o CONVERGENCE OF THE |
WICK-CHANDRASEKHAR APPROXIMATION TECHNIQUE

PHILIP MARSHALL ANSELONE

A THESIS
submitted to
OREGON STATE COLLEGE

in partial fulfillment of
the requirements for the
degree of
DOCTOR OF PHILOSOPHY

June 1957



APPROVED:
)

Re/&acted for Privacy

G-

rofessor oi Mathematics

In cm)/w? Major

- Redacted for Privacy

Head of ﬁathom% Department

Redacted for Prlvacy

Chairman of Eehm}. Graduate Qommm;w

mRedacted‘ for Privacy

Dean of Graduate School

Date thesis is presented /] c ©_, /945 /
Typed by Katherine H. Mawe){mm



ACKNOWLEDGMENT

I wish te express my great appreciation for the encouragement
and guidance given me by Dz. Arvid T. Lonseth during the research
wmﬁh this thesis represents. I also wish to thank Dr. Michael I.
Aissen of The Johns Hopkins University Radiation Lébumtﬁr'y for
‘many valuable criticisms of the manuscript and for aid in preef-
reading. ‘



TABLE OF CONTENTS
Page
Chapter 1 - INTRODUCTION 1}

§1.1 The Classical Transfer Problem ‘ 1

§1.2 An Equivalent Formulation of the Classical ;
Transfer Problem 4

§1.3 Methods of Solution
§l.4 Summary of Later Chapters 7
Chapter 2 - GENERALIZATION OF THE ;
WICK~-CHANDRASEKHAR TECHNIQUE 9
§2.1 The Problem for In(fr, w) 9

§2.2 An Equivalest Formulation of the Problem for

§2.3 An Expression for xai{*’ ”‘ni) 12
§2.4 Determination of the Constants 15
§2. 5 Final Expressions for J’u(ﬂ and I (7, p) i8
~ Chapter 3 - GENERALIZATION OF THE ,,

SCHWARZCHILD-MILNE INTEGRAL EQUATION 22
§3.1 The Integral Equations for .Iu('r} 22
§3.2 The Functions Hx‘,{x) , 25
§3.3 The Integral Operatora ‘ 28
§3.4 The Integral Equation f = Af o
§3.5 Expressiens for J(r) and In{ﬂ- 38

Chapter 4 - NUMERICAL INTEGRATION 4]
§4.1 The Gauss Quadrature Formula  a
§4.2 The Double~Gauss Quadrature Formula 43
§4.3 Numerical Integration of Continuous Functions 45



Page

Chapter 5 - FINAL CONVERGENCE THEOREMS

§5.1 Gmwrgmm Properties of the Functions 47
ariX) and K (x) |
§5.2 Csmve:geum Properties of the Opaman I aad I 52
§5.3 The Convergence of J al7) to J(r) and of 55
xnf’rs 1) te v, u)
58



CONVERGENCE OF THE WICK-CHANDRASEKHAR
APPROXIMATION TECHNIQUE IN RADIATIVE TRANSFER
Chaptor 1
INTRODUC TION

The distribution of radiation intensity in an emitting-absorbing.
scattering atmosphere has concerned utrmhysiciau and nppiicd
mathematicians for over a century. The fundamental physical problem
{11, pg; 65.88) leads guite naturally to the transfer equation, which is
an integrodifferential equation with intensity as dependent variable and
position, direction, time, and t@matﬁ&mu frequency, independent |
variables. We shall be concerned with the so-called classical transfer
problem, which éarmi to the distribution of intensity in a plane
parallel atmosphere under the mi:umptimx of time« and frequency-in-
dap&ndmco, isotropic scattering and no emission or absorption by the
medium. This problem is éucrihad below. For more precise
definitions of the phﬁich terms involved and for details of arguments
see (4, pp. 1-15) or (9, pp. 1-24).

§i.1 The Classical Transfer Problem

snéwn that the atmosphere under consideration is bounded bj a
pls:io surface §, that p is an arbitrary point in the medium, and that
‘,é, is an arbitrary unit vector bound to p. Let 7 be the normal optical
distance from p to S and u be the cosine of th& a.ngie between d and the
outward unit normal to S. Then the intensity at p in the direction of
d is defined as the energy per second per unit frequency {or in all
frequencies) passing through a neighborhood of p per unit area



perpendicular to d per unit solid angle about d. Because of the
symmetry of the medium the intensity may be considered as a function
of v and p; it is usually denoted by I{r,u). The general transfer
equation becomes, in this case, |

tt-gg-,—w' - = Iy ) ‘*% f

1
It ) ot ow

The above and all other intagrals will be understood to have the sense
of Lebeague, |

The integral term in (1) is denoted by J(7) and is called the
average intensity. Another iimpbrtmt integral agsociated with K7, p)
is the net flux,

1 ,
Fa2 f X7, p) pdp. (2)
-1 - :
Since termwise integration of (1) yields § = 0, ¥ is independent of 7
and therefore is constant for each '#aluﬁén of {1). |

In the classical transfer problem th« h;tzvnoﬁpham‘ia of infinite

optical depth, f.e., 0 &7 <, The boundary conditions are

“a' Fﬂ) ® et . B < 93

lim
70 ®

(3)
T g =0, p>o0.

The firajt statement expnain the condition that no radiation
enters the amésphurﬁ through the surface 5, The assumption of an
everywhere finite nmenagative solution of {1) leads to the condition
(7. pp 2&421) that a'ﬂ"‘, Kr,u)~ 0Oasr + cofor almostall u >0, Itis



customary to omit the phrase ""almost all" since, as it turns out, a
solution of the problem given by (1), the above boundary condition at
7 = 0, and the weaker emﬁiﬁm at 7 = 00 also satisfies the stronger
condition at v = oo given in (3),
Since the integrodifferential equation and the boundary émdiziaun
are homogeneous, each multiple of a mlxztim of (1) and {3) is also
a solution. Because of this fact the net flux F in (2) may be con-
s;dnxeﬁ as an \uhitrary positive constant; thus a normalization con-
dition is obtained, | |
Fﬁlewiﬁa is a complete m&h&m&tie&l #tntemant of the classical
transfer problem, | We seek a function I{, ), defined for 0 <7 < o0,
-1 § £ 1, such that . .
7, p) 2 0, r.p) § 0, - (4)
which satisfies the in@ngrodifiwintm equation,
. . 1
p BEE < wr - 3 f Yrop')du's (5
, =} o
the boundary conditions,

Ko, ) = 0, ‘ p<o,

pm e =0, w>o,

and the normalization condition,
01 | |
Fﬂzf Hr, ) g dy, N n
RS | V' o ‘ :
where F is an arbitrary preassigned positive constant. Conditions em
differentiability and integrability af I{r,p) are im;:l_.ieit in (5).



§1.2 An Equivalent Formulation of the Classical Transfer Problem

From {5) and the eﬁmﬁmz for the average intensity,

ol
J('!') = % f I{’r: Fi dp., (8)
‘ wl \ ,
it follows that
| " L2 "; ) o ;(,»,,,,; - J(7). | ' | {9)

~ When p is fixed, p # 0, ‘,(93 is a first order ordinary differential
equation in I(7, u) with constant coefficients. The general mmtiqn is
O"

Kr.p)s Jr',p) AT M, [

| J"”"‘*Wm%, w¥0,  (10)
01" .

where 7 and 7' are arbitrary. It follows from (9}, {10} and {6) that

Ur, 0) = J(r), )
, ] )
Kr,p)= [ ol7-t)p i, <o, ay
-
o B . ‘ , r
7, 1) =f ch""t‘)/“ Jt) %» , >0,
i ? ) ) ’ J

'i‘ha existence ﬁf-l function, Ir,p), which satisfies (4), {5) and {6)
implies the existence of the impm#ﬁr integral in (11).
From (4), (8) and (11), | /_
3 3 0, Itr) 0. gy



The following theorem provides an equivalent formulation of the
claseical trmaiér pmblm_. ﬁingo the prmﬁ is almost immediate, it
is omitted. - | f: |
| Theorem 1. 'i‘hu classical transfer p:‘c’blém has # solution if and only
if there exist im«:tkma l('r. ) wd J{r) whic:h utiafy {(7h (S). (11) and
: (2 ) : , . ; ‘

§1.3 Methods of 5‘911:1&1@‘

The substitution of {11) into (8) ylelds

e C ae
Hr) =3 f J g Loy s g f J oA gy £ g,
=1/ o , o & ¥ ,

Reversing the order of integration in each of the above double
integrals and then replacing u by ~u in the first integral, we obtain

| . pT pL o | @ pl ,;
m)u%ffJ‘""”W%:maw%f f e“_’f‘"’ﬁ% ) dt

o

 Similarly, the substitution of (11) tmto o yields
F s ..af [ otk g, ) at + zf f T ME 4 3y a.
These eqmtium are expressed more compactly as

Ny = [ K,(r-t) J(t) at, o (13)

LA -



. ’ | oo
F= 4 f Rz(nt}x(_t) dt + 4 f K,lrst) J{t) dt, (14)

o T

where

The funatims Kr(:‘)i, r23, are introduced for later convenience, "
" Equation (13) is known as the Schwarschild-Milne integral equation
for J(v)f‘

It {11) and (12) are assumed, (8) <oms=> (13) and {7) <s===> {15),
In view of Theorem 1, we have another farmmtifm«ﬂf the classical
transfer problem. o |
Theorem 2, The classical transfer pxabiem has # solution if and
~only if there exists a function J{v), which satisfies (12), {13} and
(1&), in v?hich case I{r, ) is given by (11). ,

Hopf (‘5{, p. 381) obtained a solution, J(7), to the problem defined 4
in Theorem 2. This solution is presented in Chapter 3 below. Hopf
also proved (6, pp. 155<161) that his solutien is unique. Hence, |
there is‘ a ﬁn{qm: solution, Ir,u), to the classical transfer prnﬂm~ |

