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b(z.t,u,u,). Degenerate equations cannot be treated by standard meth-
ods. Because of the degeneracy, they do not always have classical solu-
tions and have different characteristics than the solutions of nondegenerate
equations. I explicitly treat one dimensional porous medium equations of
the form u; = (¢™),, and also compare them to an equation of the form
€Uy + Uy = (4™ )zy. This is obtained by using a more general form of
Darcy’s law. Recent, concrete results for the unique solvability of the
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degenerate parabolic quasilinear equations with principal part in diver-
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in a weighted Sobolov space. The treatment of the problem depends on
whether 0 < a < lor1 < a < 2. By giving an explicit solution to the prob-

lem when 0 < a < 1, I show that it serves as an example for the existence




of a unique solution to the initial, boundary problem with zero boundary
conditions for u; = div(a(x)gradu(z,t)) + f(u(z,t)) when f = 0. When
1 < a £ 2, I show that we can not give boundary conditions for some parts
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equations with principal part in divergence form to a physical problem of

unsaturated flows of liquids in a porous medium.
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The Existence and Uniqueness of Solutions in a Weighted
Sobolov Space for an Initial-Boundary Problem of a Degenerate
Parabolic Equation with Principal Part in Divergence Form

CHAPTER 1

INTRODUCTION AND SOME PRELIMINARY MATHEMATICAL FACTS

In this dissertation we consider linear and quasilinear , degenerate par-
abolic equations with principal part in divergence form, that is, equations

of the form

d
u = —a;(z, t,u,ug) + bz, t,u,uz), (1.1)
dx,-
or in vector form,
uy = diva(z, t,u,ug) + b(z, t,u,uy). (1.2)

Here the summation convention is used, that is, when the same index
appears twice in a term, one sums over the range of the indices indicated.
Here ¢ runs from 1 to n unless the contrary is explicitly stated. u, denotes
the gradient of u with respect to the spatial variables and the divergence

is calculated with respect to x as well.

1.1 Introduction

These equations occur in many physical problems such as nonlinear dif-
fusion problems and ground water problems in a porous medium. Ground-

water problems are governed by a transport equation such as Darcy’s law:

= —S (Vp+07) . (1.3)
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Here p is the pressure, p the density of the fluid (or gas), § = (0,0, g) the
vector giving the acceleration due to gravity, here assumed to be constant
and k is the permeability tensor which in most applications is assumed to
| be strictly positive definite. ¢ is the volumetric flow rate , also called the
seepage velocity. For the applications we deal with, it is only nonnegative
definite. g > 0 is the dynamic viscosity of the fluid. Equation (1.3) is

combined with the equation of continuity, or conservation of mass,

opr = —div(pQ). (1.4)

where ¢ is the porosity of the medium. An equation for p is obtained by
inserting (1.3) into (1.4) and making use of constitutive relations for the
coefficients.

When the equations are nondegenerate parabolic, they can be treated
by the standard methods found in [1] and [2]. Some known results for
nondegenerate parabolic equations will be given in Chapter 4.

When the equations are degenerate, they cannot be treated by the stan-
dard methods because of the degeneracy and need not always have classical
solutions. However, under certain assumptions it is possible to establish
the unique solvability for the Cauchy problem and the initial-boundary
value problem for these degenerate parabolic equations. The solutions
often have properties different from those of solutions to nondegenerate
equations. The most important property, which is distinct from that of
nondegenerate equations, is that the solutions may have a finite speed of
propagation.

Now I elaborate the content mentioned above using a concrete example.
Consider the flow of an ideal gas in a homogeneous, porous medium. The

flow is governed by three laws. The first is Darcy’s law (1.3), neglecting

-
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gravity, which was originally established for the case of water but also holds
for the flow of gasses underground. The second is the law of conservation
of mass (1.4) where, for the case of gas, the porosity ¢ of the medium is
the volume fraction available to the gas and we assume it to be constant.

The third law is an equation of state, or constitutive relation, for the gas

2= ()

Here pg, po € RT, and A € [1,00) are constant. The constant A > 1 occurs

which I take to be

when one assumes the expansion of the gas to be adiabatic. Multiply both

sides of (1.3) by p, neglect gravity, and insert p = po(p/ po)Y/?, to obtain

#z—kOV%:——-—&——kD V:\_:\tl
P4 ;:17% P i o) P

Take the divergence of both sides,

At1

: k
div (pg) = —“mlﬁp >

Then, from (1.4),

—  kpo A
Pt = Gt ) P

By rescaling we can take kpo/¢ups’* (A+1) to be equal to one and we set
(A+1)/A=m to obtain p; = Ap™ (m > 1). The density p of a gas flowing in

a homogeneous, porous medium must obey the equation
pie =Ap™ (m >1)

This equation is known as the porous media equation which models the
density distribution of a gas in a porous medium. The equation is parabolic
at any point (z,t) at which p > 0. However, at a point where p = 0, it is

degenerate parabolic.



Now let us consider the following problem :

{ pr = (p")aa (1.6)

ple, = ()
where (z) > 0in |2| < @ and vanishes outside |z| = a. Generally, solutions
for the problem fail to be classical solutions at precisely those points where
the solution passes from positive to zero values. The lateral boundary of
suppp is called the interface. Thus, we need a concept of weak solutions.
Classes of weak solutions for equation (1.6) were introduced by Oleinik,
Kalashnikov and Yui-Lin in the paper [3]. There they proved the existence
and uniqueness of such solutions and showed that if at some constant to
a weak solution p(z,ty) has compact support, then p(z,t) has compact
support for any t > to. Moreover, they showed that in a neighborhood of
any point (z,t) where p > 0, p is a classical solution of the problem. Some
explicit solutions of the porous media equation were found and these were
all self similar solutions. Self similar solutions are solutions of the form
u(z.t) = g(n) with n = ™" | where m and n are constants and g(n)
satisfies a boundary value problem such that the differential equation with
respect to 1 is obtained by inserting g(n) to the porous media equation in-
stead of u(x,t) and a boundary condition is given such as g(0) =C constant
and ¢g(co) = 0. The most important one was found by G.I. Barenblatt in
[4]. From Barenblatt’s self similar solutions and the work of others , see
e.g. [5], [6], [7], [8], [9], [10], we know that there exists a function r(¢) > 0
which describes an interface so that p(z,t) = 0 for z > r(t), where 7(0) = a
and 7(t) is monotonically increasing.
This means that the solution has a finite speed of propagation. Chapter

2 covers this phenomenom explicitely in more detail and also contains a
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comparison with gp; + p; = Ap™ which is obtained when using a more

general form of Darcy’s law:
ey +d=—-=Vp (1.7)
I

where € is a positive constant.

In the case when m = 1, equation (1.6) reduces to the heat equation :

Pt = Pzxx

This equation is a nondegenerate parabolic equation and a solution to the

initial value problem is given by

e (=2)®
plet)= e | v@eT @ de (1)

where p(z,0) = ¥(z) represents the initial values of p . We see from (1.8)
that p > 0 for any ¢ > 0. In other words, p becomes positive everywhere
after an arbitrarily small increment in time provided it is nonzero initially.
This means that the speed of propagation of the solution is infinite. This
property remains valid for nonlinear nondegenerate parabolic equations.
Generally, it is known that the properties such as the unique solvability

and finite speed of propagation hold for solutions to the Cauchy problem

d
u = L a;(x,t,u,u,) + b(z. t,u,u,
{ t dz; z( a:) ( ) (1.9)
uly, = ug
as well as for solutions to the initial-boundary value problem
Uy = d—‘i;a,-(x, tou,ug) +b(x, t,u,uy)
ule, = wug (1.10)

ulgaxo, 11 = ¥ (T, t)|aqx[0,1]
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Allowing certain degeneracies for the functions a;, b, ug, ¥, we see the pos-
sibility of the unique solvability for (1.10) in the linear case in [11]. There
Showalter considered a class of implicit , linear evolution equations of the
form LUu(t) + Lu(t) = f(t), t > 0 in a Hilbert space where U and £
are operators and their realization in function spaces as initial-boundary
value problems for partial differential equations which may contain a deg-
neracy. He used the theory of analytic semigroups on a weighted Sobolev
space and proved theorems in his paper for the classical diffusion equation
% (c(z)u(x,t)) — 5‘% (k(:v)%%) = F(z,t). However, the proof of the unique
solvablity for problems (1.9) and (1.10) in the nonlinear case still remains
open.

Recently, more concrete and direct proofs for the unique solvability
of the problems which are contained in the class of problems (1.9) and
(1.10) have been given in several papers [12], [13], [14], [15]. In Chapter
4 the known results from the papers will be mentioned briefly. Among
the previously mentioned papers, I am mainly interested in the paper by
Stahel [13]. This paper deals with the existence of a unique solution for
the initial boundary value problem:

uy = div (a(z) grad u(z,t)) + f(u(z,t)) in Q x[0,T]

u(z,t) =0 on 90 x[0,T] (1.11)

u(z,0) = ug(x) inQ
where Q is a smooth, bounded domain of RY and T is an arbitrary, positive
number. The coefficient matrix, a(z) , is assumed to be a positive definite,
symmetric, N X N matrix but its smallest eigenvalue might converge to
zero as x approaches the boundary of the domain.

The linear case of this problem is a special case of the results previously

mentioned by Showalter [11]. However, the existing result applies to a
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wider class of functions and a does not have to degenerate with a given
order but need only be bouneded from below (see equations (1.12), (1.13),
and (1.14)). Nevertheless, the result is a natural extension of Showalter
[11] to the semilinear case, but the methods of the proof are different. The
main theorems of Stahel [13] are given as follows : (see the appendix for

unfamiliar notation and basic spaces).

Theorem 1.1  Problem (1.11) has, for each ug € W3 ()N Lo (2) whose
support is compactly contained in 2, a global weak solution which is Lip-
schitz continuous with respect to time and with values in Ly(€) under
Condition 1.1 Let a(z) = [a;j(z)]i<i, j<n be an N X N metrix where
each a;;(z) is a smooth function on  which extends continuously to the
closure of 2 . Let

a(e) = min{ Y ai;(2)&E | 1€]] = 1}

o (1.12)

a(z) = max {)_aij(2)&| llEll = 1}
and suppose that there is a ¢; > O] with a(z) > ¢; d(2)® with 0 < a < 1in
a neighborhood of T' where d(z) = dist (z,T) .

Next we introduce the following condition.
Condition 1.2 With 0 < o < 1 for constants ¢;, ¢z > 0,

cod(z)* > a(z) > a(z) 2 crd(z)” (1.13)

Theorem 1.2 Suppose condition 1.2 holds , problem (1.11) has, for a
given ug € Ly (), at most one weak solution which is Lipschitz continuous

with respect to time and takes which values in Ly(2).

Theorem 1.3 If we assume the conditions from Theorem 1.1 and 1.2 at

f(0) = 0, then the solution u of (1.11) satisfies

u € CH(0,T), Ly(Q)) N C°((0,T), H;(Q)). (1.14)



&
In this dissertation all of these theorems are generalized. First, let us

consider the following problem in one spatial dimension :

Uy = éa—w(x uw) in (0,1) x [0, 7]
u(0,t) =wu(l,t)= (1.15)
u(z,0) =¢(z), ¥ € Lz ((O, 1)) where 0 < a < 2.

Then it is shown that (1.15) can be separated into two problems in order

to have solutions in the space

C°((0.T), H2.(0,1)) = C°((0.7), @} 4=(0,1))

as follows:
g = —a%(:no‘uw) when 0 < a <1
u(0,t) =wu(l,t)=0 (1.16)
u(z,0) =1(z) € Ly((0,1))
and
Uy = -é%(xo‘ux) when 1 < a <2
u(l,t) =0

1.17
lu(0,t)] < oo for finite solution or u(0,t)has no condition (1.17)

u(@,0) =) € L((0.1))

Problem (1.16) serves as an example satisfying the theorems of the paper

by Stahel [13] and the explicit solution is given in Chapter 3. One of the

main result in this dissertation is a theorem for a generalized equation

resulting from (1.17). The generalized equation of (1.17) is expressed as
Uy =V (@Vu)+ f(u(z,t)) inQxI

u =0 onI; xI noboundary condition on I'gxI (1.18)
w(0) =we in

where Q is a bounded open subset of RY with a smooth boundary I' and

lying in the half space z > 0 with the part I'g of its boundary I' adjoining
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the plane n = 0. We assume that F(z,£) = Ei’j aij(a:)fifj of the equa-
tion above degenerates on the part I'g. The remaining part of the boundary
T of Q is denoted by T'; so that Ty UT; = T. Let a(z) = [a;;(2)]1<i, j<n
be a matrix of smooth functions on §2, which extend continuously to the

closure of {2, such that
cod(z)® > a(z) > a(z) > c1d(z)® with 1 < a <2 (1.19)

for constants c¢1, co > 0 . Here we assume that

(1) f(u(z,t)) is Holder continuous with exponents §/2 in (z,t) € Qr
,|u| <M, and |p| < M;. See Chapter 4 for 3, M and M, .

(2) f(u(z,t)) is Lipschitz continuous in t ; f(u(z,t)) is differentiable
inuandpin (z,t) € Qr , |u| <M . and |p| < M.

(3) The Lipschitz constants, |0 f/8u| , and |0 f/0px| are bounded by a
constant C.

(4) there is a number M such that f(s)s < 0 for all |s| > M.

This assumption implies an L, a priori bound.

Then the main result in this dissertation is contained in the following

theorem.

Theorem 1.4 Problem (1.18) has, for a given ug € L (Q2)NC2(£2), which
is assumed to be a nonnegative function, a weak solution which is Lipschitz
continuous with respect to time with values in W3 (; d, a) C Lo(£2; d, a)

and the solution is unique.

The proof of Theorem 1.4 and an explicit solution of (1.17) are given in
Chapter 3.
Now let us consider the physical meaning for the problem (1.11). Gen-

erally, a(x) represents a permability matrix in the case of porous media
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equations. We usually assume that the eigenvalues of a(x) are positive at
each point in the given domain with the eigenvalues of a(z) converging
to zero at specified rates as x approaches on the boundary. The specified
rates are given by the order of some power a of the distance x from the
boundary of the given domain . Generally, the power a is given as be-
tween zero and one. However, the Stahel paper [13] deals with the case
that a(z) does not have to degenerate with a given order but need only
be bounded from below as z approaches on the boundary. See (1.12) and
(1.13).

The situation of the Stahel paper [13] comes up in a porous medium
with a tight boundary that is the permeability vanishes at parts of the
boundary. We assume therefore that the porous medium consists of several
components, among which some components have a tight boundary and
the others do not , which means that the permeability is not zero on all of
the boundary. Thus we cannot say that the eigenvalues of a(z) approach
zero as x approaches the boundary everywhere. In fact, on the loose
boundary , the permeabilities will be nonzero and in general vary from
point to point. Thus, the condition on the boundary cannot be given.
Problem (1.18) deals with this situation under the assumptions on the
rate of decay of a(x) as x approaches the boundary. See (1.19).

Finally, applications of these theorems to other physical problems, such
as unsaturated flows of liquids (incompressible fluids) in a porous medium,

will be given in Chapter 5.



