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TIME DERIVATIVES OF OBSERVABLES AND APPLICATIONS

INTRODUCTION

The Born Interpretation

Let ¢ Dbe a normalized state function defining the state of a
quantum mechanical system. For a long time in the development of
quantum mechanics it was not clear how to interpret ¢ physically.
In the 1920's Max Born proposed that |¢] 2 should be regarded as
the probability distribution of the position of the particle in state o.
Thus the probability-that the particle is in region R is S }(plzdx.

R

Suppose that H = H0 + V is the Hamiltonian of a particle in a

potential field V, then in the Schrodinger picture the fundamental
dynamical law of quantum mechanics is that if (x,t) is the state

at time t, then ill"‘a(‘f'LQ = iHy(x, t). That is, y(x,t) satisfies the

Schrodinger wave equation. Well known considerations connected

. 2
with Stone's theorem show that the solution in L (Rn) is

Plx, t) = eltHcp where ¢ may be thought of as the initial state at
itH . .
t = 0. Thus, e ¢ is the state at any time t.

For each t, eitH is unitary, and so if “(p“ =1 then

itH ;2 itH itH . .
H e ‘P“ = <e' @, e! ¢>=1. The Born interpretation now says that
some self-adjoint operators can be interpreted as observable quanti-

. . itH itH .
ties. For such an operator A the quantity <Ae' <p,e1 ¢> is



. itH
the expected value of A when the system is in the state e o¢.

Indeed, if A is multiplication by xj, which has a natural inter-

. . Ve, n
pretation as the j-coordinate of position (x = (xl, e e xn) e R),

. HH . . >
then <x.e1tH<p, ellc Q> = S N x_leltH<pl dx, which is exactly the

expected value of the classicalposition function x = Xj when
itH (2 . . 1 . . . .
Ie (pl 'is viewed as the probability distribution of position at

time t.

o— 1 H : —
If we set A(e)(t) = <Aelt 0, eLtH<p> then Af(¢) 1is a real

valued function of t. We may therefore ask a very general question:

What is the behavior of Af(¢)(t)? This paper provides some answers

to this general question.

Ehrenfest's Theorem

, d
Consider a particle of mass 1. In classical mechanics :i-t&
2
is the momentum and —_ZX- is the force if x(t) is the position of
dt

the particle.

In the quantum mechanics the expected value of momentum in

9 itH itH

the jth coordinate direction is given by <i -8-— e ¢, e ¢>. The
X,

question arises whether the derivative of the mean of x_, (. (o) (1)),
is the expected value of momentum. Moreover, is the second deriva-
tive of the mean of Xj’ (x"(¢)(t)), equal to the mean or expected

J
;V eltH(p,eltH¢> > Paul
x

]

value of the force which is given by <



Ehrenfest [9, 455] asserted that the answer is yes! Note that in
bibliographic citations the first number locates the reference in the
bibliography and the second is the page number. Ehrenfest's justifi-
cation of his assertion was not rigorous, nor could it be, for he gave
no hypotheses. Here we shall give sufficient conditions under which
Ehrenfest's Theorem is true.

This will involve us in the question of the differentiability of
means to which the bulk of Chapter I is devoted. It is in Chapter II

that Ehrenfest's Theorem is taken up.

Bound and Unbound States

The theory of self-adjoint operators on a Hilbert space

recognizes both eigenstates and absolutely continuous states. We can

ask what the behavior of x.(¢)(t) is when ¢ is an eigenstate or an

absolutely continuous state. For an eigenstate, is ;{-j(tp)(t) bounded ?
For an absolutely continuous state, does ;j(tp)(t) converge to £ o
as t convergesto *00? We address ourselves to these questions
in Chapter II.

In Chapter III we shall give some results on the differentiability

of the function K((p)(t) where A is assumed bounded. Under this

assumption we no longer require A to be self-adjoint.



Stone's Theorem for Real Hilbert Spaces

Let U(t) be a strongly continuous group of unitary operators
on a complex Hilbert space. Then Stone's theorem says that
_ itH : -
Ult) = e , for some unique self-adjoint operator H, and
1 . i-tH - 1
U'(t) = iHe . In Chapter IV we shall formulate and prove Stone's
theorem for real Hilbert spaces.

To some extent Chapter IV is independent of the preceding
chapters. On the other hand, it is quite reasonable to ask about the
differentiability of means on real Hilbert spaces. But then a Stone's
theorem in the real case becomes indispensable, and so the material

of Chapter IV is not as independent of the main theme of this paper

as it might at first appear.



I. TIME DERIVATIVES OF UNBOUNDED OBSERVABLES

Iet A and H be self-adjoint operators on a Hilbert space

_ . CtH
ﬁ'\ . Consider the expression A(g)(t) = <Ae 1thp,e 1t ¢> defined

for t € R. In this chapter we shall provide conditions on A, H and
such that dale)(t) _

at A'(¢)(t) exists and is equal to

<i[HA-AHJe 'tH,,

@

e_ltH<p>. In particular we shall study the cases

2
where j"‘ =L (Rn) and A is a polynomial in x = (x

1,...,xn), or
A is a polynomial in 2. (—?—‘ _ﬁ_)‘ In th two cases
poly P aXI,...,axn « In these
we shall assume that H = HO +V where HO is the self-adjoint
n 32
realization of the Laplacian -4 = - > and V is a suitable
9x
i=1 i

potential.

We shall begin by considering any self-adjoint operators A
and H on a Hilbert space f—{ . The first theorem gives a general
criterion for the differentiability of X((p)(t). If A is any operator
we shall use D(A) to denote the domain of A. We shall assume

all operators are densely defined, but not not necessarily bounded

unless it is so stated.

Theorem 1.1. Let A be a symmetric operator and H a self-

adjoint operator on a Hilbert space .S;-l . Suppose ¢ 61’4 )

-it H y H
e Y ¢ € D(HA-AH), e lthp e D(A), and HAe 1t (p“ is bounded

-itH -itH
@ @>.

for all t in a neighborhood of t and A(e)(t) = <Ae

O’ ’e



Then

- —itOH —itOH
A'(«p)(to) = <i[HA-AH]Je 0, e o> .
Proof. Without loss of generality set tO = 0, for otherwise we can
-itOH
replace ¢ by e ¢ in the following argument.
itH, -itH
— < > - < >
T e e
t—™0
itH -itH itH -itH
= lim < e Ae gt—e e Agg’(p>
t™0
-itH -itH
- -itH
= lim <Ae ipe A<p’e1t o>
t—™0
-itH -itH
“Aw- - -itH
- lim <Ae ¢ A@tfg Agp_A(p]’e itH
t™0
-itH . -itH .
- 1. - - . p-Agp -itH
= lim < ég——w,e 11:H<p>- lim < £ A ,elt >
t t
t—™0 t—™0
-itH .
= ll.m <ée—.__.._w’e-ltH(p>+<lHA(p’(p>.
t
t—™0
We next show that
-itH
- -itH
lim < ég___t___f__é_?f’ e it ¢> = -<iAHg, ¢> .

t—™0
We have



-itH
- -itH
I< Ae - p-Ao e it o> - <-iAHg, o>
o TItH itH itH itH
= |< ——t—u,Ae : ¢> - <-iHg, Ae : ¢> + <-iHgp, Ae @¢>

- <-iHgp, A¢>]|

since A is symmetric, He¢ € D(A), and by adding and subtracting

-itH
<-iHe¢, Ae it ¢>. Thus,

-itH .
| < x_‘\_e__t_u‘\:e, e T S < iaHe, o>
e‘itH _ ~itH -itH
< | —-Z-S-’i—ﬂ‘i + iHol| lae ol + [AHe [ lle” -0 -

But the right side of this inequality tends to zero as t converges

H
t ¢|l is bounded in a neighborhood of zero.

to zero since “Ae".1
q.e.d.

Corollary 1.2. If A and H are bounded self-adjoint operators,

then X'((p)(t) exists for all t, and

K'(tp)(t) = <i[HA—AH]e—LtH<p,e—1tH<p>

Thus, we observe that to establish the differentiability of

K(cp)(t) we must establish the following three things:

1) e—lthp € D(A) for all t in a neighborhood of t

0 b

2) || ae M
-it H

and 3) e U ¢ e D(HA-AH).

¢| is bounded for t in a neighborhood of ty



To this end we shall have need of the following general concepts

and lemmas.

Definition 1.3. Let X be a Banach space and B: (a,b] = X bea

function on the interval [a, b] with values in X. Then we define

n

b
g Bit)dt = lim ZB(t.*)At.
. Jar~o

if the limit exists in norm. This is the usual Riemann integral of a
function with values in a Banach space. This integral exists if B

is continuous.

Lemma 1.4. Let A be a closed operator on X, and suppose that

~ b b b
S\ B(t)dt and g AB(t)dt exist. Then S‘ B(t)dt € D(A), and
a a

a
~ b b
AS B(t)dt = g AB(t)dt .
a a

Proof.
n n
A z B(tF)at, = Z AB(tF)at
i i i i
n=1 n=1
Now



and
n | n b
A z B(t )at, = z AB(t:)Atl — AB(t)dt
i=1 i=1 a
~b
But A is closed hence S\ B(t)dt € D(A), and
a
b b
AS B(t)dt = g AB(t)dt . g.e.d.
a a
Corollary 1.5. Let A be a closed operator on X, and suppose
e8] (¢ o]
that the improper integrals S B{t)dt and S AB{t)dt exist. Then
a a
(¢ o] o0 (¢ o]
g B(t)dt € D(A), and AS B(t)dt :g AB(t)dt .
a a a

Proof. We have

0 b
S B{t)dt = 1im§ B(t)dt

a b ™o “a
and
) b
‘ S AB(t)dt = lim g AB(t)dt.
a b—™w "a
But,
b b
Ag B(t)dt = AB(t)dt
a a

by Lemma 1.4. Thus,
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b A Q0
lim Ag B(t)dt = S‘ AB(t)dt.
b— o0 a a

Again, A is closed, so

) ) )
S‘ B(t)dt € D(A), and AS B(t)dt = S. AB(t)dt .
a a a

g.e.d.

In the sequel we shall often be concerned with integrals over

paths in the complex plane of the following type.

(t) = c +it and

Definition 1. 6. Let ]."C be the path defined by z,

Zz(t) = -c t it where t e (-0, ).

If T is an operator and N\ a complex number we shall
write R(N, T) = ()\—T)_1 for the resolvent of T.

We say f(\) 1is of order g(\) at X —® provided that
£(\)

g()\—) is bounded for large values of \.

Lemma 1.7. Let TI(t) be a strongly continuous group of unitary
operators on the Hilbert space .S—l , andlet T be the infinitesimal
generator. Let c¢ be a positive real number, and a a complex
number with 0 < ¢ < ]R(a)l, R(a) the real part of a. Then, for
%)

¢ € D(T), with n an integer, n >2,
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0
Proof. First we note that RI(\,T) =§ e_M:T(t)dt, (see [1,622]),

0
¢ ¢]
4) -
for X e p(T). Moreover, RN, T) | iKS e((C/ ) R(M)tdt for
0
R(\) >%, so | R(\, T)|| is uniformly bounded in the half-plane
R(\) >%. Similarly ||R(\,T)|| is uniformly bounded in the half-
plane R(\) < :22- . Thus, the integrand is of order I\ M as
IN] = ©  on TC, and so the integral
S‘ eMR(x,t)(aI-T)njg N
r (a—)\)n
c
is well-defined.
At n
1 A, T)(al-T
Let ¢ ¢ D(Tn) and let Blt)y = —Z—S e RO, T)(a Lo dx .
i n
r (a-\)

(4

Now choose P so that R(p) >c, and assume t >0, then

0 At n A OO
S‘ e M Bt pdt = L e R(X,T)(GI—T)_Qg St gy
0 T (a-\)" 0

it

{f

1 g R(N, T)(al-T) ¢ O
I (p-M)(a-n)"

Because of the order of the integrand this last integral can be

replaced by integrals over two small negatively oriented circles about
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a and p. These integrals can then be evaluated by the residues at

a and W.
The Residue at p: Immediately we see that the residue at M is

-R(p, T)(al-T)%

(a-p)”
The Residue at a: Consider
) - BT )™ r(y,T)
) = - (h-1)
(k-M (a0 (-t T
We must compute the (n-1)-th derivative of %,I';—) = ()x-p)_lR(x,T)-
n-1
n-l -1 -1-m -1..m
<x-u>R(x,T>=Z ("~ 5p" (x-p) "DTR(N,T)
d)\n—l m
m=0
n-1
_ (n—l)(_l)(n-l—m) (n-1-m)! DmR()\,T) ,
m (x_p)n—m
m=0
_d m _ m m+l
where = But DR\, T) = (-1) m![R(\,T)] , Sso
1 = +1
n- m
— (- ROLT) = ) ()P e ROLTU
dx =0 (A1)

The residue at o is
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00

z (CLI—T)n ! m(p o (aI~TL@+ (aI-T)n 152
(a-p)n ™ (e-p) (g (@ep)®

m=0 K H

- (aI-T)R(p; T

But we have the identit R(p, T)e = s So we
entity RTe =T ¥ (a-w)
have in general:
k-1 k-1 k-1

(¢aI-T)” "¢ _ R(p,T)(aI-T) g+(aI-T)R(p,T)(aI-T)i.