Since Hopf's expression for J(r) is in the form of a slowly con-
verging infinite series, the terms of whiek are successively more
difficult to calculate, it is not used to obtain numerical results, A
 more important limitation of Hopf’ s method is that is generalizes to
prbvida solutions of only a limited cluavcf trmuiat‘pmbiemu. For
these reasons and for their own intrinsic interest, other methods of



attﬁe’kingthe_(:iusie#l transfer problem have been developed o

(s, p;,é, 86-225), A method of successive a?proximatiam due to Wick
{16, pp, 702-710) and extended by Ghandusekhar {1, pp;." 76»?9,&:@

2, pp. 117-125) involves replacing the integrals in (5) and (7) by the
sums corree#mding to a particular quadxatm@ formula and solving
the resulting problem, If the number of subdivision peints is varied

2 sequence of approximations, I (r,p), may be obtained,

The convergence of the Wiek»fchaudmaekhar apprMuﬁm

tec:}miqui is the main concern of this thesis, Chandrasekhar
| assumed (1, p, 84) that the sequence of which he derived converges

to I{r,u), but he apparently made no attempt to construct a pméf.
However, he did suggaat (3, p. 189) a method for proving the con~
vergence of I’#{ﬂ, 1) to (O, 1) ‘This restricted cmvergwnén question
wés also considered by Kourganoff (9, PP, 153-159) who obtained
“several minor results but no convergence theorem, Since the
approach employed by Chandrasekhar and l;aurgmmff seems to involve
insurmountable mathematical difficulties other methods have been |
devised by this author for dealing with the convergence problem,

§1.4 Summary of Later Chapters

The Wick-Chandrasekhar technique is generalized in
Chéptw 2 to apply"ta a certain class of quadrature formulas, The
details of the analysis coincide in ‘many respects to those of the -
" treatment of Chanﬂraéekhar {4, pp. 70-79). |
In §1. 3 above we formulated a problem which invaivaa Jir) but
not Xr,pu). The same procedure is used in Chapter 3 to obtain a
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- problem for the approximate a#ar&za intensity, }nkf); which does not
involve In(v yia}. Then a Qnim general problem, which incindes these
two problems as special cases, is defined and solved. The solution
reduces to a pair of very similar expressions for J(r) and J (7).

- Both Wick amé Chandrasekhar used the Gauss quadrature formula
for 2n subdivision points in the interval -1 < €1, Sykes (14, pp.
377-386) used the n point Gauss formula separately in each of the
sub-intervals, -1 $p S0 and 0 g § 1. Details of these quadrature
formulas and their applications are recorded in Chapter 4.

In fﬁﬁaptur 5itis prwe& that if either the Gauss or the double-
Gauss quadrature formula is used, the coﬂ“pm&ms sequences
{Ja{%’}} and {xnf*r, ;;;)} converge to J{r) and Ifr , ) respectively. The
convergence is Warm for «1$pSlandd gy ;é*r o <@, where r



Cha.pter 2
GENERALIZATION OF THE ’WIGK*GWI)RASEKH&!{ TECHNIQUE

Wick and Chandrasekhar replaced the intagralx of the classical
transfer problem by tha sums mrm:pmdiug to the 2n point Gauss
qmé‘ntuxe farm&h. n > 1, and solved the resulting problem to obe
tain a sequence of approximations, {%{f, p)}, to I{r, p.). In the
axgﬁuinu&s uabﬁamng the existence and the uniqueness of the
- functions, I (-np,}, eartain properties of the Gauss quadrature
iarmma are a“mﬁal. Kmmaﬁ and Pecker observed (8, p. 248) |
that the Wi@kuCMudrtnkhur analysis goes through without change
for the class af quadrature farmuln having these properties. The
class of quadrature formulas specified by Kourganoff and Pecker is
generalized in the presentation given below. The derivation of the
approximations, tn('r,p), turns out to b# somewhat more complicated
than that of Wick and Ghandr#sekhar in the apagm case they con~
sidered. | |

In the remainder of this chapter assume that n is an arbitrary |
fixed positive integer.

§2.1 The Problem for L{r,p)

Choose éuhdimim points, Bt and coefficients, 3y for
i=%1,..., 2#n, and define the i@ilsaﬁing correspondence for an
azbitragv Lebesgue izxtegrnhle function, f{u), ’dﬁfima for -1 $p S ke

1 ;
[ fﬁ")‘ dp ~ %’ "ni ﬁ»ni)' {1 6,
Jwl .
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The range of the summation imiex'in (16)isi==1,.. ..# n. 'i‘ke same
summation convention will be followad thrcugm this chapter. smai?
larly, whenever any statement invelving the pmm: the a i appears it
will be understood, unless otherwise stated, thut‘ it hnidsﬁ for
i#*l,.‘a‘ 4 n. |

It is assumed that the By 8nd the "ni satisfy the cmditims.

“1 §?‘n;»;n{"' {”'u, | < »0'(”n1,{"‘{“nn,'§ 1* ' (i?}
ni

m

?"'fni ni

Condition (19) is maimlm to the assumption that the correspondence

m=90,1, 2. | (19)

in (16) is an equality for f{u) = 4™, m = 0, 1, 2. Examples of

quadrature formulas for which (17), /18) and (19) are satisfied ﬂre
given in Chapter 4‘

| Replace the hategnh menxring in the basic prnhlm by the

sums corresponding to them by {16). It is shown below th‘a't‘thnf re-

sulting problem has a uaiqm solution, xﬁm u), which depends para~

metrically on thc #ni and the a .. Thus, I (v,p) is defined for

0<7 <o, «1 $pg), and satisfies the relations,

Liriw) 2 0 Lirew) §0, (20)
‘I {"'g }t, ' ‘ ‘
B “""“5"’”” =1 ‘71 F»’ - % ?‘nj (‘n %nj)r v (21)

S 1(0.p) =0, | B <0, | (22)
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li ! ) i
Hm el lrpl=0, p>0, (23)

.‘I‘ha same constant, F, is mcd to normalize K7, u) and I ,{v, T
The condition, implicit in (24), that 2 m {'r, pni’ Fai is indepen~
dent of v is also a consequence of {19) md (21). Thus, letp =p .
in {21}, multiply termwise by 2a_, and sum on i to obtain

ﬁl (flﬁ- }
238, pmmwn’i‘_*..az?aﬁxuw,m)umw oToigg) Fage (25)

‘By (19}, ?a ai * 2. Tkareim'e, the right member of (25) is zero and

w2 Pt Ll gy = 0. (26)

§2.2 An Equivalent Formulation of the Problem for Ia(-n B)

By analogy with J{7) we define

Tlrh= §Fay Lirwy) (27)
Equation {(21) can now be written as
) ('!’v ;&) ‘ R
T8 ‘-‘-W*—-“ =1 ("hy.’ “J ('f) , | (33’

~ Frae#adms as in §1.2, we solve equation {28) to obtain
) : )
' 1!1(?‘0) = Jn("'}s

¥ .
ILirip)= f o7tk I it %. v p>0, ¢ o (29)
. (-] .

w 5 | .
xngur..'“) af? Q(T "‘t)\h‘ Jn{t’ %; i > 0.
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The existence of & function, I (7, ), satisfying (20)+(24) implies the
existence of the improper integral in (29), | |
| From (18), (20) and {27), J ('r}> 0., By (29) J (ﬂ 20 implian
that I (r,p) =0, which contradicts (20), Hence, |
I zo | | I(rdo. o

The following tﬁgoram is stated without proof, It is a new re«
sult, | ; | ; | ;
Theorem 3, The set of equations, {(24), (27), (29), (30)}, provides
an equivalent formulation of the preblem for I (7, ),

§2.3 An an;‘m‘ ifm' ;n{*re *"ni-)

The substitution of p = m in (21) yields a ﬁyatem of 2n ordinary
difimxmtw. equations, ‘

{7, } | ,
| “ﬂ‘&}?ﬁ» = L (s *"ni} %?aaj lTs bpgh (31)

for the 2n unknown functions of 7, Iﬁiw. pﬁ}; iz dlienes *n, |
Siziw the coefficients are constants, we seek solutions of the form

Liripy) = Cy ek, - o (32)
Substituting (32) into (31) and solving for C_,, we find
_ B’n |

C, . 433)

where | / N
| Bn:sé-%a%cﬁ. | - (34)

From (33) and (34),
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B =42 M
ils }Lmk
P
i1+ "nik *
For each root, k, of the characterisiic éqmuM- {35), thercisa

(35)

corresponding solution,

Bek"

gmmw = (38

| Lpgk o :

of (31}, Since the system, {31), is kcmégamma B, is arbitrary.
Equation (35) is now expressed as ¥ (k) = 0, where

vn(k)ah%m Tmi (31
z**"nik

1f the fractions are cleared in (37), a pnlynmm uf degree £ 2n re~
sults, Therefore, there are at most 2n roots of the ch;rut&rim
“equation, | -

From {37) nml (19) with m = 0 we obtain

, 1
- = 228, |1e et *
%(k) %E‘ ni %? 1*%,1 | : ;\ani [ 1+ %ﬂk}

S S S ,
;gm«%nﬁhﬁw.,\ - (38)

It follows from (38) and (19) withm = 1 that k= 0 is at least a
double root of the ,e:haﬁaetnriatie equation, lin=x ], thﬂn is a
double raat. vig,, k= 0, and no %&r rovts, |

. Forn>1 c:mnm;' %(k) expressed in the iarm



14

a . , , .
' w(k)aius B : o (39)
(lli’oni"*’k ‘ ‘ ‘

We see that ¥ (k) is finite except for the pﬁntu k= «1/p i whit:h, by
(17), aatilfy tha inequalities, ‘
*1/“.“1 e < nl/pm < -l 1< "Ilﬁ.n’ S S -i/p.n’ -1, (40)
It faggwa from (13)‘ and {39) that ¥ (k) *?m as kw(—l/p‘ ‘) 0,
i=1, {.é’...u, mdthat#(k)wd:mu k--( I/u i) %0, i=-1,...,
Consider the apmx intervals, ,
Opi = (~Mugp ~thuy y4q) 1=Li.inel, (41)
==-‘ (-lf;sn i1, 1/ i)’ i= -‘I, ceoy =(nel).