1.2 Some Preliminary Mathematical Notations and Theorems

This section provides some preliminary mathematical facts needed in
this dissertation. However, a more detailed discussion and elaboration of
the basic notations and definitions are given in the Appendices 1 and 3 .
The basic function spaces used in this dissertation also are described in

Appendix 2.

Definition 1. Let
Lu=a¢D"u+a; D" tu+---+au=f (1.20)

where the a; are smooth functions of their arguments and D stands for

differentiation with respect to the spatial variables. Then

(1) any distribution satisfying (1.20) is called a generalized solution.

(2) a classical solution of (1.20) is an ordinary function which is n
times continuously differentiable and satisfies it (and therefore gen-
erates a regular distribution which satisfies (1.20) in the generalized
sense).

(3) a weak solution is an ordinary function which may not be n times
differentiable, and therefore may not be a classical solution, but
which generates a regular distribution which is a generalized solu-
tion.

(4) a distribution solution is a singular distribution satisfying (1.20).

( See [16] )

Definition 2. Quasi-linear equations of parabolic type with principal part

in divergence form have the form :

d
Loy =u; — g;(ai(a:,t,u, ug)) —b(z,t,u,uz) =0 (1.21a)
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or

Ly =uy — diva(z,t,u,uy) —b(z,t,u,u,) =0 (1.21b)

resulting in a quasilinear equation of the general form:

Lo = Uy — QjUge; +b(,t,u,uy) =0 (1.22)
Definition3. If for an arbitrary nonzero real vector £ = (§1,...&N) ,
aai(ﬂv,t,u,p)
&£ >0

for (z,t) € Qp and arbitrary u and p, then we say that the operator £ is
of parabolic type.

Definition 4. If there exist functions v(7) and p(7), where v(7) is a
positive, nonincreasing, continuous function defined for 7 > 0 and u(7) is
a positive, nondecreasing, continuous function defined for 7 > 0, such that

for an arbitrarily real vector, £ = (£1,...,&n) # 0,

0 i\ 1, U,
uligf < 2L e < jul
J

for arbitrary w and p and (z,t) € Qp, then we say that £ is uniformly

parabolic.

Definition 5. If the coefficient functions of the principal part of equation
(1.21a,b) satisfying the parabolic condition vanish for certain values of

(z,t) € Qr, u and u,, then the equation is said to be degenerate parabolic.

Example. u; — div (|DulP~2Du) = 0, p > 2. When |Du| = 0, this equa-

tion is degenerate.
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Definition 6. Let J be a nonnegative, real-valued function belonging to
C&°(RY) and having the properties

(1) J(z)=0 if |z[]>1 and

(2) fRN J(z)dzr =1
If € > 0, the function J(z) = e~ J(2) is nonegative , belong to Ce(RY)
and satisfies

(1) J(z) =0 if |z|>e€e and

(2) fpn Je(@)dz =1

J. is called a mollifier, and the convolution

L*uw>=A;J4x—wmwdy

is called a mollification of w.

For example , we may take

1
Iz) = { ke 1T i o] < 1
0 if |z| > 1
where k > 0 is so chosen that condition (2) is satisfied.

( See [1] and [33] )

Theorem 1.5 Let u be a function which is defined in RY and vanishes

identically outside the domain 2.

(1) If uw € L}, (Q), then J. x u €C> (RY).
(2) If also suppu CC Q, then J. x v € C§°(Q) provided

e < dist ( supp u, 99Q).
(3) If u € Ly(Q) where 1 < p < oo, then Je * u € L,(2). Moreover,

17 % ully < llully and limos [ % w = ull, = 0.




(4) If u € C(Q) and G CC Q, then lim,_,¢+ Jeu(z) = u(zx) uniformly
on G.

y
} (5) If u € C(Q), then lim,_,¢+ Jou(z) = u(z) uniformly on {2
‘ ( See [18], [19] pp. 29-31 )

Theorem 1.6 Let —co < a < b < oo. Let A = A(t) be a continuously
differentiable function defined on (a,b) and such that X (t) > 0 for t €
(a,b).
[ A] Let lim;— A(t) = oo ; Further, let us denote by A(a) = lim—.q A()
and define weight functions 0,0 in the following way:
|
|

o1(t) = e(l‘p)/\(t)[)\’(t)]l—l’, O’O(t) — e/\(t))\l(t)[ez\(t) _ e/\(a)]—p

[ B] Let lim;_q A(t) = —oc; Further, let us denote by A(b) = lim;— A(?)
and define weight functions 01,0y in the following way:
o1(t) = e(P=1)A(1) IN(B)]1P, oo(t) = e—A(t)x(t)[e—A(t) — e—A(b)]—p
Let 1 < p < oo and let u = u(t) be a function which is almost

everywhere differentiable on (a,b) such that

b
/ [’ (1)|Poy(t) dt < oo.

Further let u satisfy the condition u(a) = lim;—q u(t) = 0 in Case

A and u(b) = lim;_ u(t) = 0 in Case B. Then the inequality
\ / |U IpO'O dt< ( ) / IU IpO'l
( See Kufner [20] , pp. 30-34 )

Theorem 1.7 POINCARE INEQUALITIES :

(i)

[ W3(2z)dz, N >2
|x-yr2 < o e
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where  is any domain in RY, u(-) is an element of C§°(£2), and

y € RN, If N = 2, then the inequality
(ii)

u?(z) /
de <4 | vi(z)dz
J R 2 S 4,
for any domain Q C R?, y ¢ Q, and u € C§°(Q)

(i) o
/ﬂlw—yl lN—l

for all p> 0,1 # N and u € Cg°(Q)

|ue (2)]”

el
alz—y| "

( See [21], pp. 41-42 )

Theorem 1.8 Let Q be a bounded smooth domain. Then the set C*(Q)
is dense in W;“(Q;d,s) for £ > 0. That is, W;“(Q;d, g) = > (Q) holds,

where the closure of the set C>°(Q) refers to the norm ||u||k pd,«

( See Kufner [20] , pp . 43-49 )

Theorem 1.9 If z(t) is a solution of the Gronwall Inequality

lz(t)] < a( / |z(s)] b(s) t >0,
where a(-) and b(-) are continuous, nonnegative functions, then
lz(t)] < aoo(t>€B(t)a

where ax(t) = maxo<s<t a(s) and B(t fo

( See [22], pp. 141 )
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CHAPTER 2

A NONLINEAR POROUS MEDIA EQUATION OF PARABOLIC TYPE

In this chapter, I treat a nonlinear porous media equation of parabolic
type and a more general porous media equation in one spatial dimension
of hyperbolic type. The hyperbolic porous media equation is obtained by
applying the more general form of Darcy’s law (1.7) instead of the usual
form Darcy’s law (1.3). First I will show that the solutions of the nonlinear
porous media equation have a finite speed of propagation, which is the
most important property of degenerate parabolic equations, by obtaining
a similarity solution of the equation explicitly. Then, I will show, in an
extended result, that a similarity solution for the general porous media
equation, at large time scales, is actually one of the similarity solutions of

the nonlinear porous media equation.

2.1 A Finite Speed of Solutions for a One Dimensional
Porous Media Equation

Now consider the Cauchy problem for a one-dimensional porous media,
equation.

{ Ut = (Um)ww for x € R, t>0 (21)

u(z,0) = uo(x) forz € R
where m > 1 and ug is a bounded continuous nonnegative function and u
represents the density of a gas where the units have been chosen so that
the constants are one. (Here we use u as a generic notation for a sought
after function instead of p which is used in the introduction.)

Then the porous media equation is degenerate in the neighborhood of

any point where u vanishes. As mentioned in the introduction, the solution
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of the porous media equation fails to be a classical solution at precisely
those points on the interface of the solution . We need a concept of weak
solutions but some explicit solutions of the porous media equation were
found. These were all self similar solutions and the most important one
of them was found by G.I. Barenbatt in the paper “ On some unsteady
motions of a liquid or a gas in a porous medium ” [4]. I seek the Barenblatt
solution for (2.1) here. Roughly speaking, the Barenblatt solution is the
solution of (2.1) whose initial datum is a mass M concentrated at the
origin. That is, u(z,0) = ue(z) = Md(x), where § is the Dirac delta
function and M = [; ug(z)dz is the total mass (initial data representing
an instantaneous point source).

The flow of an ideal gas in a homogenous porous medium is governed

by three laws:

(1) conservation of mass
(2) Darcy’s law

(3) equation of state

Now let us write equation (2.1) as a conservation law for the mass:
us +(u-v), =0,

where u is the density of a gas and v is the velocity vector. (Here we

change notation from ¢ to v where ¢ was used in the introduction.) Then
wy + (u - (—mu™ %uy)), = 0.

Thus the local velocity of the gas is given by
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and by Darcy’s law we get v = —(k/u) gradp. Hence, we can define the

pressure p as the potential of the vector field. That is, v = —p, so that p =

_m

I ™~ 1. In general, we define the presure p and define a transformation

p = (u) of a classical solution u of (2.1) as follows. The transformation
Y is given by
S
=/ mE™ 2 d¢ for s.
0

Here we assume that [ m™ ™2 dé < oc.

In the general case of u; = (¢(u))es, the transformation ¢ is given by

/ YO g tors.

p(z,t) = Plu(,t)) = /U(w,t) mEM 2 dE = oy !
, ’ 0 m—1

Thus we have

t/)()_ -2

and since = mu™ “u; , then
vy o 1
t = = t
mu™m—2 ot mum™—2

and
(um)a: = mum—lua: = Upg, (Um)a:a: = UPgg + UzPz

m=2  we have

Since u; = (u™)., and uy = py/mu
pt=(m—=1)p:paa +pi-
Hence, the evolution of p is governed by the pressure equation

pt = (m —=1)p- pes +Po-

Now let us seek a self similar solution of the following type in the domain

0 <z <oo, 0<t<T where T is some positive constant ;
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u(z,t) = (t+7)°f((), ¢ =a(t+7) 7m0

where 7 € R is arbitrarily , ¢t + 7 > 0.

By substituting this solution into equation (2.1) we get

(7O + 31+ (m = VBN () = BAO), 0 < < o0

At the boundary we impose the condition f(0) = K, f(oo) = 0, where K is

constant. Thus the solution u(z,t) satisfies the lateral boundary condition

u(0,t) = (t + 7)*K and u(z,t) — 0 as © — oo for fixed t € [0, T].

Let 5 = (1 + (m —1)8)/2, ¢ = 3. Then the following is obtained:
{ (fm™)" +pCf =aqf

F(0) = K. foo) =0 (2.2)

Now it is necessary to consider weak solutions to the problem (2.2)
because I am looking for a weak solution of u(z,t) = (t + 7)° f(¢).

Here a function f will be said to be a weak solution of (2.2) if

(i) f is bounded, continuous and nonnegative on [0, co).
(ii) (f™)(¢) has a continuous derivative with respect to ¢ on [0, co).

(iii) f saisfies the identity
/0 O {(F™) + A AC + (5 + ) / 6f dC = 0 for all 6 € CA([0,00)).

Then the following results are known in [23] :

Theorem 2.1) when K > 0, the equation (2.2) has a weak solution
with compact support if and only if 5 > 0 and 2p + ¢ > 0. This solution
is unique. And, if we let f(¢) be a weak solution of problem (2.2) with
compact support, then the solution is of the form: f(¢) > 0 on [0,a),
f(¢) =0 on [a, o) for some a > 0.
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We are considering the Berenblatt solution when 3 = ——m—+1 K >0,
so2p+Gg=14+mpB = m+1 >0 and p= 1+(";—1)"8 = m+1 > 0. Thus, by

the Theorem 2.1 , problem (2.2) has a weak solution with compact support.

Hence, by integrating (2.2) , we have

_1_
F(Q) = { {5ty (@® — ¢)}m-1 0<(<a

a<({<
Consequently ,
1 1 L
(t+7)" m+L f(z(t 4+ 1) m+1) O<x<a(t+7)m +1
u(z,t) = 1
0 a(t+71)m+l <z < oo
(2.3)
_ _ 1

Let A = WT)' 2 B = W_lﬁ_)" Q=

Then we can write (2.3) as

}Mm_l) (2.4)

u(z,t) =(t+7)"“ { [A - Ba*(t + T)_QOIL_

Now expand (2.4) where t € Rt and take the initial mass to be con-
centrated at the origin. That is, u(z,0) = Md(z) and M is the total mass
for all t € Rt . Let u(x,t, M) denote the solution of (2.1) when the total
mass is M. Let 7 = 0 in (2.4). The Barenblatt solution of (2.1) is given
by

u(e, t; M) = ={[A - Blaf* 721, )"

which satisfies [, u(x,t;M)dz = M for all ¢ € RT*.
Let F(¢) = {[A — B£%,}/(m~D where £ = |z|t™*. Then,
/ u(z,t; M) de = w; / F(&)dé =M for allt € RY,
R 0

where w; denotes the volume of the unit ball in R!. Thus we get the

relation

AmHD/2(m=1) g=1/2,, /_ (cos 6) D/ gg = g
0
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In general , in n dimension , w, fooo F(&)¢n—1de = M . Thus
wp AT /2(m=1) p=1/2 /E(COS g)(m+D/(m=1 (5in Y"1 do = M
0

Now, let C' = w; fog(cos 6)(m+1)/(m=1) dg. Then
M= A(m+l)/2(m_l)Bl/20.
Hence,
— (M2Bc—2)(m——l)/(m+l)

It is obvious that the Barenblatt solution u is also a classical solution of
(2.1) and is a C'*> function on the set Plu] = {(z,t) € RxR* : u(z,t) > 0}.
But let us consider p = mu™~!/(m — 1). Then

1

o (1ol plar, }77)
= e £ [(Fe) o] = 70 ~leFle

from the fact that mt~*(m=Y B/(m — 1)t?* = a/2t and where we have

set r(t) = 4/ 4t*. Here

(m—1) 1 m—
r(t)—_—\/%to‘:( m+1 Bm+1C’_2m+11 B~ )2 =cmMm—+}tm;+l

p

where ¢,, = B~1/(mtD) = (m=1)/(m+1) Thys,

r(t) = cmM(m—l)/(m+1)t1/(m+1) )

The pressure p is positive on the set

Qu] = {(z,t) e Rx RY : |z| < r(¢)}
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Hence , u(x,t) is positive for all (x.t) € Q[u]. Thus
Qlu] = Plu] = {(z,t) € R x RT :u(z,t) > 0}.

Therefore,
Iu] = {(z,t) e R xR" : |z| = r(t)}

is the interface, since it is the boundary of supp u = Plu]. where the
bar indicates closure. So, w is actually a classical solution of (2.1) in
R x R* \ I[u] but it is not a classical solution in all of R x R¥ since
V(«™1) has jump discontinuities across I[u].

By Darcy’s law we expect velocity v = —p, and we also expect that the
interface will move with the local velocity of the gas. Hence we can expect
F(t) = —pa(r(t)™,t) = v(r(t),t) where po(r(t)”.t) = limgyr(s) pe(2, 1),
But Dtr(t) = —p.(r(t)~,t) is in RT where D1 denotes the right-hand
derivative. See Herrero and Vazquez [24].

