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In this dissertation I consider degenerate, parabolic, quasilinear equa-

tions with principal part in divergence form: ut = diva(x, t, u, ux)

b(x, t, u, ux). Degenerate equations cannot be treated by standard meth-

ods. Because of the degeneracy, they do not always have classical solu-

tions and have different characteristics than the solutions of nondegenerate

equations. I explicitly treat one dimensional porous medium equations of

the form ut (um)xx and also compare them to an equation of the form

sutt ut (um). This is obtained by using a more general form of

Darcy's law. Recent, concrete results for the unique solvability of the

problems contained in the class of the initial-boundary value problems of

degenerate parabolic quasilinear equations with principal part in diver-

gence form, are given. I also consider the unique solvability of the first

initial-boundary value problems of the form : (eux)x = ut, 0 < a < 2
in a weighted Sobolov space. The treatment of the problem depends on

whether 0 < a < 1 or 1 <a < 2. By giving an explicit solution to the prob-

lem when 0 <a < 1, I show that it serves as an example for the existence
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of a unique solution to the initial, boundary problem with zero boundary

conditions for ut = div(a(x) grad u(x, t)) f (u(x , t)) when f = 0. When

1 < < 2, I show that we can not give boundary conditions for some parts

of the boundary in order to have a unique solution in a weighted Sobolov

space. Then as a generalization of this case, I give the main theorem of this

dissertation: for the unique solvability in a weighted Sobolov space for a

generalized solution of the problem tit = div(a(x) grad (x , t)) f (u(x , t))

when 1 < a < 2 with no boundary conditions on some parts of the bound-

ary and zero on the others. An explicit solution to satisfy the theorem is

also given. Finally, I give an application of degenerate quasilinear parabolic

equations with principal part in divergence form to a physical problem of

unsaturated flows of liquids in a porous medium.
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The Existence and Uniqueness of Solutions in a Weighted
Sobolov Space for an Initial-Boundary Problem of a Degenerate

Parabolic Equation with Principal Part in Divergence Form

CHAPTER 1

INTRODUCTION AND SOME PRELIMINARY MATHEMATICAL FACTS

In this dissertation we consider linear and quasilinear , degenerate par-

abolic equations with principal part in divergence form, that is, equations

of the form
d ,

ut b(x,t,u,ux),

or in vector form,

ut = diva(x,t,u,ux)--1-b(x,t,u,ux). (1.2)

Here the summation convention is used, that is, when the same index

appears twice in a term, one sums over the range of the indices indicated.

Here i runs from 1 to n unless the contrary is explicitly stated. ux denotes

the gradient of u with respect to the spatial variables and the divergence

is calculated with respect to x as well.

1.1 Introduction

These equations occur in many physical problems such as nonlinear dif-

fusion problems and ground water problems in a porous medium. Ground-

water problems are governed by a transport equation such as Darcy's law:

pgi
(1.3)
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Here p is the pressure, p the density of the fluid (or gas), (0,0, g) the

vector giving the acceleration due to gravity, here assumed to be constant

and k is the permeability tensor which in most applications is assumed to

be strictly positive definite."d* is the volumetric flow rate , also called the

seepage velocity. For the applications we deal with, it is only nonnegative

definite. /4 > 0 is the dynamic viscosity of the fluid. Equation (1.3) is

combined with the equation of continuity, or conservation of mass,

OPt = (1.4)

where q is the porosity of the medium. An equation for p is obtained by

inserting (1.3) into (1.4) and making use of constitutive relations for the

coefficients.

When the equations are nondegenerate parabolic, they can be treated

by the standard methods found in [1] and [2]. Some known results for

nondegenerate parabolic equations will be given in Chapter 4.

When the equations are degenerate, they cannot be treated by the stan-

dard methods because of the degeneracy and need not always have classical

solutions. However, under certain assumptions it is possible to establish

the unique solvability for the Cauchy problem and the initial-boundary

value problem for these degenerate parabolic equations. The solutions

often have properties different from those of solutions to nondegenerate

equations. The most important property, which is distinct from that of

nondegenerate equations, is that the solutions may have a finite speed of

propagation.

Now I elaborate the content mentioned above using a concrete example.

Consider the flow of an ideal gas in a homogeneous, porous medium. The

flow is governed by three laws. The first is Darcy's law (1.3), neglecting
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gravity, which was originally established for the case of water but also holds

for the flow of gasses underground. The second is the law of conservation

of mass (1.4) where, for the case of gas, the porosity 0 of the medium is

the volume fraction available to the gas and we assume it to be constant.

The third law is an equation of state, or constitutive relation, for the gas

Here po, po E R+, and A E [1, cc) are constant. The constant A> 1 occurs

when one assumes the expansion of the gas to be adiabatic. Multiply both

sides of (1.3) by p, neglect gravity, and insert p=p0(plp0)1/A, to obtain

2_,±1kpop kpo/HT=
1/A V P Vp A

PPO 1Lpol/A(A+1)

Take the divergence of both sides,

div (p
l

ql = kpo A 41-
tipo/A(A+1) P

Then, from (1.4),
kpo A p4:1--Pt= 1/A

ttp0 (A+1)

By rescaling we can take kpo/Oppoll (A+1) to be equal to one and we set

(A+1)/A=m to obtain pt = Apr" (m> 1). The density p of a gas flowing in

a homogeneous, porous medium must obey the equation

Pt = Pm (m > 1)

This equation is known as the porous media equation which models the

density distribution of a gas in a porous medium. The equation is parabolic

at any point (x t) at which p > 0. However, at a point where p = 0, it is

degenerate parabolic.

which I take to be

P

Po

P

Po

1

A (1.5)



Now let us consider the following problem

Pt = (pm)xx

t = 0(x)

where 0(x) > 0 in Ix 1 < a and vanishes outside lx I = a. Generally, solutions

for the problem fail to be classical solutions at precisely those points where

the solution passes from positive to zero values. The lateral boundary of

suppp is called the interface. Thus, we need a concept of weak solutions.

Classes of weak solutions for equation (1.6) were introduced by Oleinik,

Kalashnikov and Yui-Lin in the paper [3]. There they proved the existence

and uniqueness of such solutions and showed that if at some constant to

a weak solution p(x , to) has compact support, then p(x , t) has compact

support for any t > t0. Moreover, they showed that in a neighborhood of

any point (x, t) where p> 0, p is a classical solution of the problem. Some

explicit solutions of the porous media equation were found and these were

all self similar solutions. Self similar solutions are solutions of the form

u(x , t) = g(q) with 77 = xmtn , where m and n are constants and g(i7)

satisfies a boundary value problem such that the differential equation with

respect to 77 is obtained by inserting g(t7) to the porous media equation in-

stead of u(x,t) and a boundary condition is given such as g(0) =C constant

and g(oo) = 0. The most important one was found by G.I. Barenblatt in

[4]. From Barenblatt's self similar solutions and the work of others , see

e.g. [5], [6], [7], [8], [9], [10], we know that there exists a function r (t) > 0

which describes an interface so that p (x t) = 0 for x > r (t) , where r(0) = a

and r (t) is monotonically increasing.

This means that the solution has a finite speed of propagation. Chapter

2 covers this phenomenom explicitely in more detail and also contains a

4

(1.6)



5

comparison with eptt + Pt = Apm which is obtained when using a more

general form of Darcy's law:

k
Fq't + q= --vp

where is a positive constant.

In the case when m = 1, equation (1.6) reduces to the heat equation :

Pt = Pxx

This equation is a nondegenerate parabolic equation and a solution to the

initial value problem is given by

1/00 (-x)2
p(x,t) =

(4701/2 j_.0()e- 4f de

where p(x, 0) = 0(x) represents the initial values of p . We see from (1.8)

that p > 0 for any t > 0. In other words, p becomes positive everywhere

after an arbitrarily small increment in time provided it is nonzero initially.

This means that the speed of propagation of the solution is infinite. This

property remains valid for nonlinear nondegenerate parabolic equations.

Generally, it is known that the properties such as the unique solvability

and finite speed of propagation hold for solutions to the Cauchy problem

{ ut = d'xiTai(x,t,u,ux)-1-b(x,t,u,ux)

uito == U0

as well as for solutions to the initial-boundary value problem

{ut = cf-T-lciai(x,t,u,ux)-1-b(x,t,u,ux)

Ulto =U0

UlaC2x[O,T] = 0(X, OlaS2x[O,T]

(1.7)

(1.8)

(1.9)

(1.10)
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Allowing certain degeneracies for the functions ai, b, uo, 0, we see the pos-

sibility of the unique solvability for (1.10) in the linear case in [11]. There

Showalter considered a class of implicit , linear evolution equations of the

form tliUu(t) £u(t) = /(t), t > 0 in a Hilbert space where U and G

are operators and their realization in function spaces as initial-boundary

value problems for partial differential equations which may contain a deg-

neracy. He used the theory of analytic semigroups on a weighted Sobolev

space and proved theorems in his paper for the classical diffusion equation

& (c(x)u(x, t)) (k(x) F (x , t) . However, the proof of the unique

solvablity for problems (1.9) and (1.10) in the nonlinear case still remains

open.

Recently, more concrete and direct proofs for the unique solvability

of the problems which are contained in the class of problems (1.9) and

(1.10) have been given in several papers [12], [13], [14], [15]. In Chapter

4 the known results from the papers will be mentioned briefly. Among

the previously mentioned papers, I am mainly interested in the paper by

Stahel [13]. This paper deals with the existence of a unique solution for

the initial boundary value problem:

ut = div (a(x) grad u(x , t)) f (11(x , t)) in 52 x [0, T]

u(x , 0 on OS2 x [0, T] (1.11)

u(x, 0) =-- uo (x) in S2

where 52 is a smooth, bounded domain of RAT and T is an arbitrary, positive

number. The coefficient matrix, a (x) , is assumed to be a positive definite,

symmetric, N X N matrix but its smallest eigenvalue might converge to

zero as x approaches the boundary of the domain.

The linear case of this problem is a special case of the results previously

mentioned by Showalter [11]. However, the existing result applies to a
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wider class of functions and a does not have to degenerate with a given

order but need only be bouneded from below (see equations (1.12), (1.13),

and (1.14)). Nevertheless, the result is a natural extension of Showalter

[11] to the semilinear case, but the methods of the proof are different. The

main theorems of Stahel [13] are given as follows : (see the appendix for

unfamiliar notation and basic spaces).

Theorem 1.1 Problem (1.11) has, for each uo E (Q) nL,,(52) whose

support is compactly contained in Q, a global weak solution which is Lip-

schitz continuous with respect to time and with values in L2 (C1) under

Condition 1.1 Let a(x) = Faii(x)]1<i, j<N be an N X N metrix where

each a(x) is a smooth function on Q which extends continuously to the

closure of 52 Let

a(x) =

Ti(x) = max { (X)ei i I 1.}

(1.12)

i,j

and suppose that there is a c1 > 0 with a(x) > cid(x)° with 0 <o <1 in

a neighborhood of r where d(x) = dist (x, r) .

Next we introduce the following condition.

Condition 1.2 With 0 < a < 1 for constants c1, e2 >0,

c2d(x) _> Ci(x) g_(x) ?_ cid(x)' (1.13)

Theorem 1.2 Suppose condition 1.2 holds problem (1.11) has, for a

given uo E L2(52), at most one weak solution which is Lipschitz continuous

with respect to time and takes which values in L2(ci).

Theorem 1.3 If we assume the conditions from Theorem 1.1 and 1.2 at

f(0) = 0, then the solution u of (1.11) satisfies

u E T), L2(1l)) n c° ((o,T), I-1(S2)). (1.14)
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In this dissertation all of these theorems are generalized. First, let us

consider the following problem in one spatial dimension

ut = a(xaux) in (0,1) x [0,T]

u(0,t) = U(1 ,t) = 0 (1.15)

u(x, = 0(x), E L2 (OM) where 0 < < 2.

Then it is shown that (1.15) can be separated into two problems in order

to have solutions in the space

((0,T), W1 (0, )) C0((0,T), t4xo, (0,1))

as follows:
{ tit =tit when 0 <o < 1

u(0,t) = u (1 , t) = 0

u(x , 0) =- (x) E L2 ((0, 1))

and

{ut

= ux) when 1 < a < 2
u(1, t) =0
lu(0, oo for finite solution or u(0, t) has no condition

u(x,0) 0(x) E L2 ((0, 1))

(1.16)

(1.17)

Problem (1.16) serves as an example satisfying the theorems of the paper

by Stahel [13] and the explicit solution is given in Chapter 3. One of the

main result in this dissertation is a theorem for a generalized equation

resulting from (1.17). The generalized equation of (1.17) is expressed as

/4 = V (aVu) + f(u(x, t)) in x I
= 0 on Fi x I no boundary condition on Fo x I 1.18)

u(0) = uo in SI

where S2 is a bounded open subset of RN with a smooth boundary F and

lying in the half space x N > 0 with the part 110 Of its boundary F adjoining
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the plane xN = 0. We assume that F(x,e) = Ei,i aii(x)eisi of the equa-

tion above degenerates on the part F0. The remaining part of the boundary

F of 5/, is denoted by F1 so that 110 ur1 F. Let a(x) = [ajj(X)]1<i, j<N

be a matrix of smooth functions on 52, which extend continuously to the

closure of such that

c2d(x)' (x) a(x) d(x) with 1 < < 2 (1.19)

for constants cl, C2 > 0 . Here we assume that

f (u(x , t)) is Holder continuous with exponents 13/2 in (x, t) E QT

lul < M , and IA < M1. See Chapter 4 for /(3,M and M1.

f (u(x , t)) is Lipschitz continuous in t ; f (u(x , t)) is differentiable

in u and p in (x , t) E QT lul <M , and ii< M1.
The Lipschitz constants, lapaul , and lapapki are bounded by a

constant C.

there is a number M2 such that f (s)s <0 for all 181 > *12

This assumption implies an L co a priori bound.

Then the main result in this dissertation is contained in the following

theorem.

Theorem 1.4 Problem (1.18) has, for a given u0 E L2 (f2) nC2(5-2), which

is assumed to be a nonnegative function, a weak solution which is Lipschitz

continuous with respect to time with values in W21 (S2; d, a) C L2(1; d, a)

and the solution is unique.

The proof of Theorem 1.4 and an explicit solution of (1.17) are given in

Chapter 3.

Now let us consider the physical meaning for the problem (1.11). Gen-

erally, a (x) represents a permability matrix in the case of porous media
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equations. We usually assume that the eigenvalues of a(x) are positive at

each point in the given domain with the eigenvalues of a(x) converging

to zero at specified rates as x approaches on the boundary. The specified

rates are given by the order of some power a of the distance x from the

boundary of the given domain Q. Generally, the power a is given as be-

tween zero and one. However, the Stahel paper [13] deals with the case

that a(x) does not have to degenerate with a given order but need only

be bounded from below as x approaches on the boundary. See (1.12) and

(1.13).

