dk < Rrn c/n

L2(Rn) 3

1
But -1[eRn)] is dense in L2(Rn), and for 0 < t <

R
-1(Coos,

) so we have

since BCA, BCA,

00

II Any, II tn
n.

nO n=

Rnilatn
n! .11C911

Thus, by Nelson's theorem A is essentially self-adjoint. So,

so AC AC B, by taking adjoints.

q. e. d.

Corollary 2. 5. Let V be the Coulomb potential then for all

E
-
x

,

,"
<2i a e-itHcp,e-itH9>

j"" 8x.

and
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Proof. Since co E 0, Hyo = Hoy° + Vco EA 0. So by repetition

Hm
E A c D(x.) for m < 4. So by Theorem, 2.1 and the fact that

.x V is bounded we have xil(49)(t) <i[Hx.-x Hie -itHcp, e-itHyo> . But
Li J

by Lemma 2.4 we have

a - it H -itH
x!((p)(t) = <Li e co,e (p> .

ax.

This corollary says that the velocity of the mean is the mean of

momentum. This is the first of the two assertions of Ehrenfest's

theorem. It is unfortunate that we cannot continue with the Coulomb

potential beyond this point, because the composition
va

is not
xJ

defined on all of D(H0
). We shall therefore turn our attention to

smooth potentials.

The Case of Smooth Potentials

In this section we shall assume that V E Cx(Rn) and is a real
a

valued ,function on Rn such that v., )c.V and are bounded.
Li

ax.

Therefore, H = Ho .+ V is self -adjoint and D(Ho) D(H), by

Theorem 1.24.

aRemark 2.6. (-a-;---c.) ° V is defined on D(H0 ).
Li

a a v a(p
Proof. Let q2E A then (V(p) = -67 cp v a . Now if

q. e. d.
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a
(I) E

D(H0) then co E 1)( ) and so there is a sequence {'p} Cax.
3

a
n a co

co and But, Vyan Vcp and
ax. ax.

aVcpn8V a
ax. ax. ax '

so co E D( 0V) since is closed.
ax. ax.

3 3 3 3

Indeed for cp E D(H) we have the formula
0

(v_) av
ax. ax. ax.

Now observe that since V is smooth the requirements that

4E D(}{ ) and

for 0 < m < 4.

(aI-iH)49 E D(x)
3

q. e. d.

are satisfied if Hmy) E D(x.)

Corollary 2.7. Let 'pbe a state such that Flmcp E D(x.) for
3

-a- - itH -itH0 <m <-4. Then x!(v)(t) = <2i e r ca>
X.

avWe now consider the second derivative of the mean. Since ax.

is bounded 0V is defined on D(H ) by Remark 2.6 Con-
ax. 0

3

sequently from Theorem 1.28 we have the following corollary.

Corollary 2.8. Let V be a real Cx potential on Rn with

av'Or and bounded. Let be a state such that Hm E D(x)
ax. 3

3

for all 0 < m < 4, and Hm D() for m < 2. Then
ax.

3

x:1(40(0 = -2 <[H ax - --a- Hje -itH
, e-itH(p> .

ax.
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Lemma 2. 9.

H - H -8x. ax. ax.
3

_ ....

00 n a a
Proof. On Cc (R ) the operator H - H agrees withax. ax.

3 38V
- by the product rule for differentiation. Moreover, these

8x.
3

_
a

_
a Mr

operators are symmetric. Set A ,-- H 7;7. - ax. H and B = --ax.--..- I 00.

, J J 3 C
c

Then B C A . We claim that Cc°(R) is a dense set of analytic
c

00 nvectors for B (hence A). Indeed, if (p E

Cc
(R ) then

Amy, E C°° (R n) and has support inside that of (p. So
c

II Amc911 C II (-°1-7-1: -:1,": m (P

00

11m,plImA t
m!

m.0

for some t >0. So by Nelson's theorem A and B are

essentially self -ad joint. Hence B C A, so B C A , and so by

taking ad joints we have A C A C B. q. e. d.

_g2x2x2.z. 1,p_LEInnleAtl. Let V be a C00 potential with x,V
3

8Vand bounded. Let (p be a state such that Hmcp E D(x.) for
ax.

m <4 and Hm(p E D() for m < 2, then
ax,

<00
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1) x 1.(cp)(t) = <
T -itH-itH

e cp, r p>, andax.

av
2) x'.1(cP)(t) = e-itH e-itH(p> .

Proof. Use Corollaries 2.7, 2.8 and Lemma 2.9. e. d.

Remark 2.11. Corollary 2.10 is true for any state co E pro-

vided the derivatives of V up to order six are of polynomial growth.

The Behavior of the Mean

The Bohr model of the hydrogen atom suggests that the electron

can be in two different types of state, either orbitting the nucleus or

free. If we assume that eigenstates are orbital states and absolutely

continuous states are free states, then we can conjecture that the

mean of an eigenstate is constant, and that the mean of an absolutely

continuous state goes to infinity as time increases. In this application

we shall study these possibilities.

Definition 2.12. Let E be the spectral measure of the self-

adjoint operator H on some Hilbert space n . Then we define

three subspaces of SA as follows:

1) 1/-1 t(H) = e E{X}Si this is called the point space of
p

ER

H.
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and

-1-is(H) = {v /i <E( )q, ç> is singular with respect to

Lebesgue measure), this is called the singular space of H.

1-lac(H) = {yo E <E( )q, v> is absolutly continuous with

respect to Lebesgue measure), this is called the absolutely

continuous space.

All of these spaces are closed, and in particular lApt C

e
ac

We set crpt(H) = fx. E R I E{X} 01, this is called the point

spectrum of H. It is well known that for separable Hilbert

spaces Crpt
(H) is countable. Moreover Tpt(H) is the

set of eigenvalues of H. It is also not difficult to see that

(H) Efcr (H)1.
pt pt

Remark 2.13. Let be any Hilbert space and A and H

self-adjoint operators on 11 . Let v be an eigenvector of H,

E D(A) then ii.(go)(t) = <Ae e -itHy9> is constant.

Proof. Let X. be the eigenvalue of v then it is well known that
0

-itHe e Consequently e
-itH D(A). Thus

-itXo
-itX0

A(cp)(t) <Ae e is constant. q. e. d.

We can say a little more than this.
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Theorem 2. 14. Let 1-1 be a separable Hilbert space with H and



A self-adjoint operators on IA . Let A be defined on every

eigenvector of H. Let
{

be an orthonormal basis of eigen-

vectors for IA pt(H). Let = is
akyok

I a I II 49 IIk k
converge. Then,

k=1

k=1

then

Now

itH
e E D(A) for all t, and

x(cp)(t) <Ae-itHcp,
> is bounded for all t.

Proof. Let

Lt?

eitH = eitH
akyok

= ake kcpk

k=1 k= 1

00

itXk

itk
AeitH

=
ake

kA e kAco

k=1 k=1

since 00
itX

ake
k

Acok

itHAe =

k=1

converges. But A is closed, so

k=1
ake kAca .

itH
e cp E D(A), and

and
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Thus,

<AeitH(p, eitHco>i

itH itH<Ae ç,e co> =

00

n=1 k=1

00
it

e Xklicp ,itX.narie
Con>

n=1

it(X )
k n

akane <acpk, (fin>
.

oo 00

laak Acokil

n=1 k=1

(r)Yrn(0,4))
'

46

(n+1/ )! 11/2
ni m(r,0,4)) = C [n!(n_i-1)!(2.e+l)!