Now the outer right interface of u is defined to be the curve x = r(t),

where r(t) = sup{z : u(z,t) >0} if 0 <t <T* < o0 ,

r(0) = sup{z : / dug = / dMé(z)} > 0.
(z,00) (z,00)

The interface does not necessarily begin to move at t = 0 although it must
ultimately move at some point. There is a t* € [0, 00), called the waiting
time such that (i) 7(¢) = 0 on [0,¢*]; and (ii) r(t) is strictly increasing on
(t*,00) which means that once the interface begins to move it never stops
( See Aronson , Caffarelli and Kamin [8] , and Vazquez [10] for work on
the determination of the waiting times). The speed of propogation refers

to the speed of the interface. Since the interface will move with the local
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velocity of the gas, from r(t) = ¢, M(=1/(m+D1/(m+1) "we can compute

7(t) = —px(r(t)~,t). And since p = & [r%(t) — |w|2]+ , we get,

pa = —alal/t.
Thus,

F(t) = —p(r(t),t) = — lim p,(z,t) = lim $|z|~ Sr(t
(1) = =pelr(®)7.0) = = lim puo.t) = lim $le]~ $r(0)

and by letting r(t) = cmMz_:r%tTn%FT, we get

m—1 m

r(t) = =5 L Mm+1t  m+1,

Furthermore, as t = oo,

m—1

Ht) = gemMmilt AT 4o (1) .
The proof that #(¢)t"/™+! converges to ¢, M(™~D/(m+D /(;m 4+ 1) can be
found in Aronson , Caffarelli , and Kamin paper [8] and [25].

From 7(t) = ¢,y M(m=D/(m+1) /(i 4 1)¢m/(m+1) it is known that the
velocity 7(t) is bounded for all ¢ such that ¢* > 0 and t € [t*,00) , where
t* is the waiting time. In fact, for every solution of (2.1), the velocity is
bounded in every strip S; o = R X (7,00) where 7 > 0. Hence we know

that the speed of propagation is finite. Moreover Vazquez[9] and, Herrero

and Vazquez[24] prove that

ph =% (z,t) < (e, 0]t .
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2.2 An Extension to a General Porous Media Equation and a
Comparison Solutions of Nonlinear Porous Media Equations

Let us consider the case when the more general form of Darcy’s law,
(1.7), instead of (1.3). Here we assume that p/po = 1 + 6 where 6 is small.
Then p = po(1 + 0). Thus, div (pg) = po div g + po div 6q.

Here we neglect the term pg div 6q so div (pg) = po div ¢. By conservation
of mass, (1.4), we have

dpr = —po div g. (2.5)

By differentiating both sides of (2.5) with respect to ¢ we have
Opit = —Po div g;. (2-6)
By taking the divergence in (1.7), we have
edivg; + divg = ——EAp. (2.7)
Therefore, by inserting (2.5) and (2.6) into (2.7), we obtain
- £ = -k 29

From the equation of state, (1.5), p = po(p/po)*/*. By inserting this into

(2.8),

b b kp 1/
oo Pttt =pt = M(po)ol/Q Ap™/7.

Hence since p = py,

1
— _kpopo N~ k po (A+1)/A
Epit T P du(po)t/> A,O qﬁupé/)‘(z\-%-l) A'D

By rescaling we can take kpo/gbup(l)//\()\ + 1) to be equal to 1 and we let
(A+1)/A = m. Then we obtain

epit +pr = (P™)az-
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Replace p by u so that the standard form of the equation 1s
EUss + Up = (’U;m)xa; (29)

In order to find a solution to (2.9), let us try a similar solution of the

following type :
1
wz,) = (t+7)°f(Q),  (=a(t+r) 20T

where 7 € R is arbitrarily , ¢t + 7 > 0. Then by differentiating the u(z,t)

term with respect to t, we have

we =B+ + (E+ 1) F(O% (2.10)

and

ug = B(8 = 1)+ )P 2F(Q) + Bt + )P G F(O)
H B+ P15 4 412 O+ 4 (%) £

and
(W™)ea = (F™)"(O)(¢+ 7). (2.12)
By inserting (2.10), (2.11), and (2.12) into (2.9), and dividing by

(t + 7)%71, we have

(fm™) —e(t+7) (%%)2 = {255%% +e(t+m) %8+ (t+ T)%%} f

—{eB(B-1)(t+7)"1 +B}(O) =0. (2.13)
Also, from ( = z(t + T)_%{H'(m_l)ﬂ}, we obtain
X = {1+ (m— DB} a(t+ ) THmDA
ot ={H1+(m-1)pY (2.14)

+1{1+ (m — 1B} a(t + 7)” 2 {+Om—D 8} =2
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Then by inserting (2.14) into (2.13), we have

(f™)" =5{1+(m =18+~ f
—¢ (—e{14+ (m = 1)}t +7)"" = ${1 + (m - 1)5}
+e[Hi+m -8 + {1+ (m-1)8} t+ 7)) f
— (BB -DE+7)" 1+ 8) f=0. (2.15)

Let T be sufficiently large so that for all ¢t > T, t+% ~ 0. Thus, (2.15)

becomes
(F™)" + {1+ (m = DB = BF(O). (2.16)

If we impose the boundary condition f(0) = K, f(co) =0, K > 0
constant on (2.16), we obtain (2.2). If we take 8= —1/(m+ 1), then
the solution is the Barenblatt solution. If we take 8 =1/(m — 1) > 0 for
m > 1, (2.16) becomes

(f™)" +(f = 75 £0). (2.17)

then (2.17) has a weak solution with compact support by the Theorem
2.1.

The function

f<<)={“’"7“1]a<a—<>}7“’1"1, 0<(<a
0, a<(<oo

satisfies (2.17) with boundary conditions f(0) = K, f(oo) = 0. Therefore,

’LL(.’B t): (t+7-)7n%Tf(C)7 OSCSG
) O, a<C<OO

SO

u(z t):{{[m%]a[a(t_i_ﬂ_x]}ml-lv 0<z<a(t+7)
5 0, a(t+7) < z < oo
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This is the wave solution found in Oleinik , Kalashnikov and Yui-Lin [3] and
is one of the similarity solutions of the equation u; = (4™ )z, ( See Gilding
and Peletier [23] ). Thus for sufficiently large time scales, a similarity

solution of eus + u; = (u™)y, reduces to the similarity solution of vy =

(™ )z
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CHAPTER 3

THE EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR AN INITIAL
BOUNDARY PROBLEM OF A DEGENERATE PARABOLIC EQUATION
WITH PRINCIPAL PART IN DIVERGENCE FORM

In this chapter, I deal with the existence of a unique solution of initial-

boundary value problems for the following equation
u; — div (a(x) grad u(z,t)) = flu(z.t)). (3.1)

The existence of a unique solution of the initial-boundary problem (1.11)
under the conditions 1.1 and 1.2 is shown in Theorems 1.1 , 1.2 and 1.3
in the introduction. A proof has also been given by Andreas Stahel [13].
In his paper he assumes the existence of a sequence of open sets {1, with

smooth boundaries such that
QD C Qg1 CQ UnenQn = Q, lim sup{a(z)|z € Q/Q} =0
n—oo

and also assumes that there are functions a, defined on {2 such that

Q

(1) a"IQn =a;
(2) an(2) 2 +;
(3) an(z)€-€>a(z)é-& , forall z € Q and for allé € RY.
(4) lim,,— o0 sup{||an(z) — a(z)|| la: € Q} =0.
The above assumptions are such that the coefficient matrix a can only
degenerate on a part of I'. Then Stahel [13] defines u to be a weak solution

of (1.11) if the following conditions are satisfied:

w € C°(I, Ly ()N C°(I, HX(Y))
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for any compact subset Q' of Q and

lu(@®)|| g1 + lJu(®)]loe < ¢, w(0) =uo, u(t)lr =0,

and

T .
(T, u(T)) — (4(0), ug) — / (W (1), u(t)) dt

= fo (@V(t), Vu(T)) + ((t), f(ul(?)))dt
for all yp € C1(I, Ly(Q)) N C°(1, W%(Q)) Jfor allT € I.

In section 3.1 , I consider (3.1) in one-dimensional spatial setting

= (0,1) when a(z) = %, 0 < a < 2. Then equation (1.11) is the same
as (1.15). It will be shown that (1.15) must be separated into either (1.16)
or (1.17) depending on whether 0 < @ < 1 or 1 < < 2 in order to have
solutions in the space C°((0,T), H1.(0,1)). It will also be shown that
(1.16) serves as an example satisfying Theorems 1.1, 1.2, and 1.3 . Then
the explicit solutions for (1.16) and (1.17) are also given.

In section 3.2 , I consider equation (1.18), which is a generalized form
of (1.17) in higher spatial dimensions. Theorem 1.4 will also be proved for

the existence of a unique solution of (1.18).

3.1 Boundary Conditions for a Unique Solution and Explicit
Solutions for Examples in One Dimensional Space

Let us consider (1.15). This equation degenerates at the boundary point
xz = 0. Let us try to solve this by the separation of variables method. For

this purpose, set u(xz,t) = X(z)T(¢) and insert it into (1.15). We get:

{%(m“Xﬂ-i-kX =0 fork>0,0<a<?2 (3.2)

X(0) = X(1) =0
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and

T +kT =0 (3.3)

First, let us consider (3.2). We can think of (3.2) as a problem for an
elliptic equation degenerating at the point = 0. Then, for investigation
of the boundary value problem, it is reasonable to take as the Hilbert space

the space W} ,.(Q) with the inner product :
(u,v) = /(xaufcvw + uv) dx (3.4)
Q

and note that the set C§°(Q) is dense in V(E/'%’wa(ﬂ)

In other words, V(E/'%’xa(ﬂ) is defined to be the dosure of C§e(Q) in
the norm corresponding to (3.4) and has such properties that X(z) €
IX/%,M((O, 1)) is continuous on (0,1} and has generalized first derivatives
on (0,1) and X (1) = 0. However, the space has different properties at
the boundary point x = 0 depending on the size of a , as 0 < a <1 or
1 < a < 2, though the inner products are defined in the same way. That
is ,

[A] : for a € (0,1), all elements of V(E/'%fca(ﬂ) are equal to zero at x = 0.
But
[B] : for a € [1,2], this is not the case. Hence, we must remove the

condition X(0) = 0 in order to solve (3.2) with « € [1,2].
Proof of [A]: When 0 < @ < 1 and X € W} ,.(Q), Q= (0,1), then

x 2 x x
[/ T 7 = d'r] S/ (’r"%)2 dr/ T (%—ff dr
0 0 0
z 1
=i [ @) = [ ()
0 0

since T (%)2 > 0 on ¢ € (0,1). So, let z = h. Then [X(h)]* <

e

5

(M)

|

[ X ()]

Q

cht~%(X,,X,) for a bounded constant c. Then if we let h go to zero,
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since (Xg,Xz) < oo and 0 < a < 1, then limp_,o[ X (h)]* < 0. Thus,
[X(0)]2 < 0 and hence, X(0) = 0.

Proof of [B] : Suppose all elements of V?/%’wa (Q) are zero at z = 0 when
l<a<2 Letuc V?/%,wa(ﬂ). Then

(i) /01 z%u(z) dr < oo.

By using Poincare inequalities (Theorem 1.3) when p = 2, y =0, | =

2—a, n=1,and Q = (0, 1), we obtain the inequality

1 1
/0 2% 2 (z) dz < (a——il)_ffo r%u’(r)dz

for all u € C§°(£2). Hence, fol % 2u?(x) dz must be finite by (i).
Therefore, since u € V?/%’xa and

(i1) fol 7972 dr converge for 2 - a <1 (thatis, 1 < a).
These results imply that

(iii) fol 72/ (T)]2dr < oo for 1 < a < 2.

Then using Holder inequality, we find for any h > 0

z+h
lu(z +h) —u(z)| = / o' (1) dr

z+h
— / o' (1) (TO‘_2)1/2 (TO‘_2)—1/2 dr

e+h 1/2 a+h 1/2
< (/ |u' ()72 dT) (/ e dT)

From (ii) and (iii), we know that the last term converges to zero uni-

formly with respect to x when h tends to zero for 1 < a < 2. Thus u
is uniformly continuous. Consequently, the limit lim, ¢ u(z) = a¢ ex-

ists. But, since fol " 2u?(z)dz < oo and fol r¢"2dr < oo for a > 1,
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then lim._,0 u(z) = ao is not necessarily zero. Hence, ap # 0 leads to a
contradiction.
The case @ = 1 requires some special considerations. Suppose all

elements of W3 ..(Q) are zero at * = 0. Let u € W3 .2(Q). Then ,

1
/ rldr

1.2
Jy zul dr < oo,
2

[u(z)]? = [/: 7 V2129007 d"r} < /: 7 (Ou/87)% dr

1
=|In1l —lan/ 7 (Ou/d7)° dr
By multiplying both sides by z7!|Inz|™27¢, ¢ > 0 and integrating in
Q = (0,1), we obtain
(iv) fol u?(z)z Y Inz| 2 °dz < fol a:_[lHi:T—"—‘? dx fol z (8u/dz)* dx
Let 6(z) = z7'|Inz|"27¢ and fol ;“—nlngredJ? < ¢ where ¢ < o is a
constant. The inequality (iv) can also be obtained from the generalized

Hardy inequality (Theorem 1.2) and thus, since fol zul dr < oo, then
fol 6(z)u?(z)dz < oo from (iv) and fol 6(z)u2(xz)dx < co. Then apply the

z+h
/ u' (7)dr

z+h % z+h %
< / Iu’(7)|27‘1|1n T|_2_€ dr / 7|1n 7'|2+E dr

We know that fol z"(lnz)" dz = &1)—;% where n is a positive integer and

Holder inequality ,

lu(z + h) —u(z)| =

m > —1. Thus, the last term converges to zero uniformly with respect to
z as h tends to zero. Hence, u is uniformly continuous and, consequently,

lim,_,o u(x) = ao exists. Since

1 1
/ 7 Inz| 72 %u?(z)dr < 0o and / ™ Inz| 7?2 dz < oo,
0 0
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lim,_,o u(x) = ap is not necessarily zero. Therefore, ag # 0 leads to a
contradiction. Thus , we must remove the condition X(0) = 0 to solve

(3.2) with a € [1,2] .

Hence by [A] and [B], problem (3.2) must be separated into two problem
depending on whether 0 < a < 1or 1 < a <2 as follows :
Fork>0andl<a<1,

%(xo‘Xm) +kX =0
X(0) = X(1) =0
andfork>0and 1 <a <2,
LX) +kX =0
X(0 <
X . . (3.6)
or no boundary  conditions are given onx = 0
X(1) =0

If the solution u of (1.15) is given by separation of variables, then the

solution u is given by

’LL(JJ, t) = Z Tn(t)Xn (:U)

where X, € W o (8) for all n and Ty(t) € Ly ((0,T)) for all n. Actually
T.(t) = e~ by (3.3)

If X, € V%/'%’wa(ﬂ) when 0 < a < 1, then X,(0) = X,(1) must be
zero for all n by [A]. Thus u(0,¢) = Y . Ta(t)Xn(0) and u(1,t) =
> Tn(t) X, (1) must be zero. Also, if X, € V?/'%,wa (Q), when 1 < a < 2,
then X,(1) = 0 and X,(0) is not given for any n by [B]. Hence, u(1,t)
must be zero and u(0,t) is not specified by instead is calculated from the

solution.
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Therefore, in view of the above results, we can separate (1.15) into (1.16)
and (1.17) . We see from the following discussion that (1.16) satisfies the
conditions of the theorems in Stahel [13]. Hence, the problem (1.16) serves

as an example satisfying the theorems in Stahel [13].