The situation of the Stahel paper [13] comes up in a porous medium

with a tight boundary that is the permeability vanishes at parts of the

boundary. We assume therefore that the porous medium consists of several

components, among which some components have a tight boundary and

the others do not , which means that the permeability is not zero on all of

the boundary. Thus we cannot say that the eigenvalues of a(x) approach

zero as x approaches the boundary everywhere. In fact, on the loose

boundary , the permeabilities will be nonzero and in general vary from

point to point. Thus, the condition on the boundary cannot be given.

Problem (1.18) deals with this situation under the assumptions on the

rate of decay of a(x) as x approaches the boundary. See (1.19).

Finally, applications of these theorems to other physical problems, such

as unsaturated flows of liquids (incompressible fluids) in a porous medium,

will be given in Chapter 5.



1.2 Some Preliminary Mathematical Notations and Theorems

This section provides some preliminary mathematical facts needed in

this dissertation. However, a more detailed discussion and elaboration of

the basic notations and definitions are given in the Appendices 1 and 3 .

The basic function spaces used in this dissertation also are described in

Appendix 2.

Definition 1. Let

Lu ==a0Dnu+ -I- (Jot= f (1.20)

where the ai are smooth functions of their arguments and D stands for

differentiation with respect to the spatial variables. Then

any distribution satisfying (1.20) is called a generalized solution.

a classical solution of (1.20) is an ordinary function which is it

times continuously differentiable and satisfies it (and therefore gen-

erates a regular distribution which satisfies (1.20) in the generalized

sense).

a weak solution is an ordinary function which may not be n times

differentiable, and therefore may not be a classical solution, but

which generates a regular distribution which is a generalized solu-

tion.

a distribution solution is a singular distribution satisfying (1.20).

( See [16] )

Definition 2. Quasi-linear equations of parabolic type with principal part

in divergence form have the form

ruUt dxi(ai(x,t,u,ux))
b(x,t,u,ux) = 0 (1.21a)

11



or

Ltt Ut - div a(x, t, u, ux) - b(x,t,u,ux) = 0 (1.21b)

resulting in a quasilinear equation of the general form:

Ut aijUxixj b(x,t,u,ux) = 0 (1.22)

Definition3. If for an arbitrary nonzero real vector = (6,

aai(x,t,u,p)
0

api
>

for (x, t) E QT and arbitrary u and p, then we say that the operator is

of parabolic type.

Definition 4. If there exist functions II(T) and p(T), where V (7-) is a

positive, nonincreasing, continuous function defined for T > 0 and p(T) is

a positive, nondecreasing, continuous function defined for T > 0, such that

for an arbitrarily real vector, e l,. . , eN) 0 0,

aai(x,t,u,p)
v (1002 < api eiej

for arbitrary u and p and (x, t) E QT, then we say that is uniformly

parabolic.

Definition 5. If the coefficient functions of the principal part of equation

(1.21a,b) satisfying the parabolic condition vanish for certain values of

(x, t) E QT u and ux, then the equation is said to be degenerate parabolic.

12

Example. ut - div (IDur- 2 Du) = 0, p> 2. When 1Dul = 0, this equa-

tion is degenerate.
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Definition 6. Let J be a nonnegative, real-valued function belonging to

C000(RN) and having the properties

J (x) = 0 if Ix' 1 and

fllz, J(x) dx = 1

If E > 0 the function J(x) NJ (2i) is nonegative , belong to Cr(IRN)

and satisfies

J,(x) = 0 if Ix' > E and

filo, JE(x) dx = 1

is called a mollifier, and the convolution

J, * u(x) = J,(x y)u(y)dy

is called a mollification of u.

For example , we may take

J (x) = ke 1-H2 if lx1 <1
0 if ixi > 1

where k > 0 is so chosen that condition (2) is satisfied.

( See [1] and [33] )

Theorem 1.5 Let U be a function which is defined in RN and vanishes

identically outside the domain Q.

If u E Lik,e(S2), then J,*u EC' (RN).

If also supp u CC 52, then JE * u E C(I°(2) provided

E < dist ( supp u,).

If u E L(l) where 1 <p < Do, then JE u E L(9). Moreover,

IIJE* /dip Ilullp and 1imE-+0+ UlIP = 0.
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If u E C(12) and G CC S2, then limE,0+ J,u(x) u(x) uniformly

on G .

If u E C(C2), then lim,o+ JEu(x) = u(x) uniformly on SZ

( See [18], [19] pp. 29-31 )

Theorem 1.6 Let -oo < a < b < oo. Let A = A(t) be a continuously

differentiable function defined on (a, b) and such that A'(t) > 0 for t E

(a , b).

[ A ] Let limt_b A(t) = oo ; Further, let us denote by A(a) = A(t)

and define weight functions ul, uo in the following way:

e(i-p)A(t)[A/(t)]l-p 0_ (t) eA(t)A/(t)[eA(t) eA(al-p.

[ B ] Let limt, A(t) = -oo; Further, let us denote by A(b) = A(t)

and define weight functions Ui, a-0 in the following way:

0_1(t) e(p-i)A(t)[y(t)]l-p, 0_0(t) e-A(t)A/(t)[e-A(t) e-A(orp.

Let 1 <p < oo and let u u(t) be a function which is almost

everywhere differentiable on (a, b) such that

Further let u satisfy the condition u(a) = limt u(t) = 0 in Case

A and u(b) =-- limt_+b u(t) = 0 in Case B. Then the inequality

.1a

P b

111(t)IP CT 0 (t) dt P alui (t)IP o- 1(0 dt .

p - 1

( See Kufner [20] , pp. 30-34 )

Theorem 1.7 POINCARK INEQUALITIES:

(i)

112 (X) 4 f
L Ix dx

( 2)2 ic2 ulx) dx , N > 2

IL
luV)IP 0-1(t) dt < 00.



fIn(x)IP dx <
-IQ Yil

P lux(x)IP
dxN 1 h _
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where fi is any domain in RN, u(-) is an element of Cr(12), and

y E RN. If N = 2, then the inequality

u2 (x)

y12(ln lx y12) dx 410 u2x(x) dx

for any domain S2 C R2, y f2, and u E Cynit)

for all p > 0,1 N and u C8`)(5-1)

( See [21], pp. 41-42 )

Theorem 1.8 Let fi be a bounded smooth domain. Then the set C"(a)

is dense in Wik, (S2; d, E) for E > 0. That is, W(52; d,6) = Cc° (n) holds,

where the closure of the set C"(1-2-) refers to the norm I lk ,p;d,6

( See Kufner [20] , pp . 43-49 )

Theorem 1.9 If x(t) is a solution of the Gronwall Inequality

a(t) +
It

lx(s)i b(s) ds , t 0,
Jo

where a(-) and b(.) are continuous, nonnegative functions, then

lx(t)1 < a oc(t)eB(t) ,

where a(t) = maxo<s<t a(s) and B(t) = fot b(s) ds.

( See [22], pp. 141 )



CHAPTER 2

A NONLINEAR POROUS MEDIA EQUATION OF PARABOLIC TYPE

In this chapter, I treat a nonlinear porous media equation of parabolic

type and a more general porous media equation in one spatial dimension

of hyperbolic type. The hyperbolic porous media equation is obtained by

applying the more general form of Darcy's law (1.7) instead of the usual

form Darcy's law (1.3). First I will show that the solutions of the nonlinear

porous media equation have a finite speed of propagation, which is the

most important property of degenerate parabolic equations, by obtaining

a similarity solution of the equation explicitly. Then, I will show, in an

extended result, that a similarity solution for the general porous media

equation, at large time scales, is actually one of the similarity solutions of

the nonlinear porous media equation.

2.1 A Finite Speed of Solutions for a One Dimensional
Porous Media Equation

Now consider the Cauchy problem for a one-dimensional porous media

equation.
ut = for x E R, t > 0

(2.1)
u(x , 0) = u0(x) for x ER

where m> 1 and u0 is a bounded continuous nonnegative function and u

represents the density of a gas where the units have been chosen so that

the constants are one. (Here we use u as a generic notation for a sought

after function instead of p which is used in the introduction.)

Then the porous media equation is degenerate in the neighborhood of

any point where u vanishes. As mentioned in the introduction, the solution

16
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of the porous media equation fails to be a classical solution at precisely

those points on the interface of the solution . We need a concept of weak

solutions but some explicit solutions of the porous media equation were

found. These were all self similar solutions and the most important one

of them was found by G.I. Barenbatt in the paper " On some unsteady

motions of a liquid or a gas in a porous medium "[4]. I seek the Barenblatt

solution for (2.1) here. Roughly speaking, the Barenblatt solution is the

solution of (2.1) whose initial datum is a mass M concentrated at the

origin. That is, u(x, 0) = u0(x) MS(x), where S is the Dirac delta

function and M = fR uo(x) dx is the total mass (initial data representing

an instantaneous point source).

The flow of an ideal gas in a homogenous porous medium is governed

by three laws:

conservation of mass

Darcy's law

equation of state

Now let us write equation (2.1) as a conservation law for the mass:

ut (u v) = 0,

where u is the density of a gas and v is the velocity vector. (Here we

change notation from q to v where q was used in the introduction.) Then

ut (u (muni-2ux))x = 0.

Thus the local velocity of the gas is given by

m m-1)V = murn-2Ux m-1 U
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and by Darcy's law we get v (k1p)gradp. Hence, we can define the

pressure p as the potential of the vector field. That is, v = so that p =

mm-1u' . In general, we define the presure p and define a transformation

p = (u) of a classical solution u of (2.1) as follows. The transformation

0 is given by

(s) = I< 71-2 de for s.

Here we assume that fos mem-2 d < oc.

In the general case of ut -= (0(n)), the transformation is given by

0(s), 18 C61/() de for s.
Jo

Thus we have

fou(x,t)
p(x , t) (u (x , t)) air -2 de m um-1m-1

80(u)and since = IT/Um-224 , thenOt

Ut =

and

1 80(u)_ 1

mum-2 Ptmum-2 at

)x = = up x , (Um)
m )xx = upxx uxPx

Since ut = (Um) ut pt/murn-2 we have

Pt (m 1)p pxx +P.

Hence, the evolution of p is governed by the pressure equation

Pt = 1)P Pxx P2x-

Now let us seek a self similar solution of the following type in the domain

0 <x < DC, 0 <t < T where T is some positive constant ;



where T E R is arbitrarily , t > 0.

By substituting this solution into equation (2.1) we get

(frn (C))" + {1 + (in 1)13}(11(C) = 13f(C), 0 <( < 00.

At the boundary we impose the condition f(0) K, f (oo) = 0, where K is

constant. Thus the solution u(x, t) satisfies the lateral boundary condition

u(0, t) = (t K and u(x, t) 0 as x oo for fixed t E [0, 7].

Let .13 = (1 + (m 1)/3)/2, ,3. Then the following is obtained:

Now it is necessary to consider weak solutions to the problem (2.2)

because I am looking for a weak solution of u(x , t) = (t T)f(().
Here a function f will be said to be a weak solution of (2.2) if

f is bounded, continuous and nonnegative on [0, co).

( "n) (() has a continuous derivative with respect to ( on [0, cc).

f saisfies the identity

Wm)/ +gf}d( + + 4)r Of A = 0 for all 0 E C ([0, oo)).

Then the following results are known in [23]

Theorem 2.1) when K > 0, the equation (2.2) has a weak solution

with compact support if and only if /5- > 0 and 2/3 + > 0. This solution

is unique. And, if we let PO be a weak solution of problem (2.2) with

compact support, then the solution is of the form: f(() > 0 on [0, a),

f(()= 0 on [a, cc) for some a > 0.

11(X, = (t T)3f((), = x(t +0-11±(172-1"}

(fm)" +PCP =41
f(0) = K, f(oc) = 0

19
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We are considering the Berenblatt solution when /3 = m1+1, K> 0,

so 2/3 ± = 1 + m,3 = rn1+1 >0 and /3 = 1-1-(71" = in1+1 > 0. Thus, by

the Theorem 2.1 , problem (2.2) has a weak solution with compact support.

Hence, by integrating (2.2) , we have

f(C)

Consequently

{

J.

1f m-1 (a2 (2)1 m_i
t 2m(m+1) k

0

0 < < a

a < < CX)

(2.3)

Let A = m-1 a2 B m-1 a =2rn(m+i) 2m(m+1)

Then we can write (2.3) as
1/(m-1)

U(X, t) = (t + Tra { [A - Bx2 (t + 7)-21 +1

Now expand (2.4) where t E R+ and take the initial mass to be con-

centrated at the origin. That is, u(x , 0) = M 8(x) and M is the total mass

for all t E R+ . Let u(x,t, M) denote the solution of (2.1) when the total

mass is M. Let T = 0 in (2.4). The Barenblatt solution of (2.1) is given

by

u(x ,t; = t-a{[A - B IXI2 t-2(11±}

which satisfies f u(x,t, M) dx = M for all t E R+.

Let F() = {[A Be2]±}1/(m+1) where e = kr'. Then,
00

u(x t; M) dx = F() = M for all t E R+,

where wi denotes the volume of the unit ball in R'. Thus we get the

relation

A(171+1)/2(rn -1) B-112wi U (COS e)( ni+1)/(rn-1) dO M
Jo

(2.4)

1 1 1

u(x,t) =
(t T) m+1 f (x(t + rn+1 ) 0 < x < a(t

1

7),71+1

0 a(t + m+1 < X < CC



In general , in n dimension , w f000 F()C1-1-ck = M . Thus

WnA(m+1)/2("1-1)B-1/2 2 (COS 0)(772+1)/(M-1) (sin O)n_1 de = M
Jo

Now, let C f02 (cos 8)(m+1)/(771-1) de. Then

Al A(772+1)/2(772-1)B1/2C.

Hence,

A = (M2 BC-2)(m-1)/(zn+i)

It is obvious that the Barenblatt solution u is also a classical solution of

(2.1) and is a Ca° function on the set P[u] = {(x, t) E R x IR+ : u(x , t) > 01.

But let us consider p = mum -1 1 (m - 1). Then

) m-1

= c
m-1

m a(Tri-1) B R
t2-

) 1x12] =__ mr2(0 1x121+
2

±

from the fact that mt- '(n -1) B 1 (m - 1)t2a = ef/2t and where we have

set r (t) = lir v . Here

2(m-1) m-1 2(m-1)
r(t) = ff3tta" = B C B-1) 2 CrnAi';411

where cm -= /3-1/(m+1)C-(m-1)/(m+1). Thus,

r (t) = crnm(m-1)/(m+i)tim+i).

