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CONVERGENCE OF THE WICK-CHANDRASEKHAR
APPROXIMATION TECHNIQUE IN RADIATIVE TRANSFER

Chapter

INTRODUCTION

The distribution of radiation intensity in an emitting-absorbing

scattering atmosphere has concerned astrophysicists and applied

mathematicians for over a century. The fundamental physical problem

(11, pp 6S-88) leads quite naturally to the transfer equation, which is

an integrodifferential equation with intensity as dependent variable and

position, direction, time, and sometimes frequency, independent

variables. We shaLL be concerned with the so-catied classical transfer

problem, which pertains to the distribution of intensity in a plane

parallel atmosphere under the assumptions of time and frequency-in-

dependence, isotropic scattering and no emission or absorption by the

medium. This problem is described below. For more precise

definitions of the physical terms involved and for details of at

see (4, pp. 1-15) or (9 PP 1-Z4).

Si. The Classical Transfer Problem

Suppose that the atmosphere under consideration is bounded by a

plane surface S, that p is an arbitrary point in the medium, and that

d is an arbitrary unit vector bound to ph Let be the normal optical

distance from p to S and I& be the cosine of the angle between d and the

outward unit normal to S. Then the intensity at p in the direction of

d is defined as the energy per second per unit frequency (or in all

frequencies) passing through a neighborhood of p per unit area



perpendicular to d per unit solid angle about d. Because of the

symmetry of the medium the intensity may be considered as a function

of v and p.; it is usually denoted by 1(v, ). The general transfer

equation becomes, in this case

Since termwise integration of (1) yields

The above and all other integrals will be understood to have the sense

of Lebesgu.e.

The integral term in (I) is denoted by 31.1. and is called the

average intensity. Another important integral associated with AT

is the net flux.

0, Is independent of 1r

and therefore is constant for each solution of (I).

In the classical transfer problem the atmosphere is of infinite

optical depth, i 0 < v < The boundary conditions are

The first statement expresses the condition that no radiation

enters the atmosphere through the surface S. The assumption of an

everywhere finite non-negative solution of (I) leads to the condition

(7. pp. 2041) that 43°7. 14 1(v, ti.) 0 as v co for almost all > 0

(2)



customary to omit the phrase "almost all" since, as it turns out

solution of the problem given by (1), the above boundary condition at

0, and the weaker condition at T = OD also satisfies the stronger

condition at T = co given in (3).

Since the integrodifferential equation and the boundary conditions

are homogeneous, each multiple of a solution of (I) and (3) is also

a solution. Because of this fact the net flux F in (2) may be con-

sidered as an arbitrary positive constant; thus a normalization con-

dition is obtained.

Following is a complete mathematical statement of the classical

transfer problem. We seek a function I(T, defined for 0 < T < at,

-1 p. 1, such that

TAT, IL) ?; 0, XI', IX) 41

which satisfies the integrodifferentis.1 equation.

Tit IX)

the boundary conditions,

1(0, IL) at 0,

liDD /IL .11e Ayr,
T OD

and the normalization condition,
1

oil kr, IL)

1

(4)

(5)

(7)

where F is an arbitrary preassigned positive constant. Conditions on

differentiability and integrability of uT, ;1.) are implicit in (5).

<C,

Ii 0,



it follows that

qulva1entormulation of the Classical Transfer Problem

From (5) and the equation for the average intensity.

When p, is fixed, $L + 0, (9) is a lint order ordinary differential

equation in g.r p,) with constant coefficients. The general solution

1(Ts p. ) 1(14

fi.
er I ) 4) 1,11,3(t)

where ir and T are arbitrary. It follows from (9). (10) and

t( 0) 3(r),

(t)

The existence of a function, I(T-Op.) which satisfies (4),

implies the existence of the improper integral in (11)

From (4), (8) and (11),

3(r) 0.

d (6)

(10)

3(r). 9)



The following theorem provides an equivalent formulation of the

lassical transfer problem. Since the proof is almost immediate, it

is omitted.

Theorem 1. The classical anger problem has a solution if and only

if there exist functions AT 12.) and ii(T) which satisfy (7), (8), (11) and

(12).

§1. 3 Methods of Solution

3(7) a

These equations are 6

The substitution of (11

Reversing the order of tegration in each of the above double

integrals and than replacing by -0, in the first integral, we obtain(Iri
ioi 0 T J .

AI) / -II
dia.-& .7(t) dt I 4)/ 3(t) dt.

Similarly, thethe substitution of (11) into (7) yields

1Jo

fdo

At + Z

aids

reseed more compactly as

-t)/ 3(t) dt.



where

.4) J(t) dt, (14)

(1

The functions Kr(x), are introduced for later convenience.

Equation (13)1. known as the Schwarechild-Milne integral equation

for 3(7

If 11 and (12) are assumed, (8) <3===> (13) and (7) > 5).

In view of Theorem 1, we have another formulation of the sea

transfer problem.

Theorem 2. The classical transfer problem has a solution if and

only if there exists a function 3(.r), which satisfies (12), (13) and

(14). in which case is given by (11).

Hopf (5, p. 381) obtained a solution, 3*(7), to the problem defined

in Theorem Z. This solution is presented in Chapter 3 below. Hop

also proved (6, pp. 155461) that his solution is unique. Hence,

there is a unique solution, kr, p), to the classical transfer problem.

Since Hopi' $ expression for 3(T) is in the form of a slowly con

verging infinite series, the terms of which are successively more

difficult to calculate, it is not used to obtain numerical results,

more important limitation of H f' method is that is generalis

provide solutions of only a limited class of transfer problems.

these reasons and for their own intrinsic interest, other methods of



attacking the classical transfer problem have been developed

(9, pp. 86425). A method of successive approximations due to Wick

(16, pp. 702.710) and extended by Chandrasekhar (1, pp. 76.79 and

2 pp. 117-125) involves replacing the integrals in (5) and (7) by the

sums corresponding to a particular quadrature formula and solving

the resulting problem. If the number of subdivision points is varied

a sequence of approximations, In(7, p. ) may be obtained.

The convergence of the Wick.Chandrasekhar approximation

technique is the main concern of this thesis. Chandrasekhar

assumed (1, p. 84) that the sequence of which he derived converges

to 1(7, p,), but he apparently made no attempt to construct a proof.

However, he did suggest (3, p. 189) a method for proving the con-

vergence of Irt(0, ii) to I(0, p.). This restricted convergence question

was also considered by Kourganoff (9, pp. 153.159) who obtained

several minor results but no convergence theorem. Since the

approach employed by Chandrasekhar and Kourganoff seems to involve

insurmountable mathematical difficulties other methods have been

devised by this author for dealing with the convergence problem.