In (1.16) the a(z), for conditions (1.13), is given as a(z) = P, 0<8<1
satisfying a(z) = a(z) = @(x) = z” and d(z) = z in a neighborhood of
{z = 0}, since d(z) = dist (z,I") = dist (z,0) = z. Then we take o and 3
tobeequal and co =2, ¢; = % Therefore, the inequality 2z% > z© > %J;O‘
for 0 < a < 1 is satisfied. Thus the conditions of (1.13) are satisfied.
Hence, (1.16) satisfies all the conditions of Theorem 1.3 .

However, let us consider (1.17) . The a(z) for the condition 1.1 and
1.2 are given as a(z) = a(z) = @(z) = 2° with 1 < 8 < 2 and d(z) =
in a neighborhood of {z = 0}. Then let us assume that there exists a
¢; > 0 such that z? > ¢;z® for all z in a neighborhood of {z = 0} with
0 < a < 1. Then é > w—gl:—;, 0 < 8 —a < 2 for all z in a neighborhood of
{z = 0}. Since ¢; —E%E # 0, we can choose z’ in a neighborhood of {z = 0}
such that 0 < 2’ < ci/(ﬁﬂl). Then (—w,)ng > ¢ since 0 < B —a < 2.
Therefore, ¢i(z')* > (z')?. This is a contradiction to the assumption .

Thus we conclude that Stahel [13] does not deal with the case of equation

(1.17) (when boundary conditions are zero).
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Example 3.1) Now let us seek an explicit solution to (1.16) by separation
of variables. Let u = X(z)T(t). Then, we have (3.3) and (3.5) . First let
us solve (3.5). Let y = t=='7%, with = ((1 - @)y) /=) and let
X(y) = X{(1 = a)y}/1-9) = X(z). Then by the chain rule for X(y) ,

when k is given by A% . the (3.2) is converted to

T N (1—a)y)TeX =0

Now let A = A%(1 — a)*/(1=% and /(1 — a) = v . Then

32X < o .
Yy

Let Z(y) =y /2X(y) .So , X(y) = y*/?Z(y). Then by the chain rule for
Z(y) , (i) is converted to
1,5 ~% Lo 1. v+t ..
—y2Z(y)+y 2 Z'(y) +y2 2" (y) + T2 Z(y) = 0. (ii)
By multiplying y?/% in (ii), we have

y2Z"(y) +yZ'(y) + Qy" T2 = 1) Z(y) = 0. (i)

Let t = py®, A = p?*" v = 2k — 2. Then y = (t/p)'/*. Let

Z(t) = Z((t/p)"'*) = Z(y).
So, by the chain rule, (iii) is converted to
&*Z dZ 1, 5
20”4 0L 2 _ (25—, .
t o +tdt + (¢ (Qk) VZ =0 (iv)

This equation is known as Bessel’s equation of order 1/2k. The general

solution of Bessel’s equation or order 1/2k (non integer) is given by

Z(t) = AJ o (t) + BJ_ 4 (1) (v)



36
By inserting t = py* and Z(t) = Z(y) into (v), we obtain
Z(y) = AT 3 (py*) + BJ _ 1 (py") (vi)
Since Z(y) = —y'/2X(y) , (vi) becomes
X(y) = Ay?J 4 (py*) + By?J_ 1 (py") (vii)
Since X(y) = X () and y = =—z'7 , (vii) becomes
X(e) = Alea =0T 1 (o))

B(izz'7*)2J

l—a

2%
_ilz(p(ﬁwl_a)k) (viii)
Here k is given by v=2k—2 and v=a/(1-a). Thus k=(2-a)/2(1-a). Then
1/2k=(1—a)/(2—a) ,0<a<1. Since 0<(1-a)/(2—-a)<1 , 1/2k is not integer. Also,
)\ is given by 3=3?(1-a)°/0-%) and A=p?k?. Then

p=2172 [k=2X(1—0)?=)/20 =) /(2—a) and p(1/(1~-))*=2)/(2-a).

Thus (viii) becomes

1 1=« £—a
X(o) = Al e 7 T e (ha 7))

+ B(r25)%e 2 J

#1~a
2—a

2«
Since J 1 (22_—’\aa:T) is unbounded on [0,1] and we are seeking only
~2k

bounded solutions , we must take B = 0. From the boundary condition

X(1) =0, we have

Thus Ji-qo (2%’\5) should be zero. Ji_o(z) has an infinite number of
22—« 2—a

isolated zeroes. Let x; = 22—:\-’5 for i =1,2,--- where Ji—o (z;) = 0. Then
2—-a
A; = E2z;. Hence , the equation (1.16) has an infinite number of solutions

l—o 2—a
Xo={2"7 Jia(P=zz 7 )}

2—a
2—a



By (3.3) , T, = ane *»t. Thus ,

w = i Tou(t) Xn(z) = i bne” M X,
n=1 n=1

l—« 22 2—«
where X, =z 2 Ji1_o(5222 2 ).
22—«

From u(z,0) = v(z), where ¥(z) = 230:1 b X
(v(z), Xi) = b(X;,X;) for 1=1,2,---

Accordingly , b; is given by

('(p(x)aXl)

b, =
: (XlaXl)

foralll=1,2,---.

Thus

and the solution
u € Wi(Qr) = La((0.T): W} o (9)).
u € W10, (Qr) means that
we CH(0,T), Ly() N C°((0,T), Hya ().

Since C° is dense in Lo, u is a weak solution of (1.16) because u satisfies
the conditions of the weak solution in the Stahel paper [ 13 ] .

Next, let us solve the equation (1.17) explicitly , which will serve as an
example of the Theorem 1.4 by separation of variables. Let v = X (z)T'(t).
Then (3.3) and (3.6) are obtained. Now let us solve (3.6) and do the same
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process going through the step (i) through (ix) as above. Then we obtain

that when (1-a)/(2-a) is not an integer,

1 l-o 2—a
’ X(@)=A(55)727 7 Ji—a(%52 7 )
2—«
1 l=o -
, F B T e (B 7). ()

in the case when 1 < a < 2 (a—1)/(2-a)>0and (1 —a)/(2~a) <O0.

2—
Thus since Ji_q (%x 2 ) is unbounded on [ 0,1 ] , we take
2—a
1 l-—a \ 2z«
X(z)=B(£:)%272 Joua (&2 2 ) (xi)
22—«

Recall that

Ju(@) = s (5 (xii)
n—=0

Thus when g = (1 —a)/(a —2),

)
2« 1—a+2n(a=2) a—1-2n(a—2)
2A 5 (== A 9
']1_—_05_(2—@‘73 2 )= Z niT (u+n+1) (2—a “ z 2
o n=0

Hence by (xii) , we obtain from (xi)

/9 _yn 1—a+2n{a—2) 0
X(z) = )/ Z ‘F(u+n+1) ) a—2 pnla— ),

for 1 < o < 2, —n{a —2) > 0 and for all nonnegative integers n . Thus

i ( 0[)1/2
X(0) = Bropry (52 e,

Therefore it is possible that we take B < oo so that |X(0)| < oo since

| —o
} ()7 (52 )Lj/f‘(,u + 1) is finite. Now from the boundary condition :

l—a 2—a

X(1) =0,
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Thus Ja-1 (%’\—a—) = 0. Because J e-L (z) has an infinite number of isolated

zeroes, 1et z; =2)\/(2 —a) for i = 1 2,--- where Jo_1(z;) = 0. Then
2—a

A= (2 —-a)/2z;. Thus let A\, = (2 —a)/2z,. Hence the problem (3.6)

has an infinite number of solutions

272" Tomt (B20720)

—

when (1 —a)/(2 — ) is not integer and 1 < o < 2 . In the case when
(1-a)/(2—a) is an integer, ( in fact, a negative integer for 1 < a <
2 since =2 = —1 when o = 2 ) then (iv) in the previous example is

equivalent to

2z  dZ ~
Pt — 4+ (= (=) Z =0
tdt2+dt+( (=5)")
This equation is known as Bessel’s equation of order (——51%) = 22;_—0% ,

where 1 < a < 2 (the order is a positive integer for 1 < oo < 2 ).

The general solution is given by

l—« 22—

) a1 (252 )
2—a

+ B((1%

2—a
Since Ya—1 (5222 2 ) is unbounded on [ 0,1] , we take
2—a

We proceed as before. We know that the problem has an infinite number

of solutions
{a: J a=L 1 ( )}

for both cases when 1 < a < 2.
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When a =1, (3.6) becomes
zX"(z)+ X' () + M X(z) =0
X(1)=0
|X(0)] < o0

or no boundary condition at z =10

(3.7)

Since z = 0 is a regular singular point, by the Frobenius method , we can

assume a series solution of the form

n=0 n=0
Then
0 o0
X = chazm'r_l and X" = Z(n +r)(n+7 = 1Dez™t 2
n=0 n=0

By inserting these into the equation of (3.7) , we obtain

{r(r — 1)co +reo }+

0
Z{(n + r)(n - l)Cn + (n + T’)Cn + )‘2Cn—1}33n+r—_1 =0
n=1

Thus

r(r —1)co +7co =0 and (n+r)(n+7+1cp+ (n+1)en + Ae,_ =0

for all n = 1,2,---. Let co # 0. Thus » = 0 . From the recursion

relationship
(n+r)n+r—1c, + (n+7)en + Aeno1 =0,

we have
—)\2

mcn_l forn=1,2,---.

Cnp —
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. 32
Sincer =0,¢, = = =2 ¢._1. Thus

Hence
X(z) = COZ( el
Since Jo(0) = EZO:O((—”B%“(%)%,
X(z) = coJo(2V A22).

Therefore, let X;(x) = coJo(2V A2z) be a solution for (3.7).Then the sec-

ond linearly independent solution X,(z) is given in integral form by
' e f 3 de ]‘ /22 ' 1
X2($)=X1(33)/0 —W—d.?}:-c—o—,]o(Q A JJ)/O mdd]
and the general solution has such a form that
1
X(J}) = AJ()(QV )\2.73) + BJ()(QV )\233)/0 ;73_(51_\/./\:2—5 dr

But since BJy(2v\2x) fo J2(2\//\T) dz is unbounded on [ 0,1 | and we are
only seeking bounded solutions, we must take B = 0. Thus the solution has
the form X (z) = AJy(2v/A2z). In order to satisfy the boundary condition
X(1) =0,

Jo(2M%) = 0.

Since Jp(x) has an infinite number of isolated zeroes, z;, let 2\; = z;,1 =
1,2,---, Then \; = z;/2. Hence the problem (3.7) has an infinite number
of solutions {Jy(2A,+/z)} which also have the property of being orthogonal

sets.
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When a = 2, (3.6) becomes

2?2 X" (z) + 2z X' (z) + N2 X =0

X(1)=0

(1 (3.8)
|1 X(0)] <o or
No bondary condition at z = 0

This is an Euler eqution. For > 0 , take X(z) = z". Then
X'(z)=rz""! and X"(z)=r(r—1)z""2
By inserting these into (3.8) , we obtain
r(r—1)z" 4+ 2rz" + X%z" =0

and so r2 4+ r + A2 = 0. Thus

—14+/1-4X2 _ —=14/1-4)2
2 - 2 )

ry = and 7o

We consider three separate cases

Case 1) When 1 — 4)X% > 0, the general solution is given by
X(z)=cz™ + cez™,2 > 0.

If we want a bounded solution, we can take

—1+/1-422
X(z) =iz 2 mliyviodr ”21_4’\2 > 0.

when

But since X(1) = 0, ¢; = 0. So X(z) = 0. This is meaningless. Hence,
we cannot insist on a bounded solution. However, in view of the boundary

condition that no boundary condition is given at x = 0, we take

—14+vVI—4A2 —1—+/1—4)?

X(z) =1z 2 + o 2
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From X (1) =0,

—14++v1—4)2 —1—+4/1-4)2 )

X(z)=c(x 2 —z 2

Case 2) When 1 — 4)\? = 0, the general solution is given by
X(z)= (1 +eolnz)z™2 | z>0.
From X(1) =0,
X(@#z)=c(1-Inz)z™? , z>0.

At x=0 though , this solution is unbounded.

Case 3) When 1 — 4)\? < 0, the general solution is given by
X(z) = c1a™ % cos(¥2 =L In z) + coz /2 sin(¥22 =L In z).
Since X (1) = 0 implies ¢; = 0, thus

(" =L Inx).

X(x) = oz~ /% 5sin

Now let us solve (3.3). Then T = ae~*'t. So let Tp(t) = ane™>nt .

Hence when 1 < a < 2, the solution of (1.17) is given as

u=Y To®)Xn(z) =D bne ' Xu(2)
n=1 n=1

where X, is given by

l—« 2 2—o
x 2 Jg—l(ﬁ‘:ﬁ‘x 27)
-

and

(¥(2), Xi)

b =
"L X))

forl=1,2,---



And when a = 2, the solution of (1.17) is given as
\ u(z,t) = T()X(z) = be ¥ ' X (2)

where X (z) is given by
—14+/1-4)\2 —1—y/1—4)%
2

(i) z 2 - if 1—4X\2>0
1

i) (1-Inz)z"2 if 1-4X\2 =0

(iti) —1/2sin(**2=L Inz) if 1 —4)2 <0

and
(¥(z), X ())
(X(2),X(2))

b=

44
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1. The Graph of a Solution of Example 3.1
when a=3, k=5 and ¢(z)=2

-0.%

Look at the values at boundary points x=0 and x=1, where the values at
x=0 and x=1 must be zeroes but here the value at x=0 dose not appear
obviously.
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2. The Graph of a Solution of Example 3.1
when a:%, k=10 and v(z)==z

Look at the values at boundary points x=0 and x=1 , where the values at
x=0 and x=1 must be zeroes.
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3. The Graph of a Solution of Example 3.1

when a:%, k=5 and 9¥(z)==z

Look at the values at boundary points x=0 and x=1, where no boundary
condition at x = 0 is given and the value at x=1 must be zero.
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4. The Graph of a Solution of Example 3.1

when a=32, k=10 and PY(r) =z

]

-0.2 [ . >
-0.4 E:f« :
-0.% :v‘. ; _‘:
| | | | 10
_L""—‘—"_""'{_"_“_‘_*—‘ L LI P f >
0.5 0 0.5 1 1.5 2 2T. 5 30 t

Look at the values at boundary points x=0 and x=1, where no boundary
condition at x = 0 is given and the value at x=1 must be zero.
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3.2 The Existence and Uniqueness of Solutions in a Weighted
Sobolov Space for an Initial-Boundary Problem of a Degenerate
Parabolic Equation with Principal Part in Divergence Form

In this dissertation I allow the ellipticity function to go to zero on the
boundary of . In fact , I assume that the “ degeneration of the ellipticity
» is of the order of some power « of the distance of x from the boundary
of Q . Hence, we are led to study the Banach space W:(Q;d,a) A
power type weighted Sobolev space. ( See Appendix 2 (12) for the space).
According to Remark 4.9 in [36], if 2k — o — 1 < 0, then in general, there
are no reasonable boundary values that can be assigned to v € Wzk, o).
This situation, for the case k = 1 (thisis , @ > 1) and with a more general
weight function than d®(x) , is discussed in Section 3 of [37]. However,
when certain additional conditions are satisfied and a condition is given
for the solution to vanish on a part of the boundary, the existence of
solutions for intial boundary problems like (1.17) are possible and even
with uniqueness is possible. We see that possibility from boundary value
problems of elliptic type equations in [38]. However, it is not reasonable to
take V(E/";,a(ﬂ) as the solution space for the initial boundary problems like
(1.17) because the solutions do not have compact support in { and even
though we can extract a subsequence of functions in C§°(2) converging to
some u € W':’ +(Q), we cannot reasonably assign a boundary values to u ,
that is, in (1.17), u can have another value different from zero as x goes to
the boundary {z = 0}. However , since the function u] 5 makes sense for
u € () , and the fact C°(Q) is dense in W;(Q;d,a) for @ > 0 ( see
theorem 7.2 in [4] )it is reasonable to seek approximate solutions in C <(Q)
converging to some u € W: (Q;d,a) in order to solve an initial-boundary

problem like (1.17).
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Remark 3.1) When k=1 and p=2 , sz(ﬂ; d,a) = Wzﬁa(ﬂ).
If d(z,T) = & , W} () = Wi(Qz,0) = Wi (Q) = H1.(Q) , where
Wzi . is a Sobolov space used in Meyer [36] and H.. is also a Sobolov space

used in Stahel paper [13]. ( See the appendix 2 )

Now let us consider the problem of finding generalized solutions to (1.18)
satisfing (1.19). Then we have the following result which is the main
theorem in this dissertation. Here we make the same assumptions as in
[13] , which are given at the beginning of this chapter. Here u is a weak
solution of (1.18) if all the following conditions are satisfied :
u€ C'I, LA (Qd, ) N CO(I, V?/'%(Q’;d,a) for any compact subset € of
Qand |lu@®)ly g <6 u(0) =uo, u(t)lr, =0.