The pressure p is positive on the set

Q[u] = {(x , t) E x R+ : lxl < r (t)}

n-irn-
{{A - Blx12t-2a1 }m-1

t m+1

21



Hence , u(x,t) is positive for all (x,t) E Q[u]. Thus

Q[u] = P[u] = {(x,t) ER x R+ : u(x,t) > 0}.

Therefore,

I[u] = {(x,t) ER x R+ : lx1= r(t)}

is the interface, since it is the boundary of supp u = P[u]. where the

bar indicates closure. So, u is actually a classical solution of (2.1) in

R x R+ \ I[u] but it is not a classical solution in all of R x R+ since

V(urn-1) has jump discontinuities across I[u].

By Darcy's law we expect velocity v = -px and we also expect that the

interface will move with the local velocity of the gas. Hence we can expect

i(t) = -px(r(t)- ,t) = v(r(t),t) where px(r(t)- ,t) = limxtr(t)px(x, t).

But Dr(t) = -px(r(t)- ,t) is in R± where D+ denotes the right-hand

derivative. See Herrero and Vazquez [24].

Now the outer right interface of u is defined to be the curve x = r(t),

where r(t) = sup-tx : u(x, t) > 01 if 0 < t < T* < oo ,

r(0) = sup{x : duo = f dMS(x)} > 0.
(x,00) (x,00)

The interface does not necessarily begin to move at t = 0 although it must

ultimately move at some point. There is a t* E [0, oo), called the waiting

time such that (i) r(t) 0 on [0, t*]; and (ii) r(t) is strictly increasing on

(t*, co) which means that once the interface begins to move it never stops

( See Aronson , Caffarelli and Kamin [8] , and Vazquez [10] for work on

the determination of the waiting times). The speed of propogation refers

to the speed of the interface. Since the interface will move with the local

22
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velocity of the gas, from r(t) ernm(m-01(m+1)til(m+1) we can compute

i-(t) px(r(t) ,t). And since p = [r2 (t) X11+ '
we get

Px

Thus,

i(t) px(r(t)-,t) lirn px(x,t) = lim r(t)
xtr(t) xtr(t)

m - 1 1

and by letting r(t) = cni,M tm+1 , we get

m-1 rn
1 c Mm+1 tn1+1.m+1 rn

Furthermore as t cc

m-1
i'(t) = 1 1MC Mm+lt-rn+1 ± 0 (it)m+

The proof that i-(t)trn/ '1+1 converges to cmilf(m-1)/(777+1)/(m + 1) can be

found in Aronson , Caffarelli , and Kamin paper [8] and [25].
cinm(mi)/(m+i)/(From i-(t) m 1)trnArn+1), it is known that the

velocity i(t) is bounded for all t such that t* > 0 and t E [t* ,00) , where

t* is the waiting time. In fact, for every solution of (2.1), the velocity is

bounded in every strip ST,,,, = R x (7, Do) where T > 0. Hence we know

that the speed of propagation is finite. Moreover Vazquez[9] and, Herrero

and Vazquez[24] prove that

p2x = v2 (x ,t) m2+111p(x,0)110t-1



Opt = po div q.

By differentiating both sides of (2.5) with respect to t we have

OPtt = po div qt.

By taking the divergence in (1.7), we have

E div qt + div q =

Therefore, by inserting (2.5) and (2.6) into (2.7), we obtain

k A
po Ptt po Pt

From the equation of state, (1.5), p = po(pl po)lix . By inserting this into

(2.8),
k po 1 / A

po Ptt pa Pt ii(p0)1/2 ti

Hence since p pp,

1k po PokpoAp(A+1)/A
E Ptt Pt = (Po) V

/-1 ol (A+1)

By rescaling we can take kpolOppoll)'(A + 1) to be equal to 1 and we let

(A + 1)/A = in. Then we obtain

E Ptt + Pt =
(pm)

24

2.2 An Extension to a General Porous Media Equation and a
Comparison Solutions of Nonlinear Porous Media Equations

Let us consider the case when the more general form of Darcy's law,

(1.7), instead of (1.3). Here we assume that p 1po = 1 + 9 where 0 is small.

Then p = po (1 + 0). Thus, div (pq) =-- Po div q po div 0q.

Here we neglect the term po div 0q so div (pq) = po div q. By conservation

of mass, (1.4), we have

(2.5)

(2.6)

(2.7)

(2.8)
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Replace p by u so that the standard form of the equation is

6Utt Ut (Um)xx. (2.9)

In order to find a solution to (2.9), let us try a similar solution of the

following type :

u(x ,t) (t + 7-)l3 , x(t + 7)-12-{1±(rn-1)0}

where T E R is arbitrarily , t + T > 0. Then by differentiating the u(x,t)

term with respect to t, we have

Ut = /3(t 43-1/(() (t Wfi(C)- $. (2.10)

and

Utt /30 - 1)(t + 7)13-2 AO+ I3(t T)-1t4f1(C)

+ {(t + 7)" + (t + f'(() + (t + T)'3 (;02 fil(()
(2.11)

(Um) xx = (fm)"(()(t + 7)13-1. (2.12)

By inserting (2.10), (2.11), and (2.12) into (2.9), and dividing by

(t + 7)0 , we have

(fin)"(t + 7-)
()2

f" - {26,3-2- + E(t + T) (t + T)P8--$1

-{E13(13 -1)(t 7)-1 13}f(() =0. (2.13)

Also from ( = x(t + 7)-12-11+(m-1)13}, we obtain

at
02.
at2

= - {1 ± - 1)}x(t + 7)-111+(m--1)01-1

= {1{1+ (m - 1)0}2

+- {1 + (m - 1)3}}x(t + TH{'+(m-1)/31-2

(2.14)



Then by inserting (2.14) into (2.13), we have

(r)" f{1 + (m 1)/(3}2(2(t+ T)' f"

(-613{1+ (m - 1)/3}(t + y)' {1 + (m - 43}
+ E [11-0 + (m - 4312 + {1 + - 43}] (t+ T)-1)f
- (o(/3 -1)(t + 7)-1 + f = O.

Let T be sufficiently large so that for all t > T, 1 r-::" 0. Thus, (2.15)t+7

becomes

(frn)" (ffl 1)13}(f/ MO' (2.16)

If we impose the boundary condition 1(0) = K, f(oo) = 0, K > 0

constant on (2.16), we obtain (2.2). If we take 13 = 1/(m + 1), then

the solution is the Barenblatt solution. If we take /3 = 1/(m 1) > 0 for

m> 1, (2.16) becomes

(fm)" + fl = f (C)- (2.17)

then (2.17) has a weak solution with compact support by the Theorem

2.1.

The function

1f(c), {[rnr i-]a(a 0'-1 , 0 < < a
0, a < < oo

satisfies (2.17) with boundary conditions f(0) = K, f (oo) = 0. Therefore,

SO

u (x , = + f((),
l. o,

1

u(x , = a[a(t xi} 7,1-1

0,

0 < < a
a < < oo

0 <x < a(t +
a(t ± 7) <x < cc

26

(2.15)
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This is the wave solution found in Oleinik , Kalashnikov and Yui-Lin [3] and

is one of the similarity solutions of the equation ut = (um )xx ( See Gilding

and Peletier [23] ). Thus for sufficiently large time scales, a similarity

solution of //,.tt + ut = (um) reduces to the similarity solution of Ut =

(m\\U



CHAPTER 3

THE EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR AN INITIAL
BOUNDARY PROBLEM OF A DEGENERATE PARABOLIC EQUATION

WITH PRINCIPAL PART IN DIVERGENCE FORM

In this chapter, I deal with the existence of a unique solution of initial-

boundary value problems for the following equation

ut div (a(x) grad u(x ,t)) = f (u(x ,t)). (3.1)

The existence of a unique solution of the initial-boundary problem (1.11)

under the conditions 1.1 and 1.2 is shown in Theorems 1.1 , 1.2 and 1.3

in the introduction. A proof has also been given by Andreas Stahel [13].

In his paper he assumes the existence of a sequence of open sets 12n with

smooth boundaries such that

12n C Qn-F1 C UnENC2n lim sup{a(x)lx E Q/1-2} = 0
7,-+00

and also assumes that there are functions an defined on ft such that

an1c27, = a

a n (x) ;

a n(x)e a(x)e e , for all x E 12 and for all e E RN.

limn, supfl lan(x) a(x)II x E = 0.

The above assumptions are such that the coefficient matrix a can only

degenerate on a part of F. Then Stahel [13] defines u to be a weak solution

of (1.11) if the following conditions are satisfied:

u E C°(/, L2 (2)) n c°(i,11(Q/))

28



for any compact subset 52' of S2 and

ilu(t)111.4(c2+ c, u(0) uo, u(t)Ir = 0,

and

(0 (T) n(T)) (0 (0) , tit)) (0 (t) , u(t)) dt

= foT (aV0(t), Vu(T)) (0(t), f (u(t))) dt

for all 0 E , L2(1)) n (I , (12)) ,for all T E I.

In section 3.1 , I consider (3.1) in one-dimensional spatial setting

C1 = (0,1) when a(x) xa , 0 < c <2. Then equation (1.11) is the same

as (1.15). It will be shown that (1.15) must be separated into either (1.16)

or (1.17) depending on whether 0 < a < 1 or 1 <c < 2 in order to have

solutions in the space C°((0,T), Hx10,(0, 1)). It will also be shown that

(1.16) serves as an example satisfying Theorems 1.1, 1.2, and 1.3 . Then

the explicit solutions for (1.16) and (1.17) are also given.

In section 3.2 , I consider equation (1.18), which is a generalized form

of (1.17) in higher spatial dimensions. Theorem 1.4 will also be proved for

the existence of a unique solution of (1.18).

3.1 Boundary Conditions for a Unique Solution and Explicit
Solutions for Examples in One Dimensional Space

Let us consider (1.15). This equation degenerates at the boundary point

x = 0. Let us try to solve this by the separation of variables method. For

this purpose, set u(x , t) = X (x)T (t) and insert it into (1.15). We get:

29

f (xaxx) + k X =0 for k > 0 , 0 < < 2

t X(0) = X(1) =0
(3.2)



and

11` +kT = 0 (3.3)

First, let us consider (3.2). We can think of (3.2) as a problem for an

elliptic equation degenerating at the point x = 0. Then, for investigation

of the boundary value problem, it is reasonable to take as the Hilbert space

the space iqx0, (S2) with the inner product

(u, v) = (xauxvx +uv)dx (3.4)
Jc

and note that the set C(il) is dense in VII,x0,(Q).

In other words, nsa, (SI) is defined to be the closure of Ca' (S2) in

the norm corresponding to (3.4) and has such properties that X(x) E

((0, 1)) is continuous on (0,1] and has generalized first derivatives

on (0,1) and X(1) = 0. However, the space has different properties at

the boundary point x = 0 depending on the size of a , as 0 < a < 1 or

1 <c < 2 , though the inner products are defined in the same way. That

is

: for a E (0, 1), all elements ofT41 0, (9) are equal to zero at x = 0.
. X

But

: for a E [1, 2], this is not the case. Hence, we must remove the

condition X(0) = 0 in order to solve (3.2) with a E [1, 2].

Proof of [A]: When 0 < < 1 and X E -1/11,xe, (2), = (0, 1), then

[X(x)]2

Xl-a1a

2

72 7 2-2- 2149X dr <
0

(r 121' ) 2 dr .1 7 a (a)C\2) Lc?'
8T k 07

0

1

a tax \ 2 d Ta ax\2
k-577-_-) T < X

1-a
k 8,7_

) tzT
Jo
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since Ta (_'9x)2 .? 0 on x E (0, 1). So, let x = h. Then [X(h)]2 <

chi- a (Xx, Xx) for a bounded constant e. Then if we let h go to zero,
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since (Xx,Xx) < oo and 0 < a < 1, then limh0[X(h)12 < 0. Thus,

[X(0)]2 <0 and hence, X(0) = 0.
0

Proof of [B] : Suppose all elements of 14/-,xc, (12) are zero at x = 0 when

1 < a < 2. Let u EW Then

(i)
pl

x' u2x(x) dx < oo.

By using Poincare inequalities (Theorem 1.3) when p = 2, y = 0, 1

2 - a, n = 1, and (0,1), we obtain the inequality

1 4
Xa-2U2 (x) dx < xa u2x(x) dx- (a - 1)2 1,3

for all u E C000(12). Hence, 101 xa-2U2 (x) dx must be finite by (i).

Therefore, since u E 141,xa and

fol ra-2 dr converge for 2 - a < 1 (that is, 1 <a).

These results imply that

101 Ta -2 1111 (T) 12 dr < oo for 1 <c <2.

Then using Holder inequality, we find for any h > 0

L

lu(x + h) - u(x)I = I
x+h

111 (T) dT
.1x

fx x±h
11,1 (T) (a _2)h/2 (7" a-2)-112 dr

(f
x+h

ittl(T)127a-2 dT

)1/2 ( x+h
72- (I dr)

1/2

IL

From (ii) and (iii), we know that the last term converges to zero uni-

formly with respect to x when h tends to zero for 1 < a< 2. Thus u

is uniformly continuous. Consequently, the limit limo u(x) = cto ex-
, e

ists. But, since fol xce-2u2 dx < oo and jol xa-2 dx < oo for a > 1,
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then lim,0 u(x) = cto is not necessarily zero. Hence, cto 0 0 leads to a

contradiction.

The case a = 1 requires some special considerations. Suppose all

elements of VII ,xa (Q) are zero at x = 0. Let u E (12). Then

xu2x dx < oo

2 1 l-
[ )]2 = [11 T 1 / 2 Tv 2 au/aT < T

1

f
ur T (02 1laT)2 dT

=I in 1 - in XI f (aU/aT)2 dr

By multiplying both sides by x-1I
ln x1-2', E > 0 and integrating in

we obtain

(iv) f01 u2 (x) x-1I ln x I 2E dx < 101 1 dx 01 x (auIOx)2 dxxilnx11-+c

1 1Let e(x) = x-1 I ln xI-2 and f
o xl ln xr+E dx < c where c < oo is a

constant. The inequality (iv) can also be obtained from the generalized

Hardy inequality (Theorem 1.2) and thus, since fol xu2x dx < co, then

fo1 0(x)u2 (x) dx < oo from (iv) and Li- (x)u2x(x) dx < oo. Then apply the

Holder inequality,

lu(x h) - u(x)I =

(1

Ix+ h
UV) dT

Ix

x+h 1 1

Uf (T)e(T) 2 0(T) 2 dr

1

x+h
lu/(T)127--11 1n71-2-E

(rx+h
7-1 TI2+E dT

We know that fol (in xr dx = , where n is a positive integer and

m > -1. Thus, the last term converges to zero uniformly with respect to

x as h tends to zero. Hence, u is uniformly continuous and, consequently,

1imx,0 u(x) = (20 exists. Since
1

fox-1 I ln u2 (x) dx < oo and x-11 ln x I dx < oo,
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limo u(x) = ao is not necessarily zero. Therefore, c/o 0 0 leads to a

contradiction. Thus , we must remove the condition X(0) = 0 to solve

(3.2) with a E [1,2] .