Forkin O_,, %(!r.) is mtinumt, tends to + oo as k appreae:hu one
end«paint and tenda to -0 as k upprmchcl the qather end-point. There«
fore, wu(k) vanishes for at least one point in each of the 2n<2 intervals
O

ni‘l
interval O, ‘contains exactly one root. Thus, W (k) has 2a roots. We

Since ?i'n(k) has at most 2n roots and k = 0 is a double root; each

~ denote the 2n-2 non-sero roots by k_.a =#l,..., #n-1), where

+ (k

n, "‘1{&1' _ 1<k ,<... {ka;n*li : 7 (42)

Eq, (n-1) < al

The kna and the numbers "'“’"ni of {40) "atisfy-
>0ifq <+ (n-d),

(ellp ) -k | i=1,...,n (43)
SR M 046 > - (a-i), |

v fa ) ' >0ifq ‘é n+d, “
(-1/p ) -k Coim el ..., en. (44)
ni <o ifa >n+i, ’ ‘
This completes the solution of the ehnmcﬁcri:tiaequtim;

The 2n-1 sets of functions given by (36) for k= O andk =k _
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comprise a set of 2n linearly independent solutions of (31). Since (36)
re’dwzu fork= 0 to I“(v, B ni) =B, B, arbitrary, and since k= 0O is a
double root of the characteristic equation, 3 solution of the form

L{ripy)l = 7+d is indicated. The substitution of this equation
into ‘(‘31) yields ﬁni = Pyie ',I'bms, LiTopy) =74, satisfies (31).
The general solution of (31) is given by an arbitrary linear com-
bination of the 2n linearly independent solutions which we have found.

It is convenient to axpr«Ln the general solution in the form,

| #H{n~1) Lm e“km' -
xngn%i) = bn, T gyt Q + : * E- - {45)
‘ \ : : a=xl " PniTng :
Since the numbers *I'I“ni and kna are interlaced, none of the denom-
inators in (45): va.n-‘ishcn.' If n = 1, the summation term in (45) and

aubuq\th equations is not present.
§2.4 Determination of the Constants

The conditions (20), (22), (23) and (24) will now be imposed.
From (45) and (24), ' '

| 4n
F= z%[‘”%’ Z nibni 4 Z a4 Fai
| i=] =2l |
Hn«1) in a . @
e B
. e na
B 1+ . k
a=kl izl Bai “ng

This equation reduces by meaim of (19) and (38) te F = ﬁa/ 3.
Thus, |
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b, = 3F/4, , | | (46)
whére. it’vﬁn be recalled, ¥ is an arbitrary positive constant.
From (23), (45) and the fact that b_ 4 0,

#n-1) o ﬁ[(“" / “M}'&M]_"’

- , amﬁ; L N1 kﬂg .

fori=1,...,n Forn = 1, the sum is xim present and (47) is satisf
fied for an arbitrary value af.Qi. Consider n> 1. The sigui of the
exponential terms in (47) are given by {43). “ For i= 1, (47) is satis- |
fied with arﬁitiary Qa and L ne” Fori= 2, the axpememm in (47)
corresponding to a = ;(;nv 1) tends to + o and all other terms tend to
zero as 7. Therefore, fori= 2, (4?) is satisfied if and only if
| n. o(n-1) = 0. Cami&ering inturni=3,...,n, we obtain the result
f;hat, (47} is satisfied if and only if ‘

h Ly *0 | a<0. | (48)
Thﬁ constants Q and L ,'a >0, are still urbi:ruy

Equation (22) implies that I(0p)=0 i=<L...,-n By(45),

(48), and the fact that b $ 0, this condition can also be expressed as

Su(p’ni) = g. T im wlyeooy *By o ‘“)
wm:e ‘
/n“'l i a1
‘ ” L L /k
R R R el L D v LU
a=1 1+ F‘ k ‘ a=} B *(1"*“)

~ Forn=1, {49) and {50) yiam‘ 7
Consider n > 1. Tha f&mz:ti«n,
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n-1
s T eg—)=
| a1 ng
(52)
n-} n~1 nel
) T tweg—ye ) = T twg-—q,
p::l np a=1 ﬁ‘l
v B
is a polynomial in i with u™ as the term of highest degree. Therefore,
(49) implies
‘ - nsl , - ‘ |
s T wtg— s T g (53)
-1 ‘ nel ,
Sl s T g / T tweg—ye (54)

izel
Conversely, (54), impiias {49). According to the parml fxuti&#ﬁ de~ |
_composition theorem, S () a8 expressed by (54) has a unique repre~
sentation in the form of the third member af (‘Sﬁi-.» Thus, there exist
unique values of Q and L such that {54) and (4‘}} are afatiificd.
Expressions fer these uima are obtained as follows.
From (52) aad (53) equating coefficients of u™ ) in the right

members, we obtain

‘ nel .
z bat ) B | (55)
1#-'1 ' aﬁl 4 na : .

,Aithssugh (55) was dcrived for n > 1, it also yields tm correct result
for Ql‘ Refarring first to (50) and then to (54}, we abtaiu
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lim , .
L =k | wt(1/k_)|S (u)
I s C0 V2 e m
, - By

Y -n ; ~ /n-1 |
Lo " ¥ I ,(r"*#ns.) i (r“ r) s >0, (56)

,  fmey Do p=1 " ng’

| pe
This completes the determination of the constants.

By (44) and (55),

0 < mnvvl < Qn < ‘pﬂa,-n ;5 ‘1’ LR > L ‘S?}

By {44), there are precisely o negative factors in the uumemtax'i# }
the right member of (56) and qa ~1 negative fgctma in ﬂw den#m&aator.
Therefore, since none of the factors is zero,

§2.5 Final Expressions for J (r) and I {r, p)

Substituting (46) and (48) inte (45), we obtain

{59)

ST : a=1 Lépgy km

where Q is given by (55) and the L g, 2T€ given by (56). Substituting
(59) into (27) and referxing to {19) and (37), we obtain |

. e} ' : j

‘_ Jn(«r)x%z'[-wanq- T e"km"]. o (60)
gu; : ‘

Suppose that I! (7, u) and J' () are functions which satisfy (20) - (24)

‘and (27). Since these conditions are used to determine the Iﬁ(?. ’*ni)
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of (59), we must have I' (7, ) = I (r.p_,). It then follows from (27)
and (60) that Jr) =3 (7). ‘ | -
From (60), (58) and (42),
J(7) is monotone increasing, uniformly continuous, {61)
uy‘mptatie te %F ['r + Qa] as Ty,
and frem (60), (50), (51) and (54), J,(0)=3F Q, >0 and

X n-1

J(m = zrs(o) = gr T (g Ty, > 00 n>1
iz«l a=}

Therefore, by éﬁk}, {57) and (61),

0<JI (r) g -i-:ﬁ' ['r + '1] . | (62)
There is equality in {62) only when n = 1 and Q =y =1L
* The functions In‘tn Byi) and J_(7) derived above satisfy conditions
{24), (27) and (30). It follows from Theorem 3 and the remarks
following (60) that the substitution of (60) into (29) yields the unique
solution to the original problem for In(wr.pis {By (62), the improper
integral in (29) exists). In order to express I (r,y) in compaet form
we introduce | ‘

, nel L *&mq-
- f X w3 i " na © '
Gn{‘y};)azfﬁ'[v*ni-(ln* s ]f (63)
: : . l+pk , Lo
gxi TP Tna

3 o L’n e np
GM(T' u) = z}? T4 p+ 'Qn + z ’ ..._E_..._......._ : {64)
, ~ p=1 1 4u kﬁg ‘ _
e |

In terms of these functions, (29) yields
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L) = Gy(r, ), w20 - (69)

Lirow) = Gylrow) - TG (0,0), <0, wik Lk (66)
Lir-l/k, )= G, (r.=1/k, ) - ¢ Faa” G, (0,-1/k, ) |

+EFR L e KT ern, (67)

‘It follows easily from (60) and (29) that

“rhe - | 20, u<o,

Lirip)= e T (7 + px) dx,
| (68)
o o

‘!n(*r,g) af o X Jnﬁ + px) dax, 720, u20.
o e

From (62) and (68), we have
in‘('r,« p) is continuous except forr =0, p= 0, {69)

According to (22), 1.(0,u)+0 a8 u=~0-, while, by (29), (61) and (62),
L7, 0) = J_{r)=J (0) >0 as 1= 0. If u is replaced by ~1/k,_ in (66)
the form oo - co results. In view of {69), the standard technique for
evaluating this form yields ths correct value for I w{Ton)

Let us verify that the quantities !n(v. ;Aai) obtained from (65) and
(66) and the corresponding quantities of (59) are equal. By (59) and
(63), Liv, ;:m;)’# G (7, y.ﬂ; i=% i,. <o dm Equations {65) and {66)
yield the same results since, by {63), (50) and (49),
Gnﬁe; uﬂ) = %F Sn(p, ni) = ’0 fori= «l,...,+n. This agreement was
anticipated. ‘ ’

If we had not assumed condition (19) for m = 2, the preceding
analysis would be unchanged except that 3F/4 would be replaced by
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{Z Z ‘ni"ni’ F in expressions (46) and f«namg

The main results of this ahaptar are mmmariaed below. |
Theorem 4. Fex each zn»paint qmammra formula of thc form n&' (16)
for which conditions (i“i), {18) am;l {19) are mtinﬁad, there corres-
ponds an appreximation, I (r,u), to I{v,u). ‘The function, I ALAMH
which is given by (65), (66) and (67), is the unique selution tu the pro-
blem defined by the conditions {zo) - (24). |
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-Chapter 3
' GENERALIZATION OF THE
SCHWARZCHILD-MILNE INTEGRAL EQUATION

It is stated in §1. 3 that the Schwarzchild-Milne integral equation
and certain auxiliary conditions cflatm.?mim‘ J{r). An Maﬁmn’p#w
bicm for Jﬁ(ﬂ is derived below. Then a generalization of tkﬁsé |
preblems for J(r) and J (v) is defined and solved. The solution re-
duces in one case to ‘the series ax;aiuaim for J{r) derived by Hopf
and in the other case it yﬁialvds/a very similar series expression for
J (7). These expressions are used in Chapter 5 to obtain conver~
gence theorems for the sequences {.»Tn(-r)} and {In(f, p‘a;)}.

