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Abstract approved:

A conceptual model for managing fisheries to maintain
reproductive fitness is proposed. Reproductive fitness is defined
genetically as the contribution of an individual in a breeding
population to the next generation. The reproductive fitness of a
stock is described by a probability distribution (W) with a
corresponding mean (W) and variance (Vw). In applying the stock
concept to fisheries management, the goal is to maintain the stock
as a self perpetuating system. This requires that the stock
maintain the W (with a sufficiently broad v, around W) to allow it
to perpetuate in the face of fishing and natural mortality in a
changing environment. If W is the probability distribution of
fitness at breeding seasons when stock abundance was acceptable to

management, then it should remain constant in subsequent breeding

seasons (V'w), thus W = W'.



Examples of functional relationships for the conceptual model
are presented. These equations, derived from existing principles of
population biology and population genetics, express the variance
effective number (Ne(v)) of a stock as a function of population
size in successive breeding seasons, age stucture, the variance of
successful gametes (V,, estimating V ) and immigration.

Application of the model to stock management is accomplished by
y to NI

equating the value of N The inputs for the

e(v)®
functional relationships can be estimated or measured directly from

e(v

1ife history information or population variables monitored
in fishery management. They do not require estimation of classical
genetic properties of populations such as gene frequencies and
percentage homozygosity. The output is the number of reproducing
adults required in a given breeding season to insure the maintenance
of stock fitness. Features and limitations of the functional
relationships for stock management are discussed.

The sensitivities of Ne(v)’ Vk and Vk/kbar (estimating
VW/W) to changes in input variables are reported. The descending
order of importance for the inputs controlling the value of Ne(v)
is: (1) population size; (2) the probability distribution of age
specific fitness; (3) age structure; (4) immigration. Interactions
among the inputs preclude a ranking applicable to all cases when
there are simultaneous changes in two or more variables. The

results are discussed in terms of the data required for rational

stock management.



The generalized genetic fitness model is applied to the
managenent of Pacific salmon fisheries. Adjustment of the
functional relationships to accomodate the different life histories

of different Pacific salmon species is demonstrated for fictitious

chum (Oncorhynchus keta) and pink (0. gorbuscha) salmon stocks.
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A GENETIC FITNESS MODEL FOR FISHERIES MANAGEMENT

INTRODUCTION

Perhaps no questions in contemporary fishery science have
stimul ated more debate than those that relate to the long term
genetic implications of fishery management and exploitation. In his
eloquent review of the subject as it related to the management of
Pacific salmon fisheries, Larkin (1981) noted that "It is rather
surprising that there is currently no explicit working hypothesis of
population genetics in the salmon management kit box". The lack of a
conceptual framework for studying the genetic implications of stock
management is not unique to salmon but is a general concern in
fisheries science and, indeed, to the entire fields of natural
resource management and gene conservation.

In attempting to develop an appropriate conceptual framework, Dr.
Lannan and I speculated that this task could be accomplished by
drawing on the existing principles of population genetics and
population biology. We are prepared to propose a conceptual
framework that represents a synthesis rather than the development of
new theory.

A conceptual framework must address the definition of the

management unit and the properties of the unit to be managed. A



conceptual framework presently exists for the former but not the

latter.
What is the Unit of Management?

We cannot improve upon the concept of stocks as a management
unit. The definition proposed by Larkin (1970) seems entirely
adequate as a basis for most management situations. As he perceived
it, a stock is "a population of organisms which, sharing a common
environment and participating in a common gene pool, is sufficiently
discrete to warrant consideration as a self perpetuating system which
can be managed".

Stocks can be described by a variety of criteria consistent with
Larkin's definition. Stocks were initially described in terms of
spatial and temporal distributions. More recently stocks have been
described in terms of biochemical, immunological, behavioral or
morphometric phenotypes.

Virtually all contemporary approaches to naturaf resource
management are directed toward a common goal: perpetuation of the
resource. This consideration is implicit in the stock concept and
necessitates that management insures an adequate number of
reproducing adults in breeding populations. In recent years, there
has been a proliferation of quantitative methods intended to estimate
escapements required to provide a sustained harvest based upon this
principle. Functions that describe the relationship between surplus

production and stock biomass (Schaefer 1954) or between spawners and



recruits (Ricker 1954) are examples of contemporary efforts to apply
the principles of population biology to fisheries management.
However, none of these quantitative models allow the assessment of
genetic changes caused by management and exploitation. This is a
serious limitation because even if the model predictions result in
adequate escapement and subsequent recruitment in the next genera-
tion, one cannot exclude the possibility that the stock experiences a
net reduction in diversity of genetic information that limits its

opportunities for adaptation in a dynamic environment.
What Genetic Property of Stocks Should be Managed?

If fitness is the genetic property related to the perpetuation of a
breeding population, then maintaining fitness must be the goal of
fisheries management. Fitness is defined genetically as the
contribution of an individual in a breeding population to the next
generation. Mean fitness (symbolized by W) is defined as the average
fitness of a population. It is important to recognize that both
populations and individuals comprising populations exhibit fitness.
Recognizing that the fitness of individuals within a fish population
is highly variable, we can conceptualize a probability distribution
of fitness (W) for an entire stock with a corresponding mean (W) and
variance (Vw). Williams (1977) noted that fitness variability must
be substantial and that only a few genotypes make an effective
contribution to the next generation in populations of high-fecundity

animals, for example, many fishes. It is also important to recognize



that fitness has dimensions in time, i.e, the dimensions of fitness
are offspring per unit time, and that the instantaneous probability
distribution of fitness strictly applies only to the specific
sequence of environmental circumstances the population has
encountered. The probability distribution may be substantially
altered through changes in W or Vw if the stock encounters
substantial environmental change. This idea is implicit in the
desqription of "sisyphean" fitness by Williams (1977):

"an individual in the top end of the fitness

distribution has achieved its near maximum of fitness

by an only momentarily effective combination of

genetics and individual history. The necessarily low

heritability of such fitness would probably drop that

same genotype into the range of mediocrity in the next

generation."

We realized that a priori knowledge of specific gene frequencies
isn't particularly useful in the assessment of a managed population's
fitness or in the management of its genetic health because: 1) the
sequence of environmental circumstances to be encountered through the
1ife history of the stock cannot be predicted before the fact and 2)
we do not know the relationship between specific gene frequencies and
fitness. Also, it is unlikely that electrophoretically observed loci
are the major determinants of fitness because these loci are
restricted to structural genes which represent a small proportion of
the entire genome (Falconer 1981). Additionally, phenotypic values
of fitness can only be predicted within broad ranges, even in cases

where individual genotypes are known, because of pleijotropic and

other interactive effects.



Fitness is a quantitative trait with little additive genetic
variance, high heterosis and substantial inbreeding depression
(Falconer 1981, Gjedrem 1983, Kincaid 1983, Kirpichnikov 1981).

Thus, 1) the fitness of progeny cannot be predicted from knowledge of
the fitness of their parents, and 2) any genotype may result in a
variety of phenotypes, each with a different fitness (Birnbaum 1972,
Lewontin 1982). Also, the greater the variance of fitness in a
mating population, the more opportunity there is for heterosis in the
progeny. In the context of probability theory, fitness is a
phenomenon that has uncertainty associated with it where the
uncertainty is caused by variability due to the inconsistency of
natural phenomena or to sources of variation that elude control. If
the phenomenon exhibits some degree of regularity, then its variation
can be described by a probability model (Hillier and Lieberman

1974). Therefore, we can model fitness as a random variable with a
continuous probability distribution for a large number of individuals
in the stock.

The long-term survival of a stock is more dependent on the
maintenance of an adequate degree of the variance of fitness around
the mean than simply on the value of mean fitness because the stock
must be able to adapt to changing environmental conditions.
Therefore, we conclude that the genetic objective of fisheries
management is: maintaining the probability distribution of fitness
to allow a stock to perpetuate in the face of fishing and natural
mortality in an uncertain environment. Figure I.l.a illustrates a
number of possible probability distributions of fitness for indivi-

duals of the same age in a given stock. Individual fitness is



expressed in terms of the number of successful progeny per parent
where successful means survival to the reproductive stage. We can
generate a graph for fitness as a function of age by integrating
values for W and Vw (taken from a given curve in Fig. I.l.a) over

all ages (Fig. 1.1.b). Then, we can restate the genetic objective as
maintaining the variance (shaded area) around the entire curve in
Figure I.1.b.

The contemporary literature of life history theory contains
numerous references to the importance of maintaining Vw in natural
populations. Real (1980) proposed that natural selection maximizes a
function containing terms for both Vw and W . Also, he emphasized
that natural variation (thus Vw) is the cornerstone of Darwinian
selection. Another example is the suggestion of an "adaptive
coin-flipping" principle by Kaplan and Cooper (1984). Using a
decision theory analysis, they argued that the highly variable
reproductive characters (e.g., clutch size, egg size) observed in
cold-blooded vertebrates were adaptations to unpredictable
environments. Their discussion can be extended to Vw because
reproductive characters are major components of fitness. Conrad
(1983) stated that the variability of biological matter is the sine
qua non for the ability of organisms to cope with the uncertainty of

the environment.
THE CONCEPTUAL MODEL

Given this background, we are prepared to propose a conceptual

model and a set of illustrative functional relationships for



fisheries management that intend to insure the long term reproductive
fitness of stocks. The model is an extension of the stock concept,
and includes the following features:

* It is a generalized fisheries management model that can be
applied to any species because it provides for appropriate
consideration of life history patterns, reproductive strategies, and
the like.
' The inputs for the functional relationships, including stock
abundance, age structure, immigration and the variance of successful
gametes per parent (an estimate of Vw), are phenotypic variables
that can be estimated or measured directly.

The model output is the number of reproducing adults
required in a given breeding season to insure the maintenance of the
probability distribution of fitness for the particular 1ife history
of the stock.

The functional relationships of the model can stand alone or
can be linked to other predictive models of population dynamics.

‘ The model is applicable to single or mixed stock fisheries
and permits substantial management flexibility in assessing the
genetic status of stocks relative to management goals. Thus it is
equally applicable to managing the harvest of surplus production on
the one hand, and to stock rehabilitation on the other.

Let W equal the probability distribution of fitness (with a charac-
teristic W and Vw) in past breeding seasons and W' equal the proba-
bility distribution of fitness in the breeding seasons of management

concern. Assuming that W is at a value consistent with management

goals, conservative managerient dictates that it should remain



constant in subsequent breeding seasons, thus:

W=N. (1)

The functional relationships W = f(population variables) and W' =
f(population variables') can be substituted into equation (1), and
the equation rearranged to solve for any one population variable,

assuming numerical values for the remaining variables are available.



Fig. I.1l.a and I.b.
a: Possible probability distributions for fitness (the number of
successful progeny/parent) for one reproductive age class in a
stock.
b: Fitness (number of successful progeny/parent) as a function

of age for all reproductive ages in a stock.
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ABSTRACT

An example of functional relationships for a genetic fitness
model for fisheries management is presented. The expressions were
derived from the variance effective number for a reproducing
population and include variables for population size in successive
breeding seasons, age structure, the variance of successful gametes
(an estimate of the variance of fitness) and immigration rate.

The management objective of maintaining the probability
distribution of fitness in a stock is met by: (1) identifying
reference breeding seasons when stock abundance was consistent with
management desires and (2) equating the variance effective number

(N )) for the reference seasons to the variance effective number

e(v
(Nle(v)) for the stock in present time. The required inputs can
be estimated or measured directly from life history information or
population variables routinely monitored in fishery management.

Determination of genetic properties of the stock such as gene

12

frequencies, homozygosity, and the like are not required. The output

is the number of reproducing adults required in a given breeding
season to. insure the maintenance of the probability distribution of
stock fitness.

