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SOLUTIONS TO SOME LINEAR EVOLUTIONARY SYSTEMS OF EQUATIONS:
A STUDY OF THE DOUBLE POROSITY MODEL OF FLUID FLOW

IN FRACTURED ROCK AND ITS APPLICATIONS

INTRODUCTION

Many problems that arise in the physical sciences are modeled

mathematically as partial differential equations of various types.

Partial differential equations form a well-developed branch of classical

applied mathematics and are an essential tool in many investigations in

the applied sciences. The mathematical formulation of e.g. a physical

Problem often results in such an equation and its solution usually allows

insights and yields important information about the physical process

under consideration. In general, a differential equation expresses in

mathematical terms a relationship between various quantities involved in

a physical process, such as, for example, balances between forces acting

upon moving objects and rates of change in velocities of motion, local

mass density changes and variations in the fields of flow of fluids, etc.

Many physical problems of practical interest can be represented by

relatively simple equations which may be treated and solved by standard

methods. In this work we make use of the theory and methods of linear

partial differential equations to study systems of equations which

include cases of the so-called parabolic types and which arise often in

problems concerned with flow of ground fluids in natural rock formations.

A partial differential equation is (in contrast to an ordinary

differential equation) an equation in an unknown function of several

independent variables together with its partial derivatives. In physical

problems the independent variables are usually the spacial coordinates
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x and time t. The equation is said to be of order n if it contains at

least one derivative of order n and none of order higher than n, and the

equation is linear if it is linear in the unknowns and its derivatives.

A complete formulation of a problem consists of one or more equations

given with initial and boundary conditions which the equations must

satisfy, and the system may then have a unique solution, many solutions

or no solution at all. In most cases involving physical problems the

equations together with the initial and boundary conditions have a unique

solution.

We mention three simple, well-known linear partial differential

equations which occur frequently in the physical sciences. These are the

wave eauation (1), the diffusion or heat equation (2) and Laplace's

We denote here by u=u (x,t) the unknown function of the spacial variable

X = (xl,x2,. ,xm) and time t, a> 0 is a constant, and

2.

7 2 =
D

j=l

is the Laplacian operator in m-dimensions. Equations (1), (2), (3) are

given here in their homogeneous form, i.e., with no terms ("sources" or

"sinks") on the right hand sides. As the names suggest the wave equation

equation (3).

= 0 (1)ca..7

_c2 := 0 (2)

1
(3)
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(1) describes the propagation of waves in space and it arises in fields

such as electromagnetism, acoustics, elasticity and fluid dynamics. The

diffusion/heat equation (2) describes diffusion of heat, fluids or other

substances in conducting solids, porous media, and liquids or gases,

respectively. Laplace's equation (3) characterizes many stationary

processes in electrodynamics, hydrostatics, gravitation and steady-state

diffusion. In contrast to Laplace's equation the other two describe

time-dependent processes. The diffusion equation is a simple example of

a parabolic equation and it will be of special interest to us here, for

it is a basic equation from which other systems of equations treated here

are derived, and it is itself a special and simplest case of these

systems. The diffusion equation will therefore receive detailed

attention again later.

A mathematical representation of a physical process is commonly

referred to as a model of the process or problem. A mathematical model

may be analytic or numerical and of varying degrees of complexity, but

it always represents an idealized and simplified version of the actual

problem. The appropriate choice of a model in a given case depends on

both the nature and purpose of the investigation and on the physical

problem. One is likely to employ a sophisticated model in a case when

accurate quantitative information is being sought about a complex

physical system, while in studies concerned primarily with qualitative

features of a general process it is often useful and convenient to use

simple models that represent only the essential characteristics of the

physical system. Important considerations include also cost and

computational effort involved.
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Many problems in the applied sciences may be classified as of

either the so-called direct or inverse type. A typical direct problem

involving the use of a mathematical model consists in the simulation or

prediction of the behavior of a physical system based on known properties

of that system, while with an inverse problem one seeks to obtain

quantitative information about the properties of the system from

observations of its behavior. More specifically, the direct problem

consists of computing the theoretical model output given known values of

the model parameters and the initial conditions, while with an inverse

problem the model parameters are unknowns to be estimated and functions

representing model output are known and given. The values of the

parameters are determined from the input functions by various methods of

analysis. The input functions are usually measured data which represent

the behavior of the physical system, and model parameters represent

physical properties of the system.

In groundwater hydrology and petroleum engineering direct problems

arising in practice are prediction and simulation of underground flows

in natural formations, while inverse problems are typically estimations

of numerical values of certain flow-related properties (parameters) of

the rock masses from analysis of measured data on the subsurface flows.

(The relevant parameters here are "permeability" Prld "storage capacity",

which we define in Chapter 1.) This inverse problem is of particular

importance in all practical work on reservoir flows, for values of these

parameters are typically unknowns that would be needed for quantitative

modeling of predicting of the behavior of fluids in a given natural

formation. The standard and simplest mathematical model used for
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treating problems of both types is the diffusion equation and its

solutions. For the inverse problem in particular, a specific solution

to the diffusion equation, known as the "Theis solution" (model), is

widely used as a simple and convenient model for well test responses in

natural reservoirs. This model together with a simple graphical data

interpretation technique (type curve matching) has for decades been a

standard tool for estimating formation parameters in groundwater

hydrology and petroleum engineering. The Theis model is treated in

Chapters 1 and 4.

The diffusion equation governs, as we discuss in Chapter 1, flows,

single-phase, of slightly compressible fluids in "ordinary" homogeneous

porous media, and it is applicable to flows in natural rock formations

which are reasonably homogeneous and unfractured. Many natural rock

formations are highly fractured as well as heterogeneous in general, and

these conditions complicate the behavior of ground flows such that it

cannot in many cases be adequately described by the simple homogeneous

diffusion model. Fracturing of rock masses affects particularly short-

term flow processes such as those associated with typical field

experiments, or well tests, conducted to yield parameter estimates for

rock formations, and the accuracy of such estimates for a fractured rock

mass may therefore be affected when interpretation is based on the

conventional diffusion or Theis model. Consequently special models are

needed for flows in fractured formations and for enabling more accurate

estimation of parameters. One such model, or type of a model, is a

simple modified diffusion model known as the "double porosity model".

This model, as we discuss in detail in Chapter 2, is represented by
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degenerate parabolic systems derived from two coupled diffusion equations

and it describes flows in idealized systems thought of as composed of two

overlapping porous media; the rock matrix and the fractures.

Conventional diffusion models, in contrast, view both fractures and rock

matrix together as a single porous medium. The double porosity model

typically assumes that virtually all lateral flow in the rock mass occurs

along the fractures and that the fractures form a uniformly distributed

system within the rock formation. The double porosity approach was

introduced in the literature in 1960 by Barenblatt et al [5] and modified

slightly by Warren and Root [50] in 1963. The main difference between

these two versions of the model is neglect by Barenblatt et al of fluid

storage capacity of the fractures. The double porosity model has been

a subject of numerous investigations by workers mostly in groundwater

hydrology and petroleum engineering. Most of these investigations,

reviewed in more detail in Chapter 2, are studies of variants of the

model version considered by Warren and Root, and a few studies compare

model results with data from natural reservoirs. Equations governing the

flow are given with initial and boundary conditions that represent

conditions of typical well tests. Analytic solutions and numerical

results are usually presented and compared with corresponding solutions

to the Theis model. The solutions are usually obtained by Laplace

transform methods with numerical inversion or by finite difference

methods. Certain distinguishing characteristics of the models are

observed from the solutions which we describe later (Chapters 2 and 4).

The double porosity models are found to behave as distinct models that
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differ from the behavior of the Theis model on a short-time scale of the

flow, or during the so-called "early-time" phase of the response of

a typical well test. Some publications report data sets from natural

fractured formations and compare these with the theoretical model results

(see Chapters 2 and 4). A few authors, e.g. [33], [50], consider methods

for estimating parameters based on the double porosity models. Some

studies in more recent years, [1], [2], [19], [20], treat double porosity

models as finite element systems, and a recent paper [32] presents

analytic treatment of special cases of the model. In all except the last

five studies above the authors leave open questions of well-posedness of

the models, (i.e., that in addition to existence the solutions are unique

and depend continuously on the initial and boundary data). Moreover,

well-posedness of the inverse problems of estimating parameters from data

is not considered.

The present work is a study of three versions of the double

porosity model, of which two are the forms due to Barenblatt et al [5]

and Warren and Root [50] and a third case of the model which is not

normally considered in the literature. We obtain analytic solutions for

more general conditions including those of typical well tests. The

solutions are given for each model as convolutions between fundamental

solutions (Green's functions) and the initial and boundary data. We

establish that each model is well-posed for all initial conditions likely

to arise in practice; i.e., we obtain (larger) classes of functions in

which solutions exist, are unique and depend continuously on the data for

appropriate restrictions. To do this we treat the systems and the

solutions as generalized functions and make use of the theory of
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generalized functions which is reviewed in Chapter 3. We consider the

inverse problems of estimating parameters from well test data and show

for each model that the inverse problem is also well-posed, or that

parameter estimates obtained for a given data function are unique and

depend continuously on the data. We discuss validity and application of

the models to natural formations in general and physical conditions and

time scales for which the models apply. We review observational evidence

in the literature for double porosity behavior in natural formations.

This work began in 1983 as part of a research program which was

being conducted at the time by Rockwell-Hanford Operations (RHO) in

Richland, Washington. The purpose of this program was to evaluate the

Columbia River Basalt formation as a site for the storage of nuclear

waste. Substantial amounts of toxic and potentially hazardous waste

materials have accumulated over the years with the operation of nuclear

power plants, and consequently there is a growing need for effective

methods of disposal of this waste. The principal method considered is

storage underground in sealed containers in areas of low permeability

with respect to groundwater flow. The Columbia River Basalts were one

of a number of such areas in this country considered for this purpose.

The site evaluation program would require, among other things,

investigation of the permeability and fluid storage capacity for this

rock mass. These are the properties which determine the behavior of

underground fluids and allow prediction of the groundwater flow over a

long time scale. Permeability and storage capacity would be determined

from analysis of well test data using suitable mathematical models which

describe flow on the short time scale that characterizes the data. The
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Columbia River Basalts as a typical basalt formation are likely to be

highly fractured and we chose therefore to study and apply the double

porosity model to estimating parameters for this formation. The site

evaluation program was terminated before the completion of this study,

expected field data were never obtained and this study remained thus

limited to an investigation of the theoretical models only. We may note

here that as a highly fractured rock formation the Columbia River Basalts

are unlikely to possess the low fluid permeabilities desired for a

nuclear waste storage site.

Based on the present work as well as the published work in the

literature we find the Barenblatt and the Warren-Root models to be, for

suitable physical conditions, the main potentially useful forms of the

double porosity model for ground fluid flows in natural fractured rock

masses in general, including typical basalt formations. That is, given

reasonably uniform fracturing of the rock mass and temperature conditions

such that the fluid remains in the liquid state, it is likely to be

useful to model short-time flow in fractured rock such as the "early-

time" response of a typical pressure transient test as a double porosity

system of the Barenblatt or the Warren-Root type. The principal value

of these models lies in allowing more accurate estimation of formation

parameters from early-time pressure transient data than the conventional

diffusion or Theis model, although for somewhat longer time scales of

flow the Theis model is equally valid. These models (as indeed all the

models herein) are applicable for most or all initial conditions likely

to be encountered in practice. We find that the Barenblatt model

requires reasonable smoothness of initial data but imposes no
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restrictions on their behavior at infinity, while the other models

(including the diffusion model) allow initial data having growth at

infinity up to order two. Features of the Warren-Root model would be the

most easily recognized in data from typical well tests.



CHAPTER 1

THE STANDARD MODEL OF GROUND FLUID FLOW

A. Basic Principles of Flow in Porous Media

In this section we review the basic physics of flow of a fluid in

a typical porous solid. We derive from first principles the diffusion

equation which, as mentioned, is a standard mathematical description for

such flows. For a more complete treatment of the subject see e.g. [14]

or [17].

A regular or ordinary porous medium, distinguished for example from

a fractured medium, is a solid which contains numerous tiny and densely

distributed regions of void spaces (pores) that allow storage and

movement of fluids within the solid to occur. Familiar examples of such

materials include rock, sand, soil, and cement. The pores are typically

quite small, usually of the size as the mineral grains in rock, and they

are sufficiently interconnected so that fluids may seep through these

media. Fluid seepage occurs due to internal forces arising from the

fluid pressure, the fluid mass distribution, temperature variations and

gravity. A typical order for the velocity of flow in rock can be

centimeters per day. The transport of fluids in a porous medium has the

character of diffusion. Owing to the low velocities of flow inertial

terms in the equations of motion are negligible and a virtual balance

holds between the pressure gradient forces and friction. Under these

conditions the flow in a porous medium may usually be described by

Darcy's law:

vp f7cj)
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where $ is the volumetric flow rate or flux having the units of velocity,

p is the fluid pressure, k is the permeability of the medium, p is the

(dynamic) viscosity, p is the fluid density and = (0,0,g) is the

acceleration due to gravity. The permeability k, a property of the

medium, is actually a tensor, but since an ordinary porous medium is

typically isotropic k is usually a scalar and, in most cases, taken to

be a constant if the properties of the medium do not vary significantly

in space. The permeability depends strongly on the porosity (0), or

fractional void volume of the medium, and the value of k is higher for

higher values of 0. In cases of uniform temperature p is a constant.

Both fluid and solid are usually slightly compressible and under

isothermal conditions the fluid density p and medium porosity 0 are

functions of the pressure p only. For temperatures within appropriate

limits the fluid can be assumed to remain in the liquid state only, or

single-phase. In many cases the role of gravity is negligible and may

be omitted from the equations.

To derive the diffusion equation we assume a single-phase fluid in

an arbitrary, elementary volume V in the medium. We assume both the

fluid and the solid to be slightly compressible and the temperatures to

be constant. Let B be the boundary of V and 0, p and ti = (q1,q2,q3) are

the porosity, fluid density and volumetric flow rate, respectively, at

a point x = (x1,x2,x3) in V. Then the following equation holds for the

mass balance of fluid in V:

(0)4x 1(51),8-il F cfx
(1.2)

V
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--7) ?) (C4) F

(1.4)

The flow in the porous medium obeys Darcy's law (1.1), so we get, after

combining (1.4) and (1.1))

3)56) -4- (-
-r5)P). -F. (1.5)

The fluid density and the porosity are, as noted, assumed to be

functions of the pressure p only, and these functions may be linearized

13

where dx = dxidx2dx3, ds is the vector-element of surface on B, and F is

a source or sink of fluid mass, or the rate at which mass is being

produced per unit volume. Equation (1.2) states simply that the time

rate of change of fluid mass inside V plus net outward flux across B is

equal to the amount of fluid mass generated or lost in V per unit time

due to the source term F. We may apply Gauss' Divergence Theorem to the

second integral of (1.2), interchange integration and differentiation in

the first integral and, combining all terms under one integral sign, we

obtain

1(47(y)_i_ - t--)J x 0 .

V (1.3)

We assume the ntegrand to be continuous. Since the volume element V is

arbitrary, we obtain the mass continuity equation
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for "small" variations in p, 0, p, or if lap/p1<<1,1ap/p1<<1 and

iap/pI<<1, where p, ap and ao represent deviations from mean or

equilibrium values p0, pc, and oo. Let cl and cs be compressibilities at

constant temperatures (T) for the liquid and solid, respectively, defined

by

I Li_C
dp T' and

ei40

(1 cs

(both ct and cs are taken to be constant). The first term in equation

(1.4) may then be written

-\1 r
DP 4 a dt

where c. = oce 4. (1- 00)c5 is the storage capacity of the system and we

have approximated p and 0 by pc, = p(p0) and 00 = 0(p0) at the constant

equilibrium pressure p.. We assume that the medium is homogeneous and

isotropic so k is taken to be a constant, and since the system is

isothermal p is also a constant; the effects on the flow of density

variations and gravity are negligible and so the second term in equation

(1.4) may be simplified and written

v-(c1) )15z 72P

From (1.6) and (1.7) equation (1.4) takes the formCk 2

-le a Dt v P F

(1.6)

(1.7)

(1.8)
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which, after division byj. and c0 and assuming no sources or sinks (F.0),

yields the diffusion equation for the pressure p

p 72p. 7: 0) (1.9)

where a = k/pc0 is the diffusivity of the system. Equation (1.9)

expresses a balance between the rate of change of local fluid density and

the divergence of flow at any point and it governs time-dependent

diffusive transport in a slightly compressible porous medium. For flow

of an incompressible fluid or in case of steady-state diffusion the first

term in equation (1.9) would vanish and the flow would be governed by

Laplace's equation. We will return to equation (1.9) again and give

detailed treatment to it in Chapter 4.

B. The Theis Model

Although we present solutions to the diffusion equations for

general conditions in Chapter 4 it is useful to list here the particular

solution which, as noted earlier, is a standard simple model of well test

response for parameter estimation for natural reservoirs. This so-called

Theis model is the solution to equation (1.9) for the infinite radially

symmetric plane with a constant-strength fluid point source applied at

the origin (r=0) at t?-.0 and fluid pressures are assumed to be initially

equal to zero. Specifically, the Theis model is the solution to the

problem

du '44r 1- S.6-) Lj (-6)dt co )

(2.1)
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where we define u=u(r,t) as the deviation of fluid pressure from the

(constant) mean or equilibrium pressure (p.), f0 is the (constant)

strength of the source, and U(t) is the unit step function defined by

L.4 r 0

t
Physically, problem (2.1) represents mean fluid pressure behavior in a

confined, infinite horizontal homogeneous layer of a constant thickness

H, and a constant-strength line source/sink extending through the depth

of the layer is applied at r=0, t,10, to the systems assumed to be

initially in equilibrium. The line source has the strength f0 per unit

length. The following (inhomogeneous) diffusion equation may be written

for this system in cylindrical coordinates,

W\
"" 2(4 \

Nr- TI-Ar 771--

D4 I 0
cpz lz=0

With the boundary conditions expressing no flow across the top and bottom

surfaces of the layer, i.e.

at( i

az I 4')
z.1-1

-1°S-Hu
Co + -

we find, after vertical integration of equation (2.2) from z=H to z=o,

that the vertical derivatives vanish, since by (2.3),

and equation (2.2) thus reduces to (2.1). The solution to problem

(2.1) is

(2.2)

) (2.3)

(2.4)

0
2(.4

z

a Z 1

Z--"H Z=



/,

//'M
N-412 (2.6)

where IL denotes a closed surface (curve) of vanishing radius r

surrounding the source point r=0. To prove this consider the (small)

elemental volume V with the surface o containing the source point r=0.

Without loss of generality we may take the arbitrary sources f(t), q(t)

to be the constant f0 and q., respectively, and the source point to be

r=0. The space domain is also arbitrary and it may be 2- or 3-

dimensional, but for convenience we choose the xy- plane which represents

17

where the function Ei(-x) is given by

- Ei
,_40

(2.5)

Equation (2.4) was introduced into groundwater hydrology in 1935 by Theis

[49] (see also [22]) as a simple model of a drawdown test response in a

homogeneous reservoir having the form of an infinite horizontal layer.

The Theis solution (2.4) is shown in log-log form in Figure 1.1. (We

describe typical well tests, including drawdown tests, in the next

section). If the volumetric flowrate out of a pumping well used in the

drawdown test is q., then the line source strength is f. = -q0/27rH. The

Theis solution (2.4) is used for determining values for the unknown

parameters k and c. (a=k/pc.) given known values of the fluid pressure

u(r,t) as a function of time t with known values of fop, and r.

The fluid source may be implemented in two equivalent ways; it may

be given as a source term on the right hand side of the diffusion

equation as expressed by equation (2.1), or it may be given with the

homogeneous diffusion equations as a point boundary condition of the form



u*
=

4kt/pcor2

-2/r4at)

Fig. 1.1 Pressure drop u*(r,t) = 4nk/Af0 eS p(r,t) in an infinite
horizontal layer due to a point sink f(t) = foU.(t) applied
at r=0.
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the infinite layer of thickness H. The following equation for the mass

balance of fluid in V may be written as

dt
(f)ct v = _ .fc4 Fcl v (2.7)

V

where

c(r) ,

(2.8)

The diffusion equation (2.1) multiplied byroco (g so) represents a

simpler version of equation (2.7), of which the first term is given by

the second term is

d6 Pc') " co
3t(

S3c) 5-6

and the third term, after integration over V and using the property of

the delta function, is

ff U, ckr)cl v ff U (i),
(2.11)

qWe let V-> 0 so that the integral (2.9) vanishes, is, continuous and

we obtain then a balance between the two remaining terms, (2.10) and

(2.9)

= ,T` fa -.4 crs4- (2.10)
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(2.11), of equation (2.7). This yields, as V -> 0, the boundary

condition (2.6) after dividing through by po, or

1, (- k a
beryl =

0

where go = -271-f0H.