§3.1  The Integral Equations for J (r)

According to (30),
SIrzo, () §o. - (79)
The substitution of (29) into {27) yields

T en

PR |  {ret)/p '

-'fn*"’”zf Y. e s e
J o i1 L T

p® n o | |

+3 f ) e oM har 0™ 3 @
v i=1 o

Similarly, the substitution of (29) into (24) yields F =

5

N A T | ® a o
-2 f Z a el g L Talth dt + 2 f Z a, ol Tty T (4) dt.
» ‘ \ T

imni' i"l

These equations are expressed equivalently as
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% .
Ty = f Ky lret) T (1) ¢, (1)

f

T e |
Fz 4 Kiaz{y st) Jn“} at + 4 f - Kaz(wﬁz) Jn(t) a, - {72)
‘ where
‘ -n
Kf0=3 ) oy e Patlay)™ x>0
1 ~ |

n rzl (13)

1\, X 2
ijm) =3 z a ex/ Bni ﬁ*ni)r
i=i ‘

Special cases of these equations were derived by!&raek (10, p.496).
According to Theorem 3, wnémms ¢ 2.4}, (27), (29), and (30)
provide a formulation of ﬁ#a pwbiam for In(w p) and Jn(‘r} which is
equivalent to the original formulation given in §2. 1. Since, as may
easily be vnrificd. the sets of equations {(Z-&}s {27, (293} and {(29); |
{71), (72}} are aqui.mm: and eméitimn (33) mﬂ {70) are tduntim,
mmher famulatim of ‘the pmb}.em is givea by conditions {29), (70),
{7T1), {72). These emuideratim give us t!u fouawiag result.
Thwxfsm 5. There exists a fuuceim xnt-r, ®) wisich- satisfies the con~
ditions of §2. 1 if and anly if i:hé:n exists & fmatim ﬁﬁfﬂ which
~ satisfles (?ﬁ), (71), {72), in which case In{h ) is givgfn in terms of
I(n by (29). | o
The problem for J ('r} defined ‘&w (?6), (71) and (72) is quito
similar to the problem for J(sr)\daimcd by (13), (14) and (15). The




| | 24
apparent similarity is increased by writing (73) in the form

- |x|/u! .
Kﬁrtx,m Z ‘ e ' ﬁ‘gj, (j&‘ 1]’«-3’ %> 0’

i=l Tad
| r> 1, (74)
where a, ai ¥ *n, -1 "N’ "‘ni “F'u, 4 B is now clear tha@ for fixed n,

randx, K (x) is 2 numerical integration type apprmtim to
K, ix) |

Following are some important pwparﬂu of the functions K (an:)
; amd,!ing(::). Frm’(ls),

cge[ mgmen  xvo
o X : ’ . :
PE & ‘ ‘?6) '
Klﬁx) = f Kmiy)dy, x < 0, |
P - A | J
K,(x) < Kﬁ&(")- (77)

From (73), (17) and (18),
K, i) > 0, | | | (78)

o)
: , 3
Knx“x) *® f Ku‘ Mﬁ" dy, x>0,
& {9

Kpf*) = f K, o dy, x<0,

Kol <Ky o0 | | (80)
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From (15) and (76),
f’ Kliﬁ‘} dx = ZKz{E)‘ = 1, {81)

From (73), {79) and (19) with m = 0,

f K dx = K (04) 4K ,(04) = L -
- |

Since each function K_(x) is even,

© » '
fﬁr(x)xhz 0. " : - (83)

Hwéwrs even in the general case, we have from (73) and (19) that

| f &ai(x)xﬂxu « 3 2;’5»1 *‘ni';’" 0, | \ (84)

' §3.2 The Functions H_(x)

Hopf (7, pp. 35-37) generalized the Schwarschild-Milne integral
equation, ‘(};3‘), fﬁr J(r) by mph::ng K,(x) by an trbﬁx&:y positive
even fm&timﬁ K{x), such that f «m Kix) de = 1 &ndf x Kly) dy <
C K(x), x>0, for some positive constant C. We shall extend the
work of Hopf and emm several entirely new results.

Let H,(x) be any function defined for all real x except, possibly,
for x = 0 such that

CHy(x) 20, | | S (e
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-
f H,(x) dx = 1, | (86)

W

o
Hlm &M CH, M, x> 0,

o x
(88)

.
f' H;(Y} 4’?& c Hl(x), x<0,
s
where C ia a positive constant.. . E
It is clear from (75)~{84) that Kltx} and Kﬂ(x)'an special cases
of Hy(x) in which C may be taken as uuity By analogy with
| {Krix)z r2 2} and {Kﬁ{m; r g,z}, n > 1, we introduce functions
H (x) such that

L pey

H_ (=) f H_{y)dy, x>0,

| _ r>2. - (89)

ox |

H_(x) sf CH_ (y) dy, x<0,

By (85), (88) and induction on r, the functions defined by (89) extst

“for all x 4 0 and have the following properties: o

Hx) SCH, (x), H(x)< C™Hx) Tz (90

H (x) > 0; H_(x)is absolutely continuous, , L
LR R | r> 2. (91)

aen-inereasing for x > 0, non-decreasing for x < 0,
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By (86) and (89), H,(0+) and H,(0-) exist and

H,(04) + H,(0>) = 1. | ' {92)
Therefore, b;r (?9) and (91), H ta*) exist, are non-negative and
Hmnnw-q < c"‘z r2. (93)

It follows fram (85) and (89) that H,(0+) = 0 if and enly if f
Hl(x} xdx= 0 and Hzia“) = D if and enly if fm thx)xdxa 0. In
view of (87), 1‘53(9«!-} = 0 if aml only if Hy(0-) = 0. This rualt, {92),
and {91) give H,(0%) > 0; induction on r yields Hg‘{e:&} >0, z2 2.
Hence, by ‘(93), |

a«mm«:a  rza 9

!t: is wan known and not difficult ‘kﬂ prove by induction that

® ro o po | ® a |
f f i [ f f(y)d?dxi ‘e Mwantf f{y) Sl’i:‘).. dy,; n > 0,

whenever £(y) > 0 and either of the two members exists. Appiyiag |
this result to {89) we have | \

Hegnot(®) = = f CH () (y®dy, x>0,
B

Hone (%) = i;* f H(Y) (x-y)* dy,  x <0,
Fro.n (?4), and (95),
r“"ﬁ‘f'l{e*) = """""’f H (ﬁ) * M.

R ,ﬁ
(9-‘») ] L:};-L [ Hr(x) xn dx,

60

vzl nZf96)

Hrmﬂ
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and
m .
’ {f Hxx®ax < mt c™7,
o R ‘
0< (wz;“f H (x) " éx < ! c™b
R |
From (87) and (96) with r=n = I,
33{0*) = ﬂgW‘l‘)‘* ’(?&)
The next theorem indicates certain similarities among the functions
Hy(x) r2 1 Let o
EQ- = {xﬁ' x>0, ﬂz(n) > e}i n=lab E‘!’s ' » (?9)
E_= {x; x <0, Hyx)> e}, . t=glb. E.
where 0 <n < e and - <{ < 0. By {él‘) and (94), the sets E,are
nen-veid. _ ' |
Theorem 6. H?(:x) >0forxC B, »21. In<co then H;{.ﬂ =z 0
fa:éaknat all x > qva.ndﬁr(u) =0forallx2n, »2>2 K> -,
then Hltx) = 0 for almost all x < { and Hr(x?) = 0 for all x $t.or2 2. |
Proof: For x € E,, Hylx) > 0 frem (99) and H,{x) > ™} H,(x) > 0
from (90). Hemce, by (85) and (89), H_(x) > 0 for x € E REFSF
By (91), H,(x)= 0 for x> n and for x $ {. The remainder of the
theorem follows immediately from {85) and {89). ﬁ
The notation || is used henceforth to signal the ends of procis.

§3.3 The Integral Operator A

We now intreduce 2 linear integral operator with domain and
range contained in the set of ‘Lebesgue measurable functions defined
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on the non-negative real axis. For each function f such that the right
‘member of (100) exists for all v > 0, let Af denote the function defined
by |

(Af)r) = f H,(r-t) £t) &, T 20, o (100)

m?. equivalently, by
(Affr) = f Hlﬁix} fir -x) dx, T g 0. {101)

-0

Fe? fir) = 2, n 20, giez) yial&n

T o @
(Aflir) = f H, (x)r %) dx = f H, (x)r wx)" dx - f H (x)(r -x)® dx
- - T _

o0 -o0 |

n | e i | |

- z (2) ‘Aﬁ#nﬁk f al""?} dx *f ﬂx(xxvfx}“ dx.
k=0 00 v

By {(97), each of the preceding improper integrals exists. It follows
from (86), (87) and (95) that, for n > 0,

f{r) =™ s> (Af){7) =

. o (102)
D) (ﬁ);-n" o f H(x)x® dx + (1)t H_ (7).
‘ k=2 ‘ Y 0 ‘ :
When n = 0 or 1, the summation is not present and
(Al)7) = 1 « Hy(r), {103)
: flr)ysr m (MAT)=7 + Hy(r)s ; (104)

where, in (103), 1 is an abbreviation for the function f(r) = 1.
Define A, m = 0, 1,..., in the usual maoner: A° is the identity
operator on the set of Lebesgue measurable £&ﬁgtm defined on the
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non-negative real axis; for m zh A My = A(A lf) whenever the right
member exists. Denote the domain of A" by D{A™). The following
theorem contains several properties of these apera.tuua.