Hence by [A] and [B], problem (3.2) must be separated into two problem

depending on whether 0 <c < 1 or 1 <c 2 as follows

For k > 0 and 1 < a < 1 ,

f -17(xaXx) + kX = 0
1 X(0) = X(1) =0

and for k > 0 and 1< c2

-i-,(xiaxx)+ kX =0{
ix(o)i < oc

or no boundary conditions are given on x = 0

X(1) =0

If the solution u of (1.15) is given by separation of variables, then the

solution u is given by

Tn(t)Xn(x)

(3.5)

(3.6)

where Xr, E (Q) for all n and Tn(t)E L2 ((0,T)) for all n. Actually

T(t) = by (3.3)

If Xn E 141-,xa,(11) when 0 < a < 1, then Xn(0) = Xn(1) must be

zero for all n by [A]. Thus u(0, t) = T(t)X(0) and u(1, t)
0

EncciTn(t)Xn (1) must be zero. Also, if Xn E -141-,x,. (a), when 1 < a < 2,

then Xn(1) = 0 and Xn(0) is not given for any n by [B]. Hence, u(1, t)

must be zero and u(0, t) is not specified by instead is calculated from the

solution.
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Therefore, in view of the above results, we can separate (1.15) into (1.16)

and (1.17) . We see from the following discussion that (1.16) satisfies the

conditions of the theorems in Stahel [13]. Hence, the problem (1.16) serves

as an example satisfying the theorems in Stahel [13].

In (1.16) the a(x), for conditions (1.13), is given as a(x) = x', 0 < 3 < 1

satisfying a(x) = a(x) = Tt(x) x13 and d(x) = x in a neighborhood of

fx = 01, since d(x) = dist (x, F) = dist (x, 0) = x. Then we take a and ,3

to be equal and c2 = 2, c1 = Therefore, the inequality 2x' > >

for 0 < o < 1 is satisfied. Thus the conditions of (1.13) are satisfied.

Hence, (1.16) satisfies all the conditions of Theorem 1.3 .

However, let us consider (1.17) . The a(x) for the condition 1.1 and

1.2 are given as a(x) = a(x) = Zi(x) = x,3 with 1 < )3 < 2 and d(x) = x

in a neighborhood of Ix = 01. Then let us assume that there exists a

c1 > 0 such that xi@ > c1 x' for all x in a neighborhood of -tx = 01 with

0 < a < 1. Then 1- > 0 <3 <2 for all x in a neighborhood of
ci

{x = 0}. Since ci 01, 0 0, we can choose x' in a neighborhood of {x = 0}

such that 0 < x' < c . Then > 1 since 0 < ,3 a < 2.
c

Therefore, c1 (x')° > (xY . This is a contradiction to the assumption .

Thus we conclude that Stahel [13] does not deal with the case of equation

(1.17) (when boundary conditions are zero).



35

Example 3.1) Now let us seek an explicit solution to (1.16) by separation

of variables. Let u = X (x)T (t). Then, we have (3.3) and (3.5) . First let

us solve (3.5). Let y = 1-1-07x1-', with x = ((1 - a)y)l/(1--') and let

X(y) = X({(1 - a)y}1/(1')) = X (x). Then by the chain rule for X(y)

when k is given by A2 , the (3.2) is converted to

d2X a

dy2
A2((1 - ct)y) 1-a = 0

Now let -A = A2(1 - ar/(1-') and a/(1 - a) = v. Then

d2X AVX(y) = 0. (i)
dy2

Let Z (y) = y-1/2±(y) . So , X(y) = y1/2Z(y). Then by the chain rule for

Z (y) , (i) is converted to

3 1 1 - 1

-14-y- 2 Z(y) ± y2 211(y) + Z (y) = 0. (ii)

By multiplying y2/3 in (ii), we have

y2 z"(y) + yzi(y) + )yv+2 -14-)z(y) = o. (iii)

= pyk = p2kLet t 2 2k- 2. Then y (t1p)1/k. Let

(t) = z((t/p)1/k)= z(y).

So, by the chain rule, (iii) is converted to

2 d22 d2 ( 1 \

t dt2 t dt \t2 21V12)4.1 =

This equation is known as Bessers equation of order 1/2k. The general

solution of Bessel's equation or order 1/2k (non integer) is given by

(iv)

2(0 = AJ A(t) + B J (t) (v)



By inserting t pyk and k-(t) = Z(y) into (v), we obtain

Z (y) = AJ (pyk) + BJ (pyk)

Since Z(y) -y1/2X- (y) , (vi) becomes

_k{y) = 21k(pyk) + J (pyk)

Since X- (y) = X (x) and y = , (vii) becomes

X(x) A(-1 P1-')12J (n( X1-"k)-1-1-a"' \Vk 1-a )
2k

B(1 (p( 1 xl-a)k) (viii)

Here k is given by v=2 k -2 and V oe/(1-a). Thus k= (2 - a)/2 (1 - a) . Then

1/2k=(1-a)/(2-a),0<a<1. Since 0<(1-a)/(2-a)<1 , 1/2k is not integer. Also,

A is given by-5,==A2(1_a)a/(1-a) and 5,=p2k2. Then

p=51/2/k=2A(1-a)(22(1-')/(2-a) and p(1/(1-a))k=2A/(2-a).

Thus (viii) becomes
-1

12a -a ( -2A 2-2aX(x) = A( ) -2- X1-a 2-a2-a
1

, 2-a
+B(7,77)2X 2 J 2 ). (ix)-o2-a

2-a
22)ta 2Since J (x ) is unbounded on [0,1] and we are seeking only

-2k
bounded solutions , we must take B = 0. From the boundary condition

X(1) = 0 , we have

X(1) = 11 0) = 0.
2-a

Thus 9 ) should be zero. J1_, (x) has an infinite number of- a2-a 2-a
isolated zeroes. Let x = 211-- for i = 1, 2, where Ji_c, (Xi) = 0. Then2-a 2-a=2. Hence , the equation (1.16) has an infinite number of solutions

2 1-a, 2-aX x 2 07,1_,:v (.02_,x 2 )1
2-a2-a
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By (3.3

Thus
00 (0(X), Xn) --A2 t

1a 2a
2 j(221/4 2 )

(Xn,Xn) 2cx

and the solution

0
° o

u E W(QT) = L2((0177);W32,xa(9))-

u E 21'13, (Q T) means that

U E Cl ((O, T), L2 (Q)) n 0((0,T),1/1-e,(Q)).

Since C° is dense in L2, u is a weak solution of (1.16) because u satisfies

the conditions of the weak solution in the Stahel paper [ 13 I .

Next, let us solve the equation (1.17) explicitly , which will serve as an

example of the Theorem 1.4 by separation of variables. Let u = X (x)T (t)

Then (3.3) and (3.6) are obtained. Now let us solve (3.6) and do the same

Tane-A2Tht. Thusn

U =

=
((x), Xi)
(Xi, Xi)

n=1

00

= E T(t)X(x) =
n=i

Ia
where Xn = x 2 Ji,(Z--)-th-x 2 ).

2a 2--"c

From u(x , 0) = 0(x), where 0(x) = En=i bnXn

(0(x), Xi) = Xi) for 1 = 1,2,

Accordingly , b1 is given by

A2Tht Xr,

for all 1 = 1, 2,

37
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process going through the step (i) through (ix) as above. Then we obtain

that when (1-a)/(2-a) is not an integer,

11c( 2a
X(X) = A(-1YT x 2 J I_a \(2-2A

x-7-- )
a2a

nt 9 T 1 2A

2a
in the case when 1 < a < 2 , (a - 1)/(2 - a) > 0 and (1 - a)/(2 - a) < O.

Thus since Ji_ct is unbounded on [ 0,1 ] , we take

1a 2A x 2-2a)X(X) = B(17)1/2X 2 j2a

Recall that
oo

J(x) =E (-1)- rx,P+2nJ n!F(p±n+1) 1.2
n=0

Thus when p = (1 - a)/(a - 2),

1a±2n(a-2) a-1-2n(a-2)2ji (22.Xa x 2a ) (-1)n (
2aA

) a-2 X 2
n!F(//-1-n+1) \

n=0

Hence by (xii) , we obtain from (xi)

oo 1a±2n(a-2)
X(x) = ( A ) a-2

n!r(pcd-n+1) \ 2a Xn(a-2),
n=0

for 1 < a < 2, -n(ct - 2) > 0 and for all nonnegative integers n . Thus

( 1aX( 0-B"'0 = B 1'a)
A

172r(p+1) 2 a ) a 2 '

Therefore it is possible that we take B < co so that IX(0)1 < co since

( )71 (2Aa ) /F(Lt ± 1) is finite. Now from the boundary condition

X(1) = 0,
1

X(1) = B(--1 ) 2 ja (22Ace 0.
2a

a-2

2a
(x)



for both cases when 1 <c < 2.
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Thus tx-1
( 2A ) = 0. Because Ja_i (x) has an infinite number of isolated

2a
zeroes, let xi 2A/(2 - a) for i = 1, 2, where J1 (x) = 0. Then2a
A = (2 - o)/2x. Thus let A, = (2 - a)/2x. Hence the problem (3.6)

has an infinite number of solutions

1a 2a
2

k

2 )1
2cr2a

when (1 - a)/(2 - a) is not integer and 1 < a < 2 . In the case when

(1 - a)/(2 - a) is an integer, ( in fact, a negative integer for 1 < a <

2 since 121-713c; = -1 when a = ) then (iv) in the previous example is

equivalent to

t2
d22 + td2 +(t - (-)2)2 =0
dt2 dt

This equation is known as Bessel's equation of order (-- a-12k

where 1 < a < 2 (the order is a positive integer for 1 < a < 2 ).

The general solution is given by

1ce
X(X) A((i±)-ix 2 ) ja_i ( 2A )

\2a
, 1 2B((&-c, ) 2 x 2 )yct_i 2a )

2a

Since ya x 2-2a ) is unbounded on [ 0,1 ] , we take

1

X(X) = i±ce ).f 2 ja_i (22Aa x 2;ce)
2a

We proceed as before. We know that the problem has an infinite number

of solutions
1a 2aIx 2 ja_, (22%,,x 2 )1

\2a



When a = 1, (3.6) becomes

/xX"(x)

-I- X' (x) + A2 X(x) = 0

X(1) = 0
IX(0)1 < oo
or no boundary condition at x = 0

X(x) = cr,x = n±rCnX .

(3.7)
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n=0 n=0

Then

00 00

C Xn+r-1 and X" = r)(ri r 1)CnXn+r-2.
n=0 n=0

By inserting these into the equation of (3.7) , we obtain

fr(r 1)co + rcol+
00

Et(n+ r)(n + r 1)cr, (n + r)c + A c2-n-1}Xn+r-1 =
n=1

Thus

r( 1)co rco = 0 and (n + r)(n+ r +1)cn + (n + r)cn + A2cn_i =0

for all n = 1, 2, Let co 0 0. Thus r = 0 . From the recursion

relationship

n + r)(n + r 1)c, + (n + r)cri + A2 cn_i =0,

we have
A2

Cr/ = Cry_
(n + r)2

for n = 1,2,

Since x 0 is a regular singular point, by the Frobenius method , we can

assume a series solution of the form

00 00



Since r = 0 , c, ci).1/422 Cn-1. Thus

Hence

X(x) = c

(-1)72(A2)n
en -:= Co.(02

i)n(A2
(n!)2

(-1Since J0(0) = Ea° --Ln x 2n
n=0 (02 (2)

X(x) = c0J0(21tA2x).

Therefore, let Xi (x) = coJo (2A/A2x) be a solution for (3.7).Then the sec-

ond linearly independent solution X2 (x) is given in integral form by

1
1

021A/
dxX2(x) = Xi(x) 11 e f? )61 s dx = coJo(2x A/A2x) xJ(2A2 x)

and the general solution has such a form that

X(x) AJ0(2\ A2x) BJO(2VA2x)/0
1

1
x.i 1/t; (2A2s) dx

41

But since BJ0(2VA2x)f0 x4 (2-/.)1 dx is unbounded on [ 0,1 and we are
)

only seeking bounded solutions, we must take B = 0. Thus the solution has

the form X(x) = .A.J0(2). In order to satisfy the boundary condition

X(1) = 0,

(2A2) = 0.

Since Jo (x) has an infinite number of isolated zeroes, xi, let 2Ai = xi, i

1, 2, Then Ai = xi/2. Hence the problem (3.7) has an infinite number

of solutions {J0(2\/)} which also have the property of being orthogonal

sets.



When a = 2 , (3.6) becomes

{x2X"(x)+

2xX' (x) ± A2X = 0

X(1) = 0
IX(0)1 < cc or

No bondary condition at x = 0

This is an Euler eqution. For x > 0 , take X(x) = xr. Then

(x) = rxr-1 and X"(x) = r(r -1)xr 2 .

By inserting these into (3.8) , we obtain

r(r -1)xr ±-2rxr A2xr 0

and so r2 r A2 = 0. Thus

-1-H/1-4.A2 and r2 = -1+V1-4A 2r1-
2 2

We consider three separate cases

Case 1) When 1 - 4A2 > 0 , the general solution is given by

X(x) = 0ixr1 c2xr2 ,x > 0.

If we want a bounded solution, we can take

-1±-0-4A2
X(x) = cix 2 when -1-FV1-4A 2 > 0.2

But since X(1) = 0, c1 = 0. So X(x) = 0. This is meaningless. Hence,

we cannot insist on a bounded solution. However, in view of the boundary

condition that no boundary condition is given at x = 0, we take

-1-F-V1-4A2 -1-0-4A2
X(x) = cix 2 C2X 2

42

(3.8)



From X(1) = 0,

1+-V1-4A2 1V1-4A2
X (x) = (x 2 x 2

Case 2) When 1 4A2 = 0 , the general solution is given by

X (x) = (c1 c2 ln x)x-i/2 x > 0.

From X(1) = 0,

X (x) = (1 lnx)x-1/2 x >0.

At x=0 though , this solution is unbounded.

Case 3) When 1 4A2 <0, the general solution is given by

X (x) = 1x_1/2 COS(LIA/
A2-1 ,
2 x) c2 x-112 sin( 42_1 1 ln x).

Since X(1) = 0 implies ci = 0, thus

X (x) = c2X-1/2 511(4A2_1
111X).

2

Now let us solve (3.3). Then T = ae-A2t. So let T n(t) = ane-A2nt

Hence when 1 < a < 2, the solution of (1.17) is given as

where X, is given by

and

00

u = E T(t)X(x) =

1a 2a
X 2

(.&_x 2 )

2a

(0(x), Xi)= for 1 = 1,2,-- .

