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A conceptual model for managing fisheries to maintain

reproductive fitness is proposed. Reproductive fitness is defined

genetically as the contribution of an individual in a breeding

population to the next generation. The reproductive fitness of a

stock is described by a probability distribution (W) with a

corresponaing mean (171) and variance
(Vw).

In applying the stock

concept to fisheries management, the goal is to maintain the stock

as a self perpetuating system. This requires that the stock

maintain the W (with a sufficiently broad Vw around ;1) to allow it

to perpetuate in the face of fishing and natural mortality in a

changing environment. If W is the probability distribution of

fitness at breeding seasons when stock abundance was acceptable to

management, then it should remain constant in subsequent breeding

seasons (V'w), thus W = WI.
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Examples of functional relationships for the conceptual model

are presented. These equations, derived from existing principles of

population biology and population genetics, express the variance

effective number (Ne(v)) of a stock as a function of population

size in successive breeding seasons, age stucture, the variance of

successful gametes (Vk, estimating Vw) and immigration.

Application of the model to stock management is accomplished by

equating the value of Ne(v) to N e(v). The inputs for the

functional relationships can be estimated or measured directly from

life history information or population variables monitored

in fishery management. They do not require estimation of classical

genetic properties of populations such as gene frequencies and

percentage homozygosity. The output is the number of reproducing

adults required in a given breeding season to insure the maintenance

of stock fitness. Features and limitations of the functional

relationships for stock management are discussed.

The sensitivities of
Ne(v) Vk

and
Vk/kbar

(estimating

Vw/g) to changes in input variables are reported. The descending

order of importance for the inputs controlling the value of Ne(v)

is: (1) population size; (2) the probability distribution of age

specific fitness; (3) age structure; (4) immigration. Interactions

among the inputs preclude a ranking applicable to all cases when

there are simultaneous changes in two or more variables. The

results are discussed in terms of the data required for rational

stock management.



The generalized genetic fitness model is applied to the

management of Pacific salmon fisheries. Adjustment of the

functional relationships to accomodate the different life histories

of different Pacific salmon species is demonstrated for fictitious

chum (Oncorhynchus keta) and pink (0. gorbuscha) salmon stocks.
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A GENETIC FITNESS MODEL FOR FISHERIES MANAGEMENT

INTRODUCTION

Perhaps no questions in contemporary fishery science have

stimulated more debate than those that relate to the long term

genetic implications of fishery management and exploitation. In his

eloquent review of the subject as it related to the management of

Pacific salmon fisheries, Larkin (1981) noted that "It is rather

surprising that there is currently no explicit working hypothesis of

population genetics in the salmon management kit box". The lack of a

conceptual framework for studying the genetic implications of stock

management is not unique to salmon but is a general concern in

fisheries science and, indeed, to the entire fields of natural

resource management and gene conservation.

In attempting to develop an appropriate conceptual framework, Dr.

Lannan and I speculated that this task could be accomplished by

drawing on the existing principles of population genetics and

population biology. We are prepared to propose a conceptual

framework that represents a synthesis rather than the development of

new theory.

A conceptual framework must address the definition of the

management unit and the properties of the unit to be managed. A



conceptual framework presently exists for the former but not the

latter.

What is the Unit of Management?

We cannot improve upon the concept of stocks as a management

unit. The definition proposed by Larkin (1970) seems entirely

adequate as a basis for most management situations. As he perceived

it, a stock is "a population of organisms which, sharing a common

environment and participating in a common gene pool, is sufficiently

discrete to warrant consideration as a self perpetuating system which

can be managed".

Stocks can be described by a variety of criteria consistent with

Larkin's definition. Stocks were initially described in terms of

spatial and temporal distributions. More recently stocks have been

described in terms of biochemical, immunological, behavioral or

morphometric phenotypes.

Virtually all contemporary approaches to natural resource

management are directed toward a common goal: perpetuation of the

resource. This consideration is implicit in the stock concept and

necessitates that management insures an adequate number of

reproducing adults in breeding populations. In recent years, there

has been a proliferation of quantitative methods intended to estimate

escapements required to provide a sustained harvest based upon this

principle. Functions that describe the relationship between surplus

production and stock biomass (Schaefer 1954) or between spawners and

2
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recruits (Ricker 1954) are examples of contemporary efforts to apply

the principles of population biology to fisheries management.

However, none of these quantitative models allow the assessment of

genetic changes caused by management and exploitation. This is a

serious limitation because even if the model predictions result in

adequate escapement and subsequent recruitment in the next genera-

tion, one cannot exclude the possibility that the stock experiences a

net reduction in diversity of genetic information that limits its

opportunities for adaptation in a dynamic environment.

What Genetic Property of Stocks Should be Managed?

If fitness is the genetic property related to the perpetuation of a

breeding population, then maintaining fitness must be the goal of

fisheries management. Fitness is defined genetically as the

contribution of an individual in a breeding population to the next

generation. Mean fitness (symbolized by g) is defined as the average

fitness of a population. It is important to recognize that both

populations and individuals comprising populations exhibit fitness.

Recognizing that the fitness of individuals within a fish population

is highly variable, we can conceptualize a probability distribution

of fitness (W) for an entire stock with a corresponding mean (g) and

variance (Vu). Williams (1977) noted that fitness variability must

be substantial and that only a few genotypes make an effective

contribution to the next generation in populations of high-fecundity

animals, for example, many fishes. It is also important to recognize
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that fitness has dimensions in time, i.e., the dimensions of fitness

are offspring per unit time, and that the instantaneous probability

distribution of fitness strictly applies only to the specific

sequence of environmental circumstances the population has

encountered. The probability distribution may be substantially

altered through changes in W or Vw if the stock encounters

substantial environmental change. This idea is implicit in the

description of usisyphean" fitness by Williams (1977):

"an individual in the top end of the fitness
distribution has achieved its near maximum of fitness
by an only momentarily effective combination of
genetics and individual history. The necessarily low
heritability of such fitness would probably drop that
same genotype into the range of mediocrity in the next
generation."

We realized that a priori knowledge of specific gene frequencies

isn't particularly useful in the assessment of a managed population's

fitness or in the management of its genetic health because: 1) the

sequence of environmental circumstances to be encountered through the

life history of the stock cannot be predicted before the fact and 2)

we do not know the relationship between specific gene frequencies and

fitness. Also, it is unlikely that electrophoretically observed loci

are the major determinants of fitness because these loci are

restricted to structural genes which represent a small proportion of

the entire genome (Falconer 1981). Additionally, phenotypic values

of fitness can only be predicted within broad ranges, even in cases

where individual genotypes are known, because of pleiotropic and

other interactive effects.
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Fitness is a quantitative trait with little additive genetic

variance, high heterosis and substantial inbreeding depression

(Falconer 1981, Gjedrem 1983, Kincaid 1983, Kirpichnikov 1981).

Thus, 1) the fitness of progeny cannot be predicted from knowledge of

the fitness of their parents, and 2) any genotype may result in a

variety of phenotypes, each with a different fitness (Birnbaum 1972,

Lewontin 1982). Also, the greater the variance of fitness in a

mating population, the more opportunity there is for heterosis in the

progeny. In the context of probability theory, fitness is a

phenomenon that has uncertainty associated with it where the

uncertainty is caused by variability due to the inconsistency of

natural phenomena or to sources of variation that elude control. If

the phenomenon exhibits some degree of regularity, then its variation

can be described by a probability model (Hillier and Lieberman

1974). Therefore, we can model fitness as a random variable with a

continuous probability distribution for a large number of individuals

in the stock.

The long-term survival of a stock is more dependent on the

maintenance of an adequate degree of the variance of fitness around

the mean than simply on the value of mean fitness because the stock

must be able to adapt to changing environmental conditions.

Therefore, we conclude that the genetic objective of fisheries

management is: maintaining the probability distribution of fitness

to allow a stock to perpetuate in the face of fishing and natural

mortality in an uncertain environment. Figure 1.1.a illustrates a

number of possible probability distributions of fitness for indivi-

duals of the same age in a given stock. Individual fitness is



expressed in terms of the number of successful progeny per parent

where successful means survival to the reproductive stage. We can

generate a graph for fitness as a function of age by integrating

values for g and
Vw

(taken from a given curve in Fig. I.1.a) over

all ages (Fig. I.l.b). Then, we can restate the genetic objective as

maintaining the variance (shaded area) around the entire curve in

Figure I.l.b.

The contemporary literature of life history theory contains

numerous references to the importance of maintaining Vw in natural

populations. Real (1980) proposed that natural selection maximizes a

function containing terms for both Vw and g . Also, he emphasized

that natural variation (thus Vw) is the cornerstone of Darwinian

selection. Another example is the suggestion of an "adaptive

coin-flipping" principle by Kaplan and Cooper (1984). Using a

decision theory analysis, they argued that the highly variable

reproductive characters (e.g., clutch size, egg size) observed in

cold-blooded vertebrates were adaptations to unpredictable

environments. Their discussion can be extended to V because

reproductive characters are major components of fitness. Conrad

(1983) stated that the variability of biological matter is the sine

qua non for the ability of organisms to cope with the uncertainty of

the environment.

THE CONCEPTUAL MODEL

Given this background, we are prepared to propose a conceptual

model and a set of illustrative functional relationships for
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fisheries management that intend to insure the long term reproductive

fitness of stocks. The model is an extension of the stock concept,

and includes the following features:

It is a generalized fisheries management model that can be

applied to any species because it provides for appropriate

consideration of life history patterns, reproductive strategies, and

the like.

The inputs for the functional relationships, including stock

abundance, age structure, immigration and the variance of successful

gametes per parent (an estimate of Vw), are phenotypic variables

that can be estimated or measured directly.

The model output is the number of reproducing adults

required in a given breeding season to insure the maintenance of the

probability distribution of fitness for the particular life history

of the stock.

The functional relationships of the model can stand alone or

can be linked to other predictive models of population dynamics.

The model is applicable to single or mixed stock fisheries

and permits substantial management flexibility in assessing the

genetic status of stocks relative to management goals. Thus it is

equally applicable to managing the harvest of surplus production on

the one hand, and to stock rehabilitation on the other.

Let W equal the probability distribution of fitness (with a charac-

teristic ; and Vw) in past breeding seasons and W' equal the proba-

bility distribution of fitness in the breeding seasons of management

concern. Assuming that W is at a value consistent with management

goals, conservative management dictates that it should remain



constant in subsequent breeding seasons, thus:

W = W'. (1)

The functional relationships W = f(population variables) and W' =

f(population variables') can be substituted into equation (1), and

the equation rearranged to solve for any one population variable,

assuming numerical values for the remaining variables are available.

8
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Fig. I.1.a and I.b.

Possible probability distributions for fitness (the number of

successful progeny/parent) for one reproductive age class in a

stock.

Fitness (number of successful progeny/parent) as a function

of age for all reproductive ages in a stock.
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Fig. 1.1.a and I.b

Age at Reproduction

,.
......

10



DESCRIPTION OF FUNCTIONAL RELATIONSHIPS FOR

A GENETIC FITNESS MODEL FOR FISHERIES MANAGEMENT

Anne R. D. Kapuscinski

and

James E. Lannan

Department of Fisheries and Wildlife

Oregon State University

Marine Science Center

Newport, Oregon 97365

11



ABSTRACT

An example of functional relationships for a genetic fitness

model for fisheries management is presented. The expressions were

derived from the variance effective number for a reproducing

population and include variables for population size in successive

breeding seasons, age structure, the variance of successful gametes

(an estimate of the variance of fitness) and immigration rate.

The management objective of maintaining the probability

distribution of fitness in a stock is met by: (1) identifying

reference breeding seasons when stock abundance was consistent with

management desires and (2) equating the variance effective number

(Ne(v))
for the reference seasons to the variance effective number

(N'e(v)) for the stock in present time. The required inputs can

be estimated or measured directly from life history information or

population variables routinely monitored in fishery management.