14 Summary of Later Chapters

The Wick.Chandrasekhar technique is generalized in

Chapter 2 to apply to a certain class of que.drature formulas. The

details of the analysis coincide in many respects to those of the

treatment of Chandrasekhar (4, pp. 70-79).

In fil. 3 above we formulated a problem which involved J(7) but

not ) same procedure is used in Chapter 3 to obtain a



f.Tri(T)

convergence

is arbitrary.

(7,0

is uniform

converge to J(r) and Ifr ,

for -1 1 and 0 7

respectively. The

ro < co where To

problem for the approximate average intensity, Intil, hich does not

involve In(7 int) Then a quite general problem, which Includes these

two problems as special cases, is defined and solved. The solution

reduces to a pair of very similar expressions for AT) and .131(?)

Both Wick and Chandrasekhar used the Gauss quadrature for

for Za. subdivision points in the Interval -1 1. Sykes (14, pp.

377.386) used the n point Gauss formula separately in each of the

sub intervals, -1 ILI 0 and 0 IC, ILI 1. Details of these quadrature

formulas and their applications are recorded in Chapter 4.

In Chapter 5 it is proved that if either the Gauss or the double.

Gauss quadrature formula is used, the corresponding sequences



Chapter 2

GENERALIZATION OF THE WICK-CHANDRASEKHAR TECHNIQUE

Wick and Chandrasekhar replaced the integrals of the classical

transfer problem by the sums corresponding to the Zn point Gauss

quadrature formula, n 3); 1, and solved the resulting problem to ob-

tain a sequence of approximations, 111(7'0) , to I(r,11). In the

arguments establishing the existence and the uniqueness of the

functions, Intr, p,), certain properties of the Gauss quadrature

formulas are essential. Kourganoff and Pecker observed (8, p. 248)

that the Wick-Chandrasekhar analysis goes through without change

for the class of quadrature formulas having these properties. The

class of quadrature formulas specified by Kourganoff and Pecker is

generalized in the presentation given below. The derivation of the

approximations, Intr, ILL turns out to be somewhat more complicated

than that of Wick and Chandrasekhar in the special case they con-

sidered.

In the remainder of this chapter assume that n is an arbitrary

fixed positive integer.

P. 1 The Problem for In ,

Choose subdivision points, pni.and coefficients, a1.

*1, . *n, and define the following correspondence for an

arbitrary Lebesgue integrable function, 1(0, defined for 4<

f (16)



-1

Condition (19) is equivalent to the assumption that the correspondence

In (16) is an equality for f(aL) m,m 0, 1, 2. Examples of

quadrature formulas for which (17), (18) and (19) are satisfied are

iven in Chapter 4.

Replace the integrals occurring in the basic problem by the

sums corresponding to them by (16). It is shown below that the re-

sulting problem has a unique solution, In(T, IL), which depends para-

metrically on the p.ni and the ani. Thus, In('l', p.) is defined for

< < a, -1 < p. 1, and satisfies the relations,

10

(19)

The range of the summation index in (16) is * 1, ..,* n. The same
summation convention will be followed throughout this chapter. Simi-

larly, whenever any statement involving the 0, or the ani appears it

will be understood, unless otherwise stated, that it holds for

i * 1, ..

It is assumed that the p.ni the an satisfy the conditions.



The same constant, Fa is used to normalize I(T, p.) and I(",

The condition, implicit in (24), that 2 F aid In(T,pni) p. indepen

dent of T is also a consequence of (19) and (21). Thus. let p. z

in (21), multiply terrnwise by 2% and sum on i to obtain

By (19), '7.; a Therefore, the right member of (25) is zero an

Z. 2 An Equivalent Formulation of the Problem for I

analogy with J(T) we define

Equation (20 can 0

- Proceeding as in 11.2 we solve equation (28) to obtain

p, T 1

In(/' , 0) = ,Tn( )

(26)

(29)



2.3 An Expression for I

gar' Ana'.

The substitution of)... (21) yields a system of 2n or

differential equations,

for the 2n unknown functions of T s 1n j)s * I

Since the coefficients are constants, we seek solution
-ItT

1.° ) Cni e

Substituting 3 into (31) and solving for C

+

e find

(3

of the form

(32)

. (33)

(34)

The existence of a function, n(T, p, satisfying (20)-(24) implies the

existence of the improper integral in (29).

From (18), (20) and (27), jn(T)0. By (29), Y()e0 implies

that In(T, 0) e 0, which contradicts (20), Hence,

Jn(T) J32(7) si 0, (30)

The following theorem is stated without proof. It is a new re

suit.

Theorem 3. The set of equation {(24), (27), (29), ( 0)1, provides

an equivalent formulation of the problem for In(T, p.



p.n

For each root, k, of the characteristic equation, (35), there t

corresponding solution,

(36)
1 + Rnik

(31). Since the system, (31), is homogeneous, Bn is arbitrary.

Equation (35) is now expressed as tril(k) = 0 where

If the fractions are cleared in (37), a polynomial of degree ,g 2n re-

sults. Therefore, there are at most 2n roots of the characteristic

equation.

From (37) and (1 with m =0 we obtain

ARn(k) = I I. % zi r Etni I .
%

1 + pnik 1 IL

It follows from (38) and (19) with in = 1 that k 0 is at least a

double root of the characteristic equation. If

double root, k = 0, and no other roots.

For n> 1 consider k(k) expressed in the form

there is a

(35)

(37)

(38)



(k) fk E

1/P'n1 4***

It follows from (18) and (39) that *11(k)-.

1 1, n, and that * (k)-* co as k

Consider the open intervals

= ( -1 /p.ni,

- I /

For k in O * (k) is continuous,ni n

end-point and tends to-co as k approaches the other

fore, (k) vanishes for at least one point in each of
21

ni. Since * (k) has at most 2n roots and k 0 is a

interval On contains exactly one root. Thus

denote the Zn-2 non-zero roots by k

< -1/ 1,nfl

tends to + co as k approaches one

The kris and the numbers -1 i of (40) satisf

0 if )
1 lc (43)

0 if a

(k) has Zn roots. We

,*(n-1), where

42)

This completes the solution of the characteristic equation.

The 211,04 sets of functions givently (36) for k 0 and k =

14

39)

end-point. There

the 2n-2 intervals

double root, each

We see that W(k) is flnite except for the points -1fu which,

(17), satisfy the inequalities,



comprise a set of 2n linearly independent solutions of (31). Since 3

reduces for k = 0 to yr, = Bn, Bn arbitrary, and since k = 0

double root of the characteristic equation, a solution of the form

T , ;Ltd) = r d indicated. The substitution of this equation

into (31) yields d p.m. Thus, In(r, ) = 7. + p.m satisfies (31).