C. Pressure Transient Tests

Pressure transient tests are standard types of field experiments

conducted on natural rock formations for the purpose of observing the

behavior of the subsurface flow and determining the permeabilities and

storage capacities of the rock mass. These are well tests which involve

perturbing the underground fluid and measuring the time-dependent

response. The underground fluid is perturbed by withdrawal (pumping) or

injection of fluid through wells or boreholes and measurements are made

of the flow response by means of pressure-sensitive devices (piezometers)

placed at suitable depths in wells. These instruments provide time

series of fluid pressure from which the subsurface flow may be observed

and which may be analyzed to yield information about the system and its

properties:

There are two main types of pressure transient tests; the so-called

drawdown tests and buildup tests. In case of a typical drawdown test the

system is initially in equilibrium and both pumping and measurements are

begun simultaneously at a time t=0 and continued for a suitable length

of time as the pressure in the system drops (at a decreasing rate) due

to the pumping. In case of a buildup test the system is initially in a

perturbed state due to pumping performed prior to measurements, and at
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t=0 the pumping is terminated and measurements begun and continued for

a suitable length of time while the pressure in the system gradually

rises (builds up) towards equilibrium. The typical duration of these

tests is, for usual single-phase or "low-temperature" conditions, a few

to several days.

Pressure transient tests may involve one or more wells for pumping

and/or measurements. If only one well is used for both pumping and

measurements the test is a single-well test, but if measurements are made

at one or more separate "observation wells" located at some (known)

distances from one or more "test wells" used for pumping the test is an

interference test. Parameter values estimated from a given well tests

is representative of the rock mass in an area surrounding the pump well

on space scales of the drainage volume or the separation distance between

test and observation wells. We note that all model solutions given here

apply to interference test conditions only.

D. Parameter Estimation by Type Curve Matching

Type curve matching is a simple graphical method for deriving

values of permeability and storage capacity from pressure transient data.

The technique was introduced by Theis [49] along with the solution (2.4)

above. The method consists of graphical matching of the data with the

theoretical model in a manner which allows values of these two as well

as other parameters to be derived quickly and easily. In principle any

of a number of methods for analysis may be used, but curve fitting

techniques are particularly convenient and practical because they require

relatively little computational effort and time. When based on valid and
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accurate interpretation models curve matching methods usually give good

ballpark values of the parameters.

A type curve is a log-log graph of dimensionless fluid pressure (or

some function of pressure) plotted versus a dimensionless time variable,

usually 4kt/pc0r2. The most commonly used type curve in practice is the

Theis curve, shown in Figure 1.1. Another example of a curve frequently

used for parameter estimation is the semilog curve of the Theis solution.

The semilog plot of the Theis solution is characterized by an

approximately linear shape over the most significant range of values of

the time variable, and this linear part of the graph is the part used for

estimating parameters. Log-log curves have thus a wider and more general

applicability than semilog curves. Other examples of type curves which

have been introduced in the literature in recent years are log-log plots

of pressure derivatives versus time. These are considered useful for

interpretation of data from double porosity systems in particular,

because certain special characteristics of some double porosity systems

(the Warren-Root types) are made more conspicuous by such plots of data.

However, type curves based on pressure derivatives have the disadvantage

of the unsmoothing effect of computing pressure derivatives, particularly

with "noisy" data sets.

For the purpose of illustration let us consider the Theis solution

(2.4) as our interpretation model and we want to estimate the

permeability (k) and the storage capacity (co) from a hypothetical data

set by type curve matching. The model and a "data" curve are shown in

Figure 1.2. Both curves are (ideally) of the same shape but they are

shifted relative to one another along both axes by amounts which depend
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Fiaure 1.2 (a) Model curve
(b) Data curve (hypothetical; coordinates

omitted).
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on the values of the parameters we wish to find. The procedure for

estimating the parameters is as follows: The data and model curves are

matched against one another (one of the curves is overlaid on top of the

other) such that they coincide, and an arbitrary "match point" (one point

for each curve) is selected, as shown in Figure 1.2. The coordinates for

the match point on the data curve are, as shown, x1,y1, and the

corresponding coordinates for the point on the model curve are,

respectively, x2,y2. All quantities other than k and co are assumed

known. The values of yi,y2 differ by a factor k and thus we obtain the

value of k from the ratio y1/y2. Similarly, the values of x1,x2 differ

by the factor 4k/Ac0 and thus, using the value of k just found, we obtain

the value of co from the ratio 4kx2/Ax1.

Type curves analogous to the Theis curve above may be constructed

for other models and similar parameter estimation procedures applied.

Other models may contain independent parameters in addition to

permeability and storage capacity. For type curve plots of pressure

against a time variable such as 4kt/pc0r2 permeability and storage

capacity are estimated from match point coordinates in the manner just

described, while values of additional unknown parameters are deduced from

best fits with the model curve. That is, we infer values of additional

parameters for the data to be the values associated with the best fitting

model curve. Curve matching procedures involving unknown parameters in

addition to permeability and storage capacity require in general sets of

several model curves.



CHAPTER 2

MODELS OF FLOW IN FRACTURED ROCK

A. Naturally Fractured Rock

Many natural rock formations are highly fractured, i.e., they

contain significant amounts of void space in the form of "cracks",

"fissures", "vugs", etc., which occur as narrow, extended regions of void

space superimposed as a "secondary porosity" upon the primary pore

structure of the rock (see Figure 2.1a). (Up to as much as 41% of

natural reservoirs of commercial interest in the oil industry are

significantly fractured [48]). The fracturing of a rock mass is the

result of thermal, mechanical and chemical effects which have acted

generally after the formation of the primary rock itself. Fractures of

natural rock are of variable size and shape, but they are of

characteristically of very different geometric structure and space scales

than the primary pores. Typically they are of a flattened, elongated or

sheet-like shape and often also jagged and irregular, and their lengths

and widths are usually considerably greater than the typically

microscopic sizes of the pores. Fractures range in size from the small

"microfractures" or millimeters length to large structures of hundreds

of meters or more. Spacing or distance between fractures is generally

in the order of the scales of the fracture lengths. Usually, fractures,

except for the largest ones, are embedded within the rock mass and not

directly visible except at surfaces and outcrops.

Because of their characteristic lengths and shapes fractures allow

effective passage of fluid and thus profoundly affect character of ground

25
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fluid flow and the overall permeability of the rock mass. The presence

of fractures results, for example, in rapid fluid communication between

widely separated wells during a well test, or a more rapid response at

a well located farther from a test well than at a well nearer by [48].

The contribution to the overall formation permeability by fractures in

a natural rock mass typically exceeds the contribution of the primary

pores by a few to several orders of magnitude. Moreover, the

permeability of natural fractured rock tends to be anisotropic due to

preferential orientation of fractures in most rock masses. In general,

the flow of fluids in fractued rock is more complex than flow in

unfractured rock.

B. Models of Flow in Fractured Rock

The behavior of fluids in natural fractured rock masses differs in

general from flows in homogeneous porous media and thus it cannot in most

cases be adequately described by simple homogeneous diffusion models such

as the Theis model. Moreover, due to considerable variability in the

fracturing of natural rock the behavior of fluids varies considerably

among individual fractured formations. Therefore the problem of modeling

flow in natural fractured rock is relatively complicated and requires

special models. A substantial amount of research on the behavior of

fluids in natural fractured rock and fractured porous media has led to

a number of theoretical models presented to date in the literature. It

appears that two main approaches to the problem are taken [29]: one

which treats the fractured formation as a discontinuous medium, and the

other which views it as a statistically homogeneous continuum. More
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specifically, the theoretical models may be broadly classified into three

types or categories; (I) the "deterministic" models, (2) the "equivalent

homogeneous reservoirs" and (3) the double porosity models. The

deterministic approach is based on a detailed description of individual

fractures which are of known location and geometry, and the flow in each

fracture is modeled as a separate system of flow coupled to the flow in

the surrounding porous matrix. Examples of deterministic of models are

the "discrete fracture models", in which individual fractures as

idealized as planes of known location, width and orientation. The

equivalent homogeneous approach considers main trends of the flow in the

fractured system and tries to describe the fluid behavior by means of

models of lower complexity. Examples of this approach are diffusion

models which attempt to incorporate effects of fractures by suitable

choices of parameters. The double porosity models, which we describe in

more detail in the next section, view the reservoir as composed of two

overlapping (intermeshed) continua, the rock matrix and the collective

system of fractures, which both contain separate but interacting systems

of flow. In contrast to conventional diffusion models the double

porosity and discrete fracture models take special account of the effect

of fractures by modeling flow in the fractures as a separate system

coupled to the flow in the rock matrix, and they describe therefore more

accurately flow in natural fractured system than do conventional

diffusion models. In practical applications, however, deterministic

models such as the discrete fracture models have the disadvantage of

being limited to systems with only a few fractures of known location and

geometry. Moreover, these models are case-specific and complex versions
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of these models tend to require considerable computational effort by

numerical methods. Double porosity models, on the other hand, treat the

reservoir as a continuum and do not require knowledge of the location and

geometry of individual fractures but only that they be fairly uniformly

distributed. The fractures should be of suitable scales of length, width

and spacing relative to the scales of the flow. This type of a situation

is, we believe, likely to be more often encountered in practice.

Moreover, treating natural reservoirs and fracture systems as continuous

media allows the models to be treated analytically and the model

solutions to be applicable to larger numbers of natural systems.

C. The Double Porosity Model.
The Physical System and Basic Equations

The double porosity (dual- or two-porosity) model was as we noted

before, introduced in 1960 by three Russian authors, Barenblatt, Zheltov

and Kochina [5] as an analytic approach to describe more realistically

the behavior of fluids in fractured rock. The basic idea of this model

is, as mentioned, to treat the fractures as a second continuum

intermeshed with the rock matrix and containing a separate system of flow

interacting with the flow in the matrix. In other words, the rock mass

is viewed as composed of two overlapping media; one being the rock

matrix, an ordinary porous medium, and the other is the collective system

of fractures which form an interconnected system of conduits. The

fracture system is assumed to have lengths, widths and spacing such that

with local averaging it may be treated as a continuous medium having

distinct macroscopic properties (permeability, storage capacity). For

convenience the fractures and matrix are treated as homogeneous and
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isotropic media. For conceptual simplicity the fractured rock mass is

usually thought of as a homogeneous porous medium intersected by a series

of mutually perpendicular planes of narrow void space; these intersecting

planes constitute the fracture system and subdivides the reservoir into

equal rectangular or cube-shaped matrix "blocks" as shown in Figure 2.1.

This simple and highly idealized "cube model" (unrealistic for any

natural rock mass) was originally described by Barenblatt et al [5]; it

guarantees homogeneity and isotropy of the fracture system without

violating basic assumptions of the model. (Homogeneity and isotropy of

the system simplifies mathematical treatment. Anisotropy of a natural

system can be eliminated from the model by proper coordinate

transformation.) In contrast to conventional diffusion models, a double

porosity system is thus characterized by two sets of properties; a

permeability lc, and storage capacity cl for the rock matrix and

corresponding values k2, c2 for the fracture system. Similarly, two fluid

pressures rather than one are defined for any point in the system; pl for

the matrix and p2 for the fractures. Fluid seepage is assumed to occur

according to Darcy's law in each medium and we may write, following

Barenblatt et al, the two coupled diffusion equations governing the flow

in the system (with no external sources or sinks given);

(2.1)

2It_-Vp; +



where

is a transfer (crossflow) term, or an internal source or sink of flow

between the matrix and fractures due to the pressure difference p1-p2, and

a is a (dimensionless) transfer coefficient (or a "crossflow" or

"interporosity flow coefficient"), assumed to be a constant. The value

of a would be obtained empirically and it would be proportional to the

matrix permeability k, and the fracture surface area per unit volume of

the reservoir. The expression of qc as being proportional to p1-p2 is

based on the assumption that the interporosity flow is in a quasi-steady

state and that divergence of flow within individual matrix "blocks" is

negligible. The quantities pl, p2, qc, etc., though representing

functions of points (x) in space (as well as time t)1are understood to

MATRIX FRACTURES

Figure 2.1 Idealization of the fractured reservoir [50].
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be local spacial averages on scales exceeding characteristic fracture

spacing or block length. The model thus requires that the space scales

of the flow be considerably greater than the characteristic scales of the

fractures. Equations (2.1) are reduced to simpler forms by invoking one

or both of the following physically reasonable assumptions; (1) the

matrix permeability 1(1 is negligible compared with the fracture

permeability k2, and (2) the fracture storage capacity c2 is small or

negligible compared with the storage capacity cl of the matrix. In other

words, it is reasonable to assume that essentially all lateral flow

occurs within the fractures and that most of the fluid is stored in the

matrix. Barenblatt et al [5] invoke both (1) and (2), thus eliminating

two terms from equation (2.1), and hence they propose as their "double

porosity model" the following system of equations

c DP0 -11) cidt

0(131

ci4

cza - -1(2-72r3t ).4

57-`0D; -P1) =0)

(2.3)

Most investigators prefer to retain the fissure storage terms by allowing

c2 to be small but not negligible compared with cl and thus consider

rather the system of equations

(2.4)

This version of the model was first considered by Warren and Root [50]

and it is the form of the model most often treated in the literature.
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Equations (2.3) and (2.4) are degenerate forms of the parabolic

system of equations (2.1). An additional degenerate form of (2.1) may

be derived by invoking assumption (2) only, or allowing for some (small)

lateral flow the matrix also, and we then have the system

-11'4 (1),- rz)=' dt
_ ( 0 (2.5)

This version of the model, which we call the "dual permeability model",

does not usually appear in the literature. Systems (2.3), (2.4) and

(2.5), being derived from (2.1) by omitting at least one of the above-

mentioned two terms in the equations, are collectively considered here

as fractured media models of the dual porosity/permeability type. The

original (parabolic) system (2.1) represents simply two interacting

diffusion systems, and parabolic systems in general are treated in e.g.

[23].

The models above are completed by adjoining suitable initial and

boundary conditions with the equations. Typically an external source or

sink is applied to the fracture system and given by

=z (1' iJ 2 )

(2.6)

where r is the radius of the closed surface or curve surrounding the

source point (x.), and Q, the source strength, is usually a constant

(q=q01.1.(t)). In most cases the reservoir is also assumed to be confined

and the no-flow conditions applied at boundaries;

(2.7)
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where is the unit vector normal to the boundary 7 . Many models in the

literature assume reservoirs in the form of the infinite, confined

horizontal layer of constant thickness (H); the space domain is thus the

infinite horizontal plane, usually radially symmetric, and the boundary

condition (2.7) does not appear explicitly. Solutions to these cases

are, with the source condition (2.6) and Q constant, analogous to the

Theis solution (2.4) discussed in Chapter 1.

Several variants of mostly the basic model (2.4) above have, as we

noted, been treated in the literature. The differences among them are

usually minor only and there are only minor differences among the

solutions. In some of the cases there are minor modifications in the

formation of the basic equations; for example, "transient" forms of

interporosity flow are sometimes used instead of the usual quasi-steady

form given by (2.2). Some studies consider multi-layered systems rather

than the cube model forms with slight modifications of the basic

equations. Other studies approach double porosity models as finite

element systems composed of finite sets of matrix blocks separated by

regular fracture space. The solutions have the same basic

characteristics as the solutions given in Chapter 4 to the systems (2.3)

and (2.4).

D. Scaling of the Eguations

We may justify the neglect of terms and the simplification of

equations (2.1) above by more rigorous arguments based on scaling as

follows: Let P, L and T be some characteristic values of pressure,
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length and time for a given problem of flow, and define the variables

p1,p2, x, and t by

p1=Pp1*, pPp, x=Lx*, t=Tt*/

where the "starred" variables represent dimensionless quantities. We may

then rewrite the system of equations (2.1) in terms of these variables

as Dp7..7.* -r

-;)1):kaT 4,2

)-(ci2-v P2

o<T( p
2-4 ci 12

°& p
jaC2 I

0 )

(2.8)

where v2 = N?/L2 and we have canceled out P. The relative magnitudes

of terms in equation (2.8) are determined by the magnitudes of the

"consolidation coefficients", or the values of the various coefficients

and characteristic values. It is usual to assume that dimensionless

variables are of order one (although a wide range of values may occur;

see e.g. Figure 2.1). It is common practice to consider terms as

"negligible" and to omit them from equations if they are smaller than

other terms by orders of three or more. Thus, with the first terms in

(2.8) of order one, the order of the others is determined by the

magnitudes of kiThiCiL2 and Ta/pCi (i=1,2).

Systems of equations (2.3) and (2.4) imply the following relative

magnitudes:

(i)
14 Ci

(i i ) icaT c7c T
c2 /44 C2-

(i i i ) k T
C;



From (i) and (ii) we have

(iv)
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and CL.

Inequality (iii) is the basic assumption of both models (2.3) and (2.4)

that kl<< k2. (Indeed, for rock masses such as basalts we should have

k1<<k2 by at least three orders of magnitude.) If also c2<<ci by three

orders or more we have the system (2.3) (the Barenblatt model), but if

c2 cl by less than three orders system (2.4) (the Warren-Root model) is

obtained. Systems (2.3) and (2.4) both assume that the parameter a is

of an order such that (i) holds.

For an impression of realistic orders of magnitudes of the various

quantities and coefficients we may consider the following example.

Choosing a length scale of, say, 5000 meters and the following parameter

values for flow in a basalt formation (ref. [4]):

k2 = 10 md
10-10 cm2,

01 1°-3

cl =4.5*10-11/dyne

A = 3*10-3 cm2/sec*gm

We approximate cl 01c1 and obtain from (iv) the value

T pc1L2/k2 = 3.5*105 sec 4 days,

and (from (i))

a ..- mci/T = 4.5*10-22.



36

One may attempt to estimate (theoretically) the order of magnitude

of the coefficient a on the basis of physical considerations as follows:

Let ts- be the fracture surface area per unit volume of the reservoir and

let VPm be characteristic value of small-scale pressure gradients across

matrix-fracture interfaces. Then we may write for the interporosity flow

a characteristic value given by

qc ki/P cr

Taking, for simplicity, a reservoir as a cube model where I is the

length of the blocks we obtainjwith

)

and

vp4--.1(P1-112)/,t

the following estimate for qc

(Pi P2 Mt 2 .
(2.9)

From (2.2) and (2.9) we have

e< k , /,e 2- ,

If we assume a block length of 10 m and a matrix permeability of i0

10-14 cm2) we obtain an estimated value of

g 20
c7< fs; 10 710 = 10

The double porosity model does not apply if

ocr-.4T« I <<- I

MC Ci
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for then no interporosity flow would occur; the system consists then of

two uncoupled diffusion equations. If, moreover,

k: (i=1,2)

the system reduces to two uncoupled Laplace's equations which describe,

for the boundary conditions given, stationary flow processes. Finally,

if all terms except the first two are of orders significantly less than

one sothat

o
t

the solutions describe time-independent fields of pressure, Pi(x,t) =

Pi(x,o).

E. Basalt Formations as Double Porosity Systems

A typical basalt formation such as the Columbia River Basalts is

an extensive, deep and highly fractured rock formation composed of

successive layers of basalt rock separated by thin layers of sediments

(scoria, tuffs, rock fragments, etc.). The basalt layers are a dark,

fine-grained igneous type of rock formed as cooled lava layers from

volcanic eruptions in usually the recent geologic past. These formations

are typically tens of kilometers across and up to a few kilometers deep,

and the individual layers are usually from 10 to 30 meters thick. These

rock formations are common in regions of active crustal (e.g. sea floor)

spreading such as in Iceland and the Pacific Northwest. The basalt

layers contain an abundance of small to moderate-size fracture systems,

including microfractures, along layer surfaces as well as large fractures

which extend through the layers. For example, tabular and columnar
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fracture systems with diameters in tens of centimeters are often seen on

surface outcrops of the Columbia River Basalts. In addition, the

formations are often transected by numerous dikes, or vertical basalt

layers. Flow of groundwater may occur readily within these formations;

horizontally between the basalt layers via the sediments and the small

to moderate fracture systems, and vertically along large fractures and

dikes. Basalt rock has a relatively low porosity, or 10-4 to 10-3

compared with values of i0 10-2 for most rocks, and thus it has a

rather low storage capacity, but a fair amount of fluid may be stored in

microfractures along layer boundaries and in the interbed sediments. It

appears likely that these formations meet conditions required for

modeling as large and deep double porosity systems, where microfractures

and possibly also the rock matrix itself constitute the "matrix" and all

larger fracture systems and the interbed sediments represent the

"fracture system". It is reasonable to assume that the fracture systems

are fairly uniformly distributed and that characteristic scales of flow,

being typically in orders of several hundreds of meters or more, would

exceed space scales of most of the fractures.

F. Literature Review

The study of flows in porous media began more than a hundred years

ago since Henry Darcy published his book (1854) which contains results

of experiments leading to his aforementioned law (equation (1.1)). The

theory developed since for flows in porous media has been applied by

groundwater hydrologists and petroleum engineers to modeling flows in

natural rock formations and oil reservoirs. Mathematical models of



39

ground fluid flows have become increasingly sophisticated over the years

with advances in computer technology as well as in methods for testing

and measuring subsurface flows. Techniques for pressure transient

testing and data analysis began to develop in the 1930's at about the

time of publication of Theis' classic paper (1935). A large body of

literature exists on these subjects today. Interest in the behaviors of

fluids in natural fractured formations began in the 1940's when it became

known that fractured reservoirs were important oil producers. Quantita-

tive study of flows in fractured formations began in the 1950's and it

was recognized that the behavior of fluids in fractured formations

differed in general from behavior in homogeneous porous media. We

discussed briefly special theoretical models developed for flows in

fractured media earlier. For reviews on main types of theoretical models

for fractured reservoirs in the literature up to the time of their

publication two articles [29] [48] may be consulted. One (Gringarten,

1982, [29]) gives a broad review of the various types of theoretical

models with particular reference to well testing and analysis. The other

article (Streltsova-Adams, 1978, [48]) reviews a few variants of the

double porosity model with a brief discussion on fracturing in natural

rock and some data sets.