Determination of genetic properties of the stock such as gene

frequencies, homozygosity, and the like are not required. The output

is the number of reproducing adults required in a given breeding

season to. insure the maintenance of the probability distribution of

stock fitness.

Application of the model to stock management is discussed in

the context of both features and limitations of the functional

relationships.

12



INTRODUCTION

We have developed a conceptual genetic fitness model for

fisheries management. The model treats stock fitness as a random

variable described by a continuous probability distribution when

there is a large number of individuals in the stock. The model

defines the genetic goal of fisheries management to be maintaining

the probability distribution of fitness to allow the stock to

perpetuate in the face of fishing and natural mortality in an

unpredictable environment. This is achieved by equating the

probability distribution of fitness, W, at a time when stock

abundance was acceptable for management desires to W' in the breeding

seasons of immediate management concern. A characteristic mean

(R, 1711) and variance (V ,V' ) is associated with each probabilityw w

distribution.

This paper describes the translation of the conceptual model into

quantitative terms. The functional relationships are based on a

synthesis of contemporary principles of population genetics and

biology. They represent a second approximation of functional

relationships consistent with the objectives of stock management.

Owing to problems with the incorporation of age structure, the first

approximations (Kapuscinski and Lannan 1984) have been revised into

the present forms. These functional relationships are presented as

one example of quantitative expressions for the conceptual model. It

is anticipated that new derivations will result in the conceptual

model becoming more comprehensive with time.

13



POPULATION VARIABLES INFLUENCING STOCK FITNESS

Let us assume that the stock under consideration is not likely to

undergo any significant evolutionary change during the period in

which management is applied. Then, the quantitative expressions for

the model must address three principal mechanisms that can effect

substantial changes in the diversity of genetic information in a

stock in one to several generations. These include changes in

population size, immigration into the stock and the presence or

absence of age structure in the reproductive stock.

FUNCTIONAL RELATIONSHIPS

The functional relationships for the model are based on the

concept of a variance effective number. Relating any genetic

property of a population to actual population numbers is complicated

because not all individuals in a population, not even all sexually

mature individuals, necessarily become parents (Falconer 1981). The

concept of effective population size was introduced by Wright (1931)

to reduce the complicated breeding structure of real populations to

the mathematically equivalent and simpler case of an idealized

population. According to theory, two related processes, inbreeding

and random drift, contribute to an average increase in homozygosity

within a population of finite size. Thus two definitions (Kimura and

Crow 1963) of the effective population number, Ne, must be

14
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considered:

the inbreeding effective number,
Ne(f) is the size of an

idealized population that has the same rate of inbreeding as

the observed population, and

the variance effective number, Ne(v), is the size of an

idealized population that has the same amount of random gene

frequency drift as the observed population.

The two effective numbers are equivalent for populations that

remain constant in size over time, and are approximately equal for

populations whose periods of increase and decline tend to negate one

another over time (Crow and Kimura 1970). However, for small popu-

lations that are in decline, especially those that are in danger of

extinction, gene frequency drift results in greater homozygosity than

does inbreeding (James Crow, personal communication). Thus, although

one can derive a functional relationship using either Nem or

Ne(v)' conservative management seems to favor the latter. The

variance effective number offers the additional advantage of

incorporating the probability of increasing homozygosity, thus

eliminating the requirement of estimating homozygosity in managed

populations.

An equation for Ne(v) can be derived that incorporates popula-

tion size, immigration, age structure and the variance of fitness.

Let us define genetic risk as the probability of a reduction in the

adaptibility of a stock to its habitat due to a reduction in genetic

variation. The final expression for Ne(v) will be a measure of

genetic risk. It will not be equivalent to the Ne(v) presented in

the literature of population genetics (Crow and Kimura 1970).
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Recognizing that Ne(v) is an abstraction, the reason for including

it in the quantitative expressions is to permit the unification of

the principal mechanisms affecting stock fitness. Then we can use

the functional relationship Ne(v) = f(population variables) for the

conceptual model if we note that the probability distribution of

fitness is a function of Ne(v)

The equation for Ne(v) will be used to satisfy the following

management objective. If Ne(v) is calculated for a stock during a

breeding interval when stock abundance satisfied management goals,

then conservative management dictates maintaining this value of

Ne(v) in subsequent breeding seasons, thus:

Ne(v) = N'e(v)
(1)

where the prime notation distinguishes the breeding seasons in

present time from the reference breeding seasons. Functional

relationships for Ne(v) and N'e(v) can be substituted into

equation (1), and the equation rearranged to solve for any one

population variable, assuming numerical values for the remaining

variables are available.

Population Size. Because Ne(v) is the size of an idealized

population, the simplifying properties of an idealized population

must be considered in the present derivation. Thus we consider an

observed population with the following properties:



Mating is at random,

the sexes are separate but the numbers of each sex need not

be equal,

self-fertilization does not occur,

migration into the population does not occur,

parents reproduce at only one age (generations are

discrete),

the population is composed of diploid individuals,

the number of offspring per parent contributed to the next

generation can vary.

The variance effective number for this population is

Ne(v) V1+ k
k

where:
Nt-1 the number of breeding individuals in breeding season

t-1, k (kbar) and Vk are, respectively, the mean and variance of

successful gametes (i.e. gametes wnich survive to become parents in

the next generation) contributed per parent (Kimura and Crow 1963;

Crow and Kimura 1970). The variance effective number can be weighted

for differential contributions of male and female parents by

calculating N* for females, N** for males and combining them

according to the formula of Kimura and Crow (1963)

(2)

17



(2a)

4 N* N
e

Ne(v)
N" + N**
e e

Because kbar and Vk express a relationship between parents in

generations t-1 and t, kbar is proportional to 17 on the one hand and

Vk is proportional to Vw on the other. We propose to use Vk in

place of Vw without solving the proportion in the present

discussion because we will ultimately equate Ne(v) = f(Vk) to

N'e(v) = f(V'k) as suggested in equation (1). Similarly, kbar

becomes a convenient term to retain because it can be estimated as

2Nt
(3)

Nt-1

(Crow and Kimura 1970), a form which may be calculated from estimates

of population abundance at t and t-1.

Because equation (2) applies to the observed population described

above, it does not apply to cases where migration or age structure

occur. The next step in our synthesis must therefore address

migration and age structure.

Migration. Migration reduces the probability of random drift among

18
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subpopulations. The simplest model for migration, the Island Model

(Wright 1951), assumes that the immigrants into a subpopulation are a

random sample of the entire population. Thus the migrants have a

gene frequency equal to that for the whole population.

The Island Model can be applied to the present case by assuming

the stock to be a subpopulation. Let M be the fraction of the stock

(subpopulation) replaced by migrants in a generation. The

probability that neither of two genes uniting in a zygote has been

exchanged for a migrant gene is (1-M)2. Because random drift of

gene frequencies (and the corresponding loss of genetic variation)

within stocks decreases as migration increases among them, inclusion

of migration into equation (2) should result in an increase in

Net,v,
when M increases. The appropriate expression for Ne(v)

under these conditions is:

N kt-1
Ne(v)

2.

1 + Vk 0.402
k

based on the equation presented by Crow and Kimura (1970) for the

rate of inbreeding as a function of M and Ne(v)

The assumptions of the Island Model can be relaxed to correct for

migration between subpopulations that are related due to exchange of

genetic information in previous generations (Crow and Kimura 1970).

If r is the correlation of gene frequencies between immigrants and
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the receiving subpopulations, M(1-r) is substituted for M in equation

(4).

Age Structure. When individuals.reproduce at two or more ages, a

population may be composed of individuals representing two or more

cohorts in a given calendar period. In a management sense, this

period must include the interval during which fishing mortality and

reproduction occurs. We find it useful to define a breeding season

as an interval of management concern and to consider all cohorts

represented during that interval in the calculations of Nt_i, kbar

and
Vk

in equation (4).

Incorporation of age structure into equation (4) requires estimat-

ing the abundance of parents Nx,t-1' in each cohort, where x is the

age at reproduction. Then the abundance of all parents at t-1 in

equation (4), is

Nt-1 E Nx x,t-1

Likewise, the contribution of each cohort to the average number

of successful gametes must be considered. The appropriate expression

is the weighted sum

(5)



k Nx -x x t-1
t-i

where ix is the average number of succcessful gametes produced by

parents of age x.

Alternatively, k can be estimated as

2ENn x+n, t+n
Nt-1

a form that may be calculated from estimates of population abundance

at breeding season t-1 and fl t+n where the range of values for n is

determined by the reproductive life history of a given stock. For

example, if there is annual breeding and the progeny produced by

parents at t-1 are sexually mature at ages 1 - 5, then the range of n

is 0 - 4.

Finally, the variance of successful gametes can incorporate age

structure by computing a weighted sum of the variances of each

cohort. This requires a few intermediate steps based on statistical

concepts.

21



If ak2 is s the true variance of k for all fish of age x and

is the variance of k for fish of age x within a givens2k,x

stock, then s2k,x for one stock is a sample of aLx, the

true variance for all stocks of the species:

02 s2.
+ S2within among

stocks stocks

and

S2 < a2

The definition of Ne(v) implies that it is a measure of the

sampling bias in the transmission of genes from one generation to the

next caused by the finite size of a stock. Thus, it is appropriate

to make s2k,x dependent on the sample or stock size. This

requires removing the Gaussian correction from the variance formula

and is accomplished by

a2 (N _1)
k x x

s2k, x
Nx

(9)
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where N to breeding season t-1.

If it is assumed that s2k,x at one age (x) is independent of

s2k,y at any other age (y) present in the reproductive stock,

then

COVk,xy = 0 (10)

for all paired combinations of ages. Then, the contribution of each

cohort to
Vk

is considered by computing the weighted sum

E S2 N E S2 N
V = x k,x x,t-1 . x k x x,t-1
k ENx x,t-1 Nt-1

When expression (10) is unacceptable, the summation in the

numerator of expression (11) must include the appropriate

covariances.

Substitution of expressions (5), (6) or (7), and (11) for Nt_l,

kbar and Vk'respectively, into equation (4) provides a functional

relationship between Ne(v) and population size, the mean and

variance of stock fitness, age structure and migration. The solution

of equation (4) requires the following data from fisheries surveys:
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Estimates of stock abundance at Z t+n and t-1,
n

the proportion of reproducing adults at t+n and t-1,

the number of migrants into the stock in breeding season

t-1,

the age composition of reproducing adults at n t+n and

t-1, and

estimates of age specific variance of successful gametes

(s2k,x) at t-1.

While the first four items can be estimated from data monitored

in fisheries management, measurement of s2k,x may require

carefully designed field sampling of marked progeny (e.g., with coded

wire tags) over t+n breeding seasons. An alternative method of

estimating s2k,x requires knowledge of the probability

distribution of k and estimates of kbarx at each age x (Fig.

1.1a). For some probability distributions (e.g., Poisson, gamma,

exponential and binomial distributions), the variance can be

expressed as a function of the mean. If the probability distribution

of k at age x fits this condition, then

s2k,x =f(kbarx) (12)

However, estimation of kbarx still may require sampling of marked

progeny.



APPLICATION OF THE MODEL TO STOCK MANAGEMENT

Equation (4) (containing substitutions from equations 5, 7, and

11 for age structure) is of a form which can be substituted into

equation (1). Thus the conceptual model can now be applied to real

management situations for stocks with migration and age structure.

This application would typically involve the following stepwise

process:

I. The historical records for a stock of concern would be

surveyed, and successive breeding seasons, t-1 and t+n, would be

selected from an era when the stock would be considered to have
Ne

consistent with the management goal. The terms Nt_i (equation 5),

E N M and
Vk

(equation 11) would be compiled for the
n x+n,t+n'

selected interval.