The general solution of (31) is given by an arbitrary linear com-

bination of the 2n linearly independent solutions which we have found.

It is convenient to express the general solution in the form,

Since the numbers -1/0

1

This equation reduces by means

Thus,

Molars in (43) vanishes. If 1, the summation term in (45) an

subsequent equations is not present.

12.4 Determination of the Constants

The conditions (20), (22), (23) and (24) will now be imposed.

From (45) and (24),

19) to F * 4b4/3.

15

±(n-1) L
(45)

441 ni+ It

are interlaced, none of the denotn-



b F./4,

where, it will be recalled, F is an arbitrary positive constant.

From (23). (45) and the fact thatb 0,

T [ "Pi+QT1)-4,00

Consider n The function.

, (49) 0) yield

for i = 1, . a. For n 1, the sum is not present and (47) is satis-

fied for an arbitrary value of Q1. Consider n> 1. The signs of the

exponential terms in (47) are given by (43). For i 1, (47) is satis-

fied with arbitrary Q and L. For i = 2 the exponential in (47)

corresponding to a = -(n-1) tends to + co and all other terms tend to

ere 1111 T co. Therefore, for i = 2, (47) is satisfied if and eel

Considering in turn 3, .. , a. we obtain the result

that (47) is satisfied if and oral

L 0,nn
The constants Q and L

11 lla

Equation (22) implies that ) = 0, 1 =

a < O.

are still arbitrary.

(48), and the fact that bn + 0, this condition can also be expressed as

0,

where

(47)

16



Conversely, 54), implies (49). According to the partial fractions

composition theorem, S(g) as expressed by (54) has a unique repre-

sentation in the form of the third member of (50). Thus, there exist

unique values of Qn and L such that (54) and (49) are satisfied.

Expressions for these values are obtained as follows.

From (52) and (53) equating coefficients of p.11- ht

members, we obtain

(33)

Although (55) was derived for n , it also yields the correct result

for Q1. Referring first to (50) and then to (54), we obtain

is a polynomial Inp. wi as the term of highest degree. Therefore,

(49) implies



Final Expression, for J and I

This completes the determination of the constants.

By (44) and (55),

Substituting (46) and (48) into (45), we obtain

18

(56)

(59)

where On is given by (55) and the Lila are given by (56). Substituting

(59) into (27) and referring to (19) anand (37), we obtain

Suppose that ;1'0,0 and (7) are functions which satisfy (20) - (24)

and (27). Since these conditions are used to determine the I

<
1

By (44), there are precisely a negative factors in the numerator in

the right member of (56) and -1 negative factors in the denominator.

Therefore since none of the factors is zero,

L <0, > 0. (58)



of (59) we must have %Cy, IA

and (60) that J(T) Jr).rt(

From (60), (58) and (42),

J(r) is monotone increasing,

3.0

Therefore by (51), (57) and ( I),

asymptotic to + Qn as 4r co,

and from (60), (50), ( 1) and (54

In terms of these funct

There is equality in (62) only when n = 1 and Q

The functions VT. And and ;kW derived above satisfy conditions

(24), (27) and (30). It follows from Theorem 3 and the remarks

following (60) that the substitution of (60) into (29) yields the unique

solution to the original problem for In(T. A). (By (62), the improper

integral in (29) exists). In order to express In(T, A) in compaet form

we introduce

It then follow, from (27)

>0 and

> 0,

(62)

(64)

(6uniformly continuous,



1.0 Gli(T

I,jr_1/k4)n rxe,

022(0, $4.),

-k TL e 114,
Via net

It fellows easily from (60) and (29) that

dx,

20

(0,-1/k )nu

> O. (67)

(68)

From (62) and (68), we have

In(T, IL) is continuous except for T 0, = 0. (69)

According to (22), In(0,p.)-4-0 as p, 0 -, while, by (29), (61) and (62),

In(T, 0) = .In((r)-* Jn(0) > 0 as 0. If p. is replaced by -1/kna in (66)

the form co - co results. In view of (69), the standard technique for

evaluating this form yields the correct value for In(T,14

Let us verify that the quantities In(T.pni) obtained from (65) and

(66) and the corresponding quantities of (59) are equal. By (59) and

(63), In(T, Gn(T, p.niX 1 = a 1, .. . , *n. Equations (65) and (66)ni

yield the same results since, by (63), (50) and (49),

Gn(0, p,ni F 0 for i 4, ... This agreement was

anticipated.

If we had not assumed condition (19) for in 2, the preceding

analysis be unchanged except that 3F/4 would be replaced by



nifrini) in. expression (46) and following.

The main results of this chapter are summarized below.

Theorem 4. For each 2n-point quadrature formula of the form of (16)

for which conditions (17), (18) and (19) are satisfied, there corres..

onds an approximation, In(er. It), to ger,tA). The function, In(er, ILL

which is given by (65), (66) and (67), is the unique solution to the pro-

blem defined by the conditions (20) - (24).



Chapter 3

GENERALIZATION OF TILE

SCHWARZCHILD-MILNE INTEGRAL EQUATION

s stated in Si. 3 that the Schwarschild.Milne integral equation

and certain auxiliary conditions determine AT). An analogous pro-

blem for 3(r)is derived below. Then a generalization of these

problems for J(T) and J(r) is defined and solved.. The solution re.

duces in one case to the series expression for AT) derived by Hopi

and in the other case it yields a very similar series expression for

331(T). These expressions are used in Chapter 5 to obtain conver-

gence theorems for the sequences {i(r)}
}*

The Integral Equations for )

According to (30

J (T) > 0,n
The substtution of (29) into (27) yields

-t)/

the substitution of (29) into (24) yields

Ju(t) dt

These equations are expressed equivalently as

0)



ir4 1

Special cases of these equations were derived by 'Krook (10, p.496).

According to Theorem 3 conditions (24), (27), (29), and (30)

provide a formulation of the problem for In(T, II) and J(i) which is

equivalent to the original formulation given in 12. 1. Since, as may

easily be verified, the sets of equation (24), (27), (29) and (29).

(71), (72)1 are equivalent and conditions (30) and (70) are identical,

another formulation of the problem is given by conditions (29), (70),

(71), (72). These considerations give us the following result.

Theorem 5. There exists a function In(T,p.) which satisfies the con-

ditions of 12.1 U and on.i.y if there exists a function n(T) which

satisfies (70), (71), (72) in which case I (T, p.) is given in terms of

,In(T) by (29).