00ak II Aq'k < q. e. d.

n=1 k=1

Example 2.15. In order to show that Theorem 2.14 is not vacuous

we again study the free Hamiltonian perturbed by the Coulomb poten-

tial. In order to get a point spectrum we insist that the potential be

attractive. Thus we consider the self-adjoint closure H of -A -V

1 3where V -
lx1

on R.
It is well known that the point spectrum consists in the eigen-

Cvalue s X. = for n = 1,2,3... . Moreover, it is also well
n

n2
known that, in spherical coordinates, a basis of eigenstates for the

point space l(H) is given by the functions



CC
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I -C2,/nrHere, R (r) has the form r e P(r) where P(r) is a
ni

polynomial of degree n' such that 1+1-n n'. The functions

Yi? 0,0 are the usual spherical harmonics. We also have the condi-

tions that n 1, 2, 3, . . . , 1= 0, 1, 2, , n-1, and

m = -1,..., 0, For a discussion of these facts see [5, 1643.

Now
C2

is positive so the functions tljni
decrease rapidly.

If A is the multiplication operator A cp = r co , we see that each

E D(A). Thus the hypotheses of Theorem 2.14 are easily

satisfied in a practical situation.

The Absolutely Continuous States

We have conjectured that
--S-Aac(H)

is the subspace of states

for which the mean of position is unbounded. In this section we shall

show that under certain conditions this is the case.

Our approach will be to compare the mean of position in the

case H H0
+ V with the mean in the case H H0 as t

itHo
It is natural in this context to compare eitHco and e co as

t co as these quantities play a central role in the definition of the

respective means. We are therefore led in a reasonable way to a

consideration of the wave operators.



The Wave Operators

The behavior of eitH9 for large t may be discovered by
itHo

comparing it with the behavior of the well known quantity e 4i. We

would say the two quantities are close if they are asymptotic.

Definition 2.16. We shall say that

-itH -itH0and only if lie 9-e 0

itH -itH4)
IIthis is equivalent to lico-e e Again, equivalently

tH -itHo
W '47S - lim eie where S - linn denotes the strong

limit. For heuristic reasons it is clear that the wave operators as

defined above are very unlikely to exist if LIJ E (H ), many of
pt

these states corresponding to bound states physically. So we shall

define W only for states ac(H0) such that

W±9 lirn eitHe -itH
9 exists. It is easy to show that the domains

t'±00
of W are closed linear subspaces of hc(H0), and that W±

are bounded operators. We must therefore provide sufficient condi-

tions that D(W )=c(H0).

Lemma 2. 17 ([3, 533]). Let D be a subset of (H ) such thatac 0

the closure of the span of is (H ). Suppose that for eachac

-itHocp E D(H ) n D(H) for9 E D there is a real s such that e
0

-itHo
s <t < 00, (H-H0 )e co is continuous in t, and

-itHr,
II (H-H0 )e cIt is integrable on (s, 00). Then W+ exists. A
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qi E D(W) and that Wq ç2 if

as t 00 or t -00. But



similar result holds for W_ with the obvious modification.

d
(e e

itH-itH0 itH
(p) ie (H-Ho) e-itH0Proof. If cc, E D we have ,dt

and this derivative is continuous by hypothesis. Thus, if

itH -itHo
W(t) e e then

t" 4_ u. -itH0c9 dtW(t")co W(t =I)co 0)e
t

so
rt" -itHO

dt .IIW(t")cp - W(e)(P11 < II(H-H0)e

But by the integrability condition W(t) is seen to be Cauchy, so

W+cp exists. But then since W+ is continuous on D and D(W+)

is a closed linear subspace of 1-1ac(H0)
the result holds for all

cp Eac(H0). q. e. d.

Corollary 2. 18 ([3, 535]). Let0 be the free Hamiltonian on

L2 (R ) and H = H0 V where V is real valued and V V3
1

with V1 E L2(R3) and V2
bounded. Suppose that

3

0-1+E
I V (x)12 dx < co for some E >0.

Then W exist.

We remark that the wave operators do not exist for the Coulomb

potential.
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We introduce at this point a few facts from Richard Lavine 's

paper [6, 368].

Definition 2. 19. We set A(t) = eitHAe-itH where H is the

Hamiltonian H = Ho + V on L2(R) and A is a suitable

operator. Let Q be the projection of L2(R) on (H). Letac
aP. = be the i-th coordinate momentum operator. Let f

ax,

be a bounded complex valued continuous function on R. We define

A = f(P1' ,Pn) by considering its Fourier transform to be the

multiplication operator f(ki, .. ,k).

We say that H satisfies the weak scattering axiom two (w.s.2)

if and only if for every A = f(P1' ,Pn) S - lim A(t)Q exist.

-Lemma 2.20 (Lavine). Assume that V(H0+i)1 is compact. If A

is a possibly unbounded operator whose domain contains D(H0),

-
and A(H +i) l

0

S [A(140+i)-1](t)Q B± exist, then for all qi E D(H),
t *09

lirn A(t)Qqi = B
t ±00

Proof. We remark first that if K is a compact operator then

lirn K(t)Q 0. Indeed, K(t)Q = Ke itHQco II . Since

fi (H),
ac

-iH<et Qyo,

is bounded, (which is true if A is closed), and

= e-itkd<E( )Q,>=
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where p.( ) = <E( )I29, Lp>. But I p.1 is absolutely continuous with

respect to Lebesgue measure, so by the Riemann-Lebesgue lemma

<e Qcp, LP> 0 as t ±00. So e-itHQ9 is weakly convergent

to zero, and since K is compact Ke-itHQT is strongly convergent

to zero.

Now let E D(H) and cp. = (H+i)Iii. Then

flA(t)Q() -B±(H+i)ip = 11A(t)(H+i) -1Q(P-B±911

< A(t)[{(H+i)-1-(Ho+i)-11(t)}Q((P)II

+ 11A(t)(H0+i)-1(t)Q((P)-B±(PII

Now the second term goes to zero by hypothesis. But the first term

is the same as 11[A(t)(Ho+i)-1(t)][V(t)(H+i)-1Qh9II But this last term

has the form JIK(t)QcoII for a compact operator K. So the term

goes to zero. q. e. d.

Corollary 2.21 (Lavine). Let P. = i . Suppose that Hax.

is compact. Then for all 4, E D(H)

urn P.(t)(211) exist.
t-~-±00

Proof. We apply the above lemma with A = P. Observe that
-

D(H) D(Ho), since V(H0+i)1 is compact. Moreover,
1-D(H ) C D(A), and A(Ho+i) is bounded. But,

51
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-1S - lim 1A(H +i) ](t)Q
t ±cc

We remark that W±

Ran W± = (H).ac

exists, since
itHA (}{ +0-1e-itH

[A(H +i)--11(t) and A(H i) 1

0 0 0

function of Pi, . , Pn. But w. s. 2 is satisfied so

S - lim [A(Fl0+i)-1(t)Q exist. So the result follows from Lemma
t ± 00

2.20. q.e.d.