The immediate management objective is to determine the

number of breeding individuals required in the present (or next)

breeding season to insure the maintenance of Ne, thus the

maintenance of W. This is done by evaluating population abundance,

age structure, and migration in the generation interval of immediate

concern. These data would provide numerical values for N't_i, M',

and V'k' where the prime notation is intended to distinguish these

properties in present time from the corresponding terms for the

reference generations. The variable for which we will ultimately

solve is N
n x+n,t+n.

Consistent with equation (1), we now equate We for the

reference generation to N'e for the present generation, giving
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Substituting 2f1 Nx+nst+n/Nt_i for kbar and 2Z N
n lx+n,t+n for

is (equation 7) and rearranging terms, we arrive at

E N'n x+n, t+n

EN
n x+n, t+n

1 + ( Nt-1 Vk

[ 1

2E N
n x+n, t+n

2E N'
n x+n, t+n

26

(13)

(14)

Equation (14) would be appropriate for species with age

structure. A similar stepwise process would be employed for species

with discrete generations, however the expression ; Nx+nitm

reduces to
Nt

In this case.



DISCUSSION

The expressions presented in the previous section are composed of

the conceptual model ( W WI ), and an example of functional

relationships for application of the model (represented by equations 1

through 4). In developing the latter, we have relied heavily upon the

contributions of Kimura and Crow (1963) and Crow and Kimura (1970).

It should be noted that other workers (for example see Choy and Weir

1978, Emigh and Pollak 1979, Felsenstein 1971, Hill 1979, Nei and

Imaizumi 1966, Robertson 1961) have contributed alternate derivations

for effective population numbers which also would be suitable as

functional relationships in application of the conceptual model.

We have elected to use the equations of Kimura and Crow in the

present discussion for a number of reasons. Because they have

appeared in the literature for some 20 years, they are familiar to the

community of population biologists. In spite of their simplifying

assumptions, they provide substantial flexibility in adapting the

model to the life history patterns of the species of concern. Most

importantly, they offer the advantage of enabling one to deal

quantitatively with population fitness using only estimates of

population variables routinely recorded or capable of being recorded

in fisheries survey work, thus avoiding the necessity of making direct

estimates of other genetic properties of populations.

We regard the latter point to be of paramount importance. Whereas

classical population genetics focuses upon the genetic structure of
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populations, natural resource management is more concerned with the

phenotypic expression of the genetic information in a variable and

unpredictable environment. Therefore, although the frequencies of

various alleles in populations may be useful in identifying stocks as

management units, such information is not particularly helpful when it

comes to making decisions about how the stocks should be managed. In

attempting to relate gene frequencies to stock management, it is

necessary to assume that the gene frequencies are correlated with

reproductive fitness irrespective of whether the frequencies are

determined from electrophoretic evaluation of protein polymorphisms,

meristic traits or any other methodology. The validity of this

assumption is tenuous at best, for in addition to the technical

questions associated with the methods of analysis, it is further

assumed that the observed phenotypic variability in a limited number

of structural genes reflects the variance of population fitness. If

this assumption is valid, then (1) the loci observed are the major

ones determining fitness, and (2) the loci act independently in their

contribution to fitness. The likelihood that a structural gene with

these properties exists is at best extremely remote.

In preceding sections we have made reference to idealized

populations on the one hand and observed populations on the other. A

clarification of the differences would be appropriate at this point.

As noted earlier, Wright (1931) introduced the concept of an idealized

population to simplify the properties of populations resulting from

complicated breeding structure. Implicit in the concept of an

idealized population are the following assumptions:
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mating is at random, including a random amount of

self-fertilization,

generations are discrete, i.e., there is only one

reproductive age,

the number of breeding individuals is the same in each

generation,

migration is excluded,

there is no selection,

mutation is disregarded.

Certain of these assumptions may be unacceptable when applying the

principles of population genetics to management situations depending

upon the life history pattern of the species under consideration. It

is useful to start with the assumptions of an idealized population in

deriving functional relationships for management models. Then the

derivations can be modified to correct for untenable assumptions until

the list is consistent with the properties of an observed population.

In the present case, we commenced our derivation using an equation

that retained assumptions 2, 4, and 6 and modified assumption 1 so as

to exclude self fertilization. We then systematically addressed the

remaining assumptions by appropriate changes to the functional

relationship. This approach provided the means for developing

consistency between functional relationships and the life history

patterns of the species concerned.

Having devoted considerable attention to what the model can do, it

seems appropriate at this point to recognize its limitations.

Although the model provides a means for maintaining the probability

distribution of fitness by maintaining the corresponding value for the
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variance effective number, it does not provide inference about the

evolutionary mechanisms acting on population fitness. There is an

inherent danger in placing an absolute numerical value on the variance

effective number in the reference generations without giving careful

consideration to the life history pattern and environment of the

species of concern. The possiblity still exists to inadvertently

modify population structure unless careful attention is paid to

biological detail.

To expand on this point by illustrative example, consider a stock

of marine fish composed of individuals representing a large number of

age classes. If fishing selectively extracts the older age classes

(presumably the larger fish), the average age of reproduction is

reduced. If there is a genetic component to the age class structure

this is tantamount to reducing the generation interval, which has the

effect of increasing average fitness but reducing the variance of

fitness. It would be useful to partition age structure into genetic

and non-genetic components of variance, but in the absence of such

information conservative management would dictate that we should

attempt to harvest the stock such that the distribution of age classes

in the catch is the same as in the stock at large.

Practicable application of the quantitative model to stock

management is constrained by the estimations of s2k,x values in

equation (11) for the calculations of Vk and V'k in equation

(14). If the estimations of s2k,x values require field sampling,

there may be considerable cost and time delay involved in the

application of equation (14) to the management of a given stock. The



31

magnitude of this problem will be influenced by the life history of

the species. Another constraint is the determination of appropriate

reference breeding seasons for the estimation of population variables

In equation (14). Data gaps in the historical record may preclude

computation of the necessary variables for some stocks. Even when the

data are available, equation (14) assumes that a stock's habitat in

the reference breeding season is similar to the habitat in the season

of management concern. Stock management via the sole application of

equation (14) may be inappropriate when this assumption is

unacceptable.

Data constraints may be circumvented by developing indirect

estimates of the population variables required for equation (14).

simple example is the calculation of s2k,x from estimates of age

specific fecundity and survival by

s2k,x f(kbarx) = f[(fecundityx)(survivalx]

where fecundity could be estimated as a function of length or weight

at age (Pitcher and Hart 1982). However, indirect estimates will

contribute error to the output of equation (14) and will increase the

uncertainty involved in the application of equation (14) to stock

management. Consideration must be given to such uncertainty if

conservative management is desired.

There is an inherent danger in extending the generalizations of

any simplistic quantitative model to management purposes. In the
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present case the model at least intends to address the long term

perpetuation of the resource, and if it is found to be in error it is

likely to err in favor of conservatism. In this sense we feel the

model represents a modest improvement of the tools available for the

application of the stock concept to fisheries management.
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ABSTRACT

This report describes the sensitivities of outputs from

functional relationships for a genetic fitness model for fisheries

management. The variance effective number (Ne(v)) is the principal

output required for applying the genetic objective of maintaining the

probability distribution of fitness (W) to allow the stock to

perpetuate in the face of fishing and natural mortality in an

unpredictable environment. The analysis included investigating the

sensitivities of Ne(v)' Vk and Vk/kbar (where k, the number of

successful gametes per parent, estimates individual fitness) to

changes in the following inputs: population size, age structure

(number of ages, age distribution, age specific mean fitnesses and

variances of fitness), immigration rate and the probability

distribution of age specific fitness (kx).

The descending order of importance for the inputs controlling the

value of Ne(v) is: (1) population size; (2) the probability

distribution of k (3) age structure; (4) immigration. However,x

interactions among the inputs preclude a ranking applicable to all

cases when there are simultaneous changes in two or more input

variables. The results are discussed in the context of conservative

stock management. The minimum data requirements for rational

management are concluded to be estimates of the type of probability

distribution for age specific fitness, age composition of the

reproductive stock, age specific differences in the mean and variance

of fitness, and population size.
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INTRODUCTION

This paper describes the sensitivity analysis of functional

relationships used in a genetic fitness model for fisheries

management (Kapuscinski and Lannan 1984a). The response of a stock's

variance effective number (Ne(v)) to changes in input variables was

studied because application of the model to stock management involves

maintaining the variance effective number in present time (Nle(v))

at the level calculated for reference seasons in the past

(Ne(v)). The analysis included changes in population size (in

successive breeding seasons), age structure, immigration rate and the

variance of fitness. Also, different probability distributions of

fitness were examined because, for some distributions, the variance

of fitness can be estimated from the mean.

Five possible probability distributions of fitness were

considered. In all cases, kx, the probability distribution of

successful gametes at age x was used as an estimate of the

probability distribution of fitness. A high frequency of low

Individual fitness (0 g kxg 1) and a low frequency of very high

values of individual fitness are expected in most commercial fish

stocks, especially in the dynamic marine environment and in the face

of large exploitation rates. Average fitness (kbar) for a stock is

expected to be low because a kbar of 1 is associated with a rapidly

declining stock (Nt. 0.5Nt_1), a kbar of 4 is
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associated with a rapidly growing stock (Nt = 2Nt_i) and a kbar

of 2 is associated with a stable stock size
(Nt = Nt-1).

These

conditions for the values of fitness are met by the following

asymmetrical probability distributions of kx: Poisson, negative

exponential, gamma when is small and binomial when n is much

larger than the mean (kbarx) (see appendix A for explanation of

parameters). A contrasting set of conditions for a commercial stock

would include a low frequency or even zero frequency of small

individual fitness (0 k 1) and an increased frequency of large

individual fitness. These conditions would apply to a stock

experiencing very favorable environmental conditions for a number of

breeding seasons in the wild or to a cultured stock. The following

symmetrical (or nearly symmetrical) distributions satisfy these

conditions: normal, gamma when 6 is large and binomial when n and

the mean (kbarx) are small.

METHODS

Sensitivity analysis of the functional relationships for the

fitness model was conducted to study the response of output variables

to changes in one or more inputs.

Functional Relationships



where:

N kt-1
e(v) = 1 + Vk (1,1)2

k

Nt-1 E Nx x,t-1

2ENn x+n t+n

t-1

(1)

(2)

(3)
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biology and population genetics were described by Kapuscinski and

Lannan (1984a). They relate the variance effective number, Ne(v)'
for a reproductive stock to population size, the mean and variance of

successful gametes (estimates of and Vw), age structure and

migration. The following equations were used in the sensitivity

analysis:



kx = f(17) such that

E k Nx x x t-1
Nt-1

0 1( ,x = f(17X) (5)

a2 (N -1)k x xs2 ink, x Nx
(6)

(4)
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and

E S2 N E S2 N
a xkxxt-1--,---- . x k,x x,t-1

EN
Nt-1x x,t-1

Definitions for the terms in equations (1) to (7) are (Kapuscinski

and Lannan 1984a):

x = the age of parents;

Nt-1 = the number of parents in breeding season t-1 where

Nx,t-1 represents the parents of age x

iZ and Vk = the mean and variance of successful gametes (k)

contributed per parent;

M = the fraction of the stock replaced by migrants in breeding

season t-1;

a2kix = the true variance of k for all fish of age x;

and 2kx = the mean and variance of k for fish of age x
ix s,

within one stock.

Sensitivity analysis was conducted with a Pascal program

(appendix B) developed from these equations and run on an Apple Ile

computer. The program inputs included values for:

(7)
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the range of ages (first x - last x),

for each x,
Nx,t-1

zN
n x+n,t+n'

M,

the pattern of increase in kbarx as x increases, where the

choices are linear or positive exponential and

the probability distribution of k within a given age class

(x).