Theorem 7, If f is measurable, g€ D(a™), and J¢| < |g|, then
£ pa ). X £, £ € D(A™), then
1>g —— 2 APg ‘ {105)
£ > g =mm> A0 > AT, | (106)
Ifis mmmublu and bounded, then { & D{A™) for all m 2 0.
Prwﬁ: From (35) and {160) we get the first asurﬁm of the theorem
and, by imimtim. (105). Let ¢ € D(A)s ¥ > e. It follows from (89),
(101) and the fact that Hz(és} > 0 that Ay> 0, Therefore, (106) holds
for m = 1. By induction, it holds for m 2> 0. Suppose that g & D{A),

g£20, and ag < g. In&uctimyialéugébu )and 0 < mﬁﬂ‘ 8

m > 0. lfg>0thaa9€ g, anéi!ngs‘-gmcsm“g'( g,m:hﬂ‘
By {91) and (94), 0 <} z{-r) <1. By(103), 0< Al £ 1. Therefore,
the preceding analysis yial&a 1 E D(A™) and |

o< Amﬁ

x‘ea 1<y m 2> 0. (1o7)
Let f be measuyable and bounded: |f} g.M < e, Let glr) =M. By
(107), g € D{A™) and 0 < A™g < M for m > 0. By the first assertion
of the theorem, { € D(A™) for m > 0. ||

Theorems 8 and 9 state further properties of the operators AT,
Thﬁareui 8. Letf& D(A™). Then

£2 0, f non~decreasing sww=> A2 non-decreasing; (108)

f hounded, continuous ====> A" continuous. - {109)
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Proof: From (101}, (AMr) - (Af){v') =
r! ‘ L 4
f : HJ‘(H} [ﬁ“l’*‘ﬂ) « f{r! *H)] dx ‘l‘f Hiix) f{r-x) du,
- | ™ |
This identity, (85), and {86) yield (108) and { 169) for m = 1. Induction
‘completes the proof. |

_"I‘hewm 9. Leg £ € DAY, £ > 0. Then, for r > 2,

pos o
f H(r-t)(¢) at < €Yty {110)
° .
T o i °T PR ‘ 3
f H (r-t)(t)dt = ﬁ,(%}[ f{t)dt:[ Jﬂ H,_, (=-)f(t)drdx,

° Je  Jedo ,
-] : o : 1 ~
f CH (v -t)i(t) dt = S (111)
T v ‘
-Hr(f’*}j” ft)ae + f f H__|(x-t)i(t)dtdx *f H_(-t)(t)dt.
‘ L4 QIR ‘ 3 s y

Proof: From (90) and (100), the left members in (110) and (111) exist
and (110 is :atitﬁed; Uslng {89), we obtain

H gmt/q £(t) dt - f H (7 -t)f(t) dt = f f z(y)dy mw
= f ‘f - l(xwt}f(t) dx dt = f f 1, g{x-t)i(t) dtdx.
t .

This is the first equation of (111). Alse by (89),

rT @« ‘ @
H_(04) f fit) 4t ...f ,ar(.‘t}f(t) dat + f H,(*f'*tmt) dt
oo

o T
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T | 0
zf [H (0+4) - H {«t‘)] f(t) dt @f [H {r~t) ~ H {wt)] !(t} dt

f f - l(xwt)f(t} dx dt + f f .. 1(:&«1:)‘!{1:) dx de
oo
f f 1{:&»&}1’(%} dt dx.

‘This is the second equation of (111). |
§3.4 The Integral Equation { = Af

Consider the problem for f defined by
{ = Af, £20, t4 0 {112)
Any function which satisfies (112) also satisfies the integral equations
which are derived by repeatedly integrating f = af. The first two of
these equations are included in the following thuanm
Theorem 10. If f is a solution of (112% then
7 © ) oo |

o @ : ]

o w o : .
f Hylr-t)(t) dt = 7 f Hy(~t)(t) dt + f CHg(-tM(t) de. {114)
oo ’ e q ’ ) o :
Prm‘ From (92), {100}, and {111) with r = 2,
T o B o
:/‘q Hy(7-t)i{t) dt + f  Hy{r-t)i(t) dt - Hz{a)fm dt
‘ > 2

o T

T T T o
mf f(t) dt + f (Af)(x) dx = f [(mm - m;)] at = o0,
Q ’ o CL ,

o
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This establishes (113). From (98), (113), and (111) with r = 3,
' - N ‘ > 00 ‘
f Hylr-t)(t) dt - f Hy(-t}(t) dt

L -

x L |
f Hy(x-t)(t) dt + f H,(x-t)(t) e«] ax

LT
af [u
o Ldo %

T fw |
= f f CHy(<t)(t) dt dx = 7 f Hy(-ti(r) @t |
oo ' - dg

Since (113) reduces for v = 0 to an identity, an eqkiwtm~ state~
ment is zm the left member of til:&) is constant. According te the
famwing thaanm, tltis constant is ;msmvu o

Theorem 11. If f is a solution of (112), then | H (-t)f(t)}dt>0, r>2.
- ’ s .y |

Proof: Assume that
f=af, £ eauaf H_(~t)f(t) dt = 0 for some r > 2. (115)
| - Je o '
It mﬁimi to prove that { =0, It follows from {115) and Theorem 6
that #{t) = O for a&mastailt suchthat 0 <t < .. Iftf, = -on, {100) and
- (115) give Af = 0, { = 0. Suppose thmt > 0. We ﬁmn prove ‘by
induction that ‘
f{t) = 0 for almost all ¢ mch that 0 <t < mé, in >1, {116)
 where £ = -L > 0. We have aixm:y shown that {116} mm formz= 1.

Assume (liﬁj form=n2>1, sheren ic fixed arbitrarily. 'rkﬁn
i ,

n
f . H{y-t)}{t) dt = 0 and, by Theorem 6, f }If{v»t)ﬂt) dt = 0.
] . S - drdE

_ Since f = Af, (100) yields



R 34
f{r) = f  Hylr-t)i(t)dt for v +£2 nk, i.e., for 7 2 (n-1)f.

n& a&
Hence (116) vdth m=n give: f HI(V -»t)f(t} dtdr = f flr)dr=0
{n-d)E n‘é ‘ (-1

We reverse the order of integration and refer te (89) to get

(n+1)E (nt1)E ‘
f f le ~t) dr £{t) &t = f [Hz{nﬁ*ﬁwﬁzt wg)]it‘t’}ﬂt = 0.
nf InE SR , ‘

By Theorem 6, azg -£) = 0 and H,(ag-4)>0 for 4 <ng-t <0, La.,
form§ <t < (n+l)f. Therefore f(t) = 0 for almost all t such that
ng <t <(at1)f, and (116) holds for m = n + 1. By induetion (116)
holds for m > 1, so that f(t) = 0 for almost all t > 0. By (100) and
(115), at=0, £x0. | o

Theorzius 10 and 11 will be used to prove thmt a ;ﬂatiﬂn of {112)
is necessarily positive. In fact, a stronger result is obtained.
| Theorem 12. If f satisfies (112), then -

fir) ‘se"a[v + H3(ﬁ]~ [ | H,(-t)(t} dt, ()
: , Jo |

gLb {fr); 720 >0, | (118)
Lub {fry 720l | {119)

‘Prooft Assume that { »titﬁn mz} By{lm) {114) and Theersm n,

o )
flr) = ()1} 2 C7 [ Hgi'r*t}f(t) a > ¢ f ﬂz(@)f(t} at.
oo Q '

This result and (104) and (106) yield (117). Then (118) and (119)

follow by means of Hy(r) > 0, Hy(0+) > 0 and Theorem 11. |
We are now able to prove that if tﬁ&za- exists 3 soluticn, i, of

(112), then the set of positive multiples of { is ﬂ‘m complete solutien.
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Theorem 13. Let f satisfy (112). Then g satisfies (112) if and ealy if

g = bf for some positive constant b.
Proef: Let g satisfy (112). By Theorem 12, £>0, g> 0. Let
$= g «bf, whereb = g.1. b, {s(’r}/ftv); ‘rg 6}. Then ¢ = AY, ¢ 2 0 and
k. 1Lb. {@(&'); T2 3} = 0. By Theorem 12, ¢ =0, Hence, g = bf and
b > 0. Conversely, if g = bf for knma b > 0, then g ﬁstixfiax (112). §
The substitution ef v + g{v) for fir) in f = ’Af yields, upen reference
to (104), g - Ag = H;. Consequently there exists a solution to (112)
if and only if thare exists a solution to the preblem for g éaﬁmé by
g ~Ag=Hy glr)2 -1,  glr) # . (120)
‘We shall show that the Neumann series, 2‘: A 1-33, converges to a
fanction which satisfies (136} In order to do this we need a imr
preliminary results. -
| By (103}, 1 - Al = H,. According to the fennmg theorem the
Neumann sarin awmiute& with the intagral aquntim g~ Ag = I-Iz

~ comverges to the solutien g{r) = 1.

Theorem 14. For eachr 2 0,

y-l S ‘ , ,
Y AT = 1 - (A1), | (2

m=0
Z (APH,)r) = 1, | (122)
m=0 | , : '

,,_,w (A 1)(‘!' )= : | | ‘ ' - {123)
Convergence in (122) and (123) is uniform in each finite 7-interval.
Proof: Since H, = 1 ~Al and A™1 exists for m 20, »\mﬁz exists for
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m >0 a.nd% ATH, = % A(LoAl) = 1-a"*11, which is squivalent to (12).
It follows from (107) that the left member of (121} is non-negative, nom~
decreasing in v, and bounded by . Therefore, for eachr > 0,
Wr) = ? (hmﬂz) {r) exists and 0 <y <1. Since Al exists, Lebesgue's
dominated convergence theorem implies that ’mi: exists m& A =
ghmﬂﬂz = ¢ « Hy. Hence, § ~ A= H, = 1 - Al and (1) = a({l-y).
Suppose that 1-¢ § 0. Then 1-4 is a solution of (112) which, by
Theorem 12, is usbounded, Since this is a contradiction, 1-«¢ = 0 and
(122) is established. Cloarly, (121) and (122) imply (123).