Remark 2.22. If the wave operators W± of H = Ho + V exist

and are complete then H satisfies w. s.2.

Proof. Let A = f(P1,... ,Pn) where f is a bounded, complex
itHOcontinuous function on Rn. Then A commutes with e . But.

-itH itH
itH -itHitH 0 OA(t)Q = e Ae Q = ee Ae e -itHQ, and so

S - lim A(t)Q exist. q. e. d.

We note that in R3 with H =
H0

+ V the free Hamiltonian

perturbed by a potential V c Lin L2 the wave operators W±

are complete [3, 5461.

-
Remark 2.23. We note that for V(H0+i)' to be compact it is

enough that V be a real function with V locally square integrable

and V(x) --1" 0 as lx1 co, for n < 3. See [10, 109].

We are now ready for our results on the unboundedness of the

are complete if and only if

is a continuous
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mean of position for absolutely continuous states.

Theorem 2.24. Let B be as in Lemma 2.20 where A -a--x. .

Let H =
Ho

+ v be such that H satisfies w. s. 2 and V(H0 +i)-1 is

compact. Let x. be the usual j-th coordinate operator on

L2(Rn). Let D(H0
)C D(x.V). Let co be a state such that

3

cp D(H4) and Hm E D(x.) for m <4, and yo e (H).
ac

Suppose that <B (H+i)co,y9> 0. Then x.((p)(t) CO as t +00.

Proof. Since V(H0+i) is compact we have D(H) D(H0
). By

Corollary 2.21 and Lemma 2.20

x!((p)(t) <21 --itH

3

ax. p e (P>

itH. -itH<e e (p,(p> <B (H+i)co,(p> c
ax.

which is not zero by hypothesis. But by Theorem 2. 1 and Lemma 2.4

Suppose c > 0 then for t > to x!(50)(t) > >
0. Hence

xJ.(0(t)
Co as t Co by the mean value theorem.

(PSimilarly
if c < 0 then x.( )(t) -°° q. e. d.

Corollary 2.25. Let B be as in Lemma 2.20. Let V(H0+i)-1

be compact, and D(H0
-

) C D(xjV). Let cp be a state such as in

Theorem 2.24 above. Suppose also that the wave operator W+ exists,
g,is complete, and cp, = a.for some tp. Suppose <i > 0.ax
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Thus, 300(0 c as t 00
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Then x.(v)(t) ± 00 as t oo.
3

Proof. We must show that <B+(H+i)(p, go> 0.

<B
-1

e -itH(H+i)co,(p>(H-Fi.)v co> = lim <etHi (H +i)ax. 0
+00

-1 itHO -itH itH
aurn< (H +i) e e (H+i)9, e

0 >
ax.

+00

-1 *
= < (H0

+i) W (H+i)cp, W >
ax.

-1this last since a (H +i) is bounded. Now (H+i)yo E Ran W
ax. 0

since Ran W+ reduces H the operator W+ is intertwining.

Thus W (H+i)ca (H0+i)W+(p,
(see Theorem 3.2 [3, 529] ). So

a * a<B(H+i)c, 9> = < , W = < , Lp> .
ax. + + ax.

Now Theorem 2.24 applies. q. e. do

Entirely similar results may be given for t -00 using B

and W.



III. BOUNDED OBSERVABLES

In this chapter we present a few results on the differentiability

of bounded observables. This added condition on the observables will

enable us to weaken the hypotheses of some of the theorems as our

first theorem shows.

Theorem 3. 1. Let A be a bounded operator and H a self-adjoint

operator on a Hilbert space 14 Let cp E A and
-it H

0 E D[HA-AH], and A--((P)(t) <Ae-itH(p, itHc> Theno
-itoH -it 0H

Xf(cP)(t) exists and ii1(cP)(to) = <i[HA-AH]e ç, e (p>.

Proof. Without loss of generality we may assume that t0
-it 0H

0for otherwise we replace co by e (p in the following argument.

-itH -itH
i'(9)(0) lim <Ae (P, e ca> <Ayg, (p>

t-P" 0

<eitHAe-itHca-eitHe-itHA(p, cp>

<Ae -e-itH -itHAco, e -itHcp>

limt
= Ern
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t--"' 0

-itH -itH
= cp>e

t 0

= lirn Ae-itH(p-Aca< , e-itHco> - lirn <e-itHAcp-Acp -itH,e (p>.

t 0



2 3operator on L (R) satisfying the hypotheses of Theorem 3. 2. We

56

But A is bounded so

AM(cp)(0) = + <IHAco,(p>

= <i[HA-AH]yo, cp> . q. e. d.

Note that we have no need of any symmetry condition on A.
-it H

For differentiability we require only that e ° E D[HA-AH].

We now give a criterion of differentiability which is of greater

utility.

Theorem 3.2. Suppose A is bounded, H =
Ho

+ V, with V

symmetric, Ho self-adjoint, and V relatively Ho-bounded with

bound less than one. Suppose A(D(Ho)) C D(H0
). Then for all

E D(H) and all t, A-(ç9)(t) is differentiable and

A-1((p)(t) = <i[HA-AH]e e-itHco>.

Proof. he hypotheses imply that H is self -adjoint and

D(H) D(H0). But then A(D(H)) C D(H). If cp E D(H) then

e-itHc E D(H) for all t, and so Ae-itH E D(H). Then,

e-itH E D[HA-AH], and so the theorem follows by Theorem 3.1.

q. e. d.

Example 3.3. Consider again the space L(R3) and Ho
the

self-adjoint closure of -A. Let H =
Ho

+ V where V is any



remind the reader that the Coulomb potential is included. Let

P. i for j 1,2 and 3 be the momentum operators on
j ax.

L2(R3). iLet f be any bounded, complex, measurable function on

R3, and define A = f(P1, P2, P3) by

(AT) (k1,k2,k3) = f(k1,k2,k3)49 Then A is bounded. Moreover,

A[D(110)] C D(H ). Hence for every q E D(H), .A.-1(c9)(t) exists at

all t.

Definition 3.4. We shall say that a bounded operator A is

H-differentiable if and only if A(9)(t) is differentiable for each

D(H) and for each t, and

Alko)(t) <i[HA-AH]e -itHcp>

It is worth noting that Theorem 3.2 says that if A is

H0 -differentiable then for "small" perturbations V, A is

Ho + V -differentiable.

The above example suggests a Banach algebra of bounded

operators that are H-differentiable.

Theorem 3. 5. Let H0 and H be as in Theorem 3. 2. Let

= {A E B(P )1 AH0 C

then P is a 13*-algebra of H-differentiable operators.
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Proof. If A E fi then Theorem 3.2 ensures that A is

H-differentiable. Certainly p is an algebra. We must show it is

closed under the taking of limits and adjoints.

Suppose {An} C P and An A in the norm topology.

Suppose (pc D(H0), then
An`p

E D(H0) and Act' Act. But

(H0
cp) = H cp) A(Ho9), and Ho is closed. Thus

n 0 n

H°Act)
AH cp, and so p is closed.