(Xi, Xi)

e-A2nt X (x)

43



And when a = 2, the solution of (1.17) is given as

and

(x)'
X (x))

b =
(X (x), X (x)).

44

u(x , t) = T (t) X (x) =

where X (x) is given by

be- x2 -t X (x)

--1-Kh-4A2 -1-V1-4A2
(i) x 2 -x 2 if 1 - 4A2 > 0

1

(ii) (1 - lnx)x--2- if 1 - 4A2 = 0

4A22 -1 ln x) if 1 - 4A2 < 0(iii) -1/2 sin(



1. The Graph of a Solution of Example 3.1
when a = , k=5 and 0(x) x

45

Look at the values at boundary points x=0 and x=1 , where the values at
x=0 and x=1 must be zeroes but here the value at x=0 dose not appear
obviously.



0.5-

1-

0 0.5

2. The Graph of a Solution of Example 3.1
when a = , k = 10 and 0(x) x

1.5 2.5 30
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Look at the values at boundary points x=0 and x=1 , where the values at
x=0 and x=1 must be zeroes.



3. The Graph of a Solution of Example 3.1
when ü=, k = 5 and (x) x
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Look at the values at boundary points x=0 and x=1, where no boundary
condition at x = 0 is given and the value at x=1 must be zero.



4. The Graph of a Solution of Example 3.1
when a = , k = 10 and 0(x) = x

48

Look at the values at boundary points x=0 and x=1, where no boundary
condition at x = 0 is given and the value at x=1 must be zero.
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3.2 The Existence and Uniqueness of Solutions in a Weighted
Sobolov Space for an Initial-Boundary Problem of a Degenerate
Parabolic Equation with Principal Part in Divergence Form

In this dissertation I allow the ellipticity function to go to zero on the

boundary of Q. In fact , I assume that the " degeneration of the ellipticity

" is of the order of some power a of the distance of x from the boundary

of Q . Hence, we are led to study the Banach space Wpk(C2,d, a) : A

power type weighted Sobolev space. ( See Appendix 2 (12) for the space).

According to Remark 4.9 in [36], if 2k a 1 < 0, then in general, there

are no reasonable boundary values that can be assigned to u E WL(C2).

This situation, for the case k = 1 (this is , a > 1) and with a more general

weight function than e(x) , is discussed in Section 3 of [37]. However,

when certain additional conditions are satisfied and a condition is given

for the solution to vanish on a part of the boundary, the existence of

solutions for intial boundary problems like (1.17) are possible and even

with uniqueness is possible. We see that possibility from boundary value

problems of elliptic type equations in [38]. However, it is not reasonable to

take Wk (Q) as the solution space for the initial boundary problems like

(1.17) because the solutions do not have compact support in Q and even

though we can extract a subsequence of functions in Cr (Q) converging to

some u E Wpk,a(Q), we cannot reasonably assign a boundary values to u

that is, in (1.17), u can have another value different from zero as x goes to

the boundary Ix = 01. However since the function ul aQ makes sense for

u E C°°(l) , and the fact C°°(Q) is dense in Wpk (S2, d, a) for a > 0 ( see

theorem 7.2 in [4] ),it is reasonable to seek approximate solutions in C" (Q)

converging to some u E W(52;d, a) in order to solve an initial-boundary

problem like (1.17).
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Remark 3.1) When k=1 and p=2 , Wpk(fi; d, a) Wpk,a,(52).

If d(x,r) = x , WL,,(n) x, a) WL(52) , where

Wil;a is a Sobolov space used in Meyer [36] and HI°, is also a Sobolov space

used in Stahel paper [13]. ( See the appendix 2 )

Now let us consider the problem of finding generalized solutions to (1.18)

satisfing (1.19). Then we have the following result which is the main

theorem in this dissertation. Here we make the same assumptions as in

[13] , which are given at the beginning of this chapter. Here u is a weak

solution of (1.18) if all the following conditions are satisfied

u E C° (I , L2 (Q; d, a)) n C°(/, 141(;d, a) for any compact subset 1-2,' of

52 and liu(t)lik,

< (T) U(T) > < U0 > < 01(t) U(t) > dt

= < aV OM, Vu(t) > dt +
1T

<0(t),f (u(t)) > dt
Jo

for all 0 E C1(/, L2(52)) n c°(/, T4142, d, a)) and all T E [0, T+].

Theorem 1.4 The problem (1.18) has , for a given u0 E L2(12) n

C2(f2) which is assumed to be a nonnegative function , a weak

solution which is Lipschitz continuous with respect to time with

values in W1(1-2; d, a) C L2(12, d,a) . Moreover the solution is
unique.

Idea of the proof First let us extend the given domain so that the

condition (1.19) and all assumptions are satisfied in the extended domain

n and simultaneously extend uo, (a ij) , and coefficient functions of f(u)

continuously to n such that the extended tio to n has compact support

in the extended boundary an and the extended (iiii) to n also satisfies

p;d,a C, U(0) = U0 lt(t)Ir = O.
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the condition (1.19) and the extended coefficient functions also satisfies

the assumptions given in problem (1.18) for the coefficient functions of

f(u). Here the extended domain is translated so that the translated do-

main is situated in half space xN > 0. We do this since we expect that the

extended and translated function of (aii) is also positive definite in the

extended and translated domain except the part on which the problem is

degenerating. Then the compatibility condition at the boundary On of the

extended and translated initial condition ito for the solution of an extended

problem to the extended and translated domain is forced for the solution

to have zero at the whole extended and translated boundary an. Thus, the

problem (1.18) is transformed to a problem on the extended and translated

domain n with zero at the whole extended and translated boundary 91-4 .

However, the transformed problem is still degenerate, parabolic. Hence re-

placing the domain and initial-boundary data (it is not necessarily for the

boundary data since boundary conditions are zero.) with their smooth ap-

proximations, we obtain approximating problems which are nondegenerate

and we know the existence of solutions for these problems ( See Chapter

4 ). We can also extract a subsequence of the sequence of approximate

solutions which converges to a solution uniformly on each compact subset

of n for each t E I. Then I will show that we can also extract a sub-

sequence from the sequence of the mollifers of the approximate solutions

, which converges to some solution in the norm of TV (1; d, a) for each

t E I. The fact that C"(6) is dense in W1 d, a) means the existence of

a solution in Wj- (n; d, a) for each t. Then the solution which is restricted

and translated to the original domain n is forced to be the one for the

original problem.



The proof of the existence.

Notation I) Let 1 denote an extended domain of S2 which is translated

so as to be situated in half space x N > 0. (A-2 denotes the boundary of

Notation II) a (aii) denotes an extension of (aii) to S-2 so that (ajj),

2LiLa are continuous in and c2d(x)a > 76(x) > a(x) > c,d(x)c, with

1 < a < 2 , c1, c2 > 0 in a neighborhood of on is satisfied. Here the

extension of (aii) to fi is done by a translation of the function after an

extension of (aii) to an extended domain of 12.

Notation III) /10 denotes an extension ( also translated) of u0 so as to

be defined continuously and uniformly with a compact support in f2 so

that outside of Fi become zero.

Notation IV) f(ü) denotes an extension of f (u) to fi such that

f(ü) is Holder continuous with exponents ,@/2 in (x, t) E Q T

FÜ1< M, and 1/31 <M1 See Chapter 4 for '3 , M ,and

f(ü) is Lipschitz continuous in t ; 7(ü) is differentiable in it and /3

in (x ,t) E QT, Jul <M and 1/31 < M1.

The Lipschitz constants, laflaul , la flak I are bounded by a con-

stant C.

There is a number M2 such that f (s)s < 0 for all 1st > M2.

This implies an L a priori bound.

Step 1) We extend 1-2 to a domain f2 with smooth boundary denoted as

the Notation I) and simunenously (ctij) , u0 , and coefficient functions of

f (u) are extended to 12' so that the conditions of Notation II) , III) and IV)

are satisfied , which are denoted by (aii) , ii0 and (u) respectly , and a

sequence of open sets f2i with smooth boundary such that t1 C-20 C C-41 C

52
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1-42 C Un=-_0 = and limn_+00 sup{a(x) I x E n\f2n1 = 0 exist.

Then the compatibility condition at the boundary of the extended and

translated initial condition '14 with the solution of an extended problem to

the domain n is force for the solution to have zero at the whole boundary

of2 since ii0 is zero at the whole boundary an. Thus the problem (1.18)

is transformed to the extended domain n as follows;

Step 2)

1

ito(x) if ii0(x) > i

1 if 0 < ito(x) <

Since Et is still degenerate, we replace Ft by a nondegenerate approxi-

mating smooth function a, for each t E I where an is defined on n such

that

= a, an(x) > (X) a(X)

for all x E O and E RN, sup{ Han(x) ii(x)II I x E (21= 0

and "etn, is defined on n such that

sup{ Man an(x)I1 I x E < for > 0,
xEc,

and ã(x) > an(x) for all x E 1 and E RN. Here fn, is a

smooth approximation of fr, such that

{ fit = v (ava) + f(u)
it=0
ii(o) = ft°

sup{l
xec2

frIE inil I x E (21 < for >0,

(3.9)

Let Ok



where :in is defined such that

the coefficient functions of fn(u) are greater thanin = f n

and sup,oc,{11fn x E f4} = 0.

Then the problem (3.9) is replaced by the problem solving the nondegen-

erate approximating problems such that

(an,i + fnE(unei)

0
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in 1xI
on 9f1 X I (3.10)

in (2

II bfincri II 2H1(0) II j6lincriii 112J 111n (c2)
Ufl IV(J6iinen ft) 12 dx

<
I\Orn

I V(hisinf, 1)12 dx+ ft)12 dx (3.11)

Lemma 3.1 If c2d(x)2 > an,n(x) > a(x) > cid(x)a is satisfied for

1 > a > 2 and el, c2 > 0, then we have a relation such that

The condition c2d(x)" > .)71nci > Ftn,i > cid(x) with 1 < ci < 2 and

c1, c2 > 0 , and the condition of Notation IV for f are sufficient to satisfy

the conditions solving the nondegenerate problems ( see Chapter 4). Then

its solution , , exits and belongs to C2,1(1-2- ) n C(1-2"z ) for all t E I.

Step 3) Let hi-1n,, be a mollifier of iinf, having a compact support in

(2. Then Joiinft E C'(1--2). Let us show that we can extract a subsequence

{ Joft, } such that

ft 4-2) < for >0.

1i 2

Consider 11Jsfinf II H1(n) Then



an(x) < L( x) < ea-1+6 (x) for all x in a neighborhood of an.

proof We obtain ceinEn(x)an6,n(x) > eel& f(X)d(x) by multifying

cein6,(x) into a, (x) > c,d(x)a ,where d,c > 0 are chosen so that

cc1an6 cn(x) > c2 for all x in the a neighborhood of of 4. Thus we have

ni+en6 (X) > C2d(X)a > (x) for all x in a neighborhood of Oil. Hence

can1±,na (x) > &(x) for all x in a neighborhood of On.

Therefore, By Lemma 3.1 we obtain

(3.11) 5_L inC-1±6 V(J6itncn it) 12 dx

± if I V(JoftnEn 12 dx

acn
< csup{e4/E IX E nm} II nEn uI H (-W2m)n

± hfincn II
) (3.12)

For a given > 0 , we can make the first term smaller than by choosing

m sufficiently large. Now let us consider in (3.12)

IIJ6it(t) '11(0 II
(m

) for all t E I.
arin

Then

II JI5iinCn(t) ii(t)112H, (f2m)
anErt

= < ancn V(J51--inen 1-1) V(hitnEn

=
O

a riEnV G iirtnEn ft) V(J6finEn dx (3.13)
n,
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Remark 3.2) aVw V w = V (wa V w) w V (a V w)



km siinen u)° dar_.=. 0 0aq

By applying Lemma 3.2 and (3.10) to (3.14), we obtain

(3.14) = f (hitn, V n -it)) dx

fhtin ii){(J5nnEn, (infm(hfinEn) inEn dx
Orn

h'anEn (II (j5linin 1.1)t 112+ fnE7,(0112) (115)

Lemma 3.3 iinfr, is equibounded in L2 (f1)

Proof Let AnfnitriEri = V (6,iyunfn) and v(t) = Un,(t).

Thus the equation of (3.10) implies

v(t) Ancr,finEn(t)

and we set

Vn,0 UO,n = Anenit-0,rt fricr,(110,n)

Then from variation of constants formula , we obtain

v(t) etAnen, \\0172T))Vrt uT.
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(3.13) = f V ((hitn, it)ein,V (hUnET, it)) dxf(ä dx (3.14)

Lemma 3.2 V. foarifv(Jou, dx = 0

for a sufficiently large m.

Proof fOn, V ( aw V w) dx = facrn(aw V w) n do- = f8irriaw.'261-71;- do-

by green's formula . Let a = einfn and w = . Then since

ii = 0 for sufficiently large m
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The Notation IV (3) implies that fn,' (lin(-r)) is bounded by a constant.

Thus

Ilvn(t)112 livn,011+
pt

C livn(r)II2 dy.

and Theorem 1.8 (A theorem for the Gronwall Inequality) implies

1v(t)I12 11vn,0112
eCt

Since livn,0112 5- ilAnenno,rill2 rine?, (16,0112, we have

livn(t)112 ilvn,0112 C.

Thus II"En112 < C where the constant C does not depend on n and t 0

Therefore , in (3.15) by Lemma 3.3 we know

II (j 6"En ft)t 112 ± IlinTi(j6itncn) inEn(u)112 C.

From (V) of Theorem 1.1 , it is known that if ü E C(6) , then

limb,o+ J6itn,,n(x) = iinfm(x) and limn, finEn = ü uniformly on S-2.

Hence, we can make 11thiincr, f/112 in (3.15) sufficiently small. There-

fore , we can make

hifinfnH1 (am) < Eanen

for sufficiently large m,n, given e > 0 . Thus, finally , we have

j5iinfrt 111n0 < f'

That is , a sequence { hiinfn } converges to ft in the seminorm 11'112ip(a)

We also can make

IIJoiinEn L,(O;d,a) < qfor a given el > 0.



Hence from such a relation that

ihnnfri un, I + func.

we have

II hisinfrt + II nEn .za II L2 (1-;d,C1') < 6

for sufficiently large n , > 0. Thus we can extract a subsequence {Joiine}

converging to ü in the norm of the weighted Sobolev space "W2'(f2; d, a).

Since C"(6) is dense in WRSZ, d, a) and hitn,Th E C"(f2). we have

E (12; d, a) C L2(12-; d, a) . Now let us translate it back to origi-

nal position and restrict it to the original domain C2 and let this be de-

noted by (itb)lu = nb . Then ub is given as a solution of the original

problem (1.18) because it satisfies the boundary condition of the origi-

nal problem. That is , zero at ri , no boundary condition at ro , and

ub E W21(2; d, a) C L2(12; d, a) .