The problem or 3 ( ) defined by (70), (71) and (72) is quite

lar to the problera 3(T),defined by 13) (14) and (15). T

i(t) dt,

(71)

(73)



apparent similarity is increased by writing (73) in the form

- ix I /lin

where a' nd .n,

Following are some portant properties of the functions

and Knr(x). From (15),

dy,

>0,

y) dy, x 0,

x <

It is now clear that, for fixed n,

(76)

(79)

r and x, K(x) is umerical integration type approximation

Kr(x).

Kr(x > 0, (75)

Kr(x) < K ( ) (77)

From (73), (17) and (18),

Kap) > 0, (78)

Knr(x nr- (80)



From (15) and (76), 

copc 

From (73), (79) and (19) with in 

) dx +) + X 

Since each function x) is even, 

f co 

X (x) x dx r 
-co 

) dx = (0) = 

Z The Functions Hr(x) 

Hopf (7, pp. 35-37) generalized the Schwarschild-Milne integral 

equation, (13), for ,T(T) by replacing .C1(x) by an arbitrary positive 
co 

even function, X.(x), such that 
f 

K(x) dx 1 
andfx 

X(y) dIrg, 

C Koo, x> 0, for some positive constant C. We shall extend the 

work of Hopf and obtain several entirely new results. 

Let H1 (x) be any function defined for all real x except, possibly, 

0 such that 

fl 1(x)> 0, ( 5) 

( 1 

However, even in the general case, we have from (73) and (19) that 

(84) 

25 

By (74), Xnr(x) is even if and only if an a p, 1111, 



dy <C H(x),< 0,

to

1-1r(
x) y) dy,

where C is a positive constant.

It is clear from (75)-(84) that K1(x) and K1(x)are special cases

af H1(x) in which C may be taken as unity. By analogy with

fXr(2); and{K (x); r>.: 21, we introduce functions

x) such that

(89)

B (85), (88) and induction on r, the functions define (89) axis

for all x + 0 and have the following properties:

H(x) < C H ( ) Hr(x) < Cr4H (x), (90)

Hr(X) 0; Hr(x) is absolutely continuous,
(91)

non-increasing for z> 0, non-decreasing for x <

26

(86)

(88)



By (86) and (89) H2(0+) and H2(0-) exist an

H (0+) + H (0 ) = I.

Therefore, b (90) and (91), Hr (O*) exist, are non-negative and

fir(0+) + Hr(0-) r-2

It follows from (85) and (89) that 112(0+) =0 if and only f

H (x) dx = 0 and H2(0-) = 0 if and only if Lea Hi(*) x dx = 0. In

view of (87), H (0+) = 0 if and only if H (0-) = 0. This result, (92),

d (91) give H (0±) > 0; induction on r yields Hr(0*) > 0, r 2.

Hence, by (93),

0 < Hr(0*)

It is well known and not difficult to prove by induction that

r+n+

f f f(y) dydx

Froai (94), and (95),

(x) = r(Y) (y-

r > 2.

dy, > 0,

(94)

whenever f(y) 0 and either of members ate. Applying

this result to (89) we }lave

92)

(93)



n-1

From (87) and (96) with r = n 1-4 1,

(0+) = H3(0-).

The next theorem indicates certain similarities among the tune ens

Hr(x)' r > 1. Let

non-voil.

Theorem 6. H (x) > 0 for x

Ix; x> 0, H2(x) > 01, = 1. u. b. E+'

t x; x < 0, H (x) > 01, = g. 1. b. E .

where 0 If co and < fOl < B (91) and (94), the sets E

1. If 1 < co, then H (x) Ot

for almost aU X > 11 and Hr(x) = 0 for all x Z. > -co,

then 111(x) = 0 for almost aU x < and 11r(x) = 0 for all x t,

Proof: For x E+, Hz(x) > 0 from (99) and Hi(*) C Hz(x) > 0

from (90). Hence, by (85) and (89), Hr(z) > 0 for x E+, r r, 1.

By (91), Hz(x) = 0 for x> n and for x The remainder of the

theorem follows immediately from (85) and (89),

The notation I is used henceforth to signal the ends of proofs.

The Integral Operator A

We now introduce a linear integral operator with domain and

range contained in the set of Lebesgue measurable functions defined

(98)
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On the non negative real axis. For each function f such that the right

member of (100) exists for all > 0, let ni denote the function defined

by

Af}olsti0

or, equivalently, by

(AfHT) Ots

For (T) Eg Tn,

(ANT) *
*co

it

* (111t)

k=0

e

f(t) dt,

(ANT)

1XT) 1 H2(T),

f(T) E, ===g1> (Af)(T)

, (101) yields

B (97), each of the preceding improper integrals exists, It follows

from (86) (87) and (95) that, for n

dx +

(101

where, in (103), 1 is an abbreviation for the function f(v) a 1.

Define Arno 333 = 0, 1. in the usualmanner: no is the identity

(100)

(102)

(103)

(104)

operator on the set of Lebesgue measurable functirms defined on the

When 0 or he summation is not present and
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non-negative real ax el, for m> 1, Amf f) whenever the right

member exists. Denote the domain of by D(Am). The following

theorem contains several properties of these operators.

Theorem 7. U f is measurable, g D(A), anand If gi then

C D( Am). If 1, g C D(Am). then

If f is measurable and bounded, then f D(A) fofor all m

Proof: From (85) and (l00) we get the first assertion of the theorem

and, by induction, (105). Let 4. E D(A), 43> 0. It follows from (89),

(101) and the fact that H (0-) > 0 that Akii>

for m Ix I. By induction, it holds for in

g 0, and Ag g. Induction yields g 13(A ) and 0 Am 1E1

If g > 0 then 0 < Aing, and if Ag < g then Arn+lg Amg,

B (91) and (94), 0 H (a) < 1. B (103), 0 <

the preceding analysis yields 1 D(A )

< A + 1 ft

Therefore, (106) hol

Suppose that g e NA).

> O. By the first assertion

Therefore,

ded, continuous ====> continuous. (109)

Let f be measurable and bounded ff< M < co. Let g(r) E M. B

(107), g.D(A ) dO<A

of the theorem, f c D() for in r 0.

Theorems Sand 9 state further properties of the operators A

Theorem 8. Let f D(Ain) Then

f> 0, f neat-decreasing A f non-decreasin (108)

m > O. (107)



Proof: From ( 0

*OD

(Af)(T) (Af)(7' )

-t).f(t)

This identity, (85), and (86) yield 108) and (109) for in Induction

completes the proof.