Suppose A E 3. Let qi E D(F10), SO

<H0
kp,A cp> =

<AH0
co> =

<H0
9>

<4.1, A H cp>
0

So A yo E D(140), and H0A = A Hoc). So A E P q. e. d.

The above example and theorem suggests the following algebra

of bounded operators is an algebra of H-differentiable operators.

Theorem 3. 6. Let
H0

and H
H0

+ V be self -adjoint operators

with V symmetric, and V relatively Ho-bounded with bound

less than one. Let f be any bounded Borel measurable function on

R. Then f(H ) is H-differentiable.

Proof. By f(H0) we mean S f(X)dE where E is the spectral
R

measure ofHO, We need only show that f(H0)H0 C H0 f(H0
), but

this is well known. So the result follows by Theorem 3.2. q. e.d.
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Multiplication Operators

We now turn to the question of H-differentiability of multiplica-

tion operators. Throughout this section -Si L2(Rn), and H0

will be the self -adjoint closure of the Laplacian as usual.

In view of Theorem 3.2 it will be enough to find conditions on a

bounded multiplication operator A such that A[D(H0)] C D(H0).

To do this we shall need to make use of a product rule for distribu-

tions given in the following lemma.

Lemma 3.7. Suppose 1 < p , q < 00 , 1 +! = 1, and
P q

f,D.f E LP(R ), and g, D.g E Lq(Rm) Then
3 3

D.(fg) = D.f)g + f(D.g) ae. Note that the derivatives are in the dis-
J J J

S)tributionsense. Moreover, f(D.g dx = - (D.f)g dx .
J J

co m
Proof. Choose a molifier p, that is p E Cc (R ) with Sp dx = 1

and 0 < p < 1. Let fn = f * p 1 /n
where p

1 /n(x) = np(nx) then

f E CX(RM) rm LP(Rm), and f f in LP(Rrn). Moreover,
n

D.f = (D f) * p and so D.f E LP(Rrn) and D.f D.f inin j 1/n in in i

LP(Rn). But fn E CCXD (RM)) so Leibnitz formula for distributions

gives

D,(f g) = (D.f )g + f (D.g) .n n n

So D.(f gn
E li(Rn). Since fng E T ,l(Rn) we have
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(D.f )g dx = (D.g)dx. Thus, Holder's inequality shows that
n n

dS(D.f)gdx = -Sf(D.g ) x.
J

Now let cp E D(Rm) (C°°(Rm) with compact support).

x<13.(fg),9>= -SfgD. d . But by Leibnitz' formula again
J

- -gD.9= D.(cog) + D.g, SO D cp.( g) E Lq(Rm), and so

)<D.(fg),cp> = - SfD.(cpg)dx + Sf(D.g dx.
3

But we have seen that

-5fD.(9g)dx = S(D.f)gyo dx .

But p was arbitrary so

fD.( g) = (D.f)g + f(Dg) ae. q. e. d.
3

We remark that D(Ho)
is exactly the Sobolev space of all

elements of L2(Rn) whose derivatives up to order two are also in

L2(Rn).

Corollary 3.8. Let A E L2(R) n L00(R) and suppose that the

distribution derivatives of A up to order two are in

L2(R) n L°°(Rn). Then A[D(H0 C D(Ho) .

Then
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Da(A) = a Da-pA

But D139 E L2(Rn) and Da-pA is essentially bounded, so

Da(A9) E L2(Rn). Hence Act° E D(H0) q. e. d.

Theorem 3.9. Let V be a symmetric operator with V

relatively H -bounded with bound less than one. Let

2 n inA E L (R ) r L (R ), and suppose the distribution derivatives up

to order two are in L2(Rn) Lg°(Rn). Then A is

H + V -differentiable.

Proof. Immediate from Corollary 3.8 and Theorem 3.2. q. e.d.

Application

Suppose V E C (Rn) is a smooth potential satisfying the

hypotheses of Theorem 3. 9. Then the expected value of potential

energy at time t is V(cp)(t) = <Ve-itHcp, e-itHcp>. Thus the rate

of change of this average exists and is given by

- itH(p, -itH(p>
V'((,0)(t) = <i[H0V-VH0]e
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Proof. If cp E D(H0) we must show that Alp E D(H0 ). Aco E L2(Rn)

aand so it is a distribution. Let D be a derivative with I a< 2.

By an immediate extension of Lemma 3.7,



Integral Operators

In this section we give a result in which A is an integral

operator with kernel G(x, y). We shall find conditions on G so

that A[D(1-10)] C D(H0).

Lemma 3. 10. Let Ho
be a closed operator, and A a bounded

operator on a Hilbert space 14 . Let C be a dense subspace of

D(Ho), and A(C) C D(Ho). Suppose
H0 AlC

is bounded. Then

A[D(Ho] C D(I-10).

Proof. Let yo E D(H0 ), then there is a sequence {4911} C C such

that p cp. But then
A9n

--AT since A is bounded. But

E D(H0), and H0Acpn-`
kii for some qi, since

H0
A is

bounded on C. But H0 is closed, so Aco E
D(H0

) and

H Acp = LP.
0

q. e. d.

In the next Theorem Lx is the Laplacian on Rn, and the

subscript denotes the variables with respect to which the derivatives

are taken.

Theorem 3. 11. Let
H0

be the free Hamiltonian on L2(Rn). Let

H H0
+ V, where V is a symmetric operator relatively

H0
-bounded with bound less than one. Let A be an integral

2operator with kernel G(x, y) such that G(x, y) E Co(R2n ). Then
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A is H-differentiable.

Proof. By Theorem 3.2 we need only show that A[D(Ho)] C D(H).

We apply Lemma 3.10. Let q'E CC°0 (R n) (Cc° -functions with compact

support), then A G(x, y)cp(y)dy. But G(x, y) has compact
Rn

so Acp has compact support. Moreover, Acp E C2(R11), so
0

Ac' E D(H0). Next we show that HOA
nSince Ac' E Co(R

Thus,

Ac' = AS G(x, y)co(y)dy = (A G(x, y))49(y)dy.
Rn Rx

Thus we have,

But for each x, A xG(x, y) and are in L2(Rn), so by

Holders inequality we have:

G(x, y) I I (19(y) I dY )2 < .51Rr A G(x, y) I 2dylk112 .

A G(x, y)(p(y)dy I 2dxn x

A xG(x, y) (p(y) dy)2dx.

z A
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0



H Aq,I12 <s I G(x, y) Idxdyll C°11
2

Rn x

00 nHence H0 A is bounded on
Co (R ), and so A[D(H0)]C D(Ho)

by Lemma 3.10. Thus A is H-differentiable. q. e.d.

64



IV. A REAL STONE'S THEOREM

In this chapter we shall prove a spectral theorem for normal

operators on a real Hilbert space. Such a theorem has been given for

bounded normal operators by R. K. Goodrich [7, 123]. Here we shall

treat the bounded and unbounded cases at one stroke, and we shall use

a method that makes the results completely natural. In addition we

shall provide a functional calculus for unbounded or bounded normal

operators, and thence obtain Stone's theorem for real Hilbert spaces.

Thus the treatment of the unbounded case and the provision of Stone's

theorem extend Goodrich's note.

It is natural to complexity the real Hilbert space l solve our

problems in the complexification, and then lower the results to the

real Hilbert space.