We discussed the concept of the double porosity model as originally

proposed in the paper by Barenblatt et al [5], 1960, in which they

present equations of forms (2.1) and (2.3) for flow in the highly

idealized cube model described earlier. They derive analytic solutions

for two special cases of their model; one is a 1-dimensional initial

value problem for the fissure pressure response to a sudden pressure drop
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in an infinite channel, and the other is for a drawdown test response in

an infinite, radially symmetric plane, analogous to the Theis model.

Their solution for the second case is identical to a solution given here

for the matrix pressure response for the same model (Chapter 4). (Their

formulation of the fluid source differs from that given here). They

compare their double porosity model solutions with corresponding

diffusion model solutions and note that significant differences between

the two occur over a finite time range in the early-time end of the

response, but beyond that time range the two models are asymptotically

the same. (The double porosity model is thus relevant as a special model

only for short-time flows, or for a finite, early-time phase of the

pressure transient response.)

A few years later, in 1963, the slightly modified form of the model

represented by equations (2.4) was considered by Warren and Root [50].

This model version retains, as we noted, the fissure storage term in the

equations by letting c2 be smaller than cl but not negligible. Other

minor modifications in their model include an anisotropic fracture

permeability k2 and a small but non-zero radius of the fluid source.

They give analytic solutions for the fluid pressuri response in the

fracture systems during single-well drawdown and buildup tests and

present these solutions graphically in semilog form (Figure 2.2 ). They

note from the solutions distinctive characteristics of their model;

namely the two parallel linear segments seen in Figure 2.2. The linear

features characterize, as noted before, the Theis model, and these two

linear segments represent short-term and long-term asymptotic diffusion

model responses. The left-most line is the short-time response and it
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Dimensionless fracture pressure drawdown in an
infinite horizontal layer with a constant-strength
line source. The multi-layered Warren-Root model
after Boulton and Streltsova [10] with c2/(c1+c2) = .1

Top: Log-log curve; bottom: semilog curve.
(W(x) = Ei(-x); "81" = 1(2/a; r = distance from source)
[48]

4
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is (approximately) equal to the Theis model solution for a diffusivity

of k2/c2 while the right-most line is the Theis model solution for a

diffusivity of k2/(c1+c2). The short-term response represents thus a

diffusion model response of the fracture system and the long-term

solution describes the behavior of a composite diffusion system having

properties of both the matrix and the fractures. The portion of the

graph joining the two linear segments represents the effect of the

interporosity flow and the exact position of this part of the graph is

determined by the value of the crossflow coefficient. Warren and Root

consider also a method for interpretation based on their model of data

from single-well tests, and compare their model with data from a natural

fractured reservoir [51].

Several studies followed on variants of this model by a number of

investigators. Among these are studies by Kazemi [33] and Kazemi et al

[34] on virtually the same model. The former [33] considers flow in a

finite circular domain with a layered rather than a cube model structure,

and solutions are obtained for both "transient" and quasi-steady forms

of crossflow allowed. (Only slight differences are found in the

solutions for the two different formulation of cross flow.) The second

- study [34] considers flow in the infinite horizontal layer with quasi-

steady interporosity flow, and obtains analytic solutions, the Laplace

transforms of which are identical to solutions given here (Chapter 4) for

the same model. These solutions represent a flow response for

interference tests. They observe the same features of the fissure

pressure response as noted earlier by Warren and Root; i.e., the early-

and late-time diffusion model behavior indicated by two parallel straight
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lines on semilog graphs. Kazemi et al [34] discuss graphical interpre-

tation as suggested by Warren and Root extended to interference test

data. Additional studies of the same basic model include those of

Streltsova [45], De Swaan [18] and Odeh [40]. The third of these [40]

contradicts the results of Warren and Root [50] and claim that for

practical purposes no difference exists between the Warren-Root model and

the conventional diffusion model, but this conclusion was found to be due

to the manner in which the role of parameters was estimated [51].

Multi-layered forms of the double porosity model were presented by

Boulton and Streltsova [10], [11]. These are models of flow in

idealized, infinitely deep systems, composed of alternating layers of

matrix and fracture space. Most or all of the lateral flow is assumed

to occur within the fracture layers while vertical flow takes place as

interporosion flow between matrix and fractures. The flow between the

layers is modeled as (local) diffusion across the matrix-fracture

interface, proportional to the matrix permeability. These models produce

results numerically similar to those of the Warren-Root model, and they

are shown graphically in Chapter 4. A study by Duguid and Lee [21]

considers a relatively complete system of equations and obtain solutions

describing flow in a leaky aquifer under conditions including those of

typical drawdown tests. In summary, the various models above are

formulated as systems of linear equations similar to (2.2), (2.4), that

govern single-phase, usually radially symmetric flows in homogeneous

layer reservoirs, and initial and boundary conditions are given so that

the solutions describe flow responses under typical pressure transient

conditions. Analytic treatment is limited to obtaining solutions to
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these systems, usually by methods of Laplace transforms together with

numerical inversion or by finite difference methods. The results are

usually presented graphically in either type curve or semilog forms and

characteristic properties of the models are deduced from the results.

Some studies investigate the validity of the assumption of quasi-

steady interporosity flow by comparing results with corresponding

solutions for "transient" crossflow, in which the interporosity flow is

modeled as a more realistic local diffusion across the matrix-fracture

interface of individual blocks (e.g. [46], [47]). Though differences in

the solutions are found to be small, they may nevertheless lead to

significant error in parameter estimation [46]. Another study [26]

supports the validity of the usual quasi-steady assumption by considering

that fracture walls of many natural reservoirs are likely to be lined by

thin mineral deposits which act as impermeable barriers to the

interporosity flow and thus produce a similar effect on fluid behavior

in the system as the quasi-steady approximation.

Published work in recent years by Douglas et al [19], [20] and

Arbogast [1], [2] present double porosity models as finite element

systems and apply numerical finite element methods to their solution.

These models view the reservoir as a finite collection of spatially

disjoint, regular homogeneous matrix blocks separated by regular fracture

space. The flow in each matrix block is a separate system coupled to the

flow in the surrounding fracture space and thereby to the flow in the

adjacent matrix blocks. These models are shown to be well-posed for

appropriate conditions on initial and boundary data. We also mention a

paper by Hornung and Showalter [32] who present simple special cases of
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the double porosity model called the 'compartment model" and the

"microstructure model". These models, formulated as simple systems of

equations governing flow in homogeneous reservoirs, are also shown to be

well-posed for suitable restrictions on initial and boundary data. These

studies find that unique solutions exist in the spaces L2 and H1.

Observational evidence for double porosity behavior in natural

fractured formations is presented in a few publications including [48],

[51] cited above. The most easily recognizable feature characteristic

of a double porosity system are the previously noted "two parallel

straight lines" seen on semilog plots of fluid pressure versus time, and

this suggest systems of the Warren-Root type. (On log-log curves the

transition segment between the two parallel linear segments appears as

an inflection point, as seen in Figure 2.2.) These features are, as

mentioned, observed in field recovery data reported by Warren and Root

[51] and in a data set by Borevsky et al (1973) [48]. A study by

Sauveplane [44] reports good fits between data from fractured coal

aquifers and the multilayered model of Boulton and Streltsova [10] and

also with a discrete fracture model of Gringarten and Witherspoon (1972).

Other reports in the literature include two studies of well interference

tests from Klamath Falls, Oregon, by Benson [6] and Benson and Lai [7].

In these studies good agreement is found between the data and the Warren-

Root model and also with a numerically similar composite model [7]. (The

"composite model" refers to a two-part piecewise homogeneous diffusion

model.) We return to further discussion of the observational evidence

for the models in Chapter 5.
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Little work if any appears to have been done on the behavior of

fluids in basalt formations which involves applications of the double

porosity models. (We may note that Klamath Falls, Oregon, contains small

amounts of basalt rock underground.) Other types of theoretical models

have been devised for flows in basalt formations, and we mention the

"lumped ladder model" developed by Axelsson [4]. This model represents

systems composed of combinations of conductance and capacitance elements

which take account of the layered and fractured structure of basalt

formations. This model is suited for long-time flows in these formations

in which compressibility effects are negligible but free surface effects

are important. Another numerically similar but much simpler analytic

model for a similar long-time flows is given by Bodvarsson [8], and it

describes flow of an incompressible fluid in a homogeneous semi-infinite

halfspace with a free fluid surface. The characteristic time scales for

flows described by these models is in order of months to years. A good

fit was obtained between these models and a set of well production data

from "low-temperature" basalt sites in Iceland.

Some recent publications consider the general problem of data

interpretation for fractured reservoirs, of choosing proper interpreta-

tion models for such formations and of recognizing natural double

porosity systems in particular (e.g. [30], [31], [37]). As mentioned,

earlier special type curves have been developed for (Warren-Root) double

porosity systems based on pressure derivatives (see e.g. [28]). In

general, the problem of modeling flow in natural fractured formations

remains at present a complex one and an area of active research.



CHAPTER 3

SOLUTIONS AS GENERALIZED FUNCTIONS

The systems of equations and their solutions studied here are

treated in the sense of generalized functions, and we use the theory of

generalized functions to obtain existence, uniqueness and continuous

dependence of the solutions on initial data for various restrictions

which may be required on the data. The theory of generalized functions

is useful for doing so, for it allows us to obtain so-called uniqueness

and correctness classes for these systems, or function classes in which

solutions exist, are unique and depend continuously in the initial data.

Moreover, we encounter functions, or fundamental solutions to systems

herein, which are not ordinary functions but are meaningful only as

generalized functions. Uniqueness classes define, as as we will discuss,

classes of functions in which only uniqueness of the solutions is

guaranteed. Since we are interested also in solutions which exist as

ordinary functions we derive also the so-called correctness classes for

each system; these are subclasses of the uniqueness classes which contain

solutions for which existence is also guaranteed as well as continuous

dependence on the initial data.

We therefore devote this chapter to a review of the basic theory

of generalized functions, and we present fundamental theorems by which

we obtain the two function classes above for rather general systems of

parabolic equations. These theorems are then applied to the specific

systems of equations which we treat in the next Chapter. The material
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presented here is adapted from the texts, Generalized Functions, vols.

2 (1967) and 3 (1968), by Gel'fand and Shilov [26], [27].

A. Generalized Functions and Function Spaces

1. Some Definitions

A generalized function is a continuous linear functional (f,<P) in

some fundamental or test function space T, -d5. Generalized func-

tions therefore depend,- in contrast to "ordinary" or "classical"

functions, on the selected space . Many generalized functions may be

given by an integral

(,94)= ff(),)0(x)d,,
R.

where f(x) is an ordinary function, "locally integrable" in the domain

R. (Linear functionals given by (1.1) are called "regular func-

functionals".) A generalized solution to a system of equations is thus

understood to be a linear functional or an integral in the form (1.1).

The class of all generalized functions f defined on the fundamental

space is the conjugate or dual space, 1q) of 4). A well-known example

of a generalized function which is not an ordinary function is the

familiar delta function g(x). In general, for a given class to be

suitable as a test function space it must be nontrivial (i.e., contain

at least one function 0(x) not identically zero); in fact it must be

"sufficiently rich" in functions, which means that f(x) = 0 almost

everywhere if the integral (1.1) is zero for all in
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2. Fundamental (Test Function) Spaces

Classes of functions used as test function spaces are the so-called

K, Z, S and W spaces. These spaces consist of functions with specific

properties and restrictions on behavior at infinity such that the

integrals (1.1) converge. Subspaces of these classes are defined by

suitable numbers which are indicated below. Briefly, these spaces are

characterized as follows:

Spaces of type K Functions in these spaces are infinitely differenti-

able and of bounded support. Specifically, the space K(a) consists of

functions of bounded support in the domain Ix a (Ixil ai, i=1,...,n

for n-dimensional cases), and the space K is the union of the spaces K(a)

over all a.

Spaces of type Z Functions 4)(x) in these spaces are entire, analytic

and increase in the complex z=x+iy plane and increase along the y=axis

as

t.Z) C L'Ap(LIV1)
(1.2)

for some constants C, b > 0 and k (integer).

Spaces of type S These spaces consist of functions id(x) which are

infinitely differentiable and decrease with lx1 at infinity faster than

any power of 1/Ixl. More specifically, the behaviors of 46(x) in the

various subspaces of S (a, B, A, B being nonnegative constants, and

= 0,1,2,...) are characterized as follows:

Functions in S
)A



where

where

- (p .32s) -13

A \

/3,8
Functions in S

IX k ct(9) (X)I C A k 84) "

,

(1.5)

(if a = 0 0(x) have bounded support and the space coincides with spaces

of K.)

Functions in

Csz.x-fr)(- Ixi r'<)

,

C.-ex pQ.Ixi D /-1(1)
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(1.4)

(1.8)

(1.9)

and these functions may be continued analytically into the z-plane where

they satisfy

(1 . 10 )

with a and b given by (1.5) and (1.8), respectively.

We note that the smaller the values of a, B, A, B the greater the

restrictions on the growth or decrease of the functions at infinity and

4434) cx Ccf (1.6)

Functions in this space can be continued analytically into the z=x+iy

plane where the inequality holds;

( C p (Hi (1.7)
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the smaller the function classes above. (In general, the smaller the

test function space, the larger the space of generalized functions

defined on that test function space.)

The following imbeddings apply for the S spaces:

5 = .54= U 5r3 S(3 = (-) S6-B.,

5(1'.A8 = = Li SP,B
A,F3 ai AA) 13 c') -

For the spaces above to be nontrivial we have the following

restrictions on the constants 0<, 0, /k) 13:

5 (3' 8 for any b.( ) 13 > C A, B;

0 8 c B
-JoA for any > I ) (13 ) A, B;

5! 'AI3
for .<-4-(3 >1 and any A,B;

S"ec,A
for .4; t (3 =1) AB = Y, where is any positive number.

-(3,13 .o, 13
The spaces -So,A and S are, though nontrivial, not "sufficiently

rich in functions", but the unions of these spaces)

r 1 0,B
and . us A are.B ot.

Spaces of type W Functions in these spaces are entire analytic

functions with the following exponential behaviors along x and y:

In W :

10(x)1 C ..exp (1-A1(x)) )

where M(x) is a non-negative convex function of x;

10601 C it)(11(-2-01)))

where is a non-negative convex function of y;



In W-m

In WS2'6 :m a

10c. r(-six)

C p(--,A1(3x !i)).

3. Generalized Functions on Fundamental Spaces

The class of generalized functions 4C'defined on the given test

function space requires, as mentioned, that for each f(x) in of'and

0(x) in the integral

(f)) = ffoo (x) x

converges (absolutely). This condition is automatically met for all

locally integrable functions f(x) on spaces of type K, since these

consist of functions of bounded support. For other types of spaces, for

example spaces of type S, it is necessary that the functions f(x) not

increase too fast with lx 1; in fact f(x) should not increase faster than

a power of x at infinity. Similar rules hold for spaces Z and W.

B. Operations on Test Function Spaces

A number of operations (linear, continuous) are defined on the

fundamental spaces 1 that map the space into itself or into some other

space 4)-- . That is, operations on a test function 0(x) results in a

function )1)(x) which belongs either to or to some other space .

Rules of linearity hold, i.e., if A and B are operators which transform

the space § into then for any 0(x) in and number X

(A+B) 0(x) = A 0(x) + B 0(x)

and ()/1() 0(x) = )A (x) .

In particular, functions in the test function spaces may be added or

multiplied and the result belongs again to the same space. Some of the
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simplest and most common operations on test function spaces of importance

in analysis are, however, multiplication by the independent variable x,

(or by any finite power of x), multiplication by (other) functions of x,

differentiation and Fourier transformation. We list briefly below the

results of these operations on spaces of type S (K and Z are subsets of

S) and spaces W.

1. Operations on Spaces S

Multiplication by x. This operation, or multiplication by any polynomial

P(x) of finite degree, on a function p(x) belonging to e.g. 5:results

in a function again in
. (The functions x and P(x) are thus

multipliers in the space Sj'; .)

dDifferentiation (with respect to x). The derivative 70(q."x) (or
n

7)-(75

c' 0(x)) up to any finite order n) belongs, for any p(x) in

?
again in Sfy01,4

Multiplication by infinitely differentiable functions. Consider the

space S.,(.,A and a function f(x) satisfying the inequality

ii-x) (7-12.)T Ca i iX1 ) (2.1)

If g<= 0 then any f(x), infinitely differentiable, defines a bounded

continuous operator in this space. Assume D( > O. Functions 4(x) have

the character of decrease at infinity given by (2.1) and so for f(x) to

be defined on this space we must have al < a =The product
-e

f(x)ç(x) then belongs to the (broader) space S.cA/1 where al - a =Vi:;.
If al in (2.1) is replaced by E for any &> 0 then f(x)/i(x) belongs to

the same space Soy,
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Similarly f(x) satisfying (2.2) below is a bounded operation of a

multiplication in the space S,

if (5)(x )1 C B I + , (2.2)

More specifically, if o(x) belongs to the space SB'B then f(x)0(x) belongs

to s"+Bo. If B., however, is replaced by f for any c > 0 then f(x)0(x)

belongs to the same space S.

The function f(x) satisfying the inequality (2.3) is a bounded

if('Ioo I C(a-expt, Ix) V'') (2.3)

operator of multiplication in the space S' (a > 0). Considering

functions o(x) in the space S:': (a > 0) with a. < a = AYthe

multiplication by f(x) maps the space S:': into the space S:::: where

a-a0 = c7Aimand B' = B+80. If for any e > 0, however, f(x) satisfiest

(2.4)

then f(x) maps SB'B into SB'B+B° , and if f(x) satisfiesSrB0

(')(x)/ C 6 vP)ex-i) (Eixtk) (2.5)

the f(x) transforms SII'B into itself. If, for Ix 1 < A) f(x) satisfies

if (x)1 C I (2.6)

then f(x) transforms the space S::: into Sl.t130, and if B. is replaced by

Ein (1.10) for any E > 0 then f(x) maps S::: into itself.



2. Multiplication by Entire Analytic Functions (Multipliers)

Consider the spaces S81, of S: which consist, as we recall, of

entire analytic functions 0(z) which satisfy

x<
eLt-dixi +DPI

where
a

Let an entire analytic function f(z) satisfy

if(A-1-1"y)1 CAxpiaii I 1- bi e),

The function f(x) is a multiplier in the space S: for a = l/h and

B = 1-1/7; for al < 0 f(x) is also an element in this space. Moreover,

if

)1 c ixth ))z)kr (1)t ir)

f(x) is a multiplier in the space S1-1/".

3. Operations on Spaces W

Multiplication by z of functions o(z) in Wn results in a function also

in te.

Differentiation with respect to z of any function in 4 results in a

function again in W.

Multiplication by entire analytic functions. If an entire analytic func-

tion f(z) satisfies

If/ C 2-xp Can),ti))/ + Doi')

and b?..
JC
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then it is a multiplier in the space V and takes the space into

the space Wc,b0. If f(z) satisfies

Utz)) C xp (71caex)

then it is a bounded multiplication operator on for a > ao and takes

the space 4'1: into the space If, on the other hand, f(z)

satisfies

bCCZ )1 p (52 (61j))

or

If(z) Sa x' p(M(ex ).+ _Q (Et))

for any e > 0, then f(z) is a multiplier in Wn'b or 4'ka), respectively.

4. Operations on S by Infinite Order Differential Operators

We list the result of this operation on spaces S by the theorem

(3.1) below which we also prove. This theorem will be useful later.

Let f(s) be the entire analytic function (in the complex variable

s = a + i r) given by

Sf(c) c
)

y=o

and consider the differential operator

C
1 Vf C ) C

cix v=

This operator is defined on some fundamental space

Y=0

if for any o(x) in

4) the series

±(.4-31)00 P")c,x)
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is again a function in or some other space For certain con-

straints on the growth of the function f(s) the operator f(d/dx) is

defined and bounded on the space and for spaces cl) of type S the growth

of f(s) is related to the numbers a, B which define the space.

We say that the function f(s) has an order of growth 5 A and type

< b if the following inequality holds;

if(5)1 C )2xp (1)ji5r\)
(2.7)

where b., < b is some constant. We state the following theorem: (This

theorem will be used in later discussions.)