Choose x> 0 and ¢ > 0 arbitrarily. Choose k m&k that
[A™ 1=} | <& for m > k. | By (107) and (108), {A™1){r} is pesitive and
non-decreasing in . Hence, 0< (A™1)r) < cform >k, 0 <7 <x,
and the gconvergence in (123) is uniform in each finite 7 -interval.
In view of (121), w0 aleo is the convergence in {122). |

‘The next theorem concerns the existence of the Neumann series
solution of (120). |
Theorem 15. The mriﬁ% (Nm}’laﬂf) converges uniformly in each
finite 7-interval. The function ¢ defined by

s \
)= Z (Amngur;, r 20, | (124)
- m=0 ’ : :
is cantinuous and
$-ad = Hy (125)
o<gscC. | | | {126)
Proof: Since 0 < Hj § CH, and CHEDIA™) for m 3 0, i follows that
H,ED(A™) and 0 < A™H, £ C ATH,, m 2 0. Hence, by (122),
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é(r) exists and 0 < é{r) S C. We have by induction from (100) and
Theorem 6 that (A™H,)r) >0 for mn < 7< (m +1m, m > 0. There-
fore, 6 > 0 and (126) is e:mnma. By Lebesgue' s dominated con~
vergence theerem, Ad= ? m+1H3 = é - Hy, sothat d satisfies {128).
By (126) and Theorem 7, ¢ D(A™ ) and 0 <A™ $ < CA™L, m > 0.
Hence, Theorem 14 gives

(A™4){7) - 0 uniformly in each finite 7 -interval as m- oo {127

siﬂﬂe‘, })Y {12 5):
vl vel

ZAmH z NS - ad)= 6o A"6, (128)

m=0 m=0
the convergence in (124) is aniform in each fwzf& r-interval. The
continuity of § is a consequence of (109), the boundedness and con-
tinuity of H,, audtkt uniferm convergence of (IM) i
We can now express the complete solution of (112).
Theorem 16. A function { satisfies (112) if and only if |
ftr) = b v + ér)] - q29)
for mﬁw positive constant b, where & is given by (124).
Proaf; Use (104) and Theorems 13 and 15. ||
It is convenient to add a normalization condition of (112) in o:g#gr
to determine the constant b. Proceeding by analogy with the classical
transfer problem, we shall use for this purpose the comdition,
P @ |
F= 4f Hy(r-t)f{t)dt + 4 f Hz(v»t)ﬁt; at, | {130)
0 , 3
where F is an arbitrary positive constant. For esch function { which
satisfies (112), the right member of (130) is constant by Theorem 10
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and is pesitive by Theorem 11. Therefore the condition,
F= 4f H,(-t)i(1) dt {131)
o @ ' ‘
for an arbitrary ¥ > 0, may be used in place of (130).
TMorm 17. The pxehim dﬂaﬁaed; hy (1!3) and (131) bas a unique
solution £ wkizk i,n given by
tr) = (714 [+ i), | (132)
where ¢ is given by (124) and o ‘

Yi‘/v | ag("*} [t “”“ﬂ]‘ﬁ # f Hy(x) dx = H(04) + H{0-). (\133)

o -
Proofi By Theorem 16, f satisfles (112) and (131) if and enly if
(7} = b[a’ + m] and F = 4by where y af Hz{wt}[a + &m] &. By
Theorem 11, y> 0. Thus, b= F/4y and { is givea by (132). Using
(114) with £¢) = t + é(t), we obtain |

e f Hylr4) [m&m]

i
= i‘ﬁ.?m : f Hyfo) [7 - x4 drox) ax

3 . ; b e _ ‘_
= :,“‘fo[ f Hy(x) dx - % f Hy(x)x dx + -}, f H,(x)${r-x) &:}é
' Equation (133) now follows by means of (99), (97) and (126). |
§3.5 Expressions for J(7) and J_(7)

Before the analysis of §4. 4 can be applied to the problems for
J{r) and J (r), seme additional netation is required. When Hy = K, we
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shall replace A by I'and é by q. When H) = K_; We shall yeplace A by
I, and ébyq . Thus, from (100) and (124),

o A ' '

L o :
(L f)r) = f Kylr-tilyd, 20, | {138)
©

)= Z (I™K4) (1), r20, S (136)
® : >

4= ) (RPN, rzo s
m=0 ~

By the remark following (88), C may be taken as unity when H, = K,
or H, = K ,. So(126) ylelds

0<qsl, | agqa»gz,. | 138y
Except for change of notation, the second of these results is contained
in (51) and {57).
We are now able to present the promised solutions to the preblems
for It p)y J(r) L (r,p) and J (7). , o
‘Theorem 18. There is & unique function J(7) which satisfies (12)-{14)
and a unique function ;fﬁ{ﬂ which satisfies (70)-(72):

) = %F [-‘r + 4(2’1]: - 20, | {139)

3’“{7}‘: %E‘ [f + qn('r'}] » 20 U {140)
The function {7, u) given by (11) and (139) is the unigue solution to the
classical transfer problem. The function given by ‘(3@} and {140) is

 the unique solution te the problem for L{7. ) presented in §2.1.
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w: Theorem 17 applies. When Bl = K.{' we have from (15) that
¥ = K(04) + K(0-) = 2K ,(0) afy. du=1/3. WhenH, =K, (74)
and (19) give y = K, (04) + K (0-) = $ T a_n wl=1/3 Thus, (132)
reduces in the corresponding cases to {(139) and ;m;. The re~
mainder of the proof censists of mwkiag Theorems 2 and 5.



41
Chapter 4
NUMERICAL INTEGRATION

Several different methods of numerical integration have been
employed to obtain gppmximitims to Iz, ;:,) . We have already
mentionsd the Gauss and double-Gauss quadrature formulas. In
addition, the Newton-Cotes and Tchebycheff formulas were investi~
gated by Kourganoff and Pecker (8, pp. 247-263). ©Of all these
methods, only the Gauss and double »Gamé satisfy condition (18) for
an infinite number of Wamw‘intugars; n. Hence, as far as is
known, only these yield infinite sequences of approximations to

Ir:pt). Both mothoda,&ra described below.
§4.1 The Gauss Quadrature Formula

Letx ., i = 1,:..,n, be the zeros of the Legendre peolynomial,
P (%) n2 1, ordered such that x ai < *n,iel" For eachn > 1 and
each function g(x} defined for -1 < x < 1, the Lagrange interpolation
formulza provides a correspondence;

/ n =B XeX LR Pn(k)»
=1 g1 %%y is1 PalEn)x%y)

Since this mrrnspoﬁd&mc becomes an equality for x = X4
i=1,0.04n, it hméam&s an identity for g(x) an arbitrary pelynomial
of degree less than n. From (141), we obtain for each n 2 1 and each
intagrab‘le function, g(x), the correspondence
1 / : ‘
f 0 gix) dx "Z Km glx ) o | (142)



where
‘ 1 1 Pn(x) o o ‘ ,
xni = " x‘ x dng i = I-. o wg Bl ‘ {143}
i - :
Fal¥aid ™

This is one form of the Gauss quadrature formula.

It is well known tha.t

xui = "xn,h‘i! ‘ l'ni = xnyn*iq i L 1‘4‘ LK n; ‘ x‘&)

Mi >0 | i21,000,m - {145)
v ‘ a. - g(x) a polynomial of

glx) dx = z \m»“"‘m”* ’dagrn’ltu than 2a. (146)

1 i=1

For a generalization of (145) see (15, p. 47). For g(x) = :;:m.« (146)
‘yields |

n
z Mg xz:u 140D 0 m o= 0,140, 200l (147)
=1 m + 1 -

In their papers, Wick and Chandrasekhar used the Legendre
polynomials, P aﬁ"‘)* n > 1, and denoted the zeros by ﬂni‘!
i=#®1l,...,4n, ordered according to (17). ‘With the proper changes
of variable, {142) and (145) assume the forms of (16) and (18), re-
s‘pmtiva.ly-._ and (147) implies (19). Therefore, the Gauss method
leads to an infinite sequence, {%{v, ;a.}} s of approximatic}m‘ to Ir.u)
and these apprm:ima.tianﬁ ave given by (65) ~ {67). Some of the ex~
pressions occu?rins in Gh;ptwr# 2 and 3 can be simplified for this
case, since (144) imﬁias

;= an; i’ " ‘fﬂn‘"*i" (148)
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§4.2  The Double~Gauss Quadrature Formala

For cwch n2land ‘each integrable function f(u) defined for
0<pu<l we iuwa from (142).
1 ;
f f{y.} dp = f f.(ﬁv(x%-l)) éx e z knii (%(x mﬂ)) {149)
L] ~' S iml

Thus, we have a correspondence,

Pl n ,
f M dp = ) ayflug) (150)
o , izl .
where
| | x +1) N
‘m = % )"ni’ P‘ni = f:: "y i=zl,eee,n. (151)

For each integrable function f(u) defined for -1 <u <0, (150) gives a

correspondence,

f u) dp = f £op) dp ~ z RGO T (152

i=1

Define 2, and L foris= u-i, R
At * ‘n.;i’ uﬁi = My, (153)

v Then (152) becomes
: -n

f L ) ey f)e | (154
-1 . iswl : o

For an integrable function f(p) defined for ~l1 <u<0and 0 <p <1, we
obtain from (150) and (154) the correspondence,
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1 s |
f flp) dp ~ z a g flmog) o | (155)

1 ima]
which is of the form ei {(16). For obvious reasons this correspondence
is called the éaﬁbkwﬁams ’mcthad of numerical integration. |
It follows fmzix {145), (151), {153) and the ordering of the X4 that
(17 M‘i,w) are satisfied for n 2 1. To prove (19), consider the pre-
ceding expressions with f{u) = g"“, m < 2n. By (146) and (151),