The Complexification of H

Let H be a real Hilbert space with inner product ( ). We

define the complexification Hc of H in the following way. Let

[(p, 4,]EHxH and a+iloc4 then we set

(a+ib)[cp, 4J] = [ aqi-Fb]. This yields a complex vector space Hc.

We define an inner product on Hc by

<['][i]> ((P,) i(go, 1-1) + i(u,) +
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It is easy to verify that Hc , with inner product < , >, is a

complex Hilbert space. Note that [p ,O] 0] + 0]. Consider

the map 9 [9, This map is an isometric imbedding of H in

H with image H x {0}. Indeed,

11[9, °]ll 2 = <[9 01, Ec 0 , 01> = ((f (P) =
2 Thus, we shall identify H

with the real subspace H x {0} of Hc, so that yo + itp , t
Then as expected (491+iq + (T2+4)2) = (T1+T2) + i(4)1+14)2), and

(a+ib)((p+i0 = (aco-b) + i(a41+139).

We shall use the language of complex numbers in this context

where the meaning is clear. For example given cp + i4J we shall

refer to 9 as the real part and i as the imaginary part.

Operators on H

Suppose A and B are real operators on H then we shall

define an operator A + iB on Hc by

(A+iB)(y7+i4, ) = (Ay9-13Lp) + i(A4J+Bco) .

Remark 4.1.

A + iB is a complex linear operator on H.

A + iB is bounded if and only if A and B are bounded

on H.

If A + iB Al + iBI then A = Al and B B1.

[(1 ), 4)1 =
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Proof.

(A+iB)[(p+iip+s+it] = (A+iB)[(p+s+i(Lii+t)]

Acp + As - Bi - Bt + i(Aili+At+Bcp+Bs)

= (A+iB)(40+iLP) + (A+iB )(s +it). A similar calculation can be

made for scalar multiples.

Suppose A + iB is bounded then

(A+iB)co II 2 = A(Pil + II BC° 112 II A+iB 211911 2 SO

II A II II A+iB and B < A+iB Conversely, if A

and B are bounded then A + iB clearly maps convergent

sequences to convergent sequences.

If A + iB = A + iB
1

then (A+iB)(r = Ago + i139, and
1

(A1+iB 1)
= A + iB19. q. e. d.

A Counter Example. It is very tempting to conjecture that

A+iB II 2 = II All 2 It B II 2, but this is not so as the following example

shows. Let H = 0*2 = R2 + iR2 and H = R2. Let

A(cp1, k 2) = ((p1' 0) and B (cp1, co2) = (O, q2). Then II A II = 1 and

JIBJI 1. Now,

A+iB = Sup 11 (A+iB)(go+i4J)

= Sup Ni Aco -Bip 2+11 A4J+Bcpil 2

2 2 2 2
= Sup +cp2+ = 1

67



Remark 4. 2. Let A and B be bounded operators on H then

11 A+iB 5_ 2[11 All 2+11 BII 2] and

11 All II A-FiB 11 and II B II < 11 A+iB

11 A+1B 11 II A II + II B

Proof.

1) 11 A+iB II Sup II (A+iB)(cp+i4)

119+411=1

= Sup (A9-13qi)+i(ALIJ-1-Bcp)

11 A-FiB II _ _Sup 2[11A11211(P+4112+11B11211(P+i4)1121

< 2[IIA112+11B112]

Parts 2) and 3) are obtained by direct computation with the definition

of the norm of an operator. q. e. d.

The above considerations raise the question that if E is a

68

bounded operator on Eic are there bounded real operators El and

Sup NI Ay9-BLp 11 2+ II A4J+Bco II
2

But

A9-13LPII 2 411 A911 2 + BLP II

and

Att)+B(P II 2 2{11 ALP II 2+ 1113911 21

by the parallelogram law. Thus



E2 such that E = E + iE2. The answer is yes!
1

Lemma 4.3. Let E be a bounded operator on Hc then there

exist unique bounded operators El and E2 on H such that

E=E +
iE2*

Proof. Let 9 E H then Eyo = Eicp + iE29. We claim that

E = El + iE2. Indeed,

E((p+i) = E + iE = E + iE29 + i E, qyfiE

= (E 1ç-E2) + i(E14J+E29) = (E1+iE2)(9+i4J) .

The linearity of El and E2 is established by direct calculation.

q. e. d.

We can get the same sort of results for unbounded operators but

a little care is required with domains. If A and B are any real

operators on H then we can define A + iB on

D(A) m D(B) + i(D(A)(mD(B)) We note that if A and B have the

common dense domain D in H then A + iB is defined on the

dense domain D + iD in H Conversely if E is densely

defined on Hc with domain D then D mH + C D, so
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Complexification of a Real Operator

Let A be a normal operator on H, that is let A be

-
closed and densely defined and AA = AA. We define A = A + 0i,

so that A(cp+iLli) = Acp + iAi. We note that in the bounded case

11 A 1 1 = 11 A 1 1

Lemma 4.4. If A is normal then so is A.

Proof. A is densely defined. Next A is closed for if

n
+ii and

Ay)n
+ LALIJn p + iq then Acp = p and

= q. Now we show that A(A) = (A) A . We may equivalently

show that D(i) = D[(A-)*] and i(cP+i4)) II II (171)*((P+it-P) for all
*

+ i E D(A). Observe that p + iq E D[(A) if and only if

<Aco+iA4), = <cp+i4J, s+it> for all cp + i4i E D(A). In which case

(A) (p+iq) = s + it. But,

<A(p+iAtir, p+ig> = (Aco,p) - i(A ,p) + i(Aco, q) + (A4J, q)

= (p ,$) s) - i( s) + i(co, t) + t)

Setting 4, = 0 we get (Ay', p) (p, s) and (AE9, q) = (6.0,t), SO

p, q E D(A- ) and A p = s and A q t. But A is normal so

p, q E D(A). Similarly if p + iq E D(A) then p + iq E DE(A)1.
7-*

Indeed we see that (A) = (A ). But then

,
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11 (X)*(co+i) 11 = 11 (A*)((p+it) 11 = Ni 11 A*co 11 2+ 11 A*LP
112

Consequently A has a spectral representation zdE

Where E is a projection valued spectral measure on the Borel sets

of 0. But then we get two operators E1 and E2 on H such

that E( ) = E ( ) + iE2( ). If we calculate purely formally we get
1

Ac9 2+11 A 2

x+iy)d(E1+iE2)

= SxdE ydE2 + i[ xdE2+ .5A ydEl]

Therefore, it is completely natural to conjecture that

A SxdEi SydE2 .

A Spectral Theorem for Real Operators

We begin by discussing some of the properties of El and E2.

First El and E2 are bounded operator valued functions. Indeed

they are measures.

We have E(13) = 0 = Ei(0 + iE2(4)), is E1(0 = E2(0 = 0.

00
Let M be a countable disjoint union of Borel sets in 0, then

n=1 n

X j)ll. q. e d.
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oo oo

E( M) 2j E(M) 40 = E
1 (1\4n)co+

iE(M)oo

n=1
n=1 n=1 n=1

co oo

E1 ( M )(.,9 + iE2( M
n=1 n=1

for any co EH. So

oo

oo

Ek n( M) = Ek(Mn)cp
n=1

n=1

Moreover, the sum is independent of order of summation. Conse-

quently, for co , E H, (E k( ) cp, = ( ) is a real measure
k, co ,

for k 1, 2.