Theorem 9. Lot f D(A), Then, for r

.4qt)

1,, Az

t f(t)dt H oil go t -r
Od

(x) gar

This is the first equation of(111). Also by (89
.7. 03

H(0+) f(t) dt t)f(t) dt + -t)f(t) d

)f(t)dtdx.

i(t)Cit +flrfo0 °t)f(t)dtdx +I -t)f(t)dt.
ox

Proof: From (90) and (100), the left members in (110) and ( 11) exist

d 024 is satisfied. Using (19) we obtain

0+) f t)
cf)1" 9"1..

tg(t) dt =
* 0

=for( t)f(t) dx dt
4r.

t)f(t) dtdx.
t o



This is the second equation of (111).

3.4 The Integral Equation

Consider the problem for f defined by

i[Hr fir ) f(t) dt +
o ,r

lt t
1 I x-

/3 CO I'

= Iogt) tit 4,

4) 0 7. 0

I Af,

Any function which satisfies (112) also satisfies the integral equations

which are derived by repeatedly integrating f Af. The first two of

these equations are included in the following theorem.

Theorem 10. If f * a solution of (112), then

of(t) dt +I

-t)f(t) dt

°

T

001 T -t )f( t ) dt i
T

ff 0.

fo

Proof: From (92), (100), and (111) with r=

-t)f(t) dx dt

-t)1(t) dt

[(Af)(t) fttd d

-t)f(t) dt, ( 13)

4)1(t) dt

i T

f(t) dt + Af (

o 0

f > 0, (112)



This establishes (113). From (98), 113), and (1 1) with r =
foe

-two di
.fc°

)1(t) di

Since (113) reduces for 0 to an identity, an equivalent state-

ment is that the left member of (113) is constant. According to the

following theorem, this constant is positive.

Theorem 11. If f is a solution of (112), thenf H(-t)f(t)dt 0 r>=

Since Af (100) yields

4)f(t) di 0 for some r>

We shall prove b

=1T

X

.[...f.
-t)f(t) dt -t)f(t) dt

T CO

of

ci

I: -t)f(t) di dx = ,7
o 0

(115)

It suffices to prove that 0. It follows from (115) and Theorem 6

that gt) o for almost all t such that 0 < t < - ;. If ( 100) aut

(115) give Af e 0, f O. Suppose that >

induction that

f(t) = 0 for almost all t such that 0 <t < 1 (116)

where g We have already shown that (116) holds for m 1

Assume (116) for m = 1, share a is fixed arbitrarily. Then
co

mr-ogt) dt 0 and by Theorem 6,
J

H3(r-t)f(t) di=



T-t)f(t)dt for T > .e., for 7 >

Hence (116) with m n gives

f(T) = (Af)(T

f(T)1

1. u. b. Air); T

H(r-t)f(t) did, AT) (kr

(nt- -H (-Digt)dt = O.

t)f(t) dt.

34

(117)

g

(13,4)t41

We reverse the order of integration and refer to (89) to ge

Assume that f satisfies (112). B (110), (114) and Theorent 11,
co

21°

By Theorem 6, H ( g) = 0 and H -t)> 0 for 4 <

feriae, <t <(n+1). Therefore f(t) = 0 for almost all t such that

< t < (n+1)e. and (116) hot& for na n + 1. B indoction (116)

holds for sn 1, so that f(t) 0 for almost alit >0. B (100) and

(115), Al E01 f o 0.

Theorems 10 and 11 will be used to prove that a solution of ( 12)

is necessarily positive. In fact, a stronger result is obtain,.

Theorem 12. If f satisfies (112), then
2- ao

C H3(vd
I H2(-t)f(t) dts

This result and (104) and (106) yield (117). Then (118) an (119)

follow by means of H (r) > 0, H (0+) > 0 and Theorem 11.

We are now able to prove that if there exists a solution, f

(112), then the set of positive multiples of f is the complete soluti
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Theorem 13. Let f satisfy (112) Then g satisfies (112) if and only if

g bf for some positive constant b.

Pro*: Let g satisfy (112). By Theorem 12, f> 0, g > 0. Let

g bf where b = g. 1. b.

Lb. {44T); 7 0

Conversely, if g

The substitution of dr + g(T) for f(T) in f Al yields, upon reference

to (104), g Ag = H3. Consequently there exists a solution to (112)

if and only U there exists a solution to the problem for g defined by

(120)g Ag

CO
We shall show that the Neumann series, A H , converges to a

function which motion.** (120) In order to do this we need a few

preliminary results.

B (103), 1 - Al H According to the following theorem the

Neumann series associated with the integral equation g - A

converges to the solution g(r)

Theorem 14. For each 7 0,

4
1 (121)

= (122)

ger)/g7); T

V OD INT) (123)

g('r)

By Theorem 12, i 0. Hence, g bf and

hi for some b > 0, then g satisfies (111).

g(r)

Convergence in (122) and (123) is 'uniform in each finite 7-interval.

Proof: Since H 1 .Al and Aral exists for m 0, A H exists for

>0 Then Atil, > 0 an



v v
> 0 and Z A H Z A (1-Al hick is equivalent to (121).o o

It follows from (107) that the left member of (121) is non-negative non-

decreasing in v, and bounded by 1. Therefore, for each 1> 0,
co ni

44T) = (A Hz) (T) exists and 0 <4, .1 1. Since Al exists, Lebesgue' a

dominated convergence theorem implies that A4i exists and Ati1 =

- Hz. Hence, 4, - AtO H2 I - Al and (1-4) zt A(14).

Suppose that 1-4i # 0. Then 14 is a solution of (112) which, by

Theorem 12 is unbounded. Since this is a contradiction, 14 0

(122) is established. Clearly, (121) and (122) imply (123).

Choose x> 0 and E > 0 arbitrarily. Choose k such that

1)(x) <E for in k. By (107) and (108), 1)(T) is positive an

non-decreasing in T. Hence, 0< (A1111)(7) < e for ra > k, 0 <r x,

and the convergence in (123) is uniform in each finite T-interval.

In view of (121), so also is the convergence in (122).

The next theorem concerns the existence of the Neumann series

solution of (120).

Theorem 15. The series ( )(7) converges uniformly In each

finite 7-interval. The function defined by
co

(124)

is continuous and

Aó H3, (125)

0 < C. (126)

Proof: Since 0 <H3 < and CHI)(Am) in 0, it follows that

D(i) and 0 0. Hence, by (122),



f
-ogo -t)f(t) di, (130)

where F is an arbitrary positive constant. For each function f which

satisfies (112), the right member of (130) is constant by Theorem 10

) exists and 0 < 0011 C. We have by induction from (100) and

Theorem 6 that (A222/13)(v) >0 for mn T < (XXI 0. There-

fore, 6>0 and (126) is established. By Lebesgue' 8 dominated con-

vergen.ce theorem, Av mEA,' m+1
= 6 H so that 6 satisfies (125).