(a-p)© (a-p)< (a-p)<

Making substitutions and telescoping we get

o0 n n
g o B (t)par = RULTNALTI @ | g, my, R(H:T)(QII;T)ﬁ
0 (a-p)” (a-p)’

H
2
¥
=
<

Now apply linear functionals to both sides to see that Blt)g = T(t)e
for all t >0 andall ¢ ¢ D(T").

Now T(-t) is a unitary group with generator -T. So we

have

At n
1 R(\, -T)(al+T
T(-t)p = L S e ( )( )ipd)\

r (a-n)"
C

for t >0. Substituting -\ for X and recalling that



R(-\,-T) = -R(\,T) we see that

-\t n
1 R(\, T)(aI+T
T(-thy =5~ g e (A T)(GIFT) @ 4y

r (a—)\)n
c

If we put -a for a and -t for t, we get

14

At n
T(t)e = 211r' f e ROLTNGIT) @ g4y | gor ¢ < 0.
i I (a-n)®
C
Thus, Bit)g = T(t)¢ for all t. q.e.d.
Lemma 1.8. Let A be a closed operator and H a self-adjoint
operator on a Hilbert space -g" . Let ¢ <H , and suppose that for

an integer n>2 andall A eI _, R\, iH)(aI-iH)"¢ ¢ D(A), and

‘n—(l+€)

| AR(N, iH)(aI-iH)ntpH is of order |\ as |\ —® on

TC for some ¢ >0, and AR()\,iH)(GI-iH)n(p is continuous in A

i itH
on I' . Then for each real t, elthpeD(A), and H.Ae1

c <p“ is

bounded on any finite interval as a function of t. Here a is asin

Lemma 1.7.

Proof. Note that iH is the infinitesimal generator of the unitary

itH
group elt . From Lemma 1.7 we have

)n
£an .

itH ] S‘ MR\, iH)(al-iH
T (a- >\)n
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A
e tAR(h, iH)(aI-iH)"p

(a-n)"
I-(l+€)

But is continuous on TC, and its norm is

as l)\l—>oo on I' . Thus,

of order |\
c

1 S‘ extAR(x,iH)(aI—iH)iqu
2mi Jr. (a-n)"
C

exists. Consequently by Corollary 1.5 eltH<p € D(A), and

iH 1 AR, iH)(al-iH)
Ae ¢ =5 dx .
VS (a-n)™
C
But then
itH A
| AcitHy| gif M) | ARG (D) (a1-iH) e | an ],
r
C
+ c+i
and since eM =e( ¢ lb)t, where b€ (-0,0), we have
itH . . .
|| Ae (p“ bounded on any finite interval of the real line. q.e.d.

Remark 1.9. ILet V be a closed operator and H self-adjoint.

Suppose D(H) C D(V). Then VR(\,iH) is a bounded operator,

since it is closed and everywhere defined.

Lemma 1.10. Let HO and H be self-adjoint operators and V

a symmetric operator with D(HO) (C D(V). Moreover, let H = HO+V.

Let X\ ¢ P(iHO) ~ p(iH), the intersection of the resolvent sets of

iH and iH, then R(\,iH) - R(M\,iH

0 0 JAIVR(N, iH).

) = R{(\, iHO
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Proof. For ¢ € D(HO) = D(H) we have ()\-iHO)<p - (N-iH)p = iVe.

But ¢ = (\-iH) "¢ for some ¢, and so

()\-iHO)()\—iH)_I\L - = iV()\-iH)_qu

for all { € Ran(\-iH ) :i\ . Ran()\—iHO) is the range of (N-iH ).

0 0

But then we have

()\-iH)_llp - ()\-iHO)_llp = ()\-iHO)_liV()\-iH)—l\L

for all ¢ e:f-\ . Here F is the Hilbert space in question. gq.e.d.

Remark 1.11. Let A, B and H be self-adjoint operators on-j“ )

and a and b any complex numbers. Suppose

itH -itH
@

Alp)t) = <Ae " g,e

-itH —1tH(p> )

>, and B(e)(t) = <Be = ¢,e
Suppose each of these functions is differentiable at t. Then

(aATDB)(¢)(t) is differentiable and (aA+bB)'(¢)(t) = aAle)(t) + bB(e)(t).

Proof. We have

-itH  -itH
<(aA+bB)e it ¢, e it @

It

(aAtbB)(¢)(t) >

itH -itH itH - itH(p

a<Ae @, e o>+ b<Be @, e >

It

= aA(g)(t) + bB(o)(t).

But each term on the right is differentiable. g-e.d.
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Remark 1.12. We emphasize the fact shown in the proof of Lemma

1.7 that if H 1is self-adjoint then | RN, iH)|| is uniformly bounded
on I' .

(4

We generali.ze this fact as follows.

Lemma 1.13. Let H be a self-adjoint operator and V a closed

operator on Fl  with D(H) (C D(V). Let ¢ € D(H), then

“VR(N iH)tp” is bounded on I"C.

Proof. For X\ e I"C we recall that AN =z c +ib with ¢ >0 and

be (-0,0), We assume first that X = c + ib. But we have

0
-\t itH
R(\,iH)g = g e telt ¢ dt, (see Dunford and Schwartz [1,622]).
0 oo
-\ i

Now V is closed, so VR(\,iH)e = S e 1:Velthp dt by

0
Corollary 1.5 if the integral exists. But,

o0 00
- i .Y -1 itH
S e MVelthp dt = S e 1:V(r:—iH) lelt {(c-iH)e dt ,
0 0

since ¢ € D(H). But V(c-iH) ! is bounded, and so the integrand
is continuous in t.

Moreover,

e Mv(c-itn e c-imell < e Vie-it) ] | (c-itol|
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. o
But this is integrable. Thus [|[VR(\,iH)e| <M 5 e “tat < w.
' 0

-¢c +ib we note that R(-\, -iH) = -R(\, iH). But then

i

For A\

‘||VR(—)\, —iH)H »  and so the above argument now

1

VRN, iH)e||

applies.  g.e.d.

Polynomials - P{x)

In this section we shall concern ourselves with the case of A
being the maximal multiplication operator determined by the poly-

nomial P(x) in the variable x = (x_ ,... ,xn). Therefore we shall

1
‘ . . 2, . n
assume throughout that the Hilbert space H is L (R7). More-

over, H0 will be the self-adjoint closure of the Laplacian -4

defined on A  the space of rapidly decreasing functions on R".

Throughout, the potential V will be a symmetric operator whose

domain contains A such that - (-a+V)| has a self-adjoint

clogsure H = HO + VT with D(HO) = D(H). In consonance with the

physical considerations in the introduction we shall refer to H0 as
the free Hamiltonian, and H as the Hamiltonian.
We shall make repeated use of the Fourier transform of func-

~

2
tions ¢ € L (Rn) . We shall denote the transform by ? (p) or w.

'We shall take as a definition of the transform restricted to }3

._5_(@(1'{.) _ S‘ e~2"i<x’k><p(x)dx .

Rn
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If x=(x.,..0,x) and a=(a ,...,a ), where o isa
1 n 1 n 1
a a3 a
non-negative integer, then we define x = Xy e X N . Moreover, we
n
n
set |Cl| = 20. .
i
i=1

In view of the linearity described in Remark 1.11, we need only
study multiplication operators of the form x". We set A= xa,
a
and interpret A as the self-adjoint closure of x defined on }) .
We now set about establishing for A the three properties

listed on page 9. We begin with properties 1) and 2).

Remark 1.14. Let a= (al, C s an) where each a, is a non-
2

negative integer. Let s be the space of functions f e L (Rn)

such that for each P < a (i.e., ﬁ.l < ai)’ f is in the domain of

B 5P N
— , where T 1is the closure of 7~ defined on }3 . Here,
ox ox ox
—— means B - Then S is a Banach space in the
ox ‘31 n
ox."...0x —
! " 2 oP¢ 2
Sobolev norm given by ||fH - z || ox || > The proof is
S L
p<a

standard and can be found with slight modification in [2. 323].

B

Remark 1.15. If ¢ D(x) then ¢ D(x') forall B<a.

Note that we shall, from time to time, confuse the operators
a 8(1
x and Py with their closures. It will be clear from the context

which is meant. Of course in this case

D(x") = {f LZ(Rn)Ixaf € L

2,_.n a a|

(R7)}, and x =x 9
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Proof. Let LLJGD(XQ), then

{120 e - S]I PP 1P ] P
R x| <1
= [« >1

But for |x| >1, |x6| ilxa], SO

1x°1% 0] %ax < P12 9] 2ax + %% 2] ] 2ax < w.
§Rn glxl <1 §|X] >1

So, X6L|J € LZ(Rn)- q.e.d.

Lemma 1.16. If ¢ D(x) then R\ iH)y € D(x") .

.|ﬁ|§E|

Proof. Note that the operator i o is essentially self-

A

adjoint, and its closure has for its Fourier transform (2m) I m kﬁ.
a
Now let € D(x ), then there is a sequence {LIJn} C }) , the

space of rapidly decreasing functions, such that Lpn — {, and

2
xatpn"xaLp in LYR"), since %" is closed. But,

=% %] ® = S;n_|x°|21¢n-¢|2dx,
and

[Py Pl § 11 el e

ﬁg [, "o + S 1<% -] %ax .

x| <1 x| >1 "
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Thus, xﬁtpn - xﬁnp in LZ(Rn) for each f < a. But then for all
8
3" A -1 .| B8], Ba a .
<a, =— —_ (== ,
<a ™ Lbn (2“_1) (x' V) But S is a Banach space, so

g
t\p ;’ﬁ) in Sa. So if LpeD(xa) then /LDG s®.

With this fact we have

a
: -1 |a] 8 1 ~
F x"ROGH Y 1= (57 2= 4
0'"'n 2mi ok )\_4“2,1‘1(]2 n
S U FY I PR Sl B L)
Tt 2w B’ 9k \ 4“2.‘1('2 ok Lpn'
B<a B
a-p ]
But for fixed- N each is a bounded multiplication
: ok 2,
N-41i|k]
§E/\ - 86/,\ 2,_.n

operator. Moreover in L(R7), so

0k 'n 51?‘“

;[XQR()\,iHO)LPn] converges. But R()\,iHO)Lpn converges to

R(\, iH ). Since x" is closed, R()\,iHONJeD(xa). Indeed we

have the useful formula

F xR0\ HY) ]-(—'—LIOLI (GL)aa_B L 0%
x HG L= (5 B’ ok x_4“21'1(‘2 ok
B<a
and
SR = (=l iyl 'l[am_ﬁ L 13 &Py
x o oLp Tt 2w 27i B 9k \ 4wzlklz X g
ﬁ<a h
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Y
Remark 1.17. IR — is a sum of terms of the form
ok 2. 2
N-477i| k|
4 ¢ 2. 2
flk) = C k ...kn/()\-4rr ilk’ )m where lal <m and
a,m 1 n

lal < I+l

Proof. We proceed by induction on lyl . If |y| = 0 then the
assertion is clearly true. Now suppose the assertion is true for

]\(I =n, and

is one term in the sum. Then

1 i n 1 i n
of(k) _ c alkl kl. 'kn Py k1 kl. k
ok 2 2 2 2. mtl
i e e Y Y el N Oy P
Hence the assertion is true for |y| = ntl. q.e.d.
k(l
We regard f, (k) = , where |a| <2m, asa

» (n-4nli k] 5™

multiplication operator. Since X will be on PC, f)\(k) is con-

tinuous in k, and so the norm of this operator is the supremum of

(k)| . We set g(\) = Sup ]f)\(k)] . The next lemmas show how
k
g(\) behaves as a functionof X on I .

Lemma 1.18. ILet g(\) = Sup




|a| < Z2m. Then there is a constant K >0 such that

g(\) <_K|x||°‘ /2 on r_.

Proof. If )\el“c then M\ =z c¢ tib, and so
a
1]

(k)| =
A (Cz+(b_4“z‘k‘2)z)m/z

To find the supremum we may as well use the square of this

expression,
2a
2 k™ ]
£, )| =
A 2 2
(2 H(b-an” k| HH™
n
\ 2
Consider k on a sphere of radius r, then r = k.1 , SO
i=1
lk.ll < r. Therefore,
2| al
2 T
|£, (k)7 < :
- 2 2 2
b [24b-gn’r )2 T™
We shall find the supremum of
2[al
h, (r) = -
2 2.2
A [c2+(b-4rr r ) ]m

Differentiating we get

23
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[2|a|r2]a|-1(Cz+(b-4“2r2)zfn

- 2
+16“2mr(C2+(b_4“2r2)2)m 1(b-‘lTrZ’rZ)r Ial]

2 2
[c2+(b—41r rZ)Z] m

Setting h)'\(r) =0 we get

167r4(|a! -Zm)r4 + STrZ(m-]a])er n ]q](cz+b2) 0.