We remark that E1(4) = I and E2(c1) = 0 since

E(4) = I = I + i0.

Remark 4.5. Let E be the spectral measure of A and

E E1 +iE2. Then,

1) E is self -adjoint and E2 is skew-adjoint.
1

2) For Borel sets M1 and M2,

E1(M1(---NM2) = E1 (M1 )E1 (M2
) E2(M1)E2(M2)

E2(M1r M2) = E2(M1)E1 (M2) + E1(M1)E2(M2)

3) For any Borel set M,

00
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E ( E 2(M) - E z(M), and
1 2

E2(M) = E1 (M)E(M) + E(M)E1 (M) .

Proof. 1) follows from the fact that E is self-adjoint, and the fact

that a little computation shows that E = El - iE2 . The rest

follows from the fact that E(M1r-)M2) = E(M1 )E(M2). q. e. d.

Remark 4.6. For co E H, (E1 ( )9, (r) is a positive measure and

E,( )(p, 9) = 0.

Proof, Note that E2 is skew-adjoint so (E2( )9, (P) = 0. Now

2
E1( )9,9) = (Ez( )9-E2( )9,(P)

1

= (E1 ( )(P E1 )9) (E2 ( )9, E ( )9) >0

Integrals. We shall need to define the operators f(z)dEk where

f is a measurable complex valued function on

Since p. ( ) = (E k( ) o , tli) is a bounded real valuedk, , LI)

measure we may define

Sf(z)dp.k,
= Sf(z)h(z )d

y

where Ik,I is the total variation of p.
k

and h is the

ilkRadon-Nikodym derivative of H. with respect to
I

,k, LI)

q. e. d.
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We observe that for any complex measures p. and X, if f

is I and X integrable then

Sfd(p.+X)
fdp. + SfdX

We shall also set p. ( ) <E( )y9 , 4i> .
,

Theorem 4.7. Consider p. and
(P, 4) .n., ( p ,

9,1P E H. Then, p- , = II, , + ii-L . Moreover, if f is any
co, 14, ...,(p,y 2, (p, LP

complex Borel measurable function on .* then f is

p. -integrable if and only if f is p, -integrable for k = 1
(Poli k, cp , 4,

and 2. In this case

,cf(z)dp = Sf(z)dp. + Sf(z)dp.1,

Proof. First

= <E( )9, Lp> < (E ( )+iE2( ))(F, LP>
(19 OP 1

= (E1( )co, 4J) i(E2( )(P - 1, , +

Now let f be p. -integrable. But for any Borel measurable set
(Pqi

M, Iii. (M)1 < IP, (M)I < (M). But by the minimum
(P4)

bounding property of total variation we must have

for k = 1, 2 where



said for so x and y are both 1-1.k, LP

H by Theorem 4.7.

We are going to use the Riesz representation theorem to define

Xk and Y . We would like to define linear functionals by

xd(Ek( )(P,),P)

on H. Clearly L and Rk, k,

the next theorem establishes the continuity.

R () = ..cyd(E ( )(Pk,cp

integrable for all

are linear and real valued, and
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I (N) co4i1 for k = 1 and 2. But then f is

Ii -integrable.k, ,

Conversely if f is 1.1 -integrable for k = 1 and 2,
k,

then, since II-Lcoopl < 11 I + Ip...... 4j1 , f is [-I, -integrable.
11, co , iP (P ,

q. e. d.

We are now in a position to define the operatorsk cxdEk

and Yk = ,S1ydEk for k = 1,2. Recall that E = Ei + iE2 is the

spectral measure of A = A + i0 where A is a normal operator.

We shall take as the domain of these operators Xk and Yk
the

space D(A). We observe that if cp E D(A) then

S I xldl Slz Idl c(p I

< co for all 4i E H. The same can be

) =

and



Theorem 4.8. For each cp E D(A) and k = 1 or 2, L and
k, co

Rk, are continuous.

Proof. Observe that

,)II xd(Ek( )49,01 91x1d111"41

<SIzdI.

But from arguments in the complex case we know that

I 5._ Sizi2dIN-covilliP11

Hence, Lk is continuous, and the same argument may be applied
, (p

Rk, . q. e d.

Thus we may write L (1J) = (Xkc 0 , , and

R (4i) (Ykg), 44, by the Riesz representation theorem. Clearly
k, (P

X and
Yk

are linear on D(A).

Theorem 4. 9 (The Spectral Theorem). Let A be a densely

defined normal operator on H, and let E = El + iE2 be the

spectral measure of A, then A = SxdEl - SydEz = X1 - Y2.
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Proof. For p,4i E D(A) we have

<Lp, LIJ> = (A,) Szd<E( )9, LP>

S(x+iy)d(111, )

L P t-P

vz, X lydllLi + i (x+iy)chi2

= S- ydp.
2,9,LP

because (A(p, 4J) is real. So

(Acp, LP) = ( SixdE19, LP) - ( ydEzp, LP)

= ([9xdEi - SydE2](p, Lp) . q. e. d.

We emphasize at this point that the above theorem is a special

case of the more general problem of defining operators of the form

SuclEk
where u is any real valued Borel measurable function. If

is a bounded real valued function all domain difficulties disappear

and we may define u = udEk on all of H. Indeed, we set

(SudE , 4J) = Sud<E ( )9 oli> and argue as before.
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Further Properties of El and E2

In order to establish a uniqueness theorem for the spectral

representation of A we need to study El and E2 more closely.

Let us suppose that A is a bounded normal operator on H,

then A = A + i0 is bounded and normal, and the spectral measure

E of A is concentrated in a disk D centered at the origin in

Then from the spectral theorem in the complex case we get

(A) ((A) ) -ZnZmdE. But we observe thatn * m

(A)n((;:)*) = A(A)m + i0. Now a straightforward computation

using polar coordinates for convenience, that is x = r cos 0 and

y = r sin 0, shows that

("A-) «A-)*)m = n+mr cos(n-m)OdE1 rn+msin(n-m)OdEz
ID

+ i[ n+msin(n-m)OdEi+,r rn+mr cos(n-m)OdE

Thus,

n+Tn
nnn+ .A (A*)rn = rcos(n-m)OdE1 - r sin(n-m)OdE2

and

n+msin(n-m)0dE1 = rn+mr cos(n-m)OdE2 .
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1f(r,0) - n+ma r sin(n-m)01 < E Consequently f(r, 0)4. = 0.
nm

S

If S is a compact set in the upper half plane then there exists a

sequence of continuous functions {fn}, with If}

X
bounded converging poitwise to

Here X

and vanishing off the upper
S

half plane. is the characteristic function of S. Let gn

equal fn in the upper half plane and equal -fn in the lower half

plane, then Sgndp. = 0. But g -S pointwise, so by the
S *
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Lemma 4.10 [7,123]. If A is a bounded normal operator on the

real Hilbert space H, and S C R2 is a Borel set, and is

the reflection of S across the x-axis, that is

S = {(x, -y) I (x, y) E S} , then E (S) = E /(S ) and E2(S ) -E2(S).