The choices for the probability distribution of k were (Hillier and

Lieberman 1974):

Poisson where a2 2
kbarx'k,x

negative exponential where a2k.x 2 (kbarx)2,

gamma where a2 2
kbarx and an input value fork,x

was required,

binomial wherekbar (1-1(-1111S1 and ana2
=k,x x nx

input value for n required or

normal where 02 cannot be estimated from kbar,k,x x'

thus an input value for 0.2kix was required.

The derivations of the variance formulae and the ranges of input

40
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values (based on biologically meaningful values) are given in

appendix A. The program outputs were:

Nt-1
and kbar (equations 2 and 3) for an entire stock,

kbarx',k,x and s2k,x for each x (equations 4 - 6),

Vk
(equation 7) for an entire stock and

4 Ne(v) (equation 1) for an entire stock.

Sensitivity Tests

The sensitivity of Ne(v) to changes in one or several variables

at a time was studied. In some cases, the sensitivity of Vk or

Vk/kbar was examined at the same time. Unless stated otherwise in

the results, the range of ages (x) was 2 - 5, the numbers at each age

corresponded to an intermediate age distribution (Table III.1),

Nt-1 was 1000, M was 0.1 and there was a linear increase in kbarx

as x increased. The numbers at each age for the cases where there

was a predominantly young or a predominantly old age distribution and

for the cases where the range of ages was 1 - 10 are given in Table

111.1. A Poisson probability distribution of k, an intermediate age

distribution and a constant kbar (kbar = 1) characterized the cases

where M was varied.

The sensitivity of
Ne(v)

to changes in program inputs was

examined in a management context by defining the critical value of

Net),v. to be the value required to maintain stock abundance at the

replacement level, where kbar = 2. Thus, for conservative
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management, the critical Ne(v) and N'e(v) are the smallest

acceptable values for the genetic objective defined by Kapuscinski

and Lannan (1984a):

Ne(v) = N'e(v)
(8)

RESULTS

The results of the sensitivity analysis are presented graphically

in Figures 111.1 through 111.13.

Response of Age Specific Fitness to Input Variables

Because the variables
kbarx

and s2k,x were program outputs,

their values at each age (x) were different for different ranges of

x, different values of Nx,t-1 and kbar or for different patterns of

Increase in kbarx as x increased. Different inputs for x,

Nx,t-1'
kbar, or the pattern of increase in kbarx yield different

curves with different values for each
kbarx and s21¼,x

associated with them. Thus, biological interpretation of all the

sensitivity analysis results must be done in the following manner.

Different curves on a figure represent either different stocks or

the same stock at different breeding intervals. For example, if 1000

parents consisting of ages 1 - 10 are compared to 1000 parents

consisting of ages 2 - 5, then:
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Ne(v)
for ages 1 - 10 and We(v) for ages 2 - 5 represent

two stocks or

Ne(v)
for ages 1 - 10 represents one stock and

Ne(v)
for

ages 2 - 5 represents the same stock at another breeding

season. In the latter case, a change in the stock's age

structure resulted in a corresponding change in kbarx and

s2k,x values for each x. In evolutionary terms, the

changes in kbarx and s2k,x could result from changes

in either the genetic or the environmental component of the

phenotypic values (Falconer 1981).

Sensitivity of Ne(v) and Vk/kbar to the Probability

Distribution of k

There is interaction between the function Ne(v) = f(kbar) and

the probability distribution of k for distributions where the vari-

ance can be estimated from the mean (Fig.III.1). There is a linear

increase in
Ne(v)'

reflecting a linear increase in Vk, as kbar

increases for the Poisson, binomial and gamma distributions. There

is little change in Ne(v) as kbar increases for the negative expo-

nential distribution because the quadratic increase of Vk in the

denominator counteracts the linear increase of kbar in the numerator

of equation (1) (refer to variance formula in methods). The gamma

distribution is the most general distribution, yielding a family of

straight lines for different values of B. Values for Ne(v) for

the gamma and Poisson distributions are identical when 8 = 1.
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Values for
Ne(v)

for the gamma and negative exponential

distributions are identical when 8 = kbar.

The binomial distribution generates a family of straight lines

for different values of n (Fig. 111.2.) where n is the largest

possible value for fecundity (refer to Appendix A). The lines

approach the Poisson line (Fig. 111.1) for intermediate values of n

(e.g., n = 20 - 200) and are identical to the Poisson line for large

n (e.g., n = 2000). The binomial lines differ significantly from the

Poisson line only when n is very small (n = 2 - 8) because, then,

Vk for a given kbar is much smaller in the binomial than in the

Poisson distribution. Whereas
Vk

= f(a2kbar) is approximately

equal to kbar for the Poisson distribution, Vk = f(o21kbar,n)

decreases when n decreases and kbar is held constant for the binomial

distribution (refer to variance formulae in methods).

The probability distribution of k affects the critical value of

Ne(v) (Fig. 111.1 and 111.2). The critical value of
Ne(v)

increases as 6 increases in the gamma distribution and as maximum

fecundity (n) decreases in the binomial distribution. The critical

value of Ne(v) for the Poisson distribution is always greater than

it is for the negative exponential distribution.

Results for other portions of the sensitivity analysis are

restricted to the Poisson and negative exponential distributions

because they show the greatest difference between their slopes for

Ne(v) f(kbar).

There is a linear increase in Ne(v) as kbar increases for a

normal distribution of k where the variance cannot be estimated from
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the mean (Fig. 111.3). Also a family of straight lines is generated

for different values of
Vk/kbar.

When Vk/kbar is 0.498 the line

(slope = 712.57) approaches the Poisson line (slope = 553.48) in

Figure 111.1 for which Vk/kbar is 0.996. This suggests that the

value of
Vk

associated with a given kbar in a stock with a normal

distribution of k can be approximately one-half of the Vk in a

stock with a Poisson distribution. Also the critical value of

Ne(v) increases as Vk/kbar decreases in the normal distribution.

Thus the rational development of genetic objectives for stock

management requires knowledge of the probability distribution of k in

conjunction with estimates of Vk (Kapuscinski and Lannan 1984a).

There is interaction between the function Vk/kbar = f(kbar) and

the distribution of k (Fig. 111.4). The ratio Vk/kbar is constant

as kbar increases for the following distributions: poisson, binomial

(when n is small), gamma (when B is held constant) and normal (when

Vk is allowed to increase as kbar increases). There is a linear

increase in Vk/kbar as kbar increases for the negative exponential

and gamma distributions (when 8 = kbar). Vk/kbar decreases to an

asymptote as kbar increases for a normal distribution when 02,x is

held constant for each x. The probability distribution of k affects

the value of Vk/kbar associated with the critical value of Ne(v)

(i.e., where kbar = 2). A larger value of Vk/kbar is required for

asymmetrical distributions (Poisson, negative exponential, gamma and

binomial when n is large) than is required for symmetrical distribu-

tions (normal and binomial when n is small and the probability of

yielding a successful gamete from each egg is 0.5).



Sensitivity of Vk to Age Specific Fitness

The probability distribution of k determines the general

sensitivity of Vk to kbar (Fig. 111.5): there is a slight linear

increase in Vk as kbar increases (slope 0.996) for a Poisson

distribution and a quadratic increase in Vk as kbar increases for a

negative exponential distribution. However, there is interaction

between the pattern of increase in kbarx with increasing x and the

probability distribution of k. While there is little difference

between the Poisson curves for a linear and an exponential increase

in kbarx' the elevation of the negative exponential curve is much

greater for an exponential increase in kbarx than it is for a

linear increase in kbarx. The value of Vk associated with the

critical value of
Ne(v)

is always greater for a negative

exponential distribution of k than for a Poisson distribution of k.

In addition, Vk associated with the critical value of
Ne(v)

is

greatest when there are a negative exponential distribution of k and

an exponential increase in kbarx with increasing x.

Sensitivity of Ne(v) to Age Specific Fitness and the Number of

Reproductive Ages

The variance effective number as a function of kbar is the same

for different numbers of ages and different patterns of increase in

kbarx with increasing x when there is a Poisson probability

distribution of k (Fig. 111.6). This result applies only to the case
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where kbarx values (for a given kbar) are allowed to vary as the

number of ages varies and Nt_i is held constant. Under natural

conditions, kbarx values may remain constant, at least over the

short term, when the age structure of a stock changes. Also, a

change in age structure probably would result in a corresponding

change in the total number of parents (Nt_i) and kbar. Thus the

slope of the straight line shown in Figure 111.6 would change.

The variance effective number as a function of kbar differs for

different numbers of ages and patterns of increase in kbarx with

increasing x when there is a negative exponential probability

distribution of k (Fig. 111.7). For a given pattern of increase in

kbarx' the elevation of the curve and the critical value of
Ne(v)

decreases as the number of ages increases because Vk increases.

For a given number of ages, the critical value of
Ne(v)

is much

smaller when the increase in kbarx is exponential than when it is

linear. There is interaction between the number of ages and the

'

pattern of increase in kbarx: the difference in elevation between

the curves for ages 2 - 5 and ages 1 - 10 is greater when the

increase in
kbarx

is exponential than when it is linear. These

results apply only to the case where kbarx values are allowed to

vary. If kbarx values remain constant and Nt_i and kbar values

change when age structure changes in a natural stock, then the

differences among elevations of the curves may be greater than the

differences shown in Figure 111.7.
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Sensitivity of Vk and Ne(v) to Age Distribution, Age Specific

Fitness and the Pattern of Increase in kbarx for a Constant

Number of Ages

The functions Vk = f(kbar) and Ne(v) = f(kbar) are the same

for different age distributions and different patterns of increase in

kbarx with increasing x when there is a Poisson probability

distribution of k (Fig. III.8a and III.8b). Also, these functions

are the same for different age distributions and a linear increase in

kbarx when there is a negative exponential probability distribution

of k (Fig. III.9a and III.9b). However, the functions are different

for different age distributions and an exponential increase in

kbarx when there is a negative exponential probability distribution

of k (Fig. III.10a and III.10b). The elevation of the curve for Vk

(Fig. III.10a) increases and the elevation of the curve for Ne(v)

decreases as the proportion of young fish increases (going from a
,

predominantly old to a predominantly young age distribution). This

result is due to concurrent increases in kbarx and s2k,x at

each age (x) and for each kbar (Table III.2a). There are similar but

less dramatic increases in these variables for the data presented in

Figures III.8a, III.8b, III.9a and III.9b (Table III.2b).

Sensitivity of Ne(v) to the Immigration Rate

The variance effective number as a function of M when kbar and

Vk are held constant is described by a curve with one inflection
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(Fig. 111.11): for lower values of M, there is a linear increase in

Ne() as M increases; the rate of increase in Ne(v) is smaller
v

(above the inflection) at higher values of M; Ne(v) is equal to the

total number of successful gametes (2f1 Nxill,t+n) at M 1.0.

This function is identical for different numbers of ages, probability

distributions of k (Poisson or negative exponential) and patterns of

increase in kbarx with increasing x because age specific fitnesses

(kbarx' s2k,x) were allowed to vary. If age specific fitnesses

remain constant in a natural stock, the elevation of the curve in

Figure 111.11 will change when the age structure changes. If the

value of Ne(v) calculated for a given stock under a given set of

conditions for the other variables is below the critical value, then

it can be raised by an increase in M.

The variance effective number as a function of M is different for

different values of Nt-1 when kbar and Vk are held constant

(Fig. 111.12). The elevation of the curve and the rate of increase

(below the inflection) increases as Nt_i increases.

The variance effective number as a function of M is different for

different values of kbar when
Nt-1

is held constant (Fig. 111.13).

The elevation of the curve and the rate of increase (below the

inflection) increases as kbar increases.