T
< P(T),u(T) > — < (0),uy > —/0 < P'(t),u(t) > dt
T T
- —/ < aV(t), Vu(t) > dt +/ < (), fult)) > dt

for all & € C1(I, Ly(Q)) N CO(I, Wi(Q: d,@)) and all T € [0,T+].

Theorem 1.4 The problem (1.18) has , for a given uy € Ly(2) N
C?(Q)) which is assumed to be a nonnegative function , a weak
solution which is Lipschitz continuous with respect to time with
values in W}(Q;d,a) C L2(Qsd,a) . Moreover the solution is

unique.

Idea of the proof First let us extend the given domain 2 so that the

condition (1.19) and all assumptions are satisfied in the extended domain
Q and simultaneously extend wuy, (a;;) , and coefficient functions of f(u)
continuously to € such that the extended @y to Q has compact support

in the extended boundary 8Q and the extended (d;;) to Q) also satisfies
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the condition (1.19) and the extended coefficient functions also satisfies
the assumptions given in problem (1.18) for the coefficient functions of
f(u). Here the extended domain is translated so that the translated do-
main is situated in half space x y > 0. We do this since we expect that the
extended and translated function of (a;;) is also positive definite in the
extended and translated domain except the part on which the problem is
degenerating. Then the compatibility condition at the boundary A9 of the
extended and translated initial condition @g for the solution of an extended
problem to the extended and translated domain is forced for the solution
to have zero at the whole extended and translated boundary Q. Thus, the
problem (1.18) is transformed to a problem on the extended and translated
domain € with zero at the whole extended and translated boundary 9 .
However, the transformed problem is still degenerate, parabolic. Hence re-
placing the domain and initial-boundary data (it is not necessarily for the
boundary data since boundary conditions are zero.) with their smooth ap-
proximations, we obtain approximating problems which are nondegenerate
and we know the existence of solutions for these problems ( See Chapter
4 ). We can also extract a subsequence of the sequence of approximate
solutions which converges to a solution uniformly on each compact subset
of Q for each t € I. Then I will show that we can also extract a sub-
sequence from the sequence of the mollifers of the approximate solutions
, which converges to some solution in the norm of W3 (Q;d,a) for each
t € I. The fact that C °°(§:2) is dense in W3 (Q;d, o) means the existence of
a solution in W (Q;d, @) for each t. Then the solution which is restricted
and translated to the original domain 2 is forced to be the one for the

original problem.
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The proof of the existence.

Notation I) Let  denote an extended domain of Q which is translated
so as to be situated in half space zy > 0. dQ denotes the boundary of .

Notation II) @ = (d;;) denotes an extension of (a;;) to Q so that (di;),
% are continuous in Q and ¢;d(z)® > a(z) > a(z) > cid(z)® with

1< a<2,c,c0 >0 in aneighborhood of O is satisfied. Here the
extension of (a;;) to Q is done by a translation of the function after an

extension of (a;;) to an extended domain of Q.

Notation III) g denotes an extension ( also translated) of ug so as to
be defined continuously and uniformly with a compact support in Q so

that outside of I';y become zero.
Notation IV) f(i) denotes an extension of f(u) to Q such that

(1) f(@) is Holder continuous with exponents 8/2 in (z,t) € éT ;
|| < M, and |p| < M; See Chapter 4 for 8 , M ,and M;.

(2) f(@) is Lipschitz continuous in t ; f(@) is differentiable in @ and p
in (z,t) € Qy, || <M and [p| < M;.

(3) The Lipschitz constants, 'aﬁaa] , |af/aﬁk| are bounded by a con-
stant C.

(4) There is a number M, such that f(s)s < 0 for all |s| > M,.

This implies an L, a priori bound.

Step 1) We extend Q to a domain Q with smooth boundary denoted as
the Notation I) and simunenously (a;;) , g , and coefficient functions of
f(u) are extended to  so that the conditions of Notation II) , IIT) and IV)
are satisfied , which are denoted by (a;;) , U and f(i) respectly , and a

sequence of open sets Qz with smooth boundary such that 2 = Qp C Q, C
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Qy---C 0, U0 Q, = Q and lim, o sup{a(z) | z € Q\Qn} = ( exist.
Then the compatibility condition at the boundary of the extended and
translated initial condition g with the solution of an extended problem to
the domain € is force for the solution to have zero at the whole boundary
0% since g is zero at the whole boundary 8Q. Thus the problem (1.18)

is transformed to the extended domain € as follows;

=V.-(avVa)+ f(a) in Qx I

Uy
i =0 on Q0 x I (3.9)
@(0) = in O
Step 2)
110(33) if 110(33) > _I%:_
Let wor =
% if 0<i(z) <+

Since a is still degenerate, we replace @ by a nondegenerate approxi-
mating smooth function a,¢ for each ¢ € I where a, is defined on Q such
that

anlg, =@, ,(2) 2 5.an(@) £ €2 a(x) £-€
for all z € O and € € RY, limp_oosup{ ||@n(z) —a(z)|| |z €Q} =0

and ay,. is defined on Q such that

sup{ l[ane(z) = an(2)|| |z €} <€ for >0,
LIS

and ane(z) €€ > an(z) €-& for all z € Q and ¢ € RY. Here fne is a

smooth approximation of f,, such that

suI?{ane—fnllla:EQ}<e for €>0,
€S
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where fn is defined such that

fn I 6. = f ., the coefficient functions of fn(&) are greater than % )

and supn_,oo{“fn - f“ |z €Q}=0.
Then the problem (3.9) is replaced by the problem solving the nondegen-

erate approximating problems such that

(anei)t = v : (&nei vanei) + fne(anei) in Q X I
anei = 0 on 6(2 x I (310)
fine,(0) = g ne in 0

The condition cod(x)® > @ne; = Qpe, = €1d(x)® with 1 < o < 2 and
¢1,¢2 > 0, and the condition of Notation IV for f are sufficient to satisfy
the conditions solving the nondegenerate problems ( see Chapter 4 ). Then

its solution , @y, , exits and belongs to cH ()N C’((ZZ) for all ¢t € I.

Step 3)  Let Jsiiy, be a mollifier of @n¢; having a compact support in
Q. Then Jstin., € C °°(§:2) Let us show that we can extract a subsequence

{ J5tne, } such that
”Jaﬂnen ——&H HL(&) <e for €>0.

Consider || Jsiine, — @] ;1 g, Then

A

| Tstine, =it 1y < ||J5an€n—a|[ilén@_ /Qén |V (Jsiine, —a) | da

< / e, |V (Tsiine, ~&)'2dx+[ e, |V (Jsiine, — @) dz (3.11)
N\ &

m

Lemma 3.1  If c2d(2)? > Gne,(z) > () > c1d(z)” is satisfied for

1 >a > 2and cy,co > 0, then we have a relation such that
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an(z) < ne,(z) < cdnt®(x) for all x in a neighborhood of a9,

groof We obtain c@nen(x)gf{en(x) > cc1dl, (x)d(x)® by multifying
e (

) into @, (z) > c1d(z)® ,where a,c > 0 are chosen so that
(

x) > ¢y for all x in the a neighborhood of Q. Thus we have

ccla €n
c@}ltf(x) > cod(x)® > @pe, () for all x in a neighborhood of 0. Hence
c@}ltf(x) > Qnpe, () for all x in a neighborhood of o9,

Therefore, By Lemma 3.1 we obtain

(3.11)§ﬁ @t | V(T siine, — @) | de
N\,

= 2

+ﬁ Gne, | V(Jsline, — @) | dz
Qo

< esup{ag,, e € O\ Qu} || Jstine, — |y @na,

For a given € > 0 , we can make the first term smaller than € by choosing

m sufficiently large. Now let us consider in (3.12)

| Jstine, (t) — ()||H1 @, foralltel

Aney

Then

| Jstine, (t) — u(t) ”i’ém (@)
=< dne, V(Jstine, — 1), V(Jsline, —U) >
- / e (Jsiine, — @) - VT giine, —@)de  (3.13)
e

Remark 3.2) aVw- Vw = V- (waVw) — wV - (aVw)

o
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(3.13) = / V - ((Jsitine, — @)ane, V(I siine, —a)) dz

- / (T siine, — W)V - (Gne, V(Jstine, — @) dz (3.14)
Qo

Lemma 3.2 fQ ((Jstne, — @)ane, V(I stne, —0))de =0

for a sufficiently large m.

Proof [5 V-(awVw)dr= [;q (awVw): - ndo= Jos. awaw do
by green’s formula . Let a = Gn, and w = Jstine, — ¢ . Then since

Jstne, —u = 0 for sufficiently large m ,

/ anen(*]éanen - a)w do =0 [
o

By applying Lemma 3.2 and (3.10) to (3.14), we obtain
6:14) = = [ (sitne, =)V - (@ne, T Tsiine, ) da
= - /Q (Jstine, — @) {(Jsiine, — @)¢ = (Fac, (Jstine,) = fae, (@)} dz
< | Tstne, =i ||, (| (Tsine, = @)e ||, + || Faen (Jsiine,) = Fae, (@)]|,) (3.15)

Lemma 3.3 ., is equibounded in Ly ().
Proof Let Anc iine. =V -« (Gne, Viine,) and vy (t) = tine, (t).
Thus the equation of (3.10) implies

Un(t) = Ane, Uine, (1) + fnen(anen(t))

and we set

Un,o = aO,n = Anenao,n + fnen (ﬁo,n)-

Then from variation of constants formula , we obtain

t
vn(t) = elAnen Un.o +/ e(t=T) Anc, Fre. / (iin (7))vp (7) dr.
0
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i The Notation IV (3) implies that fne, ' (iin(7)) is bounded by a constant.
Thus

lon(®)lly < llon.oll + / C [lon(Dl dr.

and Theorem 1.8 (A theorem for the Gronwall Inequality) implies
llon (Ol < llonolly e

Since ||vnolly, < [|Ane, o.nll, + ”fnen (@o,n)]|,, we have
lon ()l < llvnoll, £ C.

Thus “anenuz < C where the constant C does not depend on n and t O

Therefore , in (3.15) by Lemma 3.3 we know

” (J(Sanen - a)t “2 + ”fnen (J(Sanen> - fnen(a)nz _<.. C

From (V) of Theorem 1.1 , it is known that if 4., € C’((zl) , then
limg o+ Jstine, () = tne, (z) and lim, o0 Une, = @ uniformly on Q.
Hence, we can make ||Jstne, — @ll, in (3.15) sufficiently small. There-

fore , we can make

for sufficiently large m,n, given € > 0 . Thus, finally , we have
[Jsine, — il ey <

That is , a sequence { Jsin,, } converges to @ in the seminorm ”'”?{3(()) .

We also can make

” Jstne, — U “ L, (0:d,0) < € for a givene; > 0.

-
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Hence from such a relation that
Jstine, — U] < [T stine, — Gne, | + |tne, — @,
we have
| Tstne, =@l sy + 1 Tstne, =] a0 <€

for sufficiently large n , € > 0. Thus we can extract a subsequence {Jsine, }
converging to @ in the norm of the weighted Sobolev space Wi (Q;d, o).
Since C“((ZZ) is dense in Wi(Q:d,a) and Jsiine, € C’OO(SZZ), we have
@ € WiQd,a) C Ly(Q;d,a) . Now let us translate @ back to origi-
nal position and restrict it to the original domain 2 and let this be de-
noted by (ﬁb)IQ = up . Then up is given as a solution of the original
problem (1.18) because it satisfies the boundary condition of the origi-
nal problem. That is , zero at I';y , no boundary condition at I'y , and

up € Wy (Qid,a) C Ly(Q;d,a) .

Now from Lemma 3.3 , we know that
”a"GnHz <C,
where the constant C does not depend on n and t. We can also obtain

“anen“Lg(Q;d,a) < C (316)

by using the Ly (€ d, o)-norm instead of the || - ||, -norm given in Lemma

3.3. Then (3.16) implies
| tne, (t + ) = e, () ||, (@40 < Ch forallt € Tandn e N (3.17)

where C does not depend on n and t . Since ., converges uniformly

to @ in Ly (Q;d,a) , it is clear that (3.17) implies the Lipschitz continuity
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of @ in Ly(Q:d,a) . Thus (3.17) also implies the Lipschitz continuity of
up since the property of Lipschitz continuity is invariant under translation
and restriction of the domain .

It remains to show that u; is a weak solution of the problem (1,18).

The proof is similar to that of [13] . Let us take a fixed test function
¢ € CH I, Ly(:d, ) N C° (1, W3(sd, @)
Since tne, is a classical solution of (3.10), we have for T € I,

T
< P(T),lne, (T) > — < ¥(0),80,n > —/ < P(t),dine, (t) > dt
0

T T _
= —/ < e, VU(t), Viipe, (t) > dt +/ < P(t), fre, (Une, (t)) > dt
0 0 (3.18)

Remark 3.3 By maximum principle,

6—252T

< fine, <M = e*T max{sup o ,,0}
Q

tUpe, € C%1 (52) and  ||Une, ||,z 1s independent of n.