Application of the model to stock management is discussed in
the context of both features and limitations of the functional

relationships.
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INTRODUCTION

We have developed a conceptual genetic fitness model for
fisheries management. The model treats stock fitness as a random
variable described by a continuous probability distribution when
there is a large number of individuals in the stock. The model
defines the genetic goal of fisheries management to be maintaining
the probability distribution of fitness to allow the stock to
perpetuate in the face of fishing and natural mortality in an
unpredictable environment. This is achieved by equating the
probability distribution of fitness, W, at a time when stock
abundance was acceptable for management desires to W' in the breeding
seasons of immediate management concern. A characteristic mean
(W, W') and variance (V.V',) is associated with each probability
distribution.

This paper describes the translation of the conceptual model into
quantitative terms. The functional relationships are based on a
synthesis of contemporary principles of population genetics and
biology. They represent a second approximation of functional
relationships consistent with the objectives of stock management.
Owing to problems with the incorporation of age structure, the first
approximations (Kapuscinski and Lannan 1984) have been revised into
the present forms. These functional relationships are presented as
one example of quantitative expressions for the conceptual model. It
is anticipated that new derivations will result in the conceptual

model becoming more comprehensive with time.
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POPULATION VARIABLES INFLUENCING STOCK FITNESS

Let us assume that the stock under consideration is not likely to
undergo any significant evolutionary change during the period in
which ménagement is applied. Then, the quantitative expressions for
the model must address three principal mechanisms that can effect
substantial changes in the diversity of genetic information in a
stock in one to several generations. These include changes in
population size, immigration into the stock and the presence or

absence of age structure in the reproductive stock.
FUNCTIONAL RELATIONSHIPS

The functional relationships for the model are based on the
concept of a variance effective number. Relating any genetic
property of a population to actual population numbers is complicated
because not all individuals in a population, not even all sexually
mature individuals, necessarily become parents (Falconer 1981). The
concept of effective population size was introduced by Wright (1931)
to reduce the comp]itated breeding structure of real populations to
the mathematically equivalent and simpler case of an idealized
population. According to theory, two related processes, inbreeding
and random drift, contribute to an average increase in homozygosity
within a population of finite size. Thus two definitions (Kimura and

Crow 1963) of the effective population number, Ne’ must be
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considered:

1. the inbreeding effective number, Ne(f)’ is the size of an
idealized population that has the same rate of inbreeding as
the observed population, and

2. the variance effective number, Ne(v)’ is the size of an

~ idealized population that has the same amount of random gene
fregquency drift as the observed population.

The two effective numbers are equivalent for populations that
remain constant in size over time, and are approximately equal for
populations whose periods of increase and decline tend to negate one
another over time (Crow and Kimura 1970). However, for small popu-
lations that are in decline, especially those that are in danger of
extinction, gene frequency drift results in greater homozygosity than
does inbreeding (James Crow, personal communication). Thus, although
one can derive a functional relationship using either Ne(f) or
Ne(v)’ conservative management seems to favor the latter. The
variance effective number offers the additional advantage of
incorporating the probability of increasing homozygosity, thus
eliminating the requirement of estimating homozygosity in managed
populations.

An equation for Ne(v) can be derived that incorporates popula-
tion size, immigration, age structure and the variance of fitness.
Let us define genetic risk as the probability of a reduction in the
adaptibility of a stock to its habitat due to a reduction in genetic
variation. The final expression for Ne(v) will be a measure of

genetic risk. It will not be equivalent to the N presented in

e(v)
the literature of population genetics (Crow and Kimura 1970).
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Recognizing that Ne(v) is an abstraction, the reason for including
it in the quantitative expressions is to permit the unification of
the principal mechanisms affecting stock fitness. Then we can use

the functional relationship N = f(population variables) for the

e(v)
conceptual model if we note that the probability distribution of
fitness is a function of Ne(v)'
The equation for Ne(v) will be used to satisfy the following
management objective. If Ne(v) is calculated for a stock during a
breeding interval when stock abundance satisfied management goals,
then conservative management dictates maintaining this value of

Ne(v) in subsequent breeding seasons, thus:

Ne(v) : Nle(v) (1)

where the prime notation distinguishes the breeding seasons in
present time from the reference breeding seasons. Functional
relationships for Ne(v) and N'e(v) can be substituted into
equation (1), and the equation rearranged to solve for any one
population variable, assuming numerical values for the remaining
variables are available.

Population Size. Because N is the size of an idealized

e(v)
population, the simplifying properties of an idealized population

must be considered in the present derivation. Thus we consider an

observed population with the following properties:
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1. Mating is at random,

2. the sexes are separate but the numbers of each sex need not
be equal, |

3. self-fertilization does not occur,

4., migration into the population does not occur,

5. parents reproduce at only one age (generations are
discrete),

6. the population is composed of diploid individuals,

7.  the number of offspring per parent contributed to the next
generation can vary.

The variance effective number for this population is

. ) Nt-lk
e(v) 1+ YL_ (2)
k
where: Nt-1= the number of breeding individuals in breeding season

t-1, X (kbar) and Vk are, respectively, the mean and variance of
successful gametes (i.e. gametes wnich survive to become parents in
the next generation) contributed per parent (Kimura and Crow 1963;
Crow and Kimura 1970). The variance effective number can be weighted
for differential contributions of male and female parents by
calculating N7 for females, N;* for males and combining them

according to the formula of Kimura and Crow (1963)
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(2a)

* | Kk
) 4 N, N,

Ne(v) NE 4 N
e e

Because kbar and Vk express a relationship between parents in
generations t-1 and t, kbar is proportional to W on the one hand and
Vk is proportional to Vw on the other. We propose to use Vk in
place of Vw without solving the proportion in the present

discussion because we will ultimately equate Ne(v) = f(Vk) to

N' = f(V'k) as suggested in equation (1). Similarly, kbar

e(v)
becomes a convenient term to retain because it can be estimated as

2N (3)

(Crow and Kimura 1970), a form which may be calculated from estimates
of population abundance at t and t-1.

Because equation (2) applies to the observed population described
above, it does not apply to cases where migration or age structure
occur. The next step in our synthesis must therefore address
migration and age structure.

Migration. Migration reduces the probability of random drift among
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subpopulations. The simplest model for migration, the Island Model
(Wright 1951), assumes that the immigrants into a subpopulation are a
random sample of the entire population. Thus the migrants have a
gene frequency equal to that for the whole population.

The Island Model can be applied to the present case by assuming
the stock to be a subpopulation. Let M be the fraction of the stock
(subpopulation) replaced by migrants in a generation. The
probability that neither of two genes uniting in a zygote has been
exchanged for a migrant gene is (l-M)z. Because random drift of
gene frequencies (and the corresponding loss of genetic variation)
within stocks decreases as migration increases among them, inclusion
of migration into equation (2) should result in an increase in
Ne(v) when M increases. The appropriate expression for N

e(v)
under these conditions is:

Ne(v) = V (4)

based on the equation presented by Crow and Kimura (1970) for the
rate of inbreeding as a function of M and Ne(v)’
The assumptions of the Island Model can be relaxed to correct for
migration between subpopulations that are related due to exchange of
genetic information in previous generations (Crow and Kimura 1970).

If r is the correlation of gene frequencies between immigrants and
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the receiving subpopulations, M(1-r) is substituted for M in equation

(4).

Age Structure. When individuals reproduce at two or more ages, a

population may be composed of individuals representing two or more
cohorts in a given calendar period. In a management sense, this
period must include the interval during which fishing mortality and
reproduction occurs. We find it useful to define a breeding season
as an interval of management concern and to consider all cohorts

represented during that interval in the calculations of N kbar

t-1°
and Vk in equation (4).

Incorporation of age structure into equation (4) requires estimat-
ing the abundance of parents Nx,t-l’ in each cohort, where x is the
age at reproduction. Then the abundance of all parents at t-1 in

equation (4), is

Neer = & N e (5)

Likewise, the contribution of each cohort to the average number
of successful gametes must be considered. The appropriate expression

is the weighted sum
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- I N
kK = XX X, t=1 (6)

where Ex is the average number of succcessful gametes produced by

parents of age x.

Alternatively, k can be estimated as

2tlex-m, t+n (7)

=~
L}

Nt"l

a form that may be calculated from estimates of population abundance
at breeding season t-1 and % t+n where the range of values for n is
determined by the reproductive 1ife history of a given stock. For
example, if there is annual breeding and the progeny produced by
parents at t-1 are sexually mature at ages 1 - 5, then the range of n
is 0 - 4.

Finally, the variance of successful gametes can incorporate age
structure by computing a weighted sum of the variances of each
cohort. This requires a few intermediate steps based on statistical

concepts.
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2
If o .7

szk X is the variance of k for fish of age x within a given
’

2
k,x

is the true variance of k for all fish of age x and

stock, fhen s for one stock is a sample of Oi x? the

true variance for all stocks of the species:

2 2
g = 2
b3 Swithin * Samong (8)
stocks stocks
and
§2 < g2
X

The definition of Ne(v) implies that it is a measure of the
sampling bias in the transmission of genes from one generation to the
next caused by the finite size of a stock. Thus, it is appropriate

to make 52

K.x dependent on the sample or stock size. This
requires removing the Gaussian correction from the variance formula

and is accomplished by

(9)
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where Nx refers to breeding season t-1.
If it is assumed that szk’x at one age (x) is independent of
szk’y at any other age (y) present in the reproductive stock,

then

cov = 0 (10)

for all paired combinations of ages. Then, the contribution of each

cohort to Vk is considered by computing the weighted sum

2 2 11
Vo= )Zé Sk,x Nx,t-l - )Z( Sij Nx,t-l (11)
k kN, e- Ne-t

When expression (10) is unacceptable, the summation in the
numerator of expression (11) must include the appropr{ate
covariances.

Substitution of expressions (5), (6) or (7), and (11) for Nt-l’
kbar and Vk,respectively,into equation (4) provides a functional
relationship between Ne(v) and population size, the mean and
variance of stock fitness, age structure and migration. The solution

of equation (4) requires the following data from fisheries surveys:
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Estimates of stock abundance at ﬁ t+n and t-1,

the proportion of reproducing adults at % t+n and t-1,

the number of migrants into the stock in breeding season

t-1,

the age composition of reproducing adults at n t+n and

t-1, and

estimates of age specific variance of successful gametes

(Szk,x) at t-1.

While the first four items can be estimated from data monitored

in fisheries management, measurement of szk,x may require
carefully designed field sampling of marked progeny (e.g., with coded
wire tags) over E t+n breeding seasons. An alternative method of
estimating Szk,x requires knowledge of the probability
distribution of k and estimates of kbarx at each age x (Fig.
I.la). For some probability distributions (e.g., Poisson, gamma,
exponential and binomial distributions), the variance can be
expressed as a function of the mean. If the probability distribution
of k at age x fits this condition, then

2

KX =f(kbarx) (12)

However, estimation of kbarx still may require sampling of marked

progeny.
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APPLICATION OF THE MODEL TO STOCK MANAGEMENT

Equation (4) (containing substitutions from equations 5, 7, and
11 for age structure) is of a form which can be substituted into
equation (1). Thus the conéeptua] model can now be applied to real
management situations for stocks with migration and age structure.
This application would typically involve the following stepwise
process:

1. The historical records for a stock of concern would be
surveyed, and successive breeding seasons, t-1 and g t+n, would be
§e1ected from an era when the stock would be considered to have Ne
consistent with the management goal. The terms Nt-l (equation 5),
ZN

n x+n,t+n’
selected interval.