DISCUSSION

Population size (Nt_i, Nt and thus kbar) is the principal

input controlling the value of Ne(v) The descending order of

importance of the other variables is: (1) the probability

distribution of k it determines the range of s2k,x

values for each kbarx and thus the range of Vk for a given kbar;

(2) age structure (number of ages, age distribution, kbarx,

s2k,x) with the differences among
kbarx

and s2k,x values

being most important; (3) migration. However, interactions among

these variables preclude a ranking applicable to all cases when there

are simultaneous changes in two or more variables.

The probability distribution of kx reflects the outcome of all

the events experienced by individuals of a stock during their life

history. A characteristic distribution, a characteristic set of

distributions (where each member of the set represents one stock) or

different sets at diffetent times for the species are possibilities

that cannot be excluded given the present paucity of empirical

information. The model behaves quite differently with asymmetrical

probability distributions than it does with symmetrical or nearly

symmetrical distributions. Questions about the probability

distribution of
kx

of particular interest to management include:

can the variance be estimated from the mean,

is there a constant or variable value for Vk/kbar of a

stock when the variance cannot be estimated from the mean,

50
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3. is an unimodal probability distribution appropriate for a

given age within a stock?

When there is an affirmative response to the first question, Vk can

be increased only by increasing kbar. This requires increasing the

escapement ( Nx+n,t+n) at t+n breeding seasons for a given

escapement (Nt_i) at t-1. Recognizing that the present functional

relationships of the genetic fitness model provide a simplistic

picture of the genetic diversity of a stock, the maintenance of a

probability distribution of fitness (estimated by Vk and kbar),

apart from any consideration for the value of Ne(v), may be the

most important management objective for insuring the long term

adaptibility of a stock to a dynamic habitat. For the second

question, conservative stock management would benefit from knowledge

about (a) the response of Vk/kbar values to alternative management

strategies (e.g., different exploitation rates) and (b) a possible

optimal range of Vk/kbar values based on environmental uncertainty

and exploitation rates for a given stock. When there is a negative

response to the third question, application of an unimodal

distribution to the functional relationships (as done in this paper)

may underestimate the impact of changes in age structure on Vk,

kbar and
Ne(v)

Evidence for a pronounced bimodal frequency

distribution of larval survivals (i.e., one component of fitness) in

Pacific oysters, Crassostrea gigas, suggests that bimodal or even

multimodal distributions of kx are possible (Lannan 1980).

The direction and magnitude of differences among kbarx and
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2kx values (i.e., age specific fitnesses) as age (x) increasess,
affect the sensitivity of Vk and Ne(v) to changes in age

structure. An increase in these variables with increasing age is

consistent with the evidence for increasing fecundity averages and

variability with age in fishes (Beacham 1982, Pitcher and Hart 1982,

Williams 1977). But their direction of change warrants determination

in managed stocks because fertility is only one component of

fitness. Williams (1977) suggested that an increase in fitness

variation with age follows from principles operative in the evolution

of senescence. The magnitude of age specific differences in fitness

will influence the impact of selective harvesting of certain ages

(usually of the older, larger fish) on the value of Ne(v) In this

study, only one set of parameter values (i.e., slope and intercept)

for linear and exponential increases in kbarx with age was used to

simulate age specific differences in fitness. Thus, the simulated

sensitivity of Ne(ll) to age structure may overestimate or

underestimate the sensitivity for a given natural stock. This

suggests a need for parameter estimation in managed stocks.

Also, stock management must address temporal changes in kbarx

values for each age (x). The sensitivity of Ne(v) toand s2k,x

age structure is different for the case where these values change

(Fig. 111.5 - 111.12) than it is for the case where these values

remain constant (Fig. IV.1 and IV.3) as Nx and kbar values change.

Under natural conditions, kbarx and s2k,x values may be

constant over the short term while they may vary over the long term.

In any case, the sensitivity of Ne(v) to temporal changes in these
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variables will be the same whether the changes are due to the genetic

or environmental components of phenotypic values.

An increase in
kbarx

and s2k,x for each age was observed in

this study as the age distribution shifted from predominantly old to

predominantly young fish (Table 111.2). This leads one to speculate

that similar increases in these variables over time could allow a

stock to maintain a small critical value of
Ne(v)

when there is

continual selective harvesting of older fish. This would counteract

the tendency for the overexploitation of older fish to raise the

critical value of
Ne(v)

(refer to results for Fig. 111.10). Noting

that the numerator of equation (1) can be simplified to

2Z N+nt+n the following suggestion can be made: smallern x,'
critical values of

Ne(v)
increase the probability of stock

persistence in the face of large exploitation rates because they

require smaller escapements Nx+n,t+n) over t+n seasons than

larger Ne(v) values require. These speculations may explain, at

least in part, the decreases in average size, average age and total

abundance observed for Pacific salmon stocks that still persist,

although at levels far below historical abundances, after many

generations of heavy exploitation (Ricker 1981).

The variance effective number is relatively insensitive to

changes in the immigration rate when parent stock size (Nt_i) is

small and the stock is declining in abundance (kbar < 2). Further-

more, Ne(v) is quite insensitive at the low values of M (M < 0.1)

required to maintain genetically distinct stocks (Allendorf 1983,

Falconer 1981).
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For example, typical straying rates for Pacific salmon are believed

to be well below 10%. Quinn (1984) reported rates of 0.6 - 1.5% for

sockeye salmon. But he also discussed the influence of environmental

factors (e.g., stability of the spawning stream) and life history

pattern (e.g., the presence or lack of reproductive age variation) on

the balance between straying and homing in Pacific salmon species.

The simple incorporation of migration (M) into these functional

relationships cannot address the full impact of migration on the

maintenance of
Vw

in a stock.

Management must address the interaction of input variables on the

sensitivity of
Ne(v).

The minimum data requirements for developing

a rational management plan for a given stock are: estimates of the

type of probability distribution of
kx

age composition (Nx for
'

each x), age specific 4ifferences in kbarx and s2k.x and popula-

tion size (Nt-1 and n Nx,t+n) Without all these estimates,

the inherent dangers in applying simplistic functional relationships

for 1e(v) to the genetic objective of maintaining W will escalate

(Kapuscinski and Lannan 1984a).
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Fig. 111.1. The variance effective number, Ne, as a function of

the average number of successful gametes (kbar) and the

probability distribution of successful gametes when the

variance of the distribution is a function of the mean.



3000 -

2800 -

2600

2400-
=

2200-

a) 2000-
>
11=0

1800 -

1600-
CD

1400-

41.171 1200-
a)
c) 1000-
C
03

600-

.0 600-

400-

200

1.00

1-poisson
)(negative exponential & gamma
gamnie (a 1)
Agamma (0 = 2)
Dgamma (0 = 3)
c)gamma (0 = 4)

_461-

P
1.75 2.00

1

2.25
1 1

2.50 2.75

Fig. 111.1

1

3 00 3.2S 3.50 3.75 I UO



57

Fig. 111.2. The variance effective number, Ne, as a function of

the average number of successful gametes (kbar) and the

parameter n when successful gametes are binomially

distributed.
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Fig. 111.3. The variance effective number, Ne, as a function of

the average number of successful gametes (kbar) and the

ratio Vk/kbar when successful gametes are normally

distributed.
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Fig. 111.4. The ratio Vk/kbar as a function of the average number

of successful gametes (kbar) and the probability

distribution of successful gametes.
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Fig. 111.5. The variance of successful gametes, Vk, as a function

of the average number of successful gametes (kbar) and

the pattern of age specific differences in kbar

(kbarx).
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Fig. 111.6. The variance effective number, Ne, as a function of

the average number of successful gametes (kbar), the

pattern of age specific differences in kbar (kbarx)

and the number of reproductive ages when there is a

Poisson distribution of successful gametes.
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Fig. 111.7. The variance effective number, Ne, as a function of

the average number of successful gametes (kbar), the

pattern of age specific differences in kbar (kbarx)

and the number of reproductive ages when there is a

negative exponential distribution of successful gametes.
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Fig. III.8.a and III.8.b. The variance of successful gametes, Vk,

(a) and the variance effective number, Ne, (b) as a

function of the average number of successful gametes

(kbar), age distribution and the pattern of age specific

differences in kbar (kbarx) when there is a Poisson

distribution of successful gametes.
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Fig. III.9.a and III.9.b. The variance of successful gametes, Vk,

(a) and the variance effective number, Ne, (b) as a

function of the average number of successful gametes

(kbar), and the distribution of ages when there is a

negative exponential distribution of successful gametes

and the pattern of age specific differences in kbar

(kbarx) is linear.
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Fig. III.10.a. and III.10.b. The variance of successful gametes, Vk,

(a) and the variance effective number, Ne, (b) as a function of the

average number of successful gametes (kbar) and the distribution of

ages when there is a negative exponential distribution of successful

gametes and the pattern of age specific differences in kbar (kbarx)

is exponential.
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Fig. 111.11. The variance effective number, Ne, as a function of

immigration rate (M) when the average and variance of

successful gametes (kbar and Vk) are held constant.
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Fig. 111.12. The variance effective number, Ne, as a function of

immigration rate (M) and number of parents (Nt_i) when

the average and variance of successful gametes (kbar and

. Vk) are held constant.
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Fig. 111.13. The variance effective number, Nei as a function of

immigration rate (M) and the average number of

successful gametes (kbar) when the number of parents

(Nt-1) is held constant.
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Table UM. The number of parents (Nx,t_i) of each age (x) at

breeding season t-1 with the total number of parents held constant

(Nt_i = 1000).

Age of Parents at t-1

Age
Distribution 1 2 3 4 5 6 7 8 9 10

Predominantly
Yong 500 350 100 50

Intermediate 50 500 350 100

Predominantly
Old 50 100 350 500

Predominantly
Young 256 192 142 115 90 64 51 36 28 26



Age of Parents at t-1

Age
Distribution 2 3 4 5

exponential increase in kbarx as x increases

Predominantly 0.18 0.61 1.45 2.84

Old (0.03) (0.38) (2.12) (8.07)

Intermediate 0.33 1.11 2.62 5.12

(0.11) (1.22) (6.88) (26.24)

Predominantly 0.61 2.07 4.90 9.58

Young (0.38) (4.28) (24.05) (91.75)

linear increase in kbarx as x increases
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Table III.2.a and III.2.b. Examples of values for kbarx and

s2kx (in parentheses) values for a negative exponential
,

probability distribution of k (a) and a Poisson probability

distribution of k (b) with the total number of parents and kbar held

constant (Nt-1 = 1000, kbar = 2).

Predominantly 0.93 1.40 1.86 2.33

Old (0.91) (1.38) (1.86) (2.32)

Intermediate 1.14 1.71 2.29 2.86

(1.12) (1.71) (2.28) (2.83)

Predominantly 1.48 2.22 2.96 3.70

Young (1.48) (2.22) (2.93) (3.63)



APPLICATION OF FUNCTIONAL RELATIONSHIPS FOR

A GENETIC FITNESS MODEL FOR MANAGING PACIFIC SALMON FISHERIES

Anne R. D. Kapuscinski

and

James E. Lannan

Department of Fisheries and Wildlife

Oregon State University

Marine Science Center

Newport, Oregon 97365

83



ABSTRACT

This report describes examples of functional relationships for a

genetic fitness model for the management of Pacific salmon fisheries

to maintain the long term reproductive fitness of breeding

populations. We have concluded the genetic objective to be

maintaining the probability distribution of fitness and, thus, the

variance effective number, to allow the stock to perpetuate in the

face of fishing and natural mortality in an unpredictable

environment. Functional relationships for the variance effective

number, derived by synthesis of the literature of population biology

and population genetics, are briefly reviewed. These expressions

relate the variance effective number to the number of spawners, age

structure, the variance of fitness, and immigration. The inputs for

the functional relationships are population variables that do not

require estimation of classical genetic properties of populations

such as gene frequencies and percentage homozygosity.