By (126) and Theorem 7, Ise D(^) and 0 <A C A 1, Zn 0.

Hence, Theorem 14 gives

A 4iXT ) 0 uniformly in each finite T -interval as m co. 127)

Since, by (125
v -1

A ** A (128)
in= 0 m= 0

the convergence in (124) is uniform in each finite T -interval. The

continuity of 6 is a consequence of (109), the boundedness and con-

tinuity of H3, and the uniform convergence of (124).

We can now express the complete solution of (112).

m 16. A function f satisfies (112) if and only if

f(v) b 6(r)] (129)

for some positive constant b, where 6is given by (124).

Proof: Use (104) and Theorems 13 and 15.

It is convenient to add a normalization condition of (112) in order

to determine the constant b. Proceeding by analogy with the classical

transfer problem, we shall use for this purpose the condition,



and is positive by Theorem 11. Therefore the cotdithm,

4g(t) 4

+ dt

f. (x)40 ay].

Equation (133) now follows by means of ($9), (97) and (126).

5 Expressions for 3( ) and .111(

Before the analysis of $4. 4 can be applied to the problems

(131)

d f is iv** by (132). Us

3(7) and SILO some additional notation is required. When H1 K1 we

for an arbitrary 0, may be used in place of (130).

Theorem 17. The problem defined by (112) and (131) has a unique

solution f which is given, by

kr) = (F/4'() 140] (132)

where gUs given by (124) and

Proof By Theorem 16, f satisfies (112) and (131) if and cal

AT) = b T is(y)] and F = 4by where
oe

H (-t) t + i(t) dt. By

Theorem 11, > 0. Thus, b = Vity

(114) with f( ) t + i(t), we obtain

dx = (133)



shalt replace A by rand Is by q. When H

d by qn. Thus, from (100) and (124),

(11)(v) f -t)f(t) dt,

(1)

By the remark following (88), C may be taken as Unit)? who

or H Se (126) yields

0 < q < qn (138)

Except for change of notation, the second of these results is contained

In (51) and(57).

We are now able to present the promised solution* to the problems

for Air, p.), In(T, IL) and .721(T).

Theorem 18. There is a unique function J(i) which satisfies (12)- 14)

and a unique function Sri(which satisfies (70)-(7Z):-

) + q(v)] ,

Jrj ) [ + %tr.)]

we shall replace A b

The hmetion 1(v, p.) given by (11) and (139) is the unique solution to the

classical transfer problem. The function given by (29) and (140) is

the unique solution to the problem for ln(v. IL) presented in $2.1

(139)

40)



Proof: Theorem 17 applies When H

= X (0+) + K (0-) = 2K (0) =

d (19) give at Ku (0+) + Kn

40

have from (15) that

= 1/3. When H (74)

) ani 1/3. Thus, (132)

reduces in the corresponding cases to (139) and (140). The re-

mainder of the proof consists of mvoking Theorems 2 and 5



Chapter 4

NUMERICAL INTEGRATION

Several different methods of numerical integration have been

employed to obtain approximations to I(r,p.). We have already

mentioned the Gauss and double-Gauss quadrature formulas. In

addition, the Newton-Cotes and Tchebycheff formulas were investi-

gated by Kourganoff and Pecker (8, pp. 247-263). Of all these

methods. only the Gauss and double-Gauss satisfy condition (18) for

an infinite number of pOsitive integers, n. Hence, as far as is

known, only these yield infinite sequences of approximations to

Both ethods are described below.

1 The Gauss Quadrature Formula

Let xni
Pn(x), n> 1, ordered such that x

<
For each n> 1

each function g(x) defined for -1 <x < 1, the Lagrange interpolation

formula provides a correspondence,

be the zeros of the Legendre polynomial,

Since this correspondence becomes an equality for x lent,

= 1, , it becomes an identity for g(x) an arbitrary polynomial

of degree less than a. From (141), we obtain for each a?; 1 and each

integrable function, g(x), the correspondence

(141)

(144



where

This is one form of the Gauss quadrature formula.

It is well known

> 0,

..zn,n.

For a generalization

yields

k xni ni
t=1

(145) se , p. 41). For g =

g(x) a polynomial of
degree less than 2n.

0 'VI I 4i.

In their papers, Wick and Chandrasekhar used the Legendre

polynomials. Pzu(p.).n 1, and denoted the zeros by Nit,

*1, , An, ordered according to (17). With the proper chan

of variable, (142) and (145) assume the forms of (16) and (18),

spectively and (147) implies (19). Therefore, the Gauss method

leads to an infinite sequence, In(v, is) of approximations to 1(r, &)

and these approximations are given by (65) . (67). Some of the ex.

pressions occurring in Chapters 2 and 3 can be simplified for this

case, since (144) implies

(143)

(146)

(147)

(148)



For each n > 1 and each integrable

0 p < 1 we have from (142),

2 The Double.Gauss Quadrature Formula

dx

Thus we have a correspondence,

(I 411) 44).

01 0

a

Then (152) becomes

I.

or an integrable

obtain from (150)

it

correspondence,
f o f

di4 g A-0

Define a and for i

ction AO defined

ction f(p.) defined for

(154) the correspondence,

(149)

(151)

For each integrable function f(p.) define or 1 < 0, 150) gives a

and 0 < < 1, we

f(14

43



which is of the form of (16). For obvious reasons this correspondence

called the double-Gauss method of numerical integration.

It follows from (145), (151), (153) and the ordering of the that

and (18) are satisfied for n> I. To prove (19), consider the pre-

ceding expressions with AR) m m < 2.n. By (146) and (151),

1,0 =

-n
V rn 1

L, ninIm 1--"T
igt4

Thus, (150) and (154) are equalities if f(p.) Is a polynomial of degree

Less than 2n.