Now if |al =2m and b <0 then h (r) < and is asymptotic

A - lérr4
2 (c2+b2)
to this value. If b >0 then r :"—?“—‘ . For this r then
2+b2 | al e
h)\(r) SK(ST) for some constant K. If b >|c| then

b >‘D\‘J‘ » 80 h)\(r) < 2K|\] |l . If b<|c| thenthe computation

Z1b? | ol
(&)
41 b
By (r) = 2, 2
+b
< Kl(c +bZ)Zm
<
_— KZ ?
for some positive constants K1 and KZ, shows that for all

0<b<|c| the supremum of hx(r) is less than or equal to K2

1
4 m

(16w )

h)\(r) S_KI)\‘ IQI for some K.

or the asymptotic value In any of the above cases then
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2
Now if |a| <2m, and h)’\(r) =0, and we set t=r , then

. z8r’(m-|alpa 6arim | a|)’b% 64" (o] -2m) o] (%+b%)
32 1r4(| a| -2m)

Now with lal < 2m, h)\(r) — 0 as r ™ %, and h)\(O) =0, so

one of these values of t determines a value of r at which h{r)

is maximum. Let r, be one of these values, then
el el
g = 2 2m/2 = m
(c t(b-4mwr") lc]
| /2
2 2 2
o1 [num-lamJ(m-lao 12 Jal( al -2m)[] ]
T el™ 4n°| || -2m|
<_,K|)\||al 2 for some K >0. q-e.d.
Lemma 1.19. For |a| <2m the function g(\) is continuous
on I'.
c
Proof. We have If)\(k)] =3 lkl: RNVE where
‘ (¢ +(b-4mw ]k] )7)
A =%xc tib. We shall show that lf)\l converges to |f)\ ] uni-
0

formily in k € R™. Indeed,
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2 2
0
- |kZG| 1 ~ 1 (
(Btb-ar? k] D2 (Phb—ant| k]| HH™
lchl] (c2+(b0—4rr2|k|Z)Z)m—(cz+(b—4rr2|k|Z)Z)m ‘
(c2+(b-dnt|k| H)5)™ (b _-an’ k| HH™
led
Now since || < 2m the quantity > > > is bounded
(c“+(b-an” k| )™

by say C1 for all k ¢ R® and all b such that lb—boi < 1.

2.2.m

2 2 2 ;
Moreover (c +(b0-4ﬂ2|k|2)2)m - {c +(b-4mw Ikl )7) is a poly-

nomial of degree at most 4m-1 with coefficients ay(b) such that

a(b)™0 as b~—™b,. So for all k with |k|2 for some

Y 0 2T

O’

r.
0 22m , 2

2 21k 2% (2 (b-an” | k] ©)%)

(c +(b0 4w

(C2+(b0—4Tr2 || 2)2)m

But this is as small as we please for b close enought to bO. Now

-1
-1,b +l]xBn , where

(k)| is continuous on [bo 0

observe that | f)\

Bn-1 is the r.-ballin R". This is a compact set, so If

o (k)| is

A

uniformly continuous there. But the square root function is uniformly

continuous on the non-negative real axis, so !f)\(k)] = }f)\(k)l 2
converges uniformly in k to |f)\ (k)] as h— X, on T
0 0 c
Now g(\) = Sup lf)\(k)l = || If)\l Hoo But || Hoo is continuous,

k
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so g is continuous since g 1is a composition of the continuous

maps N 7 }f)\(k)], and || HOO:F—’SEp |F(k)|. q.e-d.

The reader is reminded that H = HO +V  where HO is the
closure of -A on /03 the space of rapidly decreasing functions,
and V is a symmetric operator such that H 1is the self-adjoint

closure of -A +V on }S . We assume D(H)=D(H_.), or

equivalently D(HO) C D(V).

Theorem 1.20. Let x = x be a monomial on Rn, and let

a
X
n
C
m be an integer such that m - ‘LZ"L >1+ € where € >0. Let

+
@ € DH™ 1) and (al-iH)™¢ ¢ D(xa), where a is fixed and
Re(a) # 0. Let V be such that for all B <a, D(HO) C D(xF3 ).
: H
Then, eltHcp € D(xa) for each real t, and | xaelt ol is

bounded for all t in any finite interval.

Proof. We shall employ Lemma 1.8. As a maximal multiplication

a
operator x is closed. We must show that if ¢ = (aI~iH)m<p, then

XQR()\,iH)LP is defined, and is continuous in X on L. Moreover,
(14

we must show that “XQR()\, iHNJ” is of order l)\]m (1te) as

IN] = .

We have R(X\,iH)y = R(\, iHO)qJ + R(\, iHO)iVRO\, iH)y. But

B

and VR(\,iH)y € D(x'), and hence both are in D(x' ) for P < a.

Then by Lemma 1.16, R(\,iH)y ¢ D(x ), and
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x "RV EH) = x ROV H ) + %" ROG iH)IVR(N iE)Y
S o=l lel-l8l -1 p% P 1 it
= (D=1 [ ]
g’ 2w NN
p<a S
X [xﬁ¢+xBiVR(>\g iH)] .
$-1 5 Y 1 :
But each B_(\) = [5-1: 5 ] ‘S is continuous in
¥ N-dn”i| k|
A on PC, and HBy()\)H iMlei vl /2 by Remark 1.17 and
Lemmas 1.18 and 1. 19%. Here |y| < la], so each of the terms
B (x)xﬁup is continuous on I' , and
a-B <
B al /2y B
1B, Pl sy g In 2Py
In addition each term XSVRO\;iH)qJ is continuous in X on
PC, since by the resolvent equation for A, W € I“C,

xﬁVR(X,iH)Lp - xﬁVR(p,iH)\'p = (p-x)XBVR(x, iH) | (1, iH) .

Now R(p,iH)y € D(H)C D(XSV), so by Lemma 1.13
xﬁVR(X, iH)R(p, iH)y is uniformly bounded for X\ ¢ fc and W
fixed. So xBVR()\,iH)Lp is continuous. Moreover, since { € D(H)

xﬁVR(X, iH)y is uniformly bounded on PC by Lemma 1.13 and the

fact that xﬁV is closable. Thus, the terms BG—Q(MXB iVR(XN, iH)y

}al /2

are continuous and bounded by some Méx-ﬁ I)xf as [)x{ — ©

Loa
on PC. But then xaR(x,iH)qJ is continuous, and [ x R(\, iH)y|
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Ial /2

However, m -

J-%Lzl+6’ SO

‘m—(l+e) .

is of order I)\l

"xaR()\, iH)y|| is at most of order |\ Thus the theorem

follows from Lemma 1. 8. q.e.d.

In order to apply Theorem 1.1 we must show that

-itH +
e i1t @ € D[HxCL -xaH] . Butif Heg € D(Hm 1) and

(aI—iH)m(Htp) € D(xa) then from Theorem 1.20 we have

—itH -3
e i1t He ¢ D(xa). Thus e 1tH(p € D(xaH). Therefore, it remains to

find conditions such that e_ltH<p € D(Hxa).

J—QJ‘ZZ-}-,G

Theorem 1.21. Let m be an integer such that m - >
‘ mtl . U+ o a
for some €>0. Let ¢ € DH ) and (aIl-iH) ¢ € D(x ).
B a itH
Suppose that D(HO) C D(x"V) forall B<a. Then x e ¢ € D(H)

for all t e R.

Proof. By Theorem 1.20 we have elthp € D(xa). We have the

general assumption that D(H) = D(H ), so we need only show that

0

a itH

x e ¢ € D(H_ ). Therefore, we need only show that

0
itH 2 2 2
?}(xaelt ¢) e DIK'), where K ¢ = |k| ¢, this being a constant

times the Fourier transform of HO.

We have seen that

A
o itH 1 M RN, iH) (al-iH) o
X e @ = ET_I‘T d\

)m

r (a-\
C
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by the hypotheses and the proof of Lemma 1.8. Now # is unitary,

SO

X
7 CeitH ) o L S M ¥ [x RO i GEI-iH) ]
2mi r (a_)\)m
C
As in the proof of Theorem 1.20 we see that if
b= (al-iH)™¢ then
a-p
-1 9 1
F "R, iHWY) (%)=L lel ]
ﬁ ZTI'I. ak \ 41TZ'|kIZ
B< a '
SBA 5P
A
[—-¢+ (iVR( W]
B L
We observe that since VR(\,iH)y ¢ D(x ), (VR(\,iH)}Y) e D('a_E ).
%P 1
But each ok > is a sum of terms of the form
. N-4n"i]k|
kz S with In] <P by Remark 1.17. So if we multiply
(A-4u%i]k]|“)

by Iklz we get

o Y
2 a . B k
[k| ¥ x R(\, iH)y) = > <F3 Zm >

B< a v )\—4172'1|k|2) Y

ﬁ AN
><[ = (p +iVR(N iH)Y) I,

where | Y] <_PY+1 < ZPY . But the operators
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kY

B (\) =
P
(h-4nli|K] %) Y

are bounded and continuous in norm on Pc. Moreover,

”By()\)” ﬁle)\”Y( /2, where |y| < |a| +2, (see Remark 1.17 and

Lemma 1.18). Thus ||| F (x"ROiHW] < c|x|(ICLl 271 g,
m - 'Lg'l‘ -1>1+e€ so the integral

S‘ e)‘tKZ ;IXQR()\,iH)(aI—iH)mJQ] a

T (a-N)"
C

exists. Consequently Corollary 1.5 implies that :f(xa eltH<p) € D(KZ),

and so xaelthp ¢ D(H). q.e.d.

Theorem 1.22. Let P(x) be a polynomial of degree r. Let m

be an integer such that for some € >0, m - :‘;-Z 2+e. Let
mtl
H = HO +V, and ¢ be a state such that ¢ ¢ D(H ), and
+1
(al-iH)™ @ € D(xa) for all |a| < r. Let the potential V be such

that D(H ) C D(x“V) for all |a| <r. Then,

P)(o)(t) = <P(x)e'Hy, ety

is differentiable and

P'(x)(o)(t) = <i[HP(X)—P(x)H]eitH¢’eitH(p> .

Proof. By Theorems 1.1, 1.20 and 1.21 the result is true for x
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with |a| < r. So by Remark 1.1l the result follows for P(x).
g.e.d.

Potentials and States

In the above theorem it is clear that the hypotheses can be
satisfied for a large class of potentials and states. Moreover, the
choice of V restricts the choice of ¢ to some extent, and vice
versa. However, from a physical point of view it is more likely that
the potential would be determined a-priori, and so we take the point
of view that the states are to be determined after a potential is given.

The time is ripe to give sufficient conditions under which our
blanket hypotheses on H =H_+ V hold. Recall that we have

0

assumed that H is self-adjoint and D(H) = D(H_).

0

Definition 1.23. Let T and V be operators on some Hilbert

space :H . V is relatively T -bounded if an only if D(T) C D(V)
and there are non-negative numbers a and b such that for every
¢ € D(T)

[ vell <alel +blTel-
The relative T-bound of V is the infimum of all such b.

Theorem 1.24. Let T be essentially self-adjoint. If V s

symmetric and relatively T -bounded with bound less than 1, then

T +V is essentially self-adjoint and the closure (T+V) = T +V.



33

The proof may be found in [3, 288].

— 3
Inthe case H=H +V where H :—A; on R and V

0 0 %

is a multiplication operator it is enough if V = Vl + V2 with

2,3 © 3 .
Vl e L (R7) and VZ e L (R) [3,302]. In this case the fact that
D(HO) (C D(V) depends on the fact that in dimension three the ele-
ments of D(HO) are bounded and continuous. Again this may be

found in [3,302].

Corollary 1.25. Let P(x) be a polynomial of degree r in

r
x ¢ R%. Let m be the least integer strictly greater than 2 + 5

— 0
Let H= H0 + V  where HO = -A |)g and V isareal C func-

tion on R" with %V bounded for all a such that }a' <r.
Moreover, suppose that l%—)‘{y | < Ca(l+|x|2) * for |a| < 2m,

where Ca and ka are constants. Let ¢ ¢ }S the space of

rapidly decreasing functions. Then P(x)'(¢)(t) exists, and

ey H -itH
@

P(x)'(e)(t) = <i[HP(X)-P(x)H]e_it v, e > .

Proof. V is a bounded operator so Theorem 1.24 applies. Now if
+

Q€ A then ¢ ¢ D(Hm l) and (aI—iH)m<p € B . But /S C D(xa)

for all |a|l <r. But D(HO) C Dx*V), and m - ‘;'_?_ 2+ e for

some ¢ >0. Hence the result follows by Theorem 1.22. gq.e.d.
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The Polynomials P(0 /9x)

In this section we study the constant coefficient partial

9
differential operator P('a‘;) where P is a polynomial. The

investigation follows similar lines as the foregoing. We therefore

a
al 9
consider the operators il l P /% and their self-adjoint

a
closures A

Y

We set H=HO+V where H0=~A|)S and V is a closed

symmetric operator such that H is self-adjoint and D(H) = D(HO).

2
Theorem 1.26. Suppose D(H ) C DA®V). Let (al-iH)“¢ € D(A%)

3 itH a
and ¢ € D(H). Then e ¢ € D(A ) for eachreal t and

itH
“Aae1 cp" is bounded for all real t in a finite interval.