Adjustment of the model to accomodate the different life

histories of the several species of Pacific salmon is demonstrated by

application of the functional relationships to fictitious chum

(Oncorhynchus keta) and pink (0. gorbuscha) salmon stocks. The
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demonstration includes estimating changes in the variance effective

number resulting from pre-selected escapement levels and the

escapement required to maintain the variance effective number

constant.



INTRODUCTION

We have developed a conceptual framework and illustrative

functional relationships for a genetic fitness model for fisheries

management. The functional relationships express the variance

effective number of a stock as a function of population size, the

variance of successful gametes, immigration and age structure

(Kapuscinski and Lannan 1984a). The model is applicable to managing

the genetic health of salmonid reproductive populations. The purpose

cif this paper is to illustrate the functional relationships of the

model with fictitious salmon stocks.

To satisfy the management goal of maintaining a stock as a self

perpetuating system over the long term, we have concluded the genetic

objective to be maintaining the probability distribution of fitness

to allow the stock to perpetuate in the face of fishing and natural

mortality in an unpredictable environment. Although many fisheries

biologists, for example Hynes et al. (1981) and Krueger et al.

(1981), recommend maximizing the genetic variation of exploited

stocks, we suggest that optimizing the variance of fitness may be

more appropriate.

The genetic objective can be met by considering the model's

variance effective number to be a measure of genetic risk

(Kapuscinski and Lannan 1984a). If
Ne(v)

is the variance effective

number for a stock during a generation interval when stock abundance

satisfied management goals, then conservative management dictates
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that Ne(v) should remain constant in subsequent breeding seasons,

thus:

Ne(v) = N'e(v) (1)

where the prime notation denotes the breeding seasons in present

time. Expressions for Ne(v) and N'e(v) as a function of

population size, the variance of fitness, immigration and age

structure can be substituted into equation (I), and the equation

rearranged to solve for any one population variable, assuming

numerical values for the remaining variables are available

(Kapuscinski and Lannan 1984a).

METHODS

Functional Relationships of the Model

In this paper, the functional relationships apply to a stock with

the following properties:

I. Mating is at random.

The sexes are separate but the numbers of each sex need not

be equal.

Self-fertilization does not occur.

Migration into the population may occur.

The population is composed of diploid individuals.



The number of successful gametes per parent contributed to

the next generation can vary.

For each reproductive age, the frequency distribution of

successful gametes per parent is described by a Poisson

distribution (c7 kbar).

There is a linear increase in the average number of

successful gametes per parent (kbarx) as age increases.

There are no sex specific differences in the frequency

distribution of successful gametes per parent.

'The expression for Ne(v) for this stock is

Nt-1
k

e(v)
1 + Vk (i_m)2

k

where:
Nt-1

is the number of parents at breeding season t-1, M is

the fraction of the stock replaced by migrants in a breeding season,

and kbar and Vk are, respectively, the mean and variance of

successful gametes (i.e., gametes that survive to become parents in

the next generation) contributed per parent (Kapuscinski and Lannan

1984a).

The model can be applied to a salmonid species with two or more

age classes in the mating population (for example chum salmon,

(2)
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(Oncorhynchus keta) by substitution of the following equations into

expression (2) (Kapuscinski and Lannan 1984a, b):

Nt-1
= E N

x x,t-1

E k N
21-_a_25.1-171

Nit-

E S2 N E S2 Nx k,x x,t-1 x k,x x,t-1
Vk EN

x x,t-1 Nt-1

where x is the age at reproduction. The age specific variances in

equation (5) are for Poisson distributions, thus:

a2 (N _

S2 k x x
k, x

Nx

1)
(6)



and

a2 so 17K

k, x x

The model can be applied to a salmonid species with no age class

structure (e.g, pink salmon 0. gorbuscha) by substitution of the

following equations into expression (2) (Kapuscinski and Lannan

1984a, b):

ic
2Nt
N
t-1

(8)

where t-1 and t refer to breeding seasons for either an odd year or

an even year stock,

a IN2 .
1)

k 1-t-1=

Nt-1

and (10)

Vk
(9)

90

(7)
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Application of the Model

The relationship between the dependent variable Ne, and the

other population variables in equation (2) is demonstrated with data

for fictitious chum and pink salmon populations. The variance effec-

tive number was computed while different combinations of variables

were held constant. Chum salmon, which typically have four reproduc-

tive classes, and pink salmon, which have only one reproductive age

class, were used to compare the behavior of a stock with age struc-

ture to that of one without age structure. The kbarx values for

the chum stock were held constant in all the calculations. Unless

otherwise specified in the results, the reproductive ages and the age

distribution in the chum stock were: age 2 (5%), age 3 (50%), age 4

(35%) and age 5 (10%). Also, the chum and pink stocks were declining

in abundance (kbar 1). The values used to simulate three possible

abundance trends in a pink salmon stock (Fig. IV.4) are given in

Table IV.1.

RESULTS

Comparisons between the chum and pink stocks are presented in

figures IV.1 through IV.4, showing Ne(v) as a function of other

input variables.

Ne(v) as a Function of Nt-1 for Constant
kbarx

There is a linear increase in
Nei ,v) as Nt_i increases when

the immigration rate (M) is held constant (Fig. IV.1). The pink and

chum stocks behave identically when kbar (i.e., kbar2) in the



92

pink stock is equal to kbar weighted for all ages (kbar2, kbar3,

kbar4' kbar5) in the chum stock. This result will occur in

nature only if kbar2 for pink salmon is greater than kbar2 for

chum salmon. A loss of reproductive ages in the chum stock results

in a decrease in kbar and Vk. This leads to an increase in the

escapement (Nt-1) required to maintain a given value of Ne(v)

For example, if Ne(v) for the reference generation is 200 and if

the management goal is to maintain this value, then the required

Nt-1
is 450 for a chum stock consisting of ages 2 and 3 versus 350

for a chum stock consisting of ages 2 - 5.

There is a linear increase in
Ne(v) as Nt-1

increases when

age class structure and M are held constant for different values of

Vk
and kbar (Fig. IV. 2). The pink and chum stocks behave

identically when kbar (i.e., kbar2) in the pink stock is equal to

kbar weighted for all ages in the chum stock. The escapement of

(Nt-1) required to maintain a given value of Ne(v) decreases as

Vk and kbar increase.

There is a linear increase in
Ne(v) as Nt-1

increases for

different age class structures and values of M (Fig. IV. 3). The

pink and chum stocks behave identically for the same value of M when

kbar in the pink stock is equal to kbar weighted for all ages in the

chum stock. The escapement (Nt_i) required to maintain a given

value of
Ne(v)

decreases as M increases for a given age class

structure.

In the chum stock, an increase in M counteracts the reduction in

Vk caused by the loss of reproductive ages. The elevation and Vk
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value of the curve for ages 2 and 3 are lower than are the elevation

and Vk value of the curve for ages 2 - 5 when M is held constant

(M = 0). Thus,
Nt-1

required to maintain a given Ne(v) is

greater for ages 2 and 3 than it is for ages 2 - 5. Although Vk

remains constant, the elevation of the curve for ages 2 and 3

increases when M increases to 0.4. Then, Nt_i required to maintain

a given Ne(v) is smaller for ages 2 and 3 and M = 0.4 than it is

for ages 2 - 5 and M = 0. If some mechanism other than a change in

age class structure reduces Vk in a pink or chum stock, an increase

in M will counteract the impact on
Ne(v)

Ne(
as a Function of the Trend in Stock Abundance.

v)

The value of
Ne(v)

at breeding season t-1 is different for

stocks experiencing different trends in abundance when Nt_i

(i.e., N at generation 3) is held constant (Fig. IV.4). At genera-

is much smaller for a pink stock declining intion 3,
Ne(v)

abundance than it is for a pink stock increasing in abundance. A 40%

increase in M in the declining stock increases the value of Ne(v),

although it still is much smaller than Ne(v) for the increasing

stock. Thus, it may be difficult or even impossible to attain a

given level of
Ne(v)

(determined by management objectives) when a

stock is experiencing a rapid decline in abundance. The escapement

required to maintain a given value of Ne(v) will have to be much

greater in a declining stock than in an increasing stock.



DISCUSSION

The functional relationships for the fitness model are tools for

examining the possible impacts of exploitation and management on the

genetic health of salmon stocks. For example, they can determine the

direction of change in Ne(v) resulting from a change in the

migration rate (Fig. IV.3) due to straying or resulting from a change

in age class structure (Fig.IV.1) due to selective harvesting of the

older age classes (i.e., the larger fish). Also they provide a

' quantitative method for making allocation decisions consistent with

the goal of maintaining the variance effective number at an adequate

level. The escapement (Nt) required to maintain We constant can

be computed when the age class structure, the migration rate and the

abundance of spawners at t-1 and the variance of successful gametes

are known (Fig. IV.3). Fishery statistics on stock abundance over

successive years can be used to make conservative escapement

allocations (Fig.IV.4).

The functional relationships of the model for age structured

salmon stocks assume a Poisson distribution for k at a given age, a

constant value for each kbarx (when other stock variables change)

and a linear increase in
kbarx.

The present lack of appropriate

data suggests a need to test these assumptions under field

conditions. Because Pacific salmon usually experience high rates of

mortality particularly during juvenile migrations into coastal

waters, it is reasonable to assume a very high frequency of k = 0

(i.e., a large value for the y intercept), an average value (kbar)

94



95

between 1 and 4 and a very low frequency of large values of k. These

conditions can be met by a Poisson distribution, a negative exponen-

tial distribution or even a bimodal or multi-modal curve described by

a polynomial function. A constant value for each kbarx is a

simplifying assumption that ignores complicating factors, for

example, density dependence. Evidence for increases in the fecundity

of lake whitefish (Coregonus clupeaformis), lake trout (Salvelinus

namaycush), and some British Columbia coho (Oncorhynchus kisutch)

stocks after heavy exploitation suggests that fecundity is influenced

by stock abundance in these fishes (Beacham 1982). Because fecundity

, is a major component of fitness (k = fecundity x survival), kbarx

values may also change as stock abundance changes. The assumption of

a linear increase in kbarx is based upon the linear increase in

fecundity as age increases in Pacific salmon. This results from a

linear relationship between fecundity and length where length

increases as age increases (Beacham 1982). However, a linear

increase in kbarx also requires that the average survival of

gametes per parent (lbarx) at each age is constant or nearly so.

Contradictory opinions in salmon management have been voiced on

how to maintain the genetic health of exploited stocks because a

unifying definition of the genetic objective of management has been

lacking. Our model's goal of maintaining the probability distribu-

tion of fitness provides a rational approach to considering the

implications of three contemporary scenarios for exploited salmon

stocks:
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Overfishing of the reproductive individuals of the less

productive stocks in a multistock fishery could dramatically

increase random genetic drift and inbreeding in these stocks

and thus accelerate their decline in abundance,

Directional selection by the fishery for one trait (e.g.,

size, timing of reproduction) could cause either indirect

selection for correlated traits or a response to selection,

either of which may have a negative impact on survival and

yield, and

Enhancement activities employing the transplantation of

natural stocks or the introduction of hatchery stocks could

decrease the abundance of both the native and introduced

fish due to swamping of the gene pool by the less well

adapted genotypes of the introduced fish.

While the results of reproductive overfishing presented in the

first scenario are predicted by population genetics theory, they have

not been documented with real or fictitious data. Using computer

simulation, Ricker (1973) only went far enough to show that mixtures

of stocks of unequal productivity, when harvested together, produce

smaller recruitments than single stocks of the same original size and

having the same optimum rate of exploitation. The equations for the

fitness model can go one step further by simulating relative changes

in Vk and corresponding changes in Ne(v) of each stock in a mixed

stock fishery.

The second scenario is supported by reports of long term declines
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In average age and size of harvested fish (Silliman 1975, Moav et al.