Now from Lemma 3.3 , we know that

Pn7212 C

where the constant C does not depend on n and t. We can also obtain

PinE-11L2(c2;d,,) 5- C (3.16)

by using the L2 (Q--; d, a)-norm instead of the 1112 -norm given in Lemma

3.3. Then (3.16) implies

II_ unfn(t) IlL2(-2d,a)16,(t h) < Ch for alit E /and n E N (3.17)

where C does not depend on n and t . Since itnEn converges uniformly

to ü in L2 (f2; d, a) , it is clear that (3.17) implies the Lipschitz continuity
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of it in L2(f2; d, a) . Thus (3.17) also implies the Lipschitz continuity of

ub since the property of Lipschitz continuity is invariant under translation

and restriction of the domain .

It remains to show that ub is a weak solution of the problem (1,18).

The proof is similar to that of [13] . Let us take a fixed test function

E C1(/, L2(9; d, a)) n vil(f2; d, a))

Since is a classical solution of (3.10), we have for T E I.

T

< 0(11) itn(T) > <(0),u0, > < 0(t), > dt

< (t) , > dt + < , 1,(fin,n(t)) > dt
(3.18)

Remark 3.3 By maximum principle,

e- 2 c2 e2c2 T max{sup ito,,, 0}< u_ nen

fincri E C2,1(Q) and IlitnEn11,,,2 is independent of n.

Therefore { itn} is compact in C(Q) for all t E I. ( See Dong [12] )

By Remark 3.3 , it is clear that the first line in (3.18) converges to

the same expression , where is replaced by it if n tends to infinity.

Similarly

< o(t) , inEn (itnEn (t)) >-4< f(it(t)) >

uniformly with respect to t E [0, T] by Remark 3.3 and the assumptions

of Notation IV. Let us show that < iinVO(t), Vitn,n(t) > converges to

< ,vii(t) > as n goes to infinity. For let e > 0 be given,



l< äVü,V0 >I

EtV( it) V IP dx

< al IVitnEn1 17 dx l< '0,70 >1

111/1. (0) suP { ran, (x) (x)( x }2
zdi 1,2

it) V dx

5_clifinEn111/1,n(?) suPflanEn(x) a(x)11x E -0,n1 II 111,2

fil1H1(On) ii 111,2

1+ sup { ilEi(x)1 lx E \ Sim 12 110111,2
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for sufficiently large n.

Lemma 3.4 linnEn < for sufficiently large m , n and

11a.n(7,11.in < ci ,111111H1 <c2 , where c1 and c2 does not depend on n.

Proof
11 nEn H1 (n) IIJOftnEn Ufl+ Olinen

The right side can be made sufficiently small since ull < c for
sufficiently large n , m from Step 3. 11niin.11H1(f2m) < C1 111116( ) < C2

are shown by (3.17) , because it E (f2; d, a) .

To prove the last inequality one has to use Lemma 3.4 and the assumption

of Step 1 . First we can choose m such that the third term is as small as

desired and then make n so great that the first two terms are small. This

implies that ü is a weak solution of (3.9). Thus ub is also a weak solution

of (1.18). 0
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The Proof of the Uniqueness

It is sufficient to show the uniqueness of a solution of the problem (3.9)

in order to show the uniqueness of a solution of the problem (1.18). Thus

supposse we have two solutions 16 and if] of the problem (3.9) with the

same initial value. Then ü = would be a weak solution with ito = 0

and Aft) replaced by F (t) := (i3(t)) f (fv- (t)). We must show that ü is

identically zero. Let us introduce the function

{
0 for 0<xN<r

IP r,n(x) = 0 r,n(x N) = an Ilnr1)( (ln Iln xN1)6 for r < X N < 71,7

1 for X N > .. .2-

where (in Iln r DE (in tin 1)( = 1, 0 < <
Let Sn = fx (-X" , x') E with x' > E RN -1 I Let us also define

Rnnii = ii(x) r,n(x) . Then it is clear that Rr,nii(x) = n(x) for all x E 511

Lemma 3.5 limro < &VRr,nit, Vu >=< VÜ, > and

limn_÷,, < aVRnnit, V >< awt, virt >.

Proof)

lim < EIVRr,nit, >. lim < iiVeli(X) ,n(X)) >
r-÷0

= lim < iicbr,n(x)Vii(x), V ii(x) > lim < ft(x)V 11) r,n(x) , V ft(x) >

The first limit on the right-hand side is equal to < aVic(x), VU(x) > since

r,() goes to one as r tends to zero. We show first that the second limit
1 1

does not exceed limr,0 < àVü, Vic > 2 iriVOnn ilVOnn > 2 in modulus

and is equal to zero. By virtue of the fact that = 0 for 0 <j < N 1,



we have

since c24, > a N N (x) from condition (1.19).

Lemma 3.6 We will always consider that the function u(x) for x N > 0 is

extended to zero outside the domain f2 . If u E -147 (f2; d, a) and the

condition (1.19) is satisfied , then

where c> 0 is a constant.

Proof In the case a > 1

A a a 2

u2(x) {f aXN
XN

< UV 0 ,,,, , UN 7 Or,. > =a N N (x)(I
-'.2

r 2

8:00rN' n ) ft2 dx

< c x' (814' r'n )2 '112 dx2I -N axN

and in the case a = 1

A 1 1

n2(x) [/ N N aau-
XN

-1 .4
fAA

XN uXN
ixN

=11 1-1

1-a
{ Int < CXN2

1

lul <cIlnxNl2 when a = 1

fXN

I1A-7
a Al-al

when a > 1

XN

A

2

, \
a

2 ,
X.N.9xN) x N

au-
N k-Tz\--r-

2 N

A

= 11n A ln x NI I xN(-5-z-,)2 dxN
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(3.19)

iv

where A is so large a number that all of f2 is situated in x N <A . Then

u E d, a) and the condition (1.19) implies



{
1-a

I < cxx2 when a > 1
1

Ii < din xNI2 when a = 1
where c> 0 is a constant El

Thus in the case o> 1 by Lemma 3.6 .

1-a 2
(3.19) < CC Jxck(xN2 ) ("xN" )2 dxo

2

=e3
XN( N"xr'n) dx

"s-'2

where c3 = c2c2 .

Thus by Remark 3.4 ,

(3.20) = c4n{ r<xN<71
dx

1 sNlIn sN12(Iniln xNI)2 2
--7

where c4 = c32 and the last term comverges to zero as r converges to zero.

In the case a = 1 , by Lemma 3.6 and 3.7, (3.19) becomes

2 r)
490r ,n - 4, _1 1

c2 xN( oxN uX C4 I dx
xN1ln xN1(inlin sNI)2c2n-tr<XN 77

The last term converges to zero as r converges to zero. Thus we have that

since 1/n goes to zero as n ---+ cc and r goes to zero , for a > 1.

lim < >=-- 0 and urn < itV0r,n, fiVOnn >= 0.
r-*C1 n--+oo

°!r'n is obtained by direct differential of Or,, function.
VXN
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(3.20)

Remark 3.4
0 for XN > r,

01,br,n for 1r < xN < n 7
OXN xN in xNIOnlin xN1)1-

0 for XN >
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Since it is only defined for t E / , we extend it continuously to R by 0 for

negative arguments and by u(T) for t > T . To obtain uniqueness of the

solution we use a test function such that

1f t+6
where 6 > 0.n,,5(t) =

t_o Rr'nfl(T)
dT

Now we have

Vn,6 i10E Cl (I, L20)) n cm(i,i; d, a))

and

n'6(0 Rr,n(u(t (5) u(t 6)).

We first want to let 6 converge to zero.

T

< n ,S(t) ft(t) > dt I 5) (5) >s dt
0 26

±
s Rr'n(ii(t +5) it(t 6))ii(t) dxdt

Jo 26

1
-4 (lift(T)1112(s) ilii(0)1112(s))± K n

where K, := lim0+ foT ± 5) it(t (5))11(t) dxdt,

i/Cn I <T CMV0i(S) dt. To verify the above inequality one uses the

Loo-bound and the Lipschitz condition on it

Since ft E L2()) n c°(/, (fi'; d, a)) , we deduce

rTCpn,6(t),V > dt < Rr,,it(t), V '140 > dt
0

and

JoT

fo
< n 05(0 F (t) > dt 4 < F(t) > dt.



as 6 approaches zero. Since ü is a weak solution , we obtain

Ilf1(0)112,L 2 (lift(T)1121,2 (s, 0112", 2(so) +

= I < aN7 Rr,nii(t) (t) > dt + f < Rr,nii(t), F(t) > dt

Now we let n tend to infinity and use the above lemma and ft(0) = 0. Then

we obtain

Ili(T)112L -= 2I < -aVfi(t),Vii(t) > dt + < Et), F(t) > dt
0 0

(3.21)

Now from assumptions of Notation IV for I,

11F(0112 111(1(t)) 1-(1- n(t))112 5- 110) - '140112 11140112

Thus applying (3.22) into (3.21) , we obtain

T
2 2 2

Ilft(T)11L2(0) + 2f Iln(t)11 ii(s' .)dt 5_ 2c jo Ifri(t)11L2(0) d

Thus

P,(T)112.1,2(2-) 5_ 2c fo Ilii(t)1112() dt.

From Theorem 1.8 ( A theorem for the Gronwall Inequality ),

1114T)11L2K2')0.

This implies that i has vanished identically. El

65

(3.22)



CHAPTER 4

THEOREMS FOR NONDEGENERATE PARABOLIC EQUATIONS AND
DEGENERATE PARABOLIC EQUATIONS

This chapter provides some known results for nondegenerate parabolic

equations and degenerate parabolic equations with principal part in diver-

gence form : (1.1) or (1.2). We deal mainly with the solvability of the first

boundary value problem for them.

4.1 Nondegenerate Parabolic Equations

We begin with the case of nondegenerate parabolic equations. Let us

consider the problem of finding a function u such that

Ut

01r,
= kai(x,t,u,ux)+b(x,t,u,us)

ulr, = for some given function

We make the following assumptions

(a) For (x, t) E -(2-2" and arbitrary u, UjIp=0 > 0_

A(x,t,u, 0)u > b1u2 b2 are satisfied where b1 and b2 are nonnegative

constants and

A(x,t,u,ux) =b(x,t,u,ux) (aailau)ux, aailaxi

Here for (x,t) E QT, jul < M, and arbitrary p , M is taken to be

max,Q, juj < M,7 E [0,1] . {ur} is the solution to the family of the

following problems. For each T and for w(x,t) given, consider the linear

problem :

VtIaai(x,t,w,wx) ± (1 TAlvs,xiT awx

(4.1)

+TA(x,t,w,wx) (1 T)[IPt AO] = 0

= < T < 1

66

(4.2)
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for determining the function v. We introduce a linear Banach space, B5,

of functions, w(x, t) , that are continuous together with their derivatives

with respect to x in QT and have the finite norm

IwiB, 14T) + itv,1( 52T)

under certain restrictions on the functions ai, a, 7/) and S . The problem

(4.2) defines an operator W in .1: 3 which associates with each function w of

B5 a solution v of the linear problem (4.2) : v = W(w, T) . This operator

is nonlinear and depends on T . Its fixed points for 'T = 1 are solutions to

the problem (4.1). Let ur be one of the fixed points of the transformation

(w; 7) . That is, let ur = Alf (ttr; T) . This means that ur is a solution to

the nonlinear problem

tit ddxibai(x,t,U,Ux) + (1 T)Uxii

d-Tb(X Ux) (1 7)(t AlP) = 0 (4.3)

UIç= 01r, , 0 < T < 1

where ai and b are continuous, the ai(x, t,u,p) are differential with respect

to x, u, and p , and ai and b satisfy the inequalities

2 aa
pte , v > 0 and

opi

+I 021-i)(1 + 1p1) + Erii,J=1
Oa
axj + 1b1 ii(1 + 102

For (x,t) E QT,IU1 < M and IA < M1 , Here M1 is taken to be

max(2, lurx I < M1,7 E [0, 1]. The function ai, b, and 23t are con-

tinuous functions satisfing a Holder condition in x,t,u and p with exponents

4,13 and 13 respectively.

ai and b are Lipschitz continuous in t b is differentiable in u and p in

(x,t) E (2'T < IPI <
aa

. The Lipschitz constants, , and ap,

are bounded.
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(x ,t) E H21+ 1 (QT) ( See Appendix 2 (18) ) and satisfies corn-

patability conditions on So =7 Ix E OC2, t = 01. Thus the given satisfies

i(x x) + b(x t x) =--- 0 on So fx E OC2, t = 01.

OS2 E H23 (i3 > 0). ( See Appendix 2 (19) for H2)

(g)IST E 024(ST); maxxEc2 x(x , 0)1 < 00; E fir (Q T)

(h) S E 02. ( See Appendix 2 (22),(23) for 02'1 (ST) , 02 respectively )

Theorem 4.1. Suppose that the conditions (a) - (f) hold , then there
314_0 _

exists a unique solution to problem (4.1) in the class H2 '4_ (QT)

Moreover , this solution has derivatives ttxt in L2 (QT)

Theorem 4.2. Suppose that the conditions (a) - (c), (g) and (h) hold.

Then there exits at least one solution u(x,t) of the problem (4.1) belonging
a _

to H''"T (QT) and having ux bounded in QT and derivatives ut, u xx that
2

belong to H-13' 2 (QT). For the uniqueness of such a solution, it is sufficient

that the function b(x,t,u,p) satisfies a Lipschitz condition in u and p

uniformly on any compactum of the form {(x, t) E QT11U1 <e,IPI < c}

Theorem 4.3. Suppose that the conditions (a),(b),(g) and (h) hold. Then
in H,,-2- (QT) n vv2 (QT)2,1a _

the problem (4.1) has a solution u(x,t) with us

in (QT) and with finite maxch, lux I . If, furthermore , b(x,t,u,p)

satisfies a Lipschitz condition in u and p (uniformly on any compactum),

then the solutiion is unique in the indicated class.

( See Appendix 2 (7) for W224 (QT) )

Actually it is possible to go further in weakening the conditions of the

theorem and arriving at generalized solutions of equations of problem (4.1)

having only derivatives of first order.



Theorem 4.4. Suppose the following conditions hold.

(i) For (x, t) E Q T and arbitrary u and p inequality

ai(x,t,u,p)pi + b(x,t,u,p)u 5_ vp2 02(x,t)lur

where v > 0,6 (X t) E Li (CM, E (0, 2), 02(x, t) E Lq2,r2(QT) and the

number q2 and r2 are subject to the conditions 1 + -73,(2

a), r2 , q2 1 is valid and lai(x,t,u,P)i + IPI) 5_ P(1+ 1P1)2 ± (1 +

lui2)03(x, t) and lb(x,t, u,p)I P(1+ 1P1)2±(1+1Ula)03 (X, t) with a <2

and cb3 E Lo,, -7+3- + < 1; r3,q3 > 1 .