2
Proof. Let = (al-iH) ¢ then ¢ € D(H). Observe that A

permutes with R(\,iH_ ). But then we have

0

JA“Y + R(\, iH )iAYVR(N, iH)y, since

AYR(\, iH) = R(\, iH o

0

UK D(Aa) and R(\,iH)y € D(HO). Now since A%V is closable

and ¢ D(H), AQVR()\,iH)Lp is continuous and bounded in norm on

I"C by Lemma 1.13. But R(\,iH_ ) 1is bounded in norm and con-

0
tinuous on TC. Thus, we can apply Lemma 1. 8. q.e.d.
. . itH : 3
Recall again that H permutes with e, so if He ¢ D(H")

2
or ¢ € D(H4) and (al-iH) He ¢ D(Aa) then

L H ,
elt He = HeItHcp € D(Aa). So in order to show that
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itH itH
e @ € D[HAQ—AQH] it remains to show when Aaelt ¢ € D(H).

Theorem 1.27. Let H=-H_+V, and suppose D(HO)C D(AQV).

0
Let ¢ DHY) and (al-iH)°¢ ¢ D(AY). Then, A%e Ty ¢ D(H).

2
Proof. We set = (al-iH) ¢, and as before

iA“VR(N, iH)y. But H_ isa

)AY Y + R(\, iH .

AYR(N, iH)Y = ROV, iH, o)

closed operator and it is easy to see that HOR()\, iHO) is bounded

for all N on TC. Indeed,

2 2
-1 4 k
¥ R0 iH)IE T s
N-4m i k|
and so by Lemma 1.19 H_R(\,iH_) is also continuous in A on

0 0

I"C. Hence HOAQR()\, iH)} is defined and is a continuous and

bounded function of X\ on PC. But then

2
H AR\, iH)(al-iH) ¢
At 0
e > d\
r {a-\)
C

tH

exists, and so Aael ¢ € D(H ) = D(H) by Corollary 1.5. q.e.d.

0

Theorem 1.28. Let P be a polynomial of degree r on R".

2
ILet ¢ be a state such that ¢ ¢ D(H4) and (al-iH) ¢ ¢ D(Aa) for

all o suchthat |a| <r. Forall |a| <r let D(HO)CD(AQV).

9
Then for every real t P('g;)(tp)(t) is differentiable and
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Here

Proof. This result is an immediate corollary of Theorems 1.1, 1.26

and 1.27. g.e.d.

It should be noted that the hypotheses here have little chance of
being satisfied if Ial >2 and V is a multiplication operator since
we require D(HO)C D(AaV). So even if V is smooth we are ask-
ing for twice differentiable functions to be differentiable to a higher
order. But if V is say an integral operator whose effect is to
smooth LZ functions then the hypotheses can be satisfied. We shall

treat the case where Aa= in Chapter II.

ax,
j
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II. APPLICATIONS

In this chapter we shall give sufficient conditions under which
Ehrenfect's theorem holds. In addition we shall examine the

behavior of the mean of position x (¢)(t) as it relates to the choice
J

of initial state ¢.

Ehrenfest's Theorem

We have seen in the introduction that the classical formulas,

2
dx. d x,
m -:i_t—]- = momentum and m —— = force, have, according to

dt

Ehrenfest, an analog in the quantum setting. Indeed, Ehrenfest's
theorem in physics [9, 455] asserts that the same formulas hold if
x, is replaced by its mean value as a function of time, and the
momentum and force are replaced by their mean values.

Just as in Chapter I we shall assume that H = HO +V where
H is the free Hamiltonian on LZ(Rn) and V is a potential such

0
that H is self-adjoint and D(HO) = D(H).

2
Theorem 2.1. Let XJ. be the j-th coordinate operator on L (RHL

let H-= HO +V, with V a muitiplication operator, and let ¢

be such that ¢ € D(H4) and (aI~'1H)4<p € D(xj). Let D(ij) D) D(HO)'

Then fo(tp)(t) exists and

;Jf(<p)(t) = <i[H x -x.H ]e"itHcp

-itH
03 570 ¢

> .

y €



Proof. In Theorem 1.22set r =1 and m = 3. Observe that

x.V = Vx, on the intersection of their domains. q.e.d.

2,3
The Coulomb Potential on .L (R7)

In LZ(R3) the Coulomb potential V is given by V(x) = _|_}l{_|_

2.3
Cbserve that Ve L (R7), and so V satisfies our blanket require-

ments that H=H_+V be self-adjoint with D(H) = D(H_ ) so that

0 0

EN

} <1l, so xV is bounded

D(HO) ( D(V). Moreover, Iij] = i

[ x

and D(HO) C D(xJ_V).

Let AO be the subspace of A consisting in all those

functions ¢ € A that vanish in a neighborhood of the origin.

Definition 2. 2. Iet A be an operator on a Hilbert space ‘5—\

Then ¢ ¢ ‘3—\ is said to be an analytic vector for A if and only if

there isa t >0 such that

0

Fan n n

) Laee <
n!

n=0

Theorem 2.3 (Nelson [4, 572]). If A is a symmetric operator on

D(A), and if D(A) contains a dense set of analytic vectors then

A is essentially self-adjoint.

Lemma 2.4. Consider i—a‘a;{— as the self-adjoint realization of

]
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i3, ©°n )S . Then L(ij—xjH)C Z].ax .

j i
Proof. One easily calculates that i(HxJ,—xjH) is symmetric on

D[Hx.-x.H}. Also, for ¢ € B) , i{Hx -x.H)e = i(H x.-x.H )¢ = Zi—a-(L.
J ) il 07j 50 axj

9
Now let A = i(ij*xjH) and B = i(ij-xjH)i = 2i — , then both

A ox
are symmetric operators with B ( A C A. Now B f(hence A)

contains a dense set of analytic vectors. Indeed, consider o in
, . . A ®© . J
the Fourier transform representation. ILet ¢ ¢ Cc with support

in a ball of radius R. Then
ma _ m, 2 A 2 1/2 my A
R TP L A B <RO[2-

- 00
But 3‘ 1[CC Rn)] is dense in LZ(Rn), and for 0 <t <%{ , and

-1 00 .
@ € F (Cc ), so we have

00 0 o
ylasele o 5 Rlele oy ) e
n! - n! - n!

n=0 n=0 n=0

Thus, by Nelson's theorem A is essentially self-adjoint. So,
since BC A, BC A, so AC A C B, by taking adjoints.

q.-e.d.

Corollary 2. 5. Let V be the Coulomb potential then for all

- 9 -itH  -itH
<P€9) ) xj(tp)(t)=<2i—"“e it @, e it )

>,
0 0x.
J
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Proof. Since ¢ e/& 0’ He = Ho<p + Vo e}} 0 So by repetition
ngo € /& C D(xj) for m < 4. So by Theorem 2.1 and the fact that

~-itH -itH
ij is bounded we have xj'(tp)(t) = <i[HxJ_—xJ_H]e it ¢, e i1t @

>. But

by Lemma 2.4 we have

9 -itH -itH
¢ e > . q.e.d.
This corollary says that the velocity of the mean is the mean of
momentum. This is the first of the two assertions of Ehrenfest's
theorem. It is unfortunate that we cannot continue with the Coulomb

9
potential beyond this point, because the composition Py oV is not

J
defined on all of D(HO). We shall therefore turn our attention to

smooth potentials.

The Case of Smooth Potentials

o0
In this section we shall assume that V € C (Rn) and is a real

]
valued function on Rrl such that V, ij and —— are bounded.

ij
Therefore, H = H0 +V is self-adjoint and D(HO) = D(H), by
Theorem 1. 24.
) . .
Remark 2. 6. (5—){— }o V is defined on D(HO).
j

0
Proof. Let ¢ € )S then 2 (Ve) = oV o +V e . Now if
—_— 9% . 9x, ox.

J J J
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@ € D(HO) then ¢ € D(g‘?x—) and so there is a sequence {<pn} C

j
g —_
- d 7= — 0 But, V¢ ™ V¢ and
(pn @ ' an ax_ axj . , (pn @
oV —_ —_ -_
n __ 8V ___ 39 5 _ 5 .
ox, x, ?  Vox,’ ° ?° D(—B——xj V) since 3 is closed.
J ] i

Indeed for ¢ € D(HO) we have the formula

Now observe that since V is smooth the requirements that

Q€ D(H4) and (aI-iH)4<p € D(xJ_) are satisfied if Hm<p € D(Xj)

Corollary 2.7. Let ¢ be a state such that Hmtp € D(Xj) for

- 9 -itH -itH
0 <m <4. Then XJ.'((p)(t) = <21 e © it o, r ' 0> .
j

oV
We now consider the second derivative of the mean. Since ox
Py j

is bounded '52{— °V is defined on D(HO) by Remark 2.6. Con-

j

sequently from Theorem 1. 28 we have the following corollary.

Corollary 2.8. Let V be areal c” potential on R"  with

ij and 2V bounded. Iet ¢ be a state such that HmtpeD(x_)

0x, 2 J
J m 5
forall 0 <m <4, and H <peD(3X ) for m < 2. Then
J
- 55 wm wm
o)) = -2 <[H 2= - 2 Hle e s
-] . 8x_ 8){.

J J
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) oV
H 9x, 9x, HC - 9%,
J J J
0. _n B ) .
Proof- On C (R') the operator HT— -7 H agrees with
—_ c 0%, 0x.
Ay J ]
iy by the product rule for differentiation. Moreover, these
. P BV |
operators are symmetric. Set A=H7y— -r—H and B = -7~
BxJ 8XJ BXJ C

©

Then B (C A. We claim that Cc (R"®) is a dense set of analytic
o]

vectors for B (hence A). Indeed, if ¢ € Cc (Rn) then

00
Amcp € Cc (Rn) and has support inside that of ¢. So

1A%l C Dol < Il 5 u ol

J
So

o0
ATl t™
m!
m=0

for some t >0. So by Nelson's theorem A and B are

essentially self-adjoint. Hence B (C A, so B C A, and so by

taking adjoints we have A (C A C B. q.e.d.

Corollary 2.10 (Ehrenfest). Let V be a c” potential with

x.V
J

9
and 2 bounded. Let ¢ be a state such that HmtpED(xJ,) for

ox,
) m )
m<4 and H <p€D(5';—) for m <2, then
J
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— 5 . .
1) x(e)(t) = <2i o © itH , T 1thp>, and
! j
- oV  ~-itH -itH
2) xM(g)(t) = 2< = & g e g
J ox
Proof. Use Corollaries 2.7, 2.8 and Lemma 2.9. g.e.d.

Remark 2.11. Corollary 2.10 is true for any state ¢ ¢ }} pro -

vided the derivatives of V up to order six are of polynomial growth.

The Behavior of the Mean

The Bohr model of the hydrogen atom suggests that the electron
can be in two different types of state, either orbitting the nucleus or
free. If we assume that eigenstates are orbital states and absolutely
continuous states are free states, then we can conjecture that the
mean of an eigenstate is constant, and that the mean of an absolutely
continuous state goes to infinity as time increases. In this application

we shall study these possibilities.

Definition 2.12. Let E be the spectral measure of the self-

adjoint operator H on some Hilbert space :f—\ . Then we define

three subspaces of H as follows:

1) :Hpt(H) = Z @ E{)\}‘H , this is called the point space of
N eR
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2) ﬂs(H) = {e 6-5"\ I <E( )g,9> is singular with respect to
Lebesgue measure), this is called the singular space of H.
3) ﬂaC(H) = {o Gf-l ‘ <E( )¢, ¢> is absolutly continuous with

respect to Lebesgue measure}, this is called the absolutely

continuous space.
All of these spaces are closed, and in particular - C H 5’
and :f"l =3—| @ :H .
] ac
4) We set o‘pt(H) ={\ ¢ R!E{)\} # 0}, this is called the point
spectrum of H. It is well known that for separable Hilbert
spaces Gpt(H) is countable. Moreover o ‘t(H) is the
set of eigenvalues of H. It is also not difficult to see that

ﬂpt(H) = E{"pt(H”-

Remark 2.13. Let #“ be any Hilbert space and A and H

self-adjoint operators on H . Let ¢ Dbe an eigenvector of H,
— -itH -itH
¢ € D(A) then Al(g)(t) = <Ae it ¢, e i1t ¢> is constant.

Proof. Let )\0 be the eigenvalue of ¢ then it is well known that

s -itA o
e lthp e 0<p. Consequently e lthp € D(A). Thus

I

LN .
it 0 Lt)\o

K(tp)(t) <Ae @,e ¢> is constant. g.e.d.

1

We can say a little more than this.

Theorem 2.14. Let ~H be a separable Hilbert space with H and
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A self-adjoint operators on Zg-\ . Let A De defined on every

eigenvector of H. Let {‘tpk} be an orthonormal basis of eigen-
00 o0

T

vectors for .S'\ pt(H)' Let ¢ = Z a, be such that }: lakl and

o0
k=1 k=1
Z|ak|||A¢k” converge. Then,
k=1
1) eltH<p€ D(A) for all t, and
2) X(tp)(t) = <Ae—1tH<p,e_ltH<p> is bounded for all t.