Theorem 3.1 If f(s) = c,s' is an entire analytic function of order

of growth .15 1/8 and type < B/B1/13 e2, then the operator f(d/dx) is defined

and bounded in the space SB'B and transforms this space into the space

SB'BeB

Proof. We recall that functions o(x) in S6'8 satisfy

ixk (0"10,01 Csk (8 4 ff'j' fi

(for any arbitrary p > 0). Let be given

('')yi(x) = f 6,0 4cØ (x)
RBWe show that the function o(x) belongs to Sa' . We have the inequality

for the function o(x)

k
ix xi 601 0,(Y,-.0(x))

11



finally obtain

033.0 cf 2_ Icy

c-J,{ c

cy

6/4.0a
( )7+

CksP-f.05-cf"Dc-403 41) (74 ))

_ Cki, 03 +1) cf c), ( I3

Y rIA1 1P 1P7 ) (B+f) e .C03+5)1 e i`v

We may obtain, for the function f(s) of the growth order and type given,

the upper bound on the coefficients Icv 1 given by (for prdof see below):

0

By ea /Y

where e < I is some positive number, C a constant. If, moreover, I +

p/B < l/e (p sufficiently small) the series (2.8) will converge and we

VO co
Yy) vci)

k (V - r 13 0) Tox )1 _ C k c6e, y e )

58

(2.8)

(2.9)

where Cks = C Thus the function 0(x) = f(:)45(x) belongs to the

space S"e8, as we wanted to show. 1

For the proof of inequality (2.9) we have by the Cauchy formula

ItrI r f(s)Jrsv,I
151,1-



and the inequality (2.7) that

To find the minimum on the right hand side with respect to r, we take

logarithm, differentiate and equate to zero. This gives for a minimum

r = ro

=/

from which

Substituting this value of ro into (2.10) we find

lc j
(2.11)

Using A = 1/13, bl = 13/131"e2 in (2.11) we obtain the inequality (2.9)

above.

5. Fourier Transformations

The Fourier transform c^5(c) of the test function 0(x) in t, is given

by the linear functional

4) (Cr) = F cx)) -7.-
(2 I) ryz

cfo (x),2xp ( 6-x)dx

and belongs to the space g, = F . Similarly, the inverse (Fourier)

transform

A rA.
0(x) -=-F (#0 (7)) = )1iv )0(cry2xp (-10-x
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of ka) in w is again in t = F-1 (). Transforms of partial derivatives

(or finite-degree polynomials of partial derivatives) of functions may

be given by

PO)) F (P(

F(P(D)so(x))

Al(e) Lc)

Then the transforms of spaces of type W are

F = F -3 ) -:--

F (vv 9.)

F-0)(r));(7)) P(ix)4;(4),
p (D) 4)(x) F (P(--;(7)-)C

Fourier transforms and inverse transforms are linear continuous one-to-

one mappings (isomorphisms).

We list transforms of the fundamental spaces as follows:

F(K(4)) = z (4) F (.7 (4)) = K (),

F 0:) = z F (z) K

F s) = F 5,7

F() ) (5:) p )

F(S) = I-1(s) = S

For transforms of spaces of type W let M(x) and o(y) be non-negative

convex functions which are dual "in the sense of Young", i.e., they

satisfy the inequality
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F 3.'" Whi
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Given M(x) dual (in the sense of Young) to ol(y) and Mi(x) dual to 2(y)

C. Operations With Generalized Functions

Continuous linear operations may similarly be performed on

generalized functions in the space (Di defined on test function space (ID,

and the results of these operations on GP' are again elements in e. For

example, we may, as simple common operations, apply differentiation,

multiplication by functions and Fourier transformation on generalized

functions. In general, we may define an operation by an operator A on

a generalized function f(x) in terms of the operation on 0(x) by its

conjugate A*

= (fjA44-
(3.1)

In the case of the operation by the differential operator A = d/dx, we

have

(c4
and multiplication by a function g(x) which is a multiplier in the space

Y) =(fi,)
or, more generally, for differentiation by a finite order polynomial

P(D), D = a/ax, (13(t))-f; 0) = (f) p( NO)

The following relations hold between (generalized) functions and

their Fourier transforms (in n-dimensional space)

Ni = (F F 0)) (1T) n (.4))

(f) (PH (5) j (217)-n (g)



F(j)---: I)

F(i) = i)(x) 2.7) n

F(x) (- D)k (T),

F (P(x))=-- P SO-) ,

D. Existence and Uniqueness of Generalized Solutions

We now consider solutions to systems of linear partial differen-

tial equations in the sense of generalized functions, and we treat, in

particular, their existence and uniqueness. In the remainder of this

chapter we develop theorems on uniqueness and correctness classes

(defined below) which are applicable to solutions to certain general

systems of parabolic equations. Special cases of these theorems are

derived in Chapter 4 which are applicable to the specific systems of

equations treated there. In Section 1 we develop a fundamental theorem

62

Moreover, we have the symmetrical relations between differentiation and

multiplication by independent variables (g = F(f));

F(P(P)-f)

F (P(D)5) = P CiA)F (5),

P(D)) = F(P(ix) -f)

P (D)F-'(5) F(p(-17)y).

In particular,
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on uniqueness classes, and in Sections 4 and 5 we present fundamental

theorems for two classes of systems separately; so-called hyperbolic and

parabolic systems. A number of additional theorem used in the proofs of

these theorems are also presented. In addition we consider also briefly

applications of the fundamental theorems on uniqueness classes for

ordinary solutions (Section 2).

The above-mentioned function classes are defined as follows:

A uniqueness class is a (linear topological) space of (ordinary or

generalized) functions of the argument x, for which the uniqueness of the

solution to the Cauchy problem is guaranteed for given initial condi-

tions, provided the solution exists.

A correctness class is the totality of ordinary functions of the

argument x, for which the existence of the solution to the Cauchy problem

is guaranteed for arbitrary initial conditions (again within a given

class of functions) as well as its uniqueness and continuous dependence

of the solution on the initial conditions.

As mentioned before a function f(x) has order of growth p and type

b if it satisfies the inequality

ifCx); r /xi
P.

(4.1)

for some constant C.

The order (p) of a given system of equations is (the same as) the

order of the resolvent matrix/function for that system;

The reduced order (p0 p) of the smallest value of the order (p)

of the system.
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An initial value problem, or a system of equations together with

initial conditions, is always solvable in a given space of functions

if for some to in an interval 0 5 to 5 T and each initial condition oo

there exists a solution 0(t) defined for all 0 t T which for t=to

becomes equal to the initial function 00 and is such that 0(t) depends

linearly and continuously on 00.

1. Uniqueness Classes

Consider the following general system of parabolic equations and

initial conditions, which we write in the form

Ouc-x-o_ A (/ Cx,&) )
(4.2)

u(x,c)::: L(000,

In the general case u(x,t), the dependent variable, is an m-component

vector (ui(x,t), j=1,...m), the operator -At* (ia/ax) P (ia/ax) is an mxm

matrix of polynomials in the differential operator ia/ax and x is in

general an n-component vector (x1,x2,...,xn). The (generalized) function

u(x,t) is in the space 40' of functions conjugate to some test function

space .10. Let us write also the corresponding initial value problem for

functions 0(x,t) in the space 4); i.e.,

A (70x)005

Cx-, = 56,

(4.3)
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where, similarly, 0(x,t) is an m-component vector and At (ia/ax), the

conjugate operator, is an mxm matrix of polynomials P (ia/ax) in ia/ax.

Both to and t are assumed to lie in the finite interval 0 t t0-5_ T.

The solution to system (4.2) in it turns out, is closely related to

the solution to system (4.3). Let the solution to system (4.3) be given

by

C)t), 6 (X)0) / j

(4.4)

where

Q "z X P (P 6 4,< )(6 ))

(4.5)

The following theorem holds:

Theorem 3.2. If the Cauchy problem (4.3) is always solvable in the test

function space 4, then the corresponding Cauchy problem (4.2) in the

conjugate space 4' has a solution u(x,t) for any initial functional

u.(x); this solution is unique in q)' and depends continuously on u0(x) in

the sense of the topology of the space 4.51

Proof. We show that the only solution u(t) to system (4.2) given the

initial condition u. . 0 is u(t) . 0. (This implies uniqueness of the

solution to system (4.2), for u. . 0 is the initial condition for the

difference u1(t)-u2(t) = u(t) between any two solutions u1(t) and u2(t)

to system (4.2).) Differentiating the linear functional (u(t), 0(t)) with

respect to t and using equations (4.2, (4.3) and (3.1) we obtain

cl 7 d () , (
4-6 j ) (6) Dr(t))

)
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Thus we have that (u(t), 0(t)) is constant and equal to the functional

(u(to), 00). By setting u0(0) . 0 we obtain that (u(to), 0o) = 0 for all

to. Since 00 is arbitrary we have that u0(t0) = 0 for all to, and hence,

by arbitrary choice of to and also of t in the interval 0 t to T, we

obtain that u(t) = 0 for all t in 0 t T. The solution u(t), which

may be formally written as

u t ) / t)0 )

depends continuously on the initial function uo due to the continuity of

Q*(0,t).

Let us also state the following theorem:

Theorem 3.3. Let for any to and t in 0 t to T a linear continuous

operator Q (to,t) be defined on the space it, which maps this space into

the space and, in addition, if applied to an arbitrary vector 00 (in

), yields a solution to the Cauchy problem (4.3), where 00 is in 4) and

0(t) is in a31. Then the Cauchy problem (4.2) admits in the interval

0:5t:5T the unique solution u(t) in E', where E' is the space conjugate to

the space E, and E contains cl) and 4,1 as dense subsets.

Proof. We may obtain uniqueness of the solution to system (4.2) in the

same manner as in the proof of the preceeding theorem. That is, with the
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initial condition u0(0) = 0 we obtain that (u, (t0), ¢o) = 0 so u0(t0)

vanishes on the space 4); to is arbitrary so (u(t), (t)) = 0 and u(t)

vanishes on the space 1)1. The functional u0(t0) is by assumption defined

on all of E, (1, c 4)1, c E and 4) is dense in E, so u0(t0) u(t) = 0 in El

Let us return to the systems of equations (4.2) and (4.3). We note

that the elements Qij (ia/ax, to, t) of the matrix/function (4.5) are

entire analytic functions in the arguments a/axi,...,a/axn. Or,

alternatively, Qij (s,to,t) are entire analytic functions of the complex

variable s = a + ir = s ,s, . The matrix/function

a(sit,,t) Jo( p((-1--t)Pcs))

is the "resolvent" for system (4.3), obtained upon Fourier transforma-

tion of (4.3), in the complex variable s = a + ir. That (Fourier

transformed) system has the solution

A
(S, c , (Po S )

The norm of Q(s,to,t) is determined by the norm of the matrix P(s). We

may obtain the estimate for HP(s)N

2.

Nn Am 2 ap
i/P(S)11 I P., (s) I C

.;=1 k=1

for some constant Cl, where p is the maximal order of each P1(s) such

that P13(s) I ClsIP. We then have the estimate

II = z ((-6--f(1)P(s))11

4-- p (-6 Ci s P)
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The elements of Q(s,t,.t) are entire analytic functions of order equal to

or smaller than p. In fact the matrix/function Q(s,te,t) may have a

smaller (reduced) order po p, and we may write the inequality for

Q(s,t0,t) in the more general form in terms of po; i.e.

P(1"1-1) F)

Q (5, to C2( I T s 1) )2. r °) (4.6)

In general, the reduced order p0 characterizes the system more precisely

than p (the highest order of the differential operators of P(ia/ax)).

Indeed, the reduced order determines the uniqueness class for system

(4.2). We state the following "fundamental" theorem:

Theorem 3.4 If a system of equations of the form (4.2) has a reduced

order p. > I, then the totality of functions f(x) satisfying the

inequalities

Pol

and arbitrary but fixed C and b., forms a uniqueness class for the Cauchy

problem (4.2). In other words, there exists at most one solution to that

system, for which at t=0 equals the given initial (vector) function u0(x)

and all components of which satisfy (4.7) for fixed t in the interval

0 t T. If p. = I then the uniqueness class consists of the totality

of functions of class (4.7) with p.' arbitrary but fixed. For p. < I the

solution to problem (4.2) is unique in the class of all functions f(x)

with no restrictions on their growth at infinity. (The admissible inter-

jf(x)1 C szxr
(4.7)

with p.' given by
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val of the time parameter 0 t < T depends only on the constants C and

bo but not on the choice of the initial functions uo.)

Proof: We assume that t varies in the interval to t to+T and bT < e,

where e is arbitrary and b is the constant in the estimate (4.6) of the

resolvent Q(s,t0,t) for the adjoint system (4.3) which is of the reduced

order p0 and type < e. We want to choose a test function space 4) for

the system (4.3) on which the operator Q(ia/ax,t0,t) is defined and

meaningful. For this we make use of spaces of type S. and choose as

the space S::: . This space, as we recall, consists of functions which

may be characterized by

k koe.

)1 ± C ( A -14 k (B+s)

(p >0 g> 0; arbitrarily small). (For simplicity we may choose the 1-

dimensional variable x varying on the line -. < x < .; the results are

easily generalized to the n-dimensional case.) We apply Theorem 3.1

given earlier to the resolvent Q(s,t0,t) of system (4.3). As we recall,

the theorem states that if an entire analytic function f(s) is of order

1/B and type smaller than B/B1/8e2 then the operator f(d/dx) is defined

and bounded in the space SB:BA and maps this space into the space SB:r.

We are given the growth order p. = 1/B for Q(s,t0,t) and the type e <

B/B1/Be2 and we deduce values of a, B, A, B such that the space S:'BA is

nontrivial and sufficiently rich in functions, but as small as possible

such that the conjugate space of generalized functions is as large as

possible. With B = 1/p0 and B = (13/ee2)B given we choose the numbers a,

A such that the above-stated conditions on SB'B are met. We consider inco A

turn the following three cases (values) of po; po > 1, po - 1 and p. < 1.

.k
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(a). Assume pc, > 1. Then B < 1 and we may choose a = 1-8, by which we

have A = 0 for some positive number -y. This test function space has

functions characterized, as we recall, by

14/(X)E XF( alx*Ir ) (4.8)

with a = a/eAlia. We have 1/a in terms of pc,

.< VP0

The initial function 00(x) belongs to the space 4) = S::13A and the solution

0(x,t) = Q(ia/ax,t,,t) 00(x) of the system (4.3) belongs to the space (1)/

= SeB. The operator 0(i8/ax,t0,t) maps the space 4) = S::BA into the space

= Sa'BeB The functions 0(x,t) and .64(x)t)/At are bounded for t in 0
1 ce,A

T in the space S::r and converge in S:lesto 00(x) and ao(x,t)/at,

respectively, i.e.,

lirma (x,i) = 4`,Pri(; ,t ) (x) (x)0 )

and

xi :t)?),(A))
.6t_w 6 6-t. 0 t

to, 6)17: ?0(x/e)

in thethe topology of SNen. We then have, by Theorem 3.3, that the adjoint

problem (4.2) can have, for 0 t T, only one solution u(x,t) in the

space E', where E' is the conjugate space to E which contains 4) and 4,1 as

dense subsets. The functions in S111 and = SP,1319 have the same
05A

character of decrease at infinity given by (4.8), and we obtain thus the
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class of generalized functions in E' characterized (almost everywhere)

by the inequality

Consequently, the Cauchy problem (4.2) has, for 0 5 t 5 T, bT < 0, a

unique solution in the class (4.7) for a given b.. (The constant a in

(4.9), which is related to bT < 8, is arbitrary and can be chosen equal

, B `,<,"a
to a given b., for a = /A-= () = Ce 4 for any constant C greater

than 0.)

Let next p. = 1. For this case we have B = I. If we let a = I -

13=1 we obtain the trivial space SI. so we let therefore a > 0, though a

may be arbitrarily small. The resulting space (1) = is nontrivial and,

by the same reasoning as above, we obtain the indicated uniqueness class

(4.7) with arbitrary p.'.

Finally, let p. < 1. For this case we have B = 1/p0 > I and we may

choose, for a nontrivial space, a = 0. Resulting spaces S:10 though

nontrivial, are not sufficiently rich in functions; however, we may take

the union with respect to A, S:'B = S80:BA, as the space ,13. ; this space

is sufficiently rich in functions. Recalling that spaces S801 consist of

functions of compact support, we have that generalized functions defined

on these spaces are arbitrary, locally integrable functions and we thus

obtain the uniqueness class for system (4.2), p. < 1, all arbitrary

functions, with no restrictions on growth with x as Ix 1 *

The above discussion, based on 1-dimensional space, can be extended

to n=dimensional space for n > 1 by replacing spaces S!': by the n-

lf(X)1 ("I A X ' )
(4.9)
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dimensional counterparts, S81-1--B" and Q(s,t0t) by Q(s1,...,s,,t0,t)

satisfying

1Q,) 1:" r; ) ! I -go [ (

The numbers aj, Bj, Aj, Bj are chosen according to p0 in the same manner

as above. We arrive at a uniqueness class characterized, for p. > 1, by

110( 1

j n Cjzn--)(oilxii --ranixni

for p. = 1 the same class (4.7) but with arbitrary p.', and for p. < 1,

we have, as before, a uniqueness class of all arbitrary functions.

2. Ordinary Solutions as Generalized Solutions

The foregoing considered the solutions to the systems of equations

(4.2) as generalized functions, with the operators a/at and P(ia/ax) also

understood in the sense of generalized function. This means that for the

solution u(x,t) to the system we have, for any test function o(x), that

(u (4,-6) 0 (x)) 44(x; )

and

x, 40(-)) ( tic( ), 00<))

(We were dealing with the problem "weakly".) We can apply Theorem 3.4

to ordinary solution also, when we can verify that the corresponding

generalized solution (p(x,t), 0(x))is a solution to problem (4.2) in the

sense of the theory of generalized functions. The following theorem

allows us to do that under quite general conditions, and we state it as

follows ([27], p. 49):

Theorem 3.5. Let u(x,t) = [ui(x,t), j=1,..,m] be ordinary functions

which are differentiable with respect to t and which admit application
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of the differential operators P(i3/8x) (i.e., admit derivatives with

respect to x up to order p). Let these functions u(x,t) = [uj(x,t)]

transform the system (4.2) into a system of identities and satisfy the

inequalities

-xf.)(,--7E11/1

Then the system of functionals
(.61 xi))

defined on the space 4) = a = a/eA", is a solution to the Cauchy

problem (4.2) in the sense of generalized functions. The initial

functionals are determined by the functions u(x,0) = [uj(x,0)].

3. Correctness Classes

We now consider the classes of unique solutions to the systems

which exist as ordinary functions and which depend continuously on the

initial data. In other words, we want to determine correctness classes

for the solutions to the systems (4.2), since, as we have noted, we are

interested especially in solutions which are also ordinary functions.

As before, we treat the systems of equations and the solutions initially

as generalized functions and clarify under what conditions the solutions

to the problems are also ordinary functions. As noted earlier, we

discuss in particular the two classes of systems; hyperbolic and

parabolic, and we formulate fundamental theorems on the correctness

classes for these systems. To do this we make extensive use of Fourier

transforms.

Let us return to the general system of equations (4.2), apply

Fourier transformation to it and thus obtain the (transformed) system

( cJx.
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(4.10)

where again s = a + ir is complex. This system has the formal solution

Lc IS, z Q(S, )Ct (S) (4.11)

where

a(s,t) .Rxp (Ps) (4.12)

A
is the resolvent matrix/function. The function u(s,t) is a linear

functional on the (Fourier transformed) test function space 4f = F(),

where .1) is the space on which u(x,t) is defined as a generalized

function. 4) corresponds to the appropriate uniqueness class for the

A
problem with the solution u(x,t) and therefore u (s,t) are unique within

the given class. The inverse transform of the solution (4.11) yields the

convolution

Cy(x)t) X 4/0 (X)

(4.13)

where G(x,t), the Green's matrix, is the inverse Fourier transforitof

Q(s,t),

CrOy)= Fa(67(s)t)). (4.14)

The convolution (4.13) in general defines a generalized function, but it

may also be an ordinary function, depending on properties of the function

G(x,t) and the initial function uo(x). Various smoothness conditions as

well as growth restrictions at infinity may need to be imposed on the
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functions u0(x) in order to obtain an ordinary function within the

uniqueness class for the problem from the convolution (4.13), depending

on how well "behaved" the function G(x,t) is. If '(x.t) is (consists of)

an ordinary function, then no smoothness requirements need to be imposed

on uo(x); only that u0(x) not grow too rapidly with x such that we have

convergence of the integral which defines the convolution (4.13). If,

however, G(x,t) consists of generalized functions which are derivatives

of some order h of ordinary functions, then the convolution (4.13) will

exist as an ordinary function if u0(x) admit derivatives up to order h.

If G(x,t) consists of generalized functions of "infinite order", i.e.,

generalized functions which are not derivatives of a finite order of

ordinary functions, then the initial functions u0(x) need to be

infinitely often differentiable or even analytic. The various

possibilities depend on the structure of the resolvent Q(s,t),

particularly its behavior in the complex plane.