M and Vv, (equation 11) would be compiled for the

2. The immediate management objective is to determine the
number of breeding individuals required in the present (or next)
breeding season to insure the maintenance of Ne’ thus the
maintenance of W. This is done by evaluating pcpulation abundance,
age structure, and migration in the generation interval of immediate
concern. These data would provide numerical values for Nlt-l’ M,
and V'k, where the prime notation is intended to distinguish these
properties in present time from the corresponding terms for the
reference generations. The variable for which we will ultimately
solve is E Nx+n,t+n'

3. Consistent with equation (1), we now equate N, for the

reference generation to N'e for the present generation, giving
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- ] -
v v,
1+ X (1-m)2 P+ X (w2
k k
. . ]
Substituting 2% Nx+n,t+n/Nt-l for kbar and 2% N X+, t+n for
k' (equation 7) and rearranging terms, we arrive at
N v
t-1 'k )2
i xen, ten [ bt ( 2z N! ) (] " ) ]
. n x+n, t+n
(14)

N
i x+n, t+n

Equation (14) would be appropriate for species with age
structure. A similar stepwise process would be employed for species
with discrete generations, however the expression % Nx+n,t+n
reduces to Nt fn this case.
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DISCUSSION

The expressions presented in the previous section are composed of
the conceptual model ( W = W' ), and an example of functional
relationships for application of the model (represented by equations 1
through 4). In developing the latter, we have relied heavily upon the
contributions of Kimura and Crow (1963) and Crow and Kimura (1970).

It should be noted that other workers (for example see Choy and Weir
1978, Emigh and Pollak 1979, Felsenstein 1971, Hi1l1 1979, Nei and
Imaizumi 1966, Robertson 1961) have contributed alternate derivations
for effective population numbers which also would be suitable as
functional relationships in application of the conceptual model.

We have elected to use the equations of Kimura and Crow in the
present discussion for a number of reasons. Because they have
appeared in the literature for some 20 years, they are familiar to the
community of population biologists. In spite of their simplifying
assumptions, they provide substantial flexibility in adapting the
model to the life history patterns of the species of concern. Most
importantly, they offer the advantage of enabling one to deal
quantitatively with population fitness using only estimates of
population variables routinely recorded or capable of being recorded
in fisheries survey work, thus avoiding the necessity of making direct
estimates of other genetic properties of populations.

We regard the latter point to be of paramount importance. Whereas

classical population genetics focuses upon the genetic structure of
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populations, natural resource management is more concerned with the
phenotypic expression of the genetic information in a variable and
unpredictable environment. Therefore, although the frequencies of
various alleles in populations may be useful in identifying stocks as
management units, such information is not particularly helpful when it
comes to making decisions about how the stocks should be managed. 1In
attempting to relate gene frequencies to stock management, it is
necessary to assume that the gene frequencies are correlated with
reproductive fitness irrespective of whether the frequencies are
determined from electrophoretic evaluation of protein polymorphisms,
meristic traits or any other methodology. The validity of this
assumption is tenuous at best, for in addition to the technical
questions associated with the methods of analysis, it is further
assumed that the observed phenotypic variability in a limited number
of structural genes reflects the variance of population fitness. If
this assumption is valid, then (1) the loci observed are the major
ones determining fitness, and (2) the loci act independently in their
contribution to fitness. The likelihood that a structural gene with
these properties exists is at best extremely remote.

In preceding sections we have made reference to idealized
populations on the one hand and observed populations on the other. A
clarification of the differences would be appropriate at this point.
As noted earlier, Wright (1931) introduced the concept of an idealized
population to simplify the properties of populations resulting from
complicated breeding structure. Implicit in the concept of an

idealized population are the following assumptions:
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1. mating is at random, including a random amount of
self-fertilization,
2. generations are discrete, i.e., there is only one
reproductive age,
3. the number of breeding individuals is the same in each
generation,
4. migration is excluded,
5. there is no selection,
6. mutation is disregarded.
Certain of these assumptions may be unacceptable when applying the
principles of population genetics to management situations depending
upon the life history pattern of the species under consideration. It
is useful to start with the assumptions of an idealized population in
deriving functional relationships for management models. Then the
derivations can be modified to correct for untenable assumptions until
the list is consistent with the properties of an observed population.
In the present case, we commenced our derivation using an equation
that retained assumptions 2, 4, and 6 and modified assumption 1 so as
to exclude self fertilization. We then systematically addressed the
remaining assumptions by appropriate changes to the functional
relationship. This approach provided the means for developing
consistency between functional relationships and the life history
patterns of the species concerned.
Having devoted considerable attention to what the model can do, it
seems appropriate at this point to recognize its limitations.
Although the model provides a means for maintaining the probability

distribution of fitness by maintaining the corresponding value for the
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variance effective number, it does not provide inference about the
evolutionary mechanisms acting on population fitness. There is an
inherent danger in placing an absolute numerical value on the variance
effective number in the reference generations without giving careful
consideration to the 1ife history pattern and environment of the
species of concern. The possiblity still exists to inadvertently
modify population structure unless cafefu] attention is paid to
biological detail.

To expand on this point by illustrative example, consider a stock
of marine fish composed of individuals representing a large number of
age classes. If fishing selectively extracts the older age classes
(presumably the 1argerlfish), the average age of reproduction is
reduced. If there is a genetic component to the age class structure
this is tantamount to reducing the generation interval, which has the
effect of increasing average fitness but reducing the variance of
fitness. It would be useful to partition age structure into genetic
and non-genetic components of variance, but in the absence of such
information conservative management would dictate that we should
attempt to harvest the stock such that the distribution of age classes
in the catch is the same as in the stock at large.

Practicable application of the quantitative model to stock

2
k,x

in equation

management is constrained by the estimations of s values in

equation (11) for the calculations of Vk and V'k
(14). If the estimations of 52k X values require field sampling,
there may be considerable cost and time delay involved in the

application of equation (14) to the management of a given stock. The
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magnitude of this problem will be influenced by the 1ife history of
the species. Another constraint is the determination of appropriate
reference breeding seasons for the estimation of population variables
in equation (14). Data gaps in the historical record may preclude
computation of the necessary variables for some stocks. Even when the
data are available, equation (14) assumes that a stock's habitat in
the reference breeding season is similar to the habitat in the season
of management concern. Stock management via the sole application of
equation (14) may be inappropriate when this assumption is
unacceptable.

Data constraints may be circumvented by developing indirect
estimates of the population variables required for equation (14). A
simple example is the calculation of Szk,x from estimates of age
specific fecundity and survival by

2 = = i 1
S kL f(kbarx) f[(fecund1tyx)(surv1va1x]

where fecundity could be estimated as a function of length or weight
at age (Pitcher and Hart 1982). However, indirect estimates will
contribute error to the output of equation (14) and will increase the
uncertainty involved in the application of equation (14) to stock
management. Consideration must be given to such uncertainty if
conservative management is desired.

There is an inherent danger in extending the generalizations of

any simplistic quantitative model to management purposes. In the
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present case the model at least intends to address the long term
perpetuation of the resource, and if it is found to be in error it is
likely to err in favor of conservatism. Inhthis sense we feel the
model represents a modest improvement of the tools available for the

application of the stock concept to fisheries management.
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ABSTRACT

This report describes the sensitivities of outputs from
functional relationships for a genetic fitness model for fisheries

management. The variance effective number (N )) is the principal

e(v
output required for applying the genetic objective of maintaining the
probability distributfon of fitness (W) to allow the stock to
perpetuate in the face of fishing and natural mortality in an
unpredictable environment. The analysis included investigating the
sensitivities of Ne(v)’ Vk and Vk/kbar (where k, the number of
successful gametes per parent, estimates individual fitness) to
changes in the following inputs: population size, age structure
(number of ages, age distribution, age specific mean fitnesses and
variances of fitness), immigration rate and the probability
distribution of age specific fitness (kx).

The descending order of importance for the inputs controlling the
value of Ne(v) is: (1) population size; (2) the probability
distribution of kx; (3) age structure; (4) immigration. However,
interactions among the inputs preclude a ranking applicable to all
cases when there are simul taneous changes in two or more input
variables. The results are discussed in the céntext of conservative
stock management. The minimum data requirements for rational
management are concluded to be estimates of the type of probability
distribution for age specific fitness, age composition of the
reproductive stock, age specific differences in the mean and variance

of fitness, and population size.
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INTRODUCTION

This paper describes the sensitivity analysis of functional
relationships used in a genetic fitness model for fisheries
management (Kapuscinski and Lannan 1984a). The response of a stock's

variance effective number (N ) to changes in input variables was

e(v)
studied because application of the model to stock management involves
maintaining the variance effective number in present time (N‘e(v))

at the level calculated for reference seasons in the past

(Ne(v))‘ The analysis included changes in population size (in
successive breeding seasons), age structure, immigration rate and the
variance of fitness. Also, different probability distributions of
fitness were examined because, for some distributions, the variance
of fitness can be estimated from the mean.

Five possible probability distributions of fitness were
considered. In all cases, kx, the probability distribution of
successful gametes at age x was used as an estimate of the
probability distribution of fitness. A high frequency of low
individual fitness (0 g kx$ 1) and a low freguency of very high
values of individual fitness are expected in most commercial fish
stocks, especially in the dynamic marine environment and in the face
of large exploitation rates. Average fitness (kbar) for a stock is

expected to be low because a kbar of 1 is associated with a rapidly

declining stock (Nt= O'SNt-l)’ a kbar of 4 is
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associated with a rapidly growing stock (Nt = ZNt-l) and a kbar
of 2 is associated with a stable stock size (Nt = Nt-l)' These
conditions for the values of fitness are met by the following
asymmetrical probability distributions of kx: Poisson, negative
exponential, gamma when g 1is small and binomial when n is much
larger than the mean (kbarx) (see appendix A for explanation of
parameters). A contrasting set of conditions for a commercial stock
would include a low frequency or even zero frequency of small
individual fitness (0 < k 5 1) and an increased frequency of large
individual fitness. These conditions would apply to a stock
experiencing very favorable environmental conditions for a number of
breeding seasons in the wild or to a cultured stock. The following
symmetrical (or nearly symmetrical) distributions satisfy these
conditions: normal, gamma when g is large and binomial when n and

the mean (kbarx) are small.
METHODS

Sensitivity analysis of the functional relationships for the
fitness model was conducted to study the response of output variables
to changes in one or more inputs.

Functional Relationships

Functional relationships derived from principles of population
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biology and population genetics were described by Kapuscinski and
Lannan (1984a). They relate the variance effective number, Ne(v)’
for a reproductive stock to population size, the mean and variance of

successful gametes (estimates of W and Vw), age structure and

migration. The following equations were used in the sensitivity

analysis:
N k
. t-1
Ne(v) 1+ Vv (1)
:—'(]‘M)Z
k
where:
Neer = B Ny e (2)
2TN

N x+n, t+n ‘3)
t-1
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k, = f(k) such that

E - )z( k; NX, t-1 (4)
t-1
ci’x = f(kx) (5)
o2 (N -1)
2 - K, x ''x
sk’ X N (6)



and
£sz N rs2 N
vV = X_Kyx x,t-1 X “k,x "x,t-1 (7)
k LN N
X x,t-1 t-1

Definitions for the terms in equations (1) to (7) are (Kapuscinski
and Lannan 1984a):
x = the age of parents;

N = the number of parents in breeding season t-1 where

t-1

N represents the parents of age x;

x,t-1

k and Vk = the meanand variance of successful gametes (k)
contributed per parent;

M = the fraction of the stock replaced by migrants in breeding

season t-1;

°2k x = the true variance of k for all fish of age x;
ix and szk X the mean and variance of k for fish of age x

within one stock.
Sensitivity analysis was conducted with a Pascal program
(appendix B) developed from these equations and run on an Apple Ile

computer. The program inputs included values for:

39
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1. the range of ages (first x - last x),

2. Nx,t-l for each x,
3. %Nx+n,t+n’
4., M

5. the pattern of increase in kbar_ as x increases, where the

X
choices are linear or positive exponential and
6. the probability distribution of k within a given age class

(x).