1 n
x*l x, +1 ) m
/v )‘ Tdp = /q M dx:%ani( ) ngﬂp‘nii
o iﬁi
From this rnuit and (153),
. oom 1
zani"ni *mFrT’
i=1 : ,
»f m ‘* 0, lp [ ] %*1' tl&é}
(»12 ' ‘
z nip‘ni } P
izl

Thus, (150) and (154) are equalities if f(p) is a polynomial éi degree
less than 2n. ‘

Clearly, (156) implies (19) for m =0 and 1, n 2 1, and for
m=2, n 2 2. Hence, the‘dmub{aﬁ("iauss method yields an infinite
sequence, {Ii(‘r. p.)}. of approximations to Kr.u). These approxima.
tions are given by equations (65) - (67), except that for n = 1 the
coefficient %F fnmt be replacu‘d‘ by F. The resuitforn=1,

.Il('hp.) = F ['r +p +~3§]. »20,

i = F [7 4w HO-TM], w<o,
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is the well-known approximation of Schuster (12, pp. 1~5)and
Schwarzckild (13, pp, 41 «53),

§4.3 Numerical Integration of Continuous Functions

Cmaider the Banach spacs B of continuous functiors, f{u),

0§ £ 1, with the norm of uniform convergence,

f£] = max {‘ﬂ; 0<sps 1}.
Define linear functionals A and An on B such that
Af=m f fly) dy, {157)
. ; )
n

AgE ) a g Cazl, - use)
i=1

where the parameters 8, and p_, correspond either to the Gauss or
‘to the double-Gauss quadrature formula. Since, in either case,
a8, 4 andyp . = By, it (157) and (;:-58) can be replaced by

o pl . ‘ |
Ma%f fehd s
' . ~1 l ! f
1 = " Y
Afzg) ayfllu, nzl (160)

izl
The integrand in (159) is continuous in the interval »1 Sp<l. In
view of {18) and (19), withm = 0, Al = Anl =1forn2>1and

las < Bl

‘ ool f& B, ‘ 161)
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In the x‘amgin&ar of ‘i:hn section we eat&bﬁjk certain properties of
Aand A, n> 1, which will be needed in Chapter 5. These properties
are wgnnknawprcmlta in paraphrase.

Lemma 1. ‘Anf - Af for sach § €' B. |

Proof: Choose {C B ande >0 a:-ihmuriiy. Using the Weierstrass
theorem, cheoose a polynomial p € S such that gMﬁ <4e. For

n > H{degree of p), it follows fr;em (1‘46) that Ahy = Ap. Be, by (161):
laf-af] < jat-p)+ |a p-apl+ jaten] 5 2litpll < .

for all n sufficiently large. |

Lemma 2. Let f{x, u) be defined for 0 Spsh x <x<x", where
0gx' <x" <o Let ‘-gi-’ ;: M < o and, for each fixed x, aqmma |
that { € B.. Then A _f ~ Af uniformly in x.

Proof: For an arbitrary ¢ > 0, choose an integer mand x;, 0 < j <m,
such that x' = xa«& -(xma x" ‘”’&"j* 4.1 <s¢/3M. By Lamma 1,
there exists n such that l.&f( vy - Ani(xj, plke/3,0<ism,
n>n. f;m,u x arbitrarily meh that x' < x < x" a;id.j such that
|x-x,| < c/3M. Since BT M, otx ) - £l W) < /3. Thea
Wm w) = Agflxp)| 3 JAflx ) - Aflxy, )] + thj, w - A, | +
|A f(xj.u) - A f(xm)f <eforn>n. |

Lemma 3. Let f{x, w) be dcfiaad for6spgl md. x' £x <o, mra
x' >0, Let "’l‘i_g M <o, flx,u)-= 0 mifarmlying as x = o, and,
for each fixed x, assume that € B. Then A f -~ Af uniformly in x.
Proof: For an arbitrary ¢ > 0, choose x" > x' such that |f(x, )| <
¢/2 for x>x". Then !AX—A f{ lag] + A f[ <eforn2l, x>x".

By Lemma 2, there exists n_ such that !M»Anﬂ <cforaZm, i
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Chapter 5
FINAL CONVERGENCE THEOREMS

The principal results of this chapter aﬂdkni the thesis are: if
either the Gauss or the double«Gauss Qusdrame formula is uud;
then J (r) = J(r) and !a(?r; #) ~+I{r, ) uniformly for &aﬁh bounded sub.
set of the x*npcctiw“ d@mﬁmg‘ The plan of the fchaptez is as follows.
We first derive vax?ioua convergence prapar:i‘u of the functions
| K_n r(x) and K‘,(x}. These are used to prove that the general term of
- the Neumann series {137} for qa&) cmva,t‘gﬁ to the general term
of the ﬂcm:; series {136) Vta:r qlr)« The seriss for the %""

n .; 1, are shown to be equiconvergent. Thus, the interchange of
limits is justified and %{f) *‘q{y}. which is equivalent to |
Jn(’r) =J(r). Then I (r.p) _'%I‘(T,p.) follows by means of the expressions
iér these functions in terms of Ju('f) and J{1). |

Even when not explicitly ttﬁtgd, it should be understood that the

quadrature formula involved is aitkex the Gm;g or the double.~Gauss.
§5. 1.’ aaav«igénéa Pmpwtin of the Functions Km,(:;c) and K_{(x)

| For eitker~ of the qumatnie formulas ’undw consideration,
Bag =8, andp = op, . Tﬁutai@ra. by (?$)~, ;

n
K (=3 Z aniw“"’ Pai g )7, | (162)
ixl |
| K (%) =K (0, - (163)
forn21, r>1andx>0. Since K (04) and K__(0-) exist and are
equal for n'2 1, r 2 2, we shall define K__(0) for these cases by (162).



By (15),
K (x) = 3 f oXleyrtg, | (164)

o
Kr( ~X) = Krix): | _ (Iﬁﬂ

for ¢ # 1, x>0 andforr 2 2, x> 0. We shall prove that
K_ (%)~ K_(x) 28 n = o0. In view of the symmetry relations, (163)
and (165), i,f suffices to consider x > 0.

In terms of the linear functionals A and AL introduced in §4. 3,

K(x)=4A®, (xu) (166)
K (=) = =4 A ‘,(X: Ma @15?!
whenever the left members are defined, where
w2 < >0, u>0 ,
P PR TN § i A Y T (168)

It is understood in (168) that, for fixed r and x, Qrtx, 0) is defined by
continuity. Thus, ﬁrtx, 0)= 0 for x> 0, 62(0, 0)= 1, and Qx(@, 0)=0
for r > 3. From (168),

Tx = "% R ‘ (169)
L ; , -

\ '13;5' = a‘”""" p""‘ [a«b {xwzm]i S ' (170)

Therefore, @ (x,p) is:
non~increasing in x; ' ‘ {171)
<1, 0<y < x/2er, —_—

aca-decreasing iny, 3 b z Sy (172)
non-increaming in y, rl op2 e/ {173)

It follows that, for fixed r <1 and x > 0, & (x, ) attains & maximum
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for u = x/2-r. Thus, by (168),
Qr(&, u) g [(Zwr}[m] Z"?', rsl x> G, ’;,3 0. (174)
In (166) and (167), & (x,p) is used only for 0 S p S 1. We have from
(168) and {172) that |
2.(x, p) ;*f & (x 1) = e, r>2, x20, 0<p sl (175)

It follows from (169), (174) and (175) that -

o8, | | | |
ot [(mvu] 3 122, x>0, 420,
Y, » (176)

"!’i{l g e™™ BN 23 %20, 0gugh
With these preliminary results established, we are ready to prove
' the cenvergence theorem for the functions Kagiﬂi

Theorem 19. Assume either the Gauss or the double Gauss quadrature
formula. Then | |
R&(x}-éxx(x) * a-o. | | - am

*

When r = 1 the émwngmw is uniform for x < |2} < oo for each
x,> 0. When 2 > 2 the convergence is uniform for -m < x < 0.
Preof: We shall make use of Lemma 3 of Chapter 4. By (174) and
(175), | - | _

ir{x. ;;3 -0 uniformly in p. as x w’w. 0gpst
By (176), | |

0a, | 1 3ur |
*‘;‘{" g [(‘3#)1&::“] " r52 x2x >0, 420,

L |
gl 21 | r>3 %20 0<usl

Lemma 3, (166), {167) and the even character of the functions K (x)
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and K (x} give us the statements of the theorem for r = 1 and r >3
and tlu vesult that Ku;{x) ~ K,(x) uniformly for x < x| < oo for sach

x> 0. ‘
 The remainder af} the proof will establish the unifermity of the
canvargmu of K . (x) for -0 < x < 0. We shall consider, in turn,

x)az, 9<x<zz‘

and x = 0, where ¢ is arbitrary such that 0 <e <},
From tha,grmo&ng amjrm, there exists n_ (c} such that

}‘Kztx) - an&x){ <e, n> x&e(a ), x> ;!f.‘z‘ - (178)

Now, in this paragraph, let 0 <x<: z, Let

x, 1) = W{%{w W) e”‘}. 0k ﬁzz, 0<p £ 1.
Note that © is continuous in u for each fixed x and that, since
B(x, ) = ‘*xl;ab

0g ﬁgix,;s) - Ofap) = e’ ¢ <1, 0<pugxk,

0<e™ £ Bz, p)=Omp) <1, weSplh
By the triangle imquawm

t%(%»eu + M (©-11+ |a, z*Aii +laq-e) + mwzu. (179)
where | denotes the function which is wewmxy l. Since A_l= Al,
|a 1-A1] = 0. Since 0<1-6<1-e "<, it follows from (161)
that |A1-A@| <: and {A 1-A_ 8| < e, n > 1. We alse have {rocalling
the mmmptim that 0 < x <¢ ),

x/¢ | e
0 < Mﬁu(z) xf (g'g -Q‘x[t‘, (!‘L ff ldy=cs,

o O
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n ‘ 7 .
0<A(O-)= ) a (e -ayg ) 4 (180)
i1 i=1
gmﬂlt : ‘ ’ Bai <z