Therefore {iin., } is compact in C(Q) for all t € I. ( See Dong [12] )

By Remark 3.3 , it is clear that the first line in (3.18) converges to
the same expression , where ., is replaced by 4 if n tends to infinity.

Similarly
<1, Faen (fine, (£)) >—< ¥(t), Fa(t)) >

uniformly with respect to ¢t € [0,T] by Remark 3.3 and the assumptions
of Notation IV. Let us show that < ane, V(t), Vine, (t) > converges to
< aViy,Vu(t) > as n goes to infinity. For let € > 0 be given,
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|< dne. Viipe, — aVi, Vi >|
g[ e, — | [Vine. | V0] dz + |< @V (iine, — @), Vi >|
Q
1
Scllanenllf{ém () sup {|dne, (¢) — a(z)| | z € Q}? ” Y “ 1,2

+ +

[ iV (e, — i) - Vi da

[  @V(dne, — @) - Vo da

O\
Selline, Nl sup{lane,(z) —a@)l |z € 2\ Qa}|w ],

telliine, = il gy ¢

e sy + 1l ) sup (1) Lo € R\ @} 0],
SGW ”1,2’

for sufficiently large n.

Lemma 3.4 |linc, — illg1q,) < € for sufficiently large m , n and
Nane i@y < e M@l @ < ez, where ¢; and ¢; does not depend on n.
Proof ||tne, — a”Hé(fzm) < || Jstine, — tne, || + |Jstine, — all .

The right side can be made sufficiently small since ||Jsine, — @|| < € for
sufficiently large n , m from Step 3. Hanen”Hé(Qm) < e, ”a”H;(fM) < ¢

are shown by (3.17) , because & € Wi (% d,a) .

To prove the last inequality one has to use Lemma 3.4 and the assumption
of Step 1 . First we can choose m such that the third term is as small as
desired and then make n so great that the first two terms are small. This

implies that @ is a weak solution of (3.9). Thus u, is also a weak solution

of (1.18). O



61

The Proof of the Uniqueness

It is sufficient to show the uniqueness of a solution of the problem (3.9)
in order to show the uniqueness of a solution of the problem (1.18). Thus
supposse we have two solutions ¢ and @ of the problem (3.9) with the
same initial value. Then @ = ¢ — w would be a weak solution with ug = 0
and f(@) replaced by F(t) := f(&(t)) — f(w(t)). We must show that @ is

identically zero. Let us introduce the function

0 for 0<zy<r
Urn(z) = rn(zn)={ (n|nr)* = (n[nzx])* for r<ay < 1
1 for xny 2> }1{

where (Injlnr])* = (In|ln )" =1,0<e< 1.
Let S, = {z = (3,2') € Qwitha’ > L, & € RN~!}. Let us also define
Ryt = w(x) ¥pn(z). Then it is clear that R, ,u(z) = a(z) for all x € Sp.
Lemma 3.5 lim,—o < aVR, 4, Vi >=< aVua,Vu > and

limn_soo < @V Ry nit, Vi >=< aVii, Vii >.
Proof)

lim < aVR, u,Vu >= 1irr{) < aV(u(z) - Yra(z)),Va >
r—

r—0

= lim < dty,n(2)Vii(), Vii(x) > + lim < @i(2) Vibra(2), Vii(z) >

The first limit on the right-hand side is equal to < aVa(z), Vi(z) > since

Yy n(x) goes to one as r tends to zero. We show first that the second limit
L L

does not exceed lim,_,o < aVa, Vi >2 - < 4V, n, UV, >2 in modulus

and is equal to zero. By virtue of the fact that ng;,; =0for0<j < N-1,
J
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| 2
<AV iV > = / ann(@)(2z2) a2 da
Q

we have
\
p) 2~
< 02[ w?\;(%) @* dx (3.19)
)
|

since czz% > ayn(z) from condition (1.19).

Lemma 3.6 We will always consider that the function u(x) for zx > 0Ois
extended to zero outside the domain Q . If v € W} (Q;d,a) and the

condition (1.19) is satisfied , then

l—a
li| < czp? when a >1

1
o] < c¢lnzy|2 when a=1
where ¢ > 0 1s a constant.

Proof Inthecasea >1,

A _a a 2
ﬁ2(x)_—_[/ $N2$]%78z_1jvd$]\[]
TN
A 2.2
=1-a|™" |x}v~a—A1-01/ 2 (gos) dTN
TN
and in the case a =1 ,
A 11 2
ﬁz(x):[/ J:N2J:]2\,£fjvdx]v]
TN
A A .
S/ Ty drn /m(ai‘jv) dry
TN TN

A
~ (2
:llnA-—an:NI/ xN(azlJ‘V) dz N
xN

where A is so large a number that all of Q is situated in zy < A . Then
u € W(Q;d,«) and the condition (1.19) implies
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-«
li] < cay? when a >1
L
li| < cjlnzy|2 when a=1

where ¢ > 0 is a constant [

Thus in the case &« > 1 by Lemma 3.6 .

2

l—«
1-a 2
(3.19) S0202/ a:‘fv(a:Nz ) (aai’;v") dz
QO
8y 2
203/~a3N(—8—1i—1’v) dx (3.20)
Q
where ¢3 = ¢cyc? .
Remark 3.4
0 for zn >,
Yy € 1
Do =\ znnen|(nnen) ° for r<zny <7,
0 for zn > %

%%fj—’vﬂ is obtained by direct differential of v, function.

Thus by Remark 3.4 ,

— 1
(3.20) - /flﬁ{T‘S-TNS%i} ooz (nfin 2 )7 a0

where ¢4 = c3€? and the last term comverges to zero as r converges to zero.

In the case @« = 1 , by Lemma 3.6 and 3.7, (3.19) becomes

Yy n 252 1
02/ xN(‘g——‘) " dx < 04/ = dw
& TN QO{TSCCNS%} zn|Inzy|(In|ln & 1)

The last term converges to zero as r converges to zero. Thus we have that

since 1/n goes to zero as n — oo and r goes to zero , for a 2> 1,

lir% < aVYpp, WVr, >=0and lim < UV, Vr, >=0.
r— n—ro0
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Since 1 is only defined for t € I , we extend it continuously to R by 0 for
negative arguments and by u(T) for t > T . To obtain uniqueness of the

solution , we use a test function such that

1 t+6
on,s(t) = —/ R, u(7)dr whered > 0.
’ 20 Jys

Now we have
ons € CHI, Ly(€) N CO1, Wh(sd, )

and

Pn,s(t) = 21—6Rr,n(u(t +6) —u(t —9)).

We first want to let § converge to zero.
T T {
/ < Gns(t),aft) > dt = / 55 < alt+8) —at - 8), at) > dt
0 0

//625 ra(@(t +6) — a(t —6))a(t) dzdt

o ST, s,y = N 5,) + K

where K, :=limgs_ o+ [) [q. o5 Rrn(@(t +8) — @(t — 8))i(t) dadt,
1
| K| < fOT cMvol(S¢)2 dt. To verify the above inequality one uses the

Lo-bound and the Lipschitz condition on u .

Since & € C(I, Lo()) N C°(I,Wi(€Y;d,a)) , we deduce

T T
—/ < aVn s(t), Va(t) > dt — —/ < aVR,u(t), Va(t) > dt
0 0

and

T T
/ < pns(t), F(t) > dt = / < R, nu(t), F(t) > dt.
0 0
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as d approaches zero . Since 4 is a weak solution , we obtain

[

(T ey = 1O, ) — a7, s,y = 1@ONT,(s,) + Ko

2
T T
= —/ < aVR,nu(t), Va(t) > dt +/ < R, nu(t), F(t) > dt
0 0

Now we let n tend to infinity and use the above lemma and @(0) = 0. Then

we obtain

T T
G, &) = 2 /0 < ava(t), Vi(t) > dt + /0 < a(t),F(t) > dt
(3.21)

Now from assumptions of Notation IV for f,

IF@®)|, = | F@@) = Fw@)|, < o) —a@], = |a®], (3.22)

Thus applying (3.22) into (3.21) , we obtain

T T
a2 [ Ny e < 2 [ (O],
Thus
- 2 T e
““(T)”LQ(Q) < 26/0 ““(t)”LQ(Q) dt.
From Theorem 1.8 ( A theorem for the Gronwall Inequality ),

This implies that @ has vanished identically. [
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CHAPTER 4

THEOREMS FOR NONDEGENERATE PARABOLIC EQUATIONS AND
DEGENERATE PARABOLIC EQUATIONS

This chapter provides some known results for nondegenerate parabolic
equations and degenerate parabolic equations with principal part in diver-
gence form : (1.1) or (1.2). We deal mainly with the solvability of the first

boundary value problem for them.

4.1 Nondegenerate Parabolic Equations

We begin with the case of nondegenerate parabolic equations. Let us
consider the problem of finding a function u such that

{ ut = j‘a%;ai(xatauaum) —|—b($,t,U,U:c)

: : (4.1)
ulp. = Y|y, for some given function .

We make the following assumptions :
(a) For (z,t) € Qr and arbitrary u , g—;?fifj >0,
Jj p=

A(z,t,u,0)u > ~bju? — by are satisfied where b; and b, are nonnegative

constants and
Az, t,u, ug) = bz, t,u,u,) — (8a;/Ou)us, — Oa;/dz;

Here for (z,t) € Qr, |u] < M, and arbitrary p , M is taken to be
maxg, |u7| < M,7 € [0,1] . {u"} is the solution to the family of the
following problems. For each 7 and for w(x,t) given, consider the linear
problem :

Uy — [7. da;(z,t,w,ws) + (1 — 7—)5]]

t 3wxj 7 Ucci:cj

+rA(z, t,w,wg) — (1 — 7)Yy — AY] =0 (4.2)
vlp, = ¢lp,, 0721
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for determining the function v. We introduce a linear Banach space, Bs,

of functions, w(z,t) , that are continuous together with their derivatives

with respect to x in Q1 and have the finite norm

) )
|y, = |wl$) + waly

under certain restrictions on the functions a;,a,v and S . The problem
(4.2) defines an operator ¥ in Bs which associates with each function w of
Bs a solution v of the linear problem (4.2) : v = ¥(w;7) . This operator
is nonlinear and depends on 7 . Its fixed points for 7 = 1 are solutions to
the problem (4.1). Let u™ be one of the fixed points of the transformation
¥(w;7) . That is, let w™ = ¥(uT;7) . This means that «” is a solution to

the nonlinear problem

Uy —diwi['rai(x, tau,ug) + (1 — 7)ug,]
+7b(z, t,u,uy) — (1 —7)(¢py — AyY) =0 (4.3)
UIFT :’(MI‘T’ 0<7<1

where a; and b are continuous, the a;(z,t, u,p) are differential with respect

to X, u, and p , and a; and b satisfy the inequalities

VE? <Qf‘i§§]<ug, v >0 and

S0 (il + | 250+ o) + 75y | 225|181 < (1 + [pl)?

(c) For (z,t) € Qp.|lul < M and |p| < M; , Here M, is taken to be
maxg, |[ul| < My, 7 € [0,1]. The function a;,b, %ﬂ/ g—%L and —5;“ are con-
tinuous functions satisfing a Holder condition in x,t,u and p with exponents
B, g, B and 3 respectively .

(d) a; and b are Lipschitz continuous in t ;b is differentiable in u and p in

(z,t) € Qr,|u| < M,|p| < M; . The Lipschitz constants , lgz

8p
are bounded.
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(e) ¥(x,t) € H2+6’1+§(QT) ( See Appendix 2 (18) ) and satisfies com-
patability conditions on Sy = {z € 9Q,t = 0}. Thus the given ¢ satisfies
Yy — Fai(z,t,9, %) + b2, t,9,1:) = 0 on So = {z € 09,1 = 0}.

(f) 8Q € H2+# (3 > 0). ( See Appendix 2 (19) for H**7)

(8) ¥ls, € O21(S1); maxeen [6a(z,0)] < oo v € H2(Qr)

(h) S € O%. ( See Appendix 2 (22),(23) for O*'(ST), O? respectively )

Theorem 4.1. Suppose that the conditions (a) - (f) hold , then there
B _
exists a unique solution to problem (4.1) in the class H*PM*3(Qr) .

Moreover , this solution has derivatives uq: in Lo(Q71) -

Theorem 4.2. Suppose that the conditions (a) - (¢), (g) and (h) hold.
Then there exits at least one solution u(x,t) of the problem (4.1) belonging
to H O"%(QT) and having u, bounded in Q7 and derivatives us, uz, that
belong to H p ’Lg_ (Q1). For the uniqueness of such a solution, it is sufficient
that the function b(z,t,u,p) satisfies a Lipschitz condition in u and p

uniformly on any compactum of the form {(z,t) € Qr,|u| < ¢, |p| < ¢} .

Theorem 4.3. Suppose that the conditions (a),(b),(g) and (h) hold. Then
the problem (4.1) has a solution u(x,t) in HO"%(QT) N W;’l(QT) with u,
in Hr’g(QT) and with finite maxg, |u.| . If, furthermore , b(x,t,u,p)
satisfies a Lipschitz condition in u and p (uniformly on any compactum),

then the solutiion is unique in the indicated class.

( See Appendix 2 (7) for Wy (Qr) )

Actually it is possible to go further in weakening the conditions of the
theorem and arriving at generalized solutions of equations of problem (4.1)

having only derivatives of first order.
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Theorem 4.4. Suppose the following conditions hold.
(i) For (z,t) € Q7 and arbitrary u and p , inequality

ai(x,t,u,p)pi + b(a:,t,u,p)u S Vp2 - (fb?(x,t)lula - ¢1(£,t),

where v > Oa¢1 (xat) € Ll(QT)aa € (0,2),¢2($,t) € ng,rg(QT) and the

number ¢go and 7, are subject to the conditions ;1; + 2—;‘; =1+ -}(2 —

@), ry,q2 > 1 is valid and |a;(z,t,u,p)| (1 + |p]) < p(1+ Ip))* + (1 +
|uf*)¢s(,t) and [b(z, t,u,p)| < p(1+ |p)*+(1+u|*)¢s(z,t)  witha <2
and ¢3 € Ly, ry, 'rl; + ﬁ; <1; r3,qg3>1.

(j) For (x,t) € Qr , arbitrary p , and |u| exceeding some constant K
ai(z,t,usp)ps > vipl* — plul® — u?s(z,t) and —b(z,t,u,p)u < vip[* +
u|u|ﬁ + u?g3(x,t) with 8 <2+ % .