1978, Ricker 1981). Several controversial methods of counteracting

this problem have been suggested. The use of enhancement practices,

especially hatcheries, to offset selective effects of the fishery

(Larkin 1981) is discouraged by the proponents of scenario three.

The periodic reversal of the direction of fishing selectivity would

be a management nightmare. Finally, the inevitable selectivity of

all fishing methods could be exploited by intentionally selecting

fish to achieve maximum or optimum sustainable yield (Larkin 1981).

An initial assessment of the response of the variance of fitness and

the variance effective number in a stock subjected to any of these

methods can be made using the functional relationships of the fitness

model. For example, alternative means of counteracting selective

removal of older fish can be explored using information like that

presented in Figure IV.1 for different age structures.

The third scenario is confounded by a prevalent belief that

native fish are always genetically superior to transplanted fish. It

is argued that (1) native fish stocks have evolved specific gene

complexes highly adapted to their locality and (2) that they have

more genetic variability than hatchery or transplanted stocks.

Restated in terms of fitness, this argument implies that (1) average

fitness is high and the variance of fitness is low in native stocks

relative to hatchery and transplanted stocks and contradictorily, (2)

the variance of fitness is high in native stocks relative to hatchery

or transplanted stocks. The first claim implies that natural

selection has reduced Vw in native stocks enough to remove most
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nonadaptive genes. Also, it ignores the random or unpredictable

phenotypic expression (especially in an unpredictable environment) of

genes influencing fitness. However, heterosis for yield in wild x

domestic trout planted in the wild has been reported by Flick and

Webster (1981) and Fraser (1981).

The second claim for the genetic superiority of native stocks

implies that only hatchery and transplanted stocks have been exposed

to random drift (which reduces Vw) due to the use of a small number

of founder individuals. Yet the same mechanism applies to any

natural salmon stock that evolved from small numbers of parents, i.e.,

that went through a bottleneck in abundance. Depleted natural stocks

are timely candidates for reduced Vw caused by bottlenecks.

Within the conceptual framework of our fitness model, the

transplantation of natural stocks and the introduction of hatchery

stocks are ways of increasing M and thus increasing Ne(v) for any

value of Vk. Numerical outputs from the model can help in deciding

whether or not
Ne(v)

is sufficiently depressed in a particular

stock to warrant application of these enhancement practices. Caution

must be exercised in this decision making process because some

biological matters related to stock transplantations, such as the

possible introduction of foreign pathogens into the recipient stock,

are beyond the scope of the model but must not be ignored.

Although there is an inherent danger in extending the

generalizations of any simplistic quantitative model to salmon

management problems, conservative management should favor the present
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form of the fitness model because it aims for long term perpetuation

of the resource. We offer this model as a first attempt at providing

an "explicit working hypothesis of population genetics" (Larkin 1981)

to aid in the making of biological and social decisions in salmon

management.



Fig. IV.1. The variance effective number, Ne, as a function of

the number of parents (Nt_i) at breeding season t-1

and age class structure (for constant values of age

specific average number of successful gametes, kbarx)

when immigration is held constant (M = 0.2).
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Fig. IV.2. The variance effective number, Ne, as a function of

the number of parents (Nt_l) at breeding season t-1

and the variance of successful gametes (Vk) when age

class structure and immigration are held constant (M =

0.2)
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Fig. IV.3. The variance effective number, Ne, as a function of

the number of parents (Nt_i) at breeding season t-1,

migration and different age structures (with constant

values of age specific average number of successful

gametes,
kbarx).

104



1000

SSO

SOO

850-
E 800

750

700
CD 650

:43. 600

0 550
a)t_ 500-

450

400
a)o 350

300
as 250

200-

> 150
100-

SO-

churn (ages 2-5)
pink

A churn (ages 2 & 3)

M-0
(Vk

1

M=0.4 (Vk-0.83)

Mk=0.83)
-

100 200 300 100 SOO 600 700 800 300 1000

Number of Parents

Fig. IV.3



Fig. IV.4. The variance effective number, Ne, as a function of

time, the trend in stock abundance and migration rate

when the number of pink salmon spawners at breeding

season t-1 is held constant (Nt-1 = 1000).
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Table IV.1. Number of pink salmon spawners for three generations

(g = 3). Data correspond to curves in Fig. IV.4.
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Abundance trend
N1 N2 N3 = Nt-1

Declining 5,000 2,000 1,000

Increasing 200 600 1,000



CONCLUSION

A generalized fisheries management model, which intends to

maintain a stock's probability distribution of fitness (W), has been

presented. If W (with a characteristic -171 and Vw) is the

probability distribution of fitness at breeding seasons when stock

abundance met management goals, and if W' is the stock's probability

distribution of fitness in present time, then the objective of the

conceptual model is expressed as

W = W'. (1)

An example of functional relationships for W = f(population

variables) was developed from existing principles of population

biology and population genetics. These express the variance

effective number (Ne(v)) of a stock as a function of population

size, the mean and variance of successful gametes (estimates of and

Vw), age structure and immigration. Thus,

W = f[Ne(v) = f(population variables)] (2)

and

W' = f(Nv) = f(population variables')] (3)
e(

The appropriate application of the functional relationships to the

conceptual model involves substitution of expressions (2) and (3)

into expression (1).
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Assumptions of the Functional Relationships

The present forms of the functional relationships (equations 2

and 3) provide a working hypothesis of genetic objectives consistent

with the goal of perpetuation of the resource. However, caution is

urged in their application to the development of any genetic stock

management owing to certain assumptions and unknowns. The principal

assumption is that the relationships among the population variables

in the classical formula for
Ne(v)

(Crow and Kimura 1970) are

appropriate for the translation of the conceptual model into

quantitative terms. Although this formula was selected after careful

consideration of other quantitative expressions of population

genetics (Kapuscinski and Lannan 1984a), it may be possible to

develop more relevant relationships (among the various population

variables) from first principles. In any case, we can expect that

additional research will make the existing functional relationships

more comprehensive with time.

A second assumption of management concern is that environmental

conditions in past (i.e, reference) and present breeding seasons are

sufficiently similar to warrant equating W to W' in expression (1).

When environmental conditions fluctuate around a mean value, this

assumption may be tolerable. However, expression (1) will need

modification if the historical record shows a unidirectional change

In the value of important physical parameters (e.g., water

temperature). It may be possible to add coefficients to correct the

110
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values of population variables on either side of equality (1), but

only if enough is known about the impact of the physical parameters

on these variables. Thus, the selection of reference breeding

seasons will be greatly complicated under the conditions of

unidirectional environmental trends (refer to discussion by

Kapuscinski and Lannan 1984a).

Management must recognize also the lack of density dependent

behavior in the existing functional relationships for the model.

This may not be a serious limitation if, eventually, the functional

relationships are incorporated into a population 4ynamics model that

exhibits density dependence(e.g., the Ricker stock-recruit function

for Pacific salmon). Additionally, it may be possible to include

interaction terms for age specific mean fitnesses or variances of

fitness(e.g., covariance terms) into the existing functional

relationships. This will require some estimation from empirical

evidence for such age specific interactions.

Research Questions

The exercise of developing an example of functional relationships

for the conceptual model (equation 1) has led to the identification

of research questions whose study would improve our ability to

understand the genetic implications of fisheries management. They

must be addressed for each species of interest (owing to different

life history patterns) and they include:



112

How does age at reproduction affect the probability

distribution of fitness, particularly the mean and variance

(kbarx' s2k,x)?

What is the magnitude of the difference among ages for

kbarx
and 52k,x values?

Do age-specific probability distributions of fitness change

significantly when the total number of parents (Nt_/), the

age distribution (Nx for each x) or the range of ages

change?

If density dependence (within or among ages) exists, how

does it alter the probability distribution of fitness?

Are bimodal or multi-modal probability distributions of

fitness (Kapuscinski and Lannan 1984b) better than unimodal

ones for appropriate incorporation of life history patterns

into the conceptual model (equation 1)?

6.Must s2kx be estimated directly (from kx or kbarx)
,

or can reliable indirect estimates be developed, for

example, from fecundity and survival data?

What are typical immigration rates and how variable are they

with time for a given life history pattern?

If immigration rates are relatively high (Kapuscinski and

Lannan 1984b), do they warrant correction via the estimation

of the coefficient of relationship between immigrants and

the recipient stock?
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SUMMARY

The results presented in the preceding chapters are summarized

below:

A conceptual model and examples of functional relationships

for maintaining the reproductive fitness of exploited stocks

were developed.

The model is: an extension of the stock concept; general in

that it can accomodate the life history pattern of any

species; a phenotypic model requiring values for population

variables capable of being estimated or already routinely

monitored in fisheries management (values for classical

genetic properties of the stock, e.g., percentage

homozygosity are not required.)

The fitness of a stock is modelled as a random variable

described by a probability distribution (W) with a

characteristic mean (iI) and variance (Vw).

Because the long-term survival of a stock is more dependent

on the value of Vw than simply on the value of 17, the

genetic objective of conservative fisheries management is:

maintaining the probability distribution of fitness to allow

the stock to perpetuate in a dynamic environment.

The conceptual model is expressed as W W' and the

functional relationships are applied to the model via

Ne(v)
N'et ,v) where the prime notation distinguishes
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the breeding seasons under management from the reference

breeding seasons.

An equation for the variance effective number,
Ne(v)

was

developed which expresses Ne(v) as a function of

population size in successive breeding seasons, age

structure, the variance of successful gametes (an estimate

of Vw) and immigration.

In its final form, Ne(v) provides an index of genetic risk

and it is not meant to replace the
Ne(v)

found in the

literature of quantitative and population genetics.

Genetic risk is defined as the probability of a reduction in

the adaptibility of a stock to its habitat due to a

reduction in genetic variation.

Application of Ne(v) = N'e(v) to stock management can be

achieved by rearranging terms to solve for any one

population variable, assuming that estimates for other

variables are available; for example, the output can be the

escapement required at breeding seasons t + n to maintain

the above equality.

The values of
Ne(v)

and
Vk

(an estimate of Vw) are

most sensitive to changes in the values for population size

in successive breeding seasons (Nt_lin Nx+n,t+n),

suggesting that management of stock escapement levels (or

conversely exploitation rates) provides the most powerful

means of achieving the genetic objective. This is

especially true when the variance is a direct function of
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the mean of the probability distribution of fitness.

The descending order of importance for the response of

Net ,v)
and Vk to other input variables is: (1) the

probability distribution of age specific fitness; (2) age

structure (including range of ages, age distribution and age

specific differences in the mean and variance of fitness);

(3) immigration rate.

The responses of Ne(v) and Vk to simultaneous changes in

two or more inputs cannot be generalized owing to

interactions among the input variables.

The functional relationships behave quite differently with

asymmetrical probability distributions of fitness

(characterized by a high frequency of small individual

fitness) than with symmetrical or nearly symmetrical

probability distributions (characterized by a low or even

zero frequency of small individual fitness).

The minimum data requirements for developing a rational

management plan for a given stock are: estimates of the

type of probability distribution of kx, age composition

(Nx
for each x), age specific differences in kbarx and

s2k,x' and population size (Nt-1 and Z N ).
n x+n

Application of the conceptual model and the functional

relationships to the management of Pacific salmon stocks was

Illustrated; a Poisson probability distribution of fitness

was assumed.
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Accomodation for the different life histories of the various

species was demonstrated by considering fictitious chum

salmon (with age structure) and pink salmon (without age

structure) stocks.

The chum and pink stocks behave identically in response to

changes in input variables only when kbar (an estimate of ci)

In the pink stock is equal to kbar weighted for all ages

(kbar2' kbar3' kbar4' kbar5)
in the chum stock; this

requires that kbar2 for pink salmon is greater than

kbar2
for chum salmon.