According to (15, p. 341), A ni' ~ Afasn~ o for each Riemann in«
tegrable function {. Applying this to the case with f{u) = 1 for
Osp<ecandflp)=0 otherwise, we have
e ,
z 24" ¢ as n -+ . | {i81)
i=1 :
Bai< *

This result can also be established by means of the separation
‘theerem (15, pp. 49-52) méthe fact (15, pp. 343*345) that "ni - 0
uniformly i.n iasn -~ oo It follows i’rm {180) and {181) that there
exists n(c) such that |A (€-8,)] <2¢c foran ny{c). All the terms
of the right member of (179) have now been considered. Thus, frem
(179), (166) and (167), | |
Ix. K, (%) - Kzlx)l <5e/2, n2 myle) 0<x< e+, (182)
- It remains to consider x = 0. By (164), (166) and (168},
K (0) = 3A (" %)= 42(r-1), > 2. By (167) and (168), K el0) =
%A n(y."' z}; As we remarvked sarlier (in the proef of Lemma 1)
A_p = Ap for each polynomial p of degree less than 2n. Hence,
K, {9) = lliﬁ:‘#l) =K (0, 2gfrgin+l. {183)
The assertion of the theorem for r = z now follows frem (178), (182),
(133) and the even character of K andK__ ]

For the purpose at hand we shall need Tkawm 19 only forr= 1,
2 and 3. Since no additional work was invelved in getting the results
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for r > 4 they were included. Similarly, we shall state the following

theorems in as much generality as is emixmt with the desirve not

te go teo !a.r afield. | |

Theorem 20. Assume either the Gauss or the double-Gauss qmmé

ture formula. Then, for each r > 2, ‘ |
K, (%) = K__(0) uniformly in n as x = 0. (14

For eachr > 1,

Km,{x) -+ 0 uniformly inn as x » % . ' {188)
Proof: Fixec >0 and r > 2 arbitrarily. Since ,Kr(xi is continuous at
x = 0, there exists x* > 0 such that lKr(O) - Kr:(x)l <:c/2 for
05 |x] gx%. According to Theorem 19 there exists n% such that
IK (x) - K_(x)] <&/2 for n > m*. We shall insist that n* > r/2. By
(183) and the triangle inequality, |K_(0) -K_(x)}= ;g:r;a) - K (=]
<¢for 05 fx]| <x% n2nt Since the functiens K’M(xj, n>1, are
continuous at x = 0, there exists %, > 0 such that
In particular, let X, = x¥ for n 2 n*. Then

1K, (0 =K ()| <e,  Ogix|lsx,n2l,

where x, = min {xnm 2 1}. This establishes ‘(134). The proef of
(185) is quite similar. |

§5.2 Convergence Properties of the Operators and I’

Let E denote the set of bounded measurable fumctions defined on
the non-negative real axis. For each{C E, let
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bl = 1w {if(:m 0 £t< m} |
The set E is contained in the domain of I'and in the domain of X‘ fﬂ’t
amhn > 1. By Theorem 7, ;
et g Mol 2nd Jrgl < Bed n2 1, for cachfCE. (186)
The following theorem asserts that the opevators I, n > 1, con.
verge uniformly to I'on E. | -
Theorem 21. Assume uithezm Gauas _@? tka dn@l#*ﬂama quadra«
ture formula. For each {E E, fI'f - r;l - 0asn- . |
Proof: Fix ¢ >0and{C E arbitrarily. By (164) and Theorem 20,

with v = 2, there exist § > 0 and z > § such that

K,(0) - K,(8) <¢, K,(#)< ¢, o
‘ | o ' {187)
K.nz(&} ~ aniﬁ) <e, anfz) < g, n> 1 ’
According to Theorem 19 there exists n o Buch that
ek =] <2 ne8) ferssxgs  aza,  (188)

From (134), (135), (163) and (165) we cbtain frexr) - (rf)mi

T
f | ‘K:ﬁ*’* m*ﬂlﬂm‘ dx < el f | (2}~ ) <

lﬂfl{f (Kl :hl)‘,&* QKF Vul‘ dx +f (Kl + Kul} dx]
& z

Therefore, by (187), (188), and (89), krmmcr f)m{ < Wﬁfﬂs
far n2a.. a .

It fauws auily frm Theorem 21 tka.t, for aaeh m > 0 the apnn»
tors I‘n » n> 1, converge uniformly to I'" on E: This is-a special

case of the next theorem.
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Theorem 22, Assume either the Gauss or the double-Gauss quadra-
ture formula, Suppose that {C E, { € E mn 21 and e f -0
@80 @ Then, for eachm2 0, I £-r™¢ |~ 0asn~ oo
Proof: The case with m = 0 is cbvious. By (186) and Theorem 21,
Irerg b g dreenel + dngeng | s Ire-sel + fg f = 0 as
n > 0. Sothe theorem is validfor m = 1. Since Qr‘““’ r‘m‘”f ﬁ =
ﬁrcr"’t) (0}, induction wmplctu the proef. ﬂ
Amwﬁw to {136) and (1 3?}, |
qs z r’“xa, qu z rm 3 n> 1 o ‘ {139‘)

ms{ el

The functions K, and K _, belong to E and, by Theorem 19,
Ix; - X 30~ 0asn~ . Hence, Theorem 22 and the triangle
inequality imply that | }
v v | | :
| z I"m‘K:;—» z r:‘xnag» Oasa-+ o, v20, (190)

a0 m=0

: 4 "
= VD neeeo z r;m Kn3' , 4 {191)
m=0

I the limits can be interchanged in (191) it will result from (189) that
9~ q ,;,, n - . The next theorem provides a sufficient condition
for the Limit interchange, namely that the series for the ¢ are |
equicenvergent. | 7

Thearm 23. Assume aiﬂwr the Gauss or the double-Gauss quadra-
ture formula. For eachn 2 1,

h,,fVMZfrm BN?)‘»Gnsv*w

m=0
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The convergence is uniform with respect ton and r for n > 1 and
Gs:'r'('r o' for. mch‘r >0,
Proof: Asem:ding to. (xzs), {138) and Theorem 7 with the aizpﬂwuk |
changes of notation,
v |
05 q, - z r':‘ xﬁg = r"*‘qu < :;"‘“i L oo 20. (192)
m=0 _

Chosse 7, > 0 and ¢ > 0 arbitrarily. By Theorem 14 there exists v*
such that kr‘*"‘mv)l <ef2fer 057 < %ﬁ. By Theorem 22 with { = f
= ] there cxint#. a such that ﬂr;*i ] Iy*lﬁ <¢f2fern? B, Bythe
triangle inequality and (107), (I, "1N7)]<c forn>m, 07 Sv
v 2 vk For eachn > 1 thare exists, by ‘Thearém 14, -m\.in%ﬁ” *u
 such that t(ru"'z‘xm <eforviv , 0<7 <7, Let v#_sly:sr.fc&r |
n2n, andv, > max {vn gi}. Then i(!’;'i:.){'fﬂv&z forv2v_,

o
0grg Ty B2 1, and the theorem follows from {189). E
§5.3  The Cemvergence of J_(v) to J(r) and of I (7, ) to Hr. )

With the aid of the machinery of §5.2 at hand the convergence
theorem for the Tunctions .3&{!1*)" is almost immam:
Theovem 24. Assume either the Gauss or the double-Gauss quadra-

ture formula, For am:kr >0, qa(ﬂ -+ q{r)and J ('r) = Jir}
uniformly for 0 < v *ﬁf as n -~ .

 Proof: From (136) and (137), lq-q,,! <
¥y

[‘1"’ z rm Kg i Z irm Kg"rm KR3” Z l‘annjnq‘t ;

m=Q m=0 , m=0

forv 20, n> 1. Choosec >0andr, >0 arbitrarily. According to
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Theorems 15 and 23 there exists v#, independent of n, such that

v v
latr) - ) (FRRr)] <o and | ) (5P ) g (n)f < ¢
m=0 m=0

foer 057 L7, n *1» By (190) there exists n* such that

ﬂz r‘”‘xs r‘mx S)ﬁ <¢, n >n%. Therefore !q{ﬂquﬁ';{ <3

m=0 ‘
aad, by (139) and (140), iz{fw (] <3Fetorogr g, ngu*.‘ ﬂ
From (11), {138) and (139), we obthin
o 0 0
, . : o 4 : ) >80 p<o,
I(‘!’,p.) sf e x.}'h’ + ux) dx, ;g o gm 0,
o T
- | | | (193)
v, n) wf e Xr + px) dx, r20, B2 0.
o o
We use (193) and the analogous expressions for 'Inﬁ'r. ph B2 1, given
by {68), to prove the final e:mmxg&we theorem.
Theorem 25,  If the Gauss er the deuble-Causs quadrature formula.
is used, then for each 7, > 0, 1 (7,u) = I(7,p) uniformly for

e«ww ud-«l-:g,{lunwm
Proofi Choose ¢ > 0 and T >0 arbﬁtr&rﬁn md x>0 mch that

-
f e"’{fa x4+ l)de < g/F.
XN |
J(r-nm)-ﬁ}t-‘[fr*x%- 1] m&;f (7+M)<F[~r—&x+ i]. a2l
Therefore, by {193) and ({68),

xb

" | |
h{‘hg}f e repmax] <, i, ,,.):f eXI (v +px)dn| <,
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for 0T g7, 0 4;& $l, a2 l. By Theorem 24 there exists n* such
that lm»)-:r {-r){ <cfernZa®, 0<7 <7 +xt Then

x® ‘ .
3[ e” J(’rhm)éxf P {'r+y.x)éml4: (3 nbwr 0(?(1- » 0gusl.
o ‘

By the triangle inequality, fl('!:, B) - In(‘!'; n}f < 3¢t forn > %,
027 £7y 02u 1. The proof for the range -1 < < 0 is identical
except that x* should be replaced by min {x*%, ~r/u). |
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