The choices for the probability distribution of k were (Hillier and
Lieberman 1974):

2

1. Poisson where Ok,x = kbarx,

2. negative exponential where <31 < = (kbarx)z,

3. gamma where a2

K,x kbarx B and an input value for

B was required,

4. binomial where O = kbarx(l-gfﬂi) and an

2
k,Xx
input value for n, was required or
5. normal where oi x cannot be estimated from kbarx,
thus an input value for °2k 5 Was required.
9

The derivations of the variance formulae and the ranges of input
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values (based on biologically meaningful values) are given in
appendix A. The program outputs were:

1. Nt-l and kbar (equations 2 and 3) for an entire stock,
2. Kbar,, G andszk,x
3. Vk (equation 7) for an entire stock and

for each x (equations 4 - 6),
Ne(v) (equation 1) for an entire stock.
Sensitivity Tests

The sensitivity of Ne(v) to changes in one or several variables
at a time was studied. In some cases, the sensitivity of Vk or
Vk/kbar was examined at the same time. Unless stated otherwise in
the results, the range of ages (x) was 2 - 5, the numbers at each age
corresponded to an intermediate age distribution (Table III.1),

Nt-l was 1000, M was 0.1 and there was a linear increase in kbarx

as x increased. The numbers at each age for the cases where there
was a predominantly young or a predominantly old age distribution and
for the cases where the range of ages was 1 - 10 are given in Table
III.1. A Poisson probability distribution of k, an intermediate age
distribution and a constant kbar (kbar = 1) characterized the cases
where M was varied.

The sensitivity of Ne(v) to changes 1in program inputs was
examined in a management context by defining the critical value of

Ne(v) to be the value required to maintain stock abundance at the

replacement level, where kbar = 2. Thus, for conservative
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management, the critical N and N'e(v) are the smallest

e(v)
acceptable values for the genetic objective defined by Kapuscinski

and Lannan (1984a):

Ne(v) ) N'e(v) (8)

RESULTS

The results of the sensitivity analysis are presented graphically

in Figures III.1 through III.13.

Response of Age Specific Fitness to Input Variables

2
k,x

their values at each age (x) were different for different ranges of

Because the variables kbarx and s were program outputs,

x, different values of Nx t-1 and kbar or for different patterns of
’
increase in kbarx as x increased. Different inputs for x,

N kbar, or the pattern of increase in kbarx yield different

2
k,x

associated with them. Thus, biological interpretation of all the

x,t-1°
curves with different values for each kbarx and s

sensitivity analysis results must be done in the following manner.
Different curves on a figure represent either different stocks or
the same stock at different breeding intervals. For example, if 1000
parents consisting of ages 1 - 10 are compared to 1000 parents

consisting of ages 2 - 5, then:
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a) ) for ages 1 - 10 and Ne(v) for ages 2 - 5 represent

Ne(v
two stocks or

e(v) for

ages 2 - 5 represents the same stock at another breeding

b) Ne(v) for ages 1 - 10 represents one stock and N

season. In the latter case, a change in the stock's age

structure resulted in a corresponding change in kbarx and

2
S k,x

changes in kbarx and 52

values for each x. In evolutionary terms, the
K. x could result from changes
in either the genetic or the environmental component of the

phenotypic values (Falconer 1981).

Sensitivity of Ne(v) and Vk/kbar to the Probability

Distribution of k

There is interaction between the function Ne(v) = f(kbar) and
the probability distribution of k for distributions where the vari-
ance can be estimated from the mean (Fig.III.1). There is a linear
increase in Ne(v), reflecting a linear increase in Vk, as kbar
increases for the Poisson, binomial and gamma distributions. There
is little change in Ne(v) as kbar increases for the negative expo-
nential distribution because the quadratic increase of Vk in the
denominator counteracts the linear increase of kbar in the numerator
of equation (1) (refer to variance formula in methods). The gamma
distribution is the most general distribution, yielding a family of

straight lines for different values of 8. Values for N for

e(v)
the gamma and Poisson distributions are identical when g = 1.
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Values for N for the gamma and negative exponential

e(v)
distributions are identical when B = kbar.

The binomial distribution generates a family of straight lines
for different values of n (Fig. II1.2.) where n is the largest
possible value for fecundity (refer to Appendix A). The lines
approach the Poisson line (Fig. IIl1.1) for intermediate values of n
(e.g., n = 20 - 200) and are identical to the Poisson line for large
n (e.g., n = 2000). The binomial lines differ significantly from the
Poisson 1ine only when n is very small (n = 2 - 8) because, then,

Vk for a given kbar is much smaller in the binomial than in the
Poisson distribution. Whereas Vk = f(g%kbar) is approximately

equal to kbar for the Poisson distribution, v ® f(o2,kbar,n)
decreases when n decreases and kbar is held constant for the binomial
distribution (refer to variance formulae in methods).

The probability distribution of k affects the critical value of

) (Fig. IIl.1 and II1I.2). The critical value of N

Ne(v e(v)

increases as B increases in the gamma distribution and as maximum
fecundity (n) decreases in the binomial distribution. The critical
value of Ne(v) for the Poisson distribution is always greater than
it is for the negative exponential distribution.

Results for other portions of the sensitivity analysis are
restricted to the Poisson and negative exponential distributions
because they show the greatest difference between their slopes for
Ne(v) = f(kbar).

There is a linear increase in N ) as kbar increases for a

e(v
normal distribution of k where the variance cannot be estimated from
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the mean (Fig. I1II.3). Also a family of straight lines is generated
for different values of Vk/kbar. When Vk/kbar is 0.498 the line
(slope = 712.57) approaches the Poisson 1ine (slope = 553.48) in
Figure III.1 for which Vk/kbar is 0.996. This suggests that the
value of Vi associated with a given kbar in a stock with a normal
distribution of k can be approximately one-half of the Vk in a
stock with a Poisson distribution. Also the critical value of
Ne(v) increases as Vk/kbar decreases in the normal distribution.

Thus the rational development of genetic objectives for stock
management requires knowledge of the probability distribution of k in

conjunction with estimates of V., (Kapuscinski and Lannan 1984a).

k
There is interaction between the function Vk/kbar = f(kbar) and
the distribution of k (Fig. III.4). The ratio vk/kbar is constant
as kbar increases for the following distributions: poisson, binomial
(when n is small), gamma (when B is held constant) and normal (when
vk is allowed to increase as kbar increases). There is a linear
increase in Vk/kbar as kbar increases for the negative exponential
and gamma distributions (when 8 = kbar). Vk/kbar decreases to an
asymptote as kbar increases for a normal distribution when Oi(is

held constant for each x. The probability distribution of k affects

the value of Vk/kbar associated with the critical value of Ne(v)

(i.e., where kbar = 2). A larger value of Vk/kbar is required for
asymmetrical distributions (Poisson, negative exponential, gamma and
binomial when n is large) than is required for symmetrical distribu-
tions (normal and binomial when n is small and the probability of

yielding a successful gamete from each egg is 0.5).
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Sensitivity of Vk to Age Specific Fitness

The probability distribution of k determines the general
sensitivity of v to kbar (Fig. III.5): there is a slight linear
increase in Vk as kbar increases (slope = 0.996) for a Poisson
distribution and a quadratic increase in Vk as kbar increases for a
negative exponential distribution. However, there is interaction
between the pattern of increase in kbarX with increasing x and the
probability distribution of k. While there is little difference
between the Poisson curves for a linear and an exponential increase
in kbarx, the elevation of the negative exponential curve is much
greater for an exponential increase in kbarx than it is for a

linear increase in kbarx. The value of V, associated with the

k
critical value of Ne(v) is always greater for a negative

exponential distribution of k than for a Poisson distribution of k.
In addition, Vk associated with the critical value of Ne(v) is
greatest when there are a negative exponential distribution of k and

an exponential increase in kbarx with increasing x.

Sensitivity of Ny ., to Age Specific Fitness and the Number of

Reproductive Ages

The variance effective number as a function of kbar is the same
for different numbers of ages and different patterns of increase in
kbarx with increasing x when there is a Poisson probability

distribution of k (Fig. III.6). This result applies only to the case
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where kbarx values (for a given kbar) are allowed to vary as the

number of ages varies and N is held constant. Under natural

t-1
conditions, kbarx values may remain constant, at least over the
short term, when the age structure of a stock changes. Also, a
change in age structure probably would result in a corresponding
change in the total number of parents (Nt-l) and kbar. Thus the
slope of the straight line shown in Figure III.6 would change.

The variance effective number as a function of kbar differs for
different numbers of ages and patterns of increase in kbarx with
increasing x when there is a negative exponential probability
distribution of k (Fig. II1.7). For a given pattern of increase in
kbarx, the elevation of the curve and the critical value of Ne(v)
decreases as the number of ages increases because vk increases.
For a given number of ages, the critical value of Ne(v) is much
smaller when the increase in kbarx is exponential than when it is
linear. There is interaction between the number of ages and the
pattern of increase in kb;rx: the difference in elevation between
the curves for ages 2 - 5 and ages 1 - 10 is greater when the
increase in kbarx is exponential than when it is linear. These
results apply only to the case where kbarX values are allowed to

vary. If kbarx values remain constant and N and kbar values

t-1
change when age structure changes in a natural stock, then the
differences among elevations of the curves may be greater than the

differences shown in Figure III.7.



Sensitivity of Vk and Ne(v) to Age Distribution, Age Specific
Fitness and the Pattern of Increase in kbarx for a Constant

Number of Ages

The functions V, = f(kbar) and Nagy) = f(kbar) are the same
for different age distributions and different patterns of increase in
kbarx with increasing x when there is a Poisson probability
distribution of k (Fig. III.8a and II1.8b). Also, these functions
are the same for different age distributions and a linear increase in
kbarX when there is a negative exponential probability distribution
of k (Fig. III.9a and III.9). However, the functions are different
for different age distributions and an exponential increase in
kbarx when there is a negative exponential probability distribution
of k (Fig. III.10a and III.10b). The elevation of the curve for Vk
(Fig. I1I1.10a) increases and the elevation of the curve for No(v)
decreases as the proportion of young fish increases (going from a

predominantly old to a predominantly young age distribution). This

2
KyX

each age (x) and for each kbar (Table IIl.2a). There are similar but

result is due to concurrent increases in kbarx and s at

less dramatic increases in these variables for the data presented in

Figures IIl.8a, III.8b, III.% and III.9b (Table I1II.2b).
Sensitivity of Ne(v) to the Immigration Rate

The variance effective number as a function of M when kbar and

Vk are held constant is described by a curve with one inflection
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(Fig. III.11): for lower values of M, there is a linear increase in

Ne(v) as M increases; the rate of increase in N is smaller

e(v)
(above the inflection) at higher values of M; Ne(v) is equal to the

total number of successful gametes (2% N ) at M = 1.0.

x+n,t+n
This function is identical for different numbers of ages, probability
distributions of k (Poisson or negative exponential) and patterns of
increase in kbarx with increasing x because age specific fitnesses
(kbarx, Szk,x) were allowed to vary. If age specific fitnesses
remain constant in a natural stock, the elevation of the curve in
Figure III.11 will change when the age structure changes. If the
value of Ne(v) calculated for a given stock under a given set of
conditions for the other variables is below the critical value, then
it can be raised by an increase in M.

The variance effective number as a function of M is different for
when kbar and V., are held constant

t-1 k
(Fig. II1.12). The elevation of the curve and the rate of increase

different values of N

(below the inflection) increases as N increases.

t-1
The variance effective number as a function of M is different for

different values of kbar when N is held constant (Fig. III.13).

t-1
The elevation of the curve and the rate of increase (below the

inflection) increases as kbar increases.
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DISCUSSION

-1 Nt and thus kbar) is the principal

input controlling the value of Ne(v)' The descending order of

Population size (N

importance of the other variables is: (1) the probability
distribution of kx because it determines the range of 52k X
values for each kbarx and thus the range of Vi for a given kbar;
(2) age structure {number of ages, age distribution, kbar,

2 2

S and s K. x values

s

k,x) with the differences among kbar,
being most important; (3) migration. However, interactions among
these variables preclude a ranking applicable to all cases when there
are simultaneous changes in two or more variables.