(i) For (x, t) E QT , arbitrary p , and lul exceeding some constant K

ai(x,t,u,p)pi 412 1-1143 u2 03(x ,t) and b(x,t,u,P)u 412 ±
Plur + u203(x,t) with 13 < 2 + .

(k) For (x,t) and (x', t') E QT and arbitrary u , v , p , and q,

(pi qi)[ai(x ,t, u, p) a i(x ,t,u, q)] v (lul)Ip q12

and lai(x,t,u,p) ai(x,t,u,q)I 5_ ft(Iul)lp ql

ai(x' ,t` ,11,13)1

E(IX XII ± It ± VI){IPI ivi) ± 04(X, t) 04(XI, ti)]

lb(x,t,u,p) b(xl , v,q)I (1x x'l ± It t'l

+ lu + i q1)[/-1(1111+ lvi + II + + 01(x ,t) + 0(x/ ,t')]

where (T) and per) are continuous, positive functions of T > 0 , E(T) is a

continuous function of 7 > 0 that is equal to zero for T 0 , E L2 (QT),

and 01 E Ll(QT) Then the problem (4.1) with Ols, = 0 has at least
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one solution in Hr(QT) n w'°(QT) with some r > 0 for any function

E B-54(rT) .

Actually the existence of generalized solutions u of the boundary value

problems for equations of the problem (4.1) in the class of functions having

only derivatives u, can be proved in another way without using theorem

(4.1) - (4.3) on their classical solvability . Namely , such solutions can be

obtained as limits of approximate solutions , n, computed by Galerkin's

method. Let us consider such a problem as follows

ut = d÷jai(x,t,u,u,) +b(x,t,u,u,)

UIS=0 (4.4)

tilt=0 =0 for any 0o(x) E L2 (Q)

We assume such conditions as follow

(1) For (x,t,u,p) E {5-2 x [0,T] X E1 X Eri} , the function ai and b are

measurable in (x, t, u, p) and continuous in (u,p) for almost all (x, t) E QT

ai satisfy the inequality

lail < (x,t)

01 E Lm,(QT) where q* < q = m(n+2) m
m-1 with th m > >n+2-III for n 2

and m> 1 for n = 1 : and b satisfies the inequality

Ibl 5_ 02(x, t) +clul q + cIpl q' ,02 E Lq,(QT)

where q' = and m* <m .q-1

(m) For any function u(x) E W(Q) , ( See Appendix 2 (6) for W())

[aiux, A-bu] dx v luxrdx c(t) I (1 u2) dx , v > 0] c(t)dt 5_ c



(n) A monotonicity condition of the form

L[ai(x,t,v,vx)ai(x,t,v,ux)1(vxjuxi)dx > v(Ivl ,luxI)Ivx ux1 dx

holds, where v(71, 72) is a continuous positive function for 7-1 > 0 and

7-2 > 0 , and u and v are arbitrary elements of Wm1 (C2) .

Theorem 4.5. The problem (4.4) , for any /7b0 E L2 (11) , has at least one

generalized solution u from Vm2(QT) where
T Ilu(x,t+h)u(x,t)11 ,ci

f0 h2 T-11 < 00 if the conditions (1),(m) and (n) hold.
0

( See Appendix 2 (21) for 17n2(QT) )

The proofs of Theorems (4.1)-(4.5) are found in Ladyzhenskaya [2].

4.2 Degenerate Parabolic Equations

Let us consider the case of degenerate parabolic equations . We deal

with degenerate parabolic equations which are contained in the class of

the form (1.1).

[ I ] Let us consider the first boundary value problem

= (aii(x,t,u)ux ) +bi(x,t,u)ux, + c(x,t,u)u
x

= uo(x)
= 0(s, t)

71

(4.5)

where uo , are nonnegative continuous functions satisfying the compati-

bility condition uo I ac2 = 'Olt.° We assume the coefficients of the equation

and the domain to satisfy ;

aij , bi, c, , and R-Lc, are in C(Q X R) .

There exists a constant A and a function v such that

1

v(ir1)1 12
Av(IrD1I2 , for all E Rn



ac,(8,0Aii(s,t,0(s,t)) aN cos(N,xi)cos(N, x1) dsdt = 0
I4912 x[0,1]

where N is the unit outer normal at OQ and

Aii(x,t,r) = aii(x,t,$)ds,

Bi(x,t,r) = bi(x,t,$)ds,Ir
(See Dong [12] for the proof of the Theorem 4.6).

[ II ] We consider a problem in a class of degenerate parabolic equations

on a bounded domain with mixed boundary conditions such that

{ut

= div(Vcb(x,t,u) + .r(x,t,u))+ h(x,t,u)
u = uo on (as2 \ E)T u f/ x fol

(vo(x,t,u) + f(x,t,u)) = g(x,t,u) on

aai.axi3 (X, t, s) dsAi(x,t,r)

B(x,t,r) (x,t,$)ds
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(4.6)

and (x,t,r) E C(Q x R). Here the function v(r) (0 < r < ) satisfies

v E C[0, co), v(0) = 0, v(r) > 0(r > 0) and 36 > 0,m > 1 such that

1 _< rv(r)I for v(s)ds <m for 0 <r < S.

(q) 052 E H1+'3°, /(30 >0.

Theorem 4.6. Under assumptions (o),(p),(q) for u0 E H13(Q) and

E 2 (aQ X TD, /3 > 0 , the first boundary value problem (4.5) has

a generalized solution u . Moreover , u is Holder continuous in Q. Here a

generalized solution for the first boundary value problem (4.5) is defined

to be a nonnegative continuous function u in Q , if it satisfies the initial

and boundary values pointwise and satisfies the equation in the following

sense : For all cp E H2'1 (Q)nry (Q) = 0 (x E 9) , 'Pl8r2x[o,i1

fQ [u(2-t
Aii(x,t,u)(px,x (Ai(x,t,u)+ Bi(x, t, u))(Px,

+ (c(x,t,u)+ B(x,t,u))(p]dxdt + fuo(x)y(x, dx
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where 9, is a bounded domain in RN which satisfies the uniform C-

regularity property . E is a relatively open subset of 09 , and and

\ E are C2 surfaces with boundary which meet in a C2 manifold of

dimension N-2 . n denotes the outerward unit normal to E at x. Then we

assume that the coefficient functions and the domain satisfy the following

conditions

Ax0 E C(QT x R), vecb E fl C(C2T xR) and Ou E C(C2T x R \ {0})

, such that ci5(x ,t , 0) = 0 and 6,2(x ,t , u) >0 for all u 0 0.

C(C2T x R), Vx1E C(QT x R) , and

E fl, C(QT x R \ {0}) , such that ,f(x, t, 0) = 0.

h E C(QT x R) and hu E C(QT x R \ {0}) , with h(x,t,0) = 0.

g E C(ET x R) and gt, E C(ET x R \ {0}) , with g(x,t, 0) = 0.

uo E L'((a1Z E)T U ft x {0}) , with uo > 0.

Ou, fu,hu E L'(QT x M1) for every M > 0.

Given M > 0 , there exists a constant C = C(M) such that

igu(x,t,u)i Ccbu(x,t,u) for all (x,t,u) E ET X (0,M].

Either % = E or N = 1.

Then since it is possible that c6(x,t,u) = 0 , the differential equation of

the problem (4.6) is degenerate parabolic .

Theorem 4.7. ( LOCAL EXISTENCE AND CONTINUATION )

If - (v) are satisfied , for some Ti = 711(u0) E (0,T) . the problem

(4.6) has a solution , u(x,t) = u(x,t;u0) , on QT . Furthermore , if

T = Do and T1 is redefined to be the maximum possible value of t such

that u is a solution of the problem (4.6) on Q, for each s E [0, t) , then

limt,Ti sup{t Ilu(, OIL} = oo .
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Theorem 4.8. ( COMPARISION AND CONTINUOUS DEPENDENCE )

Suppose (i) - (viii) hold , and let u(x , t; uo) and v(x, t; uo) be nonnegative

solutions of the problem (4.6) on QT . Here T < minfTi(u0),Ti(vo)}. If

uo < vo, then u < v on QT . Furthermore there exist a constant C such

that

flu(x,t)
v(x,t)1 dx Cf lUo (X, 0) Vo(X, 0)1 dx

f
+ C

t
luo vo ds

1012\E

for alit E [0, TJ .

See Anderson [15] for the proofs of the Theorems (4.7) and (4.8).

[ III ] Let us consider the following boundary value problem

Ut = diva(x, t, u, Du) + b(x,t,u, Du) in QT
21(-,06-2 g( ,t) for almost every t E (0, T) (4.7)

, 0) Uo

Here the functions a : QT X RN+1 --4 RN and b : QT X RN +1 R are

measurable and satisfy

a(x, t,u, Du) Du colDur ciolUr (po(X,

la(x,t,u,Du)I < +e'llu1641-
5-1

lb(x,t,u, Du)I < c2jDuIP 6 + C121U16-1 -1- cp2(X, t)

for p > 1 and a.e (x, t) E C2 x [0, T] . c, e i = 0, 1, 2 are positive
< ivEconstants and 6 is in p < 6 pN2 The nonnegative functions <pi

6

= 0,1,2 are defined in QT and satisfy E L 4-(Q T) where

= (1 ko ) ko E (0,1] .
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Theorem 4.9. Assume that u is a nonnegative weak subsolution of the

problem (4.7) and g E 1,(ST) , then u is bounded in Six (, T],e E (0, T).

Theorem 4.10. Let u be a nonnegative weak subsolution of the problem

such that

ut = diva(x,t,u, Du) in QT,p > 1

u(, t) = g(-,t) for almost every t E (0,T)

u(-, 0) -= uo

Here the function a : QT X RN-I-1 -4 RN is measurable and satisfy

{ a(x,t,u, Du) Du > colDur
la(x,t,u,Du)l < cilDuri

for two given constants , 0 < co < cl. Then

sup u < max-tess sup g; ess sup n0}.
QT ST

This is called the weak maximum priciple.

Let us consider the inequality above. Then

u(x, t) < max{ess sup g; ess sup uo} for all (x, t) E Q.
ST

If g 0 on ST and intially n0 > 0 is given , then

u(x,t) < ess sup uo = ess sup u(x, 0) for all (x, E QT.

Thus for each t , 0 <t <T , there exists a constant Rt such that u(x,t) =

0, Ix! < Rt provided that u(x,0) has compact support . This means that

the speed of propagation of the solution is finite.

See [41] for the proofs of the Theorems (4.9) and (4.10)
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[ IV] Theorem 4.11. ( GLOBAL MAXIMUM PRINCIPLE )

Let u be a weak solution of (1.2) in QT such that u < 114- on F . Then

u(x,t) < M ck for almost every (x, t) E QT. Here M , c depends only on

T , PI and the structure of (1.2) while k = (11b11 + Ild11) 1ml + (11111 + 11g11).

Theorem 4.12. ( LOCAL BOUNDEDNESS )

Let u be a weak solution of (1.2) in QT . Suppose that the set QT(3p) is

contained in QT. Then for almost every (x,t) in QT(p)

111(X
5.. cco_

(1 I12,2,3p k),

where c is a constant depending only on p and the structure of (1.2) , and

k = llfll + 11g11 + 11h11 In particular , weak solutions of (1.2) must be

locally essentially bounded. Here we denote by R(p) the open cube in En

of edge length p centered at and define QT(p) R(p) X (t p2 ,f) and

let (-X, f) be a fixed point in QT.

Theorem 4.13. ( HARNACK INEQUALITY )

Let u be a nonnegative weak solution of (1.2) in QT. Suppose that the set

QT(3p) is contained in QT . Then maxql,(p)u C minQT(p)(u k)

where C is a constant depending only on p and the structure of (1.2) and

k = 11f11 + 11g11 + 11h11 ,Q(p) x (1 8p2, 7p2)
See Aroson and Serrin [14] for the proofs of (4.11),(4.12), and (4.13)



CHAPTER 5

AN APPLICATION FOR DEGENERATE PARABOLIC EQUATIONS
WITH PRINCIPAL PART IN DIVERGENCE FORM

This chapter provides an application of theorems for degenerate para-

bolic equations . We consider unsaturated flows of liquids ( incompressible

fluids ) in a porous medium . Then in a given domain a certain amount of

liquid is concentrated at a relatively high pressure . As time progresses,

the liquid will flow toward areas of lower pressure . The flow will continue

as long as a sufficiently high saturation is maintained. When the satura-

tion falls below a certain residual value the flow will cease . Thus the

problem is to determine the amount of liquid in any given point of the

domain at any given time . Underground, the flow is usually quite slow,

and temperature considerations play no role , so it is governed by two laws,

the first being Darcy's law

q= A(gradp f) (5.1)

which relates the mass flux , q , to the gradient of the pressure , p , and to

the external body forces , f, and the second being the continuity equation:
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a(p(pS) + div(pq) g, (5.2)

where p denotes the density of the liquid and y denotes the porosity of the

medium which is a measure of the pore volume avariable to the fluid and

S denotes the saturation which gives the fraction of the pore space actu-

ally occupied by the fluid. A = (ai1) denotes a positive (or nonnegative )

definite , symmetric matrix which represents the resistence of medium to
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the flow of the particular fluid in question and g denotes a function which

arises , in the event that sources or sinks are present, e.g. absorption or

pumping of the liquid out of or into the domain. The known functions

f,aii are , in general , functions of pressure , temperature , posi-

tion , time , etc . and their dependence on these quantities is complicated

and difficult to measure. Consequently , it is necessary to make assump-

tions of both a physical and a mathematical nature to make the system

(5.1) and (5.2) amenable to a mathematical treatment. Thus we make the

following physical assumptions

Temperature dependence will be neglected.

A = (aii) is a positive (or nonnegative) definite , symmetric

matrix which depends only on x

p is a positive constant so the fluid is incompressible.

f and g are functions of x , t , and p.

The porosity cp depends upon x and p and it satisfies the inequal-

ity 0 < < 1 . As a function of p , (p is nondecreasing and for p sufficiently

small , cp is independent of p .

S is a function of x and p and satisfies the inequality 0 < S < 1.

As a function of p , S(x,t) is nondecreasing and for p sufficiently small , S

is independent of p .