Clearly, (156) implies (19) for m = 0 and 1, 31 1, and for

, n > 2. Hence, the double-Gauss method yields an infinite

sequert:ce, of approximations to I(T, 0). These approxima-

tions are given by equations (65) - (67), except that for n the

coefficient F must be replaced by F. The result for n 3C

44

( 55)

From this result (153),

Xani ni 2111 Tfr"4":71*

=
m z 0,1, (156)



is the well-known approximation of Schuster (12 pp. -5

Schwarschild (13, pp, 41.53),

H. 3 Numerical Integration of Continuous Functions

Consider the Banach space B of continuous functions,

1, with the norm of uniform convergences

I I

a and p,
no

An a
1=±1

The integriusd in (159) is continuous in the interval

Define linear functionals A and Anon B such that
fl

f(p)

i=1

where the parameters antand p. correspond either to the Gauss or

to the double-Gauss quadrature formula. Since, in either case,

(157) and (158) can be replaced by

view of (18) and (19), with m = 0, Al = Al 1 for 1 and

45

(157)

(159)

(161

( 60)

.1 g .In



In the remainder of this section we establish certain properties of

A andA > 1, which will be needed in Chapter 5. These propertiesn'
are well.known results in paraphrase.

Lemma 1. A f At for each f B.

Proof: Choose f E B and t > 0 arbitrarily. Using the Weierstrass

theorem, choose a polynomial p B such that 111-pli <

n> -1(degree of p), it follows from (146) that Aup Ap. So, b

Af 1 IAIP-P) I + IAnP -AP I 4* IMP -i) I ,1 Z I

for all n sufficiently large. I

Lemma Z. Let f(x,)be defined icor 0 A '1 1, 3t1 <z <z", , where

Ox' <u. Let ul < CO and, for each fixed x, assume

that f Then A f AI uniformly in x.

Proof: For an arbitrary > 0, choose an tate e

such that x'

IAnf(x , A

mina 3.

> 0. L

for each f

Proof: For

/2 for x >

y Lemma

<... < d xj

it itn. Choose x arbitrarily such that x' < x < x" and j such that
xt

lx.xj I /3/4. Since ).4 lf(x,) -f(xj, 13. Then

'M(x, it) AnA p.) I IAf(x, A) Agit.), A) I + I Af(x. ) Anf

I< t for it %.

) be defined for 0 1 and 3e

< f(x, -4. 0 uniformly in is,

e that f e B. Then A.nf At uniformi

> 0, choose x > xl such that If(x, A

fl WI+ 1Afl < for a> 1,

baze exists a0
n

such that IM.iAj for no.

ti,

os, where

there exists no such that Af(xj 14) Anf( 3, 0 <



Chapter 5

FINAL CONVERGENCE THEOREMS

The principal results of this chapter and of the thesis are:

either the Gauss or the double-Gauss quadrature formula is used,

thenn(T) -0. J(i) and I (dr 14 ler, , IA) uniformly for each bounded sub.
n.

set of the respective domains. The plan of the chapter is as follows.

We first derive various convergence properties of the functions

K (x) and Kr(x) These are used to prove that the general term ofnr
the Neumann series (137) for q(r) converges to the general ter

of the Neumann series (136) for q(r). The series for the qipt),

n > 1, are shown to be equiconvergent. Thus, the interchange of

Limits is justified and qA(T) q(T), which is equivalent to

(Iner) -1.3(11. Then In(T,n) I(7. p.) follows by means of the expression

for these functions in terms ofn(T) and AT).

Even when not explicitly stated, it should be understood that the

quadrature formula involved is either the Gauss or the double-Gauss.

i*1

ISIZA
(163)

5 1 Convergence Properties of e Functions X ( ) and Xnr

For either of the quadrature formulas under consideration.

n. 1Lna Therefore, by (73)* a d

r (16Z)

equal for n r > Z, we shall define Knr (0) for these cases by (162).

for a> 1 1 and x > 0. Since Km,(0+) and Xar 0-) exist and



By 15

ICr(x)1

for r 1, x> 0 and for r> 2, x> 0. We shall prove that

K(x) Kr(x) as n In view of the symmetry relations 163)

and (165), it suffices to consider x> 0.

In terms of the linear functional* A and A introduced in 4 3,
K

r(ix) A Or (x.

K(x) I An Or(x, 0),

whenever the left members are defined wher

ip. r < 1, x > 0, >(x.p.) r 2, x 0, IA

It is understood in (168) that, for fixed r and xe * is defined by

continuity. Thus, r(x, 0) 0 for x> 0, * (0,0) 1, and Or(0, 0) 0

for r> 3. From (168),

aer
( 69)

8.r r.4

Therefore r
on-increasing in x;

non-decreasing in 'A,

non-increasing in IL,

It follows that, for fixed r

(. 64)

(165)

r < 1 0 fj, < x (in)2, IL 0(
1, IA x/2 (173)

d x > 0, ( attains a 3214.73,1121ATA



for Z Thus, by (168),

01,(3Los.) r)/
In (166) and (16 ) Or(x, p,)is used only for 0 <

(168) and (172) that

lir(x' IL) '21 °r(

It follows from (169), 174) and (17

Lemma

(176),

Or

Knr(3t) K

r)/

uniformly in }J, as x -*at,

When r = 1 the convergence is uniform for xo x < co for each

x > 0. When r > Z the convergence is uniform for -co < x < on.

Proof: We shall make use of Lemma 3 of Chapter 4. By (174)

(175

4

> x0 0,

0,

(166), (167) and the even character of the functions K(*)nr

With thesis preliminary results established, we are ready to prove

the convergence theorem for the functions Kor(x).

Theorem 19. Assume either the Gauss or the double Gauss quadrature

formula. Then



etx. )

xit,t,
(Zs

0 < < and x = 0 where E is arbitrary such time 0 < e <

From the preceding analysis, there exists n.0(t) such that

(X ILLei. 0<z<
Note that 6 is cont1nuus In p. for each fixed a and that since

0< p, e(34,

0P.) e(xs
By the triangle inequality,

kiio .0)1 f An(e.i.) Au -Al A(1.0)

where 1 denotes the function which is identically 1. Since A.A1 * Al,

An1 Al I g= O. Since0<ie<1.
t IAI.A6 and Ani -An <

the assumption that 0 <x <
rx

0 <
0/0

SO

and Kr(x) give us the statements of the theorem for r 1 and r 3

and the result that K (x) K (x) uniformly for x < Ix I OD for each

xo > O.

The remainder of the proof will establish the uniformity Of the

convergence of Kn (x) for -co < z < u We shall consider, in turn,

(119)

, it follows from (161)

We also have (recalling

K (x) Kn (x) I < E, n n0( ), x>2 (178

Now, in this paragraph, let 0 <x < Let



K (0) 1/2(rnr

as n -4 co.

Kr))1

According to (15, p. 341), Anf Mai n-' co for each Riernann

tegrable function f. Applying this to the case with f(p.) = 1 for

ij, < and f( ) 0 otherwise, we have

This result can also be established by means of the separation

theorem (15, pp. 49.52) and the fact (15, pp. 343-346) that an 0

uniformly in i as It follows from (180) and (181) that there

exists n (E) such that 1An(e- )1 < 2c for n n (c ). All the terms

of the right member of (179) have now been considered. Thus,

(179). (166) and (167),

1% (x) -K 2(x) < 5E/2, (E ), 0 < x < .