The probability distribution of kx reflects the outcome of all
the events experienced by individuals of a stock during their life
history. A characteristic distribution, a characteristic set of
distributions (where each member of the set represents one stock) or
different sets at different times for the species are possibilities
that cannot be excluded given the present paucity of empirical
information. The model behaves quite differently with asymmetrical
probability distributions than it does with symmetrical or nearly
symmetrical distributions. Questions about the probability
distribution of kx of particular interest to management include:

1. can the variance be estimated from the mean,
2. is there a constant or variable value for Vk/kbar of a

stock when the variance cannot be estimated from the mean,

and
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3. is an unimodal probability distribution appropriate for a
given age within a stock?
When there is an affirmative response to the first question, Vk can
be increased only by increasing kbar. This requires increasing the

escapement (2 N ) at t+n breeding seasons for a given

x+n,t+n
escapement (Nt-l) at t-1. Recognizing that the present functional
relationships of the genetic fitness model provide a simplistic
picture of the genetic diversity of a stock, the maintenance of a
probability distribution of fitness (estimated by Vi and kbar),

apart from any consideration for the value of N may be the

e(v)?
most important management objective for insuring the long term
adaptibility of a stock to a dynamic habitat. For the second
question, conservative stock management would benefit from knowledge
about (a) the response of Vk/kbar values to alternative management
strategies (e.g., different exploitation rates) and (b) a possible
optimal range of Vk/kbar values based on environmental uncertainty
and exploitation r;tes for a given stock. When there is a negative
response to the third question, application of an unimodal
distribution to the functional relationships (as done in this paper)
may underestimate the impact of changes in age structure on Vk,

kbar and N Evidence for a pronounced bimodal frequency

e(v)’
distribution of larval survivals (i.e., one component of fitness) in
Pacific oysters, Crassostrea gigas, suggests that bimodal or even
mul timodal distributions of kx are possible (Lannan 1980).

The direction and magnitude of differences among kbarx and



52

2
s K,x

affect the sensitivity of V

values (i.e., age specific fitnesses) as age (x) increases

and N to changes in age

k e(v)
structure. An increase in these variables with increasing age is
consistent with the evidence for increasing fecundity averages and
variability with age in fishes (Beacham 1982, Pitcher and Hart 1982,
Williams 1977). But their direction of change warrants determination
in managed stocks because fertility is only one component of

fitness. Williams (1977) suggested that an increase in fitness
variation with age follows from principles operative in the evolution
of senescence. The magnitude of age specific differences in fitness
will influence the impact of selective harvesting of certain ages
(usually of the older, larger fish) on the value of Ne(v)' In this
study, only one set of parameter values (i.e., slope and intercept)
for linear and exponential increases in kbarx with age was used to
simulate age specific differences in fitness. Thus, the simulated
sensitivity of Ne(}) to age structure may overestimate or
underestimate the sensitivity for a given natural stock. This
suggests a need for parameter estimation in managed stocks.

Also, stock management must address temporal changes in kbarx

2
k,x

age structure is different for the case where these values change

and s values for each age (x). The sensitivity of Ne(v) to
(Fig. III.5 - 11I1.12) than it is for the case where these values
remain constant (Fig. IV.1 and IV.3) as Nx and kbar values change.

Under natural conditions, kbarx and 52 values may be

k,X
constant over the short term while they may vary over the long term.

In any case, the sensitivity of Ne(v) to temporal changes in these
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variables will be the same whether the changes are due to the genetic
or environmental components of phenotypic values.

An increase in kbarX and szk X for each age was observed in

this study as the age distribution shifted from predominantly old to
predominantly young fish (Table II1I.2). This leads one to speculate
that similar increases in these variables over time could allow a
stock to maintain a small critical value of Ne(v) when there is
continual selective harvesting of older fish. This would counteract
the tendency for the overexploitation of older fish to raise the
critical value of Ne(v) (refer to results for Fig. III.10). Noting
that the numerator of equation (1) can be simplified to

2% Nx+n,t+n’ the following suggestion can be made: smaller

critical values of Ne(v) increase the probability of stock
persistence in the face of large exploitation rates because they

require smaller escapements (% N ) over t+n seasons than

x+n,t+n
larger Ne(v) values require. These speculations may explain, at
least in part, the decreases in average size, average age and total
abundance observed for Pacific salmon stocks that still persiét,
although at levels far below historical abundances, after many
generations of heavy exploitation (Ricker 1981).

The variance effective number is relatively insensitive to
changes in the immigration rate when parent stock size (Nt-l) is
small and the stock is declining in abundance (kbar < 2). Further-
more, Ne(v) is quite insensitive at the low values of M (M < 0.1)
required to maintain genetically distinct stocks (Allendorf 1983,

Falconer 1981).
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For example, typical straying rates for Pacific salmon are believed
to be well below 10%. Quinn (1984) reported rates of 0.6 ~ 1.5% for
sockeye salmon. But he also discussed the influence of environmental
factors (e.g., stability of the spawning stream) and life history
pattern (e.g., the presence or lack of reproductive age variation) on
the balance between straying and homing in Pacific salmon species.
The simple incorporation of migration (M) into these functional
relationships cannot address the full impact of migration on the
maintenance of Vw in a stock.

Management must address the interaction of input variables on the
sensitivity of Ne(v)' The minimum data requirements for developing
a rational management plan for a given stock are: estimates of the
type of probability distribution of kx, age composition (Nx for
each x), age specific differences in kbarX and Szk,x and popul a-

tion size (N and _N Y. Without all these estimates,

t-1 n x,t+n
the inherent dangers in applying simplistic functional relationships

for N ) to the genetic objective of maintaining W will escalate

e(v
(Kapuscinski and Lannan 1984a).



Fig. IIL.1.
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The variance effective number, Ne’ as a function of
the average number of successful gametes (kbar) and the
probability distribution of successful gametes when the

variance of the distribution is a function of the mean.
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Fig. III.2.
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The variance effective number, Ne, as a function of
the average number of successful gametes (kbar) and the

parameter n when successful gametes are binomially

distributed.
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Fig. III.3.
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The variance effective number, Ne’ as a function of
the average number of successful gametes (kbar) and the

ratio Vk/kbar when successful gametes are normally

distributed.
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Fig. I1II.4.

The ratio Vk/kbar as a function of the average number
of successful gametes (kbar) and the probability

distribution of successful gametes.

61
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Fig. III.5.
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The variance of successful gametes, Vk, as a function
of the average number of successful gametes (kbar) and

the pattern of age specific differences in kbar

(kbarx).
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Fig. III.6.
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The variance effective number, Ne’ as a function of
the average number of successful gametes (kbar), the
pattern of age specific differences in kbar (kbarx)
and the number of reproductive ages when there is a

Poisson distribution of successful gametes.
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Fig. III.7. The variance effective number, Ne’ as a function of
the average number of successful gametes (kbar), the
pattern of age specific differences in kbar (kbarx)
and the number of reproductive ages when there is a

negative exponential distribution of successful gametes.
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Fig. III.8.a and III.8.b. The variance of successful gametes, Vk,
(a) and the variance effective number, Ne’ (b) as a
function of the average number of successful gametes
(kbar), age distribution and the pattern of age specific
differences in kbar (kbarx) when there is a Poisson

distribution of successful gametes.
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Fig. IIlI.9.a and II1.9.b. The variance of successful gametes, Vk,
(a) and the variance effective number, Ne’ (b) as a
function of the average number of successful gametes
(kbar), and the distribution of ages when there is a
negative exponential distribution of successful gametes
and the pattern of age specific differences in kbar

(kbarx) is linear.



Variance Effective Number

72

S0 a—

e age distribution

o
.z_s:! O predominantly young
.04 Aintermediate
"'sj [J predominantly old

9

32 s+

10 o

380 3.25 3.80 3 75 4 5S¢

1030+

800~ A - =

000 ™ ~ i -

$00

200

Fig. IIT.9.a and I11.9.b



73

Fig. III.10.a. and IIl1.10.b. The variance of successful gametes, Vk,
(a) and the variance effective number, Ngs (b) as a function of the
average number of successful gametes (kbar) and the distribution of
ages when there is a negative exponential distribution of successful
gametes and the pattern of age specific differences in kbar (kbarx)

is exponential.
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Fig. III.11.

The variance effective number, Ne’ as a function of

immigration rate (M) when the average and variance of

successful gametes (kbar and Vk) are held constant.

75
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Fig. III.12. The variance effective number, Ne’ as a function of
immigration rate (M) and number of parents (Nt_l) when
the average and variance of successful gametes (kbar and

Vk) are held constant.
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Fig. II1.13. The variance effective number, Ne’ as a function of
immigration rate (M) and the average number of

successful gametes (kbar) when the number of parents

(Nt-l) is held constant.
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Table III.1. The number of parents (Nx t-l) of each age (x) at
]
breeding season t-1 with the total number of parents held constant

(Ny_; = 1000).

Age of Parents at t-1

Age
Distribution 1 2 3 4 5 6 7 8 9 10
Predominantly
Yqung 500 350 100 50
Intermediate 50 500 350 100
Predominantly
01d 50 100 350 500
Predominantly

Young 256 192 142 115 90 64 51 36 28 26
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Table IIl1.2.a and III.2.b. Examples of values for kbarx and

52k X (in parentheses) values for a negative exponential

probability distribution of k (a) and a Poisson'probability
distribution of k (b) with the total number of parents and kbar held

constant (N = 1000, kbar = 2).

t-1

Age of Parents at t-1

Age .
Distribution 2 3 4 5

a. exponential increase in kbarx as x increases

Predominantly 0.18 0.61 1.45 2.84
01d (0.03) (0.38) (2.12) (8.07)

Intermediate 0.33 1.11 2.62 5.12
(0.11) (1.22) (6.88) (26.24)

Predominantly 0.61 2.07 4.90 9.58
Young (0.38) (4.28) (24.05) (91.75)

b. 1inear increase in kbarx as x increases

Predominantly 0.93 1.40 1.86 2.33

01d (0.91) (1.38) (1.86) (2.32)
Intermediate 1.14 1.71 2.29 2.86

(1.12) (1.71) (2.28) (2.83)

Predominantly 1.48 2.22 2.96 3.70
Young (1.48) (2.22) (2.93) (3.63)




APPLICATION OF FUNCTIONAL RELATIONSHIPS FOR
A GENETIC FITNESS MODEL FOR MANAGING PACIFIC SALMON FISHERIES

Anne R. D. Kapuscinski
and

James E. Lannan

Department of Fisheries and Wildlife
Oregon State University

Marine Science Center

Newport, Oregon 97365

83



84

ABSTRACT

This report describes examples of functional relationships for a
genetic fitness model for the management of Pacific salmon fisheries
to maintain the long term reproductive fitness of breeding
populations. We have concluded the genetic objective to be
maintaining the probability distribution of fitness and, thus, the
var}ance effective number, to allow the stock to perpetuate in the
face of fishing and natural mortality in an unpredictable
environment. Functional relationships for the variance effective
number, derived by synthesis of the literature of population biology
and population genetics, are briefly reviewed. These expressions
relate the variance effective number to the number of spawners, age
structure, the variance of fitness, and immigration. The inputs for
the functional relationships are population variables that do not
require estimation of classical genetic properties of populations
such as gene frequencies and percentage homozygosity.