We may distinguish three classes of systems which correspond to the

three general characteristics of G(x,t) and requirements on u0(x) above:

(a) parabolic systems; (b) Petrovskii-correct systems, and (c) incorrect

systems. The first of these (a) (which we will discuss in more detail

below) are characterized by exponential decrease of the resolvent Q(c,t)

to some order h > I along the real axis, i.e., the resolvent Q(s,t) may

be characterized by the inequality

p -I)

liG2(c-it)11 (i + (70 io(p(-4-
(4.15)

where h > 1. For these (parabolic) systems the functions G(x,t) turn out

to be ordinary functions which decrease exponentially with lx1 and
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yield solutions for any (locally integrable) initial data u0(x) with no

requirements on smoothness. Petrovskii-correct systems (b) (which

include "hyperbolic" systems) are characterized by behavior of Q(s,t)

which increase at most as a power of !al along the real axis, or by an

inequality
P(ftmt)

liQicr) ,) II -,`= CIO t

Ii Q(0,t)ii

)

and the convolution (4.13) will be an ordinary function only if the

initial functions u0(x) are infinitely differentiable or analytic.

Returning the Fourier transformed problem (4.10) 011(s,t) is the

generalized function defined on IF = F()), we formulate the following

theorem:

Theorem 3.6 The Cauchy problem (4.10) admits the solution (4.11) with

the resolvent (matrix-function) given by (4.12).

Proof. Let, as before, the corresponding problem in the test function

space *1, be written

,t) it AP) 56(),
A A

(5,0)p(s)

(4.16)

For these cases G(x,t) are generalized functions of "finite fixed order",

i.e., contain derivatives of finite order of ordinary functions, and so

the initial functions u0(x) must admit derivaties up to that finite order

for the solution to exist as an ordinary function. Incorrect systems are

characterized by exponential increase of the resolvent Q(s,t) by some

order h along the real axis, i.e., by an inequality

p(0,4
C t 10-1) ,z)(1)(4 (711') (4.17)



with the solution given by

A * A af Asb[s/t):-- a cs,t)f,ep) P(s))Pc)(5)

The operations of multiplication by the functions Q*(s,t) and

P*(s)Q*(s,t) a/at Q*(s,t)) are defined and bounded in the space * and

map this space into the (wider) space *1. Therefore the operators Q(s,t)

and P(s)Q(s,t) are defined and bounded in 11,1 and map that space into *'.

We also have convergence of the operator in *, i.e.,

7v-

fifty,(sat)
44-640 Zit At4o

and therefore also of the adjoint operator in *;,

i; a a (s, -6 p(s)Q(si-f)AV, A.6
4-6-)0

A A

for each generalized function uo(s). Therefore ii(s,t) = Q(s,t)uo(s)

defines a solution to equation (4.10). We have also the convergence

Q CS, OZ(to Cs) 4Z ) as t --> 0

in * , since, in *

.4- A

Cs, 6) Po (S) Clbo (S)

P4(.5) Q,*(s., t))
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as t --> 0.

We then have the generalized solution (4.13) to the original system

(4.2) with the initial functions u0(x) given, and this solution depends

continuously on uo(x). The continuous dependence of u(x,t) on u0(x) is
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easily shown by Fourier transformation. By the continuity of the Fourier

transforms u0(x) --> 0 implies that u0(s) --> 0; from this we also have

that u(s,t) = Q*(s,t)uo(s) --> 0 as u0(s) --> 0 (by the boundedness of the

operator Q*(s,t)) and hence, via the continuity of the Fourier transform,

that u(x,t) --> 0. The solution (4.13), even if an ordinary function,

is a solution in the conventional sense if u(x,t) is sufficiently smooth

so that it admits derivatives with respect to x and t to satisfy the

system of equations (4.2), and this can be guaranteed by imposing

sufficient smoothness requirements on the initial functions uo(x).

4. Hyperbolic Systems

These systems are characterized by reduced growth order of less

than or equal to 1 and, as stated before, by inequalities of the resol-

vents Q(s,t) given in a general form by

ilQ c + )54(1)").$2xp (btis 0 (4.18)

II Ca7--t.) II C (1 4 IT1)b) ( /yr) -
(4.19)

where h is the "correctness exponent" for the given system. Hyperbolic

systems, and only such systems, admit for the Cauchy problem (4.2) a

solution for any sufficiently smooth initial data without restrictions

on their growth at infinity.

We formulate a "fundamental" theorem below for correctness classes

for solutions to systems of the general form (4.2) of hyperbolic type;

but before we do so we list (with proofs) the following two theorems

(3.7, 3.8) which are used in the proof of the fundamental theorem (3.9).
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Theorem 3.7 (Paley-Winer-Schwartz). If an entire function f(z) =

f(zi,..,zn) of first order growth and type :5. b does not grow more rapidly

than Ixri for some q, thereby defining a functional in the space Z,

(fl 0) kx)c6c>oclx1

then the Fourier transform F(f) in K' of the functional f has its sup-

port in the domain Gb = (lail 5 bj) . Furthermore, for any f > 0, the

functional F(f) may be represented as the sum of the finite number

(dependent only on q and n) of components, each of which is the result

of applying a differential operator of order 5 q+(1) = (q,,.. .,q+1) to

some function e(a), integrable in the domain G vanishing outside

this domain.

Proof. Let //),(a) = F((x)) be an infinitely differentiable function of

support in the domain G, = < E) . Its inverse Fourier transform

.0,(x) is an entire analytic function of first order growth and type e

which tends to zero more rapidly than any power of 1/1x1 as Ix 1 ->

The product 0,(x)f(x) is again an entire function of first order growth

and type is b + e which tends to zero more rapidly than any power of

1/Ixl. The Fourier transform of this function (product) is the

convolution

F (x)f 00) = F (06)F (f) (cr) F(f)

and it vanishes outside the domain G One may form a sequence of

functions 0(a) = F(0,7) from the family of(a) in the space K' con-

verging to the delta function g(a), and we then have

Y-141, C F ) cS(c")* F(1)=- F (f)
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Since the functions F(eb,,(x)f(x)) have supports in the domain Gb+, their

limit F(f) also has support in this domain, or, in fact, in Gb, since e

> 0 is arbitrarily small. We introduce the function

(4.20)

This function belongs to the space L2(R) (by the condition on growth of

f(x) for real x). Let also be given go(a) = F(fo(x)), a function also in

L2(R). We obtain from (4.20)

(0) = F(fCX))-.= p cows-)

where P(x) = (x1-1)q1+1....(xn-1)9n+1. Hence F(f) is the result of

applying a differential operator P(iD) of order q+(1) = (q1+1,. .,q+1) to

the square-integrable function go(a), which has its support in the domain

Gb .

Theorem 3.8 (Phragmen-Lindelof) If an analytic function f(z), defined

within and on the sides of an angle Ge with aperture e < n/p , satisfies

the inequality

If(Z)1 5 Cexp(blzr)

within the angle Ge and is bounded on the sides of this angle by a

constant C1 , then it is bounded by the same constant C1 within the angle

G also .

Proof. Without loss of generality we may consider the angle Ge to be

bounded by the rays arg z= ± 8/2. We may find a number p1 such that e <

it/p1 < it/p. Consider the branch of the function
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Fe(z) exp(-Ez1), (larg z1 5 .6/2)

which takes positive values on the real axis. Let us also construct the

function

f(z) = f(z)F(z)

and we show that this function f(z) is bounded within the limits of the

angle Ge We have on the sides of the angle Ge,

f(z)1 = 1f(rexp(±ie/2))Fe(rexp(± ie/2))1 5 Clexp(-rPicos(p1e/2)) 5 C1

since, by assumption, ple/2 < w/2, so cos(ple/2) > O. On the arc of a

circle z = rexp(iw), 1w1 < 02, we have

Iff(rexp(iw))1 = 1f(rexp(iw)).Fe(rexp(iw))1 5 Cexp(brP-frPlcos(p/w)) 5

Cexp(be-er° cos(pie/2)) --> 0

as r-> , since pl > p. Hence, for sufficient large r we have

fe(rexp(iw)) Cl for some r. .

Thus on the boundary of the region formed by the two rays w = ± e/2 and

on the arc of the circle of radius ro the function f(z) is bounded by

the constant C1 . By the maximum principle the function fe(z) is bounded

by C1 also within this region. We therefore obtain that within the angle

Ge (since r ro is arbitrarily large) that the function f(z) satisfies

the inequality

If(z)1 = Iff(z).F-1,(z)1 5 C.1 lexp(EzP1)1,

and, since e > 0 is arbitrary, we have

1f(z)1 5 Cl

for all z in G . I
The following two generalized versions of Theorem 3.8 may be given

(for proofs see [26], p. 212, p. 241):
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Theorem 3.81 If an analytic function f(z), defined within and on the

sides of the angle G aperture e /p , satisfies

and

then

ff(z)1 (exp (bIzIP)

If(z)1 C1 (I + 1ZTh)

If(Z)1 C; (1 1z1h)

within G

on the sides of G

for all z in G .

Theorem 3.8/1 (generalized to n variables). Let be given an analytic

function f(z) = f(zi,...,zn), defined for values of the variables

z7,z2,..,zn, each of which runs through an angle Gj of aperture wi < it/pi

in its plane, independently of the values of the remaining variables.

Let the boundary of each Gj be denoted by rj . Furthermore, let the

function f(z) satisfy the inequalities

If(zi, zn)1 (exp(b1lz11P1 + + b z)
for z. in G,., and

If(z1,...zn)1 C1 for z1 in r1,..., zn in r, .

Then the inequality

If(zi,...zn)1 5_ C1 for z1 in zn in Gn

is valid.

Let us now state the following (fundamental) theorem for the

correctness classes of solutions to hyperbolic systems of form (4.2):

Theorem 3.9 If the initial functions u0(x) = [ui(x,o), j=1,...m] of a

hyperbolic system (4.2) with correctness exponent h admit continuous

derivatives with respect to x up to order h+n+k (n is the number of

independent space variables, k is a nonnegative integer), then the system
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admits a unique continuous solution u(x,t) which is k times

differentiable in x. The solution depends continuously on the initial

functions uj(x,0) in the following sense: if the sequence of functions

ujy(x,0) converge for v -> co, together with their derivatives up to order

h+n+k, uniformly in each ball lx1 r to the functions uj(x,0) and their

derivatives) respectively, then the corresponding solutions ujy(x,t)

converge to the solution uj(x,t), together with their derivatives in x up

to order k, uniformly in each ball lx1 r. (No restrictions are imposed

on the growth of the initial functions uj(x,0) and their derivatives as

Ix1 ..)
Proof. We know from previous discussions that the Cauchy problem (4.2)

admits for hyperbolic systems a unique solution within the class of

generalized functions on the space K. We want to show that the convolu-

sion (4.13) maps the initial function u0(x) which is h+n+k times differ-

entiable into a function u(x,t) admitting derivatives up to order k with

respect to x. Assume first a growth order of the system of p. = 1. The

elements of the resolvent matrix-function Q(s,t) are entire analytic

functions of order (at most) one and type e = bT, which for real s =

0- increase not faster than a polynomial of degree h. According to

Theorem 3.7 the (inverse) Fourier transform of an entire function

(Q(s,t)) of order one and type e=bT, which increases with s = a not

faster than a polynomial of degree his a generalized function over K

with support in the region Ixi bT and admits a representation of the

form

F (Qt:sii) oc.t)=-, R()) (4.21)
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where R(Vax) is a fixed polynomial of degree not higher than n+h, and

f(x) is a continuous function which vanishes outside the region lx1 bT

+ f (for arbitrary small E > 0). Hence the solution is

r)(Y:f ) = R }foci)* uc, (x) f c' itto(x) (4.22)

If u(x) admits derivatives up to order h+n+k, then the function

R(a/ax)u.(x) admits derivatives up to order k, and the integral (4.22)

converges since it ranges only over a bounded region.

Next consider the case pc < 1. The elements of the matrix Q(s,t)

are entire functions of order smaller than one and for real s =

increase at most as polynomials of degree h. Theorems 3.8-3.811 imply

that the elements of Q(s,t) are polynomials of degree not higher than h

in s (or the variables si,...,sn). We may obtain that the Green's matrix

consists of elements of the form P1j(D,t)6(x), where Pij are differential

operators of order at most h. The solution (convolution) (4.13) becomes

of the form

I u (xj)j I P (DJ .6) Scx) 1,1(x) p(D, (4.23)

If, (by Theorems 3.8, 3.8") Q(s,t) is bounded by a constant, then we

obtain (h=0)

u 0/ f(i)cfrx) uc 04)1= if (t)uo ()I, 4.24)

where f(t) is some continuous function.



5. Parabolic Systems

We now consider solutions to systems (4.2) which are parabolic.

As mentioned, these systems have resolvents which are functions

characterized by inequalities

110(s))11
f\l/61-1)

(
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(4.25)

with p 1 - (p-h) , in which

and

(t)cri I 17-0 (4.26)

with p. h > 1. That is, in particular, the elements of Q(s,t) de-

crease exponentially along the real line by an order h, the so-called

"parabolicity exponent" of the system, which (like p.) is strictly

greater than one. Another important number which characterizes a

parabolic system is the "genus" (p) of that system; this number deter-

mined the correctness classes for the (parabolic) Cauchy problem.

Let us use the following theorem:

Theorem 3.10 If an entire function f(z) has order of growth p with a

finite type, i.e., satisfies the inequality

If(z)1 C1 exp(blzr)

for all z, and, in addition, satisfies for real z=x the inequality

If(x)1 C2 exp(alx1h)

(a 0 0, 0 < h p), then there exists a domain G defined by the
4

inequality

lyl 1(1 (1 + 1)(1)4
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f(Z)1 C3 exp (a'

where C3 = max (C1,C1), and the constant a' differs arbitrarily little

from a.

Proof. We may construct the analytic function

f1(z) = f(z) exp (-azh) .

This function is bounded (by C2) on the half-axis x > 0. In the right

half-plane we have the inequality

If1(z)1 :5 C1 exp (b1 IzIP)

where we may take bl = b + lad. Let, moreover, be given the func-

tion

f2(z) = f1(z) exp (ib2 zP)

with b2 = 1)1 + E (for arbitrary E > 0). This function is analytic in the

first quadrant and bounded by the constant C2 on the half-axis x > 0

also. It is, moreover, bounded on the ray z = r exp (i7/2p), since on

this ray

1.2 -e Kr ( rr/ip ))I b,r P ) ci

and on the limits of the angle 0 5_ arg z -15 ir/2p the function is bounded

by fi (i)1 Ci2xr (631-P ) )

where b3 = 2b1 + E. By Theorem 3.8 (Phragmen-Lindelof) the function

f2(z) is also bounded within the angle above. It follows that within the

angle 0 w w/2p the function f(z) satisfies

Jf(r,xPG-0.,))1 [i(7n ft (),QxP(4b)1

=- 112(21-e xp (132-iP)) ,Q)q) (.0 )-11 cos 4- 1)rPs,,, p
(4.27)



Considering points z r exo(iw) such that

CoS ORA),

(ai > a and of the same sign), the function f(z) also satisfies

if(2)i 4j C3 izxf3(

(4.29) that

n (pw)

and E

where the E's are variables approaching one. We obtain by (4.27) and

P
S n

-r C0.5' '

a Cos (1-1 (.0)

(1.3c.),:p

S p c.,0)2

-

COS h2 )

KE1-(P-h)x

and if h < p we have that (since the numerator is bounded) w -> 0

as r -> , and hence it may be assumed that

(-c5-Ch'-4))=
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(4.28)

(4.29)

a
where K = , and E(x) -> I as x -> 00. It turns out that the func-

tion f(z) satisfies the inequality (4.29) in a domain defined by

1111(x ( Tv ) Ki )(I CPh)
(4.30)

We may obtain that the inequality (4.28) is satisfied in the domain

c-..s-(1.1i4,1)

(pw)

If h = p the curve is the ray



for some Ki which depends only on b2. (a4 may be taken arbitrarily

close to a.) Obtaining similar inequalities (domains) as (4.30) in the

remaining quadrants of the z-plane with x, y replaced by !xi, lyl , we

will have, by continuity considerations, a domain defined by

where the inequality

=5--

r-(p-k)

i

holds. I
The least upper bound of the number y in Theorem 3.10 where the

inequalities of the theorem hold is the genus of the parabolic system.

We will obtain that the correctness class for the system will consist,

for positive genus, of functions f(x) which for lx1 -> uo have an

exponential growth order p1 = p0/(p0 - y), and for non-positive genus

the correctness class will consist of functions f(x) of growth order 5

p2 = h/(h - .

Let us consider first systems of positive genus (p > 0). We state

the following theorem (with proof) which we use in the proof of the

fundamental theorem (3.12) below.

Theorem 3.11 Consider the entire analytic function f(z) of growth order

5 p and finite type which satisfies the inequality

01(7)1 (-e-xr (bi21?),
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Furthermore, let us assume that in some domain G, defined by



We have

(h < p; for a < 1 h = p is admissible also.) Then the function f(z)

satisfies the inequality

t) ( (4.31)

(4.32)

for all z = x+iy, where the constant b' only depends on a, b, Kl, and C2

= max (C,C1) .

Proof. Let us put

s_tc P IfCz)13z)(p (-(31Af).1
(4.33)

This expression is bounded, since every horizontal line belongs, except

for some finite segment 2Iy, to the domain G, where the expression (4.33)

is bounded by the constant C1 . We consider two possibilities: 1)

either the upper bound (4.33) is reached for any z on the segment y, or

2) it is not reached on this segment. We consider the first case, and

let the upper bound (4.32) be reached outside the domain G for a given

y=y , at which point x + iy we have the inequality

A A4> K,(i+ Do) > ix)

We obtain (using the inequality 0 < p )

1X1 < K21y111" .
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K $X0 (0 <

the function f(z) satisfies the inequality



alx

2 -.7- 2
t

Al (13 ) If (z)).zxp(-aliih) C.)?

(or zero for a 0) and obtain

We may replace -ax' for a < 0 by the greater quantity

bef Kti I 17)

90

and, moreover,

,/4(')) c p (1), iY-44+ b, 9
h/A4

Ce_Kr ( 1)3 PA)

(since h p). Thus, for any x,

If() ;_e (-a fri (9) xt,(PP')

and, therefore,

if(2)1 C ..exr (aix1"4-

Considering the other case in which the point z lies in the domain G,

it follows from (4.31) that the quantity If(z)lexp(-alx1h) is bounded by

the constant C1, from which we have

(f(z)1 9rogl (awl') < Ci ti) bd4 b3itii P/1')

b3 bl + b2 + b) K5, where K5 depends only on Kl. 1

We formulate the following theorem:

Theorem 3.12 Consider the parabolic system



(u(x,t) = (uj(x,t), j=1,..,m); P(ia/ax) is an mxm matrix), and let this

system have a positive genus (y > 0). If the initial functions u0(x) of

this system belong to the class which contains functions

satisfying

with

pl POP0 - A) ,

then, for sufficiently small t > 0 and arbitrarily given 101 > b. , the

solution of the system belongs to the class

Proof. Assume first that n=1 (n = number of independent variables). The

class Kpl,b1 is contained, for sufficiently small t T , in the unique-

ness class for the Cauchy problem, for p1 = p./(p.-A) p0/(p0 - 1) and we

have that 0 p :5 1. In general, the solution, given by the convolution

cc (kit = qtx,-04- 4i,/x) (4.36)

transforms ordinary functions u0(x) into generalized functions u(x,t),

and we want to show that this convolution maps the class K131,100 of

ordinary functions into the class Kp1.1 of ordinary functions. We

investigate the properties of the resolvent Q(s,t), the Fourier transform

of the Green's matrix/function G(x,t). Recalling the estimates for

Q(s,t)

Di4(x p(rc)_. )u beit)
c)t c)x

(x, 0)-z cic (A)
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(4.34)

(4.35)

lia (s, t)11 is-I)P(m)-11.)t p ti-14))) (4.37)



and

we use Theorem 3.11 and obtain that

r Pr,

.2Q L zy-p(-,?ticrt b/-6- in )

-I)
X (- lc, )
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(4.38)

(4.39)

where b' is not larger than 131(a+b0) and B1 depends only on the domain G

in Theorem 3.11. Assuming that 0 t T the inequality (4.39) implies

that Q(s,t) belongs to the space WPcd"'8 , which consists of entire func-

tions characterized by

1sk 4 (s)I ci, x p r )

for arbitrary g> a and (A/p0)4"1" = b'T. The Fourier transform of this

space is given by

F (\n/ I1"/(1L
Ad) ) I/6= I

where

(r4)1
=

Consequently,

(ft ) = /03-/o = .

It follows that the functions G(x,t) belong to

60.)I( C9XP
(Ii)

,
(eli>64)
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with this estimate being valid in 0 t T, where (p/p0)e.P0/4 = b'T.

G(x,t) is thus an ordinary function with exponential decrease, and we may

show that the convolution (4.36) is an ordinary function belonging to the

class Kp1,b1 We use the following lemma (for proof, see [27], p. 119):

Lemma 1: Let A > 0. For arbitrary -y > B > 0 there exists a number a

> 0 such that for all x and we have the inequality

-

The integrand in

)t- (x) fG 4- 0 cif

admits the majorant

I- i )
-fr 1)04- )

(from the assumptions about u0(x) and the class of functions containing

G(x,t)). We can choose (1/2p1)e-P1 large enough so that we have the

inequality

_ I111)1 +
lx4,1"

We then obtain for the integral

1- -e Xi) (b, xrip

C P9 1) (it xi I')

-P
2116 '1Wci
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Thus the convolution (4.36) exists in the class Kp1,b1 of ordinary func-

tions for sufficiently small T. The choice of (p1)e-P1 fixes the

interval 0 t T , since 0/p0eP0/" = b'T and e > e. For bl bo we have

e-P1 . and the interval 0 t T contracts to zero. i

We next consider the case of a nonpositive genus (p 0) and quote

the following theorem (see [27], p. 123):

Theorem 3.13 Let the initial functions u0(x) = (uj(x,0), j=1,..,m) of the

parabolic system (4.34) with p :5 0 belong to the class K0,0 of functions

f(x), which for every E > 0 satisfy the inequality

if(x)i sok)) CE

with

pl = h/(h- p) .