It remains to consider
r-2Kr( 0) A (IA ) = ligr -1),

zAn(p,

B (164), (166) and (168),

By (167) and (168), K( O) =

As we remarked earlier (in the proof of Lemma

A p = Ap for each polynomial p of degree less than 2n. Hence,

(180)

(181)

« 2n + 1. (183)

The assertion of the theorem for r = 2 now follows from (178), (182),

(183) and the even character of Kr and Knr 1

For the purpose at hand we shall need Theorem 19 only for 1

2 and 3. Since no additional work was involved in getting the results

from

(182)



for r > 4 they were included. Similarly, we shall state the following

theorems in as much generality as is consistent with the desire not

to go too far afield.

Theorem 20. Assume either the Gauss or the double-Gauss quadra-

ture formula. Then, for each r > 2,

K (x) K(0) uniformly n as xnr nr

For each r

there exists x* > 0 such that Kr(0) Kr(x) I < E /2 for

Ix' < x*. According to Theorem 19 there exists n* such that

Kr(x) - Kr ( ) J < /2 for a > n*. We shall insist that n* > r/2. Bn
(183) and the triangle inequality, Knr(0) -

K(X)nr

Fix E > 0 and r>

< E for 0 < z*, n n* Since the functions Kur(x), n 1, are
continuous at x st 0, there exists x> 0 such that

5 1x1

In particular, let % = x* for a > Then

xI

This establishes (184). The proof of

) Knr

where x minx ;>
11 =

(185) is quite similar.

uniformly in n as x

arbitrarily. Since K(x) is continuous at

5 2 Convergence Properties of the Operators r and ra

Let E denote the set of bounded measurable functions defined on

the non-negative real axis For each f let

Knr(x) I = Kr(°)
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(185)

(x)nr

Knr( ) < E.



1 0 u. b. At) I;

The set E is contained in the domain of rand in the domain of for

each 32 > 1. By Theorem 7,

/rig g ffill and IT

The following theorem asserts that the operators 1"n, n 1, con*

verge uniformly to Ton E.

Theorem 21. Assume either the Gauss or the double-Gauss quadra-

ture formula. For each f E, In rfI 0 as n

Proof: Fix t > 0 and f E arbitrarily. By (164) and Theore

with r 2, there exist > 0 and z > 6 such that

According to Theorem 19 there exists no such that

tt( (x)-Kni(x)1 < /( -6) for 65x gz,n > n- -**

)From (134), (135), (163) and (165) we obtain krntr(r1)(

f(304 (x)100-x) dx 5if if

$ for eachfE. (186)

iQ

(IC 4. Ka

Therefore, by 107), (100), and (89), krf)(114rnner)1,1 1°11116

for n %. 1

It follows easily from Theorem 21 that, for each In 0, the

tors rum, n 1, converge uniformly to rrn on E. This is -a s

case of the next theorem.



rf-r rf-r f f-r f= A /2 11 n

co. So the theorem is valid for m =

xi( rinf) ra(1"71 f) I, induction complete

According to (136) and (137),

try: 0

Lim Um=
1P- t31/ n-4eo

-r fl + If-fa I

Since rni+1

the proof.

The functions K and Ka belong to E and, by Theorem 19.

0 as Hence, Theorem 22 and the triangle

inequality imply that

its can be interchanged in (191) it will result froni (189) that

(191)
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Theorem 22. Assume either the Gauss or the double-Gauss quadra-

tura formula. Suppose that f e E, ff E for n >1, and if-fa 0

as n Then for each m 0, f-T7 0 as

Proof: The case with m 0 is obvious. B (186) and Theorem 21>

q as n The next theorem provides a sufficient condition

for the limit Inter chang namely that the series for the are
equiconvergent.

Theorem 23. Assume either the Gauss or the double.Gauss quadra..

ture formula. For each a>



The convergence is uniform with respect to n and r for n

Proof: According to (128), ( 38) and Theorem 7 with the approp

changes of notation,

Choose r > 0 and E >

such that fcrv*1)(1)

for each r >

I there exists n such that fir rv*i

triangle inequality and (107), (r vixir)f< E for n > a 0 < < r,- = 0
v*.. For each > I there exists, by Theorem 14, an integer vit

such that 1( :1)(r)

n and v mo o

n'> 1 and the theorem follows from (189).

5. 3 The Conve gence of to gir) and of p,) to I(Ts

With the aid of the machinery of 55. 2 at hand the convergence

theorem for the functions 3n(r) is almost immediate.

Theorem 24. Assume either the Gauss or the double-Gauss quadrat-

ture formula. For each > 0, q(r) q(r) and 311(r) gar)

uniformly for 0 */' 'to as

Proof: Frora (136) s.nd (137), 1q-

for v >0<T<T. Le vri v* for= = = 0
{v; >I Then kr v1)(711< E for v > v

11 = = 0

"rn<dr.

Choose E > 0 and >0 arbitrarily. A

o arbitrarily. By Theorem 14 there. exists v*

c /2 for 0 ;<, = 0 By Theorem 22 with f

e /2 for a > By the



m=

and, by (139) and (140), 13(1)431(T) Fe for

From (11), (138) and (139). we obtain

for 0 .1 n?:1. By (190)tke exists wit such that

We use (193) and the analogous expressions forI

by (68). to prove the final convexgence theorem

Theorem 25. U the Gauss or the double-Gauss quadrature formula.

is used, then for each > 0, I .14 ) uniformly for

0 < To and -11 .g1<j1 as
Proof: Choos > 0 and T > 0 arbitrarily, and X* 0 such that

By (138), (139) and (140),

J(r+ix)<F['r+x+1] and

Therefore, by (193) and 68),

p, :f +pAt

dx,

7 + X < F [T + X + 1

nn*. Therefore lq( ) gab'. )1

< 11 To >

(193)

0,
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Theorems 15 and 2 there exists v independent of n, suck that
v* vs



for0<7.<7.et 0<m.<1=

that 3(r)-3n(dr)I < for r, X*, 0 :1 To "1' X*-

x*

+tx
ix*

4.3.tx dx < E,

By the triangle inequality,

T To, The proof for the range

except that x* should be replaced by min (x

Then

<T<T 0;(g= =

t) < for n 1JP a*,

« 0 is identiea
).
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By Theorem 24 there exists 441 *mak
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