Adjustment of the model to accomodate the different life
histories of the several species of Pacific salmon is demonstrated by
application of the functional relationships to fictitious chum

(Oncorhynchus keta) and pink (0. gorbuscha) salmon stocks. The
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demonstration includes estimating changes in the variance effective
number resulting from pre-selected escapement levels and the
escapement required to maintain the variance effective number

constant.
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INTRODUCTION

We have developed a conceptual framework and illustrative
functional relationships for a genetic fitness model for fisheries
management. The functional relationships express the variance
effective number of a stock as a function of population size, the
variance of successful gametes, immigration and age structure
(Kapuscinski and Lannan 1984a). The model is applicable to managing
the genetic health of salmonid reproductive populations. The purpose
of this paper is to illustrate the functional relationships of the
model with fictitious salmon stocks.

To satisfy the management goal of maintaining a stock as a self
perpetuating system over the long term, we have concluded the genetic
objective to be maintaining the probability distribution of fitness
to allow the stock to perpetuate in the face of fishing and natural
mortality in an unpredictable environment. Although many fisheries
biologists, for example Hynes et al. (1981) and Krueger et al.
(1981), recommend maximizing'the genetic variation of exploited
stocks, we suggest that optimizing the variance of fitness may be
more appropriate.

The genetic objective can be met by considering the model's
variance effective number to be a measure of genetic risk
(Kapuscinski and Lannan 1984a). If Ne(v) is the variance effective
number for a stock during a generation interval when stock abundance

satisfied management goals, then conservative management dictates
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that N ) should remain constant in subsequent breeding seasons,

e(v
thus:

Ne(v) - M.e(v) (1)

where the prime notation denotes the breeding seasons in present
time. Expressions for Ne(v) and N'e(v) as a function of
population size, the variance of fitness, immigration and age
structure can be substituted into equation (1), and the equation
rearranged to solve for any one population variable, assuming
numerical values for the remaining variables are available

(Kapuscinski and Lannan 1984a).
METHODS
Functional Relationships of the Model

In this paper, the functional relationships apply to a stock with
the following properties:
1. Mating is at random.
2. The sexes are separate but the numbers of each sex need not
be equal.
3. Self-fertilization does not occur.
4, Migration into the population may occur.

5. The population is composed of diploid individuals.
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6. The number of successful gametes per parent contributed to
the next generation can vary.

7. For each reproductive age, the frequency distribution of
successful gametes per parent is described by a Poisson
distribution «31 = kbar).

8. There is a linear increase in the average number of
successful gametes per parent (kbarx) as age increases.

9. There are no sex specific differences in the frequency
distribution of successful gametes per parent.

*The expression for Ne(v) for this stock is

t-1

Ne(v) (2)

(1-}4)2

x'll <

where: Nt-l is the number of parents at breeding season t-1, M is
the fraction of the stock replaced by migrants in a breeding season,
and kbar and Vk are, respectively, the mean and variance of
successful gametes (i.e., gametes that survive to become parents in
the next generation) contributed per parent (Kapuscinski and Lannan
1984a).

The model can be applied to a salmonid species with two or more

age classes in the mating population (for example chum salmon,



89

(Oncorhynchus keta) by substitution of the following equations into

expression (2) (Kapuscinski and Lannan 1984a, b):

Neep = % Nx,t-l (3)
K - k kx Nx, t-1 (4)
Ne-1
2 2
V. = )z< Sk,x Nx,t-1 - )Z( Sk,x Nx,t-l (5)
k § Nx,t-l Nt-l

where x is the age at reproduction. The age specific variances in

equation (5) are for Poisson distributions, thus:

X (6)
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and

a? = k (7)

The model can be applied to a salmonid species with no age class
structure (e.g., pink salmon 0. gorbuscha) by substitution of the
following equations into expression (2) (Kapuscinski and Lannan

1984a,b):

Kk = _t_ (8)

where t-1 and t refer to breeding seasons for either an odd year or

an even year stock,

v, = Kt (9)

(10)

"
~i

and &
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Application of the Model
The relationship between the dependent variable Ne’ and the

other population variables in equation (2) is demonstrated with data
for fictitious chum and pink salmon populations. The variance effec-
tive number was computed while differént combinations of variables
were held constant. Chum salmon, which typically have four reproduc-
tive classes, and pink salmon, which have only one reproductive age
class, were used to compare the behavior of a stock with age struc-
ture to that of one without age structure. The kbarX values for
the chum stock were held constant in all the calculations. Unless
otherwise specified in the results, the reproductive ages and the age
distribution in the chum stock were: age 2 (5%), age 3 (50%), age 4
(35%) and age 5 (10%). Also, the chum and pink stocks were declining
in abundance (kbars1). The values used to simulate three possible
abundance trends in a pink salmon stock (Fig. IV.4) are given in

Table IV.1.

RESULTS

Comparisons between the chum and pink stocks are presented in

figures IV.1 through IV.4, showing N as a function of other

e(v)
input variables.

t-1 for Constant kbarx

There is a linear increase in N

Ne(v) as a Function of N
e(v) 35 Nt-l increases when
the immigration rate (M) is held constant (Fig. IV.1). The pink and

chum stocks behave identically when kbar (i.e., kbarz) in the
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pink stock is equal to kbar weighted for all ages (kbarz, kbar3,
kbar4, kbars) in the chum stock. This result will occur in

nature only if kbar2 for pink salmon is greater than kbar2 for

chum salmon. A loss of reproductive ages in the chum stock results
in a decrease in kbar and Vk. This leads to an increase in the
escapement (Nt_l) required to maintain a given value of Ne(v)‘
For example, if Ne(v) for the reference generation is 200 and if
the management goal is to maintain this value, then the required
Nt-l is 450 for a chum stock consisting of ages 2 and 3 versus 350
«for a chum stock consisting of ages 2 - 5.

There is a linear increase in Ne(v) as N increases when

t-1
age class structure and M are held constant for different values of
Vk and kbar (Fig. IV. 2). The pink and chum stocks behave
identically when kbar (i.e.,kbarz) in the pink stock is equal to
kbar weighted for all ages in the chum stock. The escapement of

(Nt_l) required to maintain a given value of N ) decreases as

e(v
Vk and kbar increase.

There is a linear increase in Ne(v) as N,_; increases for
different age class structures and values of M (Fig. IV. 3). The
pink and chum stocks behave identically for the same value of M when
kbar in the pink stock is equal to kbar weighted for all ages in the
chum stock. The escapement (Nt_l) required to maintain a given
value of Ne(v) decreases as M increases for a given age class
structure.

In the chum stock, an increase in M counteracts the reduction in

Vk caused by the loss of reproductive ages. The elevation and Vk
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value of the curve for ages 2 and 3 are lower than are the elevation
and Vk value of the curve for ages 2 - 5 when M is held constant

(M = 0). Thus, required to maintain a given Me(v) is

Nt-1
greater for ages 2 and 3 than it is for ages 2 - 5. Although Vk
remains constant, the elevation of the curve for ages 2 and 3

increases when M increases to 0.4. Then, N required to maintain

t-1

a given N ) is smaller for ages 2 and 3 and M = 0.4 than it is

e(v
for ages 2 - 5 and M = 0. If some mechanism other than a change in
age class structure reduces Vk in a pink or chum stock, an increase

in M will counteract the impact on Ne(v)'

Ne(v) as a Function of the Trend in Stock Abundance.

The value of Ne(v) at breeding season t-1 is different for
stocks experiencing different trends in abundance when Nt-l
(i.e., N at generation 3) is held constant (Fig. IV.4). At genera-
tion 3, Ne(v) is much smaller for a pink stock declining in
abundance than it is for a pink stock increasing in abundance. A 40%
increase in M in the declining stock increases the value of Ne(v)’
although it still is much smaller than Ne(v) for the increasing
stock. Thus, it may be difficult or even impossible to attain a
given level of Ne(v) (determined by management objectives) when a
stock is experiencing a rapid decline in abundance. The escapement

required to maintain a given value of N ) will have to be much

e(v
greater in a declining stock than in an increasing stock.
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DISCUSSION

The functional relationships for the fitness model are tools for
examining the possible impacts of exploitation and management on the
genetic health of salmon stocks. For example, they can determine the
direction of change in Ne(v) resul ting from a change in the
migration rate (Fig. IV.3) due to straying or resulting from a change
in age class structure (Fig.IV.1l) due to selective harvesting of the
older age classes (i.e., the larger fish). Also they provide a
quantitative method for making allocation decisions consistent with
the goal of maintaining the variance effective number at an adequate
level. The escapement (Nt) required to maintain Ne constant can
be computed when the age class structure, the migration rate and the
abundance of spawners at t-1 and the variance of successful gametes
are known (Fig. IV.3). Fishery statistics on stock abundance over
successive years can be used to make conservative escapement
allocations (Fig.IV.4).

The functional relationships of the model for age structured
salmon stocks assume a Poisson distribution for k at a given age, a
constant value for each kbarX (when other stock variables change)
and a linear increase in kbarx. The present lack of appropriate
data suggests a need to test these assumptions under field
conditions. Because Pacific salmon usually experience high rates of
mortality particularly during juvenile migrations into coastal
waters, it is reasonable to assume a very high frequency of k = 0

(i.e., a large value for the y intercept), an average value (kbar)



95
between 1 and 4 and a very low frequency of large values of k. These
conditions can be met by a Poisson distribution, a negative exponen-
tial distribution or even a bimodal or multi-modal curve described by
a polynomial function. A constant value for each kbarx is a
simplifying assumption that ignores complicating factors, for
example, density dependence. Evidence for increases in the fecundity

of lake whitefish (Coregonus clupeaformis), lake trout (Salvelinus

namaycush), and some British Columbia coho (Oncorhynchus kisutch)

stocks after heavy exploitation suggests that fecundity is influenced
by stock abundance in these fishes (Beacham 1982). Because fecundity
is a major component of fitness (k = fecundity x survival), kbarx
values may also change as stock abundance changes. The assumption of
a linear increase in kbarX is based upon the linear increase in
fecundity as age increases in Pacific salmon. This results from a
linear relationship between fecundity and length where length
increases as age increases (Beacham 1982). However, a linear
increase in kbarx also requires that the average survival of
gametes per parent (1barx) at each age is constant or nearly so.
Contradictory opinions in salmon management have been voiced on
how to maintain the genetic health of exploited stocks because a
unifying definition of the genetic objective of management has been
lacking. Our model's goal of maintaining the probability distribu-
tion of fitness provides a rational approach to considering the
implications of three contemporary scenarios for exploited salmon

stocks:
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1. Overfishing of the reproductive individuals of the less
productive stocks in a multistock fishery could dramatically
increase random genetic drift and inbreeding in these stocks
and thus accelerate their decline in abundance,

2. Directional selection by the fishery for one trait (e.g.,
size, timing of reproduction) could cause either indirect
selection for correlated traits or a response to selection,
either of which may have a negative impact on survival and
yield, and

3. Enhancement activities employing the transplantation of
natural stocks or the introduction of hatchery stocks could
decrease the abundance of both the native and introduced
fish due to swamping of the gene pool by the less well
adapted genotypes of the introduced fish.

While the results of reproductive overfishing presented in the
first scenario are predicted by population genetics theory, they have
not been documented with real or fictitious data. Using computer
simulation, Ricker (1973) only went far enough to show that mixtures
of stocks of unequal productivity, when harvested together, produce
smaller recruitments than single stocks of the same original size and
having the same optimum rate of exploitation. The equations for the
fitness model can go one step further by simulating relative changes
in Vk and corresponding changes in Ne(v) of each stock in a mixed
stock fishery.

The second scenario is supported by reports of long term declines
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in average age and size of harvested fish (Silliman 1975, Moav et al.
1978, Ricker 1981). Several controversial methods of counteracting
this problem have been suggested. The use of enhancement practices,
especially hatcheries, to offset selective effects of the fishery
(Larkin 1981) is discouraged by the proponents of scenario three.