Proof. If cp E H then (E2( )rp,y9) = 0, since E2 is skew-adjoint.

Therefore 0 = rn+mcos(n-m)0d(E2( )cp , cp) = - rn+msin(n-m)0dia

where p.(S) (Ei(S)cp,cp), cp E H. Let f be continuous on D and

f(r, -0) = -f(r, 0). Given E >0 the Stone-Weierstrass theorem

provides a trigonometric polynomial P(r, 0) such that

If(r,0)-P(r, 0)1 < -2- on D, where

P(r, 0) = anmrn+m sin(n-m)0 + bnmrn+mcos(n-m)0.

But 1-f(r, 0)-P( , -0)1 < , so 1f(r,0)-P(r,0)+f(r, -0)-P(r, -0)1 <E,

,and so I b
E

rn+mcoskn-m)01 < But then we must have
nm



dominated convergence theorem .11Xs - Xs *11-1 - 0,

Let B be the collection of Borel sets lying in the upper half plane

and such that 11(S) = p.(S ) . This is easily seen to be a cr-algebra

which as we already know contains the compact sets of the upper

half plane. Hence B contains all the Borel sets in the upper half

plane. But it is then immediate that 11(S) = P.(S*) for every

set. Thus, (E1(S)9 , (p) = (E1 (S*)cp, (p) for all yo E H. Now E1(S)

is self -adjoint and so the polarization principle in the complexifica-

tion gives (E (S)9,0 (Ei(S*)(P, 0, so E1 (S) = E1 (S*).

Now

rn+mcos(n-m)OdE2 = - rn+msin(n-m)OdE
1

and El is x-axis symmetric, so

rn+mcos(n-m)0d(E2( )4 0 = 0.

Thus similar arguments give Ez(S) = q. e.d.

Suppose now that A is an unbounded normal operator on H.

We shall employ F. Riesz reduction to the bounded case to show that

the above theorem is still true. In what follows we refer the reader

18,307 fa
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Lemma 4.11. Let

and E = El + iE2

Borel set and S

E(S) -E2(S*).

Proof. Let A= A + i0 as before, and let B (I+(A)(A---)*)-1.

B is bounded and self-adjoint, and its corresponding spectral

measure F is concentrated in

range. So D = 0.

F = 0
2

by Lemma 4.10.

to the bounded case, then Pn:H H; that is, H is invariant

under the projection Pn. By reduction to the bounded case we have

where H = PHcn n c
or)

00

Hc = PHn c
n=1

n=1n= 1
measure of A:H Hcnn cn.

En

A = A1 then
.71,1H

=2 =A
n H n ncn

and normal, so by Lemma 4.10, if
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A be an unbounded normal operator on H,

the spectral measure of A. If S C R2 is a

its x-axis reflection, then E1
(S) E1(S ), and

[0,1]. Now if B C + iD then

Therefore B = C + Oi. But then if F = F1 + ir2

as in the reduction1
Set Pn =

I),n+1 n

=Hcn

CO

n=1

where En

and Hn = PnH. Moreover we have
oo

H +iH
n n)

,

is the spectral

HereAn is Al H
. Moreover if

cn

+ Oi. But each
A-n

is bounded

En = E ln + iE2n then E in

(C-fiD)(I+A(X)*) = (C+iD)[(I+AA*)+i0) = I + i0. Thus C(I+AA ) I

and D(I+,AA ) = 0. But (I+AA ) is one to one and has a dense



and E satisfy Ein(S) =E (S) and E2n(S) -E2n(S ),
2n ln*

S C R2. Let H,S C R2, and E = E1+ iE2, then

On the other hand

E (S )(p = Re E(S)' (the real part)
1

oo

= Re / 4331. En(S )Pn = Re

n= 1

00

n=1
ln(S)Pncc.

E1(S)co = Re E(S)c9

00

E (S)P (/' ,in n
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E01.
[E ln(S)Pn -E2n(S)Pnco]

E1(S) is self-adjoint and E2(S) is skew-adjoint,

E1 (S) E1(S ), and E2 (S) -E2 (S )

n=1

so E1(S) = E1 (S ). Similarly, E2(S) = -E2(S ). q. e. d.

The Uniqueness of E and E2

Definition 4. 12 [7, 125]. Let El and E2 be bounded operator

valued measures on the Borel sets of R2 in the real Hilbert space

H. Then (Er E2) is a spectral pair if and only if for S, S1 and

S2 Borel sets in R2 , and S the x-axis reflection of S we

have:



E (S nS2) = E1(SI)E1(S2) E2(S1)E2(S2), and

E2 (S ln S2) E
1

(S 1)E2(S2) + E
2

(S
1
)E

l(S 2,) ,
and

E1 (R2) = I, and E2(R2) = 0.

Remark 4.13. If A is normal and E El + iE2 is the spectral

measure of A then (E1E2) is a spectral pair.

Theorem 4. 14. Let A be a normal operator on a real Hilbert

and let (El E) ) be a spectral pair such that
2

A =SxdEl - irydE2 . Then El = El and E2 = E2 where

E = E + iE is the spectral measure of

Proof. Since (E'' Es ) is a spectral pair the integrals SydEli
l 2

and SxdE2 are also defined on D(A), the domain of A. Indeed

they are both zero. Thus

A + i0 = S3cdE - + i[ ,S4 ydE l+ SxdE2]

S(x+iy)dEl

where E = El + iE' . E' is a spectral measure. Indeed,
2

(E'(S))21 El (S))2 - (E' (S))2, + i[E'
1

(S)E'
1

(S)+E' (S)E' (S)]
2 2 2

El (S) + iEl(S) E(S).
2

space H,

=
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Clearly E'(S) is self-adjoint and E'(R2) = I. The strong

add itivity comes from the strong additivity of the components.

Thus, the uniqueness theorem in the complex case gives

E q. e. d.

A Function Calculus for A

Let f(z) = u(z) + iv(z) be a Borel measurable function on R2.

Let E = El + iE2 be the spectral measure of A + i0 = A, where

A is a normal operator on the real Hilbert space H. Assume that

f is bounded. Then

f(A) Sf(z)dE = (u+iv)d(E +iE )
1 2

= SudE1 - SvdE2 + i[ SudE2+SydE1] .

Now if we want f(A) to be a real operator we must have

vdE + SudE2 = 0. But we can achieve this if v is odd with

respect to the x-axis and u is even. This is because

E1(S) = E (S ) and E2(S) = -E2 (S ).

Remark 4.15. The set of all f = u + iv where f is a bounded

Borel measurable function on R2, and u is even with respect to

the x-axis and v is odd is a real algebra. We shall denote this

algebra by EL .
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Definition 4. 16. For f E et. we define

f(A) = SudES.vdE =
1 2

S u+iv)dE I .

Theorem 4.17. The map F: L(H), where L(H) is the set

of bounded operators on H, defined by F(f) = f(A) is an algebra

homomorphism. Moreover, (A) = (f(A))*, where f = u - iv.

Proof. We have f(A) = Sf(z)dEIH, so the additivity and real

scalar multiplication are clear. But from the same result in the

complex case

f1. f(A) =1(z)f2(z)dE1(z)dE1HSf2(z)dEl

= f1 (A). f2(A)

Also from the complex case we have f (A) = (f(A)) . q. e. d.