By combining equation (5.1) with (5.2) , we obtain

0 0
patGpS)

(ai(x,t,p,Dp)) = g
0xi

(5.3)

where ai(x,t,p,Dp) = ctij-Z; (aii fi). In view of the assumptions PA 1)

- PA 6) , this equation is a nonlinear , partial differential equation in p

alone with principal part in divergence form which is of parabolic type but
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which for certain values of (x,t) , p , Dp degenerates. Let the role of p in

(5.3) to be played by u and the role of pcpS to be played by b(x,u) . Then

the equation (5.3) becomes

a 0b(x u) ai(x,t,u, Du) = g(x,t,u) (5.4)
at axi

Let us consider a problem where the equation (5.4) is combined with

the initial-boundary condition

u(x, 0) = uo(x),x E ci and u(x,t) 0, (x, E ST- (5.5)

We now make the functions in (5.4) the following mathematical assump-

tions on which will allow us to treat the initial-boundary value problem

(5.4) , (5.5) :

b(x,u) is defined and continuous for all x E ci, -00 < u <00

and 0 < b(x,u) <1. As a function of u , b is nondecreasing and satisfies

a uniform Lipchitz condition . Finally, for any x E 1 , b(x,u) = 0 if u < 0

and b(x,u) is strictly increasing in u for u > 0 .

The aii , with aii aii are defined as only a function of x and

continuous on n. Furthermore, there exist constants ao, al, al > ao > 0

such that for all x E Il, IR" ,

rz

ao ..i(x)Uj al
i=1 z,3=1 i=1

C(x,t) and f(x,t) are defined and continuous on QT. Further,

C(x,t)> 0 and as a function of t , C(x,t) is continuously differentiable in

QT and t: > 0. Finally, f(x,t)=0 for (x, t) E ST.

u0(x) is defined and continuously differentiable for x E

Further, u0(x) > 0 for x E 9 and u0(x) = 0 for x E aft



2,3=

Ti

[

QT i7j,1
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Now we write the equation (5.4) as

a au 0
(a (x) , u) = C (x ,t)u f (x , t), (x , t) E QT, (5.6)

oXi OX j Ot

where div (A f) g is given by C(x,0 u f(x,t) .

Then we define a generalized solution for such a problem that the equation

(5.6) is combined with an initial boundary condition (5.5) as following ;

A function u E W12'13 (QT) is said to be a generalized solution of the prob-

lem (5.6) from W21'°(QT) if for all functions y E (QT) with cp(x , T) = 0,

it satisfies the integral identity

au ap a
b(x , u)] dxdt = cgx 0)b(x , uo(x)) dx)

ax aXi at

[C (x , t)wp + f (x dxdt (5.7)
QT

Then the problem (5.6) with an initial boundary condition (5.5) under

the assumptions MA 1) - MA 4) has at most one solution in sense of the

definition (5.7) for a generalized solution . A special case of this result

appears in the paper [42]. The existence theory in the Guenther paper

[42] actually is carried by means of finite differences so that a numerical

method for solving the relevant equations is obtained as well .

Let us seek a generalized solution for the equation (5.4) with condi-

tions u(x , 0) = u0(x) and u(x , t) = (x ,t) , (x ,t) E ST where uo, b are

nonnegative continuous functions satisfying the compatibility condition

lac2 = Olt=0 . In order to apply Theorem (4.6) for the existence of a

generalized solution, we need some mathematical assumptions. By the

assumptions PA 1) - PA 6) , we know that 0 < b(x , < 1 and b(x,t) is

a nondecreasing function of u. Thus, under conditions of slow flow , we
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can assume that b(x.u) is almost linear as a function of u. Thus let us

replace b(x,t) by

cu di , if u > 0 ,
cu dk -= (5.8)

cu d2, if u < 0 ,

where c and b are constants satisfying conditions so that e> 0, 0 < dk <

1, k = 1,2 and d1> d and sup r_00<u<00,xEc211b(x,u) (etc + dk)I < c,2

almost every (x,u) for arbitrarily small e. Hence by inserting cu dk into

(5.4) instead of b(x,u) , we obtain

an 0 1 au 1(ai ) = g(x,t,u)
ut axi c axi

If div t, u) can be expressed as bi(x,t,u)usi+C(t, u)u and the

assumptions (0),(p),(q) are satisfied in the problem (4.5) with no E H'3(Q)

and 0 E Hi34 (0S2 x [0,11), > 0, then Theorem (4.6) can be applied.

Thus the equation (5.4) with u(x, 0) = u0(x) and u(x,t) = 0(x,t) , (x, t) E

ST has such a generalized solution u as defined in the Theorem (4.6) and

the u is Holder continuous in QT.

Next let us consider a problem with the equation (5.4) under such

boundary conditions that the value on a certain boundary is zero and

the other boundary has no condition. This problem occurs in a porous

medium consisting of several components and allows certain degeneracies

in A = (aii). That is , (aii) is a nonnegative definite . symmetric matrix

which depends only on x. If the conditions of Notation I - IV and assump-

tions in Chapter 3 are satisfied , then Theorem 1.4 can be applied. Thus,

there is a weak solution which is Lipschitz continuous with respect to time

with values in L2(C2; d, a).

My Theorem 1.4 is a generalization of a Theorem in [42] though the

methods are completely different and it is really a better theorem since it
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allows certain degeneracies in A = (aii) and is more useful to investigate

certain degenerate systems , in particular, those that arise in modeling

fractured media consisting of several components , among which some

components have a tight boundary and the others do not.
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lx1 =
1

lI= (E7.1g)',

a = (al,
gers ai .

APPENDIX 1

Basic Notation

Let us introduce a number of the symbols and notation used in this

dissertation .

RI is the n - dimensional Euclidean space.

x = (xi, is a point in R.

ci is a domain in IV .

S = 09 is the boundary of the domain Q : 9 = ci U S

QT = {(X,t) : x E ci,t E (0,T)} is a space-time cylinder in Rn+1.

ST = {(x, t) : x E aQ,t E {0, Ti} is the lateral surface of QT .

rT ST U {(x,t) : x E ci,t = .

n is the outward unit normal to 09 .
auSymbols uxi =or u = " " denote classical and generalizedOx, xzx3 axo9x3

derivatives

2 N2 iv-Nil 2 \Uxi = =(Uxi) Ittxxi uxixj)

a(x,t,n,p) = a(xi, ,xn,t,u,Pi," ,P7-1)

Oa Oa Od [a(x,t,u(x,t),ux(x,t))] = --577 + + au.a,Uxkxidxi

The summation convention is assumed to hold , that is when the same

index occurs twice in a term, one sums
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Itxkxz
aa aa

axkxiaux, aux?,
k=1

, an) is a multi-index, that is an n-tuple of nonnegative inte-

x2 lx12, P 091,P2, ux = (uxi,
1

P2 = lUx I = (Erii=1 U2xixj ) U2x lUx12
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D' = D" Dri'Th denotes a differential operator of order lal = E37=1

if Di = for 1 <j < n .

Au = V - (aVu), Au = V (ariVu)

Ilullp = IlUllk,p IlUllWipv(c2) , < aVu, Vu >

< u, v >= u(x)v(s) dx ,

< aVu, Ei ai,i(x)Diu(x)Oiv(x) dx .



APPENDIX 2

Definitions of the Basic Function Spaces

Lp() , p > 1 is the Banach space consisting of all measurable

functions on SI having the finite norm :

IlUll p = (Ur dx) 1 p < oo and = ess sup

Lq,,(QT) is the Banach space consisting of all measurable functions

on QT with a finte norm :

1

IlUll = ( 1121(X , dX) dt) where q > 1 and r > 1
Jo

q,q(C2 T) will be denoted by Lq(QT) and the norm Hig,q,ch, by Hig,QT

Lq,, Lr ((0,T), Lq (12)) .

C1(-2) : For any nonnegative integer 1 , O() is the vector space

consisting of all functions 0 which , together with all their partial deriva-

tives Da cb of order la I <1 , are continuous on SI . The subspaces C0(9)

and C,T(S2) consist of all those functions in C() and C" , respectively

which have compact support in SI .

C2'1 (1) is the set of all continuous functions in SI having continuous

derivatives ux, uxx, ut in .

Wk (S2) for k nonnegative integer is the Banach space consisting of

all elements of Lp(Q) having generalized derivatives of order up to k, in-

clusively , that are pth-power summable on Si . The norm in W71;(I2) is
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defined by the equality

111111 k,P,Q = E 11Dixulip,c2 IID:u110-2

j0 (j)

The symbol D-1 denotes any derivative of u(x) with respect to x of order

while E(i) denotes summation over all possible derivatives of u of orderj.

Wpk(9) is the subspace of Wpk(f2) in which the set of all functions

that are infinitely differentiable and finite in SZ is dense .

Wil-(Q) space is the comletion of C'(52) under the norm

Pc2
for u E C'(2) n Lp(S2)

,

W1 42) space is the completion of (S2) under the norm

Ilu111°,)p,C2 /n E Ccic)(C2)

Tv-21,1( )QT\ for 1 integer (q > 1) is the banach space consisting of the"q \

elements of Lq(QT) having generalized derivatives of the form DT 13; with

any r and s satisfying the inequality 2r + s <21. The norm is defined by

the equality
21

117111q,(21C;7-, = EIIDtDaUHqQ
i=0 (2r±s=j)

W'° (QT) ) L2 ((O, T); W21(9)) is the Hilbert space consisting of the

elements u(x,t) of the space L2 (QT) having generalized derivatives Ou/axi,

i 1, n square summable on QT. The scalar product and the norm

are defined by the equalities

(u,v)1,2,Q, = (uv uxvx) dxdt, =- (u,u)1,2,QT
QT
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W'°(QT) L2((0, 77);14/ (Q)) is a subspace of W'°(QT) in which

the set of smooth functions equal to zero near ST is dense.

W21 (QT) is defined on every cross-section S2t of the cylinder QT

by the plane t= ti E [0,T] as functions from L2 MO and they change

continuously with t in the norm L2 (Q) with a change t E [0, T] .

Wipz(c2; a) is defined as the set of all functions u(x) which are

defined almost everywhere on f2 and whose generalized derivatives Da u

for order lal < k satisfy

u(x)IP cr(x) dx < oo.

It is a normed linear space when it is equipped with the norm

LiDa u(x)r a (x) dx) P

92

Let c be a real number and let us denote a(x) = [dm(x)] where M C 052

and d m d(x) = dist(x,M) . Then the weight a(x) is called a power

type weight .

(12) Wi; (12; d, ) or Wpk(Q;dm-) is the power type weighted space

corresponding to the Sobolev weighted space W:(52, a) .

d m , c) = = u(x) I ID'au(x)1Pdck (x) dx <°°}

for all a, jai < k. L(2; d m , E) is the set of all functions u = u(x) satisfying

1

111111p;dm = itt(X)IP m (X) dX) <00



The norm of the Wil; (S2; dm , f) is given by the formula

HU=H k,p;dm, IlDaUlipP;dm,)P
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0
Wpk (12; d, f) is the closure of the space Cax)(9) in the norm ljuilk,p;d,,

11-(f2) space is the closure of the smooth functions q°(12) with

support in 12 with respect to the norm

1 1

(11U1121/0 MUHL ) 2(= < aVu, Vu > + < u,u
1

= If a IVu12 dx + u2 dx} 2

Wipc,a is the Banach space defined to be the space of functions

u E Lp(12) such that

= 12LIP dx pa (x) IDsur dx < oo,
Isl=k

where p(x) = dist (x, as)

inxc, is the corresponding to 1474- (2; d, ct) when d(x, = x.

0

.1V,x- (9) E T/TI(; X I a)E-.- WL(Q) H()

HI (0) is the Banach space whose elements are continuous func-

tions u(x) in 52 having in 7? derivatives up to order [1] inclu-

sively and a finite valve for the quantity lulg) =< u >g)= <u >(0i)

(o) i(o) (i)where < u >_ _0 maxc-2 lul , <U >0 = E(i)lalulQ(°) ,

<u >(1)= Eqii) < D[j1u >g-It1) where 1 is always a nonintegral positive

number.



(21) V171,10,2 (QT)

functios that are equal to zero on ST

01() (1 = 1,2) is the set of all continuous functions in .0 having

continuous derivatives in n up to order 1 1 , with the derivatives of order

1 1 having a first differential at each point of -SI and the derivatives of

order 1 being bounded in ft .

024(ST) is the set of all continuous functions in ST having at

each point of ST derivatives ux and ut with the ux being continuous in x

and having a first differential with respect to x at each point of ST and

the functions ux, u, uxx being bounded in ST

_
(QT) is the banach space of functions u(x4) that are continu-

ous in QT , together with all derivatives of the form DD , for 2r + s <1

,and have a finite norm. ( See [2] for the norm ) . Roughly speaking , if
2+0,1+ -1

u E , then uji(1 <i, j < n) and ut are Holder continuous in t

with exponent f.

kild-a(n) (a E (0, 1),l 0, 1, ) is the Banach space consisting of

the elements C1(2) for which the derivatives of order 1 satisfy the Holder

condition in Il with the power a .

V,2(QT) , m > 1 consists of all measurable functions u(x,t) that

are equal to zero on ST and have the finite norm defined as

ess sup Ilu112,Q
V m,2(QT) 0<t<T

is a completion in the norm defined in (20) of all smooth
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APPENDIX 3

Definition 1) If G C R" , we denote by G the closure of G in R" . We

shall write G CC Si and 0 is a compact subset of RV . If u is a function
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defined on G , we define the support of u as supp u = fx E G : u(x) O.

We say that u has a compact support in 1-2 if supp u CC .

Definition 2) A sequence {0} of functions belongings to C(l) is said

to converge in the sense of the space D(12) to the function 0 E Cr (Q)

provided the following conditions are satisfied

There exists K CC 1 such that supp (On C K for every n

D'On(x) = Da0(x) uniformly on K for each multi-index

et.

There exists a locally convex topology on the vector space Cr with

respect to which a linear functional T is continuous if and if T(0,) -4 T(0)

in C whenever 0 in the sense of the space D(f2) . This topological

vector space is called D(Q) and its elements are testing functions .

Difinition 3) The dual space Di(Q) of D() is canes the space of

distributions :

If S, T ,T E /Y(1-) and c E C ,

( S T ) ( ) S(0) + T(0) for 0 D(I).

( c T ) (0) = c T (0) for 0 E D(Q) .

T in D'(2) if and only if T(0) T(0) in C for 0 E D(11) .

Definition 4) The derivative DT of a distribution T E D'(2) is de-

fined as (DaT)(0) = (-1)HT(13'0) for all 0 E D(12) .
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Definition 5) A function u defined almost everywhere on S2 is said to be

locally integrable on S2 provided u E L(A) for every measurable A CC Q.

We write u E 4,(2). Corresponding to every u E (Q) there is a

distribution Tu E D'(C2) defined by Tu(9) = fc2 u(x)0(x) dx, çL E D(Q).

This distribution T is said to be generated by the function u.

Definition 6) A distribution which is generated by a locally integrable

function is called regular. All other distribution are called singular.