A loss of reproductive ages in the chum stock leads to an

Increase in the escapement (Nt-1) required to maintain a

constant value of Ne(v)*

An increase in migration (M) counteracts the reduction in

Vk
caused by the loss of reproductive ages in the chum

stock; the escapement required to maintain a constant value

of
Ne(v)

decreases as M increases in either stock.

The escapement required to maintain a constant value of

Ne(v)
is greater for a declining than for an increasing

stock.

Although there is an inherent danger in applying any

simplistic equations to stock management, the conceptual

model and the illustrative functional relationships are

likely to err in favor of conservatism if they are found to

be in error.



22. The conceptual model and the functional relationships

provide a rational approach to considering the genetic

Implications of fisheries exploitation and management.
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APPENDIX A: PROBABILITY DISTRIBUTIONS OF K

The derivations of the variance formulas (Hillier and Lieberman

1974) and the range of tested values for the parameters are described

below for each probability distribution. In all cases the range for

kbar was 1 - 4, including stocks declining in abundance by fifty

percent from t-1 to t (kbar = 1) and stocks doubling in abundance

from t-1 to t (kbar = 4).

Poisson Distribution of Kx

Expected value = x and

variance A,

thus variance mean.

C2 = kbarx .
k,x

Negative Exponential Distribution of Kx

Expected value and

variance e2

thus variancex = (meanx)2,

a2 = (kbar)2.
k,x x

Gamma Distribution of
Kx

Expected value as and

variance = aB2

thus variancex = (mean) 6 ,

02 = kbarx B.
k,x
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When B is 1, the variance is identical to the variance for the

Poisson distribution. The possible values for B were constrained by

Binomial Distribution of Kx

Expected value np and

variance np (1-p),

np (1 -

thus variance = mean

_
L121k

K,X
= kbarx (1

nx

In n trials, the probability of a parent producing a successful

gamete (k 1) is p and the probability of a parent failing to do so

(k = 0) is 1 - p. The maximum fecundity for females of age x will

determine the maximum number of trials (nx). Thus a binomial

distribution for a stock would describe the probabilities of k 0 to

the values of a and kbarx ( aa

kbarx

):

a

1 1 1

2 2 1

2 1 2

3 3 1

3 1 3

4 4 1

4 2 2

4 1 4
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k = maximum fecundity. Values for nx corresponding to an average n

for the stock and assuming a linear increase in maximum fecundity as

age increases were:

thus variancex cannot be estimated from

mean, ctx * f(kbarx).

An infinite number of values are possible for the variance associated

with a given mean of a normal distribution. But the biological

requirement for only positive values of k (k > 0) constrained the

range of values for 02 as follows:
k,x

Average n

Age 2000 200 20 8 6 4 2

2 1143 114 11 5 3 2 1

3 171'4 171 17 7 5 3 2

4 2286 229 23 9 7 5 2

5 2857 286 29 11 9 6 3

Normal Distribution of K

Expected value = p and

variance = 02,

kbarx cri,x Kx

(kbar + c )

X k,x

1 0 - 1 0 - 1

2 0 - 4 0 - 2

3 0 - 9 0 - 3

4 0-16 0 - 4



APPENDIX B: PASCAL PROGRAM FOR SENSITIVITY ANALYSIS

Program E44numXY:
( computes e44ective population number, allowing varia-
tion 04 all ,nputs in Anne s equation for N.; tills an arra')
with * and y \Je values that can be interchanged with business
graphics; choice 04 variables for x.Composed 25-May-84.Modified
26.27-May-84;4-Jun-84 to include exponentially inc. kbaraae.

table = recorC
stock. parents. proGeny :arra',(1..2c); ot inteoer:

miaration. neffe,c :arr?..,-11..203 of
cnc:

'Jar
T.1,aae. irst.last.choice,xchoice,kchoice
sumnpar, sumnprog, row, col
koer,m,migterm,normal ,.,ar,n.beta.sumtemo."1,
numerator.denominator.Ne :real:
vtaraoe.
(cora
filename
42.4out
answer
all

:integer:
:intecier:

:real:
:arraY (1..10] of intecer:

sigmasc, ssq. kaae :array [1..10] 04 real:
:arrax(1..20, 1..2] o4 real:

:string[30];
:text:
:char:

:table:
Proceaure tirlel:
begin

writein

','Out. :10, Generation o4 Variance Eftect.
;out, I C Numbers-);

wri!e .4out, stock':10'sumnpar':10'sumrroii:, kbar':10.m :10.:
writein

end: iaeneral title)
Procedure tit e2:
begin

writC I nkrout.i:
writel nifout):
write ni4out. :10,-i=cle Specific Data o4 Stock 1:4):
write nt.fout,:
write +out, aoe :10, npar" :10,'ktar age ' :10. sigmasq :10. isd :10):wr!t6 nkiout);

end: :".ace speci4 c title)
Proce,,ure crint:
beoin

+or 1:= 1 to T do
begin
write,tout,all.stock[13:10,all.parent$113:10.all.proaenY(13:10):
wr,te,4out.all.kmean(17:10:2,atl.miarationCI3:10:2,all.kvar[1]:10:3,:wr,teln((out,all.ne44tcfl]:12:2):

end: ((or' T loop)
writeln((out);
writeini:fout):

end: i.riritcata table for Generation of Ne or I stocks':
Procedure orintl:
begin

write 4out.1:10, sumnpar:10. sumnproc:10. kbar:t0:2.
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writeln(fout);
writeln(fout):writeln(fout);

end; (print data table +or Generation o+ Ne +or stock 1(user must insert call or titlel and print! after ca,1or print2 if a separate printing +or each stocl.
1 ;.s desired)

Procedure orint2:
beoin

+or aoe:=first to la do
begI n
write kfout,age:10,nparCaoeJ:10.kbaraciefage):10:2
write (+out,slomesoCaciel:10:2.sscIage):10:2;writeln (+out):

end: (for loop.;
end: (print age speci+ic data

Procedure Estimatekbarage:
uar sumage,sumexpageoaoe :integer:

q,denomsum :real;oegin
sumaoe:=0;
sumexpage:=0:
naoe:=0;
denomsum:=0;
+or aoe:= first to at do

nage:=nage + 1:
writeln('Options for age specific kbar
writeln('1. linear increase as aoe increases'
write1n('2. exponential increase as aoe increases exp=2) ):writeln<'Enter number of ore option');
readln ikchoice:
CASE kchoice OF

begin
+or age:=fist to last do
sumage:=sumage + ace;

tor age:= first to last do
kaoeCaoel:= (age*kbarenacie/sumage;

end; (case 1 linear increase)
beoin
for age:=first to last do
sumexpage:=sumexpage * iaoe*age.aoe;

for age:=+irst to last do
kage[aae]:= (acle.age.age+kbar+nage/sume-page:end: (case 2 exponential increaseend; (+or kchoice)

+or age:=first to last do
denomsum:=denomsum + kage[aoe]enparCage));

q:=(kbaresumnpar)/denomsum; (makes kbar=sum kbarages weighted bYfor age:=first to last do
kbarageCage2:=q*kage(age];

end; (procedure which computes kbarao. +rom kbar weighted *o^)( increased fecundity at older age.)

npar)
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Procedure sumnparcalc:
begin
sumnpar:=0;
for acie:= first to last do

begin
writeln K'enter npar value iOr age
readln inparCagel):
sumnpar:=sumnpar+npartagel:
end; (for loop

end; ',procedureJ
,computes N +or all reproduc,no ,At t-1:

Procedure distribution:
begin

writelni, Options tor prooab,l,t-, distrib. of kbar are:
writeln 1. Poisson: yar,ance=u
writelni. 2. einomial: u=np.
writeln( 3. Exponential: yar,i.rce=u.,
writer 4. Gamma: u=alphakbeta, var.=uobeta'):
wr;teln,', .5. Normal: variance not related to u):
writeink'Enter the number of :tour choice-);
readln choice):

end; i:for procedure'

Procedure choicecalc;
begin
CASE choice OF

a,gmasorade]:=kbaraoe(age);
begin

writoln ("Enter value for n ,n :nomial for age- .acie:10);
readln <n);
siomasclCaoel:=(1-(kbaraoeraoe).. ..knaracjetacee];

sigmasoCage]:=kbarageCadel*kbaraoeiaoel:
begin
writeln Er ter value for beta in oamma tunc. for age .aioe:10i;
readln'beta:
sigmasoCage):=kbarageragel*beta;

end;
begin

writeln ("Enter value 46.- variance in normal 4unc. *or aoe .ao+:10i:
readln (normalvar);
siomasoCagel:=normaivar;

end:
end: for case choice

end: ,:for procedurel:,

Procedure calcsumtemp;
beoin
sumtemp:=0;
for age:= first to last do

begin
ssorage]:=(nparCagel-li/nparCage)*sigmasgEage]:
sumtemp:=sumtemp+ssq(age)*npar:agel:

end: (sums variances over ag«s tor numerator of
end: 140r procedure)
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Procedure fi;lal,;
begin

all.stock[1]:=1:
al1.parents(1]:=sumnPar:
all.progen[1):=sumnprool
all.kmeanC1]:=1,bar:
all.miarationil]:=m:
all.kvar(1):=k4.:
all.neffec(1):=Ne:

end: 4 Gerereton 0+ Ne table with data:.

Procedure f.11coora:
begin

writein for x axis variable are:
writeln I. sumnpar = no. parents at t-1
writein 2. ktar .;

writeln 3. RC

writeln
write/n 'Please enter number of one option');
readln
CASE xchoire OF

coordEI.13:=sumnpar;
coordCI.12:=kbar:

3; coord(1,13:=m:
4: coordCI,1):=,Jk:

end; Ccase
.:hocoord(1.2):N

end; (for procerLure,

Procedure plotfi'';
begin

for row:= 1 to 7 sr..0

begin
+Or C01:= 1 t2 do
begin
writefout.coordErow,col]:10:4);
writel.f2.boord(row.coll:10:4);
end; i:for

writein(fout);
writeln(42?:

end; (for row:
end; c.procedurel:

begin

rewrite .".fout, Printer:'):
writeln ( enter disl,:illename.text for storing data 1:
writelrit'warning:suifix (.text) needed for interchanoe to 8.Graphics
readln (filename):
rewrite if2, filename);
writelni Remember, 20=max. no. stocks/generation of Ne table.
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T:=0;
I:=01
repeat (start of loop for calculations for a StOCk
write1nEnter I.C. no. +or this stock.,:
readln I);
T:=T 1: (counter for no. stocks in oeneration 0+ NE,
t1tle2: (table of aae spec!fic
writeln ('first reproduce sae ):

readln (first.) ;
writeln clast reproductive aoe ciass7. );

readln
sumnparcalc:
writeln En ter value 0+ sumnproo
readln (sumnprog):
kbar:= f.2*sumnprogsumnpar: (computes kbas +or whole
writeln Center value of
readln (m):
migterm:=(1-m)*1-m): (computes mioration correction +rr:

(computes aae specific kbar
distribution: (chooses a probability distrib. for kbar:
for aoe:= first to last do
choicecalc: (computes sigmasgEsioel based on kbar
calcsumtemp: (computes numerator of Vk eduationl.;
Vk:=sumtemp/sumnpar:
numeratorsumnpar4kbar:
denominator:=.'Vkikbar)*miaterm+1:
Ne:=numerstor/denominator:
print21 (aae specc data table for stocki.
411 all (4111 record for Generation of
illIcoord; (fill xy arra/ to oe used by business oraphics>
writeln ('Do YOU want calculations for nother stockin-
readln ,.answer);

until (answer = .n-, or fanswer = 'N- ):
:.end of repeat loop for stock calculations>
titlel:
print: (Generation of Variance Effective Numbers printed
plotfile: (xy data are printed and written to filename

:lose <42,1ocle,:
close flfout):

end. (main proaram)
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