Then for sufficiently small T > 0 and t T, the solution of the system

belongs to the same class.



CHAPTER 4

THE MODELS. EQUATIONS AND SOLUTIONS

In this chapter we treat the three systems of equations derived

from the coupled diffusion equations (2.1) in Chapter 2. Two of these,

(2.3) and (2.4), represent, as noted, the double porosity models of

Barenblatt et al [5] and Warren and Root [50], respectively, and the

third case, equations (2.5), is included as a remaining case of a set of

degenerate parabolic systems obtained from (2.1). (Parabolic systems in

general are treated in e.g. [23].) For purposes of comparison we also

treat the diffusion equation as a standard model of flow in a homogeneous

porous medium. We refer to each of the systems as Models 1 to 4, which

together with initial and boundary conditions govern flow of fluids,

single-phase and slightly compressible, in confined homogeneous isotropic

reservoirs under general conditions including those of typical drawdown

tests. We take as the space domain the infinite horizontal plane, which

represents the infinite horizontal layer with a constant thickness (H),

and place a fluid point source (physically a line source) at the origin.

Analytic solutions, including fundamental solutions, are obtained by

methods of Fourier and Laplace transforms, and they are, as mentioned,

treated as generalized solutions for which uniqueness and correctness

classes are obtained. Solutions are compared with corresponding

solutions to the diffusion equations (Model 1) and we investigate

properties of each model by comparing with those of the diffusion model.

We discuss the inverse problem of estimating model parameters when the

solutions are given as numerical input, and we establish uniqueness and

95
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continuous dependence of the parameter estimates with respect to the

input functions.

We denote fluid pressures by u=u(x,t) for Model I; subscripted as

ul and u2 for matrix and fractures, respectively, for Models 2 to 4. The

fluid pressures represent deviations from a mean or equilibrium pressure

such that u . 0, u1 = u . 0 at equilibrium. We consider in turn two sets

of conditions for each model; (a) arbitrary initial conditions and no

fluid sources. and (b) a fluid source given, nonzero and arbitrary, and

usually zero initial pressures. The second case (b) represents

conditions of an ideal drawdown test. Fluid sources are given as source

terms in the right hand sides of the basic equations. In cases involving

actual systems fluid pressures may usually be assumed to vanish at

infinity.

Before we proceed to treat the systems in the next section we list

here the following (Fourier, Hankel and Laplace) transforms and inverse

transforms:

Fourier transforms (in ohe general n-dimensional space)

f(')2X1)(---;Irx)cdX )

_A

);0( p ci ,

Haenkel transforms (for the radially symmetric plane)

00

_,?(S) 0r f (r) ci )

A(.00
*fry-) -= f(J)) y LT, Crs) cif,

(Jo (x) is the Bessel function of zero order, first kind.)

4.0( =
(217) n/2-



Laplace transforms

C + ico
(t) 1cs-) )k. p is

c - ,

We also list the following two theorems which will be useful shortly:

Theorem 4.1 (Plancherel) (ref. [43], p. 200)
A

One can associate to each function f(x) in L2 a function f(u) in L2

such that the following properties hold:
A

If f(x) is in Li() L2 , then f(u) is the Fourier transform given by

(1);

A
For every f(x) in L2, 11f 112 = 11f t12

The mapping f -> f is a Hilbert space isomorphism of L2 onto L2
A

The following symmetry relations exist between f(x) and f(u)

If

= (zapjf (x) e (- c-x) x

and A

- ny1/2.1f (a-1),RK? ; TX) chT-

P

then
rico"" I(

and q )t,c,

as D -> oo .

Theorem 4.2 (Riemann-Lebesgue) (ref [42], p. 90). If f(x) is integrable

(s) fft)- )
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(5)

( 6 )



function on (-., w), then

(cos(vx) may be replaced by exp(ivx), and the result of Theorem 4.2 may

be generalized to n-space.)

A. The Standard Model

1. Model 1. The Diffusion Equation

a2.

= fCt-:)/(- )-0

u (xi 0 )= uo(x)

Solution (a): The case with no source.

We set f(t) 0 in (1.1), take the Fourier transform of (1.1) and

u0(x) and we obtain

D(.2 .2+ a)a-i LA.ct
u. (7, o)-z 1../c,

From this we have

4.4 (u,i)= Q (cr., )Lie Cc) )

Q (03-)= p 6-017/10 )

(1.3)

ccSCvX I

and the solution is thus, after inverse transformation of (1.3)

)= (7.(A)-6)* i-1(x)

,

= ( X )0X )

= 0 ,
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(1.2)

(1.4)

where G(x,x',t) is the fundamental solution (Green's function) in n-



dimensional space, given by

CT Cx, t) F ( 0 6))

Yri
-90

The function G(x,x',t) has the properties,

,

61c >ct ) o(x-A

I/tw c("irk', 6)7=5
ix-x'/-.0 00 t ix7

2, -

,
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(1.5)

(1.6)

(1.7)

-1X-X
(2- TT a t ) n/a.

'

and

G(x,/,t)c/x /
(1.8)

The delta function 8(x) has the property such that for any function f(x)

we have

jc5-(- f j)cl = (x)
(1.9)

(The delta function is as noted before, meaningful only as a generalized

function.) By property (1.9) we obtain from (1.4) the initial conditions

u0(x) at t=0.

The solution (1.4) to the system describes a process of diffusion

of fluid from the initial state u0(x) outward in the reservoir towards

asymptotic equilibrium at t The diffusion is characterized by

movement of fluid from regions of relatively high fluid density towards

regions of low density until the fluid mass is uniformly distributed

throughout the reservoir. The fundamental solution G(x,x',t) describes

the response of the system at a point x, time t, to a delta input at x',

(217
X



t=0.

Existence and Uniqueness

We observe that the system (1.1) has the reduced order p. = 2 and

we may obtain the following uniqueness class:

Theorem 4.3. All functions f(x) satisfying the inequality

17(X)I 20k opoixt ) (1.10)

(C and b0 arbitrary but fixed) form a uniqueness class for system (1.1).

That is, there exists at most one solution u(x,t) to the system which for

t=0, t fixed in the interval 0 t T, equals the initial function

u.(x), which also belongs to class (1.10).

Proof. With p. = 2 given we apply Theorem 3.4 in Chapter 3 and obtain,

with p. = p0/(p0-1) = 2, the above uniqueness class (1.10). By Theorem

3.4 growth restrictions need to be imposed on u0(x) such that the

inequality (1.10) holds for u.(x). 1

The system (1.1) is, as mentioned, parabolic with a parabolicity

exponent h = p. = 2, by which the genus of the system is A 1 - (p.-h)

= 1 > 0. Hence we may obtain the following correctness class:

Theorem 4.4. Given that the initial function u0(x) satisfies the

inequality (1.10) (b0 arbitrary but fixed), the system (1.1) has, for

sufficiently small t, a unique solution in the class K2,b1 of functions

f(x), which are characterized by the inequality

with arbitrary bl > b. .

ji(x)) CxpCixi

100
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Proof. Given p. = h = 2, the genus 1 > 0 and initial functions u.(x)

belonging to the class K2,b0, where K2,b0 consists of functions satisfying

(1.10), we apply Theorem 3.12 in Chapter 3 and obtain, with pl = p,/(p0-A1)

= 2, the correctness class (1.11) above.

Solution (b). The case with a source

We next include the source term, nonzero,in equation (1.1), and we

let x0 be the origin. Fourier transformation of equation (1.1) gives

of 44.../ fa; ) a 171 (4.0-I-Ey= f(.4)/Ce

A
( Cr; 0)-:: Li0C-)

We may write the solution to (1.12)

.2
cc."0 "-= Li 0 (.7") :*Z.XL) dPr

i
4-) )2-X1)(1-3 7i (-6 --CW(7.)<Ir

o

which, upon inverse transformation, yields the solution to system (1.13),

u(X,t) (x,-e)* (x)

rt (1.14)

J

We recognize the first integral on the right hand side of (1.14) as the

solution obtained earlier to the initial value problem (a), while the

second integral is due to the source term. This second integral con-

verges for t in the finite interval 0 < t T, r > 0.

Let us consider the special case of a constant-strength source

(1.12)

(1.13)



given by

f(t) = fc (t),

and let u0(x) . 0 at t=0. The solution (1.5) then consists of the second

term on the right hand side of (1.5), which we may integrate explicitly

with respect to time t. The solution is radially symmetric and we obtain

for the plane case the Theis solution (3.4), Chapter 1, i.e.,

_c
-6) = G t z-) z- /-r2)

c,) ta t / '

We write (1.15) also in terms of its Hankel transform, for it will be

useful again in the next section:

44 (it) = A 410 7c -"P ,S)16))ci 'Lrrk)

The solution (1.15), (1.16) converges for t in the finite interval 0 -t:c_T

and r > 0, but diverges for t -> . and/or r = 0.

We may list, for comparison, the corresponding solution for the

case of a confined semi-infinite halfspace, in which a fluid source is

applied at a point at depth zo below the origin. The boundary condition

=
d z Z = o

applies at the z=0 plane, the surface of the halfspace. The solution for

this case is given by

-t)
fc [s-rfc' (Y"--+/0/ ) 4

zor k

r

(1.7)
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(1.15)(1.15)

(1.16)



where

and

2. .

X tt-+; Z

rf-c- (X)

oo

,Z X
b' x

We note that in the limit t .. we have for (1.17)

/2:07 Li
.44 r

00

i.e., (1.17) is bounded for all t 0, r > 0, in contrast to the

unbounded behavior of (1.16) for the plane case.

One may explain the unbounded increase of u(r,t) for the plane case

roughly as follows: The physical system in 3-dimensional space

represented by the 2-dimensional solution is a (porous) medium with an

infinite vertical line source, while the source for the halfspace

solution (1.17) is confined to a point only. The line source is assumed

to have some source strength per unit length of the line. An observation

point x is located in the medium at some minimum distance r0 from the

line. The line source is activated at t = 0 and signals af-e emitted from

all points of the line outward into the medium. After a short time lapse

signals are received at x from all points along short segments of the

line only which are located near by x, but as time increases signals

reach x from all points along increasingly longer segments of the line,

and thus the total intensity of signals arriving at x continues to

increase with time without limit. In contrast, the signal intensity

arriving at x from one source point only approaches a finite limit at

t . equal to the intensity leaving x.
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The Inverse Problem

The method of estimating the parameters k and c0 from input

functions u(r,t) for the Theis model was discussed earlier in Chapter 1.

We want to show also that the values obtained for k,co are unique and

depend continuously on u(r,t). All parameters are assumed to be positive

constants. To show uniqueness we may recall the Fourier/Hankel transform

of u(r,t), i.e.,

A ,
C-C (

C

y
;LA. p a))

2 lt k 2

(We ignore the factor, Af0/2r, for it is assumed to be known and a con-

stant.) It is easy to see that u(y,t) is a unique function (numerically)

for each unique pair of values of k and a, and therefore of k and co .

For the function exp(-ap2t) is unique for each value of a , and thus also

the function 45,(1-exp(-ap2t)). The function 1-41-exp(-ap20),
kz82-

A
and hence u(p,t)) is unique for every a and k, or co and k.

A
Moreover, u(p,t) is in L2 and so, by (Plancherel's) Theorem 4.1(c)

u(r,t) is a unique function for each pair k and co. The continuity of

A
and thus of u(r,t) with respect to k and co is easily seen also,

or k and co depend continuously on the input function u(r,t). We

summarize the above as follows:

Theorem 4.5. To each function u(r,t) given by (1.15) there corresponds

a unique pair of values of k and co (positive) which depend continuously

on u(r,t).

B. The Double Porosity/Permeability Models



2. Model 2. The Barenblatt Model

Ou: IA
1 cr 1 LA.

with the resolvents Qi(u,t), Q2(0,t) given by

U2 7-4 L 14i ) )6Cs, X Xej

O(xo 11 C )

Solution (a). The case with no source

We may combine the two equation (2.1) into one by eliminating

either ul or u2 and we obtain, with f(t) 0, the equation

--5,4" 6
2
W. a = 0 C = 1.)2))

C/ t c1t

where

kand c z

,MCi

We seek again solutions to this system by Fourier transforms. After

transforming (2.2) and the initial condition ul0 we have

A A
kt (C1.- 0 ) = (7)

10

from which we have ul and u2 given by

A
G('--4)(4 (7)

) te )

A A

(4'2 (cr,t).= ( (.4 0-) --1

A

(41'-'33-t)

I -r cia-tx )

105

(2.1)

(2.3)

(2.4)

(2.5)



and

r to; t)2--

(2Tr)n

t

ta-121

1- .6112't.

12
j4:1 X

C 11712/

Inverse transformation of (2.4) and (2.5) yields the solution ul and u2;

where the fundamental solutions Gi(x,t) and G2(x,t) are given, in n-dimen-

sions, by

= ('- '1(707

P(' ))2),I) 1..L)1;r110-2-'12.)cio-)

CT,,(xit)=- F-1(4C2207)-9)

_ r,zx' p (-)".770)jzxio (4)17/2-&
(21011 ) I cfcr/2- r 1+ (loll

106

(2.6)

(2.7)

(2.9)

(2.10)

(2.11)

a
xi)4<

The integrals Gi(x,t) and G2(x,t) diverge at x=0 for all t 0, and

they are meaningful only as generalized functions or as integrals on test

function spaces. In fact, Gi(x,t) has properties of the delta function

tx
- .10

7 CX

0(x)= C72(xxi;49 vicp:))c x
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for all t 0. Both G1 and G2 are integrable in space. The following

limits hold for G1 and G2:

For the radially symmetric plane G2 has properties of the modified Bessel

function Ko , and we have for (2.13)

co

1L' ,P,Tc (rf)ci f ,... i Cr ) (2.16)irP/ Crit) = .-27cri. 1 c y2-'6-40 ''.-
2 Tr c ci-Ei.

0

Properties of the functions G/ and G2 may be seen more clearly by

partitioning them into singular and nonsingular parts as follows. We

note that the exponential factor below may be expanded into the series

2);r (-6,v,y2x1)(16,6c/ic,12)
I C1012)

kez, ) i>i/c I ( bi/c= -7c icrI7- n 14-Cicri27
j (2.17)

/--/ /Yr) 1./. CC(X
f -4 o (2.12)

2 X pc_/1,1*, (-7-- (X, )
-) o 2 ' (2119 " 1 + c 17/2- 7-) (2.13)

///r)/ (x t) =r ///411 ° (i10 >°),/ t- co 2

and, by the (Riemann-Lebesgue) Theorem 4.2

i1rM7 (x t) ///r,7 6 (x, e) o ,
40 2

(2.14)

(2.15)



108

and we may find that the integrals (2.10), (2.11) for G1 and G2 may be

written

G(xk

I rx 0) LS
2

(2.18)

(2.19)

GI and G2 contain the terrs in the brackets, singular and nonsingular,

multiplied by exp(-bt/c); 6(x) and G2(x,0) are singular at x=0 while .1

and 2\2 converge for all x.t 0 . The functions Ai and A2 are due to all

the terms in the series (2.17) of order higher than 2 or 3. Both

and A2 tend to zero as t 0, t m and x .. By (2.12) we obtain for

ul the initial condition Lilo at t = 0. The properties of G1 and G2 as

shown by (2.18) and (2.19) indicate that the solutions ul and u2 given by

(2.8) and (2.9) undergo rcdghly a uniform exponential decay in magnitude

with time with relatively little change in shape from the initial states

u2(x,0) compared with the diffusion model solution (1.4); that is,

they exhibit less diffusion of the fluid than the solution for the

preceeding Model 1.

Existence and Uniqueness

We apply the theory in the preceeding Chapter and obtain for the

system (2.1) the following uniqueness class:

Theorem 4.6: The Cauchy problem (2.1) has, for 0 t T, at most one

solution ul(x,t), u2(x,t) in the class of all arbitrary functions with no

restrictions on their growth at infinity. (That is, there is at most one

solution u (x,t), u2(x,t) to system (2.1), which for t = 0, with t fixed

in 0 -15 t T, equals the initial functions ulo(x) and u20(x), where ul. is
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arbitrary anc u20 is given by (2.9 ),)

Proof. We observe that the resol vents Qi(s,t) and Q2(s,t) for this system

(s = c + iT) nave a growth order of ID° = 0 at infinity and thus obey the

inequality

(2.20)

Proof. Since the resolvents Qi(s,t), Q2(s,t) satisfy the inequality

for some Ci . We note also that Qi(s,t) and Q2(s,t) have singular points

s = ± i/Jc on the r-axis and are therefore not entire analytic functions

in the variable s. However, since these singular points do not lie on

the real axis and Qi(u,t), 02(cy,t) are defined for all a the solutions and

their Fourier transforms are not affected. We may use Theorem 3.4 in

Chapter 3 with the order p. = 0 (< 1) and obtain the above uniqueness

class for this system. 1

We may also obtain the following correctness class:

Theorem 4.7 If the initial function ulo(x) of system (2.1) admits

continuous derivatives up to order n+k (n is the number of independent

space variables and k is a nonnegative integer), then system (2.1) admits

a (unique) continuous solution ul(x,t), u2(x,t) which is k times differen-

tiable in x. The solution depends continuously on u10(x) in the following

sense: if a sequence of functions u0(x) converges for v . together

with its derivatives in x up to order n+k uniformly in each ball 1x1 5_

r to the function u/o(x) and its derivatives, respectively, up to order

n+k, then the corresponding solutions ul,(x,t), u2,(x,t) converge to the

solution ul(x.t), u2(x,t), together with their derivatives in x up to

order k uniformly in each ball 1x1 5 r. (There are no restrictions on

the growth of u10(x) and its derivatives as 1x1 -4. 00
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(2.20) at infinity the system is hyperbolic with a correctness

exponent h = 0. (Again, the sinou ar points of Q1 and Q2, lying off the

real axis, do not affect the solutions or their Fourier transforms.) We

may thus apply Theorem 3.9 in Chapter 3 with h = 0 and obtain the above.

mentioned correctness class of solutions for this system with the

smoothness properties indicated. i

The proof of Theorem 3.9, Chapter 3, indicates that the fundamental

solution Gi has properties of a delta function, as we have seen already,

and that the solution ul, u2 can be characterized by an inequality

fu; (x1)/ u,, (2.21)

for some function f(t).

Solution (b): The case with a source

We now include the source term (non-zero) in the basic equations.

Equation (2.2) then becomes in u1

_....._) LI, b
v2Ut

V 2 (-..2___4.1- ...-7- ± (i cc(x-x) (2.22)-74c
i

Fourier transformation of equation (2.22) yields

, .2. A
1"7- /

I 4 clos-fl

,i()/ct
I C 012

A

from which we obtain the solution for

A

( 0-- -6 -V f(r)ofr,u a- 07)Q frit)I(t\ hr, c,10 (i)12. )

Inverse transformation of (2.24) gives the solution ul(x,t))

(2.23)

(2.24)



We recognize the first integral on the right hand side as the solution

due to the initial condition ul., and the second integral is the contri-

bution of the source term. We may obtain similarly for the fissure

pressure u2 the equation (using the basic equations (2.1), Fourier

transformed),

t) AYG,

where

A

kz

' Q fo-jdr-C 3 )

Inverse Fourier transformation of (2.27) yields

111

) q- -L- j (2.25)

ciriz

f(6)
04. I i_cp..j2.

to-12- / 0712.

b )0-1 t (2.28)

. .2 )

C?2 (x)i) = G2(Xit) ) AcK f(t) G2 cx-x, ,

f 3 °)
G (x-x

where

G-3(x)i)= F (q3(cri f))

_ r-ex ,ex p 1)1712t \j0.-
(2Y/Tr ( I 1- Cicr12)2 ci012 I

(2.26)

Substituting for ul from (2.24) we have for (2.26) the equation

4
L{2 (cr,t) ) (cr, )

(2.27)

(2.29)

(2.30)

Again the first integral on the right hand side of (2.29) is the solution
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found earlier due to toe initial condition while the other two terms are

due to the source.

We consider again the special case of a constant-strength source

given by f(t) = foU,( ) and let u10(x) . 0. Then we may integrate the

terms in (2.27) and (2.29) due to the source explicitly with respect to

time and we obtain, after some rearrangement, the solutions

u(x.6) Afo
fC2 )

Cr; fo
2 11" kfs.

ui (r,

kri2 +

L
(=IstC 0:2/j

oc
2

(r) (-fie (r. Y)-Q)41)(-
2-rtaci i÷cy2 i+c,5727

(2.31)

(2.33)

(2.34)

(The solution_(2.33) was, as mentioned before, given by Barenblatt et al

[5] for the "fissure pressure" response.) Solutions to a multi-layer

form of this model are shown in Figure 4.1.