Proof. Let

0 a T30
eitHLp _GtH N _Z e‘ K
n 2%k o P
k=1 k=1
then
n [¢¢]
itA — ith
itH k
A = —
e Lpn Z 2 e A(pk Z a e A(pk
k=1 k=1
since
> it\
— 1
&
) lage Nllagl
k=1

converges. But A is closed, so eltHcpe D(A), and

Now
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0 ) 0 LN
» » l ‘ l
<AeltH¢,eLtH<p> = < Za e kA(P ) E a e o>
k k n n
k=1 n=1
0 0
= o« - it )
= a a e <ag ,¢ >
n=1 k:]_
Thl.lSs
0 e e}
itH  itH NN -
[ <ae®Tp, o> < ) ) e, 140,
n=1 k=1
o0 0
<) lal ) lallagl <o e
n=1 k=1

Example 2.15. In order to show that Theorem 2. 14 is not vacuous

we again study the free Hamiltonian perturbed by the Coulomb poten-
tial. In order to get a point spectrum we insist that the potential be

attractive. Thus we consider the self-adjoint closure H of -4 -V

where V=—l— on R3.
x|

It is well known that the point spectrum consists in the eigen-

e
2

n

known that, in spherical conrdinates, a basis of eigenstates for the

values )\n: for n=1,2,3... . Moreover, it is also well

point space -g-\pt(H) is given by the functions

_ (ntf)! 1/2
Lpnﬂm(r’e’c‘)) B Cl[n!(n—f-l) 1W24+1)! ]
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-C r
2
Here, R ,(r) has the form r e /nP (r) where P ,(r) 1is a
nf n n

polynomial of degree n' such that £+1-n =n'. The functions

y;n(e, ¢) are the usual spherical harmonics. We also have the condi-
tionsthat n=1,2,3,..., £=0,1,2,...,n-1, and
m=-4,...,0,...,2. For adiscussion of these facts see [5, 164].

Now C2 is positive so the functions Yoom decrease rapidly.
If A isthe multiplication operator A¢ = r¢, we see that each

Y € D(A). Thus the hypotheses of Theorem 2. 14 are easily

nfm

satisfied in a practical situation.

The Absolutely Continuous States

We have conjectured that :ﬁa (H) 1is the subspace of states
c
for which the mean of position is unbounded. In this section we shall
show that under certain conditions this is the case.

Our approach will be to compare the mean of position in the

case H=H0+V with the mean in the case H:HO as t ™ £ <.

. N itH itHy
It is natural in this context to compare e ¢ and e @

as
t =+ © as these quantities play a central role in the definition of the

respective means. We are therefore led in a reasonable way to a

consideration of the wave operators.
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The Wave Operators

The behavior of elthp for large t rmay be discovered by

itH(
comparing it with the behavior of the well known quantity e Y. We

would say the two quantities are close if they are asymptotic.

Definition 2.16. We shall say that y € D(W ) and that W, ¢y = ¢ if

s -itH
and only if | e ltH«p-e Oq,-n —~0 as t—® or t -©. But
e -itHg

e yl| = o.

this is equivalent to Htp—e1 Again, equivalently

g -itH
W:l: =8 - lim elt e 0
t— %00

limit. For heuristic reasons it is clear that the wave operators as

, where S ~-1lim denotes the strong

defined above are very unlikely to exist if (| € ;Hpt(HO)’ many of

these states corresponding to bound states physically. So we shall

define W _ only for states ¢ ¢ :ﬁ (H,) such that

+ ac 0

itH ~itH
Wi<p > lim elt e it ¢ exists. It is easy to show that the domains
t— x00
of W, are closed linear subspaces of j“ (H ), andthat W
+ ac 0 +

are bounded operators. We must therefore provide sufficient condi-

tions that D(W,) = 8w

ac O

Lemma 2.17 {[3, 533]). Let D be a subset of Zf—\aC(HO) such that

the closure of the spanof D is :HaC(H ). Suppose that for each

0
-itH,
¢ ¢ D there is a real s such that e @ € D(HO) ~ D(H) for
‘ -itHO
s <t<oo, (H-H))e ¢ is continuous in t, and

0
-itH

||(H~H0)e O(P" is integrable on (s,®©). Then W_ exists. A
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gimilar result holds for W_ with the obvious modification.
-itH -itH

T H
Proof. If ¢ ¢ D we have __di (elt e Oq)) = ielt (H~Ho)e 0<p R

and this derivative is continuous by hypothesis. Thus, if

: -itH
Wi(t) = eltHe 0 then
t" -itH
itH
WitMe - Wt'e =i g elt (H-Hg)e 0(,) dt ,
tl
so
t? -itHO
[WtMe - Withe| < S I (H—Ho)e olldt .
t'

But by the integrability condition W(t) is seen to be Cauchy, so

W+<p exists. But then since WJr is continuous on D and D(W+)

is a closed linear subspace of :Hac(HO) the result holds for all

(P € HaC(HO)' qn e. d-

Corollary 2. 18 ([3, 535]). Let HO be the free Hamiltonian on

2.3
L (R7) and H:HO+V where V is real valuedand V =V +V2

1
2,3
e L' (R7) and V bounded. Suppose that

with V 5

1

§ 3 (1+|x|)-1+€|V(x)|2dx < w0 for some € > 0.
R

Then W_ exist.
We remark that the wave operators do not exist for the Coulomb

potential.



50
We introduce at this point a few facts from Richard Lavine's

paper [6, 368].

Definition 2.19. We set Aft) = eltHAe_lﬂ_I where H is the

2
Hamiltonian H=H +V on L (R™ and A is a suitable

2
operator. Let Q be the projectionof L (R") on ﬂac(H). Let

R
P.1 = ig;" be the i-th coordinate momentum operator. Let f
i

be a bounded complex valued continuous function on R". We define
A= f(Pl, .o ,Pn) by considering its Fourier transform to be the

multiplication operator f(k;, ... ,k ).

We say that H satisfies the weak scattering axiom two (w.s.2)

if and only if for every A = f(Pl’ ce e, Pn) S - lim A()Q exist.
£ — %00

Lemma 2.20 (Lavine). Assume that V(H0+i) is compact. If A

is a possibly unbounded operator whose domain contains D(HO),
-1
and A(H0+i) is bounded, (which is true if A 1is closed), and

S - lim [A(H +i)’1](t)Q = B, exist, then for all { ¢ D(H),

t— *o00 0
lim A(t)Q = B (H+i)y.
t— £

Proof. We remark first that if K is a compact operator then

-itH

lim K(t)Qe = 0, Indeed, [K({t)Qell = ||Ke Q¢ - Since

Qo € ﬂ (H),
ac

<e_itHQ¢,qj> - g e~lt>\d<E( )Q(P,lb> - § e“ltxhdip‘i

R R
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where p() = <E()Qe¢,¢y> But |p| is absolutely continuous with
respect to Lebesgue measure, so by the Riemann-Lebesgue lemma

—itH -t
<e i Qo, >0 as t—= xx. So e it Q¢ is weakly convergent

: : -itH .
to zero, and since K is compact Ke "o s strongly convergent
to zero.

Now let Y ¢ D(H) and ¢ = (H+i)y. Then

| A®QW)-B H+Dg]| = || A®)EHY) T Qo-B o]

< | A(t)[{(HH)‘l-(HOH)

-1
+ | AHE )T (©)Qle)-B ol -

Now the second term goes to zero by hypothesis. But the first term

: -1 -1 :

is the same as “[A(t)(HOH) ®)[V(t)(H+i)  Qle|l. But this last term
has the form ||K(t)Qe|| for a compact operator K. So the term

goes to zero. q-e.d.

F)
Corollary 2.21 (Lavine). Let Pj =iy Suppose that H
- J

satisfies w.s.2 and V(HOH) is compact. Then for all { ¢ D(H)

lim P.(t)QY exist.
t— + 00

Proof. We apply the above lemma with A = Pj. Observe that

D(H) = D(H ), since V(H_ *i) is compact. Moreover,

0 0

1
D(HO) C D(A), and A(HOH) is bounded. But,
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S - 1im [A(H +i)'1](t)Q exists, since

t— *o0 0
itH -1 -itH -1

-1
[A(H0+i) lt) = e A(HO+'1) e and A(Ho+-'1) is a continuous

function of P . ,Pn. But w.s. 2 is satisfied so

10

‘ -1
S - lim [A(H0+i) (t)Q exist. So the result follows from Lemma
t™ o0

2.20. q.-e.d.

We remark that W, are complete if and only if

Ran W:!: = ‘S"\ac(H).

Remark 2.22. If the wave operators W_ of H = HO +V  exist

and are complete then H satisfies w.s.2.

Proof. Let A= f(Pl, ce, Pn) where f is a bounded, complex
n itHO
continuous functionon R . Then A commutes with e . But.
. ; , -itH itH .
At)Q = eltHAe'ltHQ _ e1.1:He OAe Oe_ltHQ, and so
S - lim A(t)Q exist. q.e.d.
t—™ =+t

3
We note that in R with H = HO + V the free Hamiltonian

1
perturbed by a potential V e L. L2 the wave operators Wi

are complete [3, 546].

-1
Remark 2.23. We note that for V(HO+'1) to be compact it is

enough that V be a real function with V locally square integrable
and V(x) = 0 as |x| ~®, for n < 3. See[l0, 109].

We are now ready for our results on the unboundedness of the
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mean of position for absolutely continuous states.

0
Theorem 2,24. Let B+ be as in Lemma 2.20 where A =i Fal
j
Let H=H_ +V be suchthat H satisfies w.s.2 and V(H_ +i)"! is

0 0
compact. Let Xj be the usual j-th coordinate operator on

LZ(Rn). Let D(HO)C D(xiV). Let ¢ be a state such that

(peD(H4) and Hm<peD(xj) for m <4, and ¢ ¢ j-‘ac(H)'

Suppose that <B_(Hti)e, ¢> # 0. Then xj(tp)(t) — 0w as t- to.

-1
Proof. Since V(H0+i) is compact we have D(H) = D(HO). By

Corollary 2.21 and Lemma 2. 20

. 5 s
lim <e'tH S e tH o> = <B,(Hti)g, 9> = ¢

t— ]

which is not zero by hypothesis. But by Theorem 2.1 and ILLemma 2.4

- CHH o _

fo((P)(t) = <2i gfte it ¢, e ltH<p> . Thus, x/{¢)t) ~c as t— .
j -

Suppose ¢ >0 then for t > to fo(tp)(t) >§" > 0. Hence

xj(tp)(t) —®© ags t ™ ®© by the mean value theorem.

Similarly if ¢ < 0 then xj(tp)(t) — 00, q.e.d.

-1
Corollary 2.25. Let B+ be as in Lemma 2.20. Let V(HOH)

be compact, and D(HO) C D(xJ_V). Let ¢ be a state such as in

Theorem 2.24 above. Suppose also that the wave operator W7L exists,

R
is complete, and ¢ = W+Lp for some . Suppose <i 5}%,¢> # 0.
J



Then xj(<p)(t)"='=°° as t— 9.

Proof. We must show that <B+(H+i)<p,<p> 0.

i -1 -itH
<B, (Hti)p,¢> = lim <o (g +i) e (H)g, >
£+ "
itH itH
-1 -itH 0 -itH
= lim <5'—(H0+'1) e Oe it (Hti)o, e € 't ¢
t— 4+ j
- < ) (H +) W*(H+') W* S
- 8x_ 0 1 ¥ 1)@, +(P ’
J
. . ) N .
this last since Py (HO+1) is bounded. Now (H+i)¢ € Ran W+

J b
since Ran W+ reduces H the operator W+ is intertwining.

>R

Thus W (Hti)p = (H +)W,

¢, (see Theorem 3.2 [3, 529}). So

8 % B 9
< Do, > = < — , > = < — |, >,
B (Hti)e, ¢ axj W, W o axj PRy

Now Theorem 2.24 applies. q.e.d.

>

Entirely similar results may be given for t— -© using B

and W_.

54
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III. BOUNDED OBSERVABLES

In this chapter we present a few results on the differentiability
of bounded observables. This added condition on the observables will
enable us to weaken the hypotheses of some of the theorems as our

first theorem shows.

Theorem 3.1. ILet A be a bounded operator and H a self-adjoint

operator on a Hilbert space 'S-\ . Let ¢ € # and

itoH = -itH  -itH
e ¢ € D[HA-AH], and A(g)(t) = <Ae @, e ¢>. Then
_ _ —itOH -itOH
A'(g)(t) exists and A'((p)(to) = <i[HA-AH]e ¢, e o>,
Proof. Without loss of generality we may assume that tO =0,
-it \H
for otherwise we replace ¢ by e ¢ in the following argument.
-itH -itH
K'(go)(O) = 1im <Ae ¥, e > - <Ag, 9>
t—™0 t
itH . -itH itH -itH
I <e1t Ae it qo-elt e it Ao, 0>
£ 0 t
. il _itH
-t <Ae ltH(P-e it Ao, e it o>
t—™0 t
-itH -itH
-. ~Ag- A -itH
- 1im <Ae @ Acpt[e Ag-Ag] o THH
t—0
-itH . -itH .
. - - ) ~-Ag -itk
= 1lim <Ae - p-Agp e l.tH(p> -~ lim <& ?gg gg’e lLH</">-

t—0
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But A . is bounded so

A'(¢)(0) = <-iAHg, ¢> + <iHAg, ¢>

<i[HA-AH]e, ¢> . q.e.d.

Note that we have no need of any symmetry condition on A.
-itOH
For differentiability we require only that e ¢ ¢ D[HA-AH].

We now give a criterion of differentiability which is of greater

utility.