Stone's TheoremReal Case

We begin this section with the construction of a particular

unitary group on H associated with a given normal operator A

on H.

For each real t consider the function

ft(z) cos(ty) + i sin(ty). Observe that cos(ty) is even with respect
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to the x-axis and sin(ty) is odd. Thus for each t, ft E et . Let

(E1 ,E2 ) be the spectral pair of A, and set

ft(A) = Scos ty dE1 sin(ty)dE2 .

Theorem 4.18. ft(A) is a strongly continuous one parameter

unitary group.

Proof. Clearly f0(A) = I. Now

f = cos(t1-f-t2)y + i sin(t1+t2)y
t 1+t2

= cos tly cos t2y - sin tiy sin t2y

+ i[sin tor cos t2y + cos tor sin t2y]

=f f .t t
1 2

Thus, by Theorem 4. 17, f (A) ,--- f (A)f (A). Sot1+t2 t t21 *
f (A) = (f (A))-

'
1. But f = T so (f (A))-1 = f (A) = (f (A))-t t -t t t t t

Therefore, ft(A) is a unitary operator on H. We must establish

that ft(A) is strongly continuous. Observe that if t to then

cos(t-t0 )y 1 and sin(t-t0 )y 0, where the convergence is

pointwise. But then
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!Ift(A)T-ft (A)(,9112 =

(ft(A)(P-fto(A)co,ft(A)cc-ft0(A)(P)0

= z1 2-
2(ft(A)(p, ft (A)co)

0

= 211(1'112 2(ft -to(A)(P,
49)

= 211 4911 24cos(t-t0)Yd <E1 ( )cp , cp>

-Ssin(t-to)yd <E2( )co , (p>]

So by dominated convergence II ft(A)49-ft (A)q1! 0 q. e. d.
0

We are going to show that the unitary group described above is

the only one.

Let u(t) be a strongly continuous one parameter group of

unitary operators on a real Hilbert space H. We define

u(h)co -ct)
u(0) cp =

0

if the limit exists. We define D(ul(0)) = {co E HI u1(0)(p exists}.

Certainly u1(0) is an operator on this domain. We shall use the

method of complexification again to show that u'(0) is densely

defined and skew-adjoint.

Theorem 4.19. Let u(t) be a strongly continuous unitary group

87



(in brief, a unitary group) on the real Hilbert space H. Let

u(t) = u(t) + i0 be the complexification of u(t). Then

u(t) is a unitary group on Hc,

D(u1(0)) = D(u1(0)) + iD(u1(0)), and ut(0) = ul(0), and

If u and v are unitary groups and u'(0) = v'(0) then

U = V.

Proof. 1) If u(t)(cp+iLli) = 0 then u(t)9 u(t)4J = 0, and so

= = 0. Let T, + ir E
Hc then there exist 9 and Lp E H such

that u(t)9 = and u(t)4i 11 SO u(t)(9+i4J) = + ill. Thus

u(t) is a bijection on Hc Moreover,

(u

tt1

+ u(t1+t2) + i0 = u(t1)u(t2) + i0

= (u(t1)+i0)(u(t2)+i0) = u(t1)u(t2) .

Finally,

II 71(t)(9+iLP)112 =II u(t)(P112 11u(t)4J112 = 11(P+i112

Hence u(t) is a unitary group.

u(h)(9+i0) -(9 tli)2) u.'(0)(9+iLli) lim
0

u(h)92-9 u(h)4J-0lim + i limh0
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E D(U1(0)) if and only if + i4i E D(u'(0)) + iD(u'(0)) .

3) Suppose u and v are unitary groups on H with

u1(0) = v1(0), then u(0) = ul(0) + iur(0) = v'(0) + iv1(0) = v'(0) . So

by the complex Stone theorem u(t) = v(t), so u(t) v(t). q.e.d.

Corollary 4.20. If u(t) is a real unitary group then u'(0) is

densely defined.

Proof. '(0) is densely defined, so D(u'(0)) = D(u'(0)) + iD(u'(0))

is dense. Thus D(u'(0)) is dense in H. q. e. d.

Corollary 4.21. u'(0) is skew-adjoint.

Proof. We set G =-; us(0) for brevity. By the complex Stone

theorem CT = G + i0 is skew-adjoint. We show that (G) G

Suppose cp + i4i E D(G ) then cp, E D(G ). Thus for every
.*

+ ifl E D(6"), cp) = G*(p) and (GT1,0 = (11, G 4)). But then

<G( +in), = <G T1, (p+iLiJ>

(P) i(G 4J) + i(Gri, (P) + (G11, Lp)

-= G (p) - G LIJ) + i(n, G (p) + (n, G )

(y9+iip>

Hence, G* C (C)

we have,

Conversely, if
*

co + ii E (G) then for every + in E D(E)
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<G( +0-1),(p+iqi> = < (G) (q)-FiliJ>

= -G'-iG4J>

since G is skew-adjoint. Thus

<ER+0-0, (p+iip> = 9) - i(G,Lp) + (p) + (Gm Lp)

= R, -Gm) - + +

Set 1 = 0 to get =(, -G9) and (G,Lp) = -GLIJ). So

-G(p. = G and 7Gt.li.= G. So q2 + E D(G ), and
;1/4

(G) (cp+i0 G (cp+ikP). So G = (G) , and thus G is easily seen

to be skew-adjoint q. e. d.

Recall the particular unitary group corresponding to the normal

operator A on H given by

ft(A) = Scos ty dEi - 9sin ty dEz.

Remark 4.22. Let u(t) be a unitary group on H with

infinitesimal generator u'(0). Then the above arguments have shown

that the infinitesimal generator of u(t) is u'(0).

Theorem 4.23. Let A be a skew-adjoint operator on H, then

ft(A) has infinitesimal generator A.
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Proof. Observe that

f (A) = f (A) + i0t t

=s cos ty dEl -Ysin ty dE2 + i

= SeitYd(Ei+iE2).

cos ty dE2+Ssin ty dEl]

Now A is skew-adjoint, so A = A + i0 is skew-adjoint with

spectral measure El + iE2 concentrated on the imaginary axis.

But because of this X = S (x+iy)d(El+iE2) = iy d(E1+iE2)

Therefore -iX is self-adjoint, and -iA = yd(E1FiE2) where

we regard El + iE2 as a measure on R. But then if we set

B = -iX then eith = 5eitYd(E1+iE2) -= ft(A). But this implies that

iB = 71 is the generator of ft(A). So by the preceding remark

A = (f (A)'(0) = ft(A)'(0) = A + i0. So A is the infinitesimal gen-t

erator of ft(A). q. e. d.

Theorem 4.24. Let u(t) be a unitary group on the real Hilbert

space H. Then there exists a unique skew-adjoint operator A

such that u(t) = ft(A).

Proof. By Corollary 4.21 A = u'(0) is skew-adjoint. Set

v(t) ft(A) then v1(0) = A by Theorem 4.23. So by Theorem 4.19

u = v. Suppose now that u(t) = ft(B) where B is skew-adjoint.

Then u'(0) = B. q. e. d.
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