The integral (u1) converges fort in 0 5_t15T and r> 0, but it

diverges if r=0 or t The second integral of (2.34), the function

G2 multiplied by Afda, vanishes for t r > 0. We take ul and u2 in

the sense of generalized functions, or defined as linear functionals

on test function spaces. We may obtain the following limits for ul and

U21) (XI t) 4- 0-77- fo G-2 ( X X6 t ) " (2.32)

For the radially symmetric plane, with x0=0, (2.31) and (2.32) are of the

form



2

and

frn 141 t /, 49,
74 -5 cs

I '
I 1. /YPI Li (17 / /kr) L
-4 oo e

c./(r- t) z-- // ,/rn
(--(2(I

Y.- Do Do

The solution (2.33) converges, as noted before [5], to the Theis solution

(1.14)asit .. To prove this, recall the Theis solution in the form

(1.15), with "a" equal to b;

7r'r2 n L

Define the difference

Liu = (r--) (r)

= (ry) r 1).1.'24 )

2 Tr kz )0 s L i c-S)2/

, -
2rrk VT )

t`,)
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(2.35)

(-b y24) d (2.36)

Let g(p,to) be a function, integrable on (0,.), defined by

(Syc).-: 2d-42TC-farr 4,13( S') [Jo? xp Ebi,24)) (2.37)

with t to > 0 for some to > 0. We use the following theorem:



114

Theorem 4.8 (Lebesque Convergence Theorem; ref. [41], p. 88). Let g

be an integrable function over a domain E and let fv be a sequence of

measurable functions such that Ifvl g on E and for almost all x in

E we have f(x) = lim fi(x). Then
v-+CO

and

and so

Thus, by Theorem 4.6, we have that

h lrY) f f) cif II/41 4 (r e C
1/ -3 Y00 o v 00

,zx 4%01 rf

Taking the function g(p,to) defined above as the (integrable) function g

in Theorem 4.8, E is the domain (0 r .) and let the sequence fv be

given by

) f (f,

3-06-01. -1) yity)
2 17 k 2

ul(r,t) u(r,t) and t

(2.38)

(2.39)

(We note here that since both u1 and u tend to infinity as t . we mean

by "t co" that "t becomes large" though still finite in the above

with t to , and
tii

co a 00v -+ We have

)
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discussion.)

The physical process -described by the solutions (2.33), (2.34) is

roughly the following: When the external fluid source (sink) is applied

to the fracture system at x0 at t=0, and with the system initially in

equilibrium, the pressure u2 in the fracture system immediately jumps

(drops) to a finite nonzero value (aKo(r/./c)), radially symmetric about

xo and decreasing in magnitude with distance from xo. This abrupt

pressure drop at t=0 is due to the fluid depletion by the activation of

the source/sink at and the negligible storage capacity of the

fracture system. At the same time flow begins to occur from the matrix

into the fractures due to the pressure difference u1-u2 immediately

induced at t=0, and the matrix pressure ul begins to drop as well. The

crossflow and drop rate of ul are greatest at first, but diminish towards

zero as t Both ul and u2 approach with time the behavior of the

standard diffusion model having the parameters k2 and cl of both the

fractures and the matrix.

The Inverse Problem

This model has the three unknown parameters, k2, cl and a to be

estimated. Because of the third parameter a more than one type curve for

different values of a are required in the curve matching process.

Solutions are plotted against 4k2/11c1r2 and we obtain several curves for

different values of a (see Figure 4.1). We select the model curve which

best fits the data and estimate k2 and cl in the same manner as described

earlier. The value of a characterizing the data is the value associated

with the best fitting model curve.



Figure 4.1

C,

Fracturc pressure

02 e,

Eatrix cressure

e = 4k2t/pc1r2
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Dimensionless pressure drawdown in an infinite
horizontal layer with a constant-strength line source.
The multi-layered Barenblatt model after Boulton and
Streltsova [10]. (r = radial distance from source:
2H = matrix layer thickness)
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We next show that the values of the parameters k2,c , a are unique

for each input function u or u2. Although u2 is the quantity more likely

to be measured than u1 we choose for convenience u1 as the input function.

The same reasoning below applies to u2. We recall the Hankel transform

of ul(r,t), i.e.,

A :2
Cif Udi) ,2)(11( (2.40)

k,

Again we ignore the factor ufo, for it is assumed known. As before, the

parameters k2, cl, a are positive constants. The function ul(p,t), we

find, is unique for each set of values of kl, b and c, and therefore for

k2, cl and a. For the function exp (-bp2t/(1+cp2)) is unique for each b

and c; thus the function

is unique for each b and c, and hence the function

k1 [

-t
F-)

c 52 i_;

p(-1)S'it )1
\ 4 Cr-

is unique for each set of values of k2, b and c, and therefore we have

A
uniqueness of ul(p,t) for each set of values of k2, cl and a. Moreover,

A
ul(p,t) is in L2 for t in the finite interval 0 t T, and so we have

by (Plancherel's) Theorem 4.1 that u/(r,t) is unique for each set of k2,

A
c/ and a. Continuity of ul(p,t) and thus of ul(r,t), with respect to

values of k2,c1 and a is obvious. We summarize the above as follows:

Theorem 4.9. To each function ul(r,t) or u2(r,t) given by (2.33) or

(2.34), respectively, we may associate a unique set of (positive) values
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of k2, ci and a, and these values depend continuously on u,(r.t) and

u2(r,t).

Model 3. The Warren-;opt Model

where

c .2144

at

U u (f)/ ,

-
L

a
C c /

bc(tr) 6'7;2

L4 2 b(d c)= Ulc ()()

As before we apply Fourier transformation to obtain a solution to this

problem. Fourier transformation of (3.2) results in the equation

, A
A

+ Q (0-) (ty-)
o

<...

Q (Cr ct c lEri2 +-
o ,24

°< :Cr
14 2 CI C

, (3.1)
f(±)e)(x--x",i,

k21012+
/4 CI.

(3.3)

Solution (a) The case with no sources

We may combine the two equations (3.1) into one (by eliminating

either ul or u2) and obtain, with f(t) 0,

2(0( +
a77

J2 (i=1,2) (3.2)

where



Equation (3.3) has the general solution

A

A (T)-zxf)( r
,

s2 xplr

A(cr):=

D(cr)=(ae(0-))2

2.10-11+

C

1,A(G-)1

c00) Y72 (T) ( 7) 1

L_

(( DL'Ic _ r (X) u
)

D(cr) at 2 ' ic

'10.<

-fr( c A2 Cr C2
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(3.4)

and the coefficients A(u) and B(u) are determined by the initial

conditions. We obtain A(u) and B(u) from equation (3.4) in 11 using the

initial conditions. We write the matrix-vector equation,

A
where auldat is obtained from the basic equations (3.1) with ul0 and u20.

Solving for A(u) and B(u) in (3.5) gives

(3.5)

(3.6)

where r1(o) and r2(u) are roots of the equation (3.3) given by

t
(T) = 1.) 7"-.1) )

and
.

The "discriminant" D(u) is given by



By inserting A(c) and B(a) given by (3.6) and (3.7) into (3.4) and

A
rewriting a10/at in terms of ulo and u20 we obtain, after inverse trans-

formation, the solution

c`xit)

L. (42 (X/t)

where (.7(x,t) is the 2x2 Green's matrix for which the elements are given

by (in n-dimensions)

CT (Axt)1"--;7--x) 0(
12 (2r)) D() 14

G
21 (2.17)11 D

(7)
/44 c.2

A

x X)r ir (-0.) t_ .qx
DO') L

fri(7)-t 1,F-<c` )2xp(r1(6-)-)}c.rcr)

r (

'.41C1/4 )) X

420(x?...;

) (5- (0-)-t):1

xp(rt(Cr)-e) Kp 01(7)

120

(3.7)

(3.8)

(3.9)

(-e xp 17- ),exp (0-.) (3.12)

(17t)n) D(cr)
I /tic,

(r2/0-) -t-/4-1=- -Cc/ yip Cr-2 (09 t3

J
3.11)
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The roots ri(c) and r2(0) are zero or negative for all real cf, and

they are of order < 2 in 0 so that the system (or the Green's matrix)

exhibits damping with time in a manner similar to the diffusion model

(Model 1). The integrals (3.9) - (3.12) converge for all t 0, x * 0,

and Gij are integrable in space for all t 0. We have the following

limits;

[S(X) C
LF /P7-7 i) I

0 g(A)
(3.13)

/rn 0:0
IJ

and( by Theorem 4.2),

Lt
ixi--)00

(3.14)

(3.15)

By (3.13) we obtain the initial conditions ul., u20 at t = 0, and by

(3.14) and (3.15) ul and u2 vanish for t . and HO -4 co.

Existence and Uniqueness

As before we treat the solution (3.8) as generalized functions and

we may obtain the following uniqueness class for the system:

Theorem 4.10. The Cauchy problem (3.1) has a uniqueness class of all

functions f(x) satisfying the inequality

If(x)1 c' xp(19/1x-ri) (3.16)

(with arbitrary C and 8, fixed). That is, there is at most one solution

ul(x,t), u (x,t) in (3.16) to the system (3.1), which for t=0, t fixed in



IfCs". z. p sij -
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_ Cr) (3.17)

Qii(s,t) for the complex variable s = a + ir have singularities D(s) = 0

at points which do not lie on the real c-axis and therefore do not

affect the solutions or their Fourier transforms. We then apply the

fundamental Theorem 3.4 in Chapter 3 with pc) = 2, p1=p0/(p0-1) = 2, and

obtain the uniqueness class (3.16) above. 1

Similarly, we may derive the following correctness class for the

system (3.1):

Theorem 4.11. Assume the initial functions ulo(x), u20(x) belong to the

class
K2190 of functions satisfying the inequality

,

for some eo. Then for sufficiently small t > 0 and arbitrary el > eo the

system (3.1) has a unique solution in the class K of ordinary

functions satisfying

ifoo I Ci g x rxi2) (3.19)

Proof. We observe that the system (3.1) is parabolic and of (reduced)

order pc, = 2, has a parabolicity exponent h = po = 2, and therefore has

0 t T, equals the initial functions ulo(x), u20(x), both also

belonging to the class (3.16).

Proof. We have that the order of the system (3.1) is pc = 2. For, as we

noted, r1(o) and r2(0) are of order 2 in a, so the resolvents Qij(s,t) are

of growth order 2 at infinity. Specifically, Qij(s,t) obey the inequality

for s, complex, at infinity

I f(x)i C x (6, xi2) (3.18)
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a genus p 1 - (p0-h) = 1 > C. We then apply the (fundamental Theorem

3.12 for parabolic systems of positive genus, with pl = p0/(p0 - A) = 2,

type bo = ea , and obtain the correctness class (3.19). (As before,

singular points of the resolvents Qii(s,t), since lying off the real T-

axis, do not affect the solutions of the system.)

Solution (b). The case with a nonzero source

We next include the source term, nonzero, in the basic equations

(3.1). Equation (3.2) in u1 then takes the form

'"2.

.,.) dt -) Li 2- D 14
I + a. c- - 6 7 2-u 7

Id ± 1 d t 3t
In

1c c- f(t)cfcx- xo)-

S +0 S.-
s c

4.4
1) c -

"4-1" .5) (X - 1c) )
S C

T(.0 x -KO) .

(3.20)

Let us set the initial conditions ulo(x) = u20(x) . 0 and seek a solution

for this case by method of Laplace transforms. Laplace transformation

of equation (3.20) results in the following equation,

(3.21)

where here we denote by s the independent variable of the transformed

function , = iii(x,$). A similar equation is obtained for ri2; i.e.,

(3.22)

We may use the following integral method to obtain a solution to (3.21)

and (3.22). Define the operators



where

2 5.2+ -1 5

L = * = 77
+ c

and a (Green's) function T(x,x',$) which satisfies

CT*---
ccc),;._ (3.23)

where the gradient 7. 7)(' is taken with respect to x'. Equations

(3.21) and (3.22) may then be written in terms of the operator L

1_LL' (X F-(X.
_

= 6/cc
6+ sc2-

f((xs)0-x0)

124

(3.24)

(3.25)

and

T(s) Sof:
(3.26)

We multiply LIT; by L L*-G- by iii, subtract one from the other and we obtain

;

tiL L_ (T Gtz,x,$)tioc,$)- ui 9a,x-x),
(3.27)

Pressures u and u2 may, as noted before, be assumed to vanish at infinity

or outside some bounded volume, and thus there should be no flow at

infinity or across the boundary of some finite volume. (This is

physically reasonable for a system containing no sources at infinity.)

Consequently, we assume that a no-flow condition holds for -d at the

boundary of a finite or an infinite volume. We integrate equation (3.27)

with respect to x' over space and then apply the above-mentioned boundary

condition on G as well as the property (1.9) of the delta function; the

left hand side of (3.27) vanishes and we obtain from the right hand side

the result,
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Equations (3.28) and (3.29) show that ul and u2 are convolutions with

respect to time of the source function f(t) with the functions

p/k2K1(x,x0,t) and p/k2K2(x,x0,t) given by

K x) X6i -6,)

(x,

The solutions ul and u2 then take the form:

. (3.32)

)= K, rx,
6

(

42")-=

3.33)

172 f Kz(x, -of(re)

The function G is, for the radially symmetric plane with the

source point x0 at the origin,

fri 7:7(t5'22 Tr -t-
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(3.28)

(3.29)

(3.30)

(3.31)

(3.34)

We may obtain expressions for the (inverted) functions Ki(r,t), K2(r,t)

and G(r,t) for this case by means of tables and by using the following

identity;



c>.

(p-)
2

where y is here a positive number. With Ko given by (3.35) we obtain for

Ki(r,$), and K2(r,$)

1-,s-c) ) (ry) dy
K = ÷

(3.37)2 ) 27T S2 (4 Cyl)S` t bs' I

We may invert the integrands of (3.36) and (3.37) using tables ([39], pp.

217, 220) and obtain for K1 and K2 the following expressions,

_ffe,tror-gxp (-T-1 (0-0 (3.38)NS) L
-e 0-26))1)]

!(r) L(((rt (P)z x P((.0±)27T
P(g)0

(1)-f-c)-21y)).2xpir2(y)tjjciy,
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(3.35)

(3.39)

It is useful to consider the special case of a constant-strength

source, f(t) = fp.(t). This allows explicit integration of solutions

(3.32), (3.33) with respect to time, and we obtain for the case of the

radially symmetric plane, with (3.38) and (3.39))
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(Results identical to (3.42) and (3.43) are given by Kazemi et al [34].)

We obtain the limits
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(3.40)

(3.41)

4 A ice 6- (ot) - czxf (ir2rr(.2 DiT) L

The integrals (3.40) and (3.41) converge for 0 t 5 T, r > 0; however,

(3.40) diverges for t -> oo or r = 0. We show solutions for the multi-

layered version of this model due to Boulton and Streltsova [10] in

Figure 4.2.

Characteristic features of the solution are easily seen from the

Laplace transforms in the limits as s -> and s -> 0. (These cor-

respond to the limits as t -> 0 and t -> -0, respectively.) We have from

(3.28) and (3.29)

(s)r)
(3.42)

2 Tr k 2.
( c)

i2(.(-)4):::- /61 -f;) 2( Cs) 10 (3.43)
71.. Tr k2

where

and f0 /s
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Dimensionless pressure drawdown in an infinite

horizontal layer with a constant-strength source. The

multi-layered Warren-Root model after Boulton and

Streltsova [10] with c2/(c1+c2) = .1.

(r = distance from source;
2H = thickness of matrix layer)
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and

Ci r

/ I MI Li/ (r) S) =- ,/,1/ (6. rr3 S.
5-90 s- 2. 17

Also, for an arbitrary function g(t),

/1m1 142_(,1)

--t 0

1/ /01 U (r t)
/

-.6 -4 00

4

7. IC

2n 1(2 C

In A-2.

/r/Aq L(.2. r 5) ==
/4 7L1)

7
(

rior.) k2S

From tables (e.g. [39]) we have, with a > 0 any constant,

(S)) f(rcIt.
We obtain, after inverse transformation of (3.44) - (3.46),

(r )icir
k Lic Z/

(3.49)

(3.50)

, 142 (1 ) E.
(b/ei)t

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

(3.51)
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Equations (3.49), (3.50) and (3.5I ndicate that ul and u2 behave as the

Theis model in the short- and long-term limits with the diffusivi les c

= k2/4c2 and b/a = k2/p(c1 + c2), respectively, and this accounts for the

two parallel straight line segments on semilog graphs of the solution

(Figure 2.2 , Chapter 2). In other words, the pressure in the fracture

system responds initially as a diffusion model with properties of the

fracture system, and in the late-time limit both fracture and matrix

pressures behave as a diffusion model with properties of both the matrix

and the fractures. The transition between these two asymptotic forms of

the solution represents the effect of the interporosity flow and depends

on the value of the transfer coefficient a.

We may describe the physical process roughly as follows: When the

fluid source/sink is applied at t=0 to the fracture system at x. = r = 0

the fracture system responds initially as an ordinary porous medium with

properties k2, c2 of the fractures. The fluid pressure u2 in the

fractures drops in the manner described by the Theis model, and the drop

leads to a pressure difference u1-u2 and flow between the matrix and

fracture system to compensate the fluid loss in the fracture system. The

fluid pressure ul in the matrix begins to drop as well. The pressure

difference u1-u2 or the crossflow rises from zero to some maximum value

at some finite time and diminishes thereafter towards zero as ill

approaches u2 and the system thereafter behaves as a diffusion model (an

ordinary porous medium) with properties of both matrix and fractures.

The Inverse Problem

With this model there are the four unknown parameters, k2, cl, c2
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and a, to estimate, and the curve matching requires several model curves

for a good fit with the data. Specifically ,the dimensionless pressure

ul or u2 may be plotted against the variable 4k2t/,J(cl+c2)r2, and different

values (curves) result from different values ofa and/or the ratio c2/c1

(Figure 4.2). Let us assume that u2 is the quantity measured and we

select the model curve for u2 which best fits the data. We recall that

the u2 curve has the two Theis curve asymptotes for the short- and long-

time limits. By identifying)for example, the short-time Theis curve (in

the data plot) we may obtain the values of k2 and c2 by the usual matching

process, and, from the long-time Theis asymptote we obtain the value of

ci + c2. The value of a is that associated with the (best-fitting) model

curve.

We now show that the set of values of the parameters, k2, cl, c2,

a, is unique for each input function u2(r,t) and depends continuously on

u2(r,t). To do this it is convenient to recall the Laplace transform of

u2(r,t), i.e.

) fc r
rr k:LS \ 0( r(s) ri 2

(3.52)

As before we ignore the known factor Af0/27T . We may find from

inspection of (3.52) that il2(r,$) is a unique function for each set of

values of k2, a, b, and c, and therefore for each set of k2, cl, c2 and

a. For the argument y(s) is a unique function for each set of values of

a, b, and c, thus the function 1/sK0(y(s)r) is unique for each set a, b

and c, and so the function 1/(k2s)K0(7(s)r), or u2(r,$), is unique for

where s-2

V 1,, +
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each set of k2, a. b. c, or k2, cl c2, a. We also have that u2( t) and

T.T2(r,$) are in L2 for 0 t T, and thus, by (Plancherells) Theorem

4.1(c), the uniqueness of 1i2(r,$) for each set k2, c C2, a implies the

uniqueness of u2(r,t) for each set k2, cl, c2, a. The continuity of

ii2(r,$) and therefore u2(r,t) with respect to k2, cl, c2, a is obvious.

We restate the above as follows:

Theorem 4.12. To each function u2(r,t) given by (3.41) we may associate

a unique set of (positive) values of k2, cl, c2 and a, and these para-

meters depend continuously on u2(r,t).

4. Model 4. The Dual Permeability Model

where

(.41(x,c).= ti3O(x).

Solution (a): The case with no sources

We take fl(t) = f2(t) 0 and we may combine equations (4.1) into

one in ul or u2 and obtain

4-- -4- av -
Dt

ki k,
140<ci

u2.)= 4:(_t)

/ct 1 2 - 2

2 2 u ,
Li C 7 --6-

4 Dt.

kl+ k,
/IC,

(4.1)

As before we apply Fourier transformation to the solution to this

( 1,2))
(4.2)



problem. The transform of equation (4.1) may be written

d Li

from which we obtain

q
' 1 L.)

g±tL)

where

9 2
a 1 --; 4 ICI-I 4

'
( C IV-11

MI 0

14 C 17-12
p(-x()-t))

Qta-44- 1310-I 21-

I I- citri 2-

Inverse transformation of (4.4) and (4.5) yields the solution

6it'(Xi0 ((14) X:
(4.6)

(.4 (x I

(.217)" fRX P X)9 Xi) Er (-(r)"Oc r;

0Y) I r'e )(PE ;crk c

2 (irr)
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(4.3)

(4.4)

(4.5)

where the fundamental solution G1 and G2 are given by, in n-dimensions,

(4.7)

(4.8)

The functions (integrals) Gi(x,t) and G2(x,t) converge for t > 0,

x = 0, but diverge for t = 0 and x = 0. We treat G1 and G2 therefore as
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generalized functions, and they are integrable in space for all t 0.