Theorem 3.2. Suppose A is bounded, H = HO +V, with V

symmetric, HO self-adjoint, and V relatively Ho—bounded with

bound less than one. Suppose A(D(HO)) C D(HO)- Then for all

—

¢ € D(H) and all t, A(e)(t) is differentiable and

itH -itH
@

A'()(t) = <i[HA-AHJe g, e >,

Proof. The hypotheses imply that H is self-adjoint and

)« But then A(D(H)) C D(H). If ¢ € D(H) then
itH

D(H) = D(H0
-itH -
e ¢ € D(H) for all t, and so Ae ¢ € D(H). Then,
-itH
e it ¢ ¢ D[HA-AH], and so the theorem follows by Theorem 3. 1.

q.e.d.

2,3
Example 3.3. Consider again the space L (R) and HO the

self-adjoint closure of -A. Let H = HO +V where V is any

2.3
operator on L7(R”) satisfying the hypotheses of Theorem 3.2. We
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remind the reader that the Coulomb potential is included. Let

9
P. = '1'5';{" for j=1,2and 3 be the momentum operators on

J .
2,3 7
L°(R7). Let f be any bounded, complex, measurable function on

,P,) by

3 . _
R™, and define A—f(Pl,P2 3

(A¢) (kl’kZ’k )=f(k1,k2,k3)<p- Then A is bounded. Moreover,

3
A[D(HO)] C D(HO)- Hence for every ¢ € D(H), X'((p)(t) exists at

all t.

Definition 3.4. We shall say that a bounded operator A is

H-differentiable if and only if K(tp)(t) is differentiable for each

¢ € D(H) and for each t, and

H —1tH(p> .

A'o)(t) = <i[HA-AH]e_it ¢, e

It is worth noting that Theorem 3.2 says that if A is
H-differentiable then for "small" perturbations V, A s
H0 +V -differentiable.

The above example suggests a Banach algebra of bounded

operators that are H-differentiable.

Theorem 3.5. Let H0 and H be as in Theorem 3.2. Let

B={ae¢B(H)|aH, C H)A)

then B is a B*-algebra of H-differentiable operators.
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Proof. If A € [ then Theorem 3.2 ensures that A is
H-differentiable. Certainly f is an algebra. We must show it is
closed under the taking of limits and adjoints.

Suppose {An} C B and An — A in the norm topology.

Suppose ¢ ¢€ D(HO), then An<p e D(H and An<p — A¢. But

O)
An(Hng) = HO(An¢) - A(Hotp), and H0 is closed. Thus

HOAcp = AHotp, and so B is closed.

Suppose A€ B. Let o, ¢ D(HO)’ so

<H0'~P,A>P<P> = <AHO¢,¢> = <HOA¢,¢>

<y, A"\Ho(p> .

*

b3 K >k B
So A ¢ ¢ D(HO), and HOA ¢ = A Hotp. So A € 8. g-e.d.

The above example and theorem suggests the following algebra

of bounded operators is an algebra of H-differentiable operators.

Theorem 3.6. Let H0 and H = H0 + V  be self-adjoint operators

with V symmetric, and V relatively HO-bounded with bound

less than one. Let f be any bounded Borel measurable function on

R. Then f(HO) is H-differentiable.

Proof. By f(HO) we mean g f(N\)JdE where E is the spectral
= R .
measure of HO. We need only show that f(HO)H0 C HOf(HO), but

this is well known. So the result follows by Theorem 3. 2. g.e.d.
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Mult iplication Operators

We now turn to the question of H-differentiability of multiplica-
, i i ~$_‘ _.2,.n
tion operators. Throughout this section =L (R7), and HO
will be the self-adjoint closure of the Laplacian A as usual.
In view of Theorem 3.2 it will be enough to find conditions on a
bounded multiplication operator A such that A[D(HO)] C D(HO)-

To do this we shall need to make use of a product rule for distribu-

tions given in the following lemma.

+ =1, and

Q=

Lemma 3.7. Suppose 1 <p,q <,

1
P
£,Df ¢ LP(R™), and g Dg ¢ LYR™). Then

Dj(fg) = Djf)g + f(D.g) ae. Note that the derivatives are in the dis -

tribution sense. Moreover, S\f(ng)dx = -g(Djf)g dx .

Proof.- Choose a molifier p, thatis p ¢ COCO(Rm) with Sp dx =1

< . = b -
<1l. Let fn f Pl /n where pl/n(x) np(nx) then

f eC (R7) Lp(Rm), and fn—’f in Lp(Rm). Moreover,

Df =(Df) *p and so Df € LP(R™) and Df — Df in

j 1/ jn jn j
Lp(Rn). But fn € Coo(Rm)’ so Leibnitz' formula for distributions
gives

Dj(fng) = (Djfn)g + fn(ng) .

1
So Dj(fng) € L]f(Rn). Since fng € L (Rn) we have



S‘(Djfn)g dx = -an(ng)dx. Thus, Holder's inequality shows that

S(Djf)g dx = - Sf(ng)dx.

0
Now let ¢ € DR™) (C (Rm) with compact support). Then
<Dj(fg), > = - ngDjtp dx. But by Leibnitz' formula again

-ngcp = -DJ.(«pg) + <ijg, so DJ_((pg) € Lq(Rm), and so
<Dj(fg), Q> = - Sij(tpg)dx + Sf(DJ.g)‘P dx.
But we have seen that

- Sij(tpg)dx = S(Djf)gtp dx .

But ¢ was arbitrary so

Dj(fg) = (Djf)g + f(ng) ae. q.e.d.

We remark that D(HO) is exactly the Sobolev space of all

2 .
elements of L (Rn) whose derivatives up to order two are also in

L (R).

2
Corollary 3.8. Let A ¢ L°(R") A LOO(Rn) and suppose that the

distribution derivatives of A up to order two are in

L2(R™) ~ L®(R™). Then A[DH]C DH,) .
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Proof. If ¢ ¢ D(HO) we must show that Ag ¢ D(HO)- Agp ¢ L (Rn

a .
and so it is a distribution. Let D  be a derivative with Ial < 2.

By an immediate extension of Lemma 3.7,

But DB<pe LZ(Rn) and DQ-BA is essentially bounded, so

Da(Atp) € LZ(Rn). Hence A¢ € D(H.). q.e.d.

0

Theorem 3.9. Let V be a symmetric operator with V

relatively HO-bounded with bound less than one. Let

Zn)

AeL (R) Ll(Rn), and suppose the distribution derivatives up

n n

to order two are in LZ(R ) A LOO(R ). Then A is

H0 + V~-differentiable.

Proof. Immeaiate from Corollary 3.8 and Theorem 3.2. q.e.d.

Application

Suppose V ¢ Coo(Rn) is a smooth potential satisfying the

hypotheses of Theorem 3.9. Then the expected value of potential
—_ -itH ~itH
energy at time t is Vip)(t) = <Ve it ¢, e it ¢>. Thus the rate

of change of this average exists and is given by

H -itH
@

V'(e)(t) = <i[HOV—VH0]e-1‘C @, e > .

61
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Integral Operators

In this section we give a result in which A is an integral
operator with kernel G(x,y). We shall find conditions on G so

that A[D(HO)] C D(HO).

Lemma 3.10. Let H0 be a closed operator, and A a bounced

operator on a Hilbert space ;ﬂ . Let C be adense subspace of

D(HO)’ and A(C)CD(HO). Suppose HOAlc is bounded. Then

A[D(HO] C D(H)-

Proof. Let ¢ ¢ D(H ), then there is a sequence {(pn} (C C such

0

that cpn""’cp. But then A(pn—'Atp since A is bounded. But

A , . , . .
¢n€D(HO) and HOAtpn ¢ for some {, since HOA is

bounded on C. But H is closed, so A¢ € D(H ) and

0 0

HOAcp = . q.e-d.

In the next Theorem A is the Laplacian on R", and the
subscript denotes the variables with respect to which the derivatives

are taken.

pA
Theorem 3.11. Let HO be the free Hamiltonian on L (Rn). Let

H = HO +V, where V is a symmetric operator relatively

HO-bounded with bound less than one. Let A be an integral

Z(Rzn). Then

operator with kernel G(x,y) such that G(x,y) € C0
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A is H-differentiable.

Proof. By Theorem 3.2 we need only show that A[D(HO)] C D(HO).
o n oo . .
We apply Lemma 3.10. Let ¢ ¢ C0 (R7) (C -functions with compact

support), then Aeg =S\ n G(x, y)e(y)dy. But G(x,y) has compact
R
2
so A¢ has compact support. Moreover, Ag ¢ CO(Rn), so

n

[o.0]
). Next we show that HOA is bounded on C_(R).

Agp ¢ D(H 0

0

Since Ag ¢ Cg(Rn,

HOAcp = AxAcp = Ax anG(x, y)e(y)dy = an(AXG(x,y))(p(y)dy.

Thus we have,

i

2 2
15 A SRnl SRnAxmx, yely)dy|“dx

1A

2
g ( f b Gy || oly) | dy)2ds.
Rn Rn X

2
But for each x, AXG(x,y) and ¢ arein L (Rn), gso by

Holders inequality we have:

’ 2 2 2
(§ Jegtenllelen® < § ol gtenliaslol®.

Thus ’



2 2 2
letgaol® < § 1o Gt “asaylol”

']
Hence HOA is bounded on CO (Rn), and so A[D(HO)] C D(HO)

by Lemma 3.10. Thus A is H-differentiable. q.-e.d.
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IV. A REAL STONE'S THEOREM

In this chapter we shall prove a spectral theorem for normal
operators on a real Hilbert space. Such a theorem has been given for
bounded normal operators by R.K. Goodrich [7, 123]. Here we shall
treat the bounded and unbounded cases at one stroke, and we shall use
a method that makes the results completely natural. In addition we
shall provide a functional calculus for unbounded or bounded normal
operators, and thence obtain Stone's theorem for real Hilbert spaces.
Thus the treatment of the unbounded case and the provision of Stone's
theorem extend Goodrich's note.

It is natural to complexify the real Hilbert space; solve our
problems in the complexification, and then lower the results to the

real Hilbert space.

The Complexification of H

Let H be a real Hilbert space with inner product (, ). We
define the complexification HC of H in the following way. Let
[(P,Ll.l] e HxH and a + ib € ¢ then we set
(atib)[e, ¢] = [a@-by, aytbe]. This yields a complex vector space H_.

We define an inner product on Hc by

<[e, W], [, n]> = (@, L) - ile,n) + i(L, L) + (Y. M)
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It is easy to verify that Hc ,  with inner product <, >, isa
complex Hilbert space. Note that [¢,y] = [¢. 0] + i[y,0]. Consider
the map ¢ — [¢,0]. This map is an isometric imbedding of H in
Hc with-image H x {0}. Indeed,
| [, oI\ 2 - <[¢,0],[¢,0]>= (0. ¢) = | ¢ Z. Thus, we shall identify H
with the real subspace H x {0} of Hc’ so that ¢ * iy = [(p,fp]_
Then as expected (<p1+'upl) + (<p2+q;2) = (<p1+<p2) + i(LbthZ), and
(atib)(gtiy) = (a@-by) + i(altbe).

We shall use the language of complex numbers in this context

where the meaning is clear. For example given ¢ * iy we shall

refer to ¢ as the real part and ¢ as the imaginary part.

Operators on HC

Suppose A and B are real operators on H then we shall

define an operator A +iB on HC by

(A+iB)(o+iy) = (A@-By) + i(Ay+Be) .

Remark 4.1.

1) A+iB is a complex linear operator on HC.
2) A+ iB is bounded if and only if A and B are bounded
on H.

3) If lA+iB:A1+iB1 then A=A, and B=3B.



Proof.

1)

2)

3)
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(A+iB)[o+igtstit] = (A+iB)[ots+i(ytt)]

=A¢p + As - By - Bt + i(A¢+A‘t+B<p+Bs)

= (A+iB)(e+iy) + (A+iB)(stit). A similar calculation can be
made for scalar multiples.

Suppose A +iB is bounded then

| (a+iBlo]® = [ Aol + B¢ ® < asiB®0® oo

lall < [|a+iB|| and |B| < |A+iB|. Conversely, if A
and B are bounded then A + iB clearly maps convergent
sequences to convergent sequences.

If A+iB=A +iB  then (A+iB)y = A¢+iBp, and

1

(A +iB1)<p = A

1 (p+i.B @, q-e-d.

1 1

A Counter Example. It is very tempting to conjecture that

| A+iB || 2

shows.

= ||AH 24 B 2, but this is not so as the following example

2 2 2 2
Let HC=¢ =R” +iR” and H=R". Let

Alp s hy) = (¢),0) and Blg,.e,) = (0,9,). Then lA]l =1 and

IBl = 1.

i

Now,

| a+iB|| Sup [ (A+iB)(p+iy) ||

lo+iw]l =1

H

2 2
Sup ¥ || Ag-By|| >+ || Ap+Bo|

2 2, 2 2 _
Sup\/:p1+¢1+<p2+¢2 =1
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Remark 4.2. Let A and B be bounded operators on H then

n |a+iB|? <2[]al®+]B[*] ana
2) |all < [|a+iB] and [B| < |A+iB].