The periodic reversal of the direction of fishing selectivity would
be a management nightmare. Finally, the inevitable selectivity of
all fishing methods could be exploited by intentionally selecting
fish to achieve maximum or optimum sustainable yield (Larkin 1981).
An initial assessment of the response of the variance of fitness and
the variance effective number in a stock subjected to any of these
methods can be made using the functional relationships of the fitness
model. For example, alternative means of counteracting selective
removal of older fish can be explored using information like that
presented in Figure IV.1 for different age structures.

The third scenario is confounded by a prevalent belief that
native fish are always genetically superior to transplanted fish. It
is argued that (1) native fish stocks have evolved specific gene
complexes highly adapted to their locality and (2) that they have
more genetic variability than hatchery or transplanted stocks.
Restated in terms of fitness, this argument implies that (1) average
fitness 1s high and the variance of fitness is low in native stocks
relative to hatchery and transplanted stocks and contradictofin, (2)
the variance of fitness is high in native stocks relative to hatchery
or transplanted stocks. The first claim implies that natural

selection has reduced Vw in native stocks enough to remove most
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nonadaptive genes. Also, it ignores the random or unpredictable
phenotypic expression {(especially in an unpredictable environment) of
genes influencing fitness. However, heterosis for yield in wild x
domestic trout planted in the wild has been reported by Flick and
Webster (1981) and Fraser (1981).

The second claim for the genetic superiority of native stocks
implies that only hatchery and transplanted stocks have been exposed
to random drift (which reduces Vw) due to the use of a small number
of founder individuals. Yet the same mechanism applies to any
natural salmon stock that evolved from small numbers of parents, i.e.,
that went through a bottleneck in abundance. Depleted natural stocks
are timely candidates for reduced Vw caused by bottlenecks.

Within the conceptual framework of our fitness model, the
transplantation of natural stocks and the introduction of hatchery
stocks are ways of increasing M and thus increasing Ne(v) for any
value of Vk. Numerical outputs from the model can help in deciding
whether or not Ne‘v) is sufficiently depressed in a particular
stock to warrant application of these enhancement practices. Caution
must be exercised in this decision making process because some
biological matters related to stock transplantations, such as the
possible introduction of foreign pathogens into the recipient stock,
are beyond the scope of the model but must not be ignored.

Although there is an inherent danger in extending the
generalizations of any simplistic quantitative model to salmon

management problems, conservative management should favor the present
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form of the fitness model because it aims for long term perpetuation
of the resource. We offer this model as a first attempt at providing
an "explicit working hypothesis of population genetics" (Larkin 1981)
to aid in the making of biological and social decisions in salmon

management.
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Fig. IV.1. The variance effective number, Ne’ as a function of
the number of parents (Nt_l) at breeding season t-1
and age class structure (for constant values of age
specific average number of successful gametes, kbarx)

when immigration is held constant (M = 0.2).
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Fig. IV.2.
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The variance effective number, Ne’ as a function of
the number of parents (Nt-l) at breeding season t-1
and the variance of successful gametes (Vk) when age
class structure and immigration are held constant (M =

0.2)
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Fig. IV.3.
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The variance effective number, Ne’ as a function of
the number of parents (Nt-l) at breeding season t-1,
migration and different age structures (with constant
values of age specific average number of successful

gametes, kbarx) .
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Fig. IV.4.
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The variance effective number, Ne, as a function of
time, the trend in stock abundance and migration rate
when the number of pink salmon spawners at breeding

season t-1 is held constant (N = 1000).

t-1



Variance Effective Number

3000 4

2000 +

1000 -

Pink Salmon

Generation

Fig. IV.4

breeding
season
t-1

L0T



Table IV.1. Number of pink salmon spawners for three generations

(g

Data correspond to curves in Fig. IV.4.

108

)

Abundance trend N1 N2 N3 = Nt-l
Declining 5,000 2,000 1,000
Increasing 200 600 1,000
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CONCLUSION

A generalized fisheries management model, which intends to
maintain a stock's probability distribution of fitness (W), has been
presented. If W (with a characteristic W and V) is the
probability distribution of fitness at breeding seasons when stock
abundance met management goals, and if W' is the stock's probability
distribution of fitness in present time, then the objective of the

conceptual model is expressed as
W=W. (1)

An example of functional relationships for W = f(population
variables) was developed from existing principles of population
biology and population genetics. These express the variance
effective number (Ne(v)) of a stock as a function of population

size, the mean and variance of successful gametes (estimates of W and
vw), age structure and immigration. Thus,

W= f(N = f(population variables)] (2)

e(v)
and

W' = f[N. = f(population variables')] (3)

e(v)
The appropriate application of the functional relationships to the
conceptual model involves substitution of expressions (2) and (3)

into expression (1).
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Assumptions of the Functional Relationships

The present forms of the functional relationships (equations 2
and 3) provide a working hypothesis of genetic objectives consistent
with the goal of perpetuation of the resource. However, caution is
urged in their application to the development of any genetic stock
management owing to certain assumptions and unknowns. The principal
assumption is that the relationships among the population variables
in the classical formula for Ne(v) (Crow and Kimura 1970) are
appropriate for the translation of the conceptual model into
quantitative terms. Although this formula was selected after careful
consideration of other quantitative expressions of population
genetics (Kapuscinski and Lannan 1984a), it may be possible to
develop more relevant relationships (among the various population
variables) from first principles. In any case, we can expect that
additional research will make the existing functional relationships
more comprehensive with time.

A second assumption of management concern is that environmental
conditions in past (i.e., reference) and present breeding seasons are
sufficiently similar to warrant equating W to W' in expression (1).
When environmental conditions fluctuate around a mean value, this
assumption may be tolerable. However, expression (1) will need
modification if the historical record shows a unidirectional change
in the value of important physical parameters (e.g., water

temperature). It may be possible to add coefficients to correct the
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values of population variables on either side of equality (1), but
only if enough is known about the impact of the physical parameters
on these variables. Thus, the selection of reference breeding
seasons will be greatly complicated under the conditions of
unidirectional environmental trends (refer to discussion by
Kapuscinski and Lannan 1984a).

Management must recognize also the lack of density dependent
behavior in the existing functional relationships for the model.
This may not be a serious limitation if, eventually, the functional
relationships are incorporated into a population dynamics model that
exhibits density dependence (e.g., the Ricker stock-recruit function
for Pacific salmon). Additionally, it may be possible to include
interaction terms for age specific mean fitnesses or variances of
fitness (e.g., covariance terms) into the existing functional
relationships. This will require some estimation from empirical

evidence for such age specific interactions.

Research Questions

The exercise of developing an example of functional relationships
for the conceptual model (equation 1) has led to the identification
of research questions whose study would improve our ability to
understand the genetic implications of fisheries management. They
must be addressed for each species of interest (owing to different

life history patterns) and they include:
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How does age at reproduction affect thé probability
distribution of fitness, particularly the mean and variance
(kbarx, szk,x)?

What is the magnitude of the difference among ages for
kbarx and szk,x values?

Do age-specific probability distributions of fitness change
significantly when the total number of parents (Nt-l)’ the
age distribution (Nx for each x) or the range of ages
change?

If density dependence {within or among ages) exists, how
does it alter the probability distribution of fitness?

Are bimodal or multi-modal probability distributions of
fitness (Kapuscinski'and Lannan 1984b) better than unimodal
ones for appropriate incorporation of 1ife history patterns
into the conceptual model (equation 1)?

2

Must s° . be estimated directly ( from k, or kbarx)

or can reliable indirect estimates be developed, for
example, from fecundity and survival data?

What are typical immigration rates and how variable are they
with time for a given 1ife history pattern?

If immigration rates are relatively high (Kapuscinski and
Lannan 1984b), do they warrant correction via the estimation

of the coefficient of relationship between immigrants and

the recipient stock?
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SUMMARY

The results presented in the preceding chapters are summarized

below:

1. A conceptual model and examples of functional relationships
for maintaining the reproductive fitness of exploited stocks
were developed.

2. The model is: an extension of the stock concept; general in
that it can accomodate the life history pattern of any
species; a phenotypic model requiring values for population
variables capable of being estimated or already routinely
monitored in fisheries management (values for classical
genetic properties of the stock, e.g., percentage
homozygosity are not required.)

3. The fitness of a stock is modelled as a random variable
described by a probability distribution (W) with a
characteristic mean (W) and variance (V).

4. Because the long-term survival of a stock is more dependent
on the value of V_ than simply on the value of W, the
genetic objective of conservative fisheries management is:
maintaining the probability distribution of fitness to allow
the stock to perpetuate in a dynamic environment.

5. The conceptual model is expressed as W = W' and the
functional relationships are applied to the model via

Ne(v) =N e(v) where the prime notation distinguishes
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the breeding seasons under management from the reference
breeding seasons.

An equation for the variance effective number, N was

e(v)?

developed which expresses N ) as a function of

e(v
population size in successive breeding seasons, age
structure, the variance of successful gametes (an estimate
of Vw) and immigration.

In its final form, Ne(v) provides an index of genetic risk

and it is not meant to replace the N found in the

e(v)
literature of quantitative and population genetics.

Genetic risk is defined as the probability of a reduction in
the adaptibility of a stock to its habitat due to a
reduction in genetic variation.

Application of Ne(v) = N|e(v) to stock management can be
achieved by rearranging terms to solve for any one
population variable, assuming that estimates for other
variables are available; for example, the output can be the
escapement required at breeding seasons t + n to maintain
the above equality.

The values of Ne(v) and V, (an estimate of Vw) are

most sensitive to changes in the values for population size
in successive breeding seasons (Nt-l,n Nx+n,t+n)’

suggesting that management of stock escapement levels (or
conversely exploitation rates) provides the most powerful

means of achieving the genetic objective. This is

especially true when the variance is a direct function of
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the mean of the probability distribution of fitness.

11.

12.

13.

14.

15.

The descending order of importance for the response of

Ne(v) and Vk to other input variables is: (1) the
probability distribution of age specific fitness; (2) age
structure (including range of ages, age distribution and age
specific differences in the mean and variance of fitness);
(3) immigration rate.

The responses of N and Vk to simul taneous changes in

e(v)
two or more inputs cannot be generalized owing to
interactions among the input variables.
The functional relationships behave quite differently with
asymmetrical probability distributions of fitness
(characterized by a high frequency of small individual
fitness) than with symmetrical or nearly symmetrical
probability distributions (characterized by a low or even
zero frequency of small individual fitness).
The minimum data requirements for developing a rational
management plan for a given stock are: estimates of the
type of probability distribution of kx, age composition
(Nx for each x), age specific differences in kbarx and

2 ).

t-1

STk x? and population size (N and §1N
Application of the conceptual model and the functional

x+n
relationships to the management of Pacific salmon stocks was
illustrated; a Poisson probability distribution of fitness

was assumed.
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18.
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20.

21.
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Accomodation for the different life histories of the various
species was demonstrated by considering fictitious chum
salmon (with age structure) and pink salmon (without age
structure) stocks.

The chum and pink stocks behave identically in response to
changes in input variables only when kbar (an estimate of W)
in the pink stock is equal to kbar weighted for all ages
(kbarz, kbar3, kbar4, kbars) in the chum stock; this
requires that kbar2 for pink salmon is greater than

kbar2 for chum salmon.

A 1oss of reproductive ages in the chum stock leads to an
increase in the escapement (Nt-l) required to maintain a
constant value of Ne(v)'
An increase in migration (M) counteracts the reduction in
Vk caused by the loss of reproductive ages in the chum
stock; the escapement required to maintain a constant value
of Ne(v) decreases as M increases in either stock.

The escapement required to maintain a constant value of
Ne(v) {s greater for a declining than for an increasing
stock.