We have, specifically, the following limits of G1 and 02

and (by the Riemann-Lebesgue Theorem 4.2)

6c, t):= (x; t) 0,
Ixo 00 /xt 00 a

(k/ t

e dCr.

.1- 0-1'12

I MIC Cx CV')

For the radially symmetric plane, (4.10) is equal to

(4.10)

(4.11)

(4.12)

(4.13)

We may observe that Gi and 02 have characteristics of both the diffusion

Model 1 and the Barenblatt Model 2. The argument -y(a) is of order 2 in

a, the system is parabolic and the limits (4.9) to (4.13) are identical

to the corresponding limits for the fundamental solutions G1 and 02 for

Model 2. Indeed, in the limit as 1(1 -> 0 we obtain the Barenblatt Model

2.

Existence and Uniqueness

The system (4.1) has, as noted, a reduced order po = 2, and we thus
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have, by Theorem 3.4 in Chapter 3, the following uniqueness class of all

functions f(x) satisfying the inequality

(4.14)

(for arbitrary but fixed C and e). That is, there is at most one

solution ul(x,t), u2(x,t) to the system (4.1) in the class of functions

(4.14), which for t = 0, t fixed in 0 t T, equals the initial func-

tions un (x), u2(x,0), which both also belong to the class (4.14). (This

uniqueness class is the same as that obtained for Models 1 and 3.) More-

over, since the resolvents Ql = F(Gi), Q2 = F(G2) satisfy inequalities of

the form

Solution (b). The case with sources

-- ),2><F(.6 ?Is-t)

ll(1)z. (-9! 12)

-.:-- I ),

the system (4.1) is, as noted, parabolic with parabolicity exponent h =

pc = 2, and it has thus a (positive) genus AL 1 - (p.-h) = 1. Hence,

given that the initial functions ulo(x), u2(x,0) satisfy the inequality

(4.14) for some e, we obtain, by Theorem 3.12, Chapter 3, the correctness

class of solutions satisfying the inequality

C2- -32Kr('6i1)02) (4.15)

for arbitrary e1 > e and sufficiently small t > 0. (This is also the

same correctness class as we obtained for Models 1 and 3.) The resol-

vents Qi(s,t) have singular points s = ± i/./c which do not lie on the

real axis and therefore do not affect the solutions.
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We next include the source term (nonzero) in the equation (4.1) and

we obtain for the Fourier transforms ul and u2

(4.16)

(4.17)

Inverse transformation of (4.16) and (4.17) yields the solution

W (x ) (x ) it C60 ( )
I )

)(

I '

(4.18)

2
CXXc ) e-r) 3C2 Z )

U2,)
7.- G2 (X) i ) A id/ (X ) -lc f...7 (x-x,,-z(--c)fic (4-c-)ci t-

1 0 2
t (4.19)r

4
zi- 1

3
(-r).7c-z(z)cir -7(---.---f2 ()x->ec, 6))

t 0

where we define p XP61°-x) xpr-a-4,-)t)S0",,--,F3(x,t/:--(zr9n (10-12)2-

We consider again the special case of constant-strength sources,

i.e., let fl(t) = flo 1.1,(t), f2(t)
= f20 144(t), and take, for convenience,

u .(x) . 0. We then obtain from (4.18) and (4.19)
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(4.20)

(4.21)

(i=1,2,3)

and
-6--)

ul(xi) .74-/ 6-1( 4).9 4.

C - 2
t )0,
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The solutions indicate, as noted before, that this model behaves

similarly to the Barenblatt Model 2 and has also properties of the

diffusion Model I. Comparison of (4.18), (4.19) and (2.25), (2.29)

shows, for example, that the contribution of the fracture source f2 to u1

and u2 is of analogous form and (numerically) similar in the short-time

region to the solutions ul, u2 for Model 2. In fact, in the limit t 0

the solutions are identical for these two Models; at t = 0+, like for

Model 2,u1 rises gradually from zero and u2 jumps abruptly to the value

p/af2G2(x-x0,0) . The contribution of the matrix source f/ to u/ is

numerically similar to the diffusion Model 1 solution. Both u1 and u2

grow without limit as time increases (due to both fl and f2). However,

as (4.22) shows, u1 and u2 do not in general approach the same value in

the limit as t .; i.e., a finite pressure difference remains between

the matrix and the fracture system as t

XD) (4.22)
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The Inverse Problem

For this model there are the four unknown parameters to estimate,

1(1, k2, cl and a, and therefore several model curves are needed in the

matching process. Moreover, since the matrix permeability is assumed to

be nonzero so that lateral flow in the matrix is not neglected, we should

expect that some part (f1) of the total source (f) involves flow to or

from the matrix, and the remaining part (f2) represents flow to or from

the fractures. Similarly, the measured fluid pressure would consist of

some linear combination of the pressures illand u2. These combinations

are unknowns, but it would be reasonable to assume, for example, that u

k1u1/(k1+k2) + k2u2/(k1+k2), fl = kif/(k1+k2) and f2 k2f/(k1+k2). We

obtain u as a linear combination of the integrals I, 12, 13 and

G2(xx0,0) multiplied by the fractional values of kl, k2 above. One may,

in principle, construct a set of type curves for different values of k,/k2

and a, plotted against 4k2t/Ac1r2, select a model curve which best fits

the data and obtain values of the parameters 1(1, k2, cl and a in a similar

manner as before. We note, however, that curve matching and parameter

estimation is the least practical for this model.

We show that the set of values of the parameters ki, k2, cl and a

are unique for each input function u(r,t) and that these parameters

depend continuously on u(r,t). For this it is sufficient to establish

that the function 1/k1G2(r,t) (or 1/kiGi (r,t) for any L.:1,2,3) is unique

for each set 1(1, a, b, c, which implies that it is unique for each set of

k2, cl, a. Recall the Fourier/Hankel transform of G2, i.e.,

.A

Gicu,t). 41,1,12 Rxf(yor)t) (4.23)
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We have that 7(a) is a unique function for each set of a, b, c, G2(9r,t)

by (4.23) is unique for each a, b, c, and thus 1/k1G2(a,t) is unique for

each 1(1, a, b, c. Also, G2(a,t) and G2(r,t) are both in L2 for 0 t

T, and so by (Plancherel's) Theorem 4.1(c) 1/142(r,t) is a unique

function for each set of kl, a, b and c. In the same manner we could

obtain uniqueness of 1/k1G1(r,t) and 1/k1G3(r,t) for each set 1(1, a, b, c,

and therefore of 1/k1I1, 1/k1I2, I/k113, since II, 12 and 13 are time

integrals of Gl, G2 and G3. Moreover, the functions G1 and I; (i=1,2,3)

in 12. Since u(r,t) is a sum of I 12, 13 and G2 we obtain that

u(r,t) is unique for each set of values of kl, k2, cl and a. Continuity

of u(r,t) with respect to kl, k2, cl and a is easily seen. We restate the

above by the following Theorem:

Theorem 4.13. To each function ul(r,t) or u2(r,t) given by (4.20) or

(4.21), respectively (or a given linear combination of u1 and u2) there

corresponds a unique set of (positive) values of k/, k2, cl and a, and

these are continuous with respect to ul(r,t) and u2(r,t).
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CHAPTER 5

APPLICATIONS TO NATURAL FORMATIONS

A. Structure, Space and Time Scales

141

We have seen that in order for the double porosity/permeability

models to be valid certain conditions and constraints apply to the

structure of the system and the space and time scales of the flow. For

example, as we discussed earlier in Chapter 2, the fractures must consist

of a fairly uniform and interconnected system of conduits distributed

throughout the formation, and they should have lengths, widths and

spacing (between fractures) which are well below the characteristic space

scales of the flow. This means that if we take a length scale of the

flow to be 1000 meters, and consider a uniformly fractured elemental

volume of the rock mass to be, say, 50 meters across, then the fracture

systems should have scales of length and spacing within tens of meters.

These length scales would be likely to include all small to moderate size

fracture systems in natural rock. Secondly, given that these as well as

other assumptions of the models apply, we found from the solutions in

Chapter 4 that, if we compare with solutions to the diffusion model, the

double porosity models exhibit their distinctive behavior over a finite

time range only, but beyond that time range these models become, as has

been noted before, indistinguishable from the standard diffusion model.

This time range is of obvious importance when considering modeling of a

natural reservoir as a double porosity system, and it is determined by

the values of the model parameters as well as by distance between source

and observation points. The value of the interporosity flow parameter
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(a) has decisive influence of this time scale. This time scale lies

within the order of the so-called transient or early-time phase of a

typical pressure transient test, which for the conventional Theis or

diffusion model refers (vaguely) to the time range when most of the time

change of the flow takes place.

To obtain an indication of the order of this time scale of

relevance to double porosity modeling we may calculate the following

example based on the solution to the Warren-Root model as shown in Figure

4.2, Chapter 4. We select two curves; one (a) for a value of the

parameter "r/H" = 1, and (b) for "r/H" = .05. We determine the approx-

imate position of the points along the abscissas where each of these

curves approaches the right-most Theis curve to within, say, 5% of the

ordinate values. For curve (a) we have for this point the value 4at/r2>

150, and for curve (b) the value is 4at/r2 2000, where a = k2/m(c1+c2).

We choose a length scale of 1000 meters and assumed the following values

for rock and water:

k2 10-10 2
cm (10 md),

01 = 10-3

ct = 4.5*10-11/dyne,

= 3*10-3 gm*c1112/sec

We approximate c1+c2 cl olct; which gives a = k2/pcl k2/A01ct, and we

obtain thus for curve (a) the value

t > 105 r2/4a = 5*105 sec ..,, 6 days,

and for curve (b)

t 1000 r2/4a = 6.7*106 sec 78 days.
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Although these values obviously depend on the values of r/H we may

conclude from these solutions that the order of the time scale we are

seeking is days to possibly weeks. (r/H is the interporosity flow

parameter for the multi-layered model in Figure 4.2.) For longer time

scales of flow, such as months or years, all four models in Chapter 4 are

no longer appropriate, for compressibility effects which are predominant

in short-time flows become negligible for longer-time flows, and instead

effects of a free fluid surface become important and should be taken into

account.

B. On Parameter Estimation With the Double Porosity Models

Parameter estimation and type curve matching appears to be feasible

with the Barenblatt and Warren-Root models and should yield more accurate

values for natural double porosity systems than the Theis model. As

noted before the model solutions apply to well interference tests and

data sets obtained should cover an adequate time range of the flow such

that both the short- and long-time Theis curves can be identified. This

time range would be of the order calculated above. The distinctive char-

acteristics of the drawdown response predicted by the Warren-Root model,

i.e., the two short- and long-time Theis model behavior, is easily

recognized. Distinctive characteristics of the fracture response for the

Barenblatt model is the initial abrupt jump (drop) in the pressure and

slow rise with time towards the long-time Theis model behavior (Figure

4.1 , Chapter 4). Different curves correspond, as Figure 4.1 shows, to

different values of the parameter a (c=k2/a), with curves for lower

values of a lying farther to the right. Type curves for the matrix

response (Figure 4.1, Chapter 4) show an initial roughly linear rise
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with time towards the long-time Theis solution; curves for different

values of a are of roughly similar shape and approximately parallel with

those for lower values of a which lie farther to the right. The position

of these curves suggest that parameter values obtained by curve matching

with the Barenblatt model, particularly storage capacity (c1), are

sensitive to the value of a and the time range of the data, and that

fitting with the Theis model may produce significant errors in the esti-

mates. Parameter estimation using Model 4 (the dual permeability model)

would be impractical due to number of independent parameters involved,

absence of distinctive features in the solutions and unknown relative

contribution of fractures and matrix to measured pressure and source

functions.

C. Double Porosity Behavior in Natural Formations

In general fluid flows in natural fractured formations is, as we

have noted, relatively complex and variable among individual natural

formations, and so the problem of modeling flows in fracture formations

is not a simple one. Since also different types of theoretical models

sometimes produce similar output, some difficulty exists therefore in

identifying a given natural formation as a double porosity system.

However, as discussed before, some evidence for double porosity behavior

in natural formations has been observed and reported in the literature.

Such evidence is typically obtained by comparing well test data from

fractured reservoirs with output from theoretical models and observing

characteristics of these models in the data. Most notably, features of

the Warren-Root model are easily recognized. Indeed, Warren and Root

[51) first reported, as mentioned before, data from a fractured formation
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showing the characteristics two parallel straight lines on semilog plots

and infer this as field evidence for their model (Figure 5.1). Similar

features appear in other data sets; as. for example, shown in Figure 5.2.

We noted earlier two publications which report good fits of well data

from Klamath Falls, Oregon, with the Warren-Root model as well as also

a composite model [6], [7] (Figure 5.3). Another study, we also noted,

reports good fits between data from fractured aquifers and the multi-

layered double porosity model of Boulton and Streltsova [10] (Figure 5.5)

and a discrete fracture model (Figure 5.6). Other examples of well test

data from fractured formations are shown in Figure 5.7. For comparison

we show a data set from [7] matched against the Theis model in Figure

5.4. We may consider the suggestions of double porosity behavior in

the various reports above, particularly the evidence for the Warren-Root

model, as strongly suggestive, if not necessarily conclusive.

D. Discussion on the Validity of the Double Porosity Models

The double porosity models attempt to describe more adequately by

simple systems of equations the more complex process of flow in natural

fracture formations than does the conventional homogeneous diffusion

model. Like most fractured media models this type of a model takes

effects of fractures into account by considerihg separate processes of

flow in fractures and matrix, whereas, in contrast, the conventional

diffusion models view matrix and fractures together as a single porous

medium with a single system of flow. The double porosity models apply

to short-time single-phase flows in homogeneous reservoirs with the same

simplifications and assumptions as outlined in Chapter 1 for the

diffusion equation. The double porosity approach appears valid and
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Figure 5.1. Field recovery data for a fractured reservoir, after Warren
and Root, 1965 [48]

Figure 5.2. Field drawdown data for flow to a well in a fractured
limestone, after Borevsky et al, 1973. [48]
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Figure 5.3. Log-log plot and double porosity type curve match for well
buildup data, after Benson and Lai, 1986 [7]. (The Page
well, Klamath Falls, Oregon)

Figure 5.4. Log-log plot and Theis curve match for well buildup data,
after Benson and Lai, 1986 [7]. (The Steamer well, Klamath
Falls, Oregon.)
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Figure 5.5. Well test data from a coal aquifier interpreted with the
Boulton-Streltsova model. Exact solution. (After
Sauveplane. [44])
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Figure 5.6. Barrhead coal aquifier interpretation with the discrete
(vertical) fracture model of Gringarten and Witherspoon,
1972. [44]
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Figure 5.7. Field measurements of (top) porous flow and (bottom) fissure
flow in a fractured formation. (After Herbert, 1976. [45])
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realistic at a first order evei given that the diffusion equation is a

valid model for flow in natural (unfractured) formations in general.

Indeed we may view the double porosity models as analogs of the

homogeneous diffusion model extended to fractured porous media. Of the

three models studied here we consider the two due to Barenblatt and

Warren and Root (Models 2 and 3) to be the main ones relevant for flows

in natural fractured formations based on the consideration that fracture

permeability is likely to be considerably greater than matrix

permeability. Structural requirements such that the double porosity

models apply are, as we discussed, a reasonably uniformly distributed

fracture system on space scales well below the scales of the flow such

that the fracture system may be treated as a continuum. Moreover, the

fracture system should be characterized by some predominant effective

space scale such that we may associate with it distinct macroscopic

properties which differ from corresponding properties of the matrix.

Double porosity models have, as we noted, the advantage over e.g.

discrete fracture models in not requiring knowledge of exact size, shape,

location, of individual fractures, but only that they form a fairly

uniformly distributed system in the rock masses. These conditions

involving natural fractured rock are likely to arise most often in

practice. Moreover, this type of model, being simple, allows analytic

solutions to be obtained easily and made applicable to a large number of

cases.

Limitations of the double porosity model lies, on the other hand,

in its simplicity, particularly with regard to the assumptions made about

the regular and uniform structure of the fracture system in a natural
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rccv, mass and a predominant anc uiform space scale characterizinc it.

Fractures in most natural rock masses typically comprise a range of

sizes, shapes, lengths and spac nc {37] and this space scale variability

would invite effects of e.g. "multiple interacting continua". Secondly,

since most natural formations are heterogeneous in structure and

composition some spacial variability is likely to exist in fracture

permeability, interporosity flow coefficient, etc. Heterogeneity and

multiple fracture scales of the structure both tend to obscure

distinctive, recognizable double porosity characteristics. Refinements

of the models increases number of unknown independent parameters

involved, thus increasing computational effort required and hence

generally reducing the practical applicability.

As we have noted, different types of models may sometimes produce

similar results. For example, as noted in the study [7], two-part

composite diffusion model is found to be numerically similar to the

Warren-Root model, and on longer time scales the double porosity models

behave similarly to the homogeneous diffusion (e.g. Theis) model.

Therefore the choice of a suitable model in a given case is based on the

simplicity and convenience in the use of a given model as well as on the

physical system.

It appears likely, as we have discussed, that the double porosity

models of the Barenblatt or the Warren-Root types (Models 2 and 3), could

be used for describing flows in basalt formations. Typical basalt

formations appear to possess properties required for modeling as large

and deep double porosity system, where the rock matrix and microfractures

along rock interfaces forms the matrix and other larger fractures and
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interbed sediments constitute the fracture system. It is reasonable also

to expect the fracture system to be fairly uniformly distributed in

he formation, some anisotropy of the fracture permeability is

likely to exist (e.g. vertical), but this, as mentioned, may be

eliminated from the model. Based on previous studies (e.g. [4])

formation permeabilities for basalts are in orders of 1 to 10 md (10-11

to 10-10 cm2), and porosisites are usually from 10-4 to 10-2 The

formation may be modeled as a thick infinite horizontal layer or a semi-

infinite halfspace. If the line source extends the depth of the layer

the system may be modeled as 2-dimensional, but otherwise as a 3-

dimensional system (e.g. a halfspace), for which vertical variability may

need to be included in the solutions.

E. Summary and Conclusions

In this work we study three degenerate systems of linear parabolic

equations which collectively represent forms of the "double porosity/per-

meability model" and which is used for describing fluid flows in natural

fractured rock. These systems are modified diffusion models derived from

two coupled diffusion equations. Two of these systems represent the so-

called double porosity model often treated in the literature and are

considered to be the main forms of the model relevant for flows in

natural fractured rock. These models describe short-term flows in highly

idealized homogeneous systems. Like the diffusion equation each system

of equations governs flows, single-phase, of slightly compressible fluids

in homogeneous and uniformly fractured reservoirs. Initial and boundary

conditions are given such that the solutions describe flows in confined

reservoirs under general conditions including those of typical well
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tests. WE obtain analytic solutions T'oJrier and Laplace transforms

and give these as convolutions of funoamental solutions with initial

conditions and source functions. We established that the models are

well-posed, i.e., that the solutions exist, are unique and depend

continuously on the initial/source data for all initial conditions likely

to arise in practice. In fact, by treating the systems as generalized

functions we obtain, by the theory of generalized functions, uniqueness

and correctness classes for each model for certain restrictions required

on the intial data. It turns out that the uniqueness and the correcness

classes for the Barenblatt model, a hyperbolic system, consist of all

functions with no restrictions on growth at infinity, although the

correctness class requires sufficient smoothness of the initial data.

For the other models, including the standard diffusion model, all of

which are parabolic, the uniqueness and correctness classes consist of

functions of growth at infinity restricted to order 2. These classes of

functions would include all initial conditions likely to be given in

practical applications with these models, for initial conditions for

actual physical systems would be expected to consist of functions, smooth

and bounded, that vanish at infinity. We compare the various model

solutions with corresponding solutions to the diffusion equation, the

standard model for flow in unfractured porous media. We observe that the

fractured media models exhibit behaviors which are distinguishable from

that of the diffusion model over a finite time scale only, but on a

somewhat longer time scale the solutions are approximately the same. We

treat also the inverse problem of estimating parameters with each model

(by e.g. the conventional method of type curve matching), and we
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establish uniqueness and continuous dependence of each set of parameter

values with respect to the input data. We consider physical conditions

required for the models to apply in practice as well as their general

validity and usefulness.

As we find, under appropriate physical conditions the models

treated here are relevant for short-time, or transient flows such as

during typical drawdown and buildup test. Based on calculations with

typical values for rock and water this time scale is of order up to days

to weeks. For flows on time scales beyond this the standard diffusion

models are equally valid and may, because of its greater simplicity, be

more practical. We conclude that the double porosity models due to

Barenblatt et al [5] and Warren and Root [50] are the most valid forms

of the double porosity model for fractured rock in general, including

typical basalt formations, and their main value lies in their potential

for providing more accurate estimates of formation parameters from

pressure transient data. These two models are likely to give more

accurate values for permeability and storage capacity for fractured rock

than the conventional Theis model, particularly for data in the short-

time end of the well test response. A number of reports in the

literature of well test data from natural fractured formations support

the validity of the double porosity approach in modeling such systems.
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