(k) For (x,t) and (z',¢') € Q7 and arbitrary u, v ,p , and q,
(pl - ql)[al(rat/uap) - ai(xatauaqn > V(|U|)|p - q|2
and lai(xatau7p) - ai(xatauaqn S M(I“l)lp - Q|

|ai($,t,U,p) - ai(ﬂv’,t’,u,p)l <

e(lz — | + [t = ¢'| + [u — o)lpl + p(lu] + o]) + da(, 1) + ¢a(’, 1)]

|b(z,t,u,p) = b(z', 1, v,q)| < €|z — 2’| + [t — ¢]
+u = v| + |p — gD [p(le] + o] + |p] + la) + d1(x,t) + &(2', 1')]
where v(7) and p(7) are continuous, positive functions of 7> 0, €(7) is a

continuous function of 7 > 0 that is equal to zero for 7 = 0, ¢4 € L2(QT),

and ¢1 € L1(Qr) . Then the problem (4.1) with ¢|g = 0 has at least
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T
one solution in H"2 (Q7) N W;’O(QT) with some r > 0 for any function

(RS Hé’g(rT) )

Actually the existence of generalized solutions u of the boundary value
problems for equations of the problem (4.1) in the class of functions having
only derivatives u, can be proved in another way without using theorem
(4.1) - (4.3) on their classical solvability . Namely , such solutions can be
obtained as limits of approximate solutions , u”", computed by Galerkin’s

method. Let us consider such a problem as follows ;

U == ai%ai(a:,t,u,uw) + b(:v,t,u,um)
ulg, =0 (4.4)

ul,_g =0 forany o(x)€ L2(Q)

We assume such conditions as follow ;
(1) For (z,t,u,p) € {Q x [0,T] x E; x E,} , the function a; and b are
measurable in (z,t,u,p) and continuous in (u,p) for almost all (z,t) € Qr

: a; satisfy the inequality
L' _
jai| < 1 (z,0) + clul ™ +clp|™ ™,

¢1 € Ly (QT) where ¢* < g = ﬂ?:'—2),m’ = -2 with m > agf‘z‘ forn > 2

m—1

and m > 1 for n = 1 : and b satisfies the inequality

*

b < ba(e,t) + clul T +clp| T, é € Lo (Qr)

where ¢’ = 5—%; and m* <m .

(m) For any function u(z) € V(E/}n(ﬂ) , ( See Appendix 2 (6) for V(E/}n(ﬂ) )

T
/[aium—l-bu]da: > 1// [um|mda:—c(t)/(1—l—u2)d:v,1/ >O,/ c(t)dt < c
Q Q Q 0



(n) A monotonicity condition of the form

/[ai(x,t,v,vw)——a,-(a:,t,v,uw)](vwi —ug,)dz > / v(lvl, |uzl|) |ve — ue| dz
Q Q

holds, where v(7;,7;) is a continuous positive function for 7, > 0 and

79 > 0 , and v and v are arbitrary elements of W1 () .

Theorem 4.5. The problem (4.4) , for any ¢ € L2(2) , has at least one
generalized solution u from Vi,;(?Q(QT) where

T llu(e,tth)—u(z N3 o, . ..
I 3 < oo if the conditions (1),(m) and (n) hold.

( See Appendix 2 (21) for ‘O/L;%(QT) )

The proofs of Theorems (4.1)-(4.5) are found in Ladyzhenskaya [2].

4.2 Degenerate Parabolic Equations

Let us consider the case of degenerate parabolic equations . We deal

with degenerate parabolic equations which are contained in the class of

the form (1.1).

[ I] Let us consider the first boundary value problem

Ut = (aij(z,t, w)ug,), + bi(w,t,u)uy, + c(z,t,u)u

ue=g = ug(x) (4.5)

Uaaxpr; = ¥(s:1)
where ug,% are nonnegative continuous functions satisfying the compati-
bility condition ug|yq = ¥, - We assume the coefficients of the equation
and the domain to satisfy ;

dai; : : =

(o) aij, bi, c, 3—C;ii ,and g—z’; arein C(Q X R) .
(p) There exists a constant A and a function v such that

1

KV(|T|)|532 < aij(z,t,7)&& < Av(|r|)[¢]*, for all £ € R”
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and (z,t,r) € C(Q x R). Here the function v(r)(0 < r < oo) satisfies

v € C[0,00),v(0) = 0,v(r) > 0(r > 0) and 3§ > 0, > 1 such that

1 <rv(r /f0 s)ds <mfor 0 <r <4.

(q) 0Q € HTPo 3y > 0.

Theorem 4.6. Under assumptions (0),(p),(q) for uo € HP(Q) and
Y € Hﬁ’g(aﬂ x [0,T]),3 > 0, the first boundary value problem (4.5) has
a generalized solution u . Moreover , u is Holder continuous in Q). Here a
generalized solution for the first boundary value problem (4.5) is defined
to be a nonnegative continuous function u in @ , if it satisfies the initial
and boundary values pointwise and satisfies the equation in the following

sense : For all p € H'(Q)NHY(Q), ¢l,er =0 (2 €Q), ¢loaxp,m =0
/ [U’(pt + Aij(xat’u)(lowi%‘j - (Al(xatau) + Bz(x,t,U))prz
Q
+ (c(z,t,u) + B(z,t,u))p] drdt + / uo(z)p(x,0)dx
Q

"/ Aij(S,t,@b(S;t))a%(fvt) cos(N,z;) cos(N,z;)dsdt =0
a9 x[0,T]

where N is the unit outer normal at 9€? and

Aij(a:,t,r)——-/ a;j(z,t,s)ds, Aj(a:,t,r):/ %aafj (r,t,s)ds
0 0

Bi(z,t,r) =/ bi(x,t,s)ds, B(x,t,r) :/ %(a:,t,s) ds
0 0
(See Dong [12] for the proof of the Theorem 4.6).

[II ] We consider a problem in a class of degenerate parabolic equations
on a bounded domain with mixed boundary conditions such that
up = div(Ve(z, t,u) + f(z,t,u)) + h(z,t,u) on Qr
u=uy on (8Q\I)ruUQ x {0} (4.6)
(Vo(x, t,u) + f(a:,t,u)) n=g(z,t,u) on X
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where Q is a bounded domain in RY which satisfies the uniform C’-
regularity property . T is a relatively open subset of 9} , and ¥ and
A0\ ¥ are C? surfaces with boundary which meet in a C 2 manifold of
dimension N-2 . n denotes the outerward unit normal to ¥ at x . Then we
assume that the coefficient functions and the domain satisfy the following
conditions ;
(i) ¢, At € C(Qr XR), Vo6 € [TIL, C(Qr xR) and 6, € C(Qr xR\{0})
, such that ¢(z,t,0) = 0 and ¢,(z,t,u) >0 for all u # 0 .
(ii) f € TIX, C(Qr xR), Vo~ f € C(Qr xR) , and

fu € T, C(Qr x R\ {0}) , such that f(x,£,0)=0.
(iii) h € C(Qr x R) and h, € C(Qr x R\ {0}) , with h(x,t,0) =0 .
(iv) g € C(Er x R) and g, € C(Ep x R\ {0}) , with g(z,t,0) =0 .
(v) up € L®((0Q\ ), UQ x {0}) , with ug >0 .
(Vi) Gus fus hu € L=(Qr X [—M, M]) for every M >0 .
(vii) Given M > 0 , there exists a constant C = C(M) such that
lgu(z,t,u)| < Coy(z,t,u) for all (z,t,u) € X1 X (0, M] .
(viii) Either 02 =X or N =1.
Then since it is possible that ¢, (z,t,u) = 0 , the differential equation of

the problem (4.6) is degenerate parabolic .

Theorem 4.7. ( LOCAL EXISTENCE AND CONTINUATION )

If (i) - (v) are satisfied , for some T7 = T1(ug) € (0,7) ., the problem
(4.6) has a solution , u(z,t) = u(z,t;up) , on Qr . Furthermore , if
T = oo and T} is redefined to be the maximum possible value of t such
that u is a solution of the problem (4.6) on Q; for each s € [0,¢) , then

limy 7, sup{t + Ju(, )]l } = o -



Theorem 4.8. ( COMPARISION AND CONTINUOUS DEPENDENCE )

Suppose (i) - (viii) hold , and let u(z,t;u) and v(z,t;up) be nonnegative
solutions of the problem (4.6) on Q7 . Here T < min{T} (uo),T1(vo)}. If
uo < vg, then © < v on Qr . Furthermore there exist a constant C such

that
/ lu(z,t) — v(z,t)| de < C/ luo(z,0) — vo(z,0)| dz
Q Q

¢
+C// lug — vo| ds
0 Jao\xX
for all t € [0,T7] .

See Anderson [15] for the proofs of the Theorems (4.7) and (4.8).

[ IIXI ] Let us consider the following boundary value problem

Uy = diva(z,t,u, Du) + b(z,t,u, Du) in Q
u(-t)]5q = g(-,t) for almost every t € (0,7 (4.7)
U(,O) = Uo

Here the functions a : Q7 x RV+t1 = RN and b : Qr x RN*! — R are

measurable and satisfy

(a) a(x,t,u, Du) - Du > co|Dul’ - cf)lurs — @o(z,t)
6—1
(®) la(e,t,u, Du)| < e1|DufP ™ + & Jul’F +pi(a,t)

-1 _
(c) |b(z,t,u, Du)| < c2|Dul? 3 —+—c’2|u|(s ! + po(x,t)

for p > 1 and ae (z,t) € Q x [0,T] . ¢;,¢; © = 0,1,2 are positive

constants and ¢ is in p < § < pﬂﬁl . The nonnegative functions ¢; ,
VI
i = 0,1,2 are defined in Qr and satisfy ¢o,07 ",y € Lg(Q1) where

:=(1—ko)xhs ko €(0,1].
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Theorem 4.9. Assume that u is a nonnegative weak subsolution of the

problem (4.7) and g € Lo(S7) , then u is bounded in Q2 x (¢, T],Ve € (0,T).

Theorem 4.10. Let u be a nonnegative weak subsolution of the problem

such that
uy = diva(z,t,u, Du) inQr,p>1
u(-,t)|5q = g(-,t) for almost everyt € (0,T)
u(+,0) = wuyg

Here the function a : Q7 x RN*T' — R" is measurable and satisfy

{ a(z,t,u, Du) - Du > co|Dul’
la(z,t,u, Du)] < c1|DulP!

for two given constants , 0 < ¢g < ¢;. Then

sup v < max{esssup g; ess sup ug }.
QT St Q

This is called the weak maximum priciple.

Let us consider the inequality above. Then

u(z,t) < max{esssupg;esssupuo} for all (z,t) € Qr.
St Q

If g =0 on ST and intially ug > 0 is given , then
u(z,t) < esssupuy = esssupu(z,0) forall (z,t) € Qr.
Q Q

Thus for each t , 0 <t < T, there exists a constant R; such that u(x,t) =
0, || < R; provided that u(x,0) has compact support . This means that

the speed of propagation of the solution is finite.

See [41] for the proofs of the Theorems (4.9) and (4.10)



[ IV ] Theorem 4.11. ( GLOBAL MAXIMUM PRINCIPLE )

Let u be a weak solution of (1.2) in Q7 such that ¥ < M on I' . Then
u(z,t) < M +ck for almost every (z,t) € Qr . Here M , ¢ depends only on
T , || and the structure of (1.2) while &k = (||b|| + ||d||) |M]| + (I £l + llgl])-

Theorem 4.12. ( LOCAL BOUNDEDNESS )
Let u be a weak solution of (1.2) in Q7 . Suppose that the set Qr(3p) is

contained in Q7 . Then for almost every (x,t) in Q7 (p) ,
_n+2 .
|u(x,t)| < c(p 2 ”U”2,2,3p +p k),

where ¢ is a constant depending only on p and the structure of (1.2) , and
E = I7Il + llgll + ||#]] - In particular , weak solutions of (1.2) must be
locally essentially bounded . Here we denote by R(p) the open cube in E"
of edge length p centered at Z , and define Qr(p) = R(p) x (I — p*,t) and
let (Z,t) be a fixed point in Q7.

Theorem 4.13. ( HARNACK INEQUALITY )
Let u be a nonnegative weak solution of (1.2) in Q7 . Suppose that the set
Q7(3p) is contained in Q7 . Then maxg: (p)u < Cming, (v + pPk)
where C is a constant depending only on p and the structure of (1.2) and
k=1 +llgll + IRl Q7(p) x (- 8p* T = Tp?)

See Aroson and Serrin [14] for the proofs of (4.11),(4.12), and (4.13)
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CHAPTER 5

AN APPLICATION FOR DEGENERATE PARABOLIC EQUATIONS
WITH PRINCIPAL PART IN DIVERGENCE FORM

This chapter provides an application of theorems for degenerate para-
bolic equations . We consider unsaturated flows of liquids ( incompressible
fluids ) in a porous medium . Then in a given domain a certain amount of
liquid is concentrated at a relatively high pressure . As time progresses,
the liquid will flow toward areas of lower pressure . The flow will continue
as long as a sufficiently high saturation is maintained. When the satura-
tion falls below a certain residual value , the flow will cease . Thus the
problem is to determine the amount of liquid in any given point of the
domain at any given time . Underground, the flow is usually quite slow,
and temperature considerations play no role , so it is governed by two laws,

the first being Darcy’s law :

qg=—A(gradp+ f) (5.1)

which relates the mass flux , q , to the gradient of the pressure , p , and to

the external body forces , f , and the second being the continuity equation:

0
5;(0995) + div(pg) = g, (5.2)

where p denotes the density of the liquid and ¢ denotes the porosity of the
medium which is a measure of the pore volume avariable to the fluid and
S denotes the saturation which gives the fraction of the pore space actu-
ally occupied by the fluid. A = (a;;) denotes a positive (or nonnegative )

definite , symmetric matrix which represents the resistence of medium to
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the flow of the particular fluid in question and g denotes a function which
arises , in the event that sources or sinks are present, e.g. absorption or
pumping of the liquid out of or into the domain. The known functions
p,,S,9, f,a;; are , in general , functions of pressure , temperature , posi-
tion , time , etc . and their dependence on these quantities is complicated
and difficult to measure. Consequently , it is necessary to make assump-
tions of both a physical and a mathematical nature to make the system
(5.1) and (5.2) amenable to a mathematical treatment. Thus we make the
following physical assumptions :

PA 1) Temperature dependence will be neglected.

PA 2) A = (a;;) is a positive (or nonnegative) definite , symmetric
matrix which depends only on x .

PA 3) p is a positive constant so the fluid is incompressible.

PA 4) fand g are functionsof x ,t ,and p .

PA 5) The porosity ¢ depends upon x and p and it satisfies the inequal-
ity 0 < ¢ < 1. As afunction of p , ¢ is nondecreasing and for p sufficiently
small , ¢ is independent of p .

PA 6) S is a function of x and p and satisfies the inequality 0 < .5 < 1.
As a function of p , S(x,t) is nondecreasing and for p sufficiently small , S

is independent of p .

By combining equation (5.1) with (5.2) , we obtain

0 0
P&(@S) ~3

(ai(x,t,p,Dp)) =g (5.3)

K2

where a;(z,t,p, Dp) = aijgaa% + (ai;jf;). In view of the assumptions PA 1)
- PA 6) , this equation is a nonlinear , partial differential equation in p

alone with principal part in divergence form which is of parabolic type but
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which for certain values of (x,t) , p . Dp , degenerates. Let the role of p in

(5.3) to be played by u and the role of ppS to be played by b(x,u) . Then

the equation (5.3) becomes

0 0
ggb(:c,u) — —é—a:—iai(:n,t,u, Du) = g(z,t,u) (5.4)

Let us consider a problem where the equation (5.4) is combined with

the initial-boundary condition
u(z,0) =up(xz),z € Q and wu(z,t)=0, (z,t)€ 7. (5.5)

We now make the functions in (5.4) the following mathematical assump-

tions on which will allow us to treat the initial-boundary value problem

(5.4) , (5.5) :

MA 1)  b(x,u) is defined and continuous for all z € Q, —c0 < u < oo
and 0 < b(z,u) < 1. As a function of u , b is nondecreasing and satisfies
a uniform Lipchitz condition . Finally, for any € Q , b(x,u) = 0if © <0
and b(x,u) is strictly increasing in u for u > 0 .