3) latiB| < llall + IIB]-

Proof.
1) | A+iB|| = Sup || (A+iB)(@+iy) ||
letiwl=1
= Sup || (Ag-By)+i(Ay+Be)|
- sup | A0-Byll >+ | av+Bo?
But
| ae-Bull® < 2l aell® + IBl”]
and

| ap+Bo|® < 20l Av] %+ || Boll *]

by the parallelogram law. Thus

la+iB] < sap 2[)lal% ] ori] 2+ B2 | oriv] ®]

< 2] A%+ B]°].

Parts 2) and 3) are obtained by direct computation with the definition

of the norm of an operator. q.e.d.

The above considerations raise the question that if E is a

bounded operator on HC are there bounded real operators El and
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EZ such that E = El + iEZ. The answer is yes!

Lemma 4.3. Let E Dbe a bounded operator on HC then there

exist unique bounded operators El and E, on H such that

E=:El+1EZ.

Proof. Let ¢ € H then Eg¢ = E1<p + iEztp. We claim that

= + 4 R
E El ].EZ Indeed,

E(ptip) = E¢ + iEy = E ¢ +iE,¢ + i[E, yHE ]

H

(El<p-EZ¢) + i(E1¢+EZ<p) = (E1+iEZ)(<p+1¢) .

The linearity of El and EZ is established by direct calculation.

q.e.d.

We can get the same sort of results for unbounded operators but
a little care is required with domains. If A and B are any real
operators on H then we can define A +iB on
D(A) ~ D(B) + i(D(A)~D(B)). We note that if A and B have the
common dense domain D in H then A +iB is defined on the
dense domain D +iD in HC. Conversely if E is densely
defined on Hc with domain D then D ~H + i(D~H)(C D, so

as before and get E.  + iEZ CE.

1

we may define El and EZ
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Complexification of a Real Operator

Let A be anormal operator on H, thatislet A be
closed and densely defined and AA = A'A. We define A=A +0i,
so that K((p'l'inp) = Ag + iAy. We note that in the bounded case

tall = llall -

ILemma 4.4. If A is normal then so is A.

—

Proof. A is densely defined. Next A is closed for if

tiyg ™o ti +i1Ay T p ti h Agp = d
¢ npn ¢ ¥ i and A(prl i Lpn p * iq then ¢ =p an

— — e — S
3R

Ay = q. Now we show that A(A) = (A) A . We may equivalently

1

show that D(K) = D[(X) ] and | Z(«pﬁup) | = H(K)*(<p+i4;) | for all

@ + ip € D(A). Observe that p +iq ¢ D[(A) ] if and only if

<AgptiAy, ptig> = <¢tiy, stit> for all ¢ + iy € D(A). In which case

—

(A) (ptiq) = s + it. But,

<Ag+iAy, ptig> = (Ag,p) - i(AU,p) + i(Ag,q) + (AU, Q)

= (@,8) - i(L,s) + ilg,t) + (P, t).

Setting ¢ =0 we get (A¢,p) = (¢.s) and (Ag¢,q) = (¢,t), soO

e
~

p>q € D(A ) and A*p =s and A’Fq =t. But A is normal so

p>q € D(A). Similarly if p + iq € D(Z) then p t+iq ¢ D[(X)m].

Indeed we see that (A)’P = (A.ﬂ<). But then
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sk Sk 2 5k 2
e wsin ] = a2+ a%]

(&) (p+ig) |

]

H

.
J lael 24 ag]? = | Alorin)]]- d.e.d.

Consequently A has a spectral representation A= § zdE ,
Where E is a projection valued spectral measure on the Borel sets
of ¢ But then we get two operators El and EZ on H such

that E() = El( ) + iEZ( ). If we calculate purely formally we get

A

S(x+iy)d(El+iEZ)
SxdEl - gydEZ + i[gxdE2+§ydEl] .

Therefore, it is completely natural to conjecture that

A= SxdEl - §ydE2 .

A Spectral Theorem for Real Operators

We begin by discussing some of the properties of E1 and EZ.
First El and EZ are bounded operator valued functions. Indeed
they are measures.

We have E(¢) =0 = E1(4)) + iEZ(¢), is E_(¢) = EZ(CP) = 0.

o0
Let v Mn be a countable disjoint union of Borel sets in (t, then
n=1
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[o 0] o0 o0
00 N N N\
E(OM)p= ) EM o= Z E (M )o + i Z E, (M )o
n=1
n=1 n=1 n=1

e @]
=E (UM +iE, (UM )¢
1 n 2 n
n=1 n=1
for any ¢ € H. So
0
E(OM) N E M)
kk_/ n(p— k n(p
n=1
n=1

Moreover, the sum is independent of order of summation. Conse -

quently, for ¢,y e H, (E () ¢,{) () 1is a real measure

k " eay

for k=1,2.
We remark that El(¢) =1 and EZ(¢) = 0 since

E(¢)=1=1+i0.

Remark 4.5. Let E be the spectral measure of A and

= +1 . ,
E E1 l.EZ Then

1) E is self-adjoint and E is skew-adjoint.

1 2

2) For Borel sets I\/I1 and MZ,

a) El(er\MZ) =

g
g
=
g

b) E er\M

0
=
<
H

Z( Z) 27171

3) For any Borel set M,



.2 2
a) E;(M) =E (M) - E; (M), and

b) EZ(M) = El(M)EZ(M) + EZ(M)EI(M) .
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Proof. 1) follows from the fact that E is self-adjoint, and the fact

that a little computation shows that E = E. - iE The rest

follows from the fact that E(MIAMZ) =EM_)E(M,). gq.e.d.

Remark 4.6. For ¢ € H, (El( )¢, ¢) is a positive measure and

(E,( ). 9) = 0.

Proof. Note that EZ is skew-adjoint so (EZ( o, ¢) = 0. Now

2
(E,()g.0) = (E5()o-ES()g, )

(El( )%El( Jo) + (E

Integrals. We shall need to define the operators S‘f(z)dEk where
f is a measurable complex valued function on (t

Since = (E ()¢,y) is a bounded real valued

k,tp,tp() k

measure we may define

ff‘z’d“k,¢,¢ = Sf(z)h(z)diuk’(p’qu

| is the total variation of b o, and h is the

with respect to l B

where
‘ PLk, @,

Radon-Nikodym derivative of b

¢,y k, @,
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We observe that for any complex measures p and X\, if f

is p and X\ integrable then

S‘fd(wx) = S\fdp + Sfdx

We shall also set an qJ( ) = <E( ). y>.

Theorem 4.7. Consider n and p for k =1,2 where

¥,y kK, ¢,

¢, ¢ H. Then,

b Moreover, if f 1is any

i = + 1 .
ol Mo T M2, 00

complex Borel measurable function on ¢ then f s

b -integrable if and only if f is -integrable for k =1

@y

and 2. In this case

k, ¢,

gf(z)du¢’¢ = gf(z)dpl,¢,¢ + Sﬂz)dHZ,(p,w'

Proof. First

e = <E( )(p,q_;> = <(E

o (VHE, ()¢, 4>

1

= (B Oeod) +HE, oo b) =y iy

Now let f be -integrable. But for any Borel measurable set

H<P'~P

M, |Hk,(p,¢(M)l < ip(p,qJ(M)l < ip(pd(M). But by the minimum

bounding property of total variation we must have
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"

(M) < M), f k=1 and 2. Butth f is
k,go,nbl )_ll*(prI ) or n u en i
~-integrable.
Hk,go,up &
Conversely if f{ is M 0 qJ—integrable for k=1 and 2,
then, since e < + , f is -integrable.
L I L I L St Yo,y TIoE
q.e.d.

We are now in a position to define the operators Xk = SxdEk
and Yk = S‘ydEk for k=1,2. Recall that E = El + iEZ ig the
spectral measure of A=A+i0 where A isanormal operator.
We shall take as the domain of these operators Xk and Yk the
space D(A). We observe that if ¢ € D(A) then
§|x|d|p I < Slz]dlp < o for all ¢ € H. The same can be
said for y, so x and y are both Hk,(p;‘kJJ integrable for all
Y€ H by Theorem 4.7.

We are going to use the Riesz representation theorem to define

Xk and Yk. We would like to define linear functionals by

k, ¢
and
Rk’(p(up) = gyd( k( )os )
on H. Clearly Lk o and Rk are linear and real valued, and

the next theorem establishes the continuity.
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Theorem 4.8. For each ¢ € D(A) and k=1 or 2, Lk o and

R are continuous.
k, ¢

- Proof. Observe that

L

i

ol = 1§ 000l < (lxlaln |

But from arguments in the complex case we know that

Vislaln 1< §1at®alu livl -

Hence, Lk o is continuous, and the same argument may be applied

to R . q.e-.d.

Thus we may write Lk,(p(LlJ) = (Xk¢,¢), and

Rk (p(LP) = (kap, y), by the Riesz representation theorem. Clearly

Xk and Yk are linear on D(A).

Theorem 4.9 (The Spectral Theorem). Let A be a densely

defined normal operator on H, andlet E = El + iEZ be the

spectral measure of A, then A= §xdE1 - SydEZ = X1 - YZ.
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Proof. For ¢,y € D(A) we have

<Z<p,41>‘ (Ag,y) = Szd<E( o, >

1

" 1

S(X lY)dml,(p,q; l”z,q),np)

\ + . » +-

Sx lydpl,(p,qJ + i g(x ly)dp‘Z,(p,gb

g"d”l,«p,q,- - §Yd”2,<p,¢ ’

]

because (Ag¢,{y) is real. So

(Ag, ) (SxdE1¢,¢) - (§YdEZ¢,¢)

i

([S‘xdEl -SydE2]¢,¢) . q.e.d.

We emphasize at this point that the above theorem is a special
case of the more general problem of defining operators of the form
SudEk where u is any real valued Borel measurable function. If
u is a bounded real valued function all domain difficulties disappear

and we may define u, = g‘udEk on all of H. Indeed, we set

(SudEk¢,¢) = S\ud<Ek( ), > and argue as before.
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Further Properties of El and EZ

In order to establish a uniqueness theorem for the spectral
representation of A we need to study El and EZ more closely.

Let us suppose that A is a bounded normal operator on H,
then A=A +i0 is bounded and normal, and the spectral measure

E of A is concentrated in a disk D centered at the origin in (’;

Then from the spectral theorem in the complex case we get

- —_—s ( _
(Aa)%((a))™ = S‘ z"z “'dE. But we observe that
D
—n, — % *
(A ((A) )™ = AMA)™ +i0. Now a straightforward computation

using polar coordinates for convenience, that is x =r cos 8 and

y =r sin 8, shows that

1

—n, % + +
(A)n((A) )m = S r mcos(n—m)edE - S. " rnsin(n—m)ed}i‘2
D D

C ot +
+ 1[§ r msin(n-m)edE1+§ 7 mr:os(n—rn)edli‘zl .

D D
Thus,
+ +
A ax™ = S r” mcos(n—m)edEl - S r” msin(n—m)edEz ,
D D
and
+ +
S 2 rnsin(n-nfl)edE1 = - g o nﬁcos(n—rn)ﬁdEZ .

D D
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Lemma 4.10 [7,123]). If A is a bounded normal operator on the

real Hilbert space H, and S (C R® is a Borel set, and S s

the reflection of S across the x-axis, that is

V. I Ve
3 K %

$" ={(x,-y)|(x,y) € S}, then E (S)=E(S)) and E,(S) = -E,(S).

Proof. If ¢ € H then (EZ( Jo,9) = 0, since E is skew~-adjoint.

2
ntm ntm
Therefore 0 = r cos(n—m)ed(EZ( Jo,0) = -\ r sin(n-m)6du
(¥
D D
where p(S) = (El(S)tp,cp), ¢ e H. Let f be continuous on D and
f(r,-0) = -f(r,0). Given € >0 the Stone-Weierstrass theorem

provides a trigonometric polynomial P(r,8) such that

|f(r,0)-P(r,0)| < on D, where

£
2

)

P(r,8) = Za e msin(n-—m)e + Zb " rncos(n—rn)e.
nm nm

But | (r,-8)] < so |f(r,8)-P(r,8)+f(r, -0)-P(r, -0)| <,

€
-f(r,0)-Plr, >
\\ +
and so | Z,bnmrn mcos(n—m)el < % . But then we must have

+
|£(r,0) - Za r msin(n-m)ei < €. Consequently S f(r, 8)dp = 0.
nm D

If S is a compact set in the upper half plane then there exists a
sequence of continuous functions {fn}, with {fn} uniformly

bounded converging poitwise to and vanishing off the upper

Xs
half plane. Here Xg is the characteristic function of S. Let g,

equal fn in the upper half plane and equal —fn in the lower half

plane, then Sgndp = 0. But g - pointwise, so by the

n X5 " Xsx



dominated convergence theorem S‘XS - XS*dM =0, or {S)= p(SM.
‘Let B be the collection of Borel sets lying in the upper half plane
and such that R(S) = M(S*). This is easily seen to be a o-algebra
which as we already know contains the compact sets of the upper
half plane. Hence B contains all the Borel sets in the upper half
plane. But it is then immediate that R(S) = p(S*) for every Boral
set. Thus, (EI(S)(p,(P) = (El(S*)tp,cp) for all ¢ € H. Now EI(S)
is self-adjoint and so the polarization principle in the complexifica-
tion gives (El(S)<p,¢) = (EI(S*)tp,\L), so E._(S) = El(S*).