Although there is an inherent danger in applying any
simplistic equations to stock management, the conceptual
model and the illustrative functional relationships are

likely to err in favor of conservatism if they are found to

be in error.
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22. The conceptual model and the functional relationships
provide a rational approach to considering the genetic

implications of fisheries exploitation and management.
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APPENDIX A: PROBABILITY DISTRIBUTIONS OF K

The derivations of the variance formulas (Hillier and Lieberman
1974) and the range of tested values for the parameters are described
below for each probability distribution. In all cases the range for
kbar was 1 - 4, including stocks declining in abundance by fifty
percent from t-1 to t (kbar = 1) and stocks doubling in abundance

from t-1 to t (kbar = 4).

Poisson Distribution of Kx

Expected value = ) and
variance = A,
thus variancex = mean,
2
lof =
K, X kbarx

Negative Exponential Distribution of Kx
Expected value = 6 and

variance = 682 ,

thus variancex (meanx)z,

2
(kbarx) .

k,x

Gamma Distribution of Kx

aB and

Expected value

GBZ ’

variance

thus variancex (meanx) B,

ck,x kbarx B.
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When g 1is 1, the variance is identical to the variance for the
Poissondistribution. The possible values for B were constrained by

the values of o and kbarx (a8 ):

kbarx 3 a = B
1 1 1
2 2 1
2 1 2
' 3 3 1
3 1 3
4 4 1
4 2 2
4 1 4
Binomial Distribution of Kx
Expected value = np and
variance = np (1-p),
=np (1 -8,
thus variance = mean (1-E$?ﬂ&),
ok,x kbar (1 - E%ffk).

In n trials, the probability of a parent producing a successful
gamete (k = 1) is p and the probability of a parent failing to do so
(k = 0) is 1 - p. The maximum fecundity for females of age x will
determine the maximum number of trials (nx). Thus a binomial

distribution for a stock would describe the probabilities of k = 0 to
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k = maximum fecundity. Values for Ny corresponding to an average n
for the stock and assuming a linear increase in maximum fecundity as

age increases were:

Average n
Age 2000 200 20 8 6 4 2
2 1143 114 11 5 3 2 1
3 1714 171 17 7 5 3 2
4 2286 229 23 9 7 5 2
5 2857 286 29 11 9 6 3

Normal Distribution of KX

Expected value u and
o

thus variancex cannot be estimated from

variance

mean , oi,x * f(kbarx).
An infinite number of values are possible for the variance associated
with a given mean of a normal distribution. But the biological

requirement for only positive values of k (k > 0) constrained the

range of values for oﬁ,x as follows:
kbarx ok,x Ky
(kbar, + o, )
1 0-1 0-1
2 0-4 0 -2
3 0-9 0-3
4 0 - 16 0-4
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APPENDIX B: PASCAL PROGRAM FOR SENSITIVITY ANALYSIS

b

Frogram EffrumxXY:

{ computes effective populaticn number, allowing varta-—

tion of al! inpute in Arnne ¢ equation for Ne: tills an arra>
with x and » ‘Ne) values that can be interchanged with bucinecs
araphice: choice of variables for x.Composed 23-May-&4 Mcdified
20,27 -May-24;4-Jun-84 to include exponentially «nc. kbarage.:?

tvpe tabie = reéord
ztock, parents, progeny sarras(!..Z05 o+ integer:
bmear, migration, kKvar, neftec tarrav{l ., 20] of real:
enad:
Var
T.l,age . fir=t Jast,choi1ce,xchoice, ,kchoice tinteger:
sumnpar, SumRorag, row, col rinteger
kbar mmigterm, normaloar ,n,oeta,sumtemp 'k trealy
numerstor ,denom:nator Ne ireal:
npar tarray [1..1Q) =2+ integer:
¥harzge. €i1amasc, s€q. kage sarray [1..10) o4 real:
coerdg tarray( 1 .20, (..2) O real:
$1iename tetringl( 307
2.0t stext
Al Swer tchar:
Al ttable;
Proceaure tirlel:
ceQrn
writein Eot
W telts oty
I S C-UR 4N 110, Gerneration of Varrance Effect g
e teln rraut, Tuwe Numbers )
wrtte .fout, etock’ 10, sumnpar’ i1, sumnrprog t1n, T kDars t 10, TmT i
wriotein vfous, UK 10, “Ne’ :12);

2nd: ‘genszral titlel

Procedure raitiely
-
= |

2}

]

wr o telnvsongt
weitelny oy
writeincsgugt, 110, f~ge Specific Data of Stock l:dog
wroteintcrout g
wrpteyfout, xge 110, npar 110, kKparage 10, sigmasg 10, ssqr 1100
wr i telntfout?;

'

=N Tace cpecit titlel

+
N

Deain
tor =} ta T de
Teg:n
we o terfaut sl stock({[):10,all.parents(1l:10,all.progenv(ll:ifn;
writerfout,all . kmeanlIl:10:2,all .migration{Il:10:2,all.kvarll):10:5:
wr teln(fout ,al) .neffecl):12:2);

end: {(for T loop’
writelnlfout)
wrpteinifout’
end: farint Jata table for Generaticn o0f Ne +$or T ctocke!:

Frocedurs orintl
tegin
wr cte  fout 110, sumnpar i,

wrte o ooyt M a1 0e 3, MNeslz:

umnpeo

]
-~
T
ar
b
o
3
N

s
=
&



writeln(fout);
writeln(fout)
writelin(fout?;
ernd:

{user must i1ncsert call

tor printz ¥ a szeparate printing for each

r
Frocedure orintg:
Legin
far age:=firet o
e o
write
write
writeln (fout):
end: {(for
end:

D
b

t do

1

lToop

Frocedure Est i matekbarage:

var sumage ,sumexpage.naqge :integer

qg,denomsum
cegin
sumage :=0;
csumexpage :=(:
rnage :=0:
deromsum:=0;
for agQe:= fairst
nage:=nuge -+
writelni Optrons ¥or
writelnd( 1. linear
writeln(’ 2. exponential
writelni Enter number
readln (Kchaice'i:
CAZE kchoice QF
1: begin
for aqQe:=¢tirst to |
sumage
for age:= first tc
kKagelagel:= {age#*k
end; {(case | linear
beain
for age:=first to
cumexpPage :Ssumexfage
for age:=first to
Kagelagel:=
end: {case 2
end; (for KChoices
tor age:=first to iast da
denomsum:=denomsum +
g:=(Kbar #sumnpar)/denomsum;
for age:=first to last do
kbar agelage ] :=qg*kagelage]:
end:

te last da
1z

3]

vfout . age:tl . npariagel
ffout.srgmasglagel: .

of oare

lacet

ltaet
faQe*aQe *¥iQeskbDar +rnage )’
exponent al

for

o

10

{print age specitic datas

creal

do

+ ‘ageragerage!

g

{

[u}

increace && aqe
InCreace &% age
option D

age specific kbar

incr

]

tnereace:;

{print data table for Generation of Ne for
titiel

and prant

E)
L

r
&

i

-

-]
cr

3

(SO

SuUME o

tkagelagel*nparlagel’r:

rock
after
toek !
(KRN
LeND=
s

I:

mo e

Jesiredl
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{makee Kbar=sum kbarages weighted by npar?’

{ increased fecundity at clider

age .}

{(procedure which computes kbarage +rom kKbar weighted forl
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Y
Procedure sumnparcalc;
begin
sumnpar :=0;
for age:= first tc last do

begin

writeln (“enter npar value for age = ,age:d);
readlir (npar{agel:;:
sumnpar :ssymnpar+nparlagel:
end; {for loop:
end: (procedure:
vromputes N for &all reproducing 2ges 3t b=
Procedure Sistribution:
begin
writelne Opticons ror probab:ifv Jietr b, of kbar are:” )
writelnt . Poresson: war,ances=y
wrtelnt 2, Binomial: usAp, ar L =goi-ne g
writelnd 3. Exponential: var i ance=y<ss *;
writelne 3, Gamma: u=alphasbets, var . =usbeta )
writeine S, Normal: variance not re'ated to u )

writeiny Enter the number o vour chouce )y
readln ‘choice);
end; vfor procedure?

Procedure chaicecalc;

begin
CASE chorce OF
1: z:gmacsqlagel =kharagelagel:
2: hegin
wrateln (“Enter value $ar n ,n - nemial for age ,age:li);
readln (n);
siomasqlagel:=cl-ikbaragelagei - n. 'skoaragelage];
2ndy
3: sromasqlagel] :=kbaragelagelskbarzgesgel:
q: tli";ll 1
wrteln - Enter walue for beta 1r Zamma func, for xge (age:llsg

readin ‘beta;
sigmasqlagel i=kbaragelagel>bet

e

writeln (‘Enter wvalue $or variance in normal func, for aoe L age il
readln (normaluar); B
sigmasqlagel:=rormaivar:
2ng.
end;: (for cCase cho
end: (far proc r

Pracedure calcsumtemp;
begin
sumtemp :=0;
for age:= first te last do
begin
ssalagel:=Cnparlagel~l) /npar(szelecigmacqlaqe]):
sumtemp :=cumtemp+ssalagelrrpariage]
end: (sums var . ances ower zges +ar numerator of Lk
end: <(for procedure!



Procedure +1ilal
begin

umngar
UmApr o

o+ Ne table with gata:
for X axie variable are:
per = no. parents at t-1

crnter number of one option’ i

umnpar;

hhar:

Woes

i
Rl

writerfaut,coordlrow,colleifedd

all.etock ()=l
all,.parents(]l:=¢
all.progenvii):
all.kmeanll):=btba
all.mrgratieon{]l:
all . kvar(l):=Uk:
all.nett
end: IR
Frocedurs
cegin
writein «Opticns
writeln ¢ 1. sumn
writeln ¢ 2., koar
writeln I, omoog
writeln 4., Uk
writeln (" Pleace
readin ' xchorce
CASE xchoirce OF
{: caordll. t]:=
2: coardll ., ii:=k
Z: coord(l 13:
4: coordll . 113:
end; fCage xIhio
coordl ] ,2):=Ne:
end; {for proczacy
Frocedure plotdii=;
begin
for rowi= L o T
t'-:".:g I r
for col:i= 1 tao
be Qin
writeifZ,coor
end; ifor coll

writeintfout):
writelnoezd,
end; {+0r Cun’
end; {procedure:’
begin Imaini
rewrtte <fout,
writeln ¢ enter
writelnu warning:

readin ‘filename)
rewrite ' +¢2, f1le

writeln: Femember

alrcw,col1:10:4);

Praimters )

dreskifilename.text for storing

suffix (,text) needed for inter

name) ;
. 20=max .

no. stockssQeneration

X0

Jata
change

o+ Ne

[
pq=]

table.

)

g.3raph:rcz
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T:=0;

Pe=0g

repeat {start of¢ loop for calculat:
writeln{’Enter 1.D. no. for this s
readln <I1)5;
T:=T + | {counter for na. stocks
title2: {table of age =pec:¢ti1c dat
writeln (“firet reproductiue age 2
readln (f:1ret);
writeln (" last reproductive age o}
readln «lagt;
sumnparcalc
writeln (“Enter walue ot sumnorog’
readln (sumnprog;
Kbar:= (Z¥*SUumnpprog. . SumnApar ;  ~Com
writeln enter value of m
readln (m)}

mogterm:=Cl-m)scl-m); {computes

estimatekbarage: {(computes
distribution; (chocees a probabi!
tor age:= first tco last do
choicecalc; <{computee siamasqlag
calcsumtemp: (computes numerator

Uk i=sumtemp. sumnpar
numerator :=sumnparskbar

denominator = UK Kbar)#migterm+ |
Ne:=numer z2tor “denominator:
printe, {age specific data tatie
fillally (#1411 record for Generat)
fillcoerd: (fi11) xy arrz, tc oe us
writeln (‘Dec vou want calculations
readln Canswer);
urnti? (answer = "N’ or ranswer = N
iend of repeat lcop for stoch caicul
titlel:
praint: (Generation of Var ance E+4
nictfirle; {xy data are printed and w
loce (¥2,lo0ck)
lcse cFfouti:
d. f(main grogram:
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