MA 2) The qa;; , with a;; = aj; are defined as only a function of x and
continuous on . Furthermore, there exist constants ag,a;, a1 > ag > 0 ,
such that for all z € Q, £ € R™,

n

a0 Y <Y (@)l <ary &
=1 1=1

i=1
MA 3) C(x,t) and f(x,t) are defined and continuous on Qr. Further,
C(z,t) > 0 and as a function of t , C(x,t) is continuously differentiable in
Qr and ££ > 0 . Finally, f(x,t)=0 for (z,t) € Sr.
MA 4) ug(x) is defined and continuously differentiable for z € Q.
Further, ug(z) > 0 for z € Q and wo(z) = 0 for z € 0.
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Now we write the equation (5.4) as
— 0 Ju 0
Z %(aij(:v)a?j)—gib(z,u) =C(z,)u+ f(z,t), (z,t) € Qr, (5.6)

where div (A f) + g is given by C(x,t) u + f(x,t) .
Then we define a generalized solution for such a problem that the equation

(5.6) is combined with an initial boundary condition (5.5) as following ;

A function u € W%’O (Qr) is said to be a generalized solution of the prob-
lem (5.6) from W;’O(QT) if for all functions ¢ € W1(Qr) with ¢(z,T) = 0,
it satisfies the integral identity

- Oou 0p  Op .
L0 a5 = bt il dede = [ ol 0t (@) da

T 4,j=1 Q

- /Q [C o, yug + f(z,t)¢] dadt  (5.7)

Then the problem (5.6) with an initial boundary condition (5.5) under
the assumptions MA 1) - MA 4) has at most one solution in sense of the
definition (5.7) for a generalized solution . A special case of this result
appears in the paper [42]. The existence theory in the Guenther paper
[42] actually is carried by means of finite differences so that a numerical
method for solving the relevant equations is obtained as well .

Let us seek a generalized solution for the equation (5.4) with condi-
tions u(x,0) = ue(z) and u(z,t) = ¥(z,t), (x,t) € St where ug,? are
nonnegative continuous functions satisfying the compatibility condition
uglaq = Y|,y - In order to apply Theorem (4.6) for the existence of a
generalized solution, we need some mathematical assumptions. By the
assumptions PA 1) - PA 6) , we know that 0 < b(z,t) < 1 and b(x,t) is

a nondecreasing function of u. Thus, under conditions of slow flow , we
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can assume that b(x,u) is almost linear as a function of u. Thus . let us
replace b(x,t) by

cu+dy, ifu>0,

cu+d =
ok { cu+dy, ifu<O0,

(5.8)

where ¢ and b are constants satisfying conditions so that ¢ > 0, 0 < dj <
1, k=1,2and di > dz and sUp;_ o cycoo zcay [0(Z,u) — (cu+di)| < ¢,
almost every (x,u) for arbitrarily small €. Hence by inserting cu + dj, into

(5.4) instead of b(x,u) , we obtain

ou o 1 ou 1

at @(Eaijga) = ‘Cfg(l“,ta u)

If div(a;;f;)+g(z,t,u) can be expressed as b;(x,t,u)u,, +C(t,u)u and the
assumptions (0),(p),(q) are satisfied in the problem (4.5) with ug € H?(Q)
and ¢ € Hﬂ’g(ﬁﬂ x [0,T]), B > 0, then Theorem (4.6) can be applied.
Thus the equation (5.4) with u(z,0) = uo(z) and u(z,t) = ¥(z,t), (z,t) €
St has such a generalized solution u as defined in the Theorem (4.6) and
the u is Holder continuous in Q7.

Next let us consider a problem with the equation (5.4) under such
boundary conditions that the value on a certain boundary is zero and
the other boundary has no condition. This problem occurs in a porous
medium consisting of several components and allows certain degeneracies
in A = (ai;j). That is , (a;;) is a nonnegative definite , symmetric matrix
which depends only on x. If the conditions of Notation I - IV and assump-
tions in Chapter 3 are satisfied , then Theorem 1.4 can be applied. Thus,
there is a weak solution which is Lipschitz continuous with respect to time
with values in Ls(Q;d, ).

My Theorem 1.4 is a generalization of a Theorem in [42] though the

methods are completely different and it is really a better theorem since it
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allows certain degeneracies in A = (a;;) and is more useful to investigate
certain degenerate systems , in particular, those that arise in modeling
fractured media consisting of several components , among which some

components have a tight boundary and the others do not.
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APPENDIX 1

Basic Notation

Let us introduce a number of the symbols and notation used in this
dissertation .
R™ is the n - dimensional Euclidean space .
z = (x1, -+ ,Z,) is a point in R™ .
Q is a domain in R" .
S = 09 is the boundary of the domain Q : Q=QU S .
Qr ={(z,t): z € Q,t € (0,T)} is a space-time cylinder in R"*!.
St =A{(z,t) : 2 € 0Q,t € [0,T]} is the lateral surface of Q7 .
Ir=5SrU{(z,t): 2 € Q,t =0}.

n is the outward unit normal to 95} .

du 8°

Symbols ug,; = 3e; OF Uazia; = 7, B“wj denote classical and generalized
derivatives

1

= 2
le - (2?—1 .732)2 .732 = |.73| o (plap2a Tt apn)a Uy = (le,' e aua:n)a

N

Il = (323 1P2)2 pP=1pl uel = (D, wde,)?, ud = fual”
= (ue,)” ;s [tae] = (T U?cixjﬁ :
a(a: t,u,p) =al(zy, "+ Tn,t,U,P1,° " ,Pn)
arla(z,tu(@, 1), ua(z, )] = & + §ous, + gt
The summation convention is assumed to hold , that is when the same

index occurs twice in a term, one sums

o = (ay, -+ ,qn) is a multi-index, that is an n-tuple of nonnegative inte-

gers a; .
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D = D" --- D&~ denotes a differential operator of order |a| = 377, a;

iij:-%fforlSan.

Au=V - (aVu), A,u=V-(a,Vu)

lall, = lull @+ el = Bl - Hulfiyoy =< 0V, V>
<u,v >= [u(z)v(z)de,

< aVu, Vv >= [, SN ai(2)0u(z)dv(z) de.

3,j=1
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APPENDIX 2

Definitions of the Basic Function Spaces

(1) L,(Q) , p > 1 is the Banach space consisting of all measurable

functions on 2 having the finite norm :

=

p
lullyso = ([ 1 d)” 1< p <00 and [l = esssup

(2) L, (Qr) is the Banach space consisting of all measurable functions

on ()7 with a finte norm :

1
p

T r
lullg,r.0r = (/ (/ u(z,6)|%dz)" dt)  where ¢>1 and r>1
0 Q

Lg,o(Qr) will be denoted by Lq(Qr) and the norm |||, . o by lIllg.0, -
Lo = L7(0,T): L))

(3) _C’_l_(fi) . For any nonnegative integer 1 , C'(Q) is the vector space
consisting of all functions ¢ which , together with all their partial deriva-
tives D% of order |a| < I , are continuous on 2 . The subspaces Co(Q)
and C$°(Q) consist of all those functions in C'(2) and C'* , respectively ,

which have compact support in €2 .

(4) C?1(Q) is the set of all continuous functions in Q having continuous

derivatives ug, Uge, us In § .

(5) WS(Q) for k nonnegative integer is the Banach space consisting of

all elements of L,(Q) having generalized derivatives of order up to k, in-

clusively , that are pth-power summable on . The norm in sz (Q) is
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defined by the equality

k .
il =3 S 1Dl = | 102wl

=0 (5) ol
The symbol D! denotes any derivative of u(x) with respect to x of order ||

while > () denotes summation over all possible derivatives of u of order].

(6) WE(Q) is the subspace of WkF(Q) in which the set of all functions

that are infinitely differentiable and finite in €2 is dense .

W, (Q) space is the comletion of C°°(€2) under the norm ;
lull p o = lull,q +11Dull, o for weC™(Q)NLp(Q)
V(E/'}l)(ﬂ) space is the completion of C§°(£2) under the norm

0 o0
[ull{”) o = IDull,, o »u € C§(Q)

(7) WqZI’l(QT) for [ integer (¢ > 1) is the banach space consisting of the
elements of Ly(Qr) having generalized derivatives of the form Dy D7 with
any r and s satisfying the inequality 2r + s < 2. The norm is defined by
the equality

21
21 r
lllyg, =>. > IDiDull 0,

J=0 (2r+s=j)

(8) W,°(Qr) = Ly((0,T); Wa(Q)) is the Hilbert space consisting of the
elements u(x,t) of the space Lo(Q7) having generalized derivatives du/0z;,
t=1,---,n square summable on Q7 . The scalar product and the norm
are defined by the equalities

(u,v)m,QT =/ (uv + uzv,) dzdt, ”“”1,2,QT =/ (u,u)1,2,0r

T
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(9) Wi'(Qr) = L2((O,T);T§/§ (Q)) is a subspace of W,**(Qr) in which

the set of smooth functions equal to zero near St is dense .

(10) Wi (Qr) is defined on every cross-section Q; of the cylinder Qr
by the plane ¢ = ¢; € [0,T] as functions from Ly(§:, ) and they change
continuously with t in the norm Ly () with a change t € [0,T] .

(11) Wr(Q;0) is defined as the set of all functions u(x) which are
defined almost everywhere on () and whose generalized derivatives D%u

for order |a| < k satisfy

/ |D%u(z)|Poq(z)dz < oo.

It is a normed linear space when it is equipped with the norm

3 =

o = (3 / D u(2)Po o) do)”

lo| <k

Let € be a real number and let us denote o(z) = [da(z)]° where M C 9Q
and dp; = d(z) = dist(z, M) . Then the weight o(z) is called a power
type weight .

(12) Wr(Q;d,e) or W)(dy,e) s the power type weighted space

corresponding to the Sobolev weighted space W;(Q; o).
WE(@sda,©) = {u= (o) | [ 1D°u(e)Pd5y @) do < o}

for all o, la| < k. L,(Q;dp,€) is the set of all functions u = u(x) satisfying

o = ( /Q ()P dSy (2) da)” < oo
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The norm of the WF(€Q;dys,€) is given by the formula

1
lally prayye = (> I1D%ulD g, P
|or| <k

(13) Wﬁ(ﬂ; d,e)  is the closure of the space C§°(Q2) in the norm |ul}, 4

(14) HL(Q) space is the closure of the smooth functions C§°(Q2) with

—————

support in {2 with respect to the norm

N —
DO J—

= (< aVu,Vu >+ < u,u >)

1
:{/aqu|2 dx+/u2da:}2
Q Q

(15) W), is the Banach space defined to be the space of functions
u € L,(Q) such that

ull? o = /Q lufP dz + /Q p%(2) Y |D*uf dz < oo,

|s|=k

(el oy + Ilullz,)

where p(z) = dist (z, Q)

(16) W] ..  is the corresponding to W, (Q;d,a) when d(z,I') = z.

o]

W1, (Q) = Wh(Q2,0) = W} 4(Q) = HL(Q)

(17) HY(Q)  is the Banach space whose elements are continuous func-

tions u(x) in Q having in Q continuous derivatives up to order [I] inclu-

sively and a finite valve for the quantity |u|g) =<u >8)= Em <u >§{ )

j=0
where < u >§§)= lulg)) = maxgq |u| , < u >g)= 20 |Diu g)) ,

<u >g)= E([l]) < Dy]u >g—[l]) where [ is always a nonintegral positive

number.
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(18) H” l (QT) is the banach space of functions u(x,t) that are continu-
ous in Q1 , together with all derivatives of the form D} D3 , for 2r +s < I
,and have a finite norm . ( See [2] for the norm ) . Roughly speaking , if
u € H2+ﬁ’1+% , then u;;(1 < 7,7 < n) and u; are Holder continuous in t

with exponent g .

(19) H**(Q) (a € (0,1),l =0,1,---) is the Banach space consisting of
the elements C!(Q) for which the derivatives of order ! satisfy the Holder

condition in Q with the power « .

(20) V., 2(Qr) , m > 1 consists of all measurable functions u(x,t) that

are equal to zero on St and have the finite norm defined as

llullo
m,2

= ess Ssu U + [[Uug
¢ on ogtng“ 2.0 + lluall

maQT

21) VX2 (Qr is a completion in the norm defined in (20) of all smooth
m,2

functios that are equal to zero on St .

(22) OY) (I =1,2) is the set of all continuous functions in { having

continuous derivatives in  up to order  —1 , with the derivatives of order
I — 1 having a first differential at each point of Q and the derivatives of

order ! being bounded in Q .

(23) O%1(St) s the set of all continuous functions in St having at
each point of St derivatives u, and u; with the u, being continuous in x
and having a first differential with respect to x at each point of ST and

the functions u,, us, uz, being bounded in St .
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APPENDIX 3

Definition 1) If G C R™, we denote by G the closure of G in R" . We
shall write G CC Q and G is a compact subset of R . If u is a function

defined on G , we define the support of u as supp u = {z € G : u(z) # 0}.

We say that u has a compact support in £ if supp u CC €2 .

Definition 2) A sequence {¢} of functions belongings to C§°(Q) is said
to converge in the sense of the space D(£2) to the function ¢ € C§°(Q)

provided the following conditions are satisfied :

(1) There exists K CC  such that supp (¢, — ¢) C K for every n
(2) lim, 00 D%¢n(x) = D*¢(z) uniformly on K for each multi-index

Q.

There exists a locally convex topology on the vector space Cg° with
respect to which a linear functional T is continuous if and if T'(¢,) = T(¢)
in C whenever ¢, — ¢ in the sense of the space D(2) . This topological

vector space is called D({2) and its elements are testing functions .

Difinition 3) The dual space D'(2) of D(f2) is calles the space of
distributions :

IfS, T, T, € D(Q)and ce C,

(1) (S+T)(¢)=5(¢) + T(¢) for ¢ € D(Q).
(2) (¢ T)(¢)=cT(¢)for ¢ € D(Q) .

T, = T in D'(Q) if and only if T,(¢) = T(¢) in C for ¢ € D(Q) .

Definition 4) The derivative D*T of a distribution T € D'(Q) is de-
fined as (D°T)(¢) = (=1)IIT(D%¢) for all ¢ € D(Q) .
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Definition 5) A function u defined almost everywhere on (2 is said to be
locally integrable on ) provided u € L(A) for every measurable A CC {2,

We write u € L (). Corresponding to every u € Li () there is a

loc

distribution T,, € D'(Q) defined by T.(¢) = [, u(z)o(x)dz, ¢ € D(Q).
This distribution T, is said to be generated by the function u .

Definition 6) A distribution which is generated by a locally integrable

function is called regular. All other distribution are called singular.