Now

+ +
e mcos(n—m)edE = - r msin(n-m)GdE ,
D 2 D 1

and El is x-axis symmetric, so

5’ rn+mcos(n-m)6d(EZ( Jo,w) = 0.
D

Thus similar arguments give E,(S) = -EZ(S*). q.e.d.

Suppose now that A is an unbounded normal operator on H.
We shall employ F. Riesz' reduction to the bounded case to show that
the above theorem is still true. In what follows we refer the reader

to [8,307 ff].
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Lemma 4.11. Let A be an unbounded normal operator on H,

- 2
and E = El + iEZ the spectral measure of A. If S(C R is a

Borel set and S>P its x-axis reflection, then El(S) =E (), and

— — =k ]
Proof. Let A=A +i0 as before, and let B = (I+(A)(A) ) .

B is bounded and self-adjoint, and its corresponding spectral
measure F is concentrated in [O, 1]. Nowif B =C +iD then
(C+iD)(I+X(X)*) = (C+iD)[(I+AA*)+iO) =1+ i0. Thus C(I+AA*) =1
and D(I+AA*) = 0. But (I+AA*) is one to one and has a dense

range. So D =0. Therefore B = C t 0i. Butthen if F = F1+ iFZ

), as in the reduction

L

- _ o=
FZ—O by Lemma 4.10. Set Pn_F(n*l'l’

to the bounded case, then Pn:H — H; that is, H 1is invariant

under the projection Pn. By reduction to the bounded case we have

0
H = @PH=Z®H =Z€B(H+1H),
c L n c 4 cn 4 n n
n=1
Where H =P H and H =P H Moreover we have

29 A and E = 26 E where En is the spectral

measure of A :H — H . Here A is Al . Moreover if
n cn cn n H
cn

A=Al then A| =A =A +0i. Buteach A _is bounded
n Hn ch n n n

and normal, so by Lemma 4.10, if E =E.  +iE then E
n In 2n In
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and E satisfy Eln(S):E (s*) and E. (S) = -E (Sﬂ\),

2n ln 2n 2n
SCRZ. Let ¢ € H, SCRZ, and E=E1+iEZ, then
E, (S )p = Re E(S )¢ (the real part)
oo} oG
= Re Z el En( )Pntp = Re ® [}«:1 (S)Pn<p-E2n(S)Pn¢]
n=1 n=1
o0
- Z @.L Eln(S)Pn¢
n=1
On the other hand
co
El(S)cp = Re E(S)¢ = Z @.L Eln(S)Pngr )
n=1
%k PA3
so E_(S)=E.(S ). Similarly, E_(S)= -E_(S ). g.e.d.

The Unigqueness of El and E

2

Definition 4. 12 [7, 125]. Let E and E

1 > be bounded operator

2
valued measures on the Borel sets of R in the real Hilbert space

H. Then (EI’E ) is a spectral pair if and only if for S, S, and

2

2 3
SZ Borel setsin R , and S the x-axis reflection of S we

have:

1) El(S) is self-adjoint and E_,(S) is skew-adjoint,

2

2) E(8) :El(s*>, and E_(S) = -E.(S) ,

2 2
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3) E,(S;1S,) = E|(S))E(S,) - E,(S))E,(S,), and
= + E { s
EZ(Slr\SZ) El(Sl)EZ(SZ) EZ(Sl)El(SZ) and
4) El(RZ) =1, and EZ(RZ) = 0.

Remark 4.13. If A is normal and E = E; + iE is the spectral

2

measure of A then (EDEZ) is a spectral pair.

Theorem 4.14. ILet A Dbe anormal operator on a real Hilbert

space H, and let (E'1

SxdE'l - SzydEé . Then E'l = E1 and E'2 =E, where

,E'z) be a spectral pair such that

A

E

1

El + iEZ is the spectral measure of A.

Proof. Since (E'!',E!) is a spectral pair the integrals S\ydE’l

1 2
and ngEé are also defined on D(A), the domainof A. Indeed

they are both zero. Thus

+ : = P ( ! + 3 l+ !
A +i0 ngEl ) ydE2 L[SydEl SXdEZ]
= S(eriy)dE' )
where E'-= E'l + iEé. E' is a spectral measure. Indeed,
! 2 - ! Z 1 z 3 i i ! ] i
(®'6)7 = (£](6)” - (E3(8) + i[E(S)E!(S)FE}(S)IE,(S)]

H
=y
—_ =
@
+
=1
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Clearly E'(S) is self-adjoint and E'(R ) = 1. The strong
additivity comes from the strong additivity of the components.

Thus, the uniqueness theorem in the complex case gives

E'=E. q.e.d.

A Function Calculus for A

Let {f(z) = u(z) *+ iv(z) be a Borel measurable functionon R .

Let E = E1 +1iE be the spectral measure of A *+i0 = A, where

2

A is a normal operator on the real Hilbert space H. Assume that

" f is bounded. Then

i

f(A) Sf(z)dE = g(uﬂv)d(ElHEZ)

gudEl - fvdEZ + 1[§udEZ+§vdEl] .

Now if we want f(K) to be a real operator we must have

H

SvdEl + SudEZ = 0. But we can achieve this if v 1is odd with

respect to the x-axis and u is even. This is because

S

(S) and EZ(S) = —EZ

El(S) =E1 (s ).

Remark 4.15. The set of all f = u + iv where f 1is a bounded

2 .
Borel measurable functionon R, and u is even with respect to

the x-axis and v is odd is a real algebra. We shall denote this

algebra by &, .
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Definition 4. 16. For f e &, we define

f(A) = SudEl - SVdEZ = g(u+iv)dE|H .

Theorem 4.17. The map F:& —L(H), where L(H) is the set

of bounded operators on H, defined by F(f) = f(A) 1is an algebra

homomorphism. Moreover, f(A) = (f(A))*, where _f- =g - iv.

Proof. We have f(A) = gf(z)dE]H, so the additivity and real
scalar multiplication are clear. But from the same result in the

complex case

f,-£,(A) = S‘fl(z)fz(z)dE|H = S‘fl(z)dE|H§f2(z)dE|H
= fl(A)° fZ(A) .
Also from the complex case we have -f_(A) = (f(A))*. g.e.d.

Stone's Theorem--Real Case

We begin this section with the construction of a particular
unitary group on H associated with a given normal operator A
on H.

For each real t consider the function

ft(z) = cos(ty) + i sin(ty). Observe that cos(ty) is even with respect
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to the x-axis and sin(ty) is odd. Thus for each t, ft € & . Let

(EI’EZ) be the spectral pair of A, and set

Theorem 4.18. f’c(A) is a strongly continuous one parameter

unitary group.

Proof. Clearly fO(A) = 1. Now

(2}
i

_ + PP
t1+t r:os(tl tz)y i sm(tl-l-tz)y

1

cos tly cos tzy - sin tly sin tzy

+ ilei n .
i[sin tly cos tZy cos tly sin tzy]

Thus, by Theorem 4.17, f {A) = ft (A)ft (A). So

1
- = “1 T -
£ ,(A)=(£(A)7. But £ =T, so ([(4)7 =£(a)= (f(A)

Therefore, ft(A) is a unitary operator on H. We must establish
that ft(A) is strongly continuous. Observe that if t ™ t, then
cos(t—to)y — 1 and sin(t—to)y —™ 0, where the convergence is

pointwise. But then
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2 _
I£,(A)o-t (A)o[” = (£ (A)g-£, (Ao, £ (A)o-£, (A)e)
0 0 0
2
= 2]lell” - 26 (A)g. £, (A)e)
0
= 2llo]l% - 2¢ . (A)g, o)
t-t
0
= Z“(p“z - Z[gcos(t—to)yd <E1( o, 9>
—Ssin(t-to)yd <EZ( Yo, 0>] .
So by dominated convergence ” ft(A)tp--flc (A)(p” - 0. g.e.d.

0
We are going to show that the unitary group described above is
the only one.
Let u(t) be a strongly continuous one parameter group of

unitary operators on a real Hilbert space H. We define

Lli(O)(p = lim _LL(_I_]_)_‘,L’_:_(Q

h—0

if the limit exists. We define D(u'(0)) = {¢ ¢ Hlu'(O)cp exists}.

Certainly u'(0) is an operator on this domain. We shall use the

method of complexification again to show that u'(0) is densely

defined and skew-adjoint.

Theorem 4.19. ILet wult) be a strongly continuous unitary group
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(in brief, a unitary group) on the real Hilbert space H. Let

u(t) = u(t) + i0 be the complexification of wu(t). Then

1) u(t) is a unitary group on H_.

2) D(u'(0)) = D(u'(0)) + iD(u'(0)), and u'(0) = u'(0), and

3) If u and v are unitary groups and u'(0) = v'(0) then

Proof. 1) If ult)(etiy) =0 then wult)e =ult)y =0, and so

¢=y=0. Let C+ine HC then there exist ¢ and Y € H such

that ult)e = ¢ and ult)p=m, so ult)letiy) =8¢ +in. Thus

u(t) is a bijection on H_. Moreover,
E(tlw‘tz) =ua(t,tt,) Ti0 = u(tl)u(tz) +i0
| = (ult)+i0){ult,)+i0) = ult ult,) -
Finally,
IS+ )% = Tuwrel® + fuwul® = lorivl® .

—

Hence ult) is a unitary group.

2) T(0)(o+ip) = 1lim LRAeFiY)-(@tid)

1

h—0 h
- lip Whleze oy, ulbluny
pg b h

t

u'(0)e + iu'(0)W .



So @+ ipe D(u'(0)) if and only if ¢ * i € D(u'(0)) + iD(u'(0)) .

3) Suppose u and v are unitary groups on H with

u'(0) = v'(0), then u'(0)=u'(0) +iu'(0) = v'(0) + iv'(0) = :7_'(0) . So

by the complex Stone theorem uft) = v({t), so ult) = vit). q.e.d.

“Corollary 4.20. If wu(t) is a real unitary group then u'(0) is

densely defined.

Proof. u'(0) is densely defined, so D(u'(0)) = D(u'(0)) t iD(u'(0))

is dense. Thus D(u'(0)) 1is dense in H. q.e.d.

Corollary 4.21. u'(0) is skew-adjoint.

Proof. We set G = u'(0) for brevity. By the complex Stone

theorem G =G + i0 is skew-adjoint. We show that (E)' =G

St
32

Suppose ¢ t i e D(G ) then ¢,y ¢ D(G:':). Thus for every

Ltine D(a), (GG, ) = (Q,G*tp) and (Gn, ) = (n,G*Lp). But then

11

<G(L+in), p+iy> = <GLHGN, ptig>

H

(GL, o) - i(GG,y) +i(GM, @) + (G, )

(£,G7p) - i, G ) +i(n, GYe) + (G W)

<L+in, G (@tiv>

I

Hence, G C (G) ",

Conversely, if ¢ t+ iy € (G) then for every § + in e D(G)

we have,
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<t+in, (G) (o+ig>

H

<G(L+im), pHig>

<4+in, -Ge-iGy>

since G is skew-adjoint. Thus

<G(LFim), o+iy> = (GL, @) - L(GL,Y) + i(GM, ) + (GT, §)

(£, -Go) - i(L, ~GY) + i(n, -Ge) + (N, ~Gy).

Set m=0 to get (GE,¢)=(L,-G¢) and (GE,¢) = (L, -Gy). So

-Gg=G ¢ and -GU=G §. So ¢ +ipe DG ), and

— 3k E Sk —_
(G) (e+iy) =G (p*tih). So G =(G) , andthus G is easily seen
to be skew-adjoint. q.e.d.

Recall the particular unitary group corresponding to the normal

operator A on H given by

ft(A) = S‘cos ty dE1 - gsxn ty dEZ-

Remark 4.22. Let u(t) be a unitary groupon H with

infinitesimal generator u'(0). Then the above arguments have shown

that the infinitesimal generator of wuf(t) is u'(0).

Theorem 4.23. Iet A be a skew-adjoint operator on H, then

ft(A) has infinitesimal generator A.
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Observe that

——

f(A) = ft(A) + 10

t
=Scos ty dEl —S‘sin ty dEZ + i[S‘cos ty dEZ+S.sin ty dEl]

_ L ity .
= ge d(E1+1EZ).

Now A is skew-adjoint, so A=A+i0 is skew-adjoint with

spectral measure El + iEZ concentrated on the imaginary axis.
But because of this A= S(xﬂy)d(ElHEZ) = Siy d(ElﬂEz) .
Therefore -iA is self-adjoint, and —iZ\-: Syd(El+iEZ) where

we regard El + iEZ as a measure on R. But then if we set

B = -iK then eltB = S‘eltyd(EIHE

iB=A

2) = ft(A)- But this implies that

is the generator of ft(A)- So by the preceding remark

A= (f£(A)'(0) =£(A)'(0) = A +i0. So A is the infinitesimal gen-

t

erator

t
of ft(A). q-e-.d.

Theorem 4.24. Let ult) be a unitary group on the real Hilbert

space

H. Then there exists a unique skew-adjoint operator A

such that ult) = ft(A)-

Proof.

By Corollary 4.21 A = u'(0) is skew-adjoint. Set

v(t) = ft(A) then v'(0) = A by Theorem 4.23. So by Theorem 4.19

ua - V.

Then

Suppose now that ult) = ft(B) where B is skew-adjoint.

u'(0) = B. qg.